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Genetic Algorithms for
Generation of Class Boundaries

Sankar K. Pal,Fellow, IEEE, and Sanghamitra Bandyopadhyay, and C. A. Murthy

Abstract—A method is described for finding decision bound-
aries, approximated by piecewise linear segments, for classify-
ing patterns in <N ;N � 2, using an elitist model of genetic
algorithms. It involves generation and placement of a set of
hyperplanes (represented by strings) in the feature space that
yields minimum misclassification. A scheme for the automatic
deletion of redundant hyperplanes is also developed in case
the algorithm starts with an initial conservative estimate of
the number of hyperplanes required for modeling the decision
boundary. The effectiveness of the classification methodology,
along with the generalization ability of the decision boundary,
is demonstrated for different parameter values on both artificial
data and real life data sets having nonlinear/overlapping class
boundaries. Results are compared extensively with those of the
Bayes classifier,k-NN rule and multilayer perceptron.

Index Terms—Evolutionary computation, hyperplane fitting,
pattern recognition, variable mutation probability.

I. INTRODUCTION

GENETIC algorithms (GA’s) [1]–[5] are randomized
search and optimization techniques guided by the

principles of evolution and natural genetics, and have a large
amount of implicit parallelism. GA’s perform multimodal
search in complex landscapes and provide near optimal
solutions for objective or fitness function of an optimization
problem. They have applications in fields as diverse as VLSI
design, pattern recognition, image processing, neural networks,
machine learning, jobshop scheduling, etc. [6]–[9].

In GA’s, the parameters of the search space are encoded in
the form of strings (chromosomes). A collection of such strings
is called a population. Initially a random population is created,
which represents different points in the search space. Based on
the principle of survival of the fittest, a few among them are
selected and each is assigned a number of copies that go into
the mating pool. Biologically inspired operators likemating,
crossover,andmutationare applied on these strings to yield a
new generation of strings. The process of selection, crossover
and mutation continues for a fixed number of generations or
until a termination condition is satisfied. An excellent survey
of GA’s along with the programming structure used can be
found in [5].

In this paper, an attempt is made to study the application of
GA’s for pattern classification inN -dimensional data space.
Classification is a problem of generating decision boundaries
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that can successfully distinguish the various classes in the
feature space. In real life problems, the boundaries between
the different classes are usually nonlinear. In the present
investigation, the characteristics of GA’s are exploited in
searching for a number of hyperplanes which can approximate
the nonlinear boundaries while providing minimum misclassi-
fication of training sample points.

The feature space is generally unbounded and continuous in
nature. However, if bounding information can be derived from
the training patterns and the space is discretized to sufficiently
small intervals in each dimension, then the requirements of
GA’s for formulating the classification problem are fulfilled.

A distinguishing feature of this approach is that the bound-
aries (approximated by piecewise linear segments) need to be
generated explicitly for making decisions. This is unlike the
conventional methods or the multilayered perceptron (MLP)
based approaches, where the generation of boundaries is a
consequence of the respective decision making processes.

Since the optimum number of hyperplanes,H, required for
proper classification of a given data set is not knowna priori,
a conservative estimation (or overestimation) ofH is normally
done to initiate the algorithm. Consequently, some of the
hyperplanes may be found to be redundant in the final output of
the GA-based algorithm as far as their contribution toward the
generation of boundary is concerned. A methodology for the
automatic deletion of redundant hyperplanes is also developed.
The process of elimination is performed as a postprocessing
step. The effectiveness of the proposed recognition method in
classifying both overlapping and nonoverlapping, nonconvex
regions is extensively demonstrated on two sets of artificial
data, Iris data and real life speech and satellite imagery data.
The results are compared with those of Bayes classifier andk-
NN classifier [10], and MLP [11]. The generalization ability of
the decision boundary and the issue of removing redundancy
is explained pictorially.

Section II describes the representation technique of the
hyperplanes in the form of strings. In Section III, a description
of the classification methodology is presented. Section IV
deals with the selection of control parameters of the method-
ology. In Section V, the implementational aspects of the
proposed methodology and the experimental results are pre-
sented. Finally, the discussion and conclusions are presented
in Section VI.

II. HYPERPLANE ENCODING

We consider a fixed number of hyperplanes (say,H) to
denote a decision boundary in anN -dimensional feature
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Fig. 1. Training samples and the enclosing hyper rectangle.

spaceF1; F2; � � � ; FN : The value ofH varies from problem
to problem, depending on the number (sayM ) as well as
the nature of the classes. TheseH hyperplanes need to
be encoded as a single string. Note that each hyperplane
provides two halfspaces—a positive halfspace and a negative
halfspace, thereby yielding two regions. ForH hyperplanes,
the maximum number of such regions is2H . ThusM � 2H

or H � log
2
M:

A. Search Space for Hyperplanes

Let us assume that there aretr training patterns available.
Then in the first step the maximum and minimum values of
each of the features,F1; F2; � � � ; FN ; are computed. Let these
be

(Max1;Min1); (Max2;Min2); � � � ; (MaxN ;MinN )

for the featuresF1; F2; � � � ; FN , respectively. Then a hyper
rectangle enclosing the sample points in theN -dimensional
space is given by the vertices(Min1;Min2; � � � ;MinN );
(Max1; Min2; � � � ; MinN ); (Min1; Max2; Min3; � � � ;
MinN ); � � � ; (Max1;Max2; Min3; � � � ;MinN); � � � ; (Max1;
Max2; � � � ;MaxN ):

Fig. 1 shows such an example for three-dimensional (3-D)
space. The hyper rectangle represents the search space for the
possible hyperplanes which may be considered as candidates
for the formation of the decision boundary.

