The Uneertainty Prineiple:
A Mathematical Survey

(rerald B. Folland and Alladi Sitaram

ABSTRACT,  We survey varicus mathematioal aspects of the wnceriainty priaciple, including
Heisenberp's inequality and {5 varients. locel uncerigingy inegualities, logeritimic uncertatndy
tnegunliies, resulis relating o Wigner disirihaiions, gualitative urceriainre principles, theorems
Gt approcimate corceniration, and decompositions of phase space.

Introduction

The uncertainty principle is partly a description of a characteristic feature of quantum mechan-
ical systems, partly a starement about the limitations of one’s ability to perform measurements on a
system without disturbing it and pantly a meta-theorem in harmonic analysis that can be summed
up as follows,

A monzero function and ity Fourier trangform cannot bothl be sharply localized. (0.1}

When transiaeed into the language of quantum mechanics, as we shall do in 2, (0.1) says that
the values of a pair of canomically conjugate observables such as position and momentum cannot both
be precisely determined in any quantam state. Therefore, it leads to mathemaiical formuiations of the
physical ideas first deveioped in Heisenberg's seminal paper [51] of 1927 and widely promulguted
thereafier,

However, the uncertainty principle also has a useful interpretation in classical physics. Namely,
if f(r) represents the amplitude of a signal (a sound wave or light wave, perhaps) at tme r, the
Fourier transform F tells how £ is built from sine waves of different frequencies and 0.1} expresses
a limitation on the extent to which a signal can be both time-limited and band-limited. This aspect
of the uncertainty principie was already expounded by INorbert Wiener in a lecture in Gortingen
in 1925, Unforrunately, no written record of this lecture seems o have survived, aparl from the
nomiechnical account in Wiener's autobiography 1119, pp. 103-107], so cne can anly guess at what
precise versions of (0.1 it might have coniained. Wharever infuence this lecture might have had on
the physicists in the audience, however, the uncertainty principle did noi really sink inlo the minds
of signal znalysts until Gabor's fundamental work [40] in 1946, Since then, it has become Armly
embedded in the common culture.

OCn the mathematical side, there were sporadic developments retating to the uncertainty prin-
ciple in the fifty years after the initial work in the 1920%s, followed by a steady stream of resulls in
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the last two decades. The purpase of this paper is to give an overview of this work. We shall have
nothing to say about the purely physical or epistemological aspects of the uncertainty principle or
the applications of the mathematics to particular problems in physics or engineering, and our refer-
ences to the mathematical physies literature are less than comprehensive. Moreover, the uncertainty
principle impinges directly on some other areas of analysis with a large literature, notably, (i) the
study of the properties a function implied by restrictions on the support or the decay properties of
its Fourier transform, (ii} the construction of orthonormal bases or frames for L? whose elements
and their Fourier transforms are well localized {(wavelets, etc.), and {iii) the body of analytic resulis
relating to signal analysis and communication theory. To do justice to the ramifications of the uncer-
tainty principle in any of these subjects would require a book by itself. Fortunately, such books have
already been written—notably Havin and Joricke [48] and Daubechies [28]-—as well as a number of
good expository articles such as those by Benedetto [1{}] and Benedetto, Heil, and Walnut [13] and
the collections in Price [92] and Benedetto and Frazier [12]. On these maiters, therefore, we shall
be brief.

To begin, let us fix some notation and terminology. The reader may wish to proceed to §1 and
refer back as necessary. Dym and McKean [32] is a good reference for the relevant background on
Fourier analysis.

I, C, and & have their usual meanings, and T = {z € T : [z] = 1}. The Lebesgue measure
of a set £ C R” is denoted by | E|, and the charcateristic function of E is denoted by yg. Inner
products in any Hilbert space are denoted by (-, -},

Suppose p 15 a probability measure on B. The variance of p is

Vi) =§2fnf(x —a)dpix).

[f the integral on the right is finite for one value of a, then it is finite for all a, in which case it is a
quadratic function of @ whose minimum is achieved when a is the mean of p:

Mip) = fxduix}-

Similarly, if @ is a measure on B", we say that ¢ has finite variance if JI" lx? dpe(x} = oc. In this
case we define the mean M{p) € B® and the covariance matrix V() = (Vi (pe)) by

M) =fxdu(x}1 Vixm}=fy;y¢du(xl (¥ =x — Mu)).

Ifdpix) = p(x)dx with p € LY(E"), we shall call g a probability density function and write
Mip) and V{p) instead of M () and V().
We shall define the Fourier transform on (L' + L?)(R") by

Fey=57@ = f 2k £x) d.

Then the inversion theorem and Parseval formula take the form ".;F”if (¥} = Ff{—¥) and H_ﬂlz =
il £llz. In particular, if £ &€ L*(R") and || f|l2 = 1. then | £|* and | f|* are both probability density
functions on [R",

In this connection the following observation is useful. Fora, & € B", let us define

fuplx) = ™7 flx —a). (0.2)

(fapTE) = g™ 2malEd) Fre _ py = ¥iab( ), (&),
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Thus the map f — f.x preserves all L7 nomms of f and fwhﬂt shifting the centers of mass of f

and f by o and &, respectively.
We shall allow ourselves the following minor abuse of notation, glong with other variations

on the same theme: ;£ and Ejfdenulu the functions x — x; flxyand £ — £ f [Ey. Thus, for
example, (8f/0x,7 = EméEJ-ﬁ

Some of our discussion will pertain 1o Fourier analysis on groups other than B, so we briefly
recall the basic notions. (See Folland |38] for more information.} Suppose ( is a locally compact
group, equipped with a fixed left Haar measure dx. As with B”, the Haar measure of £ C & will
be denoted by |E|. If 7 is a unitary representation of & (always assumed strongly continuous} on
a Hilbert space M, , its integrated represeniation (s the representation of the Banach algebra L(G)
on M defined by

m{f1= f fixirixydy.

If (5 is a Lie group, we also have the differentiated representation of its Lie algebra g Namely, for
X e g, (X)) s the skew-adjoint operator on M, that generales the one-parameter group Tiexp 1X)
according 1o Stone’s theorem. That s,
miexp +tXu —u

!

=1im
1= =1

a
miX = —mieap 1 X
(&) P {exp r X}

on the domain of all w € Hy for which the limit exists. This domain includes the space H7 of C%
vectars for m, that is, the set of all @ € H; such that the mapx — mix)u s C™ on G. f}lff';'¢ is dense
in Hy, w(X) maps HY into itself for all X € g, and the map X — (X" 1s a homomorphism
of Lie algebras. {See. e.g., Knapp [67, pp. 51-57].)

Suppose € s either (a) Abelian, (b) compact, or (¢} unimedular, second countable, and type
[; we shall call such groups Planchere! groups. Let &, the unitary dual of G, be a set containing
exactly one member of each unitary equivalence class of irreducible unitary representations of &.
The Fourier transform of f & L'({) is the operator-valued function on G defined by

_f"m}=:r{f}.

(The conventton for defining _Fin Folland [38] is slightly different.y There is 2 canonteal topology
on & and a vnigque Borel measure dx on &, the so—called Planchere! measwre, such that

1£13 = f I £ il dor.
G :

where | - ||s denotes the Hilbert—Schmidt norm. (kmplicit in this statement is the fact that .ﬂ;:} is
Hilbert-Schmidt for almost every &) If G is Abelian, G is identified with the group of continuous
homormorphisms from €7 inte T, and Planchere] measure is a Haar measure on (7,

1. Heisenberg’s Inequality

When one asks for a precise quantitative formulation of the principle {0_1), the most common
response is the following inequatity, usually called Heisenberg's inequalitv. This result does not
actually appear in Heisenberg’s paper |51], which pives an incisive analysis of the physics of the
upcertainty principle but contains little mathematical preciston. This amission, however, was soon
rectified by Kennard [66] and Weyl [118, Appendix 1] {wha credits the result to Paali).

Theorem 1.1.
el Byand | flz =1, then
1
16w

ViRV =
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In other words, for any [ € LX(B) and anya, b € B,

' =
i fhs

flzx ~a:|3|f{xn|1dxf|:$ ~ 0y If I g = {1.2)
I

Equality holds in {1.2) if and anly if f(x) = Ce™itrg=re=aV gor come C € Cand y = O,

Proof. By using the transformation {0.2) we may assume that a = » = (), and clearly we
may also assume that the inteprals in {1.2) are finite. Since (f'J(5) = 2wit fi&), the finiteness
of [|& ﬁ: implies that f is absolutely continuous and ' & L. The dervative of |f|* = Ff is
2 Re ff.soif —o0 = ¢ = o = 2, integration by parts yields

o L o
2 REf 2fla)fix)dz = xl.f(xJi“L *f | F{x)]* dx.

Since f, xf, and f' are afl in L?, the integrals in this equalily approach {inite limits as ¢ — —o0
or  — oo and henee so do o fic)|? and 4| f{d)|?. The laier limits must be zero, for otherwise
| Fx))? would be comparable to x~" for large x and § would not be in L2, Therefore,

f |Fx)) dx = =2 Ruf xfix) Fiixidx. 1.3

] —ag

Tnequality 1.2) now tollows from the Schwars ineguality and the Planchere! fonnuda:
11824 [ Arepas [17wias = 16e [ Arwra [@ifore.

Equality holds bere if and only if £ is a real muitiple of xf, say f'(x) = —2yxf{x) with y € B
This inplies that () = Ce 7, and of coursé » must be positive for f wbein L2, O

An anatopous result (Corollary 2.6) hoids for functions on B*, but the proof is technically
harder because the square-imtegrability of the distribution derivatives #f/8x, does not guarantee the
continuity of f. Ope must first work under the assumption that f is smooth and rapidly decaying
at infiniry and then apply an approximation areuwment. The (somewhat lengthy) details can he
found in Benedetta [10, Appendix A]. We shall present this argument in an abstract setting in 42.
{Alternatively, one can reduce 1o the one-dimensicnal case by invoking the Stone—von Naumann
theurem; see Folland |37, §1.5].)

