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aut the sirong consistency of density estimator for a sequence of independent and identically distrib-
uted random variablss,
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1 Introduction

The concept of association was iniroduced by Lsary, Proschan and Walkup
(1967); a tinite family [X,..... X} of random variables is said to be associated if

Cov(hiX,, ..., X, b glX,, .. X)) = 0

for any componentwise nondecreasing functions f, g on K™ such that the co-
variance exists. An infinite Family of random variables 15 said 1o be associated if
every fintle subfamily is associated.

Independent random variables represent one example of associated random
variables {Fsary, Proschan and Walkup (1967)). There ate several examples in
Beliability and Survival Analysis where the random variables of interest are not
independent but are associated. Some common examples of associated random
varahles are: positively correlated normal random variables (Pitt (1982)), com-
ponents of the multivariate exponential distribution due to Marshall and Olkin
(1967} ete.

Some probabilistic and statistical aspects of associated random variables
have been extensively discussed in roeent years, see for example, Birke! {1988
a,b, 1989), Cox and Grimmelt (1984), Newman (19%4), Bagai and Prakasa Rao
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{1991, 1995), Prakass Rao (1993) among others. Strong law of large numbers {for
a stationary sequence and an arbitrary sequence of associated random variables
have been obtained by Newman (1984) and Birkel {1989), respectively.

In what follows we prove a strong law of large numbers for a triangular array
of associated random variables and pive an application Lo kernel-Lype density
estimation for a strictly stationary associated sequence of random variables. We
also prove an improved version of a result by YVan Ryein (1969 on the strong
consistency of density estimator for a sequence of independent and identically
distributed (i.1.d.) random variables.

2 SLLN for Triangular Array

Consider a triangular array of random variables (X, 1 <j < k,.n = 1] where
the random variables in each row are sirictly stationary and associated.

[.et ¢ denote a gencric positive constant which may vary from one step to
another. We denote Var(X) as Cov( X, X) lor convenience.

Lemma 2.1: Let {X ;. 1 =< k,,n = 1} be a strictly stationary associated trian-

I
gular array of random variables with Var{X,,) < sc foralln Let S, , = ¥ X .
i-1
Suppose that there exists ¢ = 0 such that for every n > 1,

K,
}11 CoviX,, X )=c . (2.1}

Then, forn =1,

Var(s, , ) < ck, . 2.2)
Proof: Note that, for n = 2,

ks
Var(s, , } = Var[ Y me—‘

i

ki
= z Var{anl + 2 E E: Cﬂ"‘{xnia Xﬂj]

j=1 1z fzk,
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1

ki
2 |: E Var(X )+ % CovaﬂnX,uj:|

=t Loitjok,

]

k,
2|:E Var(X,;) + 3 Cov(X,,. X))

i=1 =2

kn
+ Z CoviX,. X+ -4 CoviX, ¢, -1 th'j:|

=3

E, o
E|: Z CoviX,;, X0+ E CoviX,2 X5+ -
= =

ky,

+ CoviX, s - Xyh 1 CoviX, . M"j:l

=41

k.—1
{E Cov(X,,, X, + ¥ CoviX,, X+
=1 J‘I

"lfjhi

Cov{X,,l X) + CoviX,,, Xo )] (by stationarity of X}
J

= ck, by (2.1) .

Remark 2.2: The condition that | X ;| is associated is not necessary for the above
lemma, 1t is sufficient to assume that CoviX . X t=0forall l =i<j <k,
(=

Theorem 2.3: Let (X, | =j = k. 0= 1] be a triangular array of strictly sta-
tionary associated random v"lrmh]m with E[X, | ] = 0and Var(X, ) < o forall
n. Suppose that k, = ({n7) for some 0 <y < 3 and the condition (2.1) holds,
Further suppose that

2
El: max  |S;, — S, |] = 0(n*™?) (2.3)

rles jaimd 12

for some & = 1. Then,

5
":"—.CI 4.5 A8 H= oo, (2.4)
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Proof: Using Chebychev's inequakity and Lemma 2.1, we note that

5 : fd '
Pr[|Sps | = nie] < n“:“ :