B. Hyperplane Generation

In this section, we describe a way of generating a finite
number of parallel hyperplanes in a finite number of directions,
so as to enable the separation of even the two closest points
of the data set. For this purpose, a distancedist is computed
as follows.

Let A represent the training data set. Then we define

dist = Min
x2A
y2A
x6=y

distance(x; y)

wheredistance(x; y) denotes the Euclidean distance between
points x and y. Consequently, the separation between two
consecutive parallel hyperplanes, in any direction, is taken to
be dist=2 to guarantee the above mentioned condition. Thus
the maximum number of parallel hyperplanes,max planes,
which may have to be considered for searching in any partic-
ular direction within the search space is computed as

max planes =

�
diag

dist
� 2

�

wheredxe gives the smallest integer greater than or equal to
x anddiag is the length of the diagonal of the hyper rectangle
enclosing the training points, i.e., see the bottom of page.

C. Hyperplane Specification

From elementary geometry [10], [12], we know that the
equation of a hyperplane inN -dimensional space can be
represented as

l1x1 + l2x2 + � � �+ lNxN = d (1)

where l1 = cos�1; l2 = cos�2; � � � ; lN = cos�N : Here,
�1; �2; � � � ; �N are the angles that the unit normal, to the hy-
perplane, make with theN axesF1; F2; � � � ; FN , respectively;
d is the perpendicular distance of the hyperplane from the
origin. It also follows that

l2
1
+ l2

2
+ � � �+ l2N = 1: (2)

Hence,N variables are needed to specify a hyperplane viz.
N � 1 angle variables (say,�1; �2; � � � ; �N�1) and d. Angle
�N is implicitly specified through (2). |

• Angle (Direction) Specification: The entire feature space
will be spanned if the angles are allowed to vary in the
range from 0 to� rad. The angle space is discretized to
sufficiently small intervals as

0; ��; 2��; � � � ; n � ��:

The number of discrete angles considered is then equal
to n+1; and� = (1=n): An angle�k; k = 1; 2; � � � ; N�1
can thus be specified by a numberanglek in the range
[0; n] such that�k = anglek � ��: The remaining angle
�N is implicitly contained in the constraint equation (2)
as l2N = 1 � �N�1k=1 l2k and�N = cos�1 lN :

• Perpendicular Distance Specification: Once all the an-
gles �1; �2; � � � ; �N are fixed, the orientation of the
hyperplane becomes fixed. For a given orientation, the
perpendicular distances from the origin to the hyperplanes

diag =
p

(Max1 �Min1)2 + (Max2 �Min2)2 + � � �+ (MaxN �MinN )2
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Fig. 2. Fixing the base hyperplane.

passing through the corner points in the base of the
enclosing hyper rectangle (i.e., corner points withMinN
as theN th coordinate) are computed from (1). (The
perpendicular distance,d, assumes a negative value if it
lies in the negative halfspace of theFN axis.) Among
these, the one with the minimum value,dmin, is selected
as the base hyperplane. This is demonstrated in Fig. 2,
for two-dimensional (2-D) feature space where the hy-
perplane (line) through point 2 is the base hyperplane.
The search space for hyperplanes with this orientation
is restricted at one end by the base hyperplane. In other
words, all hyperplanes withd < dmin, are automatically
discarded from the search space. At the other end is a
parallel hyperplane at a perpendicular distance of(dmin+
max planes � (dist=2)) from the origin.

Therefore any hyperplane at a distanceoffsetfrom the
base hyperplane can be specified by a numberp in the
range[0;max planes] such thatoffset = p � (dist=2):
The perpendicular distanced of that hyperplane from the
origin is therefore

d = dmin + offset:

From the above discussion it is clear that one needs the
variablesangle1; angle2; � � � ; angleN�1, andp for specifying
a hyperplanehpln: If each angle variable is represented by
b ang number of bits and perpendicular distance byb perp
bits, then the number of bits required for the binary encoding
of a hyperplane is

(N � 1) � b ang + b perp:

III. D ESCRIPTION OF THEMETHODOLOGY

As was stated earlier, each string is composed of a fixed
number,H, of hyperplanes. Each hyperplane is encoded in
terms of(N � 1) angle variables and a perpendicular distance

generate initial populationG(0)
compute fitnessG(0)
t = 0
while (termination condition not attained)
begin

compute fitness(G(t))
t = t+ 1
G(t) = select(G(t� 1))
crossover(G(t))
mutate(G(t))

end.

Fig. 3. Basic steps in GA’s.

variable. The basic steps of the methodology are as shown in
Fig. 3.

The operations of generating initial population, fitness com-
putation, selection, crossover, and mutation are described in
detail in the following subsections. The terminology used is
stated here for ease of understanding.

tr Number of training patterns.
Pop Number of strings in a generation.
H Number of hyperplanes encoded in a string.
N Feature space dimension.
stri ith string in a generation.
signki Sign string generated for stringi of a population

and training patternk.

