
INFORMATION
SCIENCES

AN fl~I~I4~IA'I1ONAL JOURNAl

ELSEVIER Journal of Information Sciences 109 (1998) 119-133

Search space division in GAs using phenotypic
properties

Shigeyoshi Tsutsui a,., Ashish Ghosh b,1
a Department of Management and Information Science, Hannan University, 5-4-3 Amamihigashi,

Matsubara, Osaka 580, Japan
b Machine Intelligence Unit, Indian Statistical Institute, 203 B.T. Road, Calcutta 700035, India

Received 17 January 1997; received in revised form 29 September 1997;
accepted 12 November 1997

Abstract

In this article, we study a new type of forking GA (fGA), the phenotypicforking GA
(p-fGA). The fGA divides the whole search space into subspaces depending on the con-
vergence status of the population and the solutions obtained so far; and is intended to
deal with multimodal problems which are difficult to solve using conventional GA. We
use a multi-population scheme, which includes one parent population that explores
one subspace, and one or more child population(s) exploiting the other subspace. The
p-fGA divides the search space using phenotypic properties only, and defines a search
subspace (to be exploited by a child population) by a neighborhood hypercube around
the current best individual in the phenotypic feature space. Empirical results on complex
function optimization problems show that the p-fGA performs fairly well compared to a
conventional GA. Two other variants of the p-fGA, the moving window p-fGA (to accel-
erate the speed of convergence in the child populations) and the variable resolution p-
fGA (to solve multimodal problems with high precision) are also studied in this arti-
cle. © 1998 Elsevier Science Inc. All rights reserved.

Keywords: Search space division; Phenotypic properties; multi-modal problems;
Forking GA

* Corresponding author. Tel.: +81 723 32 1224; fax: +81 723 36 2633; e-mail: tsutsui@hannan-
u.ac.jp.

i Tel.: +91 33 577 8085 (ext 3110); fax: +91 33 556 6680; e-mail: ash@isical.ernet.in.

0020-0255/98l$19.00 © 1998 Elsevier Science Inc. All rights reserved.
P I I : S 0 0 2 0 - 0 2 5 5 (9 8) 0 0 0 1 3 - 9

120 S. TsutsuL A. Ghosh / Journal of lnformation Sciences 109 (1998) 11~133

1. Introduction

There are many GA-hard problems (such as multimodal problems and de-
ceptive functions [5,13]) that are difficult to be solved by the conventional
GAs. Various kinds of modified GAs, such as CHC [3], messy GA (mGA)
[6], delta coding [8], niche methods [1,2] and fGA [11,12] aimed to solve these
problems are proposed in the literature.

The forking GA (fGA) [11,12] divides the search space into subspaces de-
pending on the status of convergence of the present population and the solu-
tions obtained so far; and uses a multi-population scheme with one parent
population for exploration and one or more child populations for exploitation,
generated by population forking. Depending on the type of the search space to
be divided, different types of fGAs can be considered. In the present work we
study one such type, the phenotypicfGA (p-fGA) which uses phenotypic prop-
erties for space division where each subspace is defined by a neighborhood hyper-
cube around the current best individual in the phenotypic parameter space.

Empirical results on multimodal function optimization problems showed
that the p-fGA performs fairly well over a conventional GA. We also studied
two variants of the p-fGA. One of them is the moving windowp-fGA (mp-fGA)
which accelerates the speed of convergence in the child populations. The other
is the variable resolution searching scheme (vp-fGA) aimed to solve multimodal
problems with high precision. Results are found to be encouraging for them
also.

