Moore-Penrose Inverse of the Incidence Matrix of a Tree

R. B. BAPAT

Indian Statistical Institute, New Delhi, 110016, India

Communicated by W. Watkins

(Received 22 May 1996; In final form 28 August 1996)

Let T be a tree with n vertices, where each edge is given an orientation, and let Q be its vertex-edge incidence matrix. It is shown that the Moore-Penrose inverse of Q is the $(n-1) \times n$ matrix M obtained as follows. The rows and the columns of M are indexed by the edges and the vertices of T respectively. If e,v are an edge and a vertex of T respectively, then the (e,v)-entry of M is, upto a sign, the number of vertices in the connected component of T/e which does not contain v. Furthermore, the sign of the entry is positive or negative, depending on whether e is oriented away from or towards v. This result is then used to obtain an expression for the Moore-Penrose inverse of the incidence matrix of an arbitrary directed graph. A recent result due to Moon is also derived as a consequence.

Keywords: Moore-Penrose inverse; incidence matrix; tree; distance matrix

AMS Subject Classification: Primary: 15A09; Secondary: 05C05

1. INTRODUCTION

We consider graphs which have no loops but which possibly have multiple edges. If G is a graph then V(G), E(G) will denote the vertex set and the edge set of G respectively. Let G be a graph with $V(G) = \{1, ..., n\}, \ E(G) = \{e_1, ..., e_m\}$ and suppose each edge of G is assigned an orientation. The vertex-edge incidence matrix of G, denoted by Q(G), (or simply by Q if there is no possibility of a confusion) is the $n \times m$ matrix defined as follows. The rows and the columns of Q are indexed by V(G), E(G) respectively. The (i, j) - entry

of Q is 0 if vertex i and edge e_i are not incident and otherwise it is 1 or -1 according as e_i originates or terminates at i respectively.

If A is an $n \times n$ matrix, then an $m \times n$ matrix G is called a generalized inverse of A if AGA = A. The Moore-Penrose inverse of A, denoted by A^+ , is an $m \times n$ matrix satisfying the equations AGA - A, GAG - G, $(AG)^T = AG$ and $(GA)^T = GA$. It is well-known that any complex matrix admits a unique Moore-Penrose inverse. We refer to [3, 6] for basic properties of the Moore-Penrose inverse.

The main purpose of this paper is to obtain a graph-theoretic description of the Moore-Penrose inverse of the incidence matrix of a tree. This is then used to describe the Moore-Penrose inverse of the incidence matrix of an arbitrary directed graph.

If G is a graph where each edge has an orientation, then $L(G) = Q(G)Q(G)^T$ is known as the Laplacian matrix of G and is important in many different areas (see [9] for a survey). The matrix $K(G) = Q(G)^TQ(G)$ has been called the edge-version of the Laplacian [7, 8]. Using our main result we also obtain expressions for the Moore-Peurose inverse of the Laplacian matrix of a tree. We also derive an expression for the inverse of K(G) when G is a tree, which has recently been obtained by Moon [11].

2. INCIDENCE MATRIX OF A TREE

Let T be a tree with vertex set $V(T) = \{1,...,n\}$ and edge set $\{e_1,...,e_{n-1}\}$. Suppose each edge of T is assigned an orientation and let Q be the corresponding vertex-edge incidence matrix.

We now introduce some notation. If $e \in E(T)$, then the graph $T \setminus e$, obtained by removing e from T, has two connected components. Denote by $G_k(e, T)$, the component which contains the head (the terminating vertex) of e and by $G_k(e, T)$, the component which contains the tail (the initial vertex) of e. Also, let

$$\alpha_h(e,T) = |V(G_h(e,T))|, \quad \alpha_t(e,T) = |V(G_t(e,T))|.$$

where |- | denotes cardinality. Then clearly,

$$\alpha_h(e,T) + \alpha_t(e,T) = |V(T)| = n.$$

Let $i \in \{1, ..., n-1\}$, $j \in \{1, ..., n\}$. We define $\phi_T(e_i, j)$ to be the number of vertices in the component of $T \setminus e_i$ which does not contain j. Thus

$$\phi_T(e_i, j) = \begin{cases} \alpha_k(e_i, T) & \text{if} \quad j \in V(G_t(e_i, T)) \\ \alpha_t(e_i, T) & \text{if} \quad j \in V(G_k(e_i, T)). \end{cases}$$

Further, we define $\psi_T(e_i, j)$ to be 1 or 0 according as $j \in V(G_b(e_i, T))$ or otherwise.

The following is the main result.