A. String Representation and Population Initialization

Each string is composed of a fixed numberH of hyper-
planes. Each hyperplane is encoded in terms ofN � 1 angle
variables and a perpendicular distance variable (both assume
integer values). If each angle variable is represented byb ang
number of bits and perpendicular distance byb perp bits, then
the length of each string,str len equals

str len = ((N � 1)� b ang + b perp) �H:

The GA generally works with a fixed population size of
Pop. Initially, each of thePop binary strings of lengthstr len,
is generated by randomly selectingN � 1 angle variables,
anglek; k = 1; 2; � � � ; (N � 1); and p from the intervals
[0; n] and [0;max planes], respectively, for each of theH
hyperplanes encoded in the string.

Example 1: Let n = 4;max planes = 7; b ang =
3; b perp = 3; N = 3 andH = 1: Then a string

angle1
z}|{

000

angle2
z}|{

010

p
z}|{

100

indicates a plane whose normal makes angles 0 and�=2 with
theF1 andF2 axis, respectively. Its perpendicular distanced
from the origin isdmin+4� (dist=2); for somedmin anddist.
The equation of the plane is

x1 = dmin + 4 �
dist

2
:
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B. Region Identification and Fitness Computation

The computation of the fitness is done for each string
in the population. The fitness of a string is characterized
by the number of points it misclassifies. If the number of
samples misclassified by a string is denoted bymiss then
the fitness of the string is computed as(tr � miss), where
tr is the number of training sample points. A string with
the lowest misclassification is therefore considered to be the
fittest among the population of strings. Note that every string
stri; i = 1;2; � � � ; P op representsH hyperplanes denoted by
hplnij ; j = 1; 2; � � � ;H:

For each hplnij ; the parameterslij
1
; l
ij
2
; � � � ; l

ij
N and

dij are retrieved. For each training pattern point
(xk

1
; xk

2
; � � � ; xkN ); k = 1; 2; � � � ; tr; the sign with respect

to the hyperplanehplnij , i.e., the sign of the expression

l
ij
1
xk
1
+ l

ij
2
xk
2
+ � � �+ l

ij
NxkN � dij (3)

is found. The sign is digitized as 1 (0) if the point lies on the
positive (negative) side of the hyperplanehplnij : The process
is repeated for each of the hyperplanes, at the end of which we
have a stringsignki , subsequently to be referred to as the sign
string. This string, of lengthH corresponds to the classification
yielded by the stringstri of the population, for thekth training
pattern. The class information of thekth training point is stored
along with the sign stringsignki for stri in a linked list. This
procedure is repeated for all thetr pattern points.

It is to be noted that althoughsignki can take on at most2H

possible values (sinceH hyperplanes will yield2H possible
classifications), all of them may not occur in practice. These
sign strings, in fact, represent different regions of the search
space. With each such sign string, a linked list is maintained.
Each element of the list is an ordered pair indicating a class and
its cardinality. The cardinality of a class denotes the number
of training samples of that class which have been identified to
fall into the region represented by the sign string.

The maximum class cardinality in the list for each sign
string is found next. Then the region corresponding to that sign
string is considered to provide the demarcation for the class
possessing the maximum cardinality. All the points belonging
to other classes which have been included in the same list,
i.e., which lie in the same region, are considered to be
misclassified. The number of misclassifications corresponding
to all possible sign strings are summed up to give the resulting
misclassification for the entire classifier string. It may so
happen that the maximum cardinalities for two (or more)
different sign strings may correspond to the same class. In
that case, all these strings (correspondingly, union of all the
different regions) are considered to provide the region for the
class. A tie is resolved arbitrarily. The example stated below
will clarify this method.

Example 2: Let there be 8 training patterns belonging to
two classes, 1 and 2, in a 2-D feature spaceF1 � F2: The
decision boundaries in the 2-D space will be lines. Let us
assumeH to be 3, i.e., three lines will be used to classify the
points. Let the training set and a set of three lines be as shown
in Fig. 4. Each pointij ; i = 1; 2; � � � ;8; andj = 1; 2 indicates
that it is theith training point and that it belongs to classj: Let

Fig. 4. Region identification forH = 3 and tr = 8:

Fig. 5. Linked list for the example in Fig. 4.

the positive and the negative sides of the lines be as shown in
Fig. 4. Then, point11 yields a sign string 111 since it lies on
the positive side of all the three lines Line1, Line2, and Line3:
The corresponding linked list formed for all the eight points
is shown in Fig. 5. It is to be noted that one region (denoted
by sign string 110) is accidentally empty, while two regions
(100 and 101) do not exist. The number of misclassifications
for the example is found to be1 + 1 = 2, one each for sign
strings 001 and 111. Note that in this example both the strings
000 and 001 are providing the regions for class 2 (assuming
that the tie for region 111 is resolved in favor of class 1).|

In a similar fashion, the number of misclassified samples
for all the strings in the population is computed. The best
string of each generation or iteration is the one which has
the fewest misclassifications. This string is stored after each
iteration. If the best string of the previous generation is found
to be better than the best string of the current generation, then
the previous best string replaces the worst string of the current
generation. This implements theelitist strategy, where the best
string seen up to the current generation is propagated to the
next generation.

C. Selection

The roulette wheelselection procedure has been adopted
here to implement aproportional selectionstrategy. Each
string is allocated a slot of the roulette wheel subtending an
angle, proportional to its fitness, at the center of the wheel. A
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random number in the range of 0 to 2� is generated. A copy of
a string goes into the mating pool if the random number falls in
the slot corresponding to the string. For a fixed population size
Pop, this process is repeatedPop times, at the end of which
as many strings go into the mating pool for further operations.

