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1. Introduction

This paper is a development of the earlier work [B,], [B;], [Bs] of the author
on extending Birkhoff’s ergodic theorem to certain subsets of the integers. It was proved
in [B,] that given a dynamical system (DS, for short) (Q, &, u, T) and a polynominal p(x)
with integer coefficients, then the ergodic means

_1_ Z Tp(n)f

N 1<ngx

(1.1) Agf =

converge almost surely for N — co, assuming f a function of class L#(Q, p). Here and
in the sequel, one denotes by p a probability measure and by T a measure-preserving
automorphism. The natural problem of developing the L?-thcory for p < 2 was studied
in [B,] and a partial result was obtained. We continue this line of investigation here.

The approach used in [B,], [B,] relies on a method which may be summarized
as follows:

a) Reduction of the general problem to statements about the shift S on Z, which are
of a “finite ” and * quantitative ” nature (in the sense of inequalities involving
finitely many iterates of the transformation).

b} Proof of certain maximal function inequalities, relative to the shift, by Fourier Ana-
lysis methods.

¢) Use of the * major arc > description of the relevant exponential sums, similar to that
in the Hardy-Littlewood circle method.

As I observed in [By], this approach should be considered more general than the
solution to some isolated questions.
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The purpose of this paper is two-fold. First, as far as the L2-theory is concerned,
we will develop appropriate harmonic analysis methods (maximal function estimates
for certain sequences of multipliers), which will make the argument less dependent on
special properties of the exponential sums (essentially exploited in [B,], [Bs]). Using
this additional ingredient, further examples will be obtained, for instance sets of the
form

A={[ﬁ(ﬂ)];n=1,2, "'}

where p(x) is any polynomial with real coefficients and [x] stands for the integer part.
Secondly, a method will be described to cover the full L*-range, p > 1. In particular,
it is shown that the averages Ay f given by (1.1) converge almost surely for f a function
of class L?(Q, u), p > 1. The problem for Ll-functions remains open at the present time.
The shift reduction mentioned above allows one to give a new and simple proof of
Birkhoff’s ergodic theorem (cf. [Bg]). Our proof of the pointwise and maximal ergodic
theorem is related to [K-W], but it is different and provides more quantitative infor-
mation. In particular, in order to illustrate ideas, it will be shown how to avoid the
invariance of the limit. When dealing with subsets of Z, this invariance is indeed not
available in general and the pointwise ergodic theorem is not a formal consequence of
the maximal ergodic theorem (except if the linear span of the eigenfunctions of T is
dense). The shift reduction applies equally well for positive isometries. Already for the
sequence of squares A ={ n?}, the L?-result for all p > 1 is new, and in particular the
following corollary (for p = 2, see [B,]):

Let f be and L?-function on the circle n =R /Z and « € R\Q an irrational number.
Then the averages

(1.2) 1 § Sflx + nta)

n=1

converge to the mean f: Sf(x) dx, for almost all x.

It is tempting, especially for p = 2, to approach such a problem by straight forward
Fourier Analysis, considering the Fourier expansion of the function f (cf. [S]). However,
to make this method succeed, stronger information on the Fourier coefficients of f seems
needed than just their square summability. The proof of the previous statement uses
indeed harmonic analysis methods, but only after reduction to a dynamical system
problem. Observe that in this case only the maximal inequality needs to be proven

(r=>1)
1 1 » 1
(1.3) J‘ (sup [— z f(x-{—n’a)] )dx< cff(x)’dx
0 N N s<N [
for f> 0.
Next, we describe the organisation of the paper and state the main results,
In the next section, an approach to Birkhoff’s theorem is presented along the lines
explained above and some less known features of this result are pointed out.
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In section 3, we considerer the variation spaces v,, where || x ||, is defined as

(1.4) sup  (D|x, — 2, OV x = (%)mrs .-
50 < <4y
These spaces are well-adapted for a quantitative formulation of convergence properties.
In this context, we recall a result due to Lépingle on bounded martingales, which is of
importance later on in the paper.
Section 4 is devoted to the proof of a maximal inequality for certain sequences of

 major arc”

Fourier multipliers. These Fourier multipliers appear naturally in the
description of exponential sums. The results of section 4 are purely L2
In section 5, we recall some basic and well-known facts on the behaviour of expo-

nential sums of the form

N
(1.5) oa(d) = T &nn
n=0
where
(1.6) pra) =+ o ¥ '+ ... ayx and a=(a,,...,q)€[0, 174,

The information on these sums needed for our purpose is essentially the same as for solving
the Waring problem by the Hardy-Littlewood circle method.

Section 6 is a new presentation of the L%result on polynomial ergodic averages
obtained in [B,], based on the new ingredient obtained in section 4. In this proof, we no
longer need the a priori estimate of A. Weil for exponential sums with prime modulus.

Section 7 of this paper contains the corresponding (new) L'-result for all r> 1.
Thus the following theorem is proved:

Theorem 1. — Let (Q, B, p., T) by a dynamical system and p(x) a polynomial with integer
coefficients. Then there is the maximal inequality

(1.7) Il sup | Ax 1 [l < G A1

where Ay f ts given by (1.1), i.e.,
1
ANf:N > Ty

1SN

and f e L7(Q, w), r > 1. The constant C in (1.7) depends only on 1> 1 and on the polynomial p(x).
Moreover, the averages Ay f converge almost surely for N — co. If T is weakly mixing, the limit

if given by [ fdu.

The previous result remains valid for positive isometries on L'(€2, p). Let us point
out that the proof of Theorem 1, in the case of a general polynomial p(x) with integer
coefficients, is essentially identical to the special case p(x) = x2. Essential use is made
of duality and interpolation methods.

