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Genetic Algorithms for
Generation of Class Boundaries

Sankar K. PalFellow, IEEE and Sanghamitra Bandyopadhyay, and C. A. Murthy

Abstract—A method is described for finding decision bound- that can successfully distinguish the various classes in the
aries, approximated by piecewise linear segments, for classify- feature space. In real life problems, the boundaries between
ing patterns in R, N > 2, using an elitist model of genetic na gifferent classes are usually nonlinear. In the present

algorithms. It involves generation and placement of a set of . tigati th h teristi f GA’ loited i
hyperplanes (represented by strings) in the feature space that investigation, the charactenstics o S are exploited In

yields minimum misclassification. A scheme for the automatic S€arching for a number of hyperplanes which can approximate
deletion of redundant hyperplanes is also developed in casethe nonlinear boundaries while providing minimum misclassi-
the algorithm starts with an initial conservative estimate of fication of training sample points.

the number of hyperplanes required for modeling the decision The feature space is generally unbounded and continuous in

boundary. The effectiveness of the classification methodology, t H if bounding inf fi be derived f
along with the generalization ability of the decision boundary, hature. However, It bounding information can be aerived from

is demonstrated for different parameter values on both artificial  the training patterns and the space is discretized to sufficiently
data and real life data sets having nonlinear/overlapping class small intervals in each dimension, then the requirements of

boundaries. Results are compared extensively with those of the GA’s for formulating the classification problem are fulfilled.
Bayes classifiers-NN rule and multilayer perceptron. A distinguishing feature of this approach is that the bound-
Index Terms—Evolutionary computation, hyperplane fitting, aries (approximated by piecewise linear segments) need to be
pattern recognition, variable mutation probability. generated explicitly for making decisions. This is unlike the
conventional methods or the multilayered perceptron (MLP)
based approaches, where the generation of boundaries is a

_ , . consequence of the respective decision making processes.
G ENETIC algorithms (GA’s) [1]-[5] are randomized  gjnce the optimum number of hyperplanés, required for

J search and optimization techniques guided by thgqner classification of a given data set is not knaawpriori,
principles of evolution and natural genetics, and have a largeonservative estimation (or overestimation)bfs normally
amount of implicit parallelism. GA’'s perform multimodalyone to initiate the algorithm. Consequently, some of the
search in complex landscapes and provide near optingherplanes may be found to be redundant in the final output of
solutions for objective or fitness function of an optimizatiof,» Ga-based algorithm as far as their contribution toward the
problem. They have applications in fields as diverse as VLglneration of boundary is concerned. A methodology for the
design, pattern recognition, image processing, neural network§omatic deletion of redundant hyperplanes is also developed.
machine learning, jobshop scheduling, etc. [6]-{9]. The process of elimination is performed as a postprocessing

In GA's, the parameters of the search space are encodedigy, The effectiveness of the proposed recognition method in
the form of strings (chromosomes). A collection of such St”ngﬁassifying both overlapping and nonoverlapping, nonconvex
is called a population. Initially a random population is createfgions is extensively demonstrated on two sets of artificial
which represents different points in the search space. Basedygly |ris data and real life speech and satellite imagery data.
the principle of survival of the fittest, a few among them argg regyits are compared with those of Bayes classifiekand
selected and each is assigned a number of copies that go |G classifier [10], and MLP [11]. The generalization ability of

the mating pool. Biologically inspired operators likeating, e gecision boundary and the issue of removing redundancy
crossoverandmutationare applied on these strings to yield g explained pictorially.

new gener_ation of_strings. The_process of selection, CrossovVeEection || describes the representation technique of the
and mutation continues for a fixed number of generations Qnerplanes in the form of strings. In Section 111, a description
until a termination condition is satisfied. An excellent survey: ihe classification methodology is presented. Section IV
of GA’s along with the programming structure used can Bgqs with the selection of control parameters of the method-
found !n [5]- . .. ology. In SectionV, the implementational aspects of the
In this paper, an attempt is made to study the application gfonosed methodology and the experimental results are pre-

GA's for pattern classification inV-dimensional data space.sented. Finally, the discussion and conclusions are presented
Classification is a problem of generating decision boundarigs gaction V.

I. INTRODUCTION
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Let .A represent the training data set. Then we define

whn

dist = Min distance(z,y)

z€EA

yeA

£y
wheredistance(z, y) denotes the Euclidean distance between
points # and y. Consequently, the separation between two
consecutive parallel hyperplanes, in any direction, is taken to
be dist /2 to guarantee the above mentioned condition. Thus

) the maximum number of parallel hyperplanesqgx_planes,

which may have to be considered for searching in any partic-
ular direction within the search space is computed as

4
max_planes = [dgg * 2-‘

where [#] gives the smallest integer greater than or equal to
£ z anddiag is the length of the diagonal of the hyper rectangle
2 enclosing the training points, i.e., see the bottom of page.
Fig. 1. Training samples and the enclosing hyper rectangle.
C. Hyperplane Specification
spacely, Fy,- -+, Fiy. The value of H varies from problem
to problem, depending on the number (s&)) as well 8 g4 ation of a hyperplane iV-dimensional space can be
the nature of the c_Iasses. _The%é hyperplanes need to represented as
be encoded as a single string. Note that each hyperplane
provides two halfspaces—a positive halfspace and a negative Ly +lbas+--+lyey =d @)
halfspace, thereby yielding two regions. Far hyperplanes,

the maximum number of such regions2€. Thus M < 27 where !y = cosay,ly = cosas, -, Iy = cosan. Here,
or H > log, M. o, a9, -, a are the angles that the unit normal, to the hy-

perplane, make with thd” axesFi, Fy, - - -, Fn, respectively;
A. Search Space for Hyperplanes d is the perpendicular distance of the hyperplane from the
origin. It also follows that

From elementary geometry [10], [12], we know that the

Let us assume that there aretraining patterns available.