D. Crossover

A pair of strings is picked up at random and the single point
crossover operator is applied according to a fixed crossover
probability. For this operation, a random numbercr pt in the
range of 0 tostr len is generated. This is called the crossover
point. The portion of the strings lying to the right of the
crossover point are exchanged to yield two new strings. There
is a catch to this apparently simple method in this case. The
strings resulting from the crossover operator may not be valid
in the sense that they may not model the hyperplane equation
(1). A hyperplane may be generated where the constraint
equation (2) may not hold. In that case the original pair of
strings is recalled, and another crossover point is generated.
The process may be repeated a certain number of times until a
crossover point which effectively exchanges the entire strings
is generated.

Note that this is one way of tackling the problem of invalid
child generation in constrained optimization problems. Other
methods in this respect are available in [4].

Example 3: Let the two parents, for the parameters given
in Example 1, be as follows:

0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0 1:

Let the crossover site be as shown. Then the offspring are

child 1 = 0 0 0 0 0 0 0 0 1

child 2 = 0 1 0 0 1 0 1 0 0:

Obviously child 1 is not valid sinceangle1 = angle2 = 0:
Hence,l1 = l2 = 1 which violates the constraint equation.
Thus a new crossover point is selected. Let it be as follows:

0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0 1:

Then the offspring are

child 1 =0 0 0 0 1 0 0 0 1

child 2 =0 1 0 0 0 0 1 0 0

which are allowable.

E. Mutation

Mutation is done on a bit by bit basis (for binary strings) [1],
[5] according to some mutation probability valuemut prob.
Thus, more than one bit may be complemented in a string
if mut prob so permits. As all the bits in a string are
subjected to the mutation operator, a record of the bits being
complemented is kept. Finally, the resulting string is checked
to find out if an invalid hyperplane has resulted from the
mutation operator, i.e., one not conforming to the constraint
equation (2). In that case, only those bits which have been
complemented are flipped back one after the other. After each
reflipping, the resultant hyperplane is checked for validity. If
at any step a valid hyperplane is formed, then the process is

discontinued. The process of reflipping effectively means that
the corresponding bits were not mutated at all. Note that this
could as well have been the case, as mutation is a random
operation.

Example 4: From Example 3, after crossover we had child
1 = 0 0 0 0 1 0 0 0 1. Letmutation in bits 5 and 8 (from
left) result in the string 0 0 0 0 0 0 0 1 1, which is invalid
as explained in Example 3. Reflipping bit 5, we get 0 0 0 0
1 0 0 1 1which is allowable.

F. Termination

The process of fitness computation, selection, crossover and
mutation continues for a fixed number of iterationsmax itrns

or until the termination condition (a string with misclassifi-
cation number reduced to zero) is achieved. Let the string
obtained on termination be0 0 0 0 1 0 0 0 0.This indicates
a plane passing through the origin and lying in theF2 � F3
space. The equation of the plane is

x1 = 0:

G. Postprocessing (Deletion of Redundant Hyperplanes)

As mentioned in Section II, for anM class problem we have
the number of hyperplanesH � log

2
M: In order to tackle the

intricacy of certain data sets, consideration ofH = log
2
M

may not be sufficient for proper classification. For this reason,
we try to make an overestimation ofH (i.e., H sufficiently
greater thanlog

2
M ) for constituting the decision boundary. As

a result, in the final output of the algorithm, some hyperplanes
may become redundant in the sense that their removal does not
change the recognition capability of the classifier. Elimination
of these redundant hyperplanes is a natural extension of this
work. A flowchart for this process in given in Fig. 6. It is
described as follows.

Let A represent the set of correctly classified sample points
and S represent a set of hyperplanes (initially equal to the
set of hyperplanes obtained on termination of the algorithm).
From S, a setS1 is formed such that all the points inA
lie on only one side of each hyperplane inS1. Another set
S2 (S2 = fh1; h2; � � � ; hpg; p � H) is also formed such
that one side (subsequently referred to asunique) of each
hyperplane in the set has sample points inA of only one class.
Finally, a setS0 is formed from the remaining hyperplanes
(i.e., S0 = S � S1 � S2).

Hyperplanes represented byS1 are obviously redundant,
and are put into the set of redundant hyperplanesR. Now,
two cases forS2 may arise.
S2 is empty: In this case, all the hyperplanes inS0 are

considered to be nonredundant and are put in a list of
nonredundant hyperplanesNR. A further redundancy check,
check red; is done onNR and then the process terminates.
A description ofcheck red is given subsequently.
S2 is non-empty: In this case, for each element,hi; 1 �

i � p; of S2; all the points ofA which lie on itsuniqueside,
i.e., which can be classified byhi alone, are put into a set
A0: A is now set to be equal to the difference ofA andA0,
i.e.,A = A� A0: At the same time,hi is also removed from
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Fig. 6. Flowchart for the process of elimination of redundant hyperplanes.

S2 and put intoNR. The remaining points ofA are checked
to see if all of them belong to the same class. (The function
oneclass(A) in Fig. 6 performs this check. It returnsTrue if
all the points still inA belong to only one class. Otherwise, it
returnsFalse.) Thus two further cases may arise.