In section 8, the results of section 4 and section 5 are used to prove the following
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Theorem 2. — Let (Q, B, u, T) be a dynamical system and p(x) an arbitrary polynomial.
Then the averages

_1 {p(n)
(1.8) ANf_N1<§<NT I
Jor f any bounded measurable function on Q, converge almost surely. Here [x] stands for the integer
part of x €R,

It is possible to obtain L'-results, r > 1, relative to the averages (1.8), at the price
of additional technicalities, based on the method of proof for Theorem 1. This further
development is not worked out in the paper.

Section 9 contains various comments and remarks on almost sure convergence in
general, related to [B;].
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The paper has an Appendix on return time sequences, in joint work with H. Furstenberg, Y. Katznelson
and D. Omnstein, simplifying an earlier exposition [B,] (cf. also [B,]).

2. Birkhoff’s Theorem Revisited

Let (Q, 4, u, T) be a dynamical system. In this section, we consider the usual ergodic

averages Ay f = 1 2. T"f appearing in Birkhoff’s ergodic theorem. We discuss

N 1€<a<N
their convergence properties, partly keeping in mind possible extensions to certain
subsets of Z.

A) Mean Convergence
N
The sequence of complex polynomials pe(z) = = X 2" pointwise converges on
n=1

the unit circle (to 0 except for z = 1). Consequently, by general spectral theory of unitary
operators, Ay fconverges in L?(u) whenever f € L2(y). The main point here is the existence
of a spectral measure. The Herglotz-Bochner theorem indeed ensures the existence of a
positive Radon measure v on the circle T, such that

@1 CTPfif > = 9(w) = [, v(do)
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implying that the map L2(II,v) — L%(Q, u) mapping the nth character &™* on T" f
is an isometry. Thus the convergence of Ay fin L3(Q, p) is equivalent to the convergence
of pe(z) in L¥II, v).

This is clearly an L3-theory. In general, given a subset A of the positive integers,
the pointwise convergence on the unit circle of the sequence of polynomials

(2.2) Pu2) :

= — X
| An[1, N]| 1SN

is equivalent with a mean ergodic theorem for the set A. In the case of * arithmetic sets ¢
this test is particularly useful since the convergence of pg(x) given by (4) is
closely related to phenomena of uniform distribution. For instance, if A is the set of
squares {n? |n = 1,2, ... }, we have

tx(™%) -0 if « is irrational

1 a—1
and (™) > S(g, a) = p T & for « =§ (the Gauss-sums).
r=0

It is not surprising that the (stronger) almost-sure convergence properties result from a
finer analysis of these exponential sums and the class of L2-functions appears as the natural
function space in these problems. A sequence ACZ_ is ¢ ergodic >’ provided py(z) -0

for z € T —{ 1}. The property implies mean convergence of Ay f to .’.n fdu, assuming T
ergodic (this is the case for A = Z, butnotif A ={a?|n = 1,2, ... }for instance).
B. Weiss [W] observed that sequences A obtained by taking suitable unions of

disjoint intervals are ergodic but may fail to satisfy the pointwise ergodic theorem, even
with respect to bounded measurable functions.

B) Maximal Ergodic Theorems
Let again

1 N
Anf:'ﬁ by T”f

ne=]
and define the ¢ maximal function ”’
Sfr= sup |[Agfl

N=1,2,...

There are the L?-inequalities (I < < o0)

(2.3) If° ”L’(Q,u) < G(p) ”f”ll’(n,u)
and the weak-type inequality
(2.4) ™ Mevoa,m € C LS Heva,u

where || g ||g1o = supAu[|g| > A] and G, G(p) are absolute constants.
A>0
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Let us give a simple proof (2.3), (2.4) by deriving them from the shift model (Z, S).
In the case of the shift, the weak-type property (2.4) easily follows from geometric covering
properties of integer-intervals, in the some way as for the Hardy-Littlewood maximal
function on the real line. Once (2.4) is obtained, the L®-inequalities follow from the
Marcinkiewicz interpolation theorem. Consider now the case of the general dynamical

system (Q, p, T). Of course it suffices to prove inequalities (2.3), (2.4) (with fixed
constants) for a ‘ restricted > maximal function

(2.5) f= sup Agf (f<0)
1<N<KN

where N is an arbitrarily chosen positive integer. Take an integer J » N and for fixed
x € Q, consider the orbit

% Tx, T2x, ..., T x.

For the function f, define the function ¢ on Z as follows

?(j) =AT'x) f0<j<]

(2.6) =0 otherwise.

Thus Ay ¢(j) = A f(T? x) provided that 0<j<J — N and hence, with the defi-
nition (2.5),

@.7) 5(j) =f(T?x) for 0<j<J—N.

The inequality || ¢ ||z < || 9* |lipz < C(#) || @ ||spz) then immediately implies, by (2.6),
2.7),

(2.8) Z AT AP < G T IAT AP

05 i<I— <i<d

Integrating (2.8) in x e Q with respect to the measure p. yields
T F *< C ’ 2 T »
E ITAIE<cer 2 T

and since T is measure-preserving, one gets

= J
”.f”ps C(p)‘]-—_:ﬁ_ ”f”,)
hence

A~ 1, < Co) 1AMl

One can deal similarly with the weak-type inequality (2.4). Assume f € L}(Q, p), A > 0,
let Q, = [ f> 2] and y be its indicator function. Given x € (2, let ¢ be defined as above
and let | I | stand for the cardinality of a (finite) subset I of Z. The shift inequality thus
gives

I % lla =z < C |} @ |ln@
and, by (2.7),

A{0<i<J—N|AT' H>2}|<C B AT'),
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hence

(2.9) T x(Tix)s— X fl(T'4).

0K J<I—N A osi<y

Integrating again, we have

(@) < G2 71k,

from which (2.4) easily follows.

At present, the covering argument leading to weak-type inequalities does not
seem to be available when dealing with particular subsets of Z, such as the squares or the
primes. In these cases, we were unable so far to develop an Ll-theory. The L* and
L*-inequalities (p > 1) are obtained by making essential use of Fourier-transform methods.