2. The Uncertainty Inequality in Hilbert Space

Heisenberg's inequatity (1.2) 15 an instance of a more general inequality concerning selfadjoint
operaters on & Hilbert space, which also has an interpretation in terms of quantum observables.
Althoogh gur focus is on functions and their Fourier fransforms, we shall take a little time to discuass
this general situation, See Folland [37] for more information,

The states of a quantum mechanical systern are represented by unil veclors in an appropriate
Hilbert space K, and the observable quantities of the system are represented by selfadjoint operators
on M. The way this works is as foltows, If A is a selfadjoint operator, by the spectral theorem there
is a projection-valued measure P oo B such that A = fl d P{3). If w is a unit vecior, the map
Mol EY = (P{E)n, u) isa probability measure on B that represents the distribution of the observable
A in the state 1. The mean und variance of this measure are given by

Mipy) = f Ad PO w) = {Au, u),

Vipad = f{?'» — M) (P, ) = (A — Mz )|
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M2, ) Tepresents the expected value of A in the state u, while V{2, ) is a measure of the uncertainty
of A in the state x. In this context, the general uncerainty principle says that there is a positive
lower bound for the product of the uncertainties of two observables 4 and B in a state 4 whenever

(ABu, uy # {BAu, ul
To make this more prectse, suppose A and 5 are densely defined operators on H, with domains
D(A) and D{B). Then the domain of the product AF is

D{AB) = {u & D{B}: Bu = D{A}].
and likewise for D{BA). The commutator [4, B] is defined as
[4. Bl = A8 —BA oo Di{A B = DHABYN D(BA).

Note that D{{A, Bl} © D{A) " D(R).

Proposttion 2.1,
If A and B are selfadfoint operators and «, 8 € C,

(A — erhael (B — B = 1i[A, Blu, uy| foraliu € D([A, B]). {(2.2)
Proof. Since subtracting muitiples of the identity cperator from A and £ does not affect
[A, B], we may assumethat e = 8 =0, Ifu ¢ Di{[A. BE]).
[([A, Blu, u)| = HBu, Au} = {Au, Bu)| = 21 Im{Aw, Bu}| < 2[Au| |Bu). O

The triviality of this proof should aroeuse one’s suspicions, and indeed there is less to Proposition
2.1 than meets the eve. In the first place, 2[4, B} need not be dense in H; it can even be (0]
This rarely happens in practice, but a more subtle difficoity is lurking in the shadows. The operator
[A. 8] is usnally not closed. If we denote its closure (the operator whose graph is the closure of the
graph of [A, B)in H = H} by C, that is, € = [4, B], we would expect to have

ldu|l | Bl = %I{Cm wj| forallu e D{AY N D{BY N D{C). (2.3)

But this is generally false. For cxample, take H = L*([0, 1]); Af = {f' on the domain of
all absolutely continuous f on [0, 1] such that f* € L* and f(0) = f(1}; and Bf{x) = xf{x)
{D{F) = H). Then [A, 8] = iI on the domain of all absolutely continuous £ such that f* € L°
and f{0) = f(1) = 0. Since this domain is dense in M and [4, B] is bounded, C is simply i f on
H. But if & is the constant function |, we have Au = 0 while |(Cr, u}! = 1, in violation of (2.3).

Of course, (2.3} follows immediately from (2.2) if for any w € DAY DB ™ D{C) there
is a sequence {up}in DA, B]) such that u, — &, Aug — Aw, Buy — Bu, and Cny, - Cu; the
trouble with the above exampie is that this condition does not hold. The following theorem, a slight
extension of a result of Kraus {69] (but with a new proof}, describes an important sitwation in which
it daes.

Theorem 2.4.

Let G be a connected Lie group with Lie algebra g, and let w be a unitary representation of G
an My, Suppose that X, ¥V € g and that the Hnear span T of X, Y, and [X, ¥} is an ideal in 9. Then
23 holdswith A ==(X), B =x(¥),and C =n{[X, ¥]D.

Remark. Let 7 be the space of C™ vectors for . By results of Nelson [87], CIH> 15
essentially skew-adjoint. Since (A, B] is skew-Hermitian and [ 4, B]|H = C|HZ, it follows that
C =[4, B].

To prove Theorem 2.4, choose a sequence (¢} < C(G) such that [ ¢, = 1 for all £,
supp(g) — {1} as k — oo, and sup, [ |¢| = M < oc. It is a classic result of Girding (see
Knapp (67, p. 56]) that if & € H,, then m{ge)n € HT and a(f)u — « as k — oo, We shall
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show that if w € DMw{Z)) for all Z € 7, then 7 {Z)x{d)u — x(ZL)u for all such Z. Since
H™ o D (X), m(¥)]), the theorem then follows from the remarks preceding the statement.

Suppose then that w € DNr(Z)) for all £ e J. We first claim that w{ciu € D{x(Z)) and
m(Zimixiu = wix)m(Ad(x~ ") Z)u for all Z € Tand x € (7. Indeed, since G is generated by expg
and Ad(cxp W) = expiad W) where (ad Wi Zy = 1W, Z] € J, we have u € D (Ad{x)Z)) for al]
xr € Gand Z & J, Butthen

= :'r{x};?r{x'](exp 18 x = H{x}ﬂ:{ﬁd(x“l}Zju.
=0

d
ALZ T (x)uw = —allexp rdix)u
dt r=l

Mext, integrating hoth sides of this equation against ¢, (x}, we obtain

WAL =f¢k{x}n{x}n{Ad{x‘z}Zju dx

= mige)miZhu + f{ﬂx{x)rr(x}[rrmd(x*‘}zm — n(Z)u]dx.

Now m{dy )w (L — 7(2)u as k ~ 0o, and the second term on the right is bounded by
M sup ||w(Ad(x™"Zm — wiZ)ul.

SESUPP
Since x — Ad{x~'}Z is continuous from G to J and since Z — m(Z)u is linear and hence
continuoons from 7 1o the injte-dimensional space m(J)u, this supremum tends 10 zero as & — oo,
and we are done. |

As far ax we know, it is an open question whether the hypothesis in Theorem 2.4—that X, ¥,
and [ X, ¥] span an ideal—is necessary. In stating the theorem, one could perfectly well assume that
g = J (the case considered by Kraus [69]), but the statement as given is natural for the proof and
also for the most important application, the n-dimensional generalization of Theorem 1.1

To wit, on L*{E") we consider the selfadjoint operators F; and @; (1 < j < n) commesponding
in guanatum mechanics o the components of momentum and position (with Planck’s constant / taken
to be 1} They are defined by

i 1 af
Pif = TG FlEN = Y

e O f(x) =x; flx)

i dayg

on the domains of all £ & L? such thal $_,=_FE Lrorx;fe L*, respectively. et Py and Zori 0 are
the infinitesimal generators of the one-parameter unitary groups

Uit} Flx) = Flx+rej), Vi) fla) =™ flx),
where £; 15 the jth standard basis veclor for R". These groups fit together to make a unitary
representation o of the (2r + 1)-dimensional Heisenberg group H,, which is the group whose
underlying set is B” x B" x B and whose group law is given by
(p.g.20(p. g 2v={(p+p. g+q, 2+ +ip-d—q-p).
Its Lie algebra b, has the same underiving set, with Lie product
[(pog.20 (g g 2V =(0,0 p-¢'-q-7),
and the exponential map exp : b, — H, is the identity map in these coordinates. The represeniation
in question is
r:FI:p, g, z}fl:.r} d emrf:+2.'raq.1-+:re_ﬂ-?f{x + _IJ]I, (25]
Clearly /(1) = m{te;. 0. O} and V,{t} = m (0}, re,, O); thus, il we set
X;=1{e;,0,0, Y;=(0,e,0 Z=(0.01,
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we have
o(X;)=2ri P, a(V;) =2miQ;, o({X;,. ¥il =olZ) = 2mil.

For each j, the span of X;, ¥, and £ is an ideal in h,,, so Theorem 2.4 applies to give the following
result.

Corollary 2.6.
Ffel* B abeR . andl = j=n,

4
ffx,- —a, | f(x) dx f(&; - b FE)F dE = %~

The case n = [ of Corollary 2.6 is of course Theorem 1.1, The basic integration-by-parts
argument in the proof of Theorem 1.1 finds its general expression in Proposition 2.1, and the ap-
proximation argument needed to finish the proof in dimensions n > 1 is embodied in Theorem 2.4,
If one works out the proof of Theorem 2.4 for the particular case considered here, one finds that the
space of C™ vectors for the representation & in (2.5) is simply the Schwartz class §{R") and the
approximation procedure in the proof of Theorem 2.4 amounts to approximating L? functions by
Schwartz functions in the obvious way, that is convolving with a smooth bump function and then
multiplying by a smooth cuteff function. (More precisely, this is the result if one takes the functions
¢ in the proof to be of the form ¢, (p. 4. 2) = e "7 9$! (pYb] () ().}

In general, two selfadjoint operators A and B on a Hilbert space M suchthat[A, B] = (2=i)~'/
are said in quantum mechanics o be canonically conjugate. In this case the prescription (X} =
2riA, m(¥) = 2mi B, w{Z) = Zwil defines a representation of the Lie algebra iy, Theorem 2.4
implies that one has an uncertainty inequalicy

flae 1
4

(A —aull (B — Blu| = (v e H) (2.7
{with the understanding that the left side is infinite if u ¢ DA} or u & D{B)) provided rhar the
representation & of ) exponentiates to a unitary representation of ). But the example following
Propasition 2.1 shows that this hypothesis is not a mere formaliry.

Taking the square root of both sides in Corollary 2.6, summing over j, and using the Schwarz
inequaliry for vectors in C", we arrive at the following rn-dimensional form of Heisenberg's inequality.
We shall obtain an improved version of it in §5.

Corollary 2.8.
IFfel¥R anda,be R,

2
flx - aﬁmrn’-dxf |& — b (&) dE = lg?ufu;. (2.9)

When specialized to radial functions, Corollary 2.8 is equivalent to an inequality conceming
Hankel transforms of integer or half-integer order. The generalization to Hankel transforms of
arbitrary positive order has been established by Bowie [21].

Gesztesy and Pittner [42] give further conditions under which (2.3} is valid, with examples
and counterexamples. Chistyakov [24] has some generalizations of Proposition 2.1 to n-tuples of
operators. Ishigaki [59] discusses relationships between uncertainty inequalities of the type (2.7) and
other conditions on the operators 4 and £. Lahti and Maczynski [71] examine the role of uncertainty
inequalities in general quantum logics. Kempf [65] derives an uncertainty inequality for operators
satisfying a quantum-group analogue of the canonical commutation refation. Helffer and Nourrigat
[52] prove a Heisenberg-type inequality for systems of pseudodifferential operators satisfying a gen-
eralized form of the canonical commutation relations. Spera [109] discusses uncertainty mequalities



214 . B. Folland and A. Sitaram

in the context of geometric quantization of Kihler manifolds and shows that certain analogues of
Gaussian wave packets provide the extremal functions.