Then in the first step the maximum and minimum values of BB+ 415 =1 2)
each of the featuredy,, F», - - -, Fiy, are computed. Let these ) ) )
be Hence,N variables are needed to specify a hyperplane viz.
) ) ) N — 1 angle variables (sayyi, as, - -+, any—_1) andd. Angle
(Maxy, Miny),(Maxy, Mins),- -, (Maxy, Miny) ay is implicitly specified through (2). &
for the featuresty, Fs,- - -, Fiy, respectively. Then a hyper < Angle (Direction) Specification: The entire feature space
rectangle enclosing the sample points in tHedimensional will be spanned if the angles are allowed to vary in the
space is given by the vertices\ini, Mins,- -, Miny), range from O tor rad. The angle space is discretized to
(Maz1, Mins, ---, Miny), (Mini, Mazy, Ming,---, sufficiently small intervals as
%WN)J o (Maz, Mazg, Ming, -, Miny), - (Mazs, 0,6m,286m, -, n*dT.
azs, - -, Maxy).

Fig. 1 shows such an example for three-dimensional (3-D)
space. The hyper rectangle represents the search space for the 1o number of discrete angles considered is then equal
possible hyperplanes which may be considered as candidates ton+1,ands = (1/n). Anangleay, k= 1,2, N—1

for the formation of the decision boundary. can thus be specified by a numbergle; in the range

[0,n] such thaty), = angle; * éx. The remaining angle

ay is implicitly contained in the constraint equation (2)
In this section, we describe a way of generating a finite asi}, = 1 — 25! IZ anday = cos™!ly.

number of parallel hyperplanes in a finite number of directions, « Perpendicular Distance Specification: Once all the an-

B. Hyperplane Generation

S0 as to enable the separation of even the two closest points gles a1, a2, -, any are fixed, the orientation of the
of the data set. For this purpose, a distarié¢€ is computed hyperplane becomes fixed. For a given orientation, the
as follows. perpendicular distances from the origin to the hyperplanes

diag = \/(Maxl — Min,)? + (Maxs — Ming)? 4+ - -+ (Maxn — Miny)?
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F2 generate initial populatiol/(0)
J compute fitnes7(0)
t=20
while (termination condition not attained)
begin
compute fitnes$G/(t))
/ t=t+1
G(t) = selectG(t — 1))
crossoveG(t))
N Fy mutatéG'(t))
\ end.
\
AN 1 2 Fig. 3. Basic steps in GA's.
\\
N variable. The basic steps of the methodology are as shown in
Fig. 3.

The operations of generating initial population, fithess com-
putation, selection, crossover, and mutation are described in
detail in the following subsections. The terminology used is

Fig. 2. Fixing the base hyperplane. stated here for ease of understanding.
tr Number of training patterns.
passing through the corner points in the base of thePop Number of strings in a generation.
enclosing hyper rectangle (i.e., corner points within q Number of hyperplanes encoded in a string.
as the Nth coordinate) are computed from (1). (The N Feature space dimension.
perpendicular distance, assumes a negative value if it str; ith string in a generation.
lies in the negative halfspace of théy axis.) Among signf  Sign string generated for stringof a population
these, the one with the minimum valug,;,, is selected and training patterrk.

as the base hyperplane. This is demonstrated in Fig. 2,

for two-dimensional (2-D) feature space where the hyx string Representation and Population Initialization
perplane (line) through point 2 is the base hyperplane.
The search space for hyperplanes with this orlentat|0r|1anes. Each hyperplane is encoded in termsVof 1 angle

is restricted at one end by the base hyperplane. In otHef- . ; :
y yperp i variables and a perpendicular distance variable (both assume
words, all hyperplanes witld < dnmin, are automatically

discarded from the search space. At the other end islnéegber va:cll;)gts). Ifdeach angl_e vlarlzl_olte IS r;presegﬁteld_inrrlyg

parallel hyperplane at a perpendicular distancglef, + number ot bils and perpendicular distanc byerp bits, then
. - the length of each stringit»_len equals

max_planes x (dist/2)) from the origin.

Therefore any hyperplane at a distamftsetfrom the
base hyperplane can be specified by a numbar the
range[0, maz _planes] such thatoffset = p* (dist/2).
The perpendicular distaneckof that hyperplane from the
origin is therefore

Each string is composed of a fixed numb&r of hyper-

str_len = ((N — 1) x b_ang + b_perp) x H.

The GA generally works with a fixed population size of
Pop. Initially, each of thePop binary strings of lengthir len,
is generated by randomly selecting — 1 angle variables,
d = dyi, +of fsel. angley, k = 1,2,--- (N — 1), and p from the intervals
[0,n] and [0, maz_planes], respectively, for each of thé&l
From the above discussion it is clear that one needs tR¢Perplanes encoded in the string.
variablesangley, angles, - - -, anglen_1, andp for specifying Example 1:Let n = 4, max_planes = T,bang =
a hyperplané:pin. If each angle variable is represented by:b-perp =3, N =3 andH = 1. Then a string
b_ang number of bits and perpendicular distance thyerp

angler angles p

bits, then the number of bits required for the binary encoding P N N N,
of a hyperplane is 000 010 100
(N —1) x b_ang + b_perp. indicates a plane whose normal makes angles Ongi2dwith

the F; and F, axis, respectively. Its perpendicular distante
from the origin isdmin +4 * (dist/2), for somedmin anddist.
The equation of the plane is
As was stated earlier, each string is composed of a fixed
number, H, of hyperplanes. Each hyperplane is encoded in _ g dist
. . . xl—dm1n+4*—~
terms of(/V — 1) angle variables and a perpendicular distance 2

I1l. DESCRIPTION OF THEMETHODOLOGY
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B. Region Identification and Fitness Computation e

The computation of the fitness is done for each string
in the population. The fithess of a string is characterized
by the number of points it misclassifies. If the number of
samples misclassified by a string is denoted byss then
the fitness of the string is computed @s — miss), where
tr is the number of training sample points. A string with
the lowest misclassification is therefore considered to be the
fittest among the population of strings. Note that every string
stri, e = 1,2,---, Pop representdd hyperplanes denoted by
hplnz»,j =12,---,H.