This is an approach similar to that in differentiation problems in real analysis involving
lower-dimensional manifolds.

C) Almost sure Convergence

By the maximal inequality and a standard truncation argument, the almost sure
convergence of Ay f for f in L1(Q, p) reduces to bounded functions. Denote by F the
L2-limit of (Ag f) and, for given € > 0, let N, satisfy

” F— An.f”a <e
By the invariance of the limit (since the ergodic means relates to the full set of positive
integers) and the maximal inequality, we have
(2.10) il sx;p | F — Ax(Ax.f)“a < Ce.

Since
N,
IAN(AN,f) - ANfI < 2_ﬁ “f”w;
it follows from (2.10) that

||Tim | F — Ag f||la< Ce, hence lim|F — Ay f| = 0 almost surely.
N

This discussion completes the proof of Birkhoff’s theorem. It is clear that the pre-
ceding argument does not apply when dealing with the more general averages

1

(2-11) Axf= [A n[1,N]| ueA;usxT'f

corresponding to a subset A of Z, .
If the eigenfunctions of T generate a dense subspace of L2, the almost sure conver-
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gence of Ay f for f of class L?, p< 2, is implied by the pointwise convergence of the
sequence py(2), | 2| = 1, given by (2.2) and the maximal inequality
A < Gllflls f7 = sup | A Sl
This is the case for instance for the model (Q, T) = (T,R,), R,x = x + a.
In the remainder of this section, an alternative method is explained for the pur-

pose of proving the theorems stated in the introduction.
Take fin L*(Q, ), | f| < 1. For £ > 0, consider the subset

(2.12) Z, ={[1+e"]|n=12,...}
of Z_. Clearly, for each N eZ_, there is N’ € Z, such that
| Ax f — Ap f| < 2e.

Thus to prove the almost sure convergence of (Ay f ), it suffices to show that there is no
¢ > 0 and no sequence of positive integers N;, N, , > 2N,, such that

(2.13) || #; fllg>¢ where #,f= sup | Axf — Ax f1-

In fact, a more quantitative statement is shown, namely

(2.14) 2 | flla< o) (1 fla

15T

for J large (depending on ¢ appearing in the definition of 4,). Since (2. 14) only involves
finitely many iterates of T, the general case reduces again to the shifs (Z, S). For the
sets { p(n) | n = 1,2, ...} (vesp. {[p(n)]; »n = 1,2, ...}) considered in Theorem 1 (resp.
Theorem 2), the inequality (2.14) follows easily from the proof of the L2-maximal ine-
quality. In the context of theorem 1, this argument was carried out in [B,]. The method
will be repeated in section 6 of this paper, for the sake of completeness.

3. Variation Spaces and Variational Inequalities

We start by recalling the definition of the variation norm o, (1 < s < o) for scalar

sequences ¥ = (%,), .1, ...

J
(3.1) 1| %1, = sup{(,§1|x”l. — x0T =12,... and n<ny<...<ny}

The sequence space v, then consists of those sequences x for which || x ||, < c0. We will
also use the notation || ||, for continuously indexed systems x = (x,),,, where now

J
(3.2) 1%, = sup{( 2 |5, ~#,,, [1"*|J=1,2,... and < <...<t}

These spaces v, are frequently used in probability theory when studying questions about
convergence. In this context, some known inequalities about martingales are needed for
our purpose. More precisely, we will use the following result due to Lépingle [Lé€]
(cf. also [P-X]).
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Lemma 3.8. — Let B, (n = 1,2, ...) be the sequence of expectation operators with respect
to an increasing sequence of c-algebras on a probability space and f, = KB, f an associated scalar
martingale. Then, for s> 2, we have the inequality

(3.4) 10 Hizg, < o5 = 2)7* 1 e
where 1S refers to the v,-valued L*-space.

This result may be seen as the quantitative form of the martingale convergence
theorem. The inequality (3.4) fails for s = 2 (this is a well-known feature of the Brownian
martingale, related to the law of the iterated logarithm). In fact, the dependence in s
stated in (3.4) will be of relevance later on and we include a fast proof here.

Proof of (3.4). — For 2> 0, denote by N,(w) the number of A-jumps in the
sequence { f,(w)}, where f, is defined as above. One has the following inequality for
1 <r<oo:

(3.5) AN ||, < e, ILF1l, for all 2> 0.

This is a form of Doob’s oscillation lemma for martingales (see [Nev]) and is obtained
by methods of stopping times and square functions. We use interpolation to derive (3.4)
from (3.5). First we prove (L*! denoting the Lorentz space):

(3.6) 1A b < ols = 27 | fllpn for g < p<s< o, 5>2

Let thus f = y, and A C Q be a measurable set of measure p(A) = ¢, hence || f||, , = €/%.
Estimate pointwise, for N, defined as above from the function f, yiclds

(3.7) 1@, < [Z 27 Nes(o)
Hence, since p < s,

w 1p
(3.8) H{fa} e <2 [kZO Q—kvf (N,&)?"* do)] < o[ o-ra—@m || £llrie
s - Q

applying (3.5) with r = 2p/s (which implies 6/5 < 7 < 2 in view of the hypotheses made
on p,s) and A = 2% Since |[f||; =&, (3.6) is immediate from (3.8). Writing L? as
interpolation space between L*! and L¥? (3.6) is easily seen to imply (3.4).

We will now derive a real analysis version of (3.4) from Lemma 3.3. For a

function f on R, set f,(x) = % f (:t_c) Denote also by

(3.9) FF0) = f0) = f fx) e d

the Fourier transform of f. Thus

(3.10) Fi(0) =F().
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Lemma 3.11. — Let 3 = y4 4 be the indicator function of the interval [0, 1]. Then, for
feL*R) and s> 2, one has
(3.-12) H{f*x|t> 0}“1‘},'(8)< e(s — 2)7 | fllss
where v, stands for o, (R.) with the norm given by (3.2).

