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Abstract

Let Xy, ... X, be independent exponential random vanables with X, having hazand race -,
i=1,...n letd =44, a0 Let Yoo oL ¥y bea randem sample of size # om an esponen-
tial diseribucion with commaon hazard rate « = ¥ 2 Uhe purpose of ths paper is 1o stady
stochastie comparizons betwean the largest order statistics X, and ¥, from thess two
samples, 1t is proved that the hazard eate of X, 8 samaller than that of ¥V, . This zives
a conventent upper bound on the hazard rate of X in terms of that of ¥, . 11 s also proved
that V¥, . i3 smaller than X, according 1o dispersive orderme. Whils of s kooen That ihe
survival function of X, is Schur convex in 4, Boland, Bi-Xeweihi and Proachan [0 Appl
Peabich, 3101994 1800 192] have shown 1hatl for o 20 the hvvard rale of X, i nol Schiw
sencave, 1is shown here that, however, the reversed hazand vate of X, , 15 Schur convex in A
oo 19T Elsevier Science BV
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foepwened s Likelheod matio ordering: Hoeard rate ordering: Reversed hazan! rate ordering,
hultivariate likelibood rutio ordering: Dispersive ordening; Schor (unctions: Majerization

1. Introduction

Order stalistics play an woportant role o reliabihty theory o particular and in
statistics in general, A k-out-of-n svstem of 1 components functions if and only if at

= Correspenibung author.

P Party supported by Maticonal Ynslitotes ol Tlealty Crat > G112 BEROS124-04 Lo the Bioditatistcal
Tabaratory 47 the University of Texas, I Paso, This author wishes ro smeergty thank UTTRP for cutendang
en invilalion and makme avatlable all Gacihities.

* Twunding Divector of The BivStatistical Lubooatory ol The Uuiversity of Texas ol BE Paso, supported
o The Batipnal Insatates of Healts Grrant 5 4512 RROK 2402 Partie] support by The Mational Science
Faundation® Grant RIT-S502973 qksoueh dw csrablishment o the Mater als Researeh Cenger ar The
Liniversoy of Texzs at Bl Paso s slso graefaily acknow!edpea.



0 R Dwsrra e of [ Semsrind of Stalistica! Planaing ond fnfirgree 03 (10970 03-2107

least & of the components lunction. The time to failure of 4 k-out-ol-n system of
n componerts with lifetimes X, ..., X, corresponds to the (n — & 1 1jth order statis-
tic, X, & 1.0 Thus the study of the lifetimes of k-out-of-r systems 1s equivilent ta the
study of the probability distrihutions of order stalistics. A series system is an n-out-ol-
rosystem and a parallel svstem is a l-out-of-n systern. Thus the time o failure of
a series system corresponds to the first order statistic while that of a parallel sysiem
corresponds 1o the largest order statistic, Series and parallel systems are ihe simplest
examples of coherent systerns and rhey hive been extensively studied in the literature,
Wuch = known abhont their stochustic properties when the components are indepen-
dent and identically distributed. But it is not uncommon to encounter systems with
components having pomidentival lifetimes, Some general results on order statistics
and spacings from nomidentical distributions have been obtained by Pledger anid
Prozchun {1971}, Prosehan wnd Sethuraman {1976), Bapal and Kochur [1994), Boland
et al, (1994}, Kochar and Kirmant (1995), Boband cl al. (1996), Kochar aod Korwar
(19948) and Kochar and Rojo (1996), among olhers.

The exponential distribution plays a very lmportant role in statistics, Because of its
non-aging proparty, il has many nice properties and it often gives very convenient
bounds om survival probabilives and other characlenstics ol interest for systems with
non-exponential components. Pledger and Proschan (1971 considered the problem of
stachastically comparing the order statistics and the spacings of nonidentical indepen-
dent exponential random variables with thase corresponding to independent and
identicslly distributed exponential random variables. This topic 1% pursued furlher in
this paper which concentrates on stochastic comparisons of the largest order statistics
fram heteropencus and homogensous exponential distributions.