THEOREM 1 Let T be a tree with vertex set $V(T) = \{1,...,n\}$ and edge set $\{e_1,...,e_{n-1}\}$. Suppose each edge of T is assigned an orientation and let Q be the corresponding vertex-edge incidence matrix. Let M be the $(n-1) \times n$ matrix defined as

$$m_{ij} = \frac{1}{n} \{ \alpha_h(e_i, T) - n\psi_T(e_i, j) \}, \quad i = 1, \dots, n-1; \ j = 1, \dots, n$$

Then $M = Q^{+}$.

Proof We remark that $nm_{ij} = \pm \phi_T(e_i, j)$. Furthermore, the sign is negative if e_i is oriented towards $f(i.e., j \in V(G_k(e_i, T)))$ and positive otherwise.

We first claim that $MQ = I_{n-1}$, the identity matrix of order n-1. Let $MQ = W = [w_{ij}]$. Let $i, j \in \{1, ..., n-1\}$ and suppose e_j is oriented from vertex u to vertex v.

Then

$$w_{ij} = \sum_{k=1}^{n} m_{ik} q_{kj} = m_{iu} - m_{iv}.$$
 (1)

Consider the case $i \neq j$ and first assume that $u \in V(G_k(e_i, T))$. Then clearly, $v \in V(G_k(e_i, T))$. Thus

$$m_{iu}=m_{iv}=-rac{1}{n}lpha_i(e_i,T)$$

and hence $w_{ij} = 0$.

Similarly, if $u \in V(G_i(e_i, T))$ then $v \in V(G_i(e_i, T))$ and

$$m_{ia}=m_{iv}=\frac{1}{n}\alpha_h(e_i,T)$$

and again $w_{ii} = 0$.

Finally, if i=j, then

$$m_{iu} = \frac{1}{n}\phi_T(e_i, u), m_{iv} = -\frac{1}{n}\phi_T(e_i, v).$$

Thus

$$w_{ij} = m_{iv} - m_{iv} - \frac{1}{n}(\phi_T(e_i, u) + \phi_T(e_i, v)) = \frac{1}{n} \cdot n = 1.$$

This shows that $W = MQ = I_{n-1}$ and the claim is proved. It also follows that QMQ = Q, MQM = M and it remains to show that QM is symmetric.

We claim that $QM = I_n + \frac{1}{n}J_n$, where J_n is the $n \times n$ matrix of all ones.

Let $QM = Z = [z_{ij}]$ and let $i, j \in \{1, ..., n\}$. Let E_1, E_2 be the set of edges emanating from and terminating at i respectively. Then

$$z_{ij} - \sum_{k=1}^{n-1} q_{ik} m_{kj} = \sum_{k: e_k \in E_1} m_{kj} - \sum_{k: e_k \in E_2} m_{kj}$$
 (?)

First let $i \neq j$ and suppose the (i, j)-path in T uses the edge $e_{\ell} \in E_1$. Then

$$nm_{kj} = \begin{cases} -\alpha_t(e_k, T) & \text{if} \quad k = \ell \\ \alpha_k(e_k, T) & \text{if} \quad e_k \in E_1, k \neq \ell \\ -\alpha_t(e_k, T) & \text{if} \quad e_k \in F_2 \end{cases}$$

Substituting in (2) we see that

$$nz_{ij} = -\alpha_i(e_\ell,T) + \sum_{e_k \in E_l, k \neq \ell} \alpha_k(e_k,T) + \sum_{e_k \in E_2} \alpha_i(e_k,T) = -1.$$

Now suppose the (i,j)-path in T uses the edge $e_r \in E_2$.

Then

$$nm_{kj} = \begin{cases} -\alpha_k(e_t, T) & \text{if } k = r \\ \alpha_t(e_k, T) & \text{if } e_k \in E_2, k \neq r \\ -\alpha_k(e_k, T) & \text{if } e_k \in E_1 \end{cases}$$

Again, substituting in (2) we see that

$$nz_{ij} = -\alpha_k(e_k, T) + \sum_{e_k \in E_i, k \neq r} \alpha_l(e_k, T) + \sum_{e_k \in E_l} \alpha_k(e_k, T) = -1$$

Finally, if i=j, then

$$nz_{ii} = n \sum_{k=1}^{n-1} q_{ik} m_{ki}$$

$$= n \sum_{e_k \in E_1} m_{ki} - n \sum_{e_k \in E_2} m_{ki}$$

$$= \sum_{e_k \in E_1} \alpha_k(e_k, T) + \sum_{e_k \in E_2} \alpha_i(e_k, T)$$

$$= n - 1$$

Therefore $z_{ii} = 1 - \frac{1}{n}$, i = 1, ..., n, and the proof is complete.