As usual, f# g denotes the convolution of f and g.

Denote by (P,),, the Poisson semi-group on R. Thus if P, f = f* P,, one has
13,(1) = ¢~ 12|, Considering the Brownian martingale associated to the harmonic function
u(x,t) = (f* P,) (x) on the upper half-plane or, alternatively, invoking Rota’s dilation
theorem, inequality (3.4) relative to martingales implies

(3-13) P fl2> 0}z < els — 2)7H | fla-

Proof of Lemma 3.11. — By (3.13), (3.12) will be a consequence of the following
inequality
(3.14) I{f*K,|#>0}la < clfllas
where K stands for the function y — P,, hence satisfies the Fourier transform estimates
(8.15) [ALLHRY ()] <e¢ and |[R@)|<cmin(|a], |2[]7Y).
We clearly have the pointwise estimate
(3.18) 1o K0 6> 0}l < (B 1f # Ko 2

+ (I I e K [ 2 e 2203

By Parseval’s identity, the L2-norm of the first term in (3.16) is bounded by
o 1/2
(3.17) (= [ 1roriR@ra] < e[ [i7oma] =i,

kEZ
invoking also (3.5).
Next, we estimate the contribution of the second term

(3.18) (S, o K2 o< 20}

Let 0 < <1 be a function supported by [%, 2] U [— 2, — %], | 7" | < G, such that
E 7](2“ 7\) = 1.
xcZ

Defining K, by K, (2) = K(2) #(2*2), one has that K = ZK,, and (3.18) may

be estimated by the triangle inequality as *

(3.19) L3S (K [ 2°< 1< 25T HIEg 1
«EZL kEZ s

From (3.15),

(3.20) IA[(R)' )] <e¢ and |R,0)] <24l
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Fix a € Z. For k € Z, consider a net 28 = u; < 4, < ... <y = 2¥*1 of N = N, equi-
distributed points. The number N, will be specified later. Estimate

(3.21) H{f* (Ko), | 26 8 251 } |, <

(217w, /] +

(3.22) (2 [[1a0rs ania])”

{m1 L4

majorizing 2,({u, 4, ,]) by va([ur, u,,])-
Again by Parseval’s identity, the L2-norm of (3.21) is bounded by

(3.23) [Z [ roriRenra] s ove e [ era]”

by the definition of K, and (3.20). Here | A | ~ ¢ stands for }p < | % | < 4. Similarly, the
L2-norm of (3.22) is bounded by

a2 [Fea-wf ][ sornriky @ra]s]s

o[2® ¢, .nrora)]”

1
_—_CN;”*U Fx ’dx] .
o
Substitution of estimates (3.23), (3.24) in (3.19) finally gives the bound

[z, ouemanay ([ era)] <cisil=cisi

Al ~2-a-k

Al ~ k-

chosing N, = 2!l
Summation of (3.17), (3.18) yields (3.14), which proves Lemma 3.11.
Let us point out one application of Lemma 3.11 to the convergence of the averages

1
ANf=ﬁ X Tf

1SN
in Birkhoff’s theorem.
Corollary 3.25. — Let (Q, K, u, T) be a DS and f € L), Then, for s> 2,

(3.26) ‘ <) 11l
L'J

|{— ) T"f|N=1,2,...}

N "N

The last result does not seem to appear in the literature. It refines the results
discussed in the previous section (related to almost sure convergence). The proof of
(3.26) reduces to the particular case of the shift model (Z, S), following the procedure
described in section 2 of this paper. In the context of the shift, (3.26) is just a discrete
version of (3.12).



16 JEAN BOURGAIN
Writing
[ , 1
(3.27) ¢ = '—f xe-9'(2) tdt, Xe = 7 Xto, 415

0

for a smooth function ¢ on [0, 0], vanishing at co, the following lemma is a consequence
of (3.12) and the convexity.

Lemma 3.28. — Let o be a differentiable function on R, vanishing at . Then, for s > 2,
(3.29) {fxe >0}y <cls =27 ([7_ 1@ [15]de) || flla-

We conclude this section with a corollary of (3.28) which will be of importance in
the proof of certain Fourier-multiplier maximal inequalities considered in the next section.

Let H be a Hilbert space. If A is a subset of H, denote by M, (A) the A-entropy
number of A, A > 0. By Az-entropy number, we mean the minimal number (< o) of balls
(with respect to the H-norm) of radius A, needed to cover A. We set M, = 0if diam A < A,
The following result relates to H-valued functions on R.

Lemma 3.30. — Let @ be as in (3.28), s > 2 and H a Hilbert space. Then, for f € L%(R),

(3.31) I il;};(lMi") lle < (s — 2)7H [[f e
where one defines pointwise M, (x) = My({(f* 9,) (x) |¢>0}) and C, = f lo'(x)| | %] dx.
Progf. — Observe first the pointwise inequality
(3.32) WL)T<{Z[(f* 9y) (9) = (% 0y ) P < IS+ 20) (3},
where 7 = (¢,) is defined by putting
ty=min{t>£,_, ||| (f*9) (8) — (f*9,.) (%) |lx> 2}

(Since we are concerned with a priori inequalities, we may take the sequence # = (t,)
of bounded length.)

Writing f = 2f, ¢,, fo = <{f, ¢ >, where {¢,} is an orthonormal basis for H,
it follows from (3.32), (3.29) and the convexity (s> 2), that

I[sup M) [l < [2[H{ /e * @ Hlzg ] < eols — 2)77 (2 [1fe H12)*™
This proves (3.31).