2. Basic evolutionary model

Although the basic principle of fGAs does not depend on any particular
evolution model, in this work we used a modified evolution scheme which
shows better performance compared to the conventional ones. The scheme ba-
sically involves applying crossover and normal mutation or high mutation fol-
lowed by population elitist selection; and is shown in Fig. 1. The scheme is
described as follows. Let the size of the population P (t - 1) at generation
(t - 1) be N. First we copy this population to another pool P'(t - 1). We find
out the canonical Hamming distance Hij (= Hamming distance (Si, Sj)/L; L:
length of an individual, Si: an individual) between a chromosome pair (Si, Sj)
in P(t - 1). Crossover of this pair is done with probability (HIS, where
(0 < ~ 4 1) is called the crossover Hamming power; normal mutation with rate
Pnm is applied after crossover. Offspring thus generated is stored in offspring
population C (t - 1). When crossover is not performed, a high mutation with
rate Phm(Phm >> Pnm) is applied to the individual with lower functional value
so as to replace it in P'(t - 1). The best N individuals are then selected from
the population P ' (t - 1) and the offspring population C (t - 1). This selection

S. Tsutsui, A. Ghosh / Journal of Information Sciences 109 (1998) 119 133 121

P(t-l)

P~t-1)

A
B

C
D

High

m 7

Crossover
and

normal
mutation

-- 'X--

B

C'
D

C(t-l)

AB

\
Best N
selection

/

P(t)

F " ' - " I
I A B I : Crossover between A and B

[- - ' ~ : High mutation of C

Fig. 1. Basis model of evolution.

method is called population elitist selection [3], since it guarantees that the best
N individuals, seen so far, always survived.

When the canonical Hamming distance H~j between two individuals becomes
small, probability (~j)~ for crossover of this pair decreases; and consequently a
high mutation is performed. Thus an appropriate amount of diversity can be
maintained in the population by a proper choice of ~. In this context, we men-
tion that attempts are also made [4] to maintain diversity in the population.

3. Search space division by population forking

In this section we describe the basic idea of population forking for search
space division.

3.1. Population forking

During the process of evolution if the population is found to be converged
(measured by different parameters), the process may be forked to allow search-
ing concurrently in two different subpopulations. Thus the entire search space

122 s. Tsutsui, .4. Ghosh I Journal of lnformation Sciences 109 (1998) 119-133

is divided into subspaces depending on the status of convergence of the present
population and the solutions obtained so far; and search is continued
independently in these subspaces. We call this method population forking.
The population is forked into a parent population pp/1 (t) and a chiMpopulation
CP tl (t a) covering the subspaces as shown in Fig. 2. The parent population and
the child populations are evolved in time sharing mode.

If the conditions for forking is satisfied again during the evolution of the
parent population, the second child population is formed. A maximum of
Kp (>>, 1) child populations are allowed. Sharing of computational time by
the parent and child populations is defined by the PCratio on the generation
counter. For example, the Pfratio = p : q means we perform p generations
for the parent population followed by q generations for each of the child pop-
ulations; and this sequence continues.

Individuals are not exchanged between child populations. But when an indi-
vidual with the new best solution is found in a child population, it is copied
into the parent population. As a result, the best individual obtained so far is
always included in the parent population. If the number of child populations
is more than Kp, the oldest child population is discarded.

3.2. Search space division using phenotypic properties

In the present work a subspace (to be searched by a child population) is de-
fined by a neighborhood hypercube in the phenotypic feature space around the
current best solution as described in the following paragraphs.

Parent Population

~ : A sub-space (neighborhood hypercube)

Child Populations (max Kp)

I

Child
Population
CP tl (t)

Population
~ IPopulationl CP tl (t3

0 o 0 o

Fig. 2. Population forking.

S. Tsutsui, A. Ghosh I Journal of lnJbrmation Sciences 109 (1998) 119-133 123

Let the phenotypic parameter of a problem be X = (x~,x2,... ,xn). Let us
consider a situation where there is no updating of the current best solution
by a new individual for some consecutive generations. We represent the current

t best individual by its phenotypic parameter vector X[1 = tx t x t ,xn,c). ', l,c~ 2 , c ' ' ' "
Thus, the neighborhood hypercube R(X~.) around X~ be defined as
R(X~) = {xl ,x2, . . . ,x, I (Xl.c - si/2) <~xi <~ (x~,,, + si/2), i --- 1 ,2 , . . . , n}, where
S = (sl, sz , . . . , sn) defines the size of the neighborhood hypercube R(X[,) and
si (> 0) is a user specified constant.