For each hplnj», the parametersiy, 5/, --- % and
d are retrieved. For each training pattern point
(xf, 2k ak) k= 1,2, tr, the sign with respect A
to the hyperplanézpln;», i.e., the sign of the expression

LINE,

Fig. 4. Region identification fof = 3 and¢r = 8.
(0 4+ 12 4l ay — 0¥ ©
is found. The sign is digitized as 1 (0) if the point lies on the 000 lass 21 1 ]
positive (negative) side of the hyperplahg/n;. The process 00b——{Class 1l 1 F—{Class2] 2 |

is repeated for each of the hyperplanes, at the end of which we ;g
have a stringsign’, subsequently to be referred to as the sign

string. This string, of lengtii/ corresponds to the classification Olb———{Class 1T 1]

yielded by the stringtr; of the population, for théth training 100———-—=NULL

pattern. The class information of ti¢h training point is stored 10———NULL

along with the sign stringign} for str; in a linked list. This -
110———NULL

procedure is repeated for all the pattern points.
It is to be noted that althoughign® can take on at mogt” (Tass 1 (lass 2

p035|_b_le yalues (sincé& hyperplanes will yle_zld2 pQSS|bIe Fig. 5. Linked list for the example in Fig. 4.

classifications), all of them may not occur in practice. These

sign strings, in fact, represent different regions of the search

space. With each such sign string, a linked list is m<31intainet5'_.e positive and the negative sides of the lines be as shown in

Each element of the list is an ordered pair indicating a class an§- 4 Then, _pointll yields a sig_n string 1_11 since it _Iies on
positive side of all the three lines Lind.ine;, and Ling.

its cardinality. The cardinality of a class denotes the numbt}e

of training samples of that class which have been identified _'{ge corre_sponding Iinked list formed for all the _eight points
fall into the region represented by the sign string. is shown in Fig. 5. It is to be noted that one region (denoted

The maximum class cardinality in the list for each sigHy sign string 110) is accidentally empty, while two regions
00 and 101) do not exist. The humber of misclassifications

string is found next. Then the region corresponding to that si%tlr X ;

string is considered to provide the demarcation for the cla _the example is found to bb_"' 1 = 2, one each for Sign

possessing the maximum cardinality. All the points belongina;'ngs 001 and 111. N_oFe that in th!s example both the stnn_gs

to other classes which have been included in the same |30 and 001 are providing the regions for class 2 (assuming
pat the tie for region 111 is resolved in favor of class N

i.e., which lie in the same region, are considered to B : imilar fashi h b ¢ misclassified |
misclassified. The number of misclassifications correspondingn a similar fashion, the number of misclassiiied samples

to all possible sign strings are summed up to give the resultiﬁ%{ all the strings in the population is computed. The best

misclassification for the entire classifier string. It may sdiring of each gene_r_ano_n or |ter_at|on_ IS _the one which has
%’ue fewest misclassifications. This string is stored after each

happen that the maximum cardinalities for two (or mord ; : X oo
different sign strings may correspond to the same class. ijgration. If the best string of_the previous generation is found
that case, all these strings (correspondingly, union of all tf@ be better than the best string of the current generation, then

different regions) are considered to provide the region for tiige previous best string replaces the worst string of the current

class. A tie is resolved arbitrarily. The example stated bebg\(;_neranon. This implements tiedtist strgteg_ywhere the best
will clarify this method. string seen up to the current generation is propagated to the

Example 2: Let there be 8 training patterns belonging t&'€Xt generation.
two classes, 1 and 2, in a 2-D feature spage— F». The )
decision boundaries in the 2-D space will be lines. Let & Selection
assumeH to be 3, i.e., three lines will be used to classify the The roulette wheelselection procedure has been adopted
points. Let the training set and a set of three lines be as sholare to implement groportional selectionstrategy. Each
in Fig. 4. Each point;,i =1,2,---,8, andj = 1,2 indicates string is allocated a slot of the roulette wheel subtending an
that it is the:th training point and that it belongs to clagd et angle, proportional to its fithess, at the center of the wheel. A
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random number in the range of O te &5 generated. A copy of discontinued. The process of reflipping effectively means that

a string goes into the mating pool if the random number falls the corresponding bits were not mutated at all. Note that this

the slot corresponding to the string. For a fixed population sizeuld as well have been the case, as mutation is a random

Pop, this process is repeatdéop times, at the end of which operation.

as many strings go into the mating pool for further operations. Example 4: From Example 3, after crossover we had child

1=0000100 0 1. Leimutation in bits 5 and 8 (from

D. Crossover left) result in the string 0 0 0 0 0 0 0 1 1, which is invalid
A pair of strings is picked up at random and the single poiais explained in Example 3. Reflipping bit 5, we get 0 0 0 0

crossover operator is applied according to a fixed crossove® 0 1 1which is allowable.

probability. For this operation, a random numberpt in the

range of O tostr_len is generated. This is called the crossovet. Termination

point. The portion of the strings lying to the right of the Th ¢ fit tati lecti q
crossover point are exchanged to yield two new strings. There € process ot fitness computation, selection, crossoveran
tation continues for a fixed number of iterationsz_itrns

is a catch to this apparently simple method in this case. THE! A o - . . _ .
strings resulting from the crossover operator may not be vafld _untll the termination condition _(a S”"Fg with m|scla55|f|_-
in the sense that they may not model the hyperplane equat@'o_n number re_duc_ed to zero) is ach|eved._ L_et Fhe string
(1). A hyperplane may be generated where the constra tained on termination b@ 0 0 0 1 0 0 0 0.This indicates

equation (2) may not hold. In that case the original pair & plane passing through the origin and lying in the— I

strings is recalled, and another crossover point is generat%%"."ce' The equation of the plane is

The process may be repeated a certain number of times until a
crossover point which effectively exchanges the entire strings
is generated.

