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Abstract 

In this article, we study a new type of forking GA (fGA), the phenotypicforking GA 
(p-fGA). The fGA divides the whole search space into subspaces depending on the con- 
vergence status of the population and the solutions obtained so far; and is intended to 
deal with multimodal problems which are difficult to solve using conventional GA. We 
use a multi-population scheme, which includes one parent population that explores 
one subspace, and one or more child population(s) exploiting the other subspace. The 
p-fGA divides the search space using phenotypic properties only, and defines a search 
subspace (to be exploited by a child population) by a neighborhood hypercube around 
the current best individual in the phenotypic feature space. Empirical results on complex 
function optimization problems show that the p-fGA performs fairly well compared to a 
conventional GA. Two other variants of the p-fGA, the moving window p-fGA (to accel- 
erate the speed of convergence in the child populations) and the variable resolution p- 
fGA (to solve multimodal problems with high precision) are also studied in this arti- 
cle. © 1998 Elsevier Science Inc. All rights reserved. 
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1. Introduction 

There are many GA-hard problems (such as multimodal problems and de- 
ceptive functions [5,13]) that are difficult to be solved by the conventional 
GAs. Various kinds of modified GAs, such as CHC [3], messy GA (mGA) 
[6], delta coding [8], niche methods [1,2] and fGA [11,12] aimed to solve these 
problems are proposed in the literature. 

The forking GA (fGA) [11,12] divides the search space into subspaces de- 
pending on the status of convergence of the present population and the solu- 
tions obtained so far; and uses a multi-population scheme with one parent 
population for exploration and one or more child populations for exploitation, 
generated by population forking. Depending on the type of the search space to 
be divided, different types of fGAs can be considered. In the present work we 
study one such type, the phenotypicfGA (p-fGA) which uses phenotypic prop- 
erties for space division where each subspace is defined by a neighborhood hyper- 
cube around the current best individual in the phenotypic parameter space. 

Empirical results on multimodal function optimization problems showed 
that the p-fGA performs fairly well over a conventional GA. We also studied 
two variants of the p-fGA. One of them is the moving windowp-fGA (mp-fGA) 
which accelerates the speed of convergence in the child populations. The other 
is the variable resolution searching scheme (vp-fGA) aimed to solve multimodal 
problems with high precision. Results are found to be encouraging for them 
also. 

2. Basic evolutionary model 

Although the basic principle of fGAs does not depend on any particular 
evolution model, in this work we used a modified evolution scheme which 
shows better performance compared to the conventional ones. The scheme ba- 
sically involves applying crossover and normal mutation or high mutation fol- 
lowed by population elitist selection; and is shown in Fig. 1. The scheme is 
described as follows. Let the size of the population P ( t -  1) at generation 
(t - 1) be N. First we copy this population to another pool P'(t - 1). We find 
out the canonical Hamming distance Hij ( = Hamming distance (Si, Sj)/L; L: 
length of an individual, Si: an individual) between a chromosome pair (Si, Sj) 
in P(t - 1). Crossover of this pair is done with probability (HIS,  where 
(0 < ~ 4 1) is called the crossover Hamming power; normal mutation with rate 
Pnm is applied after crossover. Offspring thus generated is stored in offspring 
population C ( t -  1). When crossover is not performed, a high mutation with 
rate Phm(Phm >> Pnm) is applied to the individual with lower functional value 
so as to replace it in P'(t - 1). The best N individuals are then selected from 
the population P ' ( t -  1) and the offspring population C ( t -  1). This selection 
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Fig. 1. Basis model of evolution. 

method is called population elitist selection [3], since it guarantees that the best 
N individuals, seen so far, always survived. 

When the canonical Hamming distance H~j between two individuals becomes 
small, probability (~j)~ for crossover of this pair decreases; and consequently a 
high mutation is performed. Thus an appropriate amount of diversity can be 
maintained in the population by a proper choice of ~. In this context, we men- 
tion that attempts are also made [4] to maintain diversity in the population. 

3. Search space division by population forking 

In this section we describe the basic idea of population forking for search 
space division. 