• If oneclass(A) returnsTrue, then the remaining hyper-
planes ofS2 and those inS0 are declared to be redundant
and these are put intoR: The process then callscheck red

with NR:

• If oneclass(A) returnsFalse then the next element of
S2 is considered. Ifoneclass(A) returnsFalse for all the

Fig. 7. Flowchart for the processcheck red:

elements inS2 then the entire process is repeated while
considering the sample points that are still unclassified
(i.e., those which are still present inA) as A and the
hyperplanes inS0 as the setS.

The processing block (Fig. 6) ofcheck red results in a
set E , the set of hyperplanes essential for the complete
classification of all the elements inA (the correctly classified
points in the training data set), from the setNR formed in the
process described before. The detailed flowchart ofcheck red

is presented in Fig. 7. It eliminates those hyperplanes inNR

which are not essential for classifying the samples points. Each
element, sayhi; of NR is considered at a time. It is first
removed fromNR; and then it is checked if the remaining
hyperplanes inNR can successfully classify all the points
in A: (This is performed by the functionclassify(NR;A)
which returnsTrue if the set of hyperplanes inNR correctly
classifies all the points inA: Otherwise, it returnsFalse:

The operation ofclassify(NR;A) is similar to the method
of region identification described in Section III-B. To return
True, the linked list formed forNR must have at most a
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(a)

(b) (c)

Fig. 8. (a) Three classes and a setS of five lines for partitioning them.
(b) Subset ofS comprising three lines which can successfully partition the
three classes in Fig. 8(a). (c) Subset ofS comprising two lines which can
successfully partition the three classes in Fig. 8(a).

single entry for eachsign string.) Thus the following two
cases may arise.
classify(NR;A) returnsTrue: In this case,hi is consid-

ered to be redundant, and it is put intoR: The process is then
repeated for other elements inNR.
classify(NR;A) returnsFalse: In this case,hi is consid-

ered to be essential, and it is put back intoNR as well as in
E : The process is then repeated for other elements inNR: |

Apparently one may think that the consideration of
check red alone will be sufficient for the task of deletion
of redundant hyperplanes. But this will not be capable of
dealing with the situations where two different subsets ofS
can individually classify the patterns. For example, consider
Fig. 8(a) in 2-D feature space, whereS consists of the five
lines which are considered to provide the decision boundary
for the three classes shown inside the respective circles.
The two different subsets of three and two lines are shown
in Fig. 8(b) and (c), respectively. Individually, each of the
two subsets can successfully partition the classes. If only
check red is used in this situation, then depending on the order
of scanning of the output lines, the two lines shown in Fig. 8(c)
may be deleted.check red would then declare the three lines
shown in Fig. 8(b) to be the essential ones. Obviously, this is
not the minimal set; actually the two deleted lines constitute
the minimal set. The postprocessing task precedingcheck red
takes care of such situations. In spite of this, the resulting
set of essential hyperplanes may not be minimal since the
process of deletion of redundant hyperplanes is dependent on
the sequence of the hyperplanes inS, and it does not take
their interrelationships into account.

IV. SELECTION OF CONTROL PARAMETERS

As already stated, there are various methods of fixing
population size, crossover probability and mutation probability
values. Each of the parameters can be kept fixed or variable.
In this work the population size as well as the crossover
probability is kept fixed.

The other parameter to be chosen is the mutation probability
value, the importance of which has been stressed in [13] and
[14]. In [15], it is shown that the mutation probability must be
chosen in the range of(0; (a�1=a)] wherea is the cardinality
of the set of alphabets for the strings (cardinality = 2 for
binary strings). In [14], it is proved that the the mutation
probability value must be within the range of(c=str len) to
0.5, wherec is the number of bit positions of a string in a
generation that must be changed for arriving at the optimal
solution for binary strings. Sucha priori knowledge of c
is almost impossible to acquire. Thus although a theoretical
guideline for selecting the mutation probability value has been
suggested, it is of little practical significance.

In this paper we have chosen the mutation probability value
to vary approximately in the range of1=str len to 0.5. Initially
it has a high value, which slowly decreases with generations,
and then increases again after attaining the minimum specified
value. Given that the number of bits in a string isstr len; the
different possible strings are2str len: Our aim is to search this
space and arrive at the optimal string as fast as possible. The
initial high value of the mutation probability ensures sufficient
diversity in the population which is desired, as at this stage,
the algorithm knows very little about the nature of the search
space. As generations pass, the algorithm slowly moves toward
the optimal string. It is therefore necessary that the space
be searched in detail without abrupt changes in population.
Consequently, we decrease the mutation probability value
gradually until it is sufficiently small. It may so happen that
in spite of this, the optimal string obtained so far has a large
Hamming distance from the actual optimal string. This may
very well happen for deceptive problems [1], [16]. Thus, if
we continue with the small mutation probability value, it may
be too long before the optimal string is found. So to avoid
being stuck at a local optima, the value is again gradually
increased. Even if the optimal string had been found earlier,
we loose nothing since the best string is always preserved
in subsequent generation of strings. Ideally the process of
decreasing and then increasing the mutation probability value
should continue, but here we have restricted the cycle to just
one due to practical limitations.

V. IMPLEMENTATION AND RESULTS

A. Data Sets

Both artificial and real life data sets of different dimensions
(2, 3, and 4) have been used to test and compare the results
of the algorithm proposed in this paper. A description of the
data sets is given here.

Artificial Data: Two artificial data setsADS1 andADS2
shown in Figs. 9 and 10, respectively, with two classes 1 and
2, were generated. The first one consists of 557 data points
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Fig. 9. ADS1 data.