A population is allowed to fork if the following conditions are satisfied si-
multaneously.
1. the current best individual has not been updated by a new individual for a

specified number (KH >1 1) of generations, and
2. the number of the individuals located inside the neighborhood hypercube

R(X~) is more than a specified number N x KR (0 < KR <~ 1.0).
If the conditions of forking are satisfied, we allow the initial population to fork
into a parent population pptl (t) which evolves outside R(X[J), and a child pop-
ulation CP tl (t') which evolves inside R(X~ l) (refer Fig. 2). Since we use pheno-
typic properties for measuring convergence and phenotypic features for space
division, we refer this technique as phenotypicforking GA (p-fGA).

3.3. Exploratiom and exploitation o f subspaces

After a population forking has occurred, individuals which are located in-
side R(X~I), except the best one, will be deleted from the parent population
pptl (t) and we call this the bloeking mode. Individuals are randomly regenerat-
ed to keep the parent population size fixed; and thus the diversity of pptl (t) is
recovered and it starts exploring other sub-spaces. Fig. 3 shows an example of
the blocking mode. In this figure, there are two phenotypic parameters, xl and
x2 in the range 0.0 ~< xl, X2 ~, 25.5 and coded by 8 bits. We assume
X~ I = (10.0, 6.0). Let the resolution of parameter xi be represented by kxi. Then
&q,Ax2 are both 0.1 (= (25.5 -0.0) / (28 - 1)).

The neighborhood hypercube size S can be determined from the number of
bits used to represent each of the parameters in the child population and the
resolution. If six bits are used to represent both xl and x2 in the child popula-
tion, then S becomes ((26- 1) x 0 .1 , (26- 1) x 0.1) = (6.3,6.3); and thus
(10.0-3.1)~<x1~<(10.0+3.2) & (6.0-3.1)~<x2~<(6.0+3.2), as shown in
Fig. 4. An individual with parameter values xl = 10.1,x2 = 5.1, for example,
is being re-encoded in R(X~!) with 6 bits for each parameter; total length of
a string in the child population being 12. Thus, the search space of the child
population is 1116 (= 212/216)th of the original search space. As the string
length of the chromosomes is reduced, we call this shrinking mode. The child
populations thus exploit the small search spaces to detect the actual optimum.

124 S. Tsutsui, A. Ghosh / Journal of lnformation Sciences 109 (1998) 119-133

Strings

I°°~°~°°°1°°°~°~°°1 I°~'°°~°~1 °°'~°°~ I
. :5.1

((25.5)

X

0.0)

~cking

[OOlOlOoolooololOO i
Allowed string

Fig. 3. Blocking mode in the p-fGA.

A string

01~100116 bits . - - - - ~ [ol 100110011]

(6.8
xtl C =(10.0,

(6.8
c)

 011001101 [
12 bit ~ 1

(10.1-6.8)/0.1 (5.1-2.8)/0.1
=31 =13

Shrunk string

Fig. 4. Shrinking mode in the p-fGA.

4. Empirical results

In this section, experimental results are analyzed to evaluate the p-fGA. Two
more GAs are tested. They are the n-fGA (non-forking GA: population

S. TsutsuL A. Ghosh / Journal of Information Sciences 109 (1998) 119 133 125

forking is not applied), and the GENESIS [7] with elitism. The performance
was tested on the following four multimodal functions. Each of these functions
has a large number of local optima and a single global optimum and has var-
ious amounts of complexity.