Note that ¥ Pr['S,:; ,| = n%] < o for all & =0, and hence, by the Borel-

Cantelli lemma, it follows that

Se

. 0 28, @8 M-+ . {2.5)
]
Let
f,= max |Sj,kr“' Satn 2l -

n? < jeir1]? L2

Then

|‘-' | |S.l1*.|?s '-'|+Dn 9 ’ B
s z fore’ <j<in+ 137 .

j n
If
f; - a5 HE B— 0 {2.4)

then, from (2.5) and (2.6}, it would follow that,

2 A8 DS M 20 . (2.7
Thus it is sufficient to prove that

;PI {"?1__1:}1:_:2[!:1;“:l |96, — Sarp ot = nJ'E} < oo

for all £ = 0. By Chebychev's inequality
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' o 1 2
Pri max (8§, —Sep.lzaiey s Ff max 1S, — Seaal| -
r s jeintl)? H™ n? o jein+10

The problem s 1o estimate

3
E max |8, —3:..0] -
n¥ e juried §aR

Since this term is O{n* ?) for some 4 = 1 by assumption, the result holds by the
Borel-Cantelli lemma.

Remurk 24 Cox and Grimmett (1984) and Birkel (1988a,b), among others,
observed that in any asymptotic study of 1 sequence of associated random
variables, the coeariance structure plays an impertant role. Cox and Grnimmett
{1984}, while considering asymptotie normality of a itiangular array of asso-
ciated random variables, assume that there exists a lunction,

u=I0L1.., =&, wirp 0 as r— o0
such that

Y Cov{X,, Xab = atr) forall . mr=0 . (2.8}

Jrd =g e

1t can be casily seen that {2.8) implies (2.1} if {X,;} is a strictly stationary
asseiated sequence for each a

3 Applicationy

Let {X,, n = 1} be a strictly stalionary sequence of associated rundom variables
with one-dimensional unknown marginal density function f for X, . Let

filx) = E (”'_x'), xeR (3.1}
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be a kernel type estimator for f{x) where k, 15 a bandwidth and K(-) is a kernel
satisfying the following conditions:

(A} Ki-) ts a bounded density function of bounded variation on H. Hence
Kix) = K,(x) - K,(x), where K,(x} and K,(x} arc two monotonic fung-
tions. Suppose that (i) lim |x|K{x) =0, (i) [*, 'K Huwdu < c i= 1, 2,

|x|—=ec
i=0L%
(A5} K, ix)are differentiable with sup [Ki{x) € ¢ < o i= 1, 2

Further, assume that the covariance structure of { X, | aatisfies the condition:

{AL) forall £ and r

Y CoviX,, X,) = ulr)

)¢z

where ui{r) = ¢~ ™ for some a = 0.
(A,) In addition, assume that f is thrice differentiable and sup | f™ix)] = 0.

Remark 3.1: The assumption that K1) is of bounded variation is used to ensure
X
that the transformed varnables K ;(x p I), ! =i = nare associated for f = 1,

2. This 1% also used in the classical density estimation for i.id. random variables
icf. Prakasa Rao (1983), pp 37). In view of (A, L. Wewman's {1980) inequality (sec
[emma 3.2) can be used to estimate covanance of functions of associated ran-
dom variables. Importance of {A;) is discussed in Remark 2.4 and assumption
(A} is used to obtain 1 bound on the variance of the estimator as in the classical
i1d. case {cf. Praskasa Rao (1983)).

The following inequality dug to Newman (1980 is used later in the paper.

Lemma 3.2 (Mewman (1980). Let (£, ;) be associated random variables with
finite variance. Then, for any two differentiable functions h and g,

[Covih(Z, ), g{Z,))| = sup |h'(x)] sup |¢'(p} Cov(Z,, Z,} (3.2)
x ¥

where b and g denote the derivatives of h and g respectively.
Let
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1{. . {x—X x - X
K : EEK S
Tl ( ) ( h, )}
I X x—X;
K 3 gl B
h{[ (" 1( ]
x : - X
() (7))
x

= gt ix, X)) - P, Xo) fsay) (3.3

Then, for fixed x, {¥"{x. X,}}.j = 1. 2, being momotonic functions of associated
random variables are associated, Using Lemma 3.2 it follows. that for j = 1, 2,

> Covig e, X)) (x, X))