3. Variations on Heisenberg’s Inequality

In this section we return to the guestion of giving precise formulations of the principle (0.1}
by comsidering some generalizations and modifications of Theorem 1.1. For this discussion we shall
avail ourselves of the transformation {(0.2) at the outset to remove the constants « and b from Theorem

1.1 and write the conclusion in the form

||f]|2

lxfil21€ Fllz = (3.1)

One obvious way to extend (3.1) is to replace L* norms by L? norms or the factors of x and &
by other powers of x and £. For example, we can obtain the generalization

axsl, ||$f||n_@ (=<p=<2)

by starting with (1.3} and applying first Hilder’s inequality,
I < 20 11 1
and then the Hausdorff-Young inequality together with the Fourier inversion theorem,
1 < 1CFTp = 2505 Fll,.
More generally, one can consider inequalities of the form
I Ne £ = KiFle (f € L3R), (3:2)

wherea, b & (0, o), p. g € [1, ool and p € (0, 1}, Two observations are crucial to the understand-
ing of (3.2). First, invariance under dilations imposes a restriction on the parameters a. b, p. g, ;
and second, under this restriction, (3.2} is equivalent to an analogous “additive™ inequality. To be
precise, we have the following lemma,

Lemma 3.3,
A necessary condition for the validity of (3.2) is that
' 1 1 1 1
. —— e | =(1=-y)|b+=-==1. 3.4)
r(a+p 2) { /.(+q 2) (3.4)
Moreover, if {3.4) is satisfied, (3.2} is equivalent 1o
vl fl, + =l 2 KIfl: (€ LXRY. (3.5)

Proof, Let f.ix) = ficx) (c = 0). If we substitute f,. for f in (3.2), we obtain

—pla+ilfpi(l—y b+ /gi—1 Fal-r -1/2
P AR U U LR P }|||x| f| |||E| _rh = K7 2

IF this is to be true for all £, the exponents of ¢ on the left and fight must be equal, that is, (3.4} must
hoid.

Inequality (3.2) imphes (3.5) because of the elementary inequality s¥¢'"% < ys + (1 — ¥t
{"‘_‘.I =0, y € (0, 1)} On the other hand, if we substitute f for f in (3.5) and multiply through by
c'?, we obtain

yc—a—i|,"P3+[]f2}§|x|ﬂf||P Ffl= ?}CHUM'I_“"::] "]Elhﬂh‘ = K”f”}
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If (3.5} is valid, then this inequality holds for all ¢ = 0, and under condition (3.4} it is easily verified
that the minimum value of the left side (as a function of ¢} 1s nothing but the left side of (3.2), U

It therefore suffices to study inequalities of the form (3.5}, and if one is not worried about the
sharpness of the constant £, one can dispense with the factors of ¢ and (1 — ) on the left. Here
there is no restriction of the form (3.4), and the definitive result has been obtained by Cowling and
Price [26].

Theorem 3.6.
Suppose p, g €1, co] and a, b = 0. There is a constant K such that
il-’flﬁfiﬁr + "lElbﬂL = K[ fl: (3.7)
for all tempered funciions [ such that fi's also a funcron, if and ondy if
1 1 1 1
a}E—E and b}i—q-'. (3.8)

Consequently, (3.2) i valid {(with perhaps a different constant K) if and onfy if (3.4) and (3.8) both
hold.

The proof of this theorem in [26] involves a fair amount of work, but it requires only standard
real-variable machinery together with the fact that f_ﬁ s | f (x)?dx = C; = | when [ f|lz = 1 and
fis supported in a fixed bounded set, which we shall prove (Theorem 8.4). The case p =g = 2,
a = b > 0 of (3.2) was first obtained via different methods by Hirschman [54].

Cowling and Price [26] also prove generalizations of (3.7} in which |x|? and |£|® are replaced
by more general weight functions. Generalizations of (3.2) of the same sort can be found in Benedernto
[10}, [11] and Heinig and Smith [50].

De Bruijn [29] observed that a sharpened form of Theorem 1.1 can be derived using the Hermite

functions
A A BN :
h - mxt 7 p=lmat \
pix) = e (?.J_) oo (e i

{The normalizations here are a bit different from the usual ones.) It is well known (see Folland [37,
§1.71) that (i) {h:]5" is an orthonormal basis for L*(R), (ii) !:t = i 74y, and (i) 2.7 che(x) =
Sk L (x) + -..-"—-.F:g_]{x} Given f € L*(R), if one expands f in a Hermile senis according
to (i) and then uses (ii} and (iii) to obtain the corresponding expansions of £f and £ £, one easily
arrives at the identity

- 1 =
flxfl3 + 1EFIE = = ;m + DILf R (3.9)

Since [ 117 = Y57 1. he})?, this implies that

-
|| |r'i

"-’:fllz I|'?."fi|2 =

with equality if and only if fix) = chglx) = e~ This in wm implies Theorem 1.1 by the
dilarion argument used to derive (3.2} from (3.5). Another sharpened form of Theorem 1.1 using
Hermite functions can be found in Mustard [83].

The identity (3.9} also yields an improvement on Theorem 1.1 for odd functions. Namely, if
Fis odd, then {f, he) = 0 for k even, so

(fi=x)==f(x).

— 3\FIR
e 13 + IEFIS = ';;'
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with equality if and only ift f{x) = chi{x) = Cxe ™ As above, this implies that

-~ 3
bef Il e Flz = "f B fer) = - oo,

l‘

with equality if and only if f = cxe™¥"_ (Note that if f is odd, then | f|? and |_F‘|2 are centered at
0, so the left side of (1.2} is minimized at @ = & = 0.) Skoog [1U2] has used this result to derive an
improved uncertainty inequality for functions vanishing on a half-line.

The Hermite function h, is the eigenfunction with eigenvalue 2w (2% + 1) of the Hermite
operator —(d,/dx)* + 4w*x>. Thus the extremal functions for Heisenberg's inequality (1.2) are the
ground states (eigenfunctions of lowest eigenvalues) for the operators —(d/dx)* + cx? (¢ = OV,
These are the quantum Hamiltonians for particles moving in a potential well ¥ {x) = ex?, and it is
reasonable to expect the ground states for —(d/dx}* + V(x) also to have a rather small uncertainty
product for many other potentials V. Some precise results along these lines have been obtained by
Kahane, Lévy-Leblond, and Sjéstrand [61]. Moreover, Borchi and Marsaglia [19] have observed
that one can find functions § supported in a finite interval [—a, a] (and with || ]2 = 1) for which
Vi fI* }V{]_ﬁ is arbitrari]y close to 1/16m? by taking f to be the ground state for a Hennite
operator —{d/dx)* + cx* on [—a, a] subject to the boundary condition f{—a) = f(a) =

Theorem 1.1 is somewhat unsatisfactory from the point of view of signal analyms fnr the
following reason. Suppose f represents the amplitude of a signal for convenience we assume

[filz = 1. f must be real-valued, which means that f(—é} = f{’g‘j and in particular lf I* is even,
Thus, to say that a signal is localized in frequency can only mean that | |1 has a peak at some point
&y and an equal one at —&;. Butif & is large, the varance V(| f F} will be large even if the peaks are
narrow, so Heisenberg's inequality provides little information. One way around this difficulty is to
use the local uncertainty inequalities that we shall discuss in the next section. Ancther one, suggested
by Gabor [40], 1s to replace f by the “complex signal” f + i H f (H being the Hilbert transform),
whose Fourier transform 18 2§ jin.cp. A third one is to to consider the “one-sided variance”

vraF = inf f (& — b FiE) dt

instead of V(If ). Hﬂbarg and Rothe [53] have shown that for real f with || f]|]2 = 1, the prod-
uct V(| FIHVH( f I*) has a positive lower bound, which is the smallest eigenvalue of a certain
Sturm-Liguville problem, and the extremnal functions are the Fourier transforms of the correspond-
ing eigenfunctions. See also Kay and Silverman [64] for the earlier history of this problem.

Uffink and Hilgevoord [115, 116] have developed a different version of the uncertainty prin-
ciple. Given two fixed numbers e, 8 € (0, 13, for a function f & L?{B) with || filz = 1 they define
the mean width W f) and the mean peak widih w{f) of f io be, respectively, the smallest W and
the smallest w such that

W2

max » ) dx = a, ‘ff{x—w}md.t = f.
=Wl

They then derive inequalities relating W({ /) to w{f} and argue that these inequalities capture the

physics of the uncertainty principle more effectively than Heisenberg's inequality.

Garofalo and Lanconelli [41], Thangavelu [114], and Sitaram, Sundari, and Thangavelu [101]
have obtained three related but inequivalent analogues of Heisenberg's inequality for functions on the
Heisenberg group H,. Price and Sitaram [97] and Hogan [56] have obtained inequalities of the same
sort for functions on symmetric spaces of noncompact type and locally compact Abelian groups,
respectively, and Thangavelu [114] bas some related results for Hermite and Laguerre expansions.
MNahmod [84] bas derived an uncertainty inequality in a very general setting that refates to the spectral
geometry of elliptic and subelliptic operators.
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4. Local Uncertainty Inequalities

Heisenberg's inequality says that if f is highly localized, then fcannﬂt be concentrated near
a single point, but it does not preclude f from being concentrated in a small neighborhood of two or
moare widely separated points, In fact, the latter phenomenon cannot oceur either, and it is the object
of local uncertainty inequalities to make this precise.

The first such inequalities were obrained by Faris [34], and they were subsequently sharpened
and generalized by Price [91, 93]. The principal results in the setting of L.? norms arc summarized
in the following theorem. As in §3, we implicitly use (0.2) to reduce to the case where f and fare
centered at the origin.

