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Abstract. Let A, I be positive operators on a Hilbert space,  any complex number, i any positive
integer, and | | - ||| any unitarily invariant norm. We show that | 4 + 28| £ ||[4d + 2|5 || and
A E™ ] = [ 15 1 H1P|]. Some related inequalities are also obtained.
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1. Introduction

Inequalities for sums and products of positive operators and for their norms, traces,
determinants and eigenvalues are of wide interest in analysis and physics. Several
such inequalities may be found in [ 1, 3,4, 6] and in the many papers cited therein.

The aim of this Letter is to prove some basic inequalities that augment these
results.

Let B('H) be the space of all bounded linear operators on a complex separable
Hilbert space ‘H. Apart from the usual operator norm |7|| on this space, we consider
the unitarily invariant or symmetric norms |7T'|||. Each of these is defined on an
ideal in 8% ), and it will be implicitly understood that when we talk of |1'|||, then
the operator ' is in this ideal.

Ouwr first theorem is:

THEQOREM 1. Let A, B be positive operators and let z be any complex number:
Then

A = [=1Bl =

A—zB | <[4+ =B ()

Jor every unitarily inmvariant norm.

We will use this theorem to prove the following:

THEOREM 2. Ler A, B2 be positive operators and let v be any positive integer:
Then

[ A7+ 87| & [|(A =+ 2™ | (2)
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Sfor every unitarily invariant norm.

Theorem 2 suggests an obvious question: what happens to inequality (2) when
it 15 replaced by a positive real number? We will answer this for some special
Cases.

2. Proofs of the Main Results

Letus recall some basic tacts that we will use. These may be found in the references
cited above.

If T is a compact operator, we denote by = {T") z #2{7) z --- the eigenvalues
of (™1 12 These are called the singular values of T'. A maximum principle due

to Ky Fan says that, for # = 1,2,..., we have
A k
Z 5,{T) max Z Gei Ty, (3)
F—1 d1
where the maximum is taken over all choices of orthonormal vectors {;:.rl,_ s ,;n,;r_}
and {1, ...y }. f T'is Hermitian, we can choose «; = y,. This is a generalisation

of the statement that for any operator T, we have ||T||  sup |, 1, -1 [ Tyl
and it T is Hermitian, we can choose :» — j in this supremum. '

Another theorem, also due to Ky Fan, and called the Dominance Principle, says
that if % and T are any two operators, then the inequality | 5| < |||7|| is valid
tor all unitarily invariant norms if and only if

[ k

YN 59y u{D (4)
il il
forall £ — 1.2, _._. In the standard notation for majorisation [1, 4], the family of

inequalities (4) .is written as
{3381} < {571} (5)
The symbol =, stands for weak majorisation.

Proof of Theorem 1. Let /1, I# be compact positive operators. By Fan's Maximum

Principle, there exist orthonormal vectors =y, es. .. .. and [y, [5, ... . such that for
£ — 1.2, ... wehave
3 f
S sl — 23 = 3 ey (A4 285
a=l g—1

]
h

<Y {len A = |z e By
J—1

N
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Using the Cauchy—Schwarz inequality, we get

Y wi(A — 28]

a—=l1
.|l|'
L 12 : - 172
% Z':._':f.?rflﬁ.ﬁ Ui AL U |2 ey Begiif BRI
=1
MNow using the arithmetic-geometric mean inequality, we get

E .'sj{ﬂ — z.f?:l

i=1

s
B | —

z {(‘.J;._B(‘.Ji} + Zl{f‘}BhH

L
Z{’s"ﬁ’mfl"-'.ﬂ} + {fi Af) —
G=1

h:
1 : s -
= E e (A4 |=|Beyy + 0f5. 04 + 2|8 f50)

=il

Another application of Fan's Maximum Principle leads to the inequality

& it
dlald 2B g ) sild 1 |8
i=l 3=l
This is true for all & = 1.2..... Hence, by the Fan Dominance Principle,

[l 1 zB] % | 4 |z B||| for all unitarily invariant norms. This proves
the second inequality in {1).
The proof of the first inequality is simpler. Since A4 |2/ 5 is Hermitian, we can

find orthonormal vectors ¢y, ¢2, ... . such that for &k = 1.2,. .., we have
I3 L
S owld = |z B =3 Hes (A — 2| Bleg)
a—1 i—=1

.l.l L ) )
ey Beyl]

Il
.M”

feri Aph — =
i(-_.;_-_.-'i(-_.;:' P

i

{f-!j;._ I:_*-l + ".H:IE‘JH

[
|

The last inequality above is a consequence of the statement [r z|y| < |© | 2y
for all positive numbers &, y and complex numbers z. Now using the two Fan
principles again, we obtain the first inequality in (1) from this.
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For noncompact operators, only the operator norm needs to be considered. The
same proof works, except that instead of a maximum we have a supremum. =

In the proot of Theorem 2 we will need the following result.

