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FFT 

A methodology is described for classifying noisy 
fingerprints directly from raw unprocessed images. 
The directional properties of fingerprints are 
exploited as input features by computing one-dimen- 
sional fast Fourier transform (FFT) of the images 
over some selected bands in four and eight direc- 
tions. The ability of the multilayer perceptron (MLP) 
for generating complex boundaries is utilised for 
the purpose of classification. The superiority of the 
method over some existing ones is established for 
fingerprints corrupted with various types of distor- 
tions, especially random noise. 

Keywords: Fast Fourier Transform (FFT); Multi- 
layer Perceptron (MLP); (Noisy) fingerprint classi- 
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1. Introduction 

Fingerprints are recognised as a basic tool for posi- 
tive identification of individuals, be it for criminals 
in law enforcement, for security clearance in the 
armed services, or for normal civilian identification 
purposes. However, it also becomes necessary to 
maintain large files of print records for this process. 
Automated computer processing promises a fast and 
accurate alternative in this sphere. 

Automated fingerprint classification poses an 
interesting problem in pattern recognition, especially 
for forensic applications. The computer based identi- 
fication of fingerprints involves two major steps: 
[1] (a) 'preprocessing' like enhancement of images, 
thinning of ridges and extraction of features; and 
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(b) analysis of the processed (quality enhanced) 
image. Conventional fingerprint analysis systems 
involve 'thresholding', converting a multilevel inten- 
sity data into two level intensity data (black and 
white) using some heuristics. This is followed by 
thinning of the black concentric lines. Despite all 
these time consuming operations, the resultant 
fingerprint may not be of the desired quality. Finger- 
prints are identified in a hierarchical manner. The 
preprocessed (binary) images are classified by 
determining different micro characteristic features 
like ridge flow and minutiae type, number and 
position. A multilevel classifier using a syntactic 
approach [2], graph matching [3], detecting the num- 
ber and locations of singular points [4] and using 
minutiae features after smoothing the binary image 
[1] have all been tried for the classification of 
fingerprints. Recently, neural networks have been 
used for this purpose. Artificial Neural Networks 
(ANN) [5] can be formally defined as a massively 
parallel interconnected network of simple (usually 
adaptive) processing elements that interact with 
objects of the real world in a manner similar to 
biological systems. The benefit of neural nets lies in 
the high computation rate provided by their inherent 
massive parallelism, thereby enabling real-time pro- 
cessing of huge data sets with proper hardware 
backing. The networks are also found to be robust 
to input noise, and generally degrade gracefully to 
loss of components. Various methods using networks 
for classification of binary ridge patterns for each 
fingerprint category have been developed [6-8]. 

One may note that using binary images in all the 
above techniques often leads to information loss. 
Moreover, it is not appropriate to commit oneself 
to a specific thresholding for binarisation, parti- 
cularly when the ridges are not well defined. For 
example, in the case of forensic applications, the 
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quality of fingerprint data is often found to be 
very poor because of the faint nature, noise and 
incompleteness. Conventional preprocessing tech- 
niques based on heuristic logic are usually incapable 
of handling such situations, often leading to 
erroneous processed results at the cost of expensive 
computer time. So it is desirable to have a system 
where such time consuming and error prone prepro- 
cessing techniques could be avoided altogether. 

By computing input features directly from the 
raw fingerprints, the uncertainties in reaching a 
decision, and also the overall computational burden, 
are greatly reduced [9,10]. Based on this realisation, 
Pal and Mitra [11] computed fuzzy geometrical 
features and probabilistic entropy measures directly 
from unprocessed fingerprint images for their classi- 
fication using the multilayer perceptron (MLP). 
Another investigation on fingerprint classification 
[12] uses a fuzzy MLP, [12] which exploits the 
nonlinear boundary generating capability of MLP 
and the uncertainty handling capacity of fuzzy sets 
to provide a more intelligent system. However, in 
earlier work [12,11], the performance of the neural 
nets in the presence of random noise was not very 
satisfactory. Moreover, it has been observed that 
obtaining fuzzy geometrical features is compu- 
tationally expensive. 