Theorem 4.1.
i. fFol<o < zl"‘- there is a constant K, such that for all f € LY (R") and all measurable
ECR,

fﬁ 1< KoJER 1 £

i, Jfu= %n. there is a constant K, such that for all f € LY{B") and all measurable E © B",

Ri@
.

fE IFIE < Kl EL| £ Pl

Part § is proved in Price (91} and Price and Sitaram [97}], and part i is proved in Price [93].
For both parts, the case & = 1 is due to Faris [34]; refated resulis are in Benedetto [10]. Price [91]
also contains a peneralization involving the L? norm of [x|* f rather than the L norm. As in the
preceding section, the relations among the exponents in these inequalities are forced by homogeneity

considerations. As discussed in [93], examples show that the restriction e = %n is necessary for part

ii; hence part & also fails foro = zln, and it is a simple exercise to see that i cannot hold for e = %n.
The constants £, can be described quite explicitly, but we shall not do so here.
Let us indicate the proof of part i. Let x, denote the characteristic function of [x ; |x] < r}

and 3/ = 1 — x,. Then for any # = {} we can write

12
(fE 1fi2) = {fxelz = WFxFxela+10Fx0xellz

ZIEM N 0T o + 1F X0 2

Now
N eV loe = U bty = o3 oA tx1" £ |5 = Car™2|1xi* £,
and
1 xrllz = (=7 | Diel= £, = v 1= £ b
S0

-a 1“’.2 1 1
(f |f'|') < (GRlEN ™2 1 ix* £ -
E

The desired result is oblained by choosing r 20 as to minimize the quantity on the right.
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Each of the inequalities in Theorem 4.1, for any fixed value of o, implies a corresponding
global uncertainty inequality of the tvpe (3.2). For example, if 0 <= @ < %n. we have

VIR = 12 = f it + f T
Ej=r §|=r

= Kool s 1 + e 7Y
Choosing r so as to minimize the expression on the right, we obtain
1FE < K2er s ], g1 7,

A similar argument yields the same result when ¢ = %n, Thus, local uncertainty inequalities are
qualitatively stronger than the global ones of §3. It should be noted, however, that in the case o = 1
the constant K| thus obtained is not the optimal constant 47 /n of Corollary 2.8, even if one uses the
best constant K, in Theorem 4.1.

The form of the inequalities in Theorem 4.1 adapts itself readily 1o other Planchere]l groups.
Indeed, the analogue of part i for such a group should be

f 1Ftmlds dr < Kol EPP w1} (0 <6 < ), (4.2)
E

where | E| is the Planchere]l measure of £ and w is a weight function on G related to the distance to
the group identity or perhaps the distance to a suitable “thin™ subset of G. Results of this sort have
been obtained in the following sitarions:

1. (Price and Racki [94]) & is the n-torus T" and wix) = |x|®, |x| being the Euclidean distance
from x to the identity. There is also a generalization with [jw?® f||2 replaced by {jw?® f|; e

2. (Price and Sitaram [96]) G is a compact metric group and wi{x) is the measure of the smallest
ball about the identity containing x. Here the | E| on the right, however, i3 not Plancherel
measure but a somewhat lareer measure. An analogue for functions on compact Riemannian
manifolds, relative to the spectral decomposition of the Laplacian, is also given.

3. {Price and Sitaram [97]) & is either a noncompact semisimple Lie group or a Euclidean
motion group, and wix) is the measure of the set of points whose distance {in a suiable
sense) to the maximal compact subgroup X of & is at most that of x. Here, however, the
authors establish (4.2} only for K -finite functions; this restriction is necessary to obtain a
bound for H_ﬁ:r}iIHs i terms of || £

4. (Price and Sitaram [97]) (G is the Heisenberg group A, described in §2 and wip, g, 2} = |z].
Another version of (4.2) for H,, with w(p, 9,2) = (({pI* +ig|>)* + 1z1>)"* but involving
a more refined description of the Fourier transform on H,,, appears in [101].

5. (Hogan [56]) G is a locally compact Abelian group.

In all of these cases, the basic idea of the proof is similar o that given above, but the complete
argument involves results from the representation theory of the group in question.

We retum to B?. One consequence of Theorem 4.2 is that if ||f||1 = 1 and E is the complement
of a set of small measure, a sufficient!y smali upper bound on | el _f| will force a positive lower bound
on the variance V(| f[*). Strichartz [110] has shown that a similar result holds for much “thinner”
sets E provided that they are “evenly distributed.” For example, if £ is the union of a collection
of evenly spaced concentric spheres or a collection of évenly spaced parallel hyperplanes and o
denotes surface measure on E, a sufficiently small bound on JI' wE |2 do will imply a pusuwe lower
bound on V{|fI*}. (It is no restriction to assume that V(i f|?) < oo, which means that f belongs
to the Sobolev space L?; this is enough to guarantee that the restriction of f o a codimension-
one submanifold is well defined.) Strichartz [11(}] also has & similar resolt for functions f on
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the umit sphere 5, < B™ If § = 3 £ is the expansion of f in spherical harmonics and E is
an “evenly spaced” subset of Z°, a small upper bound on ¥ ¢ || fx ||§ will imply a positive lower
bound on f N sin® di{x)| fix)|} der{x) where d(x) is the distance from x to a fixed x5  5.. An
analogue of Strichartz’s theorem for functions on real hyperbolic r-space has besn obtained by
Sun [1121. N

I the function f is supported in a bounded ser, one easily obtains bounds on f and its derivatives
that limit the concentration of f in any small set and may provide lower bounds for the concentration
t}ffin sufficiently large sets. Forexample, one has the following simpie local uncertainty inequality:

fgu?ﬁ < EINFIZ < |ELIFIR = ElHx: Flx) #0115 (4.3}

A local uncertainty inequaliry in this spirit, but applying in some cases (0 sets £ of infinite Plancherei
measure, has been obtained for the sphencal Fourier transform on certain noncompact symmetric
spaces by Shahshahani [98].

We close by quoting an interesting theorem of Logvinenko and Sereda [79] and Kacnel'son
I (see also Havin and Joricke [48]), obtainad by studving LP norme on spaces of entire functions
and then applying the Paley—Wiener theorem. If £ < BY and 1| = p < 20, the following conditions
are equivalent: (i) for every bounded B < B" there exists ¢ = 0 such that f, = I_EI"'H|FI = f‘;ﬁj for all
f supported in B, and (ii) there exist » = Oand acube X < B suchthat [EN(K +x)| = y for
all £ € B",

5. Logarithmic Uneertainty Inequalities

Suppose o is a probability density function on B". Following Shannon [92], we define the
entropy of p to be

Elpy= —f,a(.r}lt}g plx)dx.

This notion of entropy is related but not identical 1o the more familiar entropy — % plog p; {also
due 1o Shannon [99]} of a probability distribution on a discrete sample space, Unlike the latter, E{ o)
can have any value in [—oc, oc], and it can aiso be undefined (i.e., of the form o — oo} Clearly
any sharp peaks im o will tend to make E(p) negarive, whereas a slowly decaying tail will tend to
make E(p) positive; hence £(p) is 2 measure of how localized p is. (See Bialynicki-Birula [ 17] for
2 discussion of the significance of entropy in quantum mechanics.) E{g) is related to the covariance
matrix ¥{g) as follows.

Theorem 5.1.
if o is @ probability density function on B" with finite variance, then E(p) is well defined and

E{p} < }log[(2me)" det Vip)]. (5.2)

This theorem is due to Shaneon [99], who arpued by proposing to maximize £{p) among all
2 with a given vanance. He solved a calculus of variations problem to find that the critical points for
E are the Gaussians, computed E(p) for g Gaossian, and claimed {5.2) as a result. That the critical
peints actually give the global maximurm can be established by using the concavity of the functionai
£—a point Shanpon omitted to mention. Rather than give the details, we shall present an elegam
proof that was communicated 1o us by W, Beckner.

By composing g with a translation and a rotation, which does not affect the guaneities in (5,2},
we may assume that M (n) = (and that the covariance matrix Vi (p) = [ r;x,0(x) dx is diagonal.
Moreover, if p{x} is replaced by

EL---€nf (81X, ooy Cpnd (o1, ooy on = 00,
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then both sides of {5.2) decrease by the amount 3 log ¢;: so by taking ¢; = /V;:(p) we may even
asswme that ¥{p) = 1. Let

gix) = {EIJ”-’Qelx:J'“Ep{x}, dyix) = {zr}*ﬂ.fzf—:rfzﬂ s

sothat f ¢ dy = [ pdx = 1. Since y is a probability measure and ¢ log ¢ is a convex function of
t. Jensen's inequality pives

nz[faady]iog[fwy]sfmgwy

[
= fp(x} [g— log 27 + E|x|2 + g P':x}:| dx

R 1
= E log 2r + E Z Vj_,'{ﬂ} — E{g}h

Since Vi(p) = 1 = det ¥(p}, (5.2} follows.
The fundamental uncerrainty inequality in terms of entropy is the following.

Thegrem 5.3,
If e LHB Y and | fllz = 1, we have

EQFD + EG P = n(t —tog2)
whenever the left side is well defined.
Hirschman [54) conjeciured Theorem 5.3 but was able o prove only the weaker mequality
EQFP + EQFR) z 0. (5.4)

(Leipnik [76] independently discoversd Theoremn 3.3, bui his argurnent conlaing e same sorl of
2ap as Shannon's proof of Theorem 5.1, and concavity is no help here.) Hirschman's proof of (5.4}
consists of combining the Hausdortf~-Young inequality | fll; = ifl,(lsp =227 +g7 1= 1)
with the following tnvial but useful lemm.

Lemma 5.5,
Suppose (1) = r(t) fora = ¢ = b and $lay = via). if & and & are differentiabie ata,
then ¢'(a) = ' (a).

If one writes the Hausdorff-Young inequality as

17 < [ f wf"*'-'ﬂ]q"l (g2 2)

and applies Lemma 3.5 (o the expressions on the left and right as functions of g (witha = 2%, assuming
J 15 such that all the integrals in question are finile for g oear 2, one immediate]y obtains (3.4). (For
the straightforward limiting argument to remove the restriction on f, we refer to Hirschman |54].)
As observed by both Beckner [6] and Biatynicki-Birula and Mycielski [18), Theorem 3.3 follows
by appl¥ing the same aroument to the shurp Hausdorff-Young inequality of Beckner [8],

IFly = p"22qB ), (Q<ps2 plegl=1), (5.6)
If one combines Theorems 5.1 and 5.3, one immediately obtains the following corollary.

Corollary 5.7,
FrelsBYand|flz= 1.

det V(| FP1det V(I FIP) = (16x®) "
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Coroilary 5.7 i3 a strengthening of Corollary 2.8, for if p is any probability density function
on [E°,

[det VigH'" < i [|x - Mip)*pix) dx.

{This is just the inequality of arithmetic and geometric means applied to the eigenvalues of the matrix

V{p}.) Hence Theorem 5.3 can be regarded as a sharp form of Heisenberg’s inequality.
The preceding results are discussed in Heinig and Smith [50], which also contains a version

of Theorem 3.3 with weighted norms.