Note that this is one way of tackling the problem of invalid>- Postprocessing (Deletion of Redundant Hyperplanes)

child generation in constrained optimization problems. Other As mentioned in Section I, for al/ class problem we have

x1:O.

methods in this respect are available in [4]. the number of hyperplang$ > log, M. In order to tackle the
Example 3: Let the two parents, for the parameters giveintricacy of certain data sets, considerationf= log, M
in Example 1, be as follows: may not be sufficient for proper classification. For this reason,
0 0 0 0 10 1 0 0 we try to make an overestimation &f (i.e., H sufficiently
0 1 0 0 0 0 0 0 L greater thatog, M) for constituting the decision boundary. As

Let the crossover site be as shown. Then the offspring aferesult, in the final output of the algorithm, some hyperplanes
Child1=000000001 may become redundant in the sense that their removal does not

_ change the recognition capability of the classifier. Elimination
child2=010010100. of these redundant hyperplanes is a natural extension of this

Obviously child 1 is not valid sincengle; = angles = 0. Work._A flowchart for this process in given in Fig. 6. It is
Hence,l; = I, = 1 which violates the constraint equation.descr'beOl as follows.

Thus a new crossover point is selected. Let it be as follows: L€t 4 represent the set of correctly classified sample points
0 0 0 0 1 0 L0 o and S represent a set of hyperplanes (initially equal to the

01 0 0 0 0 00 1 set of hyperplanes obtained on termination of the algorithm).
’ From S, a setS1 is formed such that all the points id
Then the offspring are lie on only one side of each hyperplane §fi. Another set
child1=000010001 52 (82 = {hy,ha,---, hy},p < H) is also formed such
. that one side (subsequently referred to wmsqug of each
child2=010000100 hyperplane in the set has sample pointslinf only one class.
which are allowable. Finally, a setS’ is formed from the remaining hyperplanes
) (i.e., 8" =5 —51—252).
E. Mutation Hyperplanes represented 1 are obviously redundant,
Mutation is done on a bit by bit basis (for binary strings) [1]Jand are put into the set of redundant hyperplafiesNow,
[5] according to some mutation probability valueut_prob. two cases forS2 may arise.
Thus, more than one bit may be complemented in a stringS2 is empty: In this case, all the hyperplanes §f are
if mut_prob so permits. As all the bits in a string areconsidered to be nonredundant and are put in a list of
subjected to the mutation operator, a record of the bits beingnredundant hyperplan@géR. A further redundancy check,
complemented is kept. Finally, the resulting string is checkedieck red, is done onN R and then the process terminates.
to find out if an invalid hyperplane has resulted from thé& description ofcheck _red is given subsequently.
mutation operator, i.e., one not conforming to the constraintS2 is non-empty:In this case, for each elemernt;, 1 <
equation (2). In that case, only those bits which have beér p, of S2, all the points ofA which lie on itsuniqueside,
complemented are flipped back one after the other. After edah, which can be classified by; alone, are put into a set
reflipping, the resultant hyperplane is checked for validity. I&’. A is now set to be equal to the difference .4fand A4,
at any step a valid hyperplane is formed, then the process.&s, A = A — A’. At the same time}; is also removed from



PAL et al: GENERATION OF CLASS BOUNDARIES 821
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Fig. 7. Flowchart for the processheck_red.

I
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E

classify
(NRaﬂ)

elements inS2 then the entire process is repeated while
considering the sample points that are still unclassified
(i.e., those which are still present iA) as A and the
hyperplanes ins’ as the sets.

The processing block (Fig. 6) aofheck_red results in a
set £, the set of hyperplanes essential for the complete
_ S classification of all the elements i4 (the correctly classified
Fig. 6. Flowchart for the process of elimination of redundant hyperplaneﬁjoimS in the training data set), from the $éR formed in the

process described before. The detailed flowchatthetk _red
52 and put intoN k. The remaining points off are checked s presented in Fig. 7. It eliminates those hyperplane® i
to see if all of them belong to the same class. (The functigghich are not essential for classifying the samples points. Each
oneclass(A) in Fig. 6 performs this check. It returiSrue if  element, sayh;, of NR is considered at a time. It is first
all the points still inA belong to only one class. Otherwise, itemoved fromN R, and then it is checked if the remaining
returns F'alse.) Thus two further cases may arise. hyperplanes inN R can successfully classify all the points

o If oneclass(A) returnsT'rue, then the remaining hyper-in A. (This is performed by the functionlassify(N R, A)

planes ofS2 and those i’ are declared to be redundantwhich returnsT'rue if the set of hyperplanes iV R correctly
and these are put intl. The process then calideck_red classifies all the points iMd. Otherwise, it returnsFalse.
with N R. The operation oflassify(NR, A) is similar to the method

o If oneclass(A) returnsFalse then the next element of of region identification described in Section Ill-B. To return

52 is considered. Ibneclass(A) returnsFalse for all the T'rue, the linked list formed forNR must have at most a
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IV. SELECTION OF CONTROL PARAMETERS

As already stated, there are various methods of fixing
C population size, crossover probability and mutation probability
values. Each of the parameters can be kept fixed or variable.
f In this work the population size as well as the crossover

probability is kept fixed.
The other parameter to be chosen is the mutation probability