There are many wavs in which a random variable X can be said to be smaller than
another rundom variable ¥, In the wsyad stochastic ordering case, » random variable
X with distribution funcltion F 15 stochastically smaller than a random variable ¥ with
distribution lunction & (and written as X:_"l ¥ I #4102 @) for all i In some cases,
a pair of distributions may satisly a stronger condition called likelihood ratio ordering,
IT distributions F and G posscss densities [or probabifity mass functions) f and g,
respectively, and f{xpglxc) 1» nonmercasimg i x, Lhen we say L]'l:.'ril X 15 smaller than
¥ ;:chcordjug 1o likelilmcr.d_rmio ardering. This 1s denoted by X = ¥, It 15 known that
A== implics that FixlGx)is nomnereasing in x, where F— 1 Fand G- 1 — &
denote the survival functions of X and ¥, respectively. This latter condition defines
huzurd rote ordering. In the case of abselutely conunuous distribulions, s is
cquivalent to the hazard rate of F, rpix) = f{xV Fix), being evervwhere as large as
rel %] = gixb'G(x0, the haeard rate of G this happens, X s t.liirid Lo be smaller than
Y according to hazard raie ordering and this 1z denoted by X =< ¥, Notc thal hazard
rate prdering implics stochastic ordering. The repersed hazard rore ol life distribution
Fis defined as frix) = fix) Fix) Let Faix) denote the reversed hazard cate of (7. Then
X is said Lo be smafler than Y in dhe reversed hozard rare oeder (and written as Xg’ ¥Yur
Frix) = Fpix), Tor all x, or equivalently, if F{x)/G0x) s nomnercasing o x. The reversed
hazard rate ordering ulso implics stochastic ordering, but in general. there are no
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]n1]1|1mtmns between hElr’:le rate and reversed hazard rate orderings. 11 is known
that X = ¥ also tmplics X ﬂ ¥. Laehmann and RBojo (1992 provide simple character-
izations of these orderings.

The above notions of stochastic dominance among univariate random variablos
can be extended o the muolivariale case. A random vector X — (X, - X, 1S sl
thar another Juna‘.um vector ¥ =10Y .. .., ¥obin the smltivariate srochastic order 1und
wrilten as X< ¥ ViF L (X = Fl'c,bi}]'l for all increasing funcuons ¢ whenewer the
expeclations exisl, Kuarlin and Rinote (19800 introduced and studied the concept of
multivarate likehhood ralio ordering. et and g denode the density funetions of
Xand F, f“‘r‘Sli"‘EI{r:ti‘ﬁeJ}'. Then X i smaller than ¥ in the multicariate Dielilionod votlo order
fariten as X= ¥y if

Fixkglt = i A gl W o) Tor every x and pan &Y, i1

where x Aoy = {minix, vk o minga. vl X Y = dmaniy g, vk omaxix,. vl

It i= known that multivariare likelihood rato ordering implies muoduvanaie slochas.
tic ordering, but the converse is not true. Alse if two random vectors are ordercd
according to multivariare likelihood rafio ordering, then thelr corresponding subsels
of components are also ordered accordingly, See Chapiers 1 and 4 of Shaked and
Shanthikumar 11994 for more details on variows kinds ol stochastic erders. their
inter-relationships and their propertcs,

We shall alse be cemparing the various statistics sccording Lo the criteria of
dispersivencss. T.et X and ¥ be two random variables with distribution functions
toand G, orespectively. Let F U and G0 be thar right continuous inverses. The
disiribution of the rundom variahle X is less disporsed than that of ¥ f_‘{lgl‘.r' it

Folirp— F Y= G Nep— &7 9n for D sy s e s b il

This means that the difference between any swo guantiles of F is smaller than the
dilference beltween the corresponding quantiles of G When X oand ¥ have densitios
Fand g, respectively, then X L:_E{” ¥ if and only f.