Since the proof of Heisenberg's inequality is of an elementary nature, whersas Beckner's
inequality (5.6) is a deep theorem, one may wonder whether we have used heavy machinery merely
to obtain a mild improvement on Heisenberg's inequality or whether Theorem 5.3 is really a more
powerful result. In fact, the latter alternative 12 the case. As Beckner [7] has shown, Theorem 5.3
yields a short proof of a remarkable improvement on Gross®s logarithmic Sobolev inequality, itself a
deep theorem closely related to (5.6) and Neison's hypercontractivity theorem. (See Gross [44, 45]
and Beckner [a].) Indeed, let

dy(x) = 2ny e W2y (x e BY)
and define the unitary map T 1 L2(y) — LY(E") by
Tglx) = 2" ™ p(2n ' 2x).
If we apply Theorem 3.3 to f = Tg, use the facts that

- 1
f [EPIFlEN dE = ﬁ[ |V £ (x)i* dx

and
[VF(x)[? =220 n[ Vg 2n ') + m|xP|g 2 x|

~27 ' Relg(2m Px)x - Vg(2mx)]|e I,
and integrate the cross term in this tast expression by parts, we obtain the following theorem.

Theorem 5.8.
Suppose | gPdy = 1, and ler § = T~'FTg. Then

f 16 P Tog L 5 4 f P log I3l dy < f VgP dy. (5.9)

CGross’s inequality is (5.9) with the werm involving g omitted, which follows from (5.9) since
both terms on the left are nonnegative. {To see this, use Jensen's inequality as in the proof of Theorem
5.1 with ¢ = |g* ot |F]%.)

Beckner [7] has recently proved another logarithmic uncertainty inequality:

f|f‘:x}|2]'3‘g|x—ﬂ|d-r+fi.ﬁ$:'|2]ﬂg|5 — Bl dE = [Y(in) — Iug:r]flf{x:nﬁdx (5.10)

forall f & L2(R") for which the quantity on the left is defined, where v is the logarithmic derivative
of the gamma function. Beckner first establishes the inequality

-~ D i eriﬁ{n _D::I}
i T
flf{E}I &I dE = Filin+e)

and then applies Lemma 5.5 to get (5.10) with @ = & = {; the general case follows by using (0.2).
Like Theorem 3.3, (5.10) is related to logarithmic Sobolev inequalities and implies Heisenberg’s
ineguality.

flffolzixI"dx 0D<og<n)
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6. Wigner Distributions and Ambiguity Functions

In this section we discuss some uncertainty relations for functions on R" that are expressed
in rerms of certain functions on x&-space {“phase space™). For a more detailed explanation of these
ideas, including several calculations that are elided here, we refer the reader to Folland [37, §51.4
and 1.8].

To begin with, we consider the matrix elements of the phase-space translations

a(p.q.0)fix) = TP fix 4 p),

{Here o is the representation of &, given by (2.5). Since o(p, ¢. 2) = ™o {p, g, 1), no essential
information is lost by restricting to z = 0.) That is, for f, g € L*(B"), we define

A(f.zXp.q)=la(p.q.0)f g} = f e f(y + 1p)g(y — 1p) dy. (6.1)

A(f, g3 is called the Fourfer—Wigner transform of f and g in Folland [37]; in the radar engineering
literature it is known as the cross ambiguity funcrion of § and g, and A(f, f) is the ambiguity
function of f. Also, A(f, g} differs only by a factor of #™'#7 and the substitution g — —q from the
windowed Fourier transform or shori-time Fourler ransform

Feflp.q)= fﬂ‘?‘”‘?""g{}‘ - p)fiydy.
The Fourier transform of A( f, g} is the Wigner transform of f and g, namely,

W(f, glE x) = f[ e MEPTTDA(f, £)(p. q) dpdg

= fe“'“'g""f(x + %p}g(x - %p}ldp.

(The second equality follows from the Fourier inversion theorem.) Clearly A(f, 2) and W{f, g) are
related not only by the Fourier transform but by the more elementary identity

WIf g)E, x) =2"A(f. g)2x, —25)  [g(x) = g{-x)]. (6.2)

W F, F)is called the Wigner distribution of f and has the following quantum interpretation.
Suppose || f Iz = 1, so f represents a quantum state. We would like to speak of the joint distribution
£ of momentum F and position £ in the state f. Such a thing does not exist because the uncertainty
principle forbids the simultaneous determination of momentum and position, but if it did, its inverse
Fourier transform S(p, q) = [ ™7 8ra=in(e 1)1 dE dx ought to be the expected value of the
observable exp2wi(p - P + ¢ - () in the state . But if we interpret £ and @ as the operators
(27i)~18/0x and x as in §2, exp 2wi{p- P +g - Q) is nothing but o{ p, g, 0}, so the desired expected
value is A(f, fi{p, g). Hence g ought to be W{f, f).

This almost works! In general, W7, f) is not a probability distribution function because it
can assume negative values, but it is not hard to verify that it has the right marginal distributions for
position and momentumn in the state f

f W(f, F)E x)dE = | fl0f, f W(f, F)E, x)dx = 1 FE). (6.3)
Therefore, W( £, f) can be considered a “phase-space portrait” of the function f. More classically,

if n =1 and f is interpreted as the amplitude of a signal, W(f, f) 15 the “time-frequency portrait”
of f; de Bruijn [297 calls it the “musical score™ of
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In this setting, the uncertainty principle says that W{f. f} cannot be too sharply localized,
Indeed, by (6.3), Corcllary 2.8, and the inequality o® + f° = 2a8,

[[ax—a?+ g —ptwis i vasax
Sl A
= [ e —afiswirax+ [ 1§ -1 Feras = L.

which is the analopue of Heisenberg's inequality for Wigner distributions.

Additional inequalities of this type can be found in de Bruijn [29]. Another intriguing resul of
de Bruijn [29] {see also Folland [37, §1.8]} is the following, .{-"Ls we have stated above, W{f, f)can
have negative values, However, let us set pix} = eme~m=F 4 Gaussian of total mass | whose
peak has width roughly €. Then

Woslf FHE 2} = f W(f fUE =0 x—wirnpiyidady =0 {6.3)

farall £ € L? if and only if ed = 2. Inequality (6.5) guarantees that W, ;( , ) is a genuine prob-
ability distribution function. Intuitively, it is the joint distribution of “momentum to within an ermor
£ and “position ta within an error 8" and the uncerainty principle is the fact that this makes sense
precisely when 4 = 2. Further resulis aiong these lines can be found in Ali and Prugovecki [1] and
Busch [22].

Oiher uncertainty inequalities for W{{, f), or more generally W{f, g), can be obtained by
estimating its L° norm. By (6.2), this is equivalent to estimating the L° nomm of A{ £, g). for which
the formulas tum out to be & Titde simpler. First, it is obvious from (6.1} and the Schwarz inequality
that

IALS gMl = I Fl2ll gl (6.6)
It is less obvious, but still easy to verify, that
IACS &Mz = Ef N2l g2 (6.7

Thus f |ACF, g)1F = [ACF g% E] < IACF g)IFIE:, so the mass of |A(f, g)[* cannor be con-
centrated in any set of small measure.

If we normalize [ and g so that || fllzllgllz = 1, we have |A(S g¥ = 1 by (6.6} and (6,7},
so [ |A(f, g)i” is a decreasing function of p. The rate of decrease 1s less rapid when A(f, g) is
more concentrated; the extreme case (not actually achieved) would be when |A(f, g)| = xg with
|E| = 1. Hence the uncertainty principle can be embodied in a lower bound for the rate of decrease
of [ |A(f, gh|¥ as p increases, In fact, Lieb [78] has shown that

f|Aff, g))” = 2/ pY | faklels ifp =2
(6.5)

fmm@?awwwﬁuwtwsl

{Lieb [78] deals explicitly only with the case » = 1, but the passage 1w higher dimensions is
straightforward. By (6.2), the same estimates hold for { {W (/. g)|” with an extra factor of 2°lP~%
on the right.) Lieb [78] also has generalizations of these estimates in which the L% nomms of £ and
£ are replaced by L% norms for other values of .

By applying Lemma 5.5 to {5.8), one obtains the entropy inequality

—fﬂﬁﬂﬁwWﬁﬂ@ﬂmemmmm=L (6.9)
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In a somewhat different form (more general in one respect and less so in another), this had been
conjectured by Wehrl and proved by Lieh in an earlier paper [77], where one can also find a discussion
of its physical interpretation. As was first shown by Grabowski [43], one can deduce Heisenberg's
inequality from (6.%). The simplest way is to translate {6.9) into an inequality for W{f, g) via (6.2),
set g = f, and apply Theorem 5.1 to obtain (6.4).

In quantum statistical mechanics one considers not only “pure states™ defined by unit vectors
£ € L? but also "mixed states” defined by positive trace-class operators T of trace 1, that is,
operaiors of the form T = 3 ¢; Py, where {f;} is an orthonormal sequence, Py, is the orthogonal
projection onto Cf,, ¢; = 0, and 3 c; = 1. (The pure states are those for which the sequence
{f;} has only a single term f.} The Wigner distribution of such an operator T' is defined to be
W(T) =3 ¢;W(f;. f;). This again resembles a probability distribution function except that it can
have negartive values. Assuming that its second moments are finite, one can consider its mean and
covariance

M = f eW(T)(z)dz, Vie = f LG Wi(T)z) dz z=(§.xh L =z- M)

Marcowich [85] has made an interesting study of the uncertainty principle in terms of the martrix V.
He characterizes those real positive definite matrices V that are covariances of Wigner distributions,
gives a symplectically invariant formulation of Heisenberg’s inequality for the state T in terms of
invariants of ¥, and interprets it in terms of the geometry of the quadratic form defined by V.

-

7. Qualitative Uncertainty Principles

By a “qualitative uncertainty principle” we mean a theorem that, without giving quantitative
estimates for f and f, says f and f cannot both be too localized unless f = 0. Here “too localized™
can be taken in several senses, of which we shall focus on two: restrictions on the sets where f and
_;?arc nonzero, and bounds on the rate of decay of f and _;?at infinity.

Owr first group of results concerns the sets

L(f)=1{x: fx)£0) and E(f)=(E: f(E) #0).
The first simple result, valid on any locally compact Abelian group, is that
0#fel’ = IZ(NIZHz1 (7.1

This follows immediately from (4.3) by taking £ = E{ﬁ. Equation (7.1} was first derived by
Matolcsi and Sziics [B0]; it has been generakized 1o commutative hypergroups by Kumar [70}, On
E", however, something much stronger is true.

Theorem 7.2, 5
If f e L'B") and [Z()|Z(f)] < o0, then f = 0.

