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A Bootstrap Test Using Maximum Likelihood Ratio
Statistics to Check the Similarity of Two
3-Dimensionally Oriented Data Samples'

Sojen Joy” and Snigdhansu Chatterjee’

Comparing three-dimensionally oriented datasets is a problem encountered in various branches of
earth science. A simple statistical tool for the comparison of two 3-dimensionally oriented datasets
using the bootstrap method in line with the usual nonparametric permutation test is described here.
This bootstrap test involves the estimation of maximum likelihood ratio statistic for properly con-
structed joint frequency tables of the datasets 10 be compared. This test does not use asymptotic
result and will work well even for small sample sizes. Also this test does not make any specific
distributional assumptions.

KEY WORDS: polar coordinates, joint frequency table, nonparametric permutation test, contin-
gency table.

INTRODUCTION

Comparison of oriented data, be it planar or linear, is a common problem
encountered in the earth science. A structural geologist might be interested in
comparing the orientation of fold axes (or some other structural element) mea-
sured from two separate locations. Someone else might be interested in com-
paring the quartz C-axis fabric diagram prepared for two thin sections of the
same specimen. A sedimentologist might want to compare bedding orientations
from two locations. More examples of 3-dimensional data are given in Watson
(1983). Visual inspection of the contoured equal area lower (or upper) hemi-
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sphere projection (Ghosh, 1993; Ramsay, 1967; Turner and Weiss, 1963) is a
qualitative approach to the comparison problem. But as with any other quali-
tative method, interpretation can be never unique and will vary from person to
person.

Available two-dimensional tests (Mardia, 1972) such as Kuiper’s Kolmo-
grov type V, ,» test (Kuiper, 1960), or Watson’s two sample U 2 test (Watson,
1962), are not suitable for 3-dimensional data. Available two-sample test of
concentration parameters and mean directions of 3-dimensional data assumes a
Fisher distribution (point concentration) or a Bingham distribution (orthorhombic
symmetry) (Mardia, 1972; Cheeney, 1983), to check whether the two samples
are taken from the same population. This assumption is not always satisfied in
many of the natural situations encountered. Two sample nonparametric tests
proposed by Wellner (1979) and Jupp (1987) are rotationaily invariant tests but
are too difficult, if not impossible, to apply in practical situations.

Here we present a simple statistical tool for testing the similarity of two
3-dimensional datasets, following a similar approach to the test proposed by
Dudley, Perkins, and Gine (1975). However, our methodology is very general,
and can be applied to a wide range of test statistics. Only linear data is consid-
ered; planar data can be uniquely defined by its pole, which is linear.

THE DATA

Each piece of data, being a vector, has three parameters when represented
as a spherical polar coordinate (r, 0, ¢). But the radius parameter ‘‘r’’ is taken
as unity (data points plotted on a unit sphere). 8 in the geological case is the
plunge direction, with a range from 0 to 27, and ¢ is the plunge amount of any
linear element, which will vary from O to #/2. The value of ¢ can vary from
—m/2 to /2 in some cases (e.g., in crystallography).

THE METHOD

Consider a joint frequency distribution table with a properly constructed 6
and ¢ classes 6;s and ¢;s. Any data point with a § value falling in a particular
0 class, say 6;, and a ¢ class, say ¢;, will have a unique position within the
two-way joint frequency distribution table. After considering all data points and
completing the frequency distribution, each grid in the table, say v, will rep-
resent the number of data points with a  value in the 8, class and ¢ value in
the ¢; class (Fig. 1). For axial data, points with a ¢ value of ‘‘zero’’ have to
be entered in two cells corresponding to the two end points of the horizontal
axis, and therefore the total number of data considered in the table might not
be the original total.
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Figure 1. Frequency distribution table for 3-dimensional data. Each of the 6;s
and ¢;s represents a range of # and ¢ values. v; represents the total number of
data points with 6 values in the §; class and ¢ values in the ¢; class.

THE TEST

Consider the joint frequency distribution for two datasets X and Y (say x;s
and y;s) over an m by n contingency tables A and B with n| and n, being the
total number of observations for the samples X and Y, respectively. Add tables
A and B to get another contingency table Z, where each of its elements (z;;) are
obtained as z; = x; + y; with total number of observations being n, + n,.

The sample probability of the ijth cell in the merged table is

Py = (xij + yij)/(nl + ny)
= (zp)/(m + ny) 1)
Similarly sample probability of the ijth cell in table 4 is
gy = Xxilm @
and sample probability of the ijth cell in table B is
ry = Yyh 3
Now let x be a random variable for table A. Therefore,
X ~ M(S;;, S35 - - S

where S;s are the probability that X is in the ijth cell of table 4. Let y be another
random variable for the second table, so

y~M(T,y, Ty, ... T,)
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where Tj;s are the probability that y is in the ijth cell of table B. Here M (. . .)
denotes the multinomial distribution. Then our null hypothesis is

Hy: S; = T for all i and j
and the alternative hypothesis is
H;: not H,
Assuming H,, the likelihood function L1 of the data is
(DS TIYSTE MY L, (St vy
B Cenlx! X DOy - Ymal)

Maximizing Equation (4) will give S’,«j = p;; with (mn — 1) parameters estimated.
Not assuming H,, the likelihood function L2 of the data is

_m!SiSIE L S « ! TNy ... T
Xulxp! oo X! yulyi! o You!