(i) Sine envelope sine wave: f6. The function is defined [14] as follows.

f6 = 0.5 + sin2 V/~I + x~ - 0"5 (1)
(1.0 q- 0 .001 (X~ q- X2)) 2 '

Each parameter xi is represented by a 22-bit Gray code in the range -100-100.
The length of a string is thus 22 x 2 = 44 bits. The minimum value of this func-
tion is 0.0.

(ii) Stretched V sine wave: f7. The function is defined [14] as follows.

fT=(X~ 2 025 • 2 2 1.0)). + x 2) (sin (s0(x, 1° + (2)

Here also each parameter xi is represented by a 22-bit Gray code in the range
-100-100. Thus the length of a string is 22 x 2 = 44 bits. The minimum value
of this function is also 0.0.

(iii) F M S (Frequency Modulation Sounds) parameter identification problem."
Jims [12]. Here the problem is to specify 6 parameters (al, Wl, a2, w2, a3, w3) of
the FM sound model represented by

y(t) = al sin (wl tO + a2 sin (wJO + a 3 sin (w3tO))) , (3)

with 0 = 2rt/100. The function dq'ms is defined as the summation of square errors
between the evolved data and the model data as

100

f'ms = ~ (y (t) - y0(t)) 2, (4)
t--0

where the model data are given by the following equation.

yo(t) = 1.0 x sin(5.0t0 - 1.5 x sin(4.8t0 + 2.0 x sin(4.gt0))). (5)

Each parameter is represented by an 8-bit Gray code in the range -6.4-6.35.
Hence the total length of a string is 8 x 6 = 48 bits.

(iv) Modified Griewank Function: fGriewank [10]. The function is defined as fol-
lows:

5 5

fGriewank = Z x ~ / 4 0 0 0 - 1--[cos (xi/x/~)+ 1. (6)
i--1 i=1

Here each parameter xi is represented by a 10-bit Gray code in the range
-51.2-51.1. The total length of a string is 10 × 5 = 50 bits. The minimum value
of this function is 0.0.

Maximum number of trials (function evaluations) were set to 100,000,
100,1000, 140,000 and 200,000 for f6,f7,ffms and fGriewank, respectively. Thirty
simulations were made for each experiment. Searching continued until the

126 s. Tsutsui, A. Ghosh / Journal of lnJormation Sciences 109 (1998) 119-133

global opt imum was found, or the maximum number of trials was reached.
A population size N = 50, Hamming power ~ = 0.05, a normal mutat ion rate
Pnm = 0.02, a high mutat ion rate Phm = 0.2, Kp = 3, PCratio = 3:1 and KH = 60
were commonly used for all the experiments. The number of bits used for each
parameter in the child population was tuned, and were 17, 10, 5 and 7 for
f6,f7,Ji'ms and fGriewank, respectively. Except for the mutat ion rate, we used
the default parameter values for experiments with GENESIS; where a muta-
tion rate of 0.02 was used. The two point crossover operator was applied.
We evaluated the models by measuring their OPT (number of runs in which
the algorithm succeeded in finding the global opt imum) which indicates the
success rate; and M N T (mean number of trials to find the global opt imum in
those runs where it did find the opt imum) reflecting the convergence rate for
detecting the global optima. Fig. 5 shows the OPT for restricted number of tri-
als and Table 1 summarizes the results after maximum number of trials.

+ p-fGA + n-fGA ~. GENESIS

30 ~ - 30

25 j ~ r , ~.-.a 25 [.~lr

20 W'f_ 20 f
: ~ 15 0 ~ 15 ~ll~, ~ © r / . . I t

10 10

0 0
0 20 40 60 80

Trials (x 1000)
i) f6

30
25 .~ ~...d - . ~ . .--./•

20

511"-" ,e-- " " "
0

0 20

100 0 20 40 60
Trials (x 1000)

ii) f7

40 60 80 100 120 140
Trials (x 1000)

iii) f ~

0

5

0

0 ar
5 . 4 . . ,
0

0 40 80 120
Trials (x 1000)
iv)