_(Note that if f € L? (p > 1) and |Z(f}| < oo, then f € L' and that if f € L' and
|E(f)] < oc, then £ € L7 forall p = 1; hence the theorem applies equally to LF functions.) This
theorem is due to Benedicks [16], whose elegant proof, first circulated as a prepring in 1974 but not
formally published for another decade, we reproduce below. It relies on the following form of the
Poisson summation formula, the proof of which is an amusing exercise {or see Benedetto, Heil, and
Walnut [13]).

Lemma 7.3.
If f € L'(R"), the series ¢(x) = ¥, o fx +k) converges in L' (T"), and the Foutrier series

of §is 3 gz Fikyetmiks,



The Uincertawnty Princiole 22

To prove Theorem 7.2, we may assume that |£( £} < 1 by composing [ with a dilation. We
have

fm 3 rap 0t = [ it = 2 < oo,

l " LT

fﬂ Y Xsoplx + bdx = fn xzin(xdx = (A < 1.
: ,

LI pe2a
These inequalities imply, respectively, that

i. Thereexists £ o [0 11 with | £7 = 1 such that E,{E, F}{a +&3 = o fora € £, and henee
_;l"[a + kY £ 0 for only finitely many & ifg € E;

ii. There exists F < [0, 11" with |F| = Osuchthat 3 xg.pi{x + k) =0 forx & F. and hence
fix+Ey=0forallkifx c F,

Civena € £, let
Bux) = 3 flx+ ke e,

L33 A

By Lemma 7.3, ¢, & L1T") and the Fourter serivs of ¢, is ¥ Fla+k)e2"%2 Sincea € E, ¢, isa
trigonometric pelynomial. In particolar, ¢, is analytic. so either g, = Qor [x : ¢, (2] = U} inrerseots
every line in a discrere set and hence ¢, # 0 ae. On the other hand, |¢,(x}] = Y lflx+hk =0
for x € F. We conclude that ¢, = D foralla € E, whence flatky=0forallae Eandk = Z.
in ather words, _||" =fae,s0 f=0

Amrein and Berthier [2] have given a different proof of Theorem 7.2, and their methods also
yicld the following complementary result: If £ and F are sets of finite measure in B", the space of
all f e LM L™ suchthat f = Bon £ and _,F ={lon F is infinite-dimensional. See also Busch [22],

There is a large literature on the existence or nonexistence of functions f on B or T subject 1o
various restrictions on () and (). We refer the reader 1o Benedicks |15], Havin and Joricke
[48], and Benedettor [9] for a fuller discussion. Here we shall just mention a few results refated to
Theorem 7.2,

I Ifd= fe Li {r) and E( f) is bounded, then jﬁ 15 the restriction of an entire function oo
i, s0 B Y Z(f) is a countable discrete set. Moreover, by the Whittakee—Shannon sampling
theoremn (see Dhym and MeKean [32, p. 1291 Benedetto [11]; o Benedetto, Heil, and
Walout {I3]), & Y, E{f‘} cannat contain sny complele arithmetic progression & + A2 with
b < {diam(Z{niL

2. (Kargacy [62] and Kargaev and Voiberg [63]) There exists a set £ C R of positive finite
meastre, such mgr ¥£ vanishes on an intervel, and & funciion f £ L' (B}, such that |20 F% =
ocand |[RY B(F)| = o

3. Melenk and Zimmerman |81] have recently given an explicit elementary construction of an
infinite-dimensional family of functions f € L' M L™ 1 €™ on ¥ such that both § and f
vanish on sets of the form [—a, @] + 3a&, where a can be specified independently for f
and 7.

It should be noted that Theorem 7.2 does not extend o distributions. Indeed, in the language
of distributions Lemma 7.3 says that the periodic delta-function ¥, .-, §(x — &} 15 its own Fourier
transform. and irs support £ has measure zero.

it is natural to conjecture the following varant of Theorem 7.2 relating to Wigner distributions:
FIZEWF, )] = oo, then f = (. As far as we know, this is an open question. but the following
partial results are available. First, from (6.3} and Theorem 7.2 it is clear that S(W{ £, ) cannot be
bounded unless §F = 0, Second, if § is either even or odd, then W f, £} is its own Fourier transform
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up o a linear change of variable by (6.2); hence in these cases the conjecture follows by applying
Theorem 7.2 o W( £, ). {(This ix an unpublished remark of D. Mustard.)

Theorem 7.2 can be generalized 1o many other locally compact groups. A ligtle experimen-
tation with examples suggests the following formulation of a qualitative uncertainty principle for a
Flancherel group &. For £ C @ and F ¢ @ let |E] and | F| denote the Haar measure of E and the
Planchers| measure of F, respectively.

Suppose f € LYG). If I(f)] < |G| and |E([)| < |G|, then f = 0. (7.4)

If & = T", (7.4) stimply says that a nonzero trigonometric polynomial cannol vanish on a set
of positive measure, a fact that we have already noted in the course of proving Theorem 7.2. The
same reasoning shows that (7.4) is valid when G is any connected compact Lie group. The following
additionz] resufts are known.

L. (Hogan {57]) Suppose G is infinite and compact. Then {7.4) holds if and only if & is
connected. Corollary: If & is a discrere Abelian group, (1.4) holds precisely when G is
connected or, equivalently, when G is torsion-free.

2. (Hopgan [55], [57]) If & is Abelian, noncompact, and nondiscrete, (7.4) holds precisely
when the identity component of & is noncompact. Hogan [57] also has an extension of
thiz resuit that applies to certain non-Abelian groups, and Kumar [70} has generalized it to
certain commutative hypergroups (but see Voit | 117, Remark 2 4| for comments on Kumar's
hypotheses).

3. (Price and Sitaram [95] and Sitaram, Sundari, and Thangavelu {101]) Assertion (7.4} is valid
for the Heisenberg group 4, where it can actually be strengthened in several ways.

4. (Cowling, Price, and Sitaram [27]) Assertion (7.4} is valid when & is a connected, noncom-
pact, semisimple Lie group with finite center, provided the condition |Z({f)| < |&] (= o)
is replaced by | K X(f) K| < o0, K being the maximal compact subgroup of (.

5. (Echterhoff, Kaniuth, and Kymar 331} If & has a noncompact, nondiscrete normal subgtoup
H such that (7.4) holds for & and G/ H is compact, then (7.4} holds for &. In pamicular,
(7.4} holds for the group of dgid motions of B™ and for B* » X where K is compact. (See
Price and Sitaram [25] for some variants of the latter results.} [33] also contains a number of
other related theorems. Note, however, that the uncertainty principle considered throughout
[33] 15 not {7.4) but the assertion that if |E( )| |E{F}f < oo, then f = 0 1his excludes
compact groups and discrete Abelian groups from consideration.

6. (Meshulam [82]) Suppose & is a finite group. If £ is a function on & et |Z( /)| denote
the cardinality of E{ f) and R{f} the rank of the convolution operator g — f = g. Then
IZ{R(F) = |Glunless £ = 0. IF f(1) = 1, |E(FNR{F) = |G| if and only if
H = E{f)isasubgroup of & and f|H is a one-dimensional character of H. Note thet if G
is Abelian, then R( £) is the cardinality of T{ F); the resull in this case is due to Donoho and
Stark [31].

[t should be emphasized that (7 4) is false for many disconnected groups. The following result,
while not of maximum generality, covers most of the interesting cases.

Theorem 7.5.
If & has a normal compact open subgroup H | not equal (0 G or (1), such that G H is either
Abelian or finite, then (T.4) is not valid.

Proof. (See Folland [38] for the necessary background.) G/H is discrete. so (G/H T
is either a compact Abelian group or a finite set, and it sits inside G as the set of irreducible
representations of & that are trivial on H. If » € &, the Schur orthogonality relations easily imply
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that ¥y (m) = f. o Tixidx = |H|P, where P is the orthogonat projection onto the space
K = [ve My wihye =viforalth e H}.

But since w{hda(x] = mixiw(z~ hx) and H is normal, .J-L' is invariant under 7. Since x is
irreducible, ih” is either Hy {which means that = € (&/H ﬂ or {0],

Thus, E[x,;} = (G/HJ" Since H # {1}, we have |G\ (G/HT] = 0, and [(G/HT < 0, 50
Sl Py T IG_. On the other hand, since & #£ G, it follows that |Z{x gy} = |H| = |G|, O

We now turm Lo the resulis concerning the decay of § and f at infinity. The prototype of these
is the following theorem of Hardy [49].

Theorem 7.6.
Fora b > 0let E{a. b) be the space of all meqsurable functions § on B such that

[fixh = ce ™™ and IﬁE}I = petmd Sfar same ¢ = (),

ffab < |, then dim E{a, b) = o¢; if ab = 1, then Efa,. b) = T - gndd if ab > 1, then
E(a, by =1{0).

We give a sketch of the proof; Dym and McKean [32, §3.2] s a good reference for the details,
The rescaling f(x} — fiix) maps E(a, by onto E{3%a, A~2h), s0 we may assume a = b, First,
ifa = I, the Hermite func[mnh discussed in §1 all helong 1o E{a, a). Next, if f € £{1, 1), the
condition | £ {x}ll < cem™ easily implies that f extends o an entre function on T and sansfies
|Fiz)] < c'e™EF, Since also | Fi (E)] = ce™™ & for & real, a Phragmén—Lindelsf argument allows one
to conclude that f{f] = Ce’“* for some C and hence f(x) = Ce™™%, Finally, if & = 1, then
Efa,a) © E(I, 1) and =75 & Ef{a a),s0 E{a, a) = {0}

Cowling and Price [25] have obtained the following L? complement for Theorem 7.6 Suppose
p.g € [l oc] and minip. g0 = oo. If |27 fll, + Iie."’“rf:}‘ILI < oo with ab = 1, then f = 0.
{Again, the Hermite functions show the necessity of the condition ab = 1)

The case ap = | of Theorem 7.6 and its L7 version is an easy corollary of the following
elegani resudt of Bearling, whose proof, in the same spirit as that of Theorem 7.6, has been published
by Hormander [58]: For f & LY(R),

f Lf () FUENe™ 8 iy df = oo = F=10 (7.1

Sitaram, Sundari, and Thangavelu [101] have derived analogs of Theorern 7.6, using Theorem
7.6 itself as a tool, for " and the Heicenberg group H,. For EF the result is identical to Theorem
7.6 with x* and £2 replaced by [x|* and |£i2, and the proof consists of using the Radon transform 1o
reduce to the one-dimensional case. For H,, the resull is as follows: Suppose f is a function on f,
such that | f(p, g, 2} < g(p. gle™= and || floylllps < Ce ™™+ where g € (L' m L?)(R¥") and
o {p. g,z = olp, ag, iz} with o given by (2 5% then f = 0 provided ab = 1. Also, Pad e al.
[8&] have obtained an analogue of Theorem 7.6 for Herntite expansions on B"—namely, if § and its
Hermite coefficients both decay very rapidly at infinity, then f =0,

The crucial fact that allows the use of complex analysis to prove Theorem 7.6 15 that the
characters e:{x} = ¢~™%¥ of B can be analytically continued in £ to give (nonunitary) characters
with exponential growth in x. A similar phenomenon happens for imeducible representations of many
noncompact non-Abelian groups &, More precisely, one may have families of unitary representations
of €7 indexed by B* that can be analytically continued to get a family of {nonunitary) representations
indexed by ©° whose matrix elements satisfy certain growth estimates on 7. 17 these representations
suffice for the Planchere! formula, one can hope to obtain an analogue of Thesrem 7.6. This his
been done by Sundari [113] when G is the group of rigid motions of 2° and by Sitaram and Sundar
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f100] when  is a connected semisimple Liz group with finite center and either (i) & has only one
conjugacy class of Cartan subgroups or (ii} attention is restricted to right K-invariant functions.