Jilf=il=r

P 4
< xup{ i, 1]} Z Cov(X, X,) {3.4)
. il=r

In view of (A, ) 10 {A,;} and Remark 2.4, the conditions stated i Lemma 2.
hold for @4'ix, X,). j = 1, 2. Using (A,) it is easy to see that, for j = 1, 2,

I . ; .
Variyx, X)) < A [AXMEY - a7 + 00k B+ OlhgT] {3.5)
where
o oKiode , i— 0,12 (3.6)

Furihermore, for j = 1, 2,

T T Coviun, X s X)) ali (3.7

i jen

by (A ;) and stationanty. Let

leﬂl} ] zl X.-.i . [3,3]
=1
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Then

L'.'[ max T”" o ]

e an+1t
: .n-+1 }

el L]I( l,i-r;“{x X :T'__ *.I'IF}{"'~ X:}Y}
i=n®FL F

e L1}

-c"}_',F

_|'—r|2 1
i=n b

.f 1 1
F( W (x, X,a) ( 3 g, x,.ﬂ }
3 "nz 11 i .

I=n*+1

nlly?

=2 2

H+132 -f. S y ]
=iy {Va Wiy, X J) + ‘v‘ar( 3o, Xl})
J=at 41 If—|':1+]_ i=ntrl j‘
1)’ L ’
= 4n |:"u"-ir( 2 wlix, X}} i Var{ ook, }‘
o R f=nl—] ]

thy the associativity of {7 and [ty
= dn {o (h ) +0 (H)} (using (3.4) and (3.61}
= Oin’h, %) . (3.9)

Mote that, if i, = Oir™"), whete x = 0, then

E[ max | — ':;f‘FJ = {z? 47 (3100

Wi asm+112
and the condition {2.3) halds provided < §. In particular, for the optimal

choice i, = (a7 {cf. Bapai and Prakasa Rao {1995)) the condition (2.3)
hilds.

Theorem 3.1 Suppose thal the conditions (A1) to {Ad) hold and k, = Gin %)
where 0 = % < 1. Define £,{x] bv (3.1}. Then,

fulx)— fix) Hi @4 B {3.11)

at alt continuily points x of f.
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Proaf: Tt is clear from the calculations given abaove that the conditions stated
Theorer 2.3 hold. Hence £ {x) — Efix) — Das as e — oo Since ELf{x)] -+ Ax)
as 1 -+ o at the continuity points A of f1-) under (A 3L it follows Lhat (3,100
haolds, proving Theorem 3.1,

Remark 1.2; Strong consisleney for g kerncl-type density cstimalor was proved
for a sequence of iid. raodom variables by Van Hyzm (1969) and for mixing
seguences hy Roussas (195R)

Fn the case of a sequence of Lid, random variables [ X} with finite second
myment, condition that Ki{-) 15 of bounded vanation in (A,) and assumpiion
(A5) can be removed. Assumption (A,) holds in view of independent {X, ).
Supposce gssumpion (A} s satesfied. The following result on strong consistency
for density estimators for tid, random variables holds improving upon the
carlicr resull of Yan Byzin (196%) in the 1.i.d. case.

Theorem 1.3 Let [ X, 0 = 1] be idd, with density §. Suppose K{-}is i bounded

probability densily function satisfying ) b |x) K{x) = 0, (i3 %, x/KH{x)dx <
x|-ra

a =0, 1 2usnd (A holds. Turther assume that b, — ™) where 0 < x = 1,

Then

Lxy— fix) A%, @45 M e (342

lor atl continuily points x of [

| x— X
Proof: This follows immediaicly from the fact that X, — J—L‘C( -f) —
IR

| h
ol x — K, ; ; g ;
EK|— e 1 =i=n nx=] form a triangular armay of sincly staiionary
associated random variahies. Let 177 e as defined in {3.8) It is casy to check
that

L

o2
max |1 — T:};"F} =0 (;?_) = O(nl'?)
[

WL ftmeb s e
if b, — Q{r *jand Lhe condition {2.3) holds for o < | Henee

Jalxd = FE[£ix)] =0 A% a5 R o0,



34 1. Dewan and B. L. 5. Prakass Rao

Since K[ fi{x)] —= fix) as n — oo at the continuity points x of f{-) under (A }{1),
it follows that (3.12) holds, proving Theorem 3.3,

Ackmwledyement: The aulhors thapk the referee for comments and supgesiions,
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