An important characteristic feature of an image 
is the texture [13]. By using textural features instead 
of geometric features, one can make computations 
easily, and also preserve the directional (semiglobal) 
properties. The power spectral (Fast Fourier trans- 
form, or FFT) approach for estimating the texture 
of an image [14,15] is an established method. In 
the case of fingerprints, where there is a definite 
periodicity (of ridges/valleys) and directionality, FFT 
could be a suitable quantifier of the texture in 
different directions. For the various fingerprint types, 
the FFT components are likely to be different. More- 
over, since these features are global in nature, they 
are likely to be less sensitive to random noise. 

The present article aims at developing an MLP- 
based methodology for fingerprint classification, 
exploiting the characteristics of FFT-based textural 
features, derived from the grey images, as input. 
Here the FFT is computed over only a few direc- 
tional bands. This allows us to extract the specific 
directional properties of the various fingerprint types, 
and also reduces the computation time. The perform- 
ance of the network, in the presence of different 
types of noise, is studied. The network's perform- 
ance is also compared with some existing methods 
and the KNN classifier. Apart from that, whether 
the fractal dimensions of the FFT coefficients' 

curves provide distinguishing characteristics for the 
various fingerprint types or not is verified. 

Section 2 describes the various fingerprint classes 
and the method of FFT feature extraction, followed 
by an outline of the multilayer perceptron-based 
classification scheme in Section 3. Section 4 presents 
the implementation method and results. The con- 
clusions are drawn in Section 5. 

2. Fingerprint Processing 

2.1. Fingerprint Categories 

Fingerprint images essentially consist of two types 
of characteristic regions, ridges and valleys. These 
ridges run parallel and slowly over the finger. The 
ridge structure and the skin texture provide the 
uniqueness to the fingerprint, and this remains 
unchanged during one's lifetime. A fingerprint con- 
sists of three regions, core area, marginal area and 
base area. The ridges from these three areas meet 
at a triangular formation called the delta region. 
The centroid of this region is identified as the 
delta point. 

Depending upon the ridge flow on the core area 
and the number of delta points, fingerprints can be 
broadly classified (according to Henry) [16] as: 

�9 Loop: this is the most common type. Ridges enter 
from one side, proceed towards the centre and 
then turn to leave from the same side. There are 
two common categories, Left Loop and Right 
Loop, depending on the direction of the loop 
formed. In a third variety, Twin or Double Loop, 
the core area consists of ridges from two distinct 
loop patterns. 

�9 Arch: in a Plain Arch, ridges enter from one side, 
rise in the middle and leave on the other side. 
The Tented Arch is the same as the Plain Arch, 
but the amount of rise in the middle is more here. 

�9 Whorl: ridge flow in the core area is circular, 
and two delta points are defined. However, there 
may be two subtypes, Central Pocket and Ellipti- 
cal Whorl. In the first subtype, there are circular 
ridges in the core, but it becomes asymmetric 
towards the base, i.e. between a whorl and loop. 
In the other subtype, the ridges are stretched in 
the direction of the finger. The distance between 
the end points of these stretched ridges are dis- 
tinct. 

�9 Accidental, Mixed or Composite: this type con- 
sists of those patterns that cannot be classified 
under any of the above categories. 

In this work, we study the feasibility of our method 
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on five common classes: Left Loop, Right Loop, 
Twin Loop, Plain Arch and Whorl. Figure 1 shows 
some typical images of these five different finger- 
print categories. The images are first digitised, and 
then the input features extracted, as described in 
Section4. In our database, the images are at the 

same scale and have approximately the same orien- 
tation. They are 256 • 256 in size, with 8 bits per 
pixel and labelled manually. 