Lemma 3.33. — Let ¢ be as tn (3.28) and H be a Hilbert space. Then, with the notation
of (3.30) and for f € LE(R) and K> 0, one has

(3.34) | [} min(R, My ()" dn ||, < c5(log K)? 1 la-

Proof. — With the notation of the proof of Lemma 3.30, set
Jo=sup|fato ;s fa=<fitad
>0
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so that

(3.35) [ /a 1la < ol falle

by the Hardy-Littlewood maximal inequality. Define
(3.36) F = [2( )"

and, for s > 2, write

f: min(K, M, (%)% dh < F(x) + |

1.1
B(x} Kz * Mx(x)”‘ d)\

1% F(x)

1 1
< F(x) + K2 #(log K) sup A. M, (x)"".
A>0
Now, (3.34) follows from (3.35), (3.36) and (3.31), lettin % — ; — (log K)~ .

4. Maximal Inequalities for Certain Sequences of Fourier Multipliers

Proving the L2-maximal inequality in Theorems 1 and 2 in the context of the shift
(Z, S) by harmonic analysis methods leads to Fourier multipliers given by exponential
sums (the properties of which will be recalled in the next section). In this section a rather
general estimate is obtained, especially motivated by the major arc description of these
exponential sums.

The dual group of Z is the circle group II = R/Z, which will be identified with [0, 1]
(identifying 0 and 1).

The main result of this section is contained in

Lemma 4.1. — Assume ,, < ... < g €Il and, for j € Z, define the neighborhoods

(4.2) Ri={7\eH|1ér;¢i2K|7\—)\k|<2"}.
Then
(4.3) | sup | [, 709 &= d | || oy, < Cllog K? |1 Il

Jor functions f on Z.

Remark. — 1t is an interesting question whether there needs to be a dependence on
the number K of base points in (4.3). The logarithmic dependence will suffice for our
purpose.

In order to simplify notation, we denote by & (resp. #~') the Fourier transform
(resp. inverse Fourier transform) for functions on either R or Z.

For the sake of completeness, we include the following known argument to derive
the corresponding inequality for Z from the R case. Indeed, it is often more appealing
to prove the result on R because of the presence of the dilation structure.
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Lemma 4.4, — Let O be a set of multipliers on [0, 1] satisfying

(4.5) H:‘él;l F e Ff 1 lram < Bl f lram-
Then
(4.6) H:g};l F ' eFf 1| llam < CB || f|lag

where C is an absolute constant.
Proof. — Denote by B, the best constant satisfying (4.6). Writing, for x € Z and
u € [0, p] (p < 1 to be specified later),
F o FSf] (%) = FoFSf] (x + u) + FTH(1 — &™) oFf] (x)
and averaging in u gives
[I'sup | #~ (e FS1] lleazs <

(C)) el sup | F7 oFf 1 lzam +

(4.8) JSup [ sup | F7U( — &™) oFf1| |l a-
By (4.5), (4.7) is clearly bounded by

(2.9) ™ Bl Ff |luao,y = e B[ f llacey-

By definition of B,, (4.8) is bounded by

(4.10) B, ||f* F UL — ™ ||ng, = B, || Ff.[1 — ™ (a0, 1

< CpB, “ ff”lﬁzo. 1]
= C"PB1 ”f”l%(zr

Hence, from (4.9), (4.10), B, < p~"*B + CpB,, thus B, < G’ B by choosing p small
enough.
By Lemma 4.4, Lemma 4.1 may be restated as

Lemma 4.11. — Let Ay, ..., Az € R and let R, stand for the 2~ -neighborhood of the set
A={2,...,20g}, for jeZ. Then

(4.12) Il sup | F~ {xg; Zf1| |la < Cllog K)2 [|.f ]l

The proof is mainly based on Lemma 3.33 of the previous section and will be
presented in several steps.

Lemma4.13. — Letdy, ..., A e Rsatisfy |\, — N | > 7> O0fork+ K. Let0< p< 1
be a smooth function such that supp $C[— 1, 1]. Then

K K
(4.19) I sup, | B =%, + 9] < Clog K)* (3 14 )™
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Proof. — Observe first that
k
(4.15) | 2 & ™% ||, ny < Cr (T | g [F)
E<K k=1

for all scalar sequences @ = (a,);<,<g. L1his is an easy consequence of the separation
hypothesis of the A,’s and we leave the verification to the reader.

Since supp g, C[— 7, 7] for t> 7%, there is no restriction in assuming that
(4.186) suppC[— 7, 7] for I<k< K
For u € R, denote by ¢, the translation operator; thus o, f(x) = f(x +- u). It follows from
(4.16) and Parseval’s identity that

1 | S
(4.17) I fe — okl <5 llfelle for [u|<iG57"

Denoting by B the best constant fulfilling (4.14) (CK'Y? will certainly do), one gets

1 —1
from (4.17) for 0< u< 706 ° that

K
Il sup | 2 ™™= fwp)]]l;<
(4.18) >t k=1

X
[| sup le:; = o (fi * )] |l2

t>112

+ $ BZ (|4 )"

—1
Integrating (4.18) in x on [0, 1’0—0] allows to replace (4.18) by
K
(4.19) Gl =" f‘;f(’) Ikgl"_m““ TN f, % 9,) (%) [ eaco, +1, aw raae -

Therefore, it will suffice to bound (4.19) by C(log K)%. (2 || f, |[2)"* in order to prove
Lemma 4.13.