Fig. 10. ADS2 data.

while the second consists of 417 data points. The boundaries
for both the data sets is seen to be highly nonlinear, although
the classes are separable.

Vowel Data: This data consists of 871 Indian Telugu vowel
sounds [17], [20]. These were uttered in a consonant-vowel-
consonant context by three male speakers in the age group of
30–35 years. The data set has three featuresF1; F2, andF3,
corresponding to the first, second, and third vowel formant
frequencies, and six classesf�; a; i; u; e; og: The distribution
of the six classes in theF1 � F2 plane is available in [17]
and [20]. (It is known [17] that these two features are more
important in characterizing the classes thanF3.) Note that the
boundaries of the classes are very ill-defined and overlapping.

Landsat Data: This data set, demonstrated in Fig. 11,
shows the satellite imagery data of rocks, vegetation and
soil. It has 795 samples with five classes as described [18]

Class description

1 Manda Granite
2 Romapahari Granite
3 Vegetation
4 Black Phillite
5 Alluvium.

Note that the original data has four components per sample
for the four bands (red, green, blue, and infrared). The experi-
ments conducted here have been done using the two principal
components as the two features (Fig. 11).

Iris Data: This data represents different categories of irises.
The four feature values per sample represent the sepal length,
sepal width, petal length, and the petal width in centimeters
[19]. It has three classes 1, 2, and 3 with 50 samples per class.

B. Genetic Parameters

For our experiment, a fixed population size of ten is chosen.
The crossover probability is fixed at 0.8. A variable value of
mut prob is selected from the range [0.015, 0.333]. Initially
it assumes a high value, gradually decreasing at first, and
then increasing again in the later stages of the algorithm. 100
iterations are performed with each mutation probability value.
The process is executed for a maximum of 1500 iterations in
case it does not attain zero misclassification.H is fixed at six,
although a study of the variation of the recognition score with
the value ofH is also demonstrated. The experimental results
are described below taking different percentages,perc, of the
data sets as the training set.

Remarks: In the binary implementation, each element of the
chromosome vector (1 or 0) is represented by one character
(usually 8 bits) in memory. Consequently forstr len elements,
the space required isstr len characters. This programming
practice, detailed in [5], allows simplified implementation
of genetic operators like crossover and mutation at the cost
of increased complexity of GA in terms of space and time
requirements.

C. Comparison with Existing Methods

The performance of this methodology is compared with the
performance of MLP, Bayes classifier andk-NN classifier.
For MLP, learning rate� is initially fixed at 2.0. This is
decreased by a factor of 2, up to a prespecified minimum
value, if the mean squared error starts oscillating. In case the
error decreases very slowly, then the learning rate is doubled,
the reason being that most likely the algorithm has confronted
a plateau in the error surface.

k-NN algorithm is executed takingk equal to
p
tr; where

tr is the number of training samples. For the Bayes classifier,
unequal dispersion matrices and unequala priori probabilities
(= (tri=tr) for tri patterns from classi), are considered. In
each case, we assume a multivariate normal distribution of the
samples. Comparison with these three methods is performed
for all the data sets. Although for some data sets, application
of Bayes classifier with the assumption of normal distribution
may not be meaningful, the results are included for keeping
parity with others.

D. Experimental Results

The proposed GA based algorithm is tested on the data
sets described in Section V-A. Tables I–VI present the results
corresponding to artificially generated data sets (ADS1 and
ADS2), Vowel data, Landsat data and Iris data, for different
percentages of the training samples (e.g.,perc = 5; 10; 50) and
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Fig. 11. Landsat data.

TABLE I
RECOGNITION SCORES(%) FOR ADS1 FOR H = 6

TABLE II
RECOGNITION SCORES(%) FOR ADS2 FOR H = 6

TABLE III
RECOGNITION SCORES(%) FOR VOWEL DATA (F1 � F2) FORH = 6

TABLE IV
RECOGNITION SCORES(%) FOR LANDSAT DATA FOR H = 6

H = 6. The results shown are the average values computed
over several runs of the algorithm from different initial points.

It is shown in Table I that forperc = 50 and 10, the
recognition ability of the classifier is considerably high for

TABLE V
RECOGNITION SCORES(%) FOR VOWEL DATA (F1 � F2 � F3) FORH = 6

TABLE VI
RECOGNITION SCORES(%) FOR IRIS DATA FOR H = 6

class 1 of the data set ADS1. Class 2, on the other hand, is
recognized relatively poorly. This disparity is expected since
the region for class 2 is of a relatively smaller size compared
to the region of class 1, and it is totally surrounded by region
1. Table II shows the classwise and overall recognition scores
for ADS2, which are again seen to be considerably high. Note
that both the artificial data sets have nonoverlapping, nonlinear
class boundaries.

Table III presents the results on the overlapping classes
of vowel data withF1 and F2 as features. It is seen from
the table that class� yields a poor recognition score for
all values of perc. This conforms to earlier findings [17],
[20], when Bayes and Fuzzy set theoretic classifiers, and
MLP were used for vowel classification problem. SinceF3

is a more characteristic feature for speakers than vowels,
its inclusion as an additional feature may not necessarily
increase the score over that obtained withF1�F2 combination
[17]. This is evident in Table V where instead of improving
the performance,F3 is seen to increase the confusion in
recognition of the system; thereby resulting in a small decrease
in performance (over those forF1 � F2 plane).