f

80 100

160 200

Fig. 5. OPT for restricted number of trials,

S. Tsutsui, A. Ghosh / Journal of lnformation Sciences 109 (1998) 119-133

Table 1
Performance of the p-fGA

127

GA Function f6 f7 J/'ms fGriewank

p-fGA OPT 30 30 30 30
MNT 20 097.7 9 532.4 31 338.2 65 864.4

n-fGA OPT 17 30 7 1
MNT 17 742.6 15 961.7 10 460.6 2910.0

GENESIS OPT 26 21 6 2
MNT 25 549.6 51 121.9 77 134.3 24 849.5

For these four functions, the p-fGA showed better performance than the n-
fGA and GENESIS. The p-fGA found the global optimum solution 30 times
(OPT = 30) for all of the functions. On the function f6, GENESIS (OPT = 26,
MNT=25,549.6) showed similar performance to the p-fGA (OPT=30,
MNT = 20,097.7), but the n-fGA (OPT = 17, MNT = 17,742.6) showed poorer
performance than the p-fGA. On the other hand, for the function f7, the n-fGA
(OPT=30, MNT=15,961.7) showed similar performance to the p-fGA
(OPT= 30, MNT = 9532.4), but GENESIS (OPT = 21, MNT = 51,121.9) did
not do well. On the functions ffms and fGriewank, the p-fGA showed good per-
formance (OPT= 30, M N T = 31,338.2 and OPT=30, MNT=65,864.4, res-
pectively). The n-fGA detected the global optimum only 7 times for ffms, and
once for fCriewank; and GENESIS did the same 6 and 2 times, respectively.
Thus, we can see that the p-fGA has very stable higher performance on these
four multimodal functions than the other GAs; either in terms of detecting the
optimal solution (Table 1), or the convergence rate of doing the same (Fig. 5).

5. Variants of the p-fGA

We have noticed from the results in Section 4 that the p-fGA improves the
performance by detecting the optimal solution more frequently and quickly. In
this section we consider two variations of the p-fGA; the moving window pf-GA
(mp-fGA) and the variable resolution searching scheme to improve the speed of
convergence, and to produce high precision search.

5.1. Moving window p-fGA (mp-fGA)

In the original p-fGA (Section 3), the neighborhood hypercube is defined
around the best individual obtained at the time of forking. Hence, the search
subspaces remain fixed during the remaining portion of the algorithm. Thus,
detection of the actual position of the optimum becomes largely dependent
on the size of the neighborhood hypercube. If the neighborhood hypercube

128 S. Tsutsui, A. Ghosh / Journal of Information Sciences 109 (1998) 119-133

is small, we may miss the actual location of the optimum or the optimum itself.
In other words, the optimum may not be detected in the child population(s).
On the contrary, if the size of the neighborhood hypercube is large, we may
get the actual optimum; but searching becomes very expensive. Thus, the
choice of the neighborhood hypercube can become a bottleneck for the p-
fGA. In this study, we shift the position of the neighborhood hypercube with
time. The center of the hypercube is updated every generation to be the current
best solution; thereby dynamically varying the search space for the parent and
the child populations. This gives us more scope to detect the actual optimum in
the child populations; thereby increasing the chance of detecting the actual op-
timum in fewer number of trials. We call this technique the moving window p-
fGA (mp-fGA).

The performance of the mp-fGA was tested on the same set of test functions
as in Section 4. Here also we used OPT and MNT as performance measure.
Fig. 6 shows the OPT for restricted number of trials. Table 2 summarizes
the results. The mp-fGA performed better than the p-fGA for all four test func-
tions. The mp-fGA also found the global optimum 30 times for all of the four
functions. Furthermore, the MNT of the mp-fGA for each function is less than

I + mp-fGA • p-fGA I

3O 30

25 25
20 . . ~ m 2O

~' 15 15 ©

1 0 / - 5 IO ~r ~ I T 5

o o i

30

25
20

1o
5
o

0 10 20 30 40 50 60
Trials (x 1000)

i) £.

d
$
f

20

pr

40 60 80 100 120
Trials (x 10019)

iii) ffm,

70 0 5 10

g-

15 20 25
Trials (x 1000)

ii) f7

30 35

30
25 -~r~""'----'~ ~" r

20 I ~ J

Jr
~o dl r

o
14(1 0 20 40 60 80 100120140160180200

Trials (× 1000)

iv) fonewa.k

Fig. 6. OPT for restricted number of trials.