alxd = (F VG forall xe( ) 1.3
One of the eonsequences of j{d-l-_? Yoas that var{ X1 = var( ¥ L For other propertics of
dispersive ordering, see Chapler 2 of Shaked and Shanthikumar {19494},

The coocepts of majorication ol vecloers and Schur convesily of lunenons will be
needed throughont this work, Let §v, = v = - € v, denete the incrousing
arrangement of the components ol the weetorx = e, v oo, L The veelor pos said
[ thajirize the vector x (writlen as x%y'l S s v X =L -1 and
Troine =T x,. A real-valued funclion ¢ defined on o oser oS o 127 s said Lo be
Seduer conces {Scluwe coneave) on o 1l x -Tijr =) =0 bl

Pledger and Proschan (19710 proved the fellowing result on order stutistics [rom
cxponential distributions,

T d Ao et I P P P Fr v exponentinl randi rariahles witl X,
Yheorem L1 fet X, ¥, he independent exponentiol random rarahles witl
having hazerd rate £ T=1.....n Ler Yo Y, be wnolher set of independen
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axponential random varighles with &7 as the hazard rate of Y, 1., .n Let
- - . a I . .
A=Ay iy and A* = (AT, L A¥)L f hen A= A% implics

3-1 o 5__" Yl.n ””nr Xn'.:n f:_ lt:|’.:||> _lf;-')r k = 2-‘ PN

Proschan and Sethuraman (1976) strengthened this result from componenlwiss
stochastic ordering te mulivariate stochastic ordering, They proved that under the
conditions of the above theorom (X, ..o X, "J;-[‘J’l:,,‘ R e |

The purpose of the present investigation is 1o see 1o what extent these results can be
strenglhened. This paper focuses on the probabilistic behavior of rhe largest arder
statistic. For the special case w =2 and & = 2. Boland et al. (1994) partially
strengihened the above result from stochastic ordering to hazard rale ordering. They
proved that the hazard rate of a parallel sysiem of two indepentdent exponential
components is Schur-concave in (£, 23], the component hazard rates, They also
comeluded that the above result cannot be gencralized for arbiteary 0. Then the next
natural problem is to compare the hazard rate of X, with that of Y, ., where
Y, ... Y.z arandom sample of size ® from an r:x]mgrentjul distribotion with hazard
rate = VI_ iy We prove in Section 2 that ¥, = X_ . This gives a convenient
upper bound on the haeard rate of X, mterms of that of ¥, 0 Wealso prove that
YM‘JEPXM_ In the last section it is shown that the reversed hazoard rare of X, is
Schur-convex in i

2. Comparisons with iid. cxponentials

Lel X, ....X, be independent exponential random  wartables with X,
having hazard rate «, i =1, ... 0 Let 4 =1a, .. 4,0 Let Vo, o0, F, be a random
wymnple of sire w fom gn oxponental distnbation with common harard rate
~=T%% | Ajn In this scction we shall stochustically compare X, with ¥, ,. It is
proved that ¥, is less dispersed and has greater havard rate than X, . The prool ol
these results hinges on the following technical lemma from . 73 of Mitrinovic. Pecaric
and Fink (1993

Lemma 2.1, Let h be g nondecreasing function such that kD) = 0. and let g, =10,
i= 1, ...,mn Then

" Li dehia)

] @ = (2.1
i=1 EF_uhfﬂcJ
Maow we prove the main result of this section,
Theorem 2.1, Ler X\, ... X, he independenr exponentiol randowm variabes with X,

having hazard rate 4 i =1, .. 0o Let Yy, o, ¥ be a random sample of size n from an
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ex ponentiol disteirion with commion hazard rare 0 = Y7 00w Then
diwp

fa) }?" T X" e (2.2
“-” }-’II:."_E xu-u- AR

Proof. {a) Let & and & denote the distribution lunctions of ¥, , and A, with
corresponding densities fand g, respectively.
I is cany troverly Lhat for v = (0,