Fig. 1. The five varieties of fingerprint patterns used: Left Loop, Right Loop, Twin Loop, Plain Arch and Whorl. 
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2.2. Feature Extraction 

Bands (horizontal, vertical and diagonal) of some 
fixed width (Fig. 2), passing through the core regions 
of the fingerprints, are considered for attributing the 
directionality properties. For example, in the case 
of a 'whorl', the nature of greytone variation will 
be approximately the same in all directions, whereas, 
for a 'loop' (left or right), the nature of greytone 
variations will be widely different for the two differ- 
ent diagonals. Thus, the features for classifying the 
different fingerprint categories can be obtained by 
suitably quantifying the nature of greytone variations 
in the directional bands. The greytone variations are 
quantified by computing the Fourier spectrum in 
these bands. 

The Fourier spectrum (FFT) is computed for each 
line in each band as 

1 N-1 
F(U) = ~ ~ f(x) exp[-j27rx/N] (1) 

x = O  

for 

f(x) = f(xo + xs 

where x assumes a discrete value 0, 1, 2 . . . . .  N - 1  
and u = 0, 1 . . . . .  N -  1. The average Fourier compo- 
nents are defined as 

f(u) = Z F(ui) (2) 

The components of one-dimensional Fourier trans- 
form (power spectrum) are obtained along the four 
major directions, i.e. horizontal (0~ first diagonal 
(45~ vertical (90 ~ and second diagonal (135~ For 
verifying whether increasing the number of direc- 
tions helps in producing a better classification, FFT 
is also performed on four more directions: 22.5 ~ , 
67.5 ~ , 112.5 ~ and 157.5 ~ to the horizontal, respect- 
ively. 

Some Remarks. If the FFT components are rep- 
resented graphically, then the locus of the power 
spectrum appears as a continuous curve. Apparently, 
the curve has a fractal nature (Fig. 3). Note that the 
fractal dimensions [17,18] of the locii of the FFT 
coefficients have been calculated by the box coun- 
ting method. The fractal dimension is the slope 
obtained by performing a least square fit to the data 

N set {ln(L),-ln(N(L))}, with N(L)= Em=i (1/m)P(m,L), 
where N is the number of possible points in the 
box (square of side L) containing m points with 
probability P(m,L). However, the fractal dimensions 
did not reveal many distinguishing characteristics 
between the different classes of fingerprint patterns. 

3. M L P  B a s e d  C l a s s i f i c a t i o n  

A four layered MLP (multi-layer perceptron) [5,19] 
(Fig. 5) with suitably chosen architecture is used for 
classifying the fingerprint patterns. It accepts the 
FFT components along all the different bands as 
input, and produces output signifying the presence 
of some particular class. The number of output 
nodes is equal to the number of fingerprint categor- 
ies to be classified, i.e. five in the present case. The 
size of the input layer of the network is equal to 
the product of the number of the frequency compo- 
nents and the number of directional bands. For 
example, if there are four bands, each having 64 
components, then the number of input nodes is equal 
to 4 • 64. The input nodes of the network are 
arranged in the form of a two-dimensional array, 
the number of columns representing the number 
of frequency components and the number of rows 
representing the number of directional bands. The 
contiguous activation pattern of the input nodes 
along a particular row represents the power spectrum 
of the input fingerprint for the corresponding direc- 
tional band. The higher layers of the network 
incrementally group the features to coarser level 
descriptions from finer level details. 