Maximum likelihood solutions of Equation 5 are SU = ¢q; and f‘ij = r;
Here we have (mn — 1) + (mn — 1) = 2(mn — 1) parameters estimated. Now
A, the likelihood ratio is given as

L1 4)

L2

®

X1+ Y X122+ yi2 Xmn + Y
_ Pt TP <o Pon "
X1l X12 X, Yt LWYy12 Y
CATNE AT A i TCR S S 1 TN g4

and the log likelihood ratio is

log A igl j§| {(xij + ) log p; — X log g; — ¥, log rij}

I
M=

2 {xyllog py — log ;) + yyllog py — log 7} (6)

i=1

THE LIKELTHOOD RATIO STATISTICS FOR TESTING
H, VERSES H,

One of the most frequently used tools for quantitatively testing hypotheses
is the (maximum) likelihood ratio statistic; A = L1/L2. The null hypothesis H,
is rejected if A is not large enough (alternatively, if log A is not large enough,
since the natural logarithm is a monotonic function). However this comparison
involves use of the distribution of the A or log A. The exact distribution is often
intractable, as in the case of Equation 6 above. Usually a large sample approx-
imation to the distribution of A or log A is used. It has been shown that —2 log
A, for large sample size, has approximately a x? distribution, under H,, with



Similarity of 3-Dimensional Data Samples 279

2(mn — 1) — (mn — 1) degrees of freedom (the number of parameters estimated
not assuming H, — number of parameters estimated assuming H,) (Bickel and
Doksum, 1977).

Therefore, the size « likelihood ratio test rejects H,, if

—2logA >x*mn—-1,1 -«

This test is too stringent as it expects nearly equal cell frequencies for each
cell of the grid to accept the null hypothesis, even if Hy is true. This is difficult
to ensure unless there is a large number of observations for each single cell of
the grid for both samples. A relaxed test can be constructed by considering only
those cells with probability in the combined table greater than a limit value (say
by considering cells with the largest 10 probability values). Another relaxation
can be made by constructing the grid in such a way to consider the points very
near to the periphery of the net in two antipodal cells. The degrees of freedom
will also be changed in proportion to the number of cells considered.

THE BOOTSTRAP TEST

The asymptotic test based on x >-distribution, although comparatively easy
to use, is often very approximate, especially when sample size (n, or n,) is not
large enough compared with mn. As an alternative, a bootstrap test (Efron and
Tibshirani, 1993) is easy to handle with the help of a computer. The bootstrap
method has the following advantages over the test described earlier: (1) It does
not use an asymptotic result and will work well even when the sample size is
not very large. (2) It does not make specific distributional assumptions, whereas
the earlier test assumes a multinomial distribution of the variables with unknown
parameters. (3) Bootstrap results are almost always more accurate compared to
asymptotic results (Efron and Tibshirani, 1993). The test developed here is
similar to the usual nonparametric permutation test (Efron and Tibshirani, 1993).

The joint frequency distribution table constructed in the previous test is
used here also. Let @ = {¢;, i = 1,2, 3, ..., mn} be the sample space where
e; is the vector of length mn (mn-tuple) with 1 at the ith place and zero elsewhere.
Let W and U be two random vectors taking values in Q. Assume W ~ F and
U ~ G. Then n, samples of W are taken, namely, W,, W,, W,, ..., W, and
n, samples of U, namely, U,, U,, ..., U,. Each of W, or U, is an mn-tuple
vector in the sample space .

W, and U, can be written as

PVi=(vVi1’u/i29""Wmn) i=1’2""’nl
Ui=(Uil’ Ui2!"' ’Umn) i

i
—
N
S
)
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Order the entries of table A and table B in a linear manner to present the data
in the tables as vectors of length mn. Thus, elements vag, of vector (4) and
vby, of vector (B) are obtained by transforming ijth entries of table A and table
B as

aij = va,,(,-_l)+j and b’.l = Vb"(i_1)+j

For notational convenience, we write vector (4) as a = (a;, a,, . .. , 4, and
vector (B) as b = (b,, b,, ... b,,,) Where

aq = '21 Wi
and
nz
bk = Z Uik

i=1

Our hypothesis of interest is Hy: F = G.

We have presented this scheme for A and B being two-way tables. How-
ever, this result could easily be extended to k-way tables of dimensions (m,,
my, . .., my) with any consistent transformation of the table entries into vectors
of length mym, . .. my.