COROLLARY 2 Let T be a tree with vertex set $V(T) = \{1, ..., n\}$ and edge set $\{e_1, ..., e_{n-1}\}$. Suppose each edge of T is assigned an orientation and let Q be the corresponding vertex-edge incidence matrix. Then the class of generalized inverses of Q is given by

$$\{O^+ - w1^T\}$$

where w is an arbitrary vector of order $(n-1) \times 1$ and 1 is a column vector of all ones.

Proof The class of all generalized inverses of Q is given by (see [12], p.25) matrices of the form

$$Q^{+} + X - Q^{+}QXQQ^{+}, \tag{3}$$

where X is arbitrary. As seen in the proof of Theorem 1, $Q^+Q = I_{n-1}$ and $QQ^+ = I_n - \frac{1}{n}J_n$, where J_n is the $n \times n$ matrix of all ones.

Substituting in (3) we see that the class of generalized inverses of Q is given by matrices of the form.

$$Q^{+} - \frac{1}{n} X J_{\varepsilon}.$$

Setting $w = \frac{1}{n}X!$ in the above expression, we get the result.

As a consequence of Theorem 1 and Corollary 2 we see that the matrix $[\psi(e_i, j)]$, which is a 0-1 matrix, is a generalized inverse of Q.

We now derive an expression for the Moore-Penrosc inverse of the incidence matrix of an arbitrary directed graph, using Theorem 1.

First we introduce more notation. For an $m \times n$ matrix B of rank r, the volume of B, denoted by vol(B), is defined to be the positive square root of the sum of squares of all $r \times r$ minors of B. This definition is due to Ben-Israel [2, 10].

Let B be an $n \times m$ matrix. For $1 \le i_1 \le i_2 \le \dots \le i_r \le m$, let $B(i_1, \dots, i_r)$ denote the matrix obtained from B by retaining columns i_1, \dots, i_r and replacing all other columns by zero vectors. Then it can be seen using the determinantal formula for the Moore-Penrose inverse (see [1, 4, 10] that

$$B^{+} = \sum_{(i_{1},\dots,i_{r}) \in M} \frac{\operatorname{vol}^{2} B(i_{1},\dots,i_{r})}{\operatorname{vol}^{2}(B)} B(i_{1},\dots,i_{r})^{-}, \tag{4}$$

where \mathcal{M} is the set of all r-tuples (i_1, \ldots, i_r) such that $1 \leq i_1 < i_2 < \ldots < i_r \leq m$, and the corresponding columns of B are linearly independent.

Let G be a connected, directed graph (possibly with parallel edges but with no loops) with $V(G) = \{1, \ldots, n\}, E(G) = \{e_1, \ldots, e_m\}$ and let Q be the corresponding incidence matrix. It is well-known, (see, for example, Bondy and Murty [5]), that columns i_1, \ldots, i_{n-1} of Q are linearly independent if and only if the corresponding edges form a spanning tree of G, and in that case any submatrix of order $(n-1) \times (n-1)$ formed using these columns has determinant ± 1 . Thus $\operatorname{vol}^2 Q(i_1, \ldots, i_r)$ equals n if the edges e_i, \ldots, e_i , form a spanning tree and equals zero otherwise. It follows that $\operatorname{vol}^2(Q) = n\chi(G)$, where $\chi(G)$ is the number of spanning trees in G. Substituting in (4) we

have the following expression for the Moore-Penrose inverse of Q. If $M=Q^{-}$, then

$$m_{ij} = \frac{1}{n_Y(G)} \sum \{\alpha_h(e_i, T) - m\psi_T(e_i, j)\},\,$$

where the summation is over all spanning trees T containing e.

3. THE LAPLACIAN AND ITS EDGE VERSION

Let T be a tree with vertex set $V(T) = \{1, \dots, n\}$ and edge set $\{e_1, \dots, e_{n-1}\}$. Suppose each edge of T is assigned an orientation. Let Q be the corresponding vertex-edge incidence matrix. Let $L = QQ^T$ be the Laplacian matrix, and let $K = Q^TQ$ be the edge-version of the Laplacian. Since Q has rank n-1, K must be nonsingular. In this section we obtain expressions for the Moore-Penrose inverse of L and for K^{-1} . The expression for K^{-1} has been recently given by Moon [11].

By Campbell and Meyer [6, p.25], $L^4 = (Q^+)^T Q^+$. The following result now follows immediately from Theorem 1.