The first hidden layer integrates the frequency 
components within certain frequency bands in all 
directions. To achieve this, the connections from 
each node in the first hidden layer are restricted 
over a certain neighbourhood of the input layer 
representing the band of frequency over which the 
FFT components are grouped. The zones of attention 
(i.e. the neighbourhood zone of input layer over 
which the connections are restricted) of the first 
layer hidden nodes are overlapped. The shape of 
neighbourhoods is chosen to be rectangular. Let 
each neighbourhood be of size m • n. Let Px and 
py be the fraction of overlaps in the two orthogonal 
directions, respectively. Then p~m and pyn neurons 
(of the second layer) send activations to two neigh- 
bouring neurons in the third layer. Let the size of 
the second layer be M • N. In that case, each 
pair of two neighbouring neurons in the third layer 
corresponds to a gap of m(1-Px) neurons in the 
second layer in one direction and n(1-py) neurons 
in the other direction. Therefore, the size of the 
third layer (say, M' • N') is given by 

M 
M' - 

m(1 - Px) 

and 

N 
N r m 

n(1 - py) 
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LEFT LOOP RIGHT LOOP 

(a) (b) 

TWIN LOOP PLAIN ARCH 

(c) (d) 

WHORL 

(e) 

Fig. 2. (a-e) The five fingerprint classes along the left diagonal band. 
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Similarly, the entities represented by the first hidden 
layer (i.e. collective effects of frequency components 
over certain bands) are grouped in the second hidden 
layer to derive more complex and informative mac- 
rofeatures. The connectivity pattern between the first 
and second hidden layers is similar to that between 
the input and first hidden layer with different Px 
and py. Therefore, 

M' 
M " -  

m'(1 - P'x) 

and 

N t 

N " -  
n'(1  - p y) 

Finally, in the output layer, the complex and 
informative entities in the third layer (i.e. in the 
second hidden layer) are grouped collectively in 
order to make the final decision. Each output node, 
representative of a particular fingerprint category, is 
fully connected to the third layer in order to extract 
the global characteristics of the corresponding 
fingerprint patterns. 

used for all pixels p lying along the generated line 
(of width bw), to simulate a cut mark on the finger- 
print image. The cutmarks were generated in two 
different orientations (along the first and second 
diagonals of the image), at 90 ~ difference. These 
are termed as the forward and reverse directions 
respectively (Fig. 6). 

4.1.3. Missing Information. To model the occur- 
rence of loss of information in some portion of the 
fingerprint image, we selected a portion of the image 
randomly. Setting all pixels within this portion to 
the highest (Ng) or lowest (1) grey value simulates 
the loss of information in that region. So, Gp = Ng(1) 
for all pixels p lying within the randomly selected 
part of the image. Note that, setting Gp = Ng models 
the case for insufficient inking (information loss - 
white) of the fingerprint in the region concerned, 
while, setting @ =  1 simulates the condition of 
excess inking (information loss - black) or blotches 
or smudging (Fig. 6). 

4.2. FFT Coefficients and Feature Selection 

4. Implementation and Results 

4.1. Obtaining the Pure and Noisy 
Fingerprint Images 

We originally had 50 samples comprising five differ- 
ent types of patterns. With the objective of testing 
the effectiveness of the method in the presence of 
distorted images, we generated 220 more patterns 
by introducing noise into the pure fingerprint pat- 
terns. The methods of introducing various types of 
noise are described below. 

4.1.1. Random Noise Generation. A predefined 
percentage (5, 10, 15, 20, 30, 40 and 50) of pixels 
were selected and random noise was injected in the 
corresponding grey values. Let the magnitude of 
noise so added be represented by X = x, where X is 
normally distributed. We use X ~ N(m,o-), where m 
is the mean and cr is the standard deviation of the 
normal distribution. Thus, if a pixel p with grey 
value Gp is selected randomly, its new grey value 
becomes Gp=Gp+x, such that 0 < G p < - N g  
(Fig. 6). 