THE TEST

The general algorithm of the test is described here step by step. It should
be noted that a small computer program will help to perform the test faster and
with ease.

Step 1: Calculate the x? statistic [—2 log A described in the first test (Eq.
6)] of the datasets and call it T,

Step 2: Let a* and b* be null vectors of length mn.

Step 3: Fix

L2 W
p= n + n

This is the probability of selection from the vector (A).

Step 4: let
a a, + a a +a + a
Cl _'_19 C2 = - 25 C3 = 2 3, and
n n ny
a +a + - + a
Cmn_ . 2 e 1
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such that

G -G = 2
ny

similarly construct D, s such that D, — D,_, = b,/n, for table B.

Step 5: Draw a random sample from Bernoulli(p) and call it X. Hint: select
a random number (r) between zero and one, and if (7) is less than p then set X
as zero, else assign one to X,

Step 6: Draw a random sample from U(0, 1) and call it Y.

Step 7:

ifX=0and Ye [C,_,, C) then af = af + 1, otherwise

if X=1and Ye [Dy_;, D) then af =af + 1

Note that a* is a mixed type random variable generated by the stochastic law
from which the matrix A is drawn with probability p = n,/(n, + n,) and by the
stochastic law from which matrix B is drawn with probability p = n,/(n, + n,).
Under H,, these two stochastic laws will be the same.

Repeat steps 5, 6, and 7 n, times to get the a* vector and similarly repeat
the steps 5, 6, and 7 n, times to get the b* vector.

Step 8: Transform a* back to matrix form (m X n) to get the pseudo matrix
A* = ((a})) and similarly transform b* to get B* = ((b})), where i = i*/n; j
= pifi*mod n = 0, else { = [i*/n] + 1;j = i* mod n. Here [x] denotes the
largest integer < x.

Step 9: Calculate the x? statistic T* [—2 log A described for the first test
(Eq. 6)] based on tables A* and B*

Step 10: Let I = KT, > T*) where [ is an indicator function, i.e., / has
a value of 1 if Tj is greater than T* and zero if T* is greater than or equal to
To.

Step 11: Repeat the above scheme for some larger number (B) of times.
Let I, be the 7 at the bth iteration (b = 1,2, 3, ..., B), If

B
bEl I,
by = B >1-a« @)

then the hypothesis Hj is rejected at level o.
It should be noted here that b, has no probabilistic interpretations (Efron
and Tibshirani, 1993),

EXAMPLE

We have taken quartz C-axis measurements for two sections of the same
specimen of quartz L-S tectonite from the Singhbhum Shear Zone (Sarkar and
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Figure 2. Quartz c-axis fabric diagram from mutually perpendicular sections of the same specimen.
Fabric from perpendicular to lineation section (21093B) has been rotated for the comparison of the
diagrams. L is plunge direction of lineation, 7 is top of foliation, Vertical line is the trace of
foliation. Contour levels are 0.5, 1.5, 3.0, 4.5, 6.0, 7.5% per 1% area of the hemisphere.

Figure 3. The grid preparation method adopted. Each
element of the grid is named as members of a 4 X 4
matrix T (see the joint frequency distribution tables
in Fig. 4). The first inner circle is kept at a ¢ value
of 20 degrees and the innermost circle is placed at a
¢ value of 60 degrees.
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a) Joint frequency table for |b) Joint frequency table for
21093A 21093B

6 26 10 0 6 23 |0 0
19 (30 {0 0 18 [33 |0 0

7 18 |0 0 6 15 10 0
22 33 [53 |0 18 |22 |70 |O
Total data =214 Total data =211

Figure 4. Frequency distribution tables for specimens 21093A and 21093B
constructed using the grid preparation method shown in Figure 3.

Saha, 1962; Joy and Saha, personal communication), Eastern India. One section
is prepared perpendicular to the foliation and parallel to the lineation (21093A)
and the other section (21093B) is prepared perpendicular to both lineation and
foliation. The contoured equal area lower hemisphere projections of the two
sections are shown in Figure 2. The contoured diagram of 21093B has been
rotated to parallel orientation with 21093A.

For grid preparation, the method adopted was as follows. The total data
were split into nine grid cells as shown in Figure 3. Data with (dip) values less
than 5 degrees were added to antipodal cells also. To keep a 4 X 4 matrix form,
other elements were set as zeroes (Fig. 4). The estimated 7, (Eq. 6) is 5.65537.
The bootstrap statistic estimated (Eq. 7) is 0.29380 (B was taken as 5000). A
bootstrap statistic value of less than 0.95 can be taken as an acceptable limit
for not rejecting the null hypothesis (i.e., a test of 5% level). Therefore the
estimated bootstrap statistic of 0.29380 is not significant at this bootstrap test
level and the null hypothesis (the two sections are similar) cannot be rejected.
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