The rapid decay of f at infiniry impases restrictions not only on the decay of f at infinity but
also on the local decay of [ near a point. For example, if f is s function on T and | Flhky) < e,
then f is analytic and so cannot have a zere of infinite order. More suphisticated theorems of this
sort for functions on B or T can be found in Havin and Joricke [44]. Pati et al. [88] have derived a
sort of hybrd of this result and Theorem 7.6 for cigenfunction expansions of elliptic operators with
analytic coefficients on compact Riemannian manifolds.

Havin and J8ricke {48] contains many additional results concemning local or global decay
conditions on f and f We shall mention only one, a neat theorem of Nazarov [86] whose flavor
is similar to (7.7} but which implies Theorern 7.2 (for n = 1) rather than Theorem 7.6: There is a
constant ¢ > 0 such that forall A, B C B of finite measure and all § & L3(R),

1 £} < cemt AN E [ f IFP + f |ﬂ‘*]
R4 R B

8. Theorems on Approximate Concenlration

Despite their mathematical solidity, the results of the preceding section—with the exception
of the simple-minded (7.1}—have littfe 1o say about physical phenomena because they are unstable
under the small errors that inevitably arise in the cotrespondence between theory and cxperiment.
Afterall, the world is full of signals that are synthesized from a finite band of frequencies and last for
a finite length of Ume, no matter what Theorem 7.2 says, and one would like a mathematical theory
that says something useful about such signals. Thus, we wish to consider functions f on R® and sets
A, B < E® such that f and Fare “negligibly small” on the complements of A and B, respectively;
and we ask what sort of sets A and B allow functions with this behavior and what sort of [unctions
they are. The uncertainty principle will be expressed as a restriction on the sizes of A and 8.

Here i3 a very simple resubt of this sort, due to Williams [120]. Suppose [ and f are both in
L': then

_[llfl < I F lldl = I FHr1AL

Muleiplying this incquality by &n analogous one with f and finlﬁmhanged_. we obtain
,.lr,t 1£1 My |F]
fin nAa

Note that this gives another proof of (7.1}

More inluesting, however, are the results relating to L2 norms. If & is any locally compact
Abelian group, f € LYG), A © &, and € = 0, we shall say that f is «- -concentrated on A if
_.lmrl 1P = € f.1f1°, and we wish to know what can be said about f, A C G, and B C G if fis
e -concentrated on A and f is S-concentraied on B This problem, for G = B", was first discussed in
a lecture by Fuchs [39] at the 1954 International Congress. Landau, Pollak, and Sleptan then made
a detailed study of the case where & =  and A and B are intervals; we shall discuss their work
below. However, the simplest and most general results, vatid on any locally compact Abelian group,
are more recent, and we shall begin by discussing them.

Almost everyone who has worked on this problem has relied on the interplay between the
orthogonal projections Py and @5 on L2(G), defined for A C Gand 8 C G by

Psf = fxa.  (QsfV = fis

The basic facts are summarized in the fullowing theorem,

< |ANBI. (8.1}
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Theorem 8.2, i
Suppose A © C and B © G have finite measure.

a. PyQp is bounded from L" (G o L9 (Ghfor | = p=2andg = 1, and [PsQsfll, =
|AIMBIMELE Nl

b. Py(Qp isa Hilbert-Schmidt operator on L*(G), and | P4 Qpliuys = |A|"2| B2,

e. Ifthere is anonzero f € L*(G) such that f is e-concentrated on A and f:’.ﬁ S-concentrated
£ Bﬁ then 1 —e — 6 < ||PaQpgll. where | Py Qg is the norm of Py @y as an operator
on Le.

Proof. Since Qs f = [ +F~'xs, P45 is an integral operator:
Pysgflx) = f Kix, y)Fiyidy, Kix, y} = xalx)xslzx — yh

Hence, by the Hilder and Hausdorfi—Young inequalities, if | = p < 2and p' = p/(p - 1},
PaQu fLO)] < xalx sl Fllp = xaCH sl ol Flle = xale) B £
Part a follows by taking the L norm of both sides. Moreover,

|EPA.QB‘|E|2|x:ff Iﬁ'{x.}*}lzdxd}’=flxﬂfflx,alz= |BilAl,

which proves part b. Finally, suppose f is «-concentrated on 4 and f is 5-concentrated on B, and
Ifll2 = L. Since |P4(f — Qpfillz = | f = Qo fllz = {1 = xa) fllz = 8, we have

F—e=8=fllz=1Ff—=Paflla=1Palf = QafMlz 2 N1PaQ@afllz = IPalsll.
which proves parte. [

Corollary 8.3. -
If f 5 Ois e-concentrated on A and [ is 8-concentrated on B, then |A||B| = (1 —e — 2.

Proof. Combine parts a and ¢ of the theorem. O

Theorem 8.2 and Corollary 8.3 were proved by Doncho and Stark [31 ] for G = Ror G = E/nE
and generalized by Smith [ 108] to arbitary locally compact Abelian groups. These papers also contain
an analog of Theorem 8 2e (in a slightly weakened form} for L? norms {1 = p < 2) and a discussion
of the sharpness (or lack thereof) of the estimate in Theorem 8.2a. In addition, Donoho and Stark
[31] give some interesting applications to problems in signal analysis,

Wolf [121] has extended Theorem .2 to Gelfand pairs (that is, wo K -biinvariant functions on a
locally compact group 7, where X isacompact subgroup of &7 such that convolution of K -biinvanant
functions is commutative), and Voit [117] has extended it even further to commutative hypergroups.
Also, de Jeu [30] has proved a version of the L? part of Theorem 8.2 that concerns integral operators
on abstract measure spaces possessing some of the features of the Fourier transform, and Koppinen
[68] has obtained results analogous to Theorem 8.2 in the setting of Hopf algebras.

The quantity || Py O gl that intervenes decisively in Theorem 8.2 has an interesting geometric
interpretation: it is the cosine of the angle between the ranges of Ps and 5. Indeed, we have

IPs@sll = sup{|{Ps Qs f. g}l : 1 fl2 = llglla = 1}
= sup{[{@s f. Pagh : Iflz = lgllz = 1}
= sup{Relt, v} : fulls = vl = 1, Qpu=u, Pyv =1},

and Refu, v) is the cosine of the angle berween the unit vectors w and v,
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A deeper analysis of the approximaie concentration problem can be achieved by studying the
operator

(PaQgY' P1Qp = QpPaQsn.

This was done by Landau, Pollak, Slepian, and Widom in a remarkable senes of papers [T73-735,
H3-105, 107], parts of which we now describe briefly. Expositions of this work, with references to
related papers, can also be found in Landau [72] and Slepian [1 06]. In what follows we shall assume
that G = & = E* to simplify the discussion, although some of the results are actually more general,
and A and B will always denote sets of positive finite measure.

g Pa0p has the advantage of being selfadjoint and positive, and by Theorem 8.2b it is
compact, in fact trace-class. Hence it has an orthonormal eigenbasis, and the nonzero cigenvaloes
are positive, of finite multiplicity, and accumulate only at 0. Let {4, )7 be the nonzero eigenvalues,
listed with multiplicity in decreasing order (&, = Az = ...}, and et {1f,.}7° be a cormesponding
orthonormal set of eigenfunctions. We then have

ki ={0sPa0sl = | PaQsl*
50 +/ A is the cosine of the angle betwen the ranges of Py and Q. The crucial fact &5 the following.

Theorem 8.4.
.JI.] =l

Proof. Cleardy 4, = 0Py 0g] = 1. If X, = 1, there exists / # 0 such that
QPO f = f. Thus f 15 in the range of Jg, and it is also in the range of P, because
I Pygllz = llgllz unless g < range{ P4). But this is impossible by Theorem 7.2, I

Suppose now that | f|la = 1, f is e-concentrated on 4, and fis d-concentrated on 8. The
angle between f and Py f is

, P
arcoos M = arccos || £y Fllz = arccos /1 — €2,

s fl2
and likewise the angle between { and Pg f is at most arccos + 1 — 82, The angle between Py f and
Pg f is, on the one hand, at most the sum of these two angles, and on the other, at least arccos o A .
Thus,

s roo=s 2
arccos & 1 —ef 4 arceos 1 — 52 = arccos 1.,-'(.-.].

In fact, by taking suitable linear combinations of the eigenfunctions 1, one can construct examples

where f and f have any desired concentrations on A and B subject to this restriction, and one arrives

at the following theorem.

Theorem 8.5.
Suppose 0 < o, B < Vand (z, ) 2 (1, 0 or (0, 1), There is a function f € LYE"} with
Nfllz =1 1Bafllz =@, and | Qg fll2 = B if and only if

T
arcoos o + arceos f = arccos A = arceos | PaQs|. (R.6)

The full proof can be found in Landan and Pollak [73] or Dym and Mckean [32, §2 9}; these
authors state the result for & = K and A and & intervals, but the arguments are quite general. (If A is
bounded, the pair (¢, 8) = (1, 0) is not admissible, for if / = P, f, then f is analytic and 50 cannot
vanish on 8; likewise if B is bounded, then {«, 8) = {0, 1) is not admissible. But Karpaev's example
[62, 63] (ses 57} shows that the boundedness assumption is necessary.) Another version of the
uncertainty inequality (8.6) has been proved by Benedetto [8]; the Logvinenko—Sereda—Kacnel son
theorem quoted at the end of §4 i3 also of interest here.
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The eigenfunctions i, have a number of interesting and plca_r-,mg properties. For example,
assuming A and B are bounded, {v }5°, {4, e Py )T, and {1,'.'rk} are [respectively) orthonormal
bases for the range of Oy, the range of Py, and the range of Py consisting of eigenfunctions for
OaPaCa PalgPy, and Pg(. 4 Ps. (The reader is invited to work out the rather easy proofs of
these facts.) For our purposes, however, the criecial thing is that ﬁ is O-concentrated on & because
Py = }uk_lﬂ'g Py Qaty € range(Qg) and ¥ is (1 — /g }-concentrated on A because

| Patll3 = ||P.4QN5’&||E = {QaPaQpibr. ) = Mellwilli.