4.1.2. Cut Mark. Any two points in the fingerprint 
image were selected randomly, and the pixels lying 
on a width bw joining these two points were set to 
the highest grey value, Ng. That is, Gp =Ng was 

The frequency components up to 256Hz, in the 
four directions, are found to be distinct for each of 
the five classes. Figure 3 shows the FFT coefficients 
from one representative sample of each class. In 
accordance with the direction of the ridges in the 
fingerprints, the FFT peaks show prominence in a 
particular orientation for a specific class. For 
example, for the left loop fingerprint pattern, the 
peak prominence is more corresponding to the left 
diagonal and vertical directions. On the contrary, 
for the right loop pattern, the maximum peak pro- 
minence is found in the fight diagonal and horizontal 
directions. For the twin loop pattern, peak promin- 
ences are therefore present in all four directions. In 
the cases of plain arch and whorl patterns, the peak 
prominences are visible in all four directions, but 
are more or less distinct for the classes. 

These 256 features in four directions (256 • 4) 
i.e. 1024 features are used as input vector to the 
MLP. To simplify the representation, histograms are 
drawn as the overall (computed for all the 50 train- 
ing patterns) maximum number of the peak fre- 
quencies in the four directions. For this, eight suc- 
cessive FFT coefficients are averaged. Therefore, in 
Fig. 4, the first 32 points on the abscissa represent 
the horizontal direction, the next 32 points denote 
the left diagonal, the third 32 points depict the fight 
diagonal and the final 32 points are plotting the 
vertical direction. 

As described in Section 2.2, 256 features are also 
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Fig .  3. (a-e)  The FFT coefficients of the var ious  types of fingerprints,  in four directions.  
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Fig. 4. (a-b) The histogram of the FFT coefficients of the differ- 
ent types of fingerprints. 
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Fig. 5. Schematic diagram of Multilayer Perceptron (MLP). 

taken in eight directions, 0 ~ 22.5 ~ 45 ~ 67.5 ~ 90 ~ 
112.5 ~ , 135 ~ and 157.5 ~ to the horizontal. However, 
as the number of features increases tremendously, 
the average of four successive FFT coefficients are 
taken in four and eight directions, i.e. 64 • 4 (256) 
and 64 • 8 (512) input features, respectively. The 
average of eight successive FFT coefficients are also 
computed in the described four and eight directions, 
i.e. 32 x 4 (128) and 32 • 8 (256) input features, 
respectively. 

4.3. Net Parameters and Training 

The MLP-based classification scheme is subjected 
to online learning using a standard back propagation 
algorithm. The thresholds of all neurons are set to 
zero. The following architecture is selected empiri- 
cally. There are altogether four layers (two hidden 
layers). For 4 • 256 features, the input layer has 
4 X 256 nodes. The first hidden layer consists of 
2 X 128 nodes, and each node in this layer is con- 
nected to 2 • 32 nodes in the input layer. The 
second hidden layer consists of 1 • 64 nodes, and 
each node is connected to 2 • 16 nodes in the first 
hidden layer. The output layer, consisting of five 
nodes (corresponding to five different classes) is 
fully connected to the second hidden layer. For 
8 • 256 features, 4 • 64 features, 8 • 64 features, 
4 • 32 features and 8 • 32 features, the number of 
nodes in each layer and the connectivity pattern is 
adjusted proportionately. 

For training the network, ten (pure) images for 
each of the five fingerprint classes are selected and 
used as input patterns. For testing, a set of 220 
noisy data generated (as described in Section4.1) 
from the five classes is used. 

4.4. Results 

After training with 500 iterations, zero misclassi- 
fication is obtained for the training data set. The 
learning rate is initially considered to be 0.1. It is 
then changed after every 100 iterations according to 
the schedule 0.05, 0.02, 0.01 and 0.001, respectively. 

During the testing phase, the fingerprint images 
are corrupted with different types of noise, as 
described in Section 4.1. Tables 1 and 2 show the 
performance of the method for different types of 
noisy data. Table 1 shows the classwise recognition 
score of the noisy test data, with 4 • 256 input 
features. The score is seen to be maximum for the 
left-loop class and minimum for the right-loop class. 