Fixing x € R, consider the set

(4.20) A=A ={((fixe) (*) ..., (fx*xe) (*))]|t>0}

as a subset of the K-dimensional Hilbert space fz. For A > 0, denote again by M, = M,(x)
the entropy numbers of A. There exists a sequence B, (s € Z) of finite subsets of the dif-
ference set A’ — A such that

(4.21) |6]<2.2* for b eB,
(4.22) #B,< M,

and each element @ € A has a representation
(4.23) a= E:zz, with 5, € B,

K
(% stands for ‘ cardinality ” and | a { refers to { X | 4, |*)"*). In writing (4.23), we make
k=1

the implicit assumption that A = A, is bounded, which is clearly no restriction.
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Estimate

K K
sup I Z e—znﬂku ez"il"’(fk * ‘P;) (x) l < Z max I E e~ 2nikt u eznﬂkz bkl

>0 k=1 1EZ bEB, k=1

and replace the L¥([0, v7'], du)-norm by

K
(4.24) 2 || max | X e s M b ] a1
e€Z bEB; k—1

For given s, consider the following bounds

K
max|...|<min{2° T K% [ X | T ¢ ¥hvtmihap |2]12],
b€ B, b€ B, k=1

They imply, invoking (4.15), that (4.24) is bounded by

(4.25) E min {1.— 1/2 23+1 Kllz’ Q12 2:+1(# B')IIZ}
s€Z

~ Cr—12 f: min(K, M, (x))"2 dx

using (4.21), (4.22).
Taking the L2(dx)-norm of (4.25), the required bound on (4.19) is obtained from
(3.34). This proves (4.14).

Lemma 4.26. — Assume that Ay, ..., g €R satisfy | N, — N | > 27% for k& R,
Then, with previous notation,

(4.27) nglzlf‘l[xn,-ff]l |l < C(log K)2{|.f |z

Proof. — The inequality (4.27) is derived from (4.14) by a standard square func-

tion argument. Take ¢ as in Lemma 4.13 satisfying 3 =1 on [— %, %] Estimate
sup | F [z, #F 1 <

iz
(4.28) up | 3 e[ £.e74%) w g,
ize k=1
K
(4.29) FOE | F Ml — 2 800~ W) FFIFP

By the hypothesis on @, g * @,j = (g * @y1) * ¢,; for j> 5. Hence, applying (4.13)
with f, = (f.e"™M%) x @,1, (4.14) gives the following bound on (4.28)

(@.30) Clog K2 [[ 2 170+ 2|32 Wi ] < Clog K)2 £

invoking the separation hypothesis of the 3.’s and the fact that supp $C[— 1, 1].
By Parseval’s identity, (4.29) is bounded by

(4.31) {}; j F0IR D) — 2 (20— 3)]2 ,n}ms

sup [ T 1om(¥) — 2 30— 4[] 1/ la-
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E
Since yg, (1) — 2 #(2'(Ax — 3,)) is bounded, and vanishes if either dist(A, A) < 277!
k=1
or dist(x, A) > 27 the first factor in (4.31) is clearly bounded.
Now, (4.27) is implied by (4.30), (4.31).

Remark. — In a later application, A ={},, ..., A¢ } will be typically a set of
rational numbers a/q, (a, g) = 1, with ¢ < Q and the neighborhoods (major-arcs) consi-
dered <€ Q72 Thus the more restrictive Lemma 4.26 actually already suffices for our
purpose. The statement of Lemma 4.11 is simpler, however, and the result may be of
independent interest.

In the remainder of this section, we complete the proof of (4.12).
Lemma 4.32. — Let again
_ . ol 9 e Z
R, ={a eR[lgggxll NI<277) forjel
Then
(4.33) I 50p | #"[xa, 111 [l < Gog S]) 171
3

for S a finite subset of Z.

Proof. — The argument is inspired by the Burkholder-Davis-Gundy-Stein (cf. [Ga])
dual version of Doob’s maximal inequality. The only difference here is that the operators
are not positive. We only use the fact that the R’s are decreasing. Assume thus, rede-
fining R,, that

R;,,CR;, 1<j< 2* where s~log|S]|.

Denote by B the best constant satisfying the inequality
| sup | F [xw, FF 1 lla< Bl Sl

1<5K2f
or equivalently (by dualization)
—1 .
(4.34) H,_Ezsgr [xn,.fgflllﬁ B”’§2‘|gal [l

Identify S and {1,2,...,2'} and let (S)),, <, be a diadic partitioning of S
S¢=S
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Set g; = f’l[hj Fg,]; clearly
(4.35) (8 8&>=1<8,8> forj<k
Using this fact and Holder’s inequality, one gets, from the definition of B,
I ZZE=2021E+22<2,&>
ies i<k
<E|]g,||§+2 Y |<_ % g, = &l
le]<s i€B8. o0 kES;
<Zllgli+2B = || X lglllall = lgllls
lel<s 4 JES8, 1

Esc,o €8

< (1+2B9) || Z gl I3
Consequently, B2< 1 4 2Bs implies B < ¢s, proving (4.33).

Proof of (4.12). — Define
S={jeZ| K127/ |5 — 2 |<K2 ! forsome 1<k +k <K}
Obviously
(4.36) |S|< K5
Define further
Z, ={j € Z\S | R, has r components }
for 1< r< K, Hence
(4.37) 2, <Z,<... <Zyg

where Z,, Zg are half-lines and Z, is a finite segment for 1 <r< K. For r> 1, let
j, = min Z,. By construction, there is a set A, C{ A, } satisfying

(4.38) |A—2[>27% for A4 A" in A,
(4.39) UDn—242+271CR,C U A —27+ 242741 for jeZ,.
AEA, AEA,

To prove (4.12) we proceed again by duality and estimate the best B fulfilling
I12Z < B[ 2Z]g|ll for & = Fxs; #2,l.
Using (4.32) and (4.36) and setting G, = X g, and G, = X 3, we have

i€z, i€z,

NZZ <l Z Zll+112( Z 2)lle< (logK) [ Z]g,]lla+ 2T, |l
i ies r JEZ r

Since Z, < Z,. for r < 1’, we have, forjeZ ,;' € Z,,

K& & > =1{C8&; & >
Hence

<G,,G,>=¢<G,,G,>
and IZ8E=Z08 5 +2 X <G, .
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The same argument as in (4.32) than shows that

(4.40) B*< (log K)% + B? + B(log K)
where B; has to satisfy
(4.41) I sup | #Tts, #7111 < By 1 o

In order to estimate B,, apply (4.26) with A = A , s =j,, taking into account (4.38)
and j> j, for j € Z,. Invoking then (4.39) and a square function argument such as
in (4.31), it follows that B, < G(log K)2 Substitution in (4.40) yields that B < C(log K)2.
This proves (4.12), hence Lemma’s 4.11 and 4.1.