3.1. Population forking 

During the process of evolution if the population is found to be converged 
(measured by different parameters), the process may be forked to allow search- 
ing concurrently in two different subpopulations. Thus the entire search space 
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is divided into subspaces depending on the status of convergence of the present 
population and the solutions obtained so far; and search is continued 
independently in these subspaces. We call this method population forking. 
The population is forked into a parent population pp/1 (t) and a chiMpopulation 
CP tl (t a) covering the subspaces as shown in Fig. 2. The parent population and 
the child populations are evolved in time sharing mode. 

If the conditions for forking is satisfied again during the evolution of the 
parent population, the second child population is formed. A maximum of 
Kp (>>, 1) child populations are allowed. Sharing of computational time by 
the parent and child populations is defined by the PCratio on the generation 
counter. For example, the Pfratio = p :  q means we perform p generations 
for the parent population followed by q generations for each of the child pop- 
ulations; and this sequence continues. 

Individuals are not exchanged between child populations. But when an indi- 
vidual with the new best solution is found in a child population, it is copied 
into the parent population. As a result, the best individual obtained so far is 
always included in the parent population. If the number of child populations 
is more than Kp, the oldest child population is discarded. 

3.2. Search space division using phenotypic properties 

In the present work a subspace (to be searched by a child population) is de- 
fined by a neighborhood hypercube in the phenotypic feature space around the 
current best solution as described in the following paragraphs. 

Parent Population 

~ : A sub-space (neighborhood hypercube) 

Child Populations (max Kp) 

I 

Child 
Population 
CP tl (t) 

Population 
~ IPopulationl CP tl (t3 

0 o 0 o 

Fig. 2. Population forking. 
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Let the phenotypic parameter of a problem be X = (x~,x2,... ,xn). Let us 
consider a situation where there is no updating of the current best solution 
by a new individual for some consecutive generations. We represent the current 

t best individual by its phenotypic parameter vector X[1 = tx t x t ,xn,c). ', l,c~ 2 , c ' ' ' "  
Thus, the neighborhood hypercube R(X~.) around X~ be defined as 
R(X~) = {xl ,x2, . . .  ,x, I (Xl.c - si/2) <~xi <~ (x~,,, + si/2), i --- 1 ,2 , . . . ,  n}, where 
S = (sl, sz , . . . , sn)  defines the size of the neighborhood hypercube R(X[,) and 
si (> 0) is a user specified constant. 

A population is allowed to fork if the following conditions are satisfied si- 
multaneously. 
1. the current best individual has not been updated by a new individual for a 

specified number (KH >1 1) of generations, and 
2. the number of the individuals located inside the neighborhood hypercube 

R(X~) is more than a specified number N x KR (0 < KR <~ 1.0). 
If the conditions of forking are satisfied, we allow the initial population to fork 
into a parent population pptl (t) which evolves outside R(X[J ), and a child pop- 
ulation CP tl (t') which evolves inside R(X~ l) (refer Fig. 2). Since we use pheno- 
typic properties for measuring convergence and phenotypic features for space 
division, we refer this technique as phenotypicforking GA (p-fGA). 

3.3. Exploratiom and exploitation o f  subspaces 

After a population forking has occurred, individuals which are located in- 
side R(X~I), except the best one, will be deleted from the parent population 
pptl (t) and we call this the bloeking mode. Individuals are randomly regenerat- 
ed to keep the parent population size fixed; and thus the diversity of pptl (t) is 
recovered and it starts exploring other sub-spaces. Fig. 3 shows an example of 
the blocking mode. In this figure, there are two phenotypic parameters, xl and 
x2 in the range 0.0 ~< xl, X2 ~, 25.5 and coded by 8 bits. We assume 
X~ I = (10.0, 6.0). Let the resolution of parameter xi be represented by kxi. Then 
&q,Ax2 are both 0.1 (= (25.5 -0.0) / (28 - 1)). 