1 2 e
Pl = — 2 l11’7t W v
AL I

ancd

FTE "Gixi] = na

» n -1
o et rJ [T —« J:| : 12.4)
1= 1 |
Jizp ¥ e, ST
Terprove thal Y, =2 X, . 1L Tollows from the relation 11.3) that it is sufficient 1o show that

gix) = (TF 'Gix)]. for x =1

That s for =0,

% It 1_“11_6_””” -[“ & f"-'“]:l“_

This is cqguivalenl Lo,

" ] .
[t e
it I I

M " ] I-u
Y i , . )
I_L_I frl]Ll_ﬂi i | — @ :I:| | 1)

MMulriplyving hoth sides by v = O, we see that Lo prove the desiced resull. 115 sutlicient

Lo prove the following mequalily for ¢ o= O,

n : I ‘I I-n
5 ! [ }[] | < —} . 2.7
El—expl=33 " | 5 L —expl g

In Lemma 21, lot g, — {1 < %1 jh= — il — "7 so0 that hia) -
vih ——expl 1k s easy o verily that bos nondecreasing and lim, g firp = 1, Thus
gl the eonditions of Lemma 2.1 ace satified. Applving the inaquadity (217 vields the
requited result (2.7)

(b Bagaian Koch.lr{i"ﬁsm {also see Theorem 2813 of Shaked and Shanthikunar,
L9941 proved that 1t' A -‘ Y oand either X or ¥V hus IFR (nereasing failure rate)
distribution. then X = Y. 11 tollows frown Theorem 5.8 of Barlow and Proschan | 1981
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that Y., has IFR [iiﬂlril;r:ll.im]. Lsing this and part {a) of this theorem we get the
required result thal ¥, =X, .. O

This theorem gives a simple upper bound on the hazard rate of a paralle] system of
heterogeneous exponential components in derms of thal of a parallel system of
identically distributed exponential random variahles. 11 also gives a lower bound on
the yvapunee of X, in fenms of that of Y, .. These resuolls wre swomarized mothe
[ollowing corollary.

Coroltary 2.1, Urder the conditions of Theorem 2.1,
(a} i hazard rave vy of X o salisfies

b o TPAL = exp(= A1 expl )
- L _[l _'E.’ipf—d_x']n

(b)

var(X, ) = - (2.9]

3. Some Schur iype resulis

In this section some new Schur type results for the hazard rate and the reversed
hazard rale of the maximuom of independent exponential random vatiables are
obtained. The next theorem strengthens Theorem 2.1 of Boland et al. (1994) rom
hawrard rate ordering o hkelihood ratio ordering,

Theorem 3.1, Ler Xy and X; be two independent exporentiol random variables with
hazard rates Ay and Fa, respectively, Let ¥ and Yo be another set of independent
axponential random sertablos wilh respeciive hazard vates 37 ond 2T, Then

|
(s A T 2= Xy 7 Y (3.1)

-

Proof, Kochar and Rojo {1996) have proved that (4, ;.E}E[;f,‘. ATE implics
Xpa—Xa=Y,,— Y (3.2

It follows rom Theorem 2.1 of Kochar and Korwur (19946) that under the conditions
of the theorem, X, ; s independent of X; . — X, .. ¥ i independent of
¥s.2 — Y1 and X,.; 2 Y, . has log-concave density.
Using Lemma 14 B% of Shaked snd Shanthikumar (1994} it follows from (3.2 that
- Jr e ¥ :
A= (Xan X A+ XY= Fia) - Vo= Yaa
Thai s,

s
Naaz=¥ag LI
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In the light of the counter-example of Boland o1 al. ¢ 19%4) us discussed o che firs
section, the resull of Theorem 3.0 on the hle of 4 parallel system ol pwo compaongenis,
cannol be extended bevond the case v — 2.

Since under the assumptions of Theorem 2.0, X, =¥, .. and X, . 2 ¥, .. ome
might wonder whether the vector{A .. X;. ;118 greater than the vectoc (¥ .., Y. 0in
the multivariate likelihood ratio ordering sense. The answer is in the negative even in
Lhe case when the ¥75 wre idenlically distpbuled as shown by the nexl counter example.