PAL et al.: GENERATION OF CLASS BOUNDARIES 825

TABLE VII
VARIATION OF RECOGNITION (%) WITH H FOR ADS1

TABLE VIII
VARIATION OF RECOGNITION (%) WITH H FOR VOWEL DATA (F1 � F2)

Table IV shows the performance of the algorithm on the
Landsat data shown in Fig. 11. Class 3 is seen to be amenable
to a consistently good recognition score since this class has
almost no overlap with the other classes and lies at one
extreme end of the class distributions. Recognition of class
2 is seen to be poor since this is totally overlapped with other
classes, especially, with classes 4 and 5. It is interesting to
note that the recognition score for class 2 increases at the
cost of recognition score for class 5 whenperc = 5: A good
performance of the proposed algorithm is also observed for
the four-dimensional Iris data (Table VI), which is known
to have a very small overlap [19]. As expected, the overall
recognition score for Vowel data, Landsat data and Iris data
shows a gradual decrease with the decrease in the value of
perc:

In order to demonstrate the variation of recognition score
with H, we have considered ADS1 and Vowel data inF1�F2

plane only. Tables VII and VIII show the results forH = 8,
7, 6, 5, 4, 3, 2 andperc = 10. For both the data sets it
is observed thatH = 6 provides the best result. Increasing
the number of surfaces (i.e.,H), increases the recognition
capability of the algorithm for a specific range ofH. Beyond
this, the performance gets degraded, since further increase in
the number of surfaces makes the resulting decision boundary
greatly dependent on the training data set. In other words,
when a large number of surfaces is given for constituting
the decision boundary, the algorithm can easily place them
to approximate the distribution of the training set and hence
the boundary closely. This may not necessarily be beneficial
(in the sense of generalization) for the test data set, as the
results forH = 8 (Table VII) andH = 7 and 8 (Table VIII)
demonstrate.

Although for H = 2, the resultant classification system
yields a good overall performance for ADS1 data (Table VII),
it is not a good choice since the recognition of class 2 (which is
embedded in class 1) falls drastically. For the Vowel data, since

TABLE IX
COMPARATIVE RECOGNITION SCORES(%) FOR ADS1 FOR perc = 10

TABLE X
COMPARATIVE RECOGNITION SCORES(%) FOR ADS2 FOR perc = 10

TABLE XI
COMPARATIVE RECOGNITION SCORES (%) FOR

VOWEL DATA (F1 � F2) FOR perc = 10

we haveM = 6; the minimum number of hyperplanes required
(as mentioned in Section II) for its proper classification is 3
(3 � log

2
6). However, because of the complexity of the data

set, evenH = 4 is not sufficient for proper classification.
This is evident from Table VIII where the classifier fails to
recognize some of the classes forH = 4, 3, and 2.

A comparison of the performance of the GA based algorithm
is made with that of the Bayes classifier,k-NN classifier
(for k =

p
tr) and the MLP. The results are presented in

Tables IX–XII for only the 2-D data sets whenH = 6

and perc = 10: For both the artificial data sets, ADS1
(Table IX) and ADS2 (Table X), the GA based algorithm
provides the best result. This is followed by the scores for
MLP and k-NN rule for the two data sets respectively. Note
that k-NN classifier is reputed to partition well this type of
nonoverlapping, nonlinear regions. As expected, the Bayes
classifier performs poorly for both these data sets, since the
assumption of multivariate normal distribution is not valid
here. Table XI shows the result for the vowel data (inF1�F2

plane) where Bayes classifier is seen to provide the best
score (77.61%), closely followed by the result of the proposed
algorithm (76.62%). The Bayes classifier is known to perform
well for this data set [17], assuming multivariate normal
densities for the classes. For Landsat data (Table XII) also,
Bayes classifier performs best (84.24% overall score) followed
by the score of the proposed GA based algorithm (82.56%). As
expected, all the four classifiers yield high recognition scores
for class 3. MLP is seen to perform poorly for both the Vowel
data set (Table XI) and Landsat data (Table XII).
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TABLE XII
COMPARATIVE RECOGNITION SCORES(%) FOR LANDSAT DATA FOR perc = 10

Fig. 12. Classification of 90% test data set using the final boundary generated
with 10% training data set forH = 5: Training patterns are underscored.
Dotted lines indicate redundant lines.

In order to demonstrate the generalization capability of the
class boundaries obtained from the training data set, and the
role of the postprocessing (for deletion of redundant lines),
let us consider Figs. 12 and 13. These figures show the lines
generated after the termination of the GA based algorithm for
10% training data of ADS1 withH = 5 and 6, respectively,
and their ability in classifying the remaining test data. The
training patterns are underscored. These lines were obtained
on termination of training when the number of misclassified
samples becomes zero. After postprocessing for the deletion
of redundant lines is performed, two lines are declared to be
redundant in both the cases. These are shown by dotted lines
in Figs. 12 and 13. Therefore, it is basically three lines (for
Fig. 12) and four lines (for Fig. 13) which are contributing
to the generation of actual boundary for proper classification,
although the algorithm started withH = 5 and 6, respectively.