THEOREM 3 Let T be a tree with vertex set $V(T) = \{1, ..., n\}$ and edge set $\{e_1, ..., e_{n-1}\}$. Suppose each edge of T is assigned an orientation. Let Q be the corresponding vertex-edge incidence matrix and let $L = QQ^T$ be the Laplacian. Then the (i,j)-entry of L^+ is given by

$$\frac{1}{n^2} \sum_{k=1}^{n-1} \delta_T(i,j,e_k) \phi_T(e_k,i) \phi_T(e_k,j), \quad i=1,\ldots,n-1, \ j=1,\ldots,n;$$

where $\delta_T(i,j,e_k)$ is -1 or 1 according as e_k is on the (i,j)-path or otherwise.

We remark that using Theorem 3 and some simple manipulation we get the following interesting formula,

$$\ell_d^+ + \ell_b^+ - 2\ell_b^+ = d(i, j),$$
 (5)

where d(i, j) is the distance (i.e. the number of edges in the (i, j)-path) between vertices i, j.

We now obtain an expression for K^{-1} . As before, we may write $K^{-1} = K^{1} = Q^{1}(Q^{+})^{T} = MM^{T}$.

Suppose edges e_i and e_j of T join vertices r and s and vertices u and v respectively. We suppose that r = u and s = v if i = j. We also assume that vertices s and u are on the (r, v)-path in T.

Consider the case where e_i and e_j are similarly oriented with respect to the (r, v)-path. The graph $T \setminus \{e_i, e_j\}$ has three connected components. Let a and b denote the number of vertices in the components containing r and v respectively. Let c = n - (a + b). We assume, without loss of generality, that e_i is oriented towards e_i .

We have the partition

$$\{1,\ldots,n\} = V(G_t(e_i,T)) \cup V(G_h(e_i,T)) \cup \{V(G_h(e_i,T)) \cap V(G_t(e_i,T))\}.$$

By Theorem 1,

$$n^2 m_{\ell l} m_{j \ell} = \begin{cases} b(b+c) & \text{if} \quad \ell \in V(G_t(e_i,T)) \\ a(a+c) & \text{if} \quad \ell \in V(G_t(e_j,T)) \\ -ab & \text{if} \quad \ell \in V(G_t(e_i,T)) \cap V(G_t(e_j,T)). \end{cases}$$

Thus the (i,j) – entry of $K^{-1} = MM^T$ is,

$$\begin{split} \sum_{\ell=1}^{n} m_{i\ell} \, m_{j\ell} &= \frac{1}{n^2} (ab(b+c) + ab(a+c) - abc) \\ &= \frac{1}{n^2} ab(a+b+c) = \frac{1}{n} ab. \end{split}$$

The case when e_i and e_j are oriented oppositely with respect to the (r, v)-path can be handled similarly; the (i, j)-entry of K^{-1} turns out to be $-\frac{1}{n}ab$ in that case.

Let $\chi(i,j)$ be equal to 1 or -1 according as e_i and e_j are oriented similarly or oppositely with respect to the (r,v)-path respectively. We have thus proved the following result, which appears in a slightly different form and with different notation, in Moon [11].

THEOREM 4 Using the notation introduced above, the (i,j)-entry of K^{-1} equals $\frac{1}{2}\chi(i,j)ab$.

Acknowledgment

Several helpful comments by the referee are gratefully acknowledged.

References

- Bapat, R.B., Bhaskara Rao, K.P.5, and Manjanatha Prasad, K. (1990). Generalized inverses over integral domains, *Linear Algebra Appl.*, 146, 181-196.
- [2] Ben-Israel, A. (1992). A volume associated with m x n matrices, Linear Algebra Appl., 167, 87-111.
- [3] Ben-Israel, A. and Greville, T. N. E. (1974). Generalized inverses: Theory and Applications, Wiley-Interscience.
- [4] Berg, L. (1986). Three results in connection with inverse matrices, Linear Algebra Appl., 84, 63-77.
- [5] Bondy, J. A. and Murry, U. S. R. (1976). Graph Theory with Applications. Macmillan.
- [6] Campbell, S. L. and Meyer Jr, C. D. (1979). Generalized Inverses of Linear Transformation, Pitman.
- [7] Merris, R. (1989). An edge version of the matrix-tree theorem and the Wiener index, Linear and Multilinear Algebra, 25, 291-296.
- [8] Merris, R. (1990). The distance spectrum of a tree, Linear and Multilinear Algebra, 14, 365–369.
- [9] Merris, R. (1994). Laplacian matrices of graphs; a survey, Linear Algebra Appl., 197, 198, 143-176.
- [10] Jianming, Miao and Ben-Israel, A. (1993). Minors of the Moore-Penrose inverse, Linear Algebra Appl., 195, 191-207.
- [11] Moon, J. W. (1995). On the adjoint of a matrix associated with trees. Linear and Multilinear Algebra, 39, 191–194.
- [12] Rao, C. R. (1973). Linear Statistical Inference and Its Applications. Wiley, New York.