S. Tsutsui, A. Ghosh / Journal of Information Sciences 109 (1998) 119 133

Table 2
The mp- fGA vs. the p- fGA

129

G A Func t ion f6 f7 Ji'ms fGri k

OPT 30 30 30 30
mp- fGA M N T 18 590.9 9078.9 26 747.3 48 145.1

OPT/C a 20 21 8 21

OPT 30 30 30 30
p-fGA M N T 20 097.7 9532.4 31 338.2 65 864.4

OPTIC ~ 18 19 6 20

~ Number of runs in which the optimal solution was found in one of the child populations.

that of the p-fGA. Thus, the mp-fGA enhances performance by reducing the
MNT (by approximately 5-27%) and thereby accelerates the speed of conver-
gence.

The performance improvement of the mp-fGA can be explained from the
OPT/C (number of runs which found the global optimum in one of the child
populations) in Table 2. For the function f6, OPTIC of the p-fGA= 18,
OPTIC of the mp-fGA= 20. Similar results were also found for fv (OPT/
C = 19 for the p-fGA; OPT/C = 21 for the mp-fGA), ffms (OPT/C = 6 for the
p-fGA; OPTIC = 8 for the mp-fGA) and fGriewnak (OPT/C = 20 for the p-
fGA; OPTIC = 21 for the mp-fGA). Thus we see, the mp-fGA found the global
optimum more number of times in the child populations than that of the p-
fGA; and thus required fewer trials to detect the global optimum. Results ob-
tained with other neighborhood hypercube sizes also corroborated the earlier
finding.

5.2. Variable resolution p-fGA

The p-fGA described in Section 3 uses the same resolution Axi for the parent
and the child populations. In this section, we call this p-fGA as the fixed res-
olution p-fGA OCp-fGA). We may use different Axi values for the parent and
the child populations. This type of GA may be called a variable resolution p-
fGA (vp-fGA). Thus the vp-fGA provides more flexibility to define the size of
the neighborhood hypercube. Let us consider the case where we want to in-
crease the size of the neighborhood hypercube (Fig. 4) with the fp-fGA. This
can only be attained by increasing the number of bits to represent strings of
the child population. However, if we increase one bit to represent Xl, then
the value of Sl increases from 6.3 to 12.7; thus almost doubling its size. In
the vp-fGA, each AX i is recalculated for a given S and a given number of bits
to represent the members of a child population. Thus, we can take any value
for S although it may be that the string length of the members of the child pop-
ulations becomes longer than that of the fp-fGA.

130 S. TsutsuL A. Ghosh /Journal of lnformation Sciences 109 (1998) 119-133

With the vp-fGA we basically can achieve variable resolution searching as
follows.
(1) the parent population is searched with a lower resolution and detects the

near optimal solution quickly.
(2) in the child populations, searching is performed with a higher resolution,

depending on the problem, resulting in efficient detection of the global op-
timum or local optima.

In this context we mention that the variable resolution searching scheme is
similar to the dynamic parameter encoding (DPE) technique [9]; however the
search space division scheme is completely different.