The variation of overall performance with differ- 
ent types of noise is shown in Table 2. It can be 
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Fig. 6. Some of the varieties of noise introduced into the data, cutmark (forward), under inking, smudging, 20% random noise and 
50% random noise. 
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Table 1. Classwise recognition score of noisy data in 
number and percent. 

Fingerprint type Total number 
of patterns 

Patterns recognised 

Number (%) 

Left Loop 44 40 90.9 
Right Loop 44 34 77.27 
Twin Loop 44 37 84.09 
Plain Arch 44 37 84.09 
Whorl 44 37 84.09 
Overall 220 185 84.09 

seen from the table that the best results are obtained 
with 256 features in the 4 and 8 directions. Averag- 
ing four successive FFT coefficients (in the 4 and 
8 directions) marginally reduces the recognition 
score. The performance of the MLP is worst in 
the cases of 32 features (i.e. when averaging eight 
successive coefficients) in the 4 and 8 directions. 
This indicates that a balance has to be struck 
between the number of features and the number of 
directions of the input features for arriving at a 
good classification. 

The patterns corrupted with random noise (even 
up to 20%) are recognised correctly with 256 • 4 
features. Increasing the noise worsens the perform- 
ance of the net. As an illustration, the confusion 
matrix corresponding to 30% random noise is shown 
in Table 3. Here the diagonal entries signify the 

number of patterns correctly classified and the other 
entries indicate the classes to which misclassi- 
fications (confusion) occur. 

Interestingly, excellent recognition is obtained 
even with cutmarks (both forward and reverse) and 
with smudging. However, with under inking, which 
introduces more background (white) pixels, the 
results are comparatively inferior. These findings are 
similar to the earlier investigation [11] using fuzzy 
geometrical features. 

4.4.1. Comparative Study. The results are com- 
pared with those of the k-nearest neighbours (k-NN) 
classifier [20], with k =  1,3,5, and also with two 
MLP based methods [12,11] using fuzzy and direc- 
tional features, reported recently. 

The k-NN classifier is reputed to be able to 
generate piecewise linear decision boundaries, and is 
thus quite efficient in handling concave and linearly 
nonseparable pattern classes. Therefore, a compari- 
son of the performance of the neural net model with 
that of the k-NN classifier is highly appropriate. 
The k-NN classifier is practical when large amounts 
of memory and sufficient computation power are 
available for a rapid single trial learning. For good 
generalisation, the distance between the stored 
exemplar and input patterns is computed by Eucli- 
dean distance metrics E as 

D 

d--1 

Table 2. Variation of overall recognition score (%) with noise. 

Noise type Random noise 
features 

5% 10% 15% 20% 30% 40% 50% 

Cut marks Information loss 

forward reverse black white 

4 X 256 100 100 100 100 70 10 20 
8 X 256 100 100 100 100 60 10 10 
4 X 64 100 100 90 70 50 10 10 
8 • 64 100 100 100 75 50 10 10 
4 X 32 100 80 70 70 50 10 10 
8 • 32 100 80 80 70 50 10 10 

100 100 100 85 
100 100 100 80 
100 100 80 80 
100 100 100 80 
80 75 70 65 
80 70 60 60 

Table 3. Confusion matrix for 30% noise (four images in each class). 

Type 

Left loop 

Recognised as 

Right loop Twin loop Plain arch Whorl 

Actual class Left Loop 4 0 0 0 0 
Right Loop 1 2 0 0 1 
Twin Loop 0 0 4 0 0 
Plain Arch 1 1 0 2 0 
Whorl 1 0 1 0 2 
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Table 4. Comparison of overall recognition score (%) with k-NN taking 4 • 64 features. 