5. Behaviour of Exponential Sums

In analyzing the Fourier multipliers appearing in proving Theorems 1 and 2,
information is needed on the exponential sums (1.5), i.e.,

N -
(5.1) ou(@) =5 T Ao
no=-]
where
(5.2) pa) —agx 4 ... Foag® and @ = (a, ..., %) €[0, 1%

In this section, some well-known results and procedures are summarized. The
estimates required are mainly provided by H. Weyl’s basic lemma

Lemma 5.8. — Let f(x) = ayx + aga2 + ... + oy 2 and | o, — (a/g)| < 1/¢%
where (a, §) = 1. Then for all € > 0,

(5.4) | f‘. eV Gt g +nmt 4 gnm 0], where p = !

m=1] 2d_1
(¢f. [Vaug] or [Vin] for a proof).
Denote by Q the set of rational numbers. For
§=38d)>0 and 6;,...,6;,€[0,1]1NnQ
with common denominator ¢ < N3, define the ““ major box * in the d-dimensional torus as
(56.5) MOy, .. 0) ={a=(ag,...,0)ell¥||a,—0;| <N +®(1gj<d)}.

The following fact may be found in [Vin] (ch. IV, Th. 3) and can be proved by iterated
applications of Lemma 5.3 combined with Dirichlet’s principle.

Lemma 5.6. — If « does not belong to some major box as defined above, then
(5.7) | ox(a)] < CN-7.
Here gy(a) is defined by (5.1) and G, 8 > 0 depend on d.
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One may describe the shape of @x(x) on #(9,, ..., 0,). Let 6, = a,/q, «; = 0, + B,
and | B;| < N~#*3 Writing n=¢s +r, where 0< s<Nfgand r=0,1,...,¢9— 1,
one has, for j=1,...,4d,

(5.8) a;n’ = (0, 4+ 8;) (g5 + 1) €Z 40,7 + 8, ¢'s" + o(N"1%%)

since ¢ < N®. Hence, clearly

(5.9) ox() = {% ié:gw(reﬁ...ﬂded)} {l .1§082M(Blw+...+ﬁda“cd)} + o(N-12),
For (4y, ...,4;,9) =1 and 0, = a,/q, define

(56.10) S(¢, 84, ..., 8;) = 1 qile2ni(r01+ k)

Set . e

(5.11) Vx(B) = %fo FBLY+Badtt ot Bavh gy

Then, (5.9) and the estimates | 8, | < N™?*? easily yield the following lemma, replacing
the second factor in (5.9) by its continuous substitute:

Lemma 5.12. — For x e #(6), & = 0 + B, one has

(513) ?N(&) = S(q’ al: MR ] ad) VN(E) + O(N—1I2)’
where 8, = a,/q.
Recall also

Lemma 5.14. — If (¢, a4, ..., ;) = 1, then
(515) ls(q’ a5, "':ad)ls CQ—S’
where 8 = 3(d) > 0.

This is clearly a consequence of (5.3).

In this work, we will not need finer information on the S(g, a4, ..., g;), such as
the multiplicativity properties and A. Weil’s estimate for ¢ a prime number.

Finally, we give some estimates on the function

(5.16) V(@) = J'l BN+ BN L+ BN g
0
Lemma 5.17.
a
(5.18) 1= Ve@I<CZ|e N
a
(5.19) | Vu(®)| < C[1 + ’§!| B, | Ni]-
where C = ¢(d).

The first estimate (5.18) is obvious and the second (5.19) follows from van der
Corput’s estimate on oscillatory integrals.
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6. Ergodic Theorems in L®

In this section, we prove Theorem 1 for functions of class L2, This result appears
in [B,]. The argument presented here uses less structure. According to the discussion
in section 1, the maximal inequality and convergence problem for the averages

1 N
(8.1) Axf=g5 Z.Tf

(6.2) p(x) =byx + byx®+ ... + 5% b,eZ and ;> 0,

where reduced to proving certain inequalities for the shift model (Z, S). In the case
of the shift, one has

(6.38) Ay F =f» Ky, where Ky = % »%1 3 pim}

and 3, stands for the Dirac measure at ¥ € Z. Hence, introducing the Fourier transform,
(6.4) Axf=FFIKS].F S]],

where, for « €Il ~ [0, 1],

(6.5) FIKy] (2) = % "%16‘2’“”‘”"“ = opp(— by oty ooy — bya) = pp(— a.b).

For s> 0, define an exhaustion of the rationals in T
(6.6) R,={6eQnN[0,11|6 =24afg, (a,¢9) =1 and 2°< ¢<2**+1}
which is considered as subset of II. Thus #, ={0 = 1}.

1 .
Denote by { a smooth function on R with{ = 1 on [— 10’ 1_16] and { = 0 outside
[— é, %] . (The smoothness of { will be irrelevant for the L2-theory but has importance
when considering Lf-estimates for r < 2 in the next section.)