The neighborhood hypercube size S can be determined from the number of 
bits used to represent each of the parameters in the child population and the 
resolution. If  six bits are used to represent both xl and x2 in the child popula- 
tion, then S becomes ( (26-  1) x 0 .1 , (26-  1) x 0.1) = (6.3,6.3); and thus 
(10.0-3.1)~<x1~<(10.0+3.2) & (6.0-3.1)~<x2~<(6.0+3.2),  as shown in 
Fig. 4. An individual with parameter values xl = 10.1,x2 = 5.1, for example, 
is being re-encoded in R(X~!) with 6 bits for each parameter; total length of 
a string in the child population being 12. Thus, the search space of the child 
population is 1116 (= 212/216)th of the original search space. As the string 
length of the chromosomes is reduced, we call this shrinking mode. The child 
populations thus exploit the small search spaces to detect the actual optimum. 
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Fig. 4. Shrinking mode in the p-fGA. 

4. Empirical results 

In this section, experimental results are analyzed to evaluate the p-fGA. Two 
more GAs are tested. They are the n-fGA (non-forking GA: population 
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forking is not applied), and the GENESIS [7] with elitism. The performance 
was tested on the following four multimodal functions. Each of these functions 
has a large number of local optima and a single global optimum and has var- 
ious amounts of complexity. 

(i) Sine envelope sine wave: f6. The function is defined [14] as follows. 

f6 = 0.5 + sin2 V/~I + x~ - 0"5 (1) 
(1.0 q- 0 .001 (X~ q- X2)) 2 '  

Each parameter xi is represented by a 22-bit Gray code in the range -100-100. 
The length of a string is thus 22 x 2 = 44 bits. The minimum value of  this func- 
tion is 0.0. 

(ii) Stretched V sine wave: f7. The function is defined [14] as follows. 

fT=(X~ 2 025 • 2 2 1.0)). + x 2 )  (sin (s0(x, 1° + (2) 

Here also each parameter xi is represented by a 22-bit Gray code in the range 
-100-100.  Thus the length of a string is 22 x 2 = 44 bits. The minimum value 
of this function is also 0.0. 

(iii) F M S  (Frequency Modulation Sounds) parameter identification problem." 
Jims [12]. Here the problem is to specify 6 parameters (al, Wl, a2, w2, a3, w3) of 
the FM sound model represented by 

y( t ) = al sin ( wl tO + a2 sin ( wJO + a 3 sin ( w3tO ) ) ) , (3) 

with 0 = 2rt/100. The function dq'ms is defined as the summation of square errors 
between the evolved data and the model data as 

100 

f'ms = ~ ( y ( t )  - y0(t)) 2, (4) 
t--0 

where the model data are given by the following equation. 

yo(t) = 1.0 x sin(5.0t0 - 1.5 x sin(4.8t0 + 2.0 x sin(4.gt0))). (5) 

Each parameter is represented by an 8-bit Gray code in the range -6.4-6.35. 
Hence the total length of  a string is 8 x 6 = 48 bits. 

(iv) Modified Griewank Function: fGriewank [10]. The function is defined as fol- 
lows: 

5 5 

fGriewank = Z x ~ / 4 0 0 0  - 1--[ cos (xi/x/~)+ 1. (6) 
i--1 i=1 

Here each parameter xi is represented by a 10-bit Gray code in the range 
-51.2-51.1.  The total length of a string is 10 × 5 = 50 bits. The minimum value 
of this function is 0.0. 

Maximum number of trials (function evaluations) were set to 100,000, 
100,1000, 140,000 and 200,000 for f6,f7,ffms and fGriewank, respectively. Thirty 
simulations were made for each experiment. Searching continued until the 
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global opt imum was found, or the maximum number  of  trials was reached. 
A population size N = 50, Hamming  power ~ = 0.05, a normal mutat ion rate 
Pnm = 0.02, a high mutat ion rate Phm = 0.2, Kp = 3, PCratio = 3:1 and KH = 60 
were commonly used for all the experiments. The number of  bits used for each 
parameter  in the child population was tuned, and were 17, 10, 5 and 7 for 
f6,f7,Ji'ms and fGriewank, respectively. Except for the mutat ion rate, we used 
the default parameter  values for experiments with GENESIS;  where a muta- 
tion rate of  0.02 was used. The two point crossover operator was applied. 
We evaluated the models by measuring their OPT (number of  runs in which 
the algorithm succeeded in finding the global opt imum) which indicates the 
success rate; and M N T  (mean number  of  trials to find the global opt imum in 
those runs where it did find the opt imum) reflecting the convergence rate for 
detecting the global optima. Fig. 5 shows the OPT for restricted number  of  tri- 
als and Table 1 summarizes the results after maximum number  of  trials. 

