Connections among various variability orderings
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Abstroct

Recently, a new varability ordening, called right spreed ordering or excess wealth ordering has been introduced. This
new ordering is weoaker than dizpersive ordering. We shaw in this note that it X is less variable than ¥ in the scnse
of right spread ordering or convex ordering, then it implies that |[X) — X3 is less varable than |¥ = ¥3] according to
increasing convex ovdering. Here X7 and X% (¥ and ¥2) sre two indepondent copies of X (F). An application of the righl
spread ordering in (he study of spacings from an increasing mean residual life distribution is giver
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1. Introduction

Recently, Femandez-Ponce ot al, {(1993) and independently, Shaked and Shanthikumar {1996) have intro-
duced a new partial ordering called right spread ordering to compare two probability distributions in terms
of their variability, In this note we further study the properties of this new ordering and develop some new
connections among several variabilicy orderings. First, we review some of the definitions.

Let ¥ and ¥ be two random varahles with distribution functions £ and ¢ apd survival functions F and @,
respectively. The random variables are not necessarily restricted to be pesitive valued. Let F ' and ! be the
right continugus inverses of £ and G, defined by F~'(w) =sup{x: Flx)<e} and G '{u) = sup{x: Glx)<ul.
wc [0,1]. Thronghowt this paper the term increasing is used for monotone nondecreasing and decreasing for
FORGIONE MONTRCTEASTRG.
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Definition 1.1. X is said to be stochastically smaller than ¥ {denoted by X =, 7)) il
E[MX<E[d(¥Y  for all increasing functioms ;3% — 5, (1.1}
for which the expectations exist.
Definition 1.2, X is said e be smaller than ¥ in the increasing convex order (denoted by X £, ) if
E[XY=E[dF)] for all increasing convex functions ¢ # — 3, (1.2)
for which the expectations exist.

It is known (scc Shaked and Shanthikymar, 1994, Section 3.A) that A" =5, Y if and only if
Lx =] e s i
f F{u]du:i,_f Cria ) du, (1.3}
I 5

tor all x for which the integrals exist,
Definition 1.3. X is said to be smaller than ¥ in the convex order {denoted by X <, F) if

E[X V= E[H{¥ )] for all convex functions ¢ & — #, (1.4}
for which the expectations exist,

It is well known that X is smaller than ¥ in the usual convex order if and only if Z{AT=E[¥] and (1.3)
holds,

di
Definition 1.4. X is less dispersed than ¥ (X = ¥} if
FYy—F s ey - 6w, Yo<uso<l {1.5)

This means that the difference between any two gquantiles of F is smaller than the difference between the
corresponding quantiles of €7, The above partial orderings of distributions have been extensively studied in
the literature. See Shaked and Shanthikumar, 1994, Chs. 2 and 3 for details.

Muboz-Perez {1990) has shown that X '”2’ ¥ if and enly if the random variable (X — F !{u))" is stochas-
tically smaller than the random variable (¥ — G~ '(u))* for every ue(0,1), where (Z)t = max{Z, 0}. Based
on this observation, Fernandez-Ponce et al. {1995) proposed the following new variability ordering, which
they call as right spread ordering,

Definicion 1.5. X is less right spread out than ¥ (X E; ¥yit
E[(X — FUa)V ISENY - G {(w))']. Yue(0.1), (1.6)

provided the expeciations exist.
Or equivalently, if

[m Fir)des /-m Gie)de, Yue(0,1). (1.7)

Flw) Je-w)
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! T b 1
Since F Wu)=F "1 —uyand & '(u}=G {1 —u), we se¢ that
ik s P e
b f Fiyde = f Gityds, Wws(0 1)
F lu) &

The reason for calling this ordering as the right spread (RS) ordering is that the function E[(X — F~'{u))*]
iz known as the right spread function of X, Shaked and Shanthikumar (1996) call this ordering as the “excess
wealth™ ordering and write A c:E ¥ if (1.7 holds.

It is clear from the definition of RS ordering that it is weaker than dispersive ordening. The RS ordering
has some nice properties and these have been discussed in Fernander-Ponce et al. (1995) and Shaked and

Shanthikumar (1996). For example, it is location-free in the sense thar
XEY-—:»X-I-CLEF for any ¢ € 3.