value, the importance of which has been stressed in [13] and
[14]. In [15], it is shown that the mutation probability must be
chosen in the range ¢b, («—1/a)] whereaq is the cardinality
() of the set of alphabets for the stringsifdinality = 2 for
binary strings). In [14], it is proved that the the mutation
probability value must be within the range @f/str_len) to
E @ 0.5, wherec is the number of bit positions of a string in a
generation that must be changed for arriving at the optimal
solution for binary strings. Sucla priori knowledge ofe
is almost impossible to acquire. Thus although a theoretical
@ @ guideline for selecting the mutation probability value has been
' suggested, it is of little practical significance.
In this paper we have chosen the mutation probability value
£ £ to vary approximately in the range bf str_len to 0.5. Initially
®) © it has a h_igh value, Whi_ch slowly d_e(_:reases V\_/it_h generatiqns,
and then increases again after attaining the minimum specified
Fig. 8. (a) Three classes and a setof five lines for partitioning them. yglye. Given that the number of bits in a stringsts_len, the
(b) Subset ofS comprising three lines which can successfully partition th%ifferent possible strings afst™1en Our aim is to search this
three classes in Fig. 8(a). (c) Subsetsfcomprising two lines which can ) - ) h
successfully partition the three classes in Fig. 8(a). space and arrive at the optimal string as fast as possible. The
initial high value of the mutation probability ensures sufficient
diversity in the population which is desired, as at this stage,
single entry for eachsign string.) Thus the following two the algorithm knows very little about the nature of the search
cases may arise. space. As generations pass, the algorithm slowly moves toward
classify(N R, A) returnsTrue: In this casefp; is consid- the optimal string. It is therefore necessary that the space
ered to be redundant, and it is put info The process is then pe searched in detail without abrupt changes in population.
repeated for other elements M E. Consequently, we decrease the mutation probability value
classify(N R, A) returns False: In this caseh; is consid- gradually until it is sufficiently small. It may so happen that
ered to be essential, and it is put back iffdt as well as in in spite of this, the optimal string obtained so far has a large
£. The process is then repeated for other elementS i) &  Hamming distance from the actual optimal string. This may
Apparently one may think that the consideration ofery well happen for deceptive problems [1], [16]. Thus, if
check_red alone will be sufficient for the task of deletionwe continue with the small mutation probability value, it may
of redundant hyperplanes. But this will not be capable @fe too long before the optimal string is found. So to avoid
dealing with the situations where two different subsets5of peing stuck at a local optima, the value is again gradually
can individually classify the patterns. For example, considgicreased. Even if the optimal string had been found earlier,
Fig. 8(a) in 2-D feature space, whefeconsists of the five e loose nothing since the best string is always preserved
lines which are considered to provide the decision boundafy subsequent generation of strings. Ideally the process of
for the three classes shown inside the respective circlg@creasing and then increasing the mutation probability value
The two different subsets of three and two lines are showRould continue, but here we have restricted the cycle to just
in Fig. 8(b) and (c), respectively. Individually, each of th@ne due to practical limitations.
two subsets can successfully partition the classes. If only
check _red is used in this situation, then depending on the order
of scanning of the output lines, the two lines shown in Fig. 8(c)
may be deleted:heck _red would then declare the three lines
shown in Fig. 8(b) to be the essential ones. Obviously, this/s Data Sets
not the minimal set; actually the two deleted lines constitute Both artificial and real life data sets of different dimensions
the minimal set. The postprocessing task precedingk_red (2, 3, and 4) have been used to test and compare the results
takes care of such situations. In spite of this, the resultimg the algorithm proposed in this paper. A description of the
set of essential hyperplanes may not be minimal since tHata sets is given here.
process of deletion of redundant hyperplanes is dependent odrtificial Data: Two artificial data setsAD.S1 and ADS2
the sequence of the hyperplanesdn and it does not take shown in Figs. 9 and 10, respectively, with two classes 1 and
their interrelationships into account. 2, were generated. The first one consists of 557 data points

£

B F

V. IMPLEMENTATION AND RESULTS
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Note that the original data has four components per sample
525 |- S i, for the four bands (red, green, blue, and infrared). The experi-
1111121121211211131331232233132111211 ments conducted here have been done using the two principal
lﬁiiﬁ;ﬁi11111111111111111;513131 components as the two features (Fig. 11).
11111111111 1112111111 Iris Data: This data represents different categories of irises.
ﬁiﬁﬂl , 99292222 1;1313 The four feature values per sample represent the sepal length,
1111111 22 22222222 111111 sepal width, petal length, and the petal width in centimeters
111111 2222 22222222 11111 [19]. It has three classes 1, 2, and 3 with 50 samples per class.
11111 222222 22222222 11111
Y 11111 22222222 22222222 11111
11111 2252 aeseerrs 11N B. Genetic Parameters
Eﬁﬁl 22 22222222 ﬁﬁﬁ For our experiment, a fixed population size of ten is chosen.
1111111 111111 The crossover probability is fixed at 0.8. A variable value of
1Eiﬁﬁuunnnnlunu11111113311 mut_prob is selected from the range [0.015, 0.333]. Initially
111111111111121311111111111111111111 it assumes a high value, gradually decreasing at first, and
oo | HEHIIRIIIIG then increasing again in the later stages of the algorithm. 100
{ { iterations are performed with each mutation probability value.
800 " 2750 The process is executed for a maximum of 1500 iterations in
case it does not attain zero misclassificatinis fixed at six,
Fig. 9. ADSI data. although a study of the variation of the recognition score with
the value ofH is also demonstrated. The experimental results
825["  222222222222222222222222 are described below taking different percentages¢, of the
2222222222222222222222222 .
22222222222222222222222222 data sets as the training set.
22322 Remarks: In the binary implementation, each element of the
2222 11111211201111 1111111111 chromosome vector (1 or 0) is represented by one character
3352 NI 11311111 (usually 8 bits) in memory. Consequently far_len elements,
3355 T T the space required istr_len characters. This programming
Y| 222, Mo practice, detailed in [5], allows simplified implementation
B A LAt S of genetic operators like crossover and mutation at the cost
222222222222222222222222 FEeEY of increased complexity of GA in terms of space and time
o requirements.
1111110011111
300 e ——— C. Comparison with Existing Methods
800 X 27%0 The performance of this methodology is compared with the
Fig. 10. ADS? data. performance of MLP, Bayes classifier akeNN classifier.