+ p-fGA + n-fGA ~. GENESIS 
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Fig. 5. OPT for restricted number of trials, 
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Table 1 
Performance of the p-fGA 
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GA Function f6 f7 J/'ms fGriewank 

p-fGA OPT 30 30 30 30 
MNT 20 097.7 9 532.4 31 338.2 65 864.4 

n-fGA OPT 17 30 7 1 
MNT 17 742.6 15 961.7 10 460.6 2910.0 

GENESIS OPT 26 21 6 2 
MNT 25 549.6 51 121.9 77 134.3 24 849.5 

For these four functions, the p-fGA showed better performance than the n- 
fGA and GENESIS. The p-fGA found the global optimum solution 30 times 
(OPT = 30) for all of the functions. On the function f6, GENESIS (OPT = 26, 
MNT=25,549.6) showed similar performance to the p-fGA (OPT=30,  
MNT = 20,097.7), but the n-fGA (OPT = 17, MNT = 17,742.6) showed poorer 
performance than the p-fGA. On the other hand, for the function f7, the n-fGA 
(OPT=30,  MNT=15,961.7) showed similar performance to the p-fGA 
(OPT= 30, MNT = 9532.4), but GENESIS (OPT = 21, MNT = 51,121.9) did 
not do well. On the functions ffms and fGriewank, the p-fGA showed good per- 
formance (OPT= 30, M N T =  31,338.2 and OPT=30,  MNT=65,864.4, res- 
pectively). The n-fGA detected the global optimum only 7 times for ffms, and 
once for fCriewank; and GENESIS did the same 6 and 2 times, respectively. 
Thus, we can see that the p-fGA has very stable higher performance on these 
four multimodal functions than the other GAs; either in terms of detecting the 
optimal solution (Table 1), or the convergence rate of doing the same (Fig. 5). 

5. Variants of the p-fGA 

We have noticed from the results in Section 4 that the p-fGA improves the 
performance by detecting the optimal solution more frequently and quickly. In 
this section we consider two variations of the p-fGA; the moving window pf-GA 
(mp-fGA) and the variable resolution searching scheme to improve the speed of 
convergence, and to produce high precision search. 

5.1. Moving window p-fGA (mp-fGA ) 

In the original p-fGA (Section 3), the neighborhood hypercube is defined 
around the best individual obtained at the time of forking. Hence, the search 
subspaces remain fixed during the remaining portion of the algorithm. Thus, 
detection of the actual position of the optimum becomes largely dependent 
on the size of the neighborhood hypercube. If the neighborhood hypercube 
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is small, we may miss the actual location of the optimum or the optimum itself. 
In other words, the optimum may not be detected in the child population(s). 
On the contrary, if the size of the neighborhood hypercube is large, we may 
get the actual optimum; but searching becomes very expensive. Thus, the 
choice of the neighborhood hypercube can become a bottleneck for the p- 
fGA. In this study, we shift the position of the neighborhood hypercube with 
time. The center of the hypercube is updated every generation to be the current 
best solution; thereby dynamically varying the search space for the parent and 
the child populations. This gives us more scope to detect the actual optimum in 
the child populations; thereby increasing the chance of detecting the actual op- 
timum in fewer number of trials. We call this technique the moving window p- 
fGA (mp-fGA). 

The performance of the mp-fGA was tested on the same set of test functions 
as in Section 4. Here also we used OPT and MNT as performance measure. 
Fig. 6 shows the OPT for restricted number of trials. Table 2 summarizes 
the results. The mp-fGA performed better than the p-fGA for all four test func- 
tions. The mp-fGA also found the global optimum 30 times for all of the four 
functions. Furthermore, the MNT of the mp-fGA for each function is less than 
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Fig. 6. OPT for restricted number of trials. 
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Table 2 
The mp- fGA vs. the p- fGA 
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G A  Func t ion  f6 f7 Ji'ms fGri . . . .  k 

OPT 30 30 30 30 
mp- fGA M N T  18 590.9 9078.9 26 747.3 48 145.1 

OPT/C a 20 21 8 21 

OPT 30 30 30 30 
p-fGA M N T  20 097.7 9532.4 31 338.2 65 864.4 

OPTIC ~ 18 19 6 20 

~ Number  of runs in which the optimal solution was found in one of the child populations. 

that of the p-fGA. Thus, the mp-fGA enhances performance by reducing the 
MNT (by approximately 5-27%) and thereby accelerates the speed of conver- 
gence. 