Also X Pé? ¥ implies varlX )<var{ ¥) as well a8 E[JX, — || <EYY, — ¥2|], where & and X; (F; and
¥y) are two independent copies of X (Y). Note that one can express var(X) = 2 E[|X; - X3|*]. This led us to
consider whether the following holds:

RE
¥ = ¥F=x —Jﬁlﬂjcxlh = le- (1.8)

We prove in this note that our conjecture (1.8} is, in fact, true. Another motivation for considering
the ahove relationship is the following result on dispersive ordering (see Shaked and Shanthikumar, 1994,
Theorem 2.18.16).

Theorem 1.1. et Xy and X5 (Y) ond ¥y) be two indeperdent copies of X (Y), then

dizp i
X = Y= -X|syh - ¥ {1.9)

Mote that dispersive ordering implies RS ordening while the usual stochastic order implies the increasing
convex order, 50 that (1.8) seems patuta) compared o {1.9).

We shall be assuming throughout this pote that all the random variables under consideration have finite
expectations, We prove the vanouws rosults 1o this note assuming that the mmdom vanables are absolutely
contiouous although we feel that some of the results may continue to hold without this restriction. The main
resulls of this note are prosented m Section 20 In Section 3 we give an mtergsting application of the RS
ordering in the study of spacings from increasing mean residual life (IMRL) distributions.

2. The main results

First, we show that two random variables are equivalent in terms of RS ordering if and only if either they
are identically distributed or they differ by a location parameter,

Theorem 2.1. X E ¥ eax 2 ¥ 4 Jor some reql constant c. {2.1)
Proof. Since the RS function is location-free, for any real ¢,

¥2¥4eax &y
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Conversely, suppose that X " ¥. That is, for all we {0, 1),

fm Firydi= f Gir)de (2.2)
= i

) ~w)

Since we are assuming that the random variables under consideration are absolutely contiouous, it follows
that the quantile functions F~' and &' are differcntiable. Differentiating both sides of {2.2) with respect to
w and cancelling out the common factor {1 — 1), we get

i d
—F Ny =—G"Yu) forall wefo, 1}
du du
The solution of this differential equation leads to
FWal=G Yu)4+x, for some real x; and for all » in (0, 1). 2.3

It iz easy to sce that (2.3) will hold if and only if F and & differ by a location parameter, Henee the resull
follows, (O

To prove our conjecture (1.8}, we shall need the following result on convex ordering which is alse of
independent interest.

Leming 2.1. Let the random variables X and ¥ be symonetric abour the origin. Then
i~ r e | (2.4)

Proof. Suppose that X <., F. Since the random variables X and Y are symmetric about the origin, the survival
function of x| is

Hygilx)=2F(x) for x=0, (2.5)
and that of |¥| is
Hipx)=2G(x) for xz0. (2.6)

I immnediately follows from (2.5), (2.6} and (1.3) that X <. ¥ implies |X| <x|F].
Conversely. suppose that |X| <. |¥|. That is,

T Fmas [ G, (2.7)
| Fous

for x =0,
To prove that X <. ¥, it romaing 1o show that {(2.7) holds for negative values of © also. Let x < (. Then
¥=—y for some y=>0. Now

fx F(r)dr-—f“?{r)d:+]:F[rjdr+ [x!?[:]dr
—¥ —¥ Sy

a5 ¥ B
Tj F{—t)ydr + f Fryde 4 f Firyde
i ] ¥

{by a change of variables in the first integral)
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¥ o
:f [F{r}+?—"{r}]df—.[ Fids
o gy
—',r+fm Fltydt,
}.

Thercfore, for y=il,

[j Girydr — f: F(t)dr

= [ ?}{r}d:-—[ Fir)dr

v ¥

=0 (1.8)

by (2.7). This proves the required result. T

Lemma 2.2. Ler X7 and X5 (Y, and 13) be two independent copies of X (Y), then

X*{Hu}’:"X'.- _XZ, 5;&1}{[ g YZ {29]
S e cIEg™) R 1P {2.10)

Proof. The proof of {2.9) follows by noting the closure of the convex ordering under convolotion (see Shaked
and Shanthikumar, 1994, Theorem 2.A.6(d)) and the fact that X <, F if and only if =X =, — ¥ (see Shaked
and Shanthilumar, 1994, Theorem 2. A6{a)).