E -
I

Example 3.1, Let 2, — 3, 2o — 5047 - 27 - 4 The joint densily ol 41X, 50 X -1is

Flovy, wa] = 15[ 8 m bl a3 b8 e vy, o vy,
. | SRR d 1 2
aned that of (¥ ... Yoa00s

gl vy vad = 1620 Mot far oo g,

1l p
In order Lo prove thal {5, 5, X, 2150 o0 Vo b we luve o show thal

Fiwg e dglv. v =5l 3 b, o W vl Ao e Aovd 11y
holds,
Mow for x, = x. and vy = pa.
Fivy. ¥abglv,, pa) — 1S x 1O[20 [0 5% 3wt g g ode 150k 80T REN
and

R T S 0 T A O S
15 = 1(’|2|':| |_U [Sdx, gy by w0t Hixe Mowt] o ST R U I T S (e I TR T |
i35}

ALy =4 vy = 36, 7. =41y, = 43 we find that the value of (3,47 is 240020 [e *
+ e "] and that of {3.50is 240020 [e *Y' + ¢ ™| showing therehy thal (3.3) does
not hild in 1his ciose,

A natural question to ask is whether for v = 2 14, . J.,,}:;-[}.‘}ﬂ AP implie
Ay = Y., 7 The next example shows that for st — 3, cven huward rute ordering does
ned hold between X, and Y., proving thereby that for acbitrary e Theorem 14
cannol be strengthened from stochastic ordering to hazard ratc ordering.

Example 3.2. The survival luncuon of X, ;18
Fooatmh = Fyial E i Fxd 1 FixiFalxbFaiy + Faiv) FlixiFoe
— Fyx) ) (x Faix)
— FyixFyivy = FyinF Pl + Fox) P iofix)
—eTRe 4 ott Lgt - 1, VL0

in the case of cxponential random vanables. Here s — 2, = 22 1 25,
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Let A =40, 10, 1) and 4% = (4. 5.5, 5.5). Then obviousky, A= 2% But the ratio of
the survival [uncrions of X .3 to that of ¥;.;

e-HI.';L' I E=1l.’:ur . Ex

e4||1‘ }'&5.5}' | e:".:_'-.';L 2

-
-

is not monotone in v, This can be seen by veritving that the values of this ratio ar 0.01,

LT e 0,25 sre DO, TOOED and 100025, respectively. This ratio showld have been
L[

inereasing in x in order for the hazard rate ordering, X; =Y, 5 W hold,

As discussed earlier and as pointed cut by Boland et al. (1994), the hazard rate of
X, the lifetime of a parallel svstem of r compaonents is not Schor concave in 4 lor
W= 2 However, we prove in the next theorem that the reversed hazard rate of X, 15
Schur convex in A for any v = 1.

Theorem 3.2, Lot Xy, .0 X, Be independent exponential random variables with A
havig hazard rare 2, fordi — 1, 0 Then the reversed hazard of X, i3 Schur convex
in A That ix, if ¥, ..., Y, iy another set of tndependent exponential random vartables
with parameters (A7, .. A b, then

Lmo .,
J" :i-l* = Xll:."l‘;—. }‘."l:ﬂ‘
Proof. I'or x = {1, the distribution function of X, 15
n .
Foaldd—TEEL —85%]
i=1
with the reversed hazard rate

an.n‘j" 'T-:I = d_L_ix I11 j.n'“:rr{-Jf.:I = 1 E w

o T—ean

(3.7}

Hince for x = (], the fth term in the summation {37 s convexih 2 x. i=1. ...,m 1l
lerlows that £, (4, x)1s Schur convesan {4y, ..., A, oreach xicl Marshall and Olkin,
1979, p. 6d) [

The above resull partially strengthens Theorem 2.1 of Pledger and Proschan (1971)
from stochastic ordering 1o reversed havard rate ordering lor the lirgest order
slatislics.
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