The performance improvement of the mp-fGA can be explained from the 
OPT/C (number of runs which found the global optimum in one of the child 
populations) in Table 2. For the function f6, OPTIC of the p-fGA= 18, 
OPTIC of the mp-fGA= 20. Similar results were also found for fv (OPT/ 
C = 19 for the p-fGA; OPT/C = 21 for the mp-fGA), ffms (OPT/C = 6 for the 
p-fGA; OPTIC = 8 for the mp-fGA) and fGriewnak (OPT/C = 20 for the p- 
fGA; OPTIC = 21 for the mp-fGA). Thus we see, the mp-fGA found the global 
optimum more number of times in the child populations than that of the p- 
fGA; and thus required fewer trials to detect the global optimum. Results ob- 
tained with other neighborhood hypercube sizes also corroborated the earlier 
finding. 

5.2. Variable resolution p-fGA 

The p-fGA described in Section 3 uses the same resolution Axi for the parent 
and the child populations. In this section, we call this p-fGA as the fixed res- 
olution p-fGA OCp-fGA). We may use different Axi values for the parent and 
the child populations. This type of GA may be called a variable resolution p- 
fGA (vp-fGA). Thus the vp-fGA provides more flexibility to define the size of 
the neighborhood hypercube. Let us consider the case where we want to in- 
crease the size of the neighborhood hypercube (Fig. 4) with the fp-fGA. This 
can only be attained by increasing the number of bits to represent strings of 
the child population. However, if we increase one bit to represent Xl, then 
the value of Sl increases from 6.3 to 12.7; thus almost doubling its size. In 
the vp-fGA, each AX i is recalculated for a given S and a given number of bits 
to represent the members of a child population. Thus, we can take any value 
for S although it may be that the string length of the members of the child pop- 
ulations becomes longer than that of the fp-fGA. 
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With the vp-fGA we basically can achieve variable resolution searching as 
follows. 
(1) the parent population is searched with a lower resolution and detects the 

near optimal solution quickly. 
(2) in the child populations, searching is performed with a higher resolution, 

depending on the problem, resulting in efficient detection of the global op- 
timum or local optima. 

In this context we mention that the variable resolution searching scheme is 
similar to the dynamic parameter  encoding (DPE) technique [9]; however the 
search space division scheme is completely different. 

Next, let us evaluate the vp-fGA by comparing it with the fp-fGA. We use 
the following two test functions fripple and fnon-ripple: 

5 x i 0.1 2 

fripple = Z e  -21n2(-~v-) (sin6(5rtxi)+ 0.l × cos2(500/u¢i)), (7) 
i=1  

5 
fnon-ripple = ~~e  -21n2(~)" sin6(5xxi), (8) 

i = I  

where, each xi is in the range 0.0 ~< xi <~ 100.0, i = 1 ,2 , . . . ,  5. The function frippl¢ 
has many main peaks of different sizes surrounded by a high frequency of small 
peaks; the function fnon-rippl¢ does not have a high frequency of small peaks. 
Both of these functions have their maximum value at x~ = x2 = , . . .  ,x5 = 0.1 
with functional value 5.5. We choose these functions because they require a 
very high resolution to detect the actual optima. Let us consider that the prob- 
lem is to find the optimal point with a resolution of 0.0001 for each xi. Thus, we 
assume that the GA is able to find the optimal solution if the parameters 
x j , x 2 , . . . , x 5  of the best individual are within the range [(0.1-0.0001), 
(0.1 + 0.0001)]. 

The following experimental conditions are commonly used. Thirty runs are 
performed, where each run continues until the global optimum is found, or a 
maximum of 100,000 trials is reached. A population size of 50, Gray coding, 
and a two point crossover are used. Other parameters are tuned so that the 
OPT of the fp-fGA for function fripple is maximized. The size of the neigh- 
borhood hypercube (S) was set close to the diameter (-- 0.15) of the main 
peaks. 