Note that, although both three lines (Fig. 12) and four lines
(Fig. 13) are seen to provide zero misclassification of the
training data set, from the point of generalization capability
over the test data set, four lines are found to provide better
performance (viz., Fig. 13, and Table VII forH = 6). Note
further that if we start the algorithm withH = 3 and 4, the
resulting boundary and hence the recognition score may not
be similar to those obtained after deletion of redundant lines
from H = 5 and 6, respectively. One of the reasons is that

Fig. 13. Classification of 90% test data set using the final boundary generated
with 10% training data set forH = 6: Training patterns are underscored.
Dotted lines indicate redundant lines.

the performance of the algorithm is dependent on the initial
seed point. This is evident from the results corresponding to
H = 3 (Table VII) where the recognition score is seen to be
comparatively lower than that forH = 5 (with deletion of 2
redundant lines). However, forH = 4; the results are seen
to be comparable to those forH = 6 (with deletion of two
redundant lines).

VI. DISCUSSION AND CONCLUSIONS

A method of generating class boundaries in<N ;N � 2;

using GA’s has been described along with its demonstration on
both artificial and real life data having overlapping, concave
regions. Since an exact value of the number of hyperplanes
required for modeling the decision boundary of a given data set
is very difficult to finda priori, the method includes a scheme
for the automatic deletion of redundant hyperplanes resulting
from its conservative estimate. An extensive comparison of the
methodology with other classifiers, namely the Bayes classifier
(which is well known for discriminating overlapping classes),
k-NN classifier and MLP (which are well known for dis-
criminating nonoverlapping, nonlinear regions by generating
piecewise linear boundaries) is also presented. The results
of the proposed algorithm are seen to be comparable to,
sometimes better than, them in discriminating both overlapping
and nonoverlapping, nonconvex regions.

The generalization capability of the decision boundary is
demonstrated diagrammatically for different values ofH.
It is observed that an increase in the value ofH does
not necessarily result in an increase in the generalization
capability of the classifier. The reason is that a large number
of hyperplanes can quickly approximate the boundary of the
training data, which may not be beneficial for the overall
classification of the test data.

The method of classification described in this article is
sensitive to rotation of the data sets due to the way of choosing
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the enclosing hyper rectangle around the data points. It is
also evident from the method of specifying a hyperplane
(Section II) that translation, dilation or contraction of the data
sets would produce a similar change of the decision boundary.

Note that since the deletion algorithm is dependent on the
sequence of input hyperplanes taken fromS and it does not
take the mutual relationships of the hyperplanes into account,
the resultingE containing the essential hyperplanes may not
always be minimal or unique. Again, since the deletion process
does not help in improving the recognition score for a given
H, and a very large value ofH leads to a degradation in the
recognition capability of the classifier, an appropriate selection
of H is necessary.

It is known in the literature [15] that as the number of
iterations goes toward infinity, the Elitist model of GA will
certainly result in the optimal string. Thus, for the problem
under consideration, for infinitely many iterations, any value
of H should provide the minimal misclassification for thatH:
This further strengthens the necessity for a proper selection
of H: In this regard, the concept of variable string length in
GA’s [21] may be adopted where the value ofH could be
kept variable and can be evolved as an outcome of the GA
process. Such an investigation is in progress in our laboratory.
A preliminary study in<2 showed that 4 lines were required
for approximating the decision boundary of data setADS1
for 50% training sample. The overall recognition score was
98.28%. Similarly forADS2 with 50% training data, the
decision boundary was found to comprise five lines, of which
one was redundant, and 95% overall recognition score was
obtained. Alternatively, a meta level GA may also be used for
determiningH.

In the present investigation we assumed binary represen-
tation, because it is well studied in the literature. However,
in many real life problems, binary representation may not
be the natural one. In that case, one may use some other
forms, e.g., floating point representation [4]. Also, the method
of binary implementation adopted here may not be efficient
in terms of space and time requirements and one may use
some other forms of implementation of GA. The purpose of
this investigation is to determine whether the characteristics
of GA can be exploited for designing an efficient classifier for
pattern recognition. Greater importance is therefore given to
the issue of improving the recognition score as compared to
other standard methods, rather than the implementation aspect
of GA.

The GA based classifier is designed for points in<N . For
dealing with complex data structures like trees, digraphs etc.,
the representation scheme needs to be modified accordingly.
This would mean redefining all the genetic operations and
tasks including “Postprocessing” so as to work directly on
such structures.

Proper selection of genetic parameters for an application of
GA is still an open issue. These parameters are usually selected
heuristically. There are no guidelines on the exact strategies to
be adopted for different problems. In this work we have taken
a fixed population size and crossover probability.mut prob is
kept variable, having a high initial value, then decreasing and
finally increasing again. Ideally, this cycle of increasing and

decreasingmut prob should continue for a number of times.
We have terminated it after just one cycle due to practical
limitations. Directed mutation [22] could also have been used
which combines the merits of both genetic search and gradient
descent search for accelerating convergence. Investigation is
therefore necessary to determine these controlling parameters
properly in order to improve the performance of the proposed
method.

Again, discretization of the feature space, which is un-
bounded and continuous, poses a problem in digital pattern
recognition with respect to the performance of the systems.
In our investigation, a hyper rectangle has been constructed
around the set of data points which makes the search space
bounded. The possible orientations (angle values) of the hy-
perplanes are considered to be fixed, and parallel hyperplanes
in any direction are kept separated by a small distancedist=2.
As the discretization is made finer, the performance of the
classifier usually improves, but the size of the search space
increases; thereby increasing the number of iterations required
for GA. An automatic selection of these parameters is therefore
necessary as in the case of genetic operators, stated above.
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