Since X7 — X and F; — ¥; are symmetric about the origin, the proof of (2.10) follows from the previous
lemma. L

Shaked and Shaothikemar (1996} have studicd the relationship between the RS grdering and the increasing
convex ordering. Assuming that the left endpoints Iy and /v of the supporis of X and ¥ are finite and equal,
RS
they prove that X = ¥ — X <, F. Such restrictions are needed because the inereasing convex ordering does
not own the location-free property whereas the nght spread ordering does. Their proof is quite invalved and
lengthy based on geometric constderations. We give below an gltemative short proot’ of the above result,

Thearem 2.2, [et X and ¥ be two random varigbles with finite means and with 0 av the common left
RS
endpoint of their supports. If X = ¥, then X £, ¥

Proof. Let F and G be the distribution functions of X and ¥, respectively, Let Re(x)= _Ir:c Firydr, Rgixt=
[ Gloyde, flx)=Rg'Re(x} and #(x)=G 'F(x).
Nole that

o L (P Glatxyn
G(R; 'Rp(x))  G(B(x))

(2.1
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Now

X% ¥ o R SRA(G F(x)) for x20
& R;'Re(x) =G 'F(x) for x20 as R;' is nonincreasing

& G{f(x))<G(x{x)) for x=0 as G is nonincreasing

Gla{x)) ,
ﬁ[ﬁlx}] =l forxz0
& )zl for x=0. {2.12)

Integrating both sides of {2.12) with respect to x from O to y, we find that X 1}5 ¥ implies Bz v+ 80z p

as j0y=~R, LRe(h) =RG]{IIF}?R,§,-1(;J.G} =0, since Rg is nonioereasing and X E—E ¥ imphes up =y, where
pr and pyg; are the means of X and ¥, respectively.

Hence X = Y implies fi(y)2 y for y20. That is, Re(y}<Ro(y), ¥=0 Or, X<, O

We are now ready to prove {1.8). We do assume in the next theorem that the left endpoints of the supports
of the random vanables are fimite, but they need not be cqual.

Theorem 2.3, Lef X and ¥ be two random variables with finite means and with finite feft emdpoints of thetr
supports. Then

X Erf Y= -N<..h—-n"
& X - Xl €| B - T2,
where Xy and Xa (1 and ¥2) are two indeperdent copies of X {T)
Proof. Let {y and [y denote the finite left endpoints of the supports of X and ¥, respectively. We can write
N-X%=X' X and F- =¥ -F,
where
X'=X=Ily snd ¥'=¥~¥, i=1L
Since RS ordering iz shift invariant,
XSyex Sy (2.13)

Also note that the left endpoints of the supports of ™ and ¥* are equal to {1, The required result now fellows
from Thearem 2.2 and Lemma 2.2, [0

3. Application

Let X be a nonnegative random variable with finite mean and with mean residual life function pe(r)=
EX -1l X =i]= j;m Fix)dx/F(¢). We say that F has the increasing mean residual life (IMRL) property if
ue(t) is nondecreasing in ¢ =
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Let ¥ obe another nomnegative random variable with mean residual life function us(f). We say that X s
smaller than Y in the mean residual life order (X <0 i

welt) = ety for all o, (3.1}

Shaked and Shanthikumar (1996) have established the following relation between mean residual fife ordering
and RS ordering.

Theorem 3.1, fet X and Y be nomnegative randont variables with finite means and with O as the common
- : RS
left end point of their supporis. If X <paY and if either X or Y or both are IMRL, then X = Y.

A variant of this result is also given in Fermandez-Ponce et al. (1995), In this section we discuss an
interesting application of the above result in the study of sample spacings. et X5,.. X7 be a random sample
from a continuous distribution & and let X ., < -+ £X,., be the corresponding order statistics. The random
varahles 0., =X, — & 1. i=L...,m Xy, =0; are called the sample spacings from the distribution F.

Theorem 3.2, Let Xy.... X, be a random sample from an absolutely continious IMREL distribution F. Then

RS
how= Dy fori=l,.. n—1. (3.2)
Proof. Kirmani {1996} has proved that if F is DMRL, then each 5., is IMRL and Dy, =g Dy for
i=1,....n— 1, The required proof then follows from Theorem 3.1, 70
A consequence of this result is that var(D;. yvae{ Dy ..), for i=1,...,n— |, a result proved in Kirmani

(1996} also. But (3.2) is a much stronger result.
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Note added in proof

After this manuseript had gone o the press, it was discovered that the Lemma 1{a) of Kirmani (1996) is
incorrect. This may invalidate some of his other results in that paper and also Theorem 3.2 above.
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