) ) ) For MLP, learning raten is initially fixed at 2.0. This is
while the second consists of 417 data points. The boundarifsreased by a factor of 2, up to a prespecified minimum

for both the data sets is seen to be highly nonlinear, althoughy,e if the mean squared error starts oscillating. In case the
the classes are separable. _ error decreases very slowly, then the learning rate is doubled,
Vowel Data: This data consists of 871 Indian Telugu Vowejhe reason being that most likely the algorithm has confronted
sounds [17], [20]. These were uttered in a consonant-vowgl-mateau in the error surface.
consonant context by three male speakers in the age group of_nN algorithm is executed taking equal tov/Ir, where
30-35 years. The data set has three featiifies’z, and s, 4, js the number of training samples. For the Bayes classifier,
corresponding to the first, second, and third vowel formafjhequal dispersion matrices and unecaitiori probabilities
frequencies, and six classgs, a, i, u, e, o}. The distribution (— ¢y /17) for tr; patterns from class), are considered. In
of the six classes in thé’ — I plane is available in [17] gach case, we assume a multivariate normal distribution of the
and [20]. (It is known [17] that these two features are MOg,mples. Comparison with these three methods is performed
important in characterizing the classes tian) Note that the {6 | the data sets. Although for some data sets, application
boundaries of the classes are very ill-defined and overlapping .gayes classifier with the assumption of normal distribution

Landsat Data: This data set, demonstrated in Fig. 113y not be meaningful, the results are included for keeping
shows the satellite imagery data of rocks, vegetation aBQrity with others.

soil. It has 795 samples with five classes as described [18]

Class description D. Experimental Results
1 Manda Granite The proposed GA based algorithm is tested on the data
2 Romapahari Granite sets described in Section V-A. Tables |-VI present the results
3 Vegetation corresponding to artificially generated data sets (ADS1 and
4 Black Phillite ADS?2), Vowel data, Landsat data and Iris data, for different
5 Alluvium. percentages of the training samples (exgz¢ = 5, 10, 50) and
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TABLE |
RECOGNITION ScORES (%) FOR ADS1 FOR H = 6
Class | perc=50 | perc = 10 | perc =5
1 98.70 96.44 85.24
2 91.96 §2.10 94.63
Overall | 97.37 93.93 86.89
TABLE I
RECOGNITION ScORES (%) FOR ADS2 FOR H = 6
Class | pere=50 | perc =10 | perc =5
1 93.79 79.23 75.28
2 86.38 82.57 78.97
Overall | 92.86 80.78 76.62
TABLE Il
RECOGNITION SCORES (%) FOR VOWEL DATA (Fi — F») FORH = 6
Class | pere=50 | perc = 10 | perc =5
§ 31.32 44.20 19.32
a 74.85 82.51 65.36
: 87.46 82.73 74.12
u 78.56 90.76 67.49
e 85.38 72.72 95.04
o 90.76 75.31 95.66
Overall | 78.25 76.62 73.18
TABLE IV
RECOGNITION SCORES (%) FOR LANDSAT DATA FOR H = 6
Class | perc=30 | perc =10 | perc =5
1 92.86 85.71 93.98
2 25.00 41.67 65.79
3 938.15 100.00 94.15
4 100.00 93.81 86.83
5 83.02 66.32 45.68
Overall | 84.71 82.56 82.38

TABLE V
RECOGNITION SCORES (%) FOR VOWEL DATA (Fy — F> — F3) FORH = 6
Class | perc=50 | perc = 10 | perc = 5
é 57.63 39.36 26.47
a §4.44 83.24 75.00
[ 69.77 74.98 65.03
u §2.89 71.23 §9.51
e 85.62 83.96 94.39
0 87.32 91.68 54.12
Overall 77.64 75.04 71.84
TABLE VI
RECOGNITION SCORES (%) FOR IRIS DATA FOR H = 6
Class | perc=50 | perc =10 | perc =5
1 100.00 97.78 100.00
2 96.00 86.67 91.49
3 92.00 100.00 T8.72
Overall | 96.00 94.81 90.07

class 1 of the data set ADS1. Class 2, on the other hand, is
recognized relatively poorly. This disparity is expected since

the region for class 2 is of a relatively smaller size compared

to the region of class 1, and it is totally surrounded by region

1. Table Il shows the classwise and overall recognition scores
for ADS2, which are again seen to be considerably high. Note
that both the artificial data sets have nonoverlapping, nonlinear
class boundaries.

Table Il presents the results on the overlapping classes
of vowel data withF/; and F; as features. It is seen from
the table that clas$ yields a poor recognition score for
all values of perc. This conforms to earlier findings [17],
[20], when Bayes and Fuzzy set theoretic classifiers, and
MLP were used for vowel classification problem. SinEg
is a more characteristic feature for speakers than vowels,
its inclusion as an additional feature may not necessarily
increase the score over that obtained with- ', combination

H = 6. The results shown are the average values compuf{éd]. This is evident in Table V where instead of improving
over several runs of the algorithm from different initial pointshe performancefs is seen to increase the confusion in

It is shown in Table | that forperc = 50 and 10, the
recognition ability of the classifier is considerably high fon performance (over those fdr, — F, plane).

recognition of the system; thereby resulting in a small decrease
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TABLE VI TABLE IX
VARIATION OF RECOGNITION (%) witTH H FOR ADS1 COMPARATIVE RECOGNITION SCORES (%) FOR ADS1 FOR perc = 10
Class Surfaces Class | Bayves | kNN | MLP | GA
8 7 6 5 4 3 2 1 100.00 | 93.57 | 94.06 | 96.44
1 94.93 | 96.44 | 96.44 | 94.75 | 94.81 | 95.29 | 85.99 2 22,73 162.09 | 76.01 | 82.10
2 79.55 | 82.10 | 82.10 | 69.04 | 85.51 | 48.02 | 48.30 Overall | 86.45 | 89.28 | 92.40 | 93.93
Overall | 92.23 | 93.93 | 93.93 | 90.24 | 93.18 | 87.00 | 79.38