In the vp-fGA, we used si =- 0.15 for all i. To represent each parameter xi, 12 
and 11 bits were used in the parent and child populations, respectively. Thus, 
the resolution Axg of the parent and child populations were 0.02442 
(-- 100.0/(212 - 1)) and 0.0000723 (= 0.15/(211 - 1)), respectively. In the fp- 
fGA, each xi used 20 and 11 bits for its representation in the parent and the 
child populations, respectively. Thus, the resolution Axi of the parent and 
the child populations was 0.0000953 (-- 100.0/(220- 1)), and si -- 0.195091 
(-- 0.0000953 × (2 ll - 1)). 
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Table 3 
The fp-fGA vs. the vp-fGA 
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GA 

fp-fGA vp-fGA 

String length 
Parent population 
Child population 

Size of neighborhood 
hypercube (si) 
Resolution (Axe) 

Parent population 
Child population 

Other parameters 

100(: 20 x 5) bits 60(= 12 × 5) bits 
55(= ll x 5) bits 55(= II × 5) bits 
0.1950791 0.15 

0,0000953 0.02442 
0.0000953 0.0000723 
KR= 0.7,Kn = 100,Kp= 2, 
Pnm : 0 .02,  BSratio : 2:1 

f~o~-ripp~e 
OPT 30 30 
OPT/P " 2 - 
OPT/C b 28 30 
MNT 16,845.7 20,916.0 

fripple 
OPT 14 30 
OPT/P ~' 4 - 
OPT/C b l0  30 

MNT 65,272.9 21,087.4 

" Number of runs in which the optimal solution was found in the parent population. 
b Number of runs in which the optimal solution was found in one of the child populations. 

Simulation results are shown in Table 3. Fo r  funct ion fnon-ripple the results o f  
the fp - fGA and vp - fGA are almost  the same; the OPTs  of  the fp - fGA and the vp- 
f G A  were both  30 (100%), the M N T  o f  the fp - fGA and vp - fGA were 16,845.7 
and 20,916.0, respectively. Fo r  the function fripple, the vp - fGA showed better 
performance;  the O P T  o f  the vp - fGA was 30 (100%), and that  o f  the fp - fGA 
was 14 (47%) only; the M N T s  of  the fp - fGA and vp - fGA were 65,272.9 and 
21,087.4, respectively. It  can be ment ioned here that  the n - fGA and G E N E S I S  
could not  find the global op t imum in any of  the 30 runs for these functions. 

Thus,  it is evident that  the vp - fGA has a fairly good  capabili ty o f  finding the 
global op t imum with high resolution. It  may  be ment ioned here that  with this 
feature o f  the vp-fGA,  we can make  compensa t ion  for the lack o f  local search 
capability o f  genetic algorithms. 

6. Conclusions 

In the present work  we study the p h e n o t y p i c f G A  (p-fGA) which uses pheno-  
typic properties for  space division where each subspace for a child popula t ion 
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is defined by a neighborhood hypercube around the current best individual in the 
phenotypic parameter  space. Empirical results on multimodal function opt- 
imiization problems showed that the p- fGA performs fairly well over the con- 
ventional GAs. 

We also studied two other variants of  the p-fGA. One of them is the moving 
windowp-fGA (mp-fGA) which accelerates the speed of  convergence in the child 
populations. Empirical results on complex function optimization problems 
showed that the new method found the global opt imum in less (by approxi- 
mately 5-27%) number  of  trials than the original p-fGA. The other is the vari- 
able resolution searching scheme (vp-fGA) to solve multimodal problems with 
high precision. The empirical results showed that the vp-fGA had a fairly good 
capability to finding the global opt imum with high resolution. 

There are many opportunities for further research related to the proposed 
technique: analyzing the extra overhead required for blocking and shrinking 
modes, studying the load balancing between the parent and child populations, 
and devising a more efficient method to discard some of  the child populations. 
Finally work remains in evaluating the effectiveness of  the p-fGAs on real life 
problems, comparing them with other multi-population based schemes, extend- 
ing them for permutat ion problems and other evolution schemes such as real 
coded GAs. 
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