Define
(6.7) o, n(a) = 6(z:J_%S(G) wy(x — 8) £(10°(« — 6))
where, with the notation (5.10), (5.11) of section 5,
(6.8) S(0) = S(¢', ay, .-.,ay)

where — 0.5, = a}/¢'(mod 1) and (g5, ..., a5, ¢") = 1,

(6.9) wx(B) = Va(— Bby, ..o — Bby).
Thus it follows from Lemma 5.12 that, if 8 = afg, ¢ < N?,
(6.10) F[Kg] (@) = S(6) wy(e — 0) + ON"Y2) if o — 6| < N7+,

Also, since ¢’ > ¢/b,, if 6 = afq, (a, ¢) = 1, one has by (5.15) with notation (6.8)
(6.11) | S(6)] < G27*% for 0 e £,.
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From (6.9) and (5.17)
(6.12) 11— wy(®)] < G| 8N,
(6.13) | wx(8)| < C[1 + | B | NT]~*2
Observe also that the summands in (6.7) are disjointly supported, by definition of £,
and Z.

Lemma 6.14. — There exists 8, > 0 such that the uniform estimate
(6.15) | F[Kgl () — T §, ()| < CN-

820

holds.

This lemma allows the replacement of #[K] in (6.4) by more explicit multi-
pliers which will be taken care of by Lemma 4.1.

Proof of (6.14). — Redefine major arcs in II by letting
(6.16) MH0O) ={aell||a —0|< N-¢+2}
for 6 a rational afq, 1 < a< ¢, (a,¢q) = 1 with ¢ < N8,

Case 1. — « belongs to an arc .#/(6,).
Assume 6, € &, , thus 2% < N° Let 5; be a positive integer (depending on N),
to be specified later. Estimate, using (6.10), (6.11),

(6.17) | FIKy] (@) — D, ()] < | 1 — (10%(a — )]
+ <2 sup | wy(e — 0)] + G2~ 1% 4 CN—12

where the sup is extended over all 6 € &£, different from 6,.
Since 10% < N*® and | « — 6, | < N=9+3 < N~1, the first term in (6.17) vanishes.
Letting 2t ~ N® and writing
Ja— 01> 60| —[a—8],  [0—6,]> g 275 g N1
for 6 € 4,,

s< 5y, 0% 6p and | a — 6, | < N7, it follows that |a—6|>%[6—00|. Thus the

second term of (6.17) is bounded by (log N) .N—1+®¥ inyoking (6.13). Hence (6.15)
holds.

Case 2. — « does not belong to a major arc.
Clearly, from the definition (5.5) and (5.7), we have | F[Ky] («)| < CN~¥,

by (6.5). For 21 < %NB, 2% ~ N?, write

(6.18) |Z4,x(@)]< B sup |wgla — 6)] + €217

1< 0EA
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By definition of 4 (6), it follows from the hypothesis on « that | « — 8 | > N~%% % whenever
0 ed,,s< ;. Hence | wy(e — 6)| < CN~ %4 by (6.13) and (6.18) implies again (6.15).
This proves Lemma (6.14).

It is clear that, when proving the maximal inequality
(6.19) | s‘;P |/ * Ky | Ham < C S |l

the function f may be taken positive and hence the supremum taken over the set
Z,={2*|k=1,2,...}. Setting

(6-20) Py = %%.N,
estimate by (6.15) and Parseval
(6.21) ll;gglft Kellla< llfggllf“[% Ff1l 2

+ (2 || FIKy] — by 2 1Sl
nEZy

< [[sap| £ Thux #711 I + G111
To estimate the contribution of the first terms, define

(6.22) Fuxle) = T S(8) x(N¥(e — 8)) (10 — )

with x = y_, 5, considered as function on R. It easily follows from (6.11), (6.12),
(6.13) that there is a uniform estimate

(6.23) Z | bun — Fux | < €277
NEZ

Therefore, again by a square function argument
(6.24) I sup FF 7w FF Hla< ] sup | F 2 G0 FF1 s + C27*% (| £ la-
For N € Z,, write N* = 2/ and let R, be the 2~ -neighborhood of R,C II. Thus, setting
(6.25) Fle] =F1f] oé‘:a S(6) £(10%(« — 86))
(626) "I;l,N ff: ‘gr[gn] 'X.B.l-’
it follows from inequality (4.3) in Lemma 4.1 that
(6.27) (| sup [ F[F, x-FF] lla < || sup | F[F 2] 2211 Ils

NEZ iEZ,

< C(log | 2, )* || & la-
By definition, | &, | < 4*, and it follows from (6.11) and Parseval that
Il & 1ls< C27** {|fla-
Substitution in (6.24) yields the bound
(6.28) Ilsglplf_‘[d»..x Ffs< G277 (I f 1l
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and hence, substituting in (6.21),
(6.29) Il 3up f* Rl lla< G(Z 27 %) Iflla< Gl S s

which proves the maximal inequality
(6.30 Isup] Ax s 1ls< C 1L 1l

Next, we verify the almost sure convergence using the method described in section 2 of
this paper. Thus we prove an inequality (2.14) in (Z, S)

J
(6.31) ’E“l‘l/;f”zg oD f1la
setting
(6.32) Mif= sup |fx(Ky—Kg)l
N;<N<Nj,q
N € Z¢

where Z, = {[(1 - ¢)*];n = 1,2, ... }for £ > 0 fixed, and N, is any rapidly increasing
sequence (N,,, > 2N)).

We again apply the Fourier transform method. With previous definitions, it again
follows from (6.15) that f* (Ky — Ky) may be replaced by F (g — by,) Ff ]
when defining #; f. Fixing s,, it follows from the previous inequality (6.28) that then
(6.33) | flle< Z|l  sup [ F 7§y — du,w) FfI 2

. 1< N;<NJN;, v
€2 + Cem1 275 % || fls,

where the second term in (6.33) will be o(]| f||,) for appropriate s4. Thus it suffices to

verify (6.31), defining now
(6.34) M f= sup | F (wy— wN]-) Ff1l,
NN <Njoy

where wy is given by (6.9). The reader will indeed verify that summing up the first
terms of (6.33) over j =1, ..., J will only introduce an additional factor (dependin