TABLE X
TABLE VI COMPARATIVE RECOGNITION SCORES (%) FOR ADS2 FOR perc = 10
VARIATION OF RECOGNITION (%) WiTH H FOR VOWEL DATA (F1 — F2) -
Class | Bayes | k-NN | MLP | GA
Class Surfaces 1 74.63 | 74.00 | 75.00 | 79.23
8 [ 6 3 4 3 2 2 74.57 | 77.59 | 75.86 | 82.57
§ 39.06 | 26.56 | 44.20 | 29.69 | 0.00 | 0.00 | 0.00 Overall | 72.60 | 75.66 | 75.40 | 80.78
a 86.25 | 78.89 | 82.51 | 82.50 | 75.00 | 93.75 | 0.00
i 85.71 | 87.66 | 82.73 | 87.66 | 76.62 | 86.36 | 87.66
u 71.85 | 61.74 | 90.76 | 87.41 | 97.04 | 66.67 | 0.00 TABLE XI
] . . NN oo COMPARATIVE RECOGNITION SCORES (%) FOR
e 72.04 | 91.93 | 72.72 | 68.28 | 69.89 | 88.71 | 0.00 VOWEL DATA (Fy — ) FoR perc = 10
o 83.85 [ 83.85 | 75.31 | 78.26 | 67.70 | 79.50 | 100.00 -
Overall | 75.90 | 76.22 | 76.62 | 75.77 | 70.25 | 75.77 | 37.95 Class | Bayes | kAN | MLP | GA
) 46.15 | 13.85 | 36.92 | 41.20
a 81.48 | 87.65 | 7.41 | 82,51
Table IV shows the performance of the algorithm on the i 84.52 1 85.16 | 84.67 | 82.73
Landsat data shown in Fig. 11. Class 3 is seen to be amenable u 94.12 | 85.29 | 82.35 | 90.76
to a consistently good recognition score since this class has e 71.12 | 71.66 | 68.98 | 72.72
almost no overlap with the other classes and lies at one o 75.31 | 83.33 | 62.79 | 75.31
extreme end of the class distributions. Recognition of class Overall | 77.61 | 75.95 | 6445 | 76.62

2 is seen to be poor since this is totally overlapped with other
classes, especially, with classes 4 and 5. It is interesting to
note that the recognition score for class 2 increases at the havel = 6, the minimum number of hyperplanes required
cost of recognition score for class 5 wheevc = 5. A good (as mentioned in Section Il) for its proper classification is 3
performance of the proposed algorithm is also observed 8> log, 6). However, because of the complexity of the data
the four-dimensional Iris data (Table VI), which is knowrset, evenH = 4 is not sufficient for proper classification.
to have a very small overlap [19]. As expected, the overdlhis is evident from Table VIII where the classifier fails to
recognition score for Vowel data, Landsat data and Iris datacognize some of the classes #@r= 4, 3, and 2.
shows a gradual decrease with the decrease in the value oA comparison of the performance of the GA based algorithm
perc. is made with that of the Bayes classifidsNN classifier

In order to demonstrate the variation of recognition scoféor & = +/tr) and the MLP. The results are presented in
with H, we have considered ADS1 and Vowel datéFin— ', Tables IX—XIl for only the 2-D data sets wheA = 6
plane only. Tables VIl and VIII show the results féf = 8, and perc = 10. For both the artificial data sets, ADS1
7, 6,5, 4, 3, 2 antperc = 10. For both the data sets it(Table IX) and ADS2 (Table X), the GA based algorithm
is observed that/ = 6 provides the best result. Increasingrovides the best result. This is followed by the scores for
the number of surfaces (i.eH), increases the recognitionMLP and k£-NN rule for the two data sets respectively. Note
capability of the algorithm for a specific range 8f. Beyond that £-NN classifier is reputed to partition well this type of
this, the performance gets degraded, since further increasen@gmoverlapping, nonlinear regions. As expected, the Bayes
the number of surfaces makes the resulting decision boundalgssifier performs poorly for both these data sets, since the
greatly dependent on the training data set. In other wordssumption of multivariate normal distribution is not valid
when a large number of surfaces is given for constitutingere. Table Xl shows the result for the vowel datafin— /%
the decision boundary, the algorithm can easily place thgrtane) where Bayes classifier is seen to provide the best
to approximate the distribution of the training set and henseore (77.61%), closely followed by the result of the proposed
the boundary closely. This may not necessarily be beneficayorithm (76.62%). The Bayes classifier is known to perform
(in the sense of generalization) for the test data set, as thell for this data set [17], assuming multivariate normal
results forH = 8 (Table VIl) andH = 7 and 8 (Table VIIl) densities for the classes. For Landsat data (Table XII) also,
demonstrate. Bayes classifier performs best (84.24% overall score) followed

Although for H = 2, the resultant classification systerby the score of the proposed GA based algorithm (82.56%). As
yields a good overall performance for ADS1 data (Table Vilgxpected, all the four classifiers yield high recognition scores
it is not a good choice since the recognition of class 2 (whichfisr class 3. MLP is seen to perform poorly for both the Vowel
embedded in class 1) falls drastically. For the Vowel data, sindata set (Table XI) and Landsat data (Table XlI).
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TABLE XII N
COMPARATIVE RECOGNITION SCORES (%) FOR LANDSAT DATA FOR perc = 10 \ RS
825 - 191111111111111111112M31111111
Class | Bayes | k-NN | MLP GA 11l\l1111_1_11llllllllllll;ikl\lllll
—t— T 1111191111111111111111111111383111
1 93.65 | 38.10 | 84.92 | 85.71 111111111111111111111111111211321321
9 62.96 | 58.33 | 77.78 | 41.67 11111111131 11111¥11711
111111111110 >
3 100.00 | 100.00 | 100.00 | 100.00 11111111 }
e : wr =7 | o1 = 1111111
4 9 5. F : = =
4 §6.08 | 91.24 | 85.57 93.81 < 22222222 111111
3 60.00 | 37.89 0.00 66.32 2222 \\ 22222222 11111
< - o 222222 22222222 11111
ser 2 : 85 | 82, < L2 T
Overall | 84.24 | 8§1.03 | 76.85 | 82.56 v 1119 22222222\\ 5992922 11111
11111 222222
11111
_ 111111
L S 1111111 11
825 11111111121313112172171141311111 1111111 111111
1 - - 1
11111111113311131311111112111111% - 11111111 1111111
1111111113112111132111121111111111111 1111111111111 TTM1111111111111
111111111111311131311113111111211111111 111111111111 1111141311111111111
11111111111 1111111111 111111 111113M111%¥1119311111111
11111111111 1111111111 100 A1T1191111111
11111111 11111111 | < 1
1111111 2 22222222 1111111
= = 80
1111111 22222 0 X 2750
2222 22222222
222222 22222222 i S . )

Y 22222222 22222222 11111 Fig. 13. Classification of 90% test data set using the final boundary generated
11111 11111 with 10% training data set foH = 6. Training patterns are underscored.
11111 11111 Dotted lines indicate redundant lines.