Next, let us evaluate the vp-fGA by comparing it with the fp-fGA. We use
the following two test functions fripple and fnon-ripple:

5 x i 0.1 2

fripple = Z e -21n2(-~v-) (sin6(5rtxi)+ 0.l × cos2(500/u¢i)), (7)
i=1

5
fnon-ripple = ~~e -21n2(~)" sin6(5xxi), (8)

i = I

where, each xi is in the range 0.0 ~< xi <~ 100.0, i = 1 ,2 , . . . , 5. The function frippl¢
has many main peaks of different sizes surrounded by a high frequency of small
peaks; the function fnon-rippl¢ does not have a high frequency of small peaks.
Both of these functions have their maximum value at x~ = x2 = , . . . ,x5 = 0.1
with functional value 5.5. We choose these functions because they require a
very high resolution to detect the actual optima. Let us consider that the prob-
lem is to find the optimal point with a resolution of 0.0001 for each xi. Thus, we
assume that the GA is able to find the optimal solution if the parameters
x j , x 2 , . . . , x 5 of the best individual are within the range [(0.1-0.0001),
(0.1 + 0.0001)].

The following experimental conditions are commonly used. Thirty runs are
performed, where each run continues until the global optimum is found, or a
maximum of 100,000 trials is reached. A population size of 50, Gray coding,
and a two point crossover are used. Other parameters are tuned so that the
OPT of the fp-fGA for function fripple is maximized. The size of the neigh-
borhood hypercube (S) was set close to the diameter (-- 0.15) of the main
peaks.

In the vp-fGA, we used si =- 0.15 for all i. To represent each parameter xi, 12
and 11 bits were used in the parent and child populations, respectively. Thus,
the resolution Axg of the parent and child populations were 0.02442
(-- 100.0/(212 - 1)) and 0.0000723 (= 0.15/(211 - 1)), respectively. In the fp-
fGA, each xi used 20 and 11 bits for its representation in the parent and the
child populations, respectively. Thus, the resolution Axi of the parent and
the child populations was 0.0000953 (-- 100.0/(220- 1)), and si -- 0.195091
(-- 0.0000953 × (2 ll - 1)).

S. Tsutsui, A. Ghosh / Journal of InJormation Sciences 109 (1998) 119-133

Table 3
The fp-fGA vs. the vp-fGA

131

GA

fp-fGA vp-fGA

String length
Parent population
Child population

Size of neighborhood
hypercube (si)
Resolution (Axe)

Parent population
Child population

Other parameters

100(: 20 x 5) bits 60(= 12 × 5) bits
55(= ll x 5) bits 55(= II × 5) bits
0.1950791 0.15

0,0000953 0.02442
0.0000953 0.0000723
KR= 0.7,Kn = 100,Kp= 2,
Pnm : 0 .02, BSratio : 2:1

f~o~-ripp~e
OPT 30 30
OPT/P " 2 -
OPT/C b 28 30
MNT 16,845.7 20,916.0

fripple
OPT 14 30
OPT/P ~' 4 -
OPT/C b l0 30

MNT 65,272.9 21,087.4

" Number of runs in which the optimal solution was found in the parent population.
b Number of runs in which the optimal solution was found in one of the child populations.

Simulation results are shown in Table 3. Fo r funct ion fnon-ripple the results o f
the fp - fGA and vp - fGA are almost the same; the OPTs of the fp - fGA and the vp-
f G A were both 30 (100%), the M N T o f the fp - fGA and vp - fGA were 16,845.7
and 20,916.0, respectively. Fo r the function fripple, the vp - fGA showed better
performance; the O P T o f the vp - fGA was 30 (100%), and that o f the fp - fGA
was 14 (47%) only; the M N T s of the fp - fGA and vp - fGA were 65,272.9 and
21,087.4, respectively. It can be ment ioned here that the n - fGA and G E N E S I S
could not find the global op t imum in any of the 30 runs for these functions.

Thus, it is evident that the vp - fGA has a fairly good capabili ty o f finding the
global op t imum with high resolution. It may be ment ioned here that with this
feature o f the vp-fGA, we can make compensa t ion for the lack o f local search
capability o f genetic algorithms.