PROPOSITION 1. Let X be any operator and let ¥ be a positive operator. If
A = [[¥||| for all unitarily invariant norms, then for all positive integers .,
we have ||| X™||| < | [¥Y"™|||

Proof. The inequality |||X||| £ |Y||| is equivalent to the weak majorisa-
tion {&,{X1} <, {&{¥Y)}. The function f(¢} = t™, m = |, is convex and
monotonically increasing on 0, oc ). Hence, it preserves weak majorisation [1,
p. 42]. [4, p. 116]. In other words, -[s}“(_};"] [ {.-;I*,I,-”I:V] }. Since Y is positive,
A Y )= #;(Y™]. So, to prove the proposition we need to prove that
feime {e.-v?if_.‘fj'}. (6)
This can be proved by a well-known argument that we indicate briefly for the
reader’s convenience.

Write the inequality || X (| « || X||™ as &1 (X™} £ s7"(X). Replace X by its
J:th antisymmetric tensor product A* X . This gives

N K
TT #¢x™ = ] <Fix). (7)
a1 Futs
tor all & = 1,2, .. .. Taking loganthms converts the products in (7) to sums and

then, using the fact that fit) = ' is convex and monotonically increasing, one
oets (6). See [1, pp. 42, 72] for details. |

Proof of Theorem 2. Let w be a primitive reth oot of unity. Then we have the
identity
'41i’r + H.’Jl
. s
_{{Iq L n}m LT +W”]ﬂ" 4 [_4 + Mm—l}?]m}: (%)
m

for any two operators 4, fi. Hence,

| | |‘_.-1I'-'-!- | BTH | |
sz ; : i e
% ?—{ A+ m" + [ {A+ ™| -+ [[4+w™ l1"?;'”|||]-.
Now, suppose 4 and [/} are positive. Then foreach y 0. 1. ... v — I, we have,
by Theorem 1,

14+« 0 < (14 = BIll,
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and, hence, by Proposition |

A wt sy ™ < ) A Byl
Combining the last three inequalities, we obtain the inequality (2). C

3. Further Results and Remarks

In this section, we will prove analogues of the inequality (2) when v is replaced
by a positive real number +, but the norm is the operator norm or the trace norm.

THEOREM 3. Ler A, 11 be positive operators, then

|A" + 137 < |[(A = B for 1 v <o, (9)
|A" | BT 2 ||id | BY|| for 05y < L. (10)
Proof. Notethat | (A | B)" | = A | E||". Let m be any positive integer and

let 12, be the set of all real numbers v, | < v = e, for which the inequality (%)
is true. We will show that £2,, is a convex set. Since i}, contains the points |
and 1, this will prove the inequality (9). In our proot, we will use the fact that
2] = [g=2||"* = ||22™ ' for all operators 1.

Suppose ¥, & € {1,,. Lett = {f + 5)/2. Note that

AR ] T gl LAk o
0 0 B# 0| 0 0l

Hence
A2 BN £ A% 0
A BY| = y . )
s < (5 )| (G 6
A =0 l-"'3||_.«']ﬁ‘ — 25| %
£ A+ B A+n Y
A+ B3|

(A4 BiY.

[

I

[

This shows that ¢ £ £L,,,. Hence, the inequality (9) is established. :
Let0 <. r & 1. Then from (9) we have |4V —517| 2 | 4—#||"". Replacing
Aand B by A" and E7, we obtain the inequality (10). I
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For the trace norm, the analogue of Theorem 3 1s known to be true. Lemma 2.6
of McCarthy [5], for example, can be translated to say that for positive operators
A B

A"+ 73 5 |[(4=BY|l. for 15r <o (11)

IA"+ 37 2 (A= BYIL, for 0grsl. (12)

A simple proot of these inequalities was given in [2]. From this, we can conclude
a little more. For simplicity write /1 3 B for the 2 » 2 operator matrix (:} E,} It
A and E are positive, then Theorem | in [2] says that '

Ll A B - {a (A — 131 &0,

where the symbol - stands for majorisation [1.4]. So, it [ is any convex function
on [0, :x2), using Corollary I1.3.4 in [1], we get

{Fle,fA N} <y {fls({A+ B 0]) 1
If, further, f(0) = 0, this gives
135 004) & FUBI} = {85174 — B) S0V},

In other words, we have

fral 0
0 F(B
for any convex function on [0. 2¢) with f(0) = 0. If f is a concave function on
[0.2¢) with f{0] — 0, the inequality (13) is reversed. The inequalities (11) and
(12) are obtained from this by choosing j{{) (".
It is natural to conjecture that the result of Theorem 3 is valid for all unitarily
invariant norms. More generally, we conjecture that it f is any operator monotone

function on [0, >z] with f{0} = 0, then for all positive operators -1, B, and for all
unitarily invariant norms, we have

£ - Balll = |1 FLa) 1 FOBI.

=

fid B 0
0 0

‘, (13)

There are several inequalities in the literature that are akin to this. Some of them
can be found in [ 1] where the reader can also find references to the original papers.
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