111111 11111
1111111 111111
1111111 111111 the performance of the algorithm is dependent on the initial
11111111 1111111 - g . .
N 111111311111123774111111111T8411111111 seed point. This is evident from the results corresponding to
T41111111111111111111111111112T342111 H = 3 (Table VII) where the recognition score is seen to be
T34111111131311111311111112121111 . .
300 11731111111111111111111111111111 comparatively lower than that falf = 5 (with deletion of 2
~ - s .
Séo ~ 5750 redundant lines). However, folf = 4, the results are seen
X to be comparable to those fdf = 6 (with deletion of two

_ e _ _ redundant lines).
Fig. 12. Classification of 90% test data set using the final boundary generated

with 10% training data set foH = 5. Training patterns are underscored.
Dotted lines indicate redundant lines. VI. DiscussiON AND CONCLUSIONS
A method of generating class boundariesRfY, N > 2,

In order to demonstrate the generalization capability of thesing GA’s has been described along with its demonstration on
class boundaries obtained from the training data set, and Hwth artificial and real life data having overlapping, concave
role of the postprocessing (for deletion of redundant linegggions. Since an exact value of the number of hyperplanes
let us consider Figs. 12 and 13. These figures show the limeguired for modeling the decision boundary of a given data set
generated after the termination of the GA based algorithm frvery difficult to finda priori, the method includes a scheme
10% training data of ADS1 withf = 5 and 6, respectively, for the automatic deletion of redundant hyperplanes resulting
and their ability in classifying the remaining test data. Thiom its conservative estimate. An extensive comparison of the
training patterns are underscored. These lines were obtaimeethodology with other classifiers, namely the Bayes classifier
on termination of training when the number of misclassifie@ivhich is well known for discriminating overlapping classes),
samples becomes zero. After postprocessing for the deletiehiIN classifier and MLP (which are well known for dis-
of redundant lines is performed, two lines are declared to beminating nonoverlapping, nonlinear regions by generating
redundant in both the cases. These are shown by dotted lipeexewise linear boundaries) is also presented. The results
in Figs. 12 and 13. Therefore, it is basically three lines (faf the proposed algorithm are seen to be comparable to,
Fig. 12) and four lines (for Fig. 13) which are contributingsometimes better than, them in discriminating both overlapping
to the generation of actual boundary for proper classificatiomnd nonoverlapping, nonconvex regions.
although the algorithm started witth = 5 and 6, respectively. The generalization capability of the decision boundary is

Note that, although both three lines (Fig. 12) and four linetemonstrated diagrammatically for different values 6t
(Fig. 13) are seen to provide zero misclassification of the is observed that an increase in the value Bf does
training data set, from the point of generalization capabilityot necessarily result in an increase in the generalization
over the test data set, four lines are found to provide bettpability of the classifier. The reason is that a large number
performance (viz., Fig. 13, and Table VII fd&f = 6). Note of hyperplanes can quickly approximate the boundary of the
further that if we start the algorithm with/ = 3 and 4, the training data, which may not be beneficial for the overall
resulting boundary and hence the recognition score may mtdssification of the test data.
be similar to those obtained after deletion of redundant linesThe method of classification described in this article is
from H = 5 and6, respectively. One of the reasons is thagensitive to rotation of the data sets due to the way of choosing
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the enclosing hyper rectangle around the data points. Itdscreasingnut_prob should continue for a number of times.
also evident from the method of specifying a hyperplan&e have terminated it after just one cycle due to practical
(Section Il) that translation, dilation or contraction of the datlimitations. Directed mutation [22] could also have been used
sets would produce a similar change of the decision boundamhich combines the merits of both genetic search and gradient

Note that since the deletion algorithm is dependent on thescent search for accelerating convergence. Investigation is
sequence of input hyperplanes taken fréihrand it does not therefore necessary to determine these controlling parameters
take the mutual relationships of the hyperplanes into accouptpperly in order to improve the performance of the proposed
the resulting€ containing the essential hyperplanes may notethod.
always be minimal or unique. Again, since the deletion processAgain, discretization of the feature space, which is un-
does not help in improving the recognition score for a givemounded and continuous, poses a problem in digital pattern
H, and a very large value off leads to a degradation in therecognition with respect to the performance of the systems.
recognition capability of the classifier, an appropriate selectidm our investigation, a hyper rectangle has been constructed
of H is necessary. around the set of data points which makes the search space

It is known in the literature [15] that as the number obounded. The possible orientations (angle values) of the hy-
iterations goes toward infinity, the Elitist model of GA willperplanes are considered to be fixed, and parallel hyperplanes
certainly result in the optimal string. Thus, for the problerin any direction are kept separated by a small distatieg/2.
under consideration, for infinitely many iterations, any valuds the discretization is made finer, the performance of the
of 4 should provide the minimal misclassification for that classifier usually improves, but the size of the search space
This further strengthens the necessity for a proper selectimgreases; thereby increasing the number of iterations required
of 4. In this regard, the concept of variable string length ifor GA. An automatic selection of these parameters is therefore
GA’s [21] may be adopted where the value &f could be necessary as in the case of genetic operators, stated above.
kept variable and can be evolved as an outcome of the GA
process. Such an investigation is in progress in our laboratory. REFERENCES
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