S. Sarbadhikari  et al. 

Noise type Random noise 
classifier 

5% 10% 15% 20% 30% 40% 50% 

Cut marks Information loss 

forward reverse black white 

MLP 100 100 90 70 50 10 10 
k-NN (k= 1) 100 100 80 60 40 10 10 
k-NN (k= 3) 65 65 60 50 30 10 10 
k-NN (k = 5) 55 50 50 50 30 10 10 

100 100 80 80 
100 100 80 80 
80 80 70 60 
80 80 60 60 

where D is the dimension of the feature vectors, 7 ~ 
is the ith test vector and /Y is the jth training vector. 
The results obtained by k-NN are not as good as 
those obtained by MLP, though they are comparable. 
Both types of classifier prove that the classes are 
well separable in the feature space selected here 
(Table 4). 

The results of the proposed method, on finger- 
prints corrupted with 10% random noise, are com- 
pared with those of the earlier investigations [12,11] 
in Table 5. In an earlier investigation [12] on the 
classification of only three classes of fingerprint 
patterns with fuzzy MLP, the recognition scores 
varied between 54.4% and 82.9% in images cor- 
rupted with random noise (up to 10%) only. This 
establishes the better noise sensitivity of  the 
present method. 

In another recent investigation [11] of  fingerprint 
classification with 128 fuzzy geometrical and 27 
textural features using an MLP, 1000 sweeps were 
required to recognise 100% of the training set. 
Reducing the features to 80 required 50,000 iter- 
ations for 96.8% correct recognition of the training 
set. The overall performance with the test set was 
about 80%. In the case of textural features, 27 
features required 150-200 sweeps for 70-84% cor- 
rect recognition. This indicates the superiority of  the 
present method in terms of the number of required 
sweeps and recognition score. In that investigation 

Table 5. Classwise comparative recognition score (%) for 

also [11], the worst recognition scores were obtained 
from the data corrupted with random noise (up to 
10%). This further strengthens the noise sensitivity 
of the proposed method. 

5. Conclusions 

A multilayer perceptron is used for the classification 
of fingerprint images using directional FFT compo- 
nents as input features. Five fingerprint categories 
(Left Loop, Right Loop, Twin Loop, Plain Arch 
and Whorl) are considered. The results demonstrate 
that taking FFT directly from the unprocessed grey 
level images can be helpful in automated classi- 
fication of the various fingerprint types. Computing 
the FFT over a set of only four directional bands 
is adequate for classification. Increasing the number 
of directions (e.g. to eight) does not necessarily give 
better performance. The FFT-based textural features 
are much less sensitive to random noise than those 
used in earlier approaches [12,11]. It was also found 
that MLP-based classifier is better than the k-NN 
classifier for this problem. As has been pointed out 
elsewhere [15], the computation of a two-dimen- 
sional FFT for each training and each test image is 
time consuming. From the present investigation, it 
is apparent that computing the one-dimensional FFT 
can be much faster, as well as effective. However, 

10% noise. 

Investigation Present study 
features 

FFT Coeff. X directions 

256• 64X4 64• 

Ref. [12] Ref. [12] 

for Fuzzy MLP Fuzzy geometrical Tex. & Dir. 

44 40 36 27 128 80 8 27 

Finger 
Print 
Types 

Left Loop 100 100 100 
Right Loop 100 100 100 
Twin Loop 100 100 100 
Plain Arch 100 100 100 
Whorl 100 100 100 
Overall 100 100 100 

70.7 100 87.8 48.7 100 100 0 100 
97.5 100 68.3 100 100 100 33.3 0 
. . . .  100 100 100 0 
. . . .  71.4 57.2 28.6 57.2 
82.9 48.7 82.9 48.7 60 60 40 20 
83.7 82.9 79.6 65.8 81.3 75 43.8 37.5 
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the quality of the input data plays a very crucial 
role in the classification rates. 

The fractal dimensions of the FFT coefficients' 
curves could not be very discriminatory for classify- 
ing the fingerprints. Although the FFT features used 
here reflect the global information of an image, the 
size of the windows for the FFT can be reduced 
easily to obtain local features. Further investigations 
with naturally distorted and overlapping fingerprints 
are being contemplated. 
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