6. Conclusions

In the present work we study the p h e n o t y p i c f G A (p-fGA) which uses pheno-
typic properties for space division where each subspace for a child popula t ion

132 s. Tsutsui, A. Ghosh / Journal of Information Sciences 109 (1998) 119-133

is defined by a neighborhood hypercube around the current best individual in the
phenotypic parameter space. Empirical results on multimodal function opt-
imiization problems showed that the p- fGA performs fairly well over the con-
ventional GAs.

We also studied two other variants of the p-fGA. One of them is the moving
windowp-fGA (mp-fGA) which accelerates the speed of convergence in the child
populations. Empirical results on complex function optimization problems
showed that the new method found the global opt imum in less (by approxi-
mately 5-27%) number of trials than the original p-fGA. The other is the vari-
able resolution searching scheme (vp-fGA) to solve multimodal problems with
high precision. The empirical results showed that the vp-fGA had a fairly good
capability to finding the global opt imum with high resolution.

There are many opportunities for further research related to the proposed
technique: analyzing the extra overhead required for blocking and shrinking
modes, studying the load balancing between the parent and child populations,
and devising a more efficient method to discard some of the child populations.
Finally work remains in evaluating the effectiveness of the p-fGAs on real life
problems, comparing them with other multi-population based schemes, extend-
ing them for permutat ion problems and other evolution schemes such as real
coded GAs.

References

[1] D. Beasley, D.R. Bull, R.R. Martin, A sequential niche technique for multimodal function
optimization, Evolutionary Computation 1 (2) (1993) 101 125.

[2] K. Deb, D.E. Goldberg, An investigation of niche and species formation in genetic function
optimization, in: Proceedings of Third International Conference on Genetic Algorithms, 1989,
pp. 42 50.

[3] L.J. Eshelman, The CHC adaptive search algorithm: How to have safe search when engaging
in nontraditional genetic recombination, in: Foundations of Genetic Algorithms, Morgan
Kaufmann, San Mateo, CA, 1991, pp. 265-283.

[4] L.J. Eshelman, J.D. Schaffer, Preventing premature convergence in genetic algorithms by
preventing incest, in: Proceedings of Fourth International Conference on Genetic Algorithms,
1991, pp. 115-122.

[5] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley, Reading, MA, 1989.

[6] D.E. Goldberg, K. Deb, B. Korb, Messy genetic algorithms revisited: Studies in mixed size
and scale, Complex Systems 4 (1990) 415~44.

[7] J.J. Grefenstette, L. Davis, D. Cerys, GENESIS and OOGA: Two GA Systems, TSP
Publication, Melrose, MA, 1991.

[8] K. Mathias, D. Whitley, Changing representations during search: A comparative study of
delta coding, Evolutionary Computation 2 (3) (1994) 249 278.

[9] N.N. Schraudolph, R.K. Belew, Dynamic parameter encoding for genetic algorithms,
Machine Learning 9 (1992) 9-21.

[10] A. Torn, A. Zilmskas, Global optimization, in: Lecture Notes in Computer Science, Springer,
Berlin, 1989, p. 186.

S. Tsutsui, A. Ghosh / Journal of lnformation Sciences 109 (1998) 119 133 133

[11] S. Tsutsui, Y. Fujimoto, Forking genetic algorithm with blocking and shrinking modes, in:
Proceedings of Fifth International Conference on Genetic Algorithms, 1993, pp. 206-213.

[12] S. Tsutsui, Y. Fujimoto, A. Ghosh, Forking GAs: GAs with search space division schemes,
Evolutionary Computation 5 (1) (1997) 61-80.

[13] D. Whitley, Fundamental principles of deception in genetic search, in: Foundations of Genetic
Algorithms, Morgan Kaufmann, San Mateo, CA, 1991, pp. 221 241,

[14] J.D. Schaffer, R,A. Caruana, L.J. Eshelman, R. Das, A study of control parameters affecting
online performance of genetic algorithms for function optimization, in: Proceedings of Third
International Conference on Genetic Algorithms. 1989, pp. 51-60.