1t follows that one can obtain functions f soch that £ and _;?are well concentrated on A and B by
taking linear combinations of the ¥ for which i; is close to 1; therefore, the situation calls for an
analysis of the eigenvalues A,.

The finest results in this direction are those forthe casen =1, 4 = {— % Ty %T} (the factor of
% is traditional), and B = (=12, £2). By rescaling one can reduce to the case £ = 1, and it follows
that the eigenvalues A\, depend only on the product £27. We cite two major theorems; others can be

found in Landae and Pollak [74].
First, it was conjectured by Slepian and proved by Landan and Widom [75] that f ¥ (2T, )

denotes the number of eigenvalues J; that exceed o (0 = @ =< 1), then

N(OT, o) = 29T + [-L . - ”] log T + oflog RT).
Thus if T 3 1, Ay is very close to | for & < 207 and very close to zero for & & 207, and the
transition from large to small takes place over an interval nf tength O(log 22T}
Second, if || f |2 = 1, f is e-concentrated on (-~T1 5T),and f is O-concentrated on (—£2, 2},
then
[2R7] 2

Hf S Uf | =128
F)

Moreover, for any 5 = () there exists C = 0 such that
[2QT]+C Ing 2T

H 2

”f - 2 (A ||2 < (1 +n)e,
l L

Similar results held if _;?is merely S-concentrated on (—£2, £2); the proof can be found in Landan

and Pollak [74].

These results give substance and precision to the folk wisdom that there are about 22T degrees
of freedom in a signal of duration T constructed from frequencies of magmitude = £, Another
vartation on the same theme can be found in Slepian [104].

The eigenfunctions v, forthecase A = {— iE T, % Trand B = (—82, £2) are well-known special
functions. By the change of variable r = 2x/ T we can assume that T = 2, and in this case it turns
out that 05 4 O'p commures with the differencial operator

d* d 2 3

Lo={1- rz)EFf = 2= =%, (8.7)
The eigenfunctions v, are therefore also eigenfunctions of L, and the corresponding eigenvalues
gy are singled out as the only values of w for which the equation Lpu = pu has a solution that
is continnous at bath x = 1 and * = —1. Since the operator L arises from the Laplacian in B?
by separation of variables in ellipscidal coordinates, the functions ¥, have been saddled with the
ungainly name of “prolate spheroidal wave functions,” and they have been studied rather extensively.
The papers cited above contain more details and references; here we shall just mention one recent
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result. Let BF = [ f € LP(]) : supp f{: [—£2, 21}, Asnoted above, [y} is an orthonormal basis
for B%; Barcel6 and Cordoba [5] have proved that it is a basis for B7 if and only if % = p =4

Results similar to the one-dimensional theory have been obtained by Slepian [103] for the case
where A and B are balls centered at the origin in B”. When A is the ball of radius 1 and B is the ball
of radius £, the eigenfunctions v, are products of spherical harmonics of degree & with functions
of r = |x| that are eigenfunctions of Lg + (§ — (k + 3n — 1)*)r ™7, where Lg is given by (8.7).

Analogues of the Landau—Pollak—Slepian theory have been developed in several ather settings
involving Fourier-type expansions: for the groups G = Z/rE by Pearl [89] and Gritnbaum [46];
for the Walsh—FPaley group by Pearl [89], for G = T and G = & by Siepian [105], for onthogonal
polynomial expansions by Perlstadt [%)], and for some situations involving non-Abelian groups
{rotation groups, spheres, and hyperbolic spaces) by Griinbaum, Longhi, and Perlstadt [47]. See
also Landaw [72] and Slepian [106] for references to other related work.

9. Minimal Rectangles in Phase Space

Suppose f € L*(R). If f isconcentrated (in some sense) on an interval 7 and _,1? is concentrated
on an interval J, we shall think of i as “occupying” the rectangle [ x Jin (x, £)-space, or phase space.
(Cne can interpret “concentration™ as in §8, or with | fll: = 1 one cantake 7 = [M — o, M + o]
where M = M{|fI*) and ¢ = /V (I f|?) and similarly for J; other variants of this idea are also
possible.) The results of the preceding sections give several ways of making precise the vague
assertion that in this case, |§ x J| = |I||J] must be at least on the order of magnitude of unity.
Likewise, if f is a function on B" that is concentrated on a rectangular box [ = []} /i, where each
I, is an interval in [, and f is concentrated on another such box J = [} Ji. Heisenberg’s inequality
in the form of Corollary 2.6 indicates {roughly) that |11 151 = | for all &. These considerations
suggest the following heuristic form of the uncentainty principle: The smallest significant regions in
phase space are sets of the form

H n
[Tax[Tan  1hilh]=1foralk.
| 1

We shall call such a set a minimal rectangle. This section is devoted 10 a brief discussion of some
interesting phenomena that can be understood in terms of this principle.

First, phase space is the stage for microlocal analysis, a body of techniques developed in
the past thirty years for studying local behavior of partial differential equations and generalizations
thereof. In this regard, Fefferman and Phong [33, 36) have proved a number of deep theorems
concermning boundedness, positivity, and eigenvalue estimates for differential and pseudodifferential
operators that are based on the following principle: The size of an open set § in phase space should
be measured not by its volume but by the maximum number of minimal rectangles, or images of
such under canonical ransformations, that can be fitted inside § without overlapping. For example,
suppose L = o (x, [}) is a selfadjoint differential operator with symbol #ix, ) = :}:Ialzﬁc g (x)Es
that is real and bounded below. A classical rule of thumb says that the number of eigenvalues of L
less than some constant C is roughly equal 10 the volume of 5S¢ = [{x. &) : o(x, E) = C},; but one
obtains better estimates for the eigenvalues by counting minimal rectangles inside S-. We refer the
reader to the introductions of [35] and [36] for more details.

The other matter we wish to discuss is the problem of constructing interesting bases for L?
(preferably, but not necessarily, orthonormal) whose elements and their Fourier transforms are well
localized. We shall restrict attention to the dimension n = 1. The idea is the following: Suppose
{1 = Ji} is a tiling of the phase plane by minimal rectangles; we would like to find a basis {¢; ) for
L*(R) such that ¢¢ occupies the box L x J; in the sense described above,



The Uncertainty Principle 233

G

)

[}
[}
Ll R B R I DR S [
¥
1

FIGURE 1. FIGURE 2.

The simplest such tiling is the set of all squares with vertices in the lanice (2 + 21}2, as shown
in Figure 1, and the simplest way to try to find a basis associated to this tiling is to take a function ¢
that occupies the center square [—3. ;J° and translate it:

Pilx) = e P x — ji. {9.1)

¢« thus occupies the square [ — i i+ %]‘ x [k — % k + 1]. This idea was proposed by Gabor [40],
who argued that with ¢ (x) = gTT {#h;e & j. k = Z} should be a good basis for L2, Unfortunately,
this turms out to be false. For this &, {¢b;:] does span L7, but it fails to be a frame; that is, it fails o
satisfy an estimate of the form

Cfla = Y 1(f 9P < Clfll2 forall f L. 9.2)

The trouble is not just an unfortunate choice of @; in fact, if ¢z = 1 and [, : j, k € E} satisfies
(9.2), then V{|¢>[2]'.—’(|$|1} = oo, 50 ¢ cannot really occupy any finite box. This is an extended
form of the Balian—Low theorem; see Benedetto, Heil, and Walnut [13]; Benedeito and Walnut [14];
or Daubechies [28, p. 108]. Another version of this result, that [¢hx] cannot satisfy (9.2) if ¢ is
continuous and |¢(x)| = C(1 + |x|)~'~*, is implicit in the arguments in [37, §3.4].

Another interesting tiling is shown in Figure 2, where the smp 2¥ = £ < 2/ is cut up into
rectangles of width 27/ Here, if  occupies the box [, 1] = [1, 2], one can manufacture functions
to occupy all the other boxes by translating and dilating

Wik () = 2029202 — k),

In this situation it is indeed possible to find y+'s that are quite well localized in both x and & for which
[4#* 1 j k & ¥} is an orthonormal basis for L°. These are the wavelets that have received much
altention in recent years; we refer the reader to Daubechies [28] and Strichartz [111] for accounts of
their construction.

We have, however, cheated a little bit, as the vertical axis in Figure 2 denotes || rather than £.
It is, in fact, characteristic of wavelets that W has two peaks, one in the region £ = 0 and one in the
region & < 0, so that ¥ actually occupies the two rectangles [0, 1] = [1, 2] and [0, 1] = [-2, —1].
{The fact that the region associated to i is twice as big as a minimal rectangle should not cause
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concern. The uneasy reader may compensate for it by compressing the |£|-axis in Figure 2 by a
factor of 2, as Figure 2 is only a heuristic guide anyhow.)

It turns out that if one is willing to apply the same kind of fudging to Figure 1 by replacing
the exponential in (%.1) by a sine or cosine, thereby replacing the frequency peak at £ = & by two
peaks at & = :I:%.E:_. one can get around the Balian-Low obstruction. More precisely, there exist
orthonormal bases for L? of the form

$lx— prltk+ Drx— ) (eI ke L7,

where ¢ is a smooth approximation to the characteristic function of [*%. %} and r denotes either
sine or cosine. The construction of these bases, discovered by Coifman and Meyer and by Malvar, is
delightfully elementary and generalizes to produce orthonormal bases of L* associated to many other
tilings of the phase plane by minimal rectangles—but always with the “two-peak” phenomenon.
In fact, one can even construct wavelets this way. We refer the reader to Auscher, Weiss, and
Wickerhauser [4] and Auscher [3] for a detailed treatment and a discussion of related constructions.

The papers of Bourgain [20] and Bymes [23] give other constructions of orthonormal bases of
L*{(R) whose elements and their Fourier transforms satisfy uniform uncertainty estimates.
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