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Works of Lindsay { 19%3pand Basu and Sackar (1994a) provide heuristiy arguments and some
empirical evidence that the minimum negative exponenlial dispanily estimator (MNEDE], ik
the minirum Mellinger dislanee estimator (MHDT) (Berian, 19770, 15 o robust allermative wo the
wiual naximurn likelihood estimutor when data contuin outliers. Tn this paper we cstublish the
robusiness properties of the MNEDE and prove that is is asympiotically fully efficicnt undet
d specified regular parametric family of dengities. Also our simulalion cesulis show thal unlike
the MBI the MNEDRE 5 robuost mol only amainst ootliers, bel also agamsl inliers, defincd as
walues wilh less dula thun expeted,
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1. Introduction

Let X..X5...... X, be a random sample from a populwtion having a continuons
probability distribution which is & member of 4 specilicd parametric family of
densities | fa: f € @}, where & 15 a subset of I For case of presentation, we diseuss our
results for a scalar parameter 0, but our results hold for a vector valued parameter. Lel
# denote the class of continuous densites lopologized by the L;-norm, and let
Fo= {0 @) be a parametric subelass of % and we are intecested in estimatime 0
In parametne estimation, there are two issues of indamental impormance which the
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stalistieian has to deal with. The hrst is the efficiency of the estimator when the model
is comrectly specified, und the second iz the robusiness of the cstimator under dew-
ations fram the true model. Unfortunately, these twao are nsually competing concepls.
The maximum likelihood estimator, which has full asympiotic efficiency among
regular estimators. usually hias poor robustness properties; on the other hand, the
class of rebust M-estimators achieve their robustness at the cost of first-order
efficiency at ihe model (eg., Hampel et al., 1986)

The conflicling concepts of robustness and efliciency are at least partially reconciled
by some density-based minimum ‘distance’ estimalors such as the Heilinger distance
and its relatives | Beran. 1977, Stather, 1981, Tamura and Boos, 1986, Sirapson, 1987,
198% Lindsay, 1994). The pioneering wark by Beran (1977 first showed that the
minimum Hellinger distance estimator can simultaneously achicve lirst-order efficien-
cy and robusiness properiics. NMote that asymplotic efficiency under the model implies
that the estimator must have the same influence fencticn as the maximum likelihood
estimator - - which can be potentially unbounded. The above-mentioned references
show that the minimum Hellinger distance estimator (MHDE) enfoys robustness
properties in spite of this. Beran has showed that under gross erfor contaminations
and compact parameter spaces the minimum Hellinger distance lunctional stays
bounded. Tamura and Boos (1986) showed that the affipe-invariant MHIE for
multivariate location and covariznce has a breakdown point ofat least 5. This resull is
important hecawvse it is independent of the dimension of the parameter space. In
contrast, the breakdown paint of aline-invariant M-gstimalor is at most 1S = 1),
where 4 is the dimension of parameter space; in addition, the M-estinuator is not fully
efficient at the model. Simpson (1987 showed that the MHIIE has 30% breakdown at
some diserele models such ws the Polsson. Lindsay (1994} gave 4 pencral result for the
breakdown poirls lor the class of minfmuem disparity estimaiors (a subelass of density-
based minimum dislance cslimators) m terms of a characterizing function of the
distance called the residua! wdiusiment finction (RATY in discrete models. We will
dwscuss the RAFs and their role in estimation in Section 2.

Throughout this paper the range of all the integrals will be [ Letr g, denote
a nonparametric density estimator of the true density g based on the data
XX, . &, Itis usually obrained by the kernel density estimation method as

i) = | w0 ¥ B G (¥)
where wis a smooth family of kernel functions like the normal densities with mean
¥ oand varance b, and G, is the empical distribution function. The MHDE is
obiained by minimizing the squared TTellinger distance between g, and f;

HING,. ) = | g (=" - (#0172 P da,

The purpose of this paper is to establish that another densitv-based minimum
distance estimator of &, pamely the nrinimum negative cxponential disparity estimator
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{MNLEDHE) 15 asymplotically as efficient ag the MLE at the model and robust undec
data conlamination, Properies of general disparities have been discussed by Lindsay
{19947 10 detail for discrete models, The MNEDY s ablamed by mimmizing the
negative exponential disparity I} 3, & between §, and £, over &, wherc f, & %5, 4 =%,

Dig.01= | lexpl —d(g.0, )] - 1% fixtds (1.1

and

. n
Mm&ﬂ:(“”_t] {12

__f-_l[_-'('] N I

Follawing Lindsay {1994 we will call dig, (I x) the Pearson residucl at x. Moreaver,
unlike the MHDE, the MMNEDE s robust against infiers (Lindsay, 1994 which is
demonstrated by our numerical results {Section 3. Tables 3 and 71 Some evidence of
ihe robustness of the MNEDT iz provided by Lindsay [1994) and Basu and Sarkar
{19944}, The form of the disparity In {(1.1) is patural in the sense that in this case the
disparity is nonnegative taking the wvalue zeco if and only o g = [, (Proposiion |
below). However, the development of the procedure will be lacilitated [Secuons 2.1
and 2.2 helow) by considering the disparity
Dyl @ = | fexpl &gl 11l — 2} fxddas, (1.3}
Mate that 4117 and (1.3] differ only by 2 constantl and have the same estimating
properties becavse (1.1) and (1.3 are minimized at the same valoe of ) 12, one can
cquivalently consider the AMNEDE 1o be the minimizer of 1.3
Instead of a geometric interpretacion. in which an observation can he called an
outher if 11 1s far away from a bulk of the data, we will nze a peobabilisue interprela-
tipn 1o churacterize an observation as an outlier. In this case an observation will he
called an outlier it it would be a very unlikely ane i the fitted model were true. Such
i probatlistic eutlior can alse be called a surprising observation {Lindsay, 1994), Nate
thal the Pearson residuals detined in Eq. (1.2) will all have values zero if the data
cxactly 111 the model. Large pesitive values of the Pearson residoals correspond 1o
probabilistic outliers {surprising observations). Density-based minimum distance es-
timalors such as the MHDE or MNEDE arc rabust in the sense that they reduce 1he
inpact of surprising obseryviations on Lhe parameter estimades fwe will discoss Lthis in
more detail in Seclion 2] The MMNELRLE, in addivion, reduces the impact of Pearson
wliers on the patameter estimades also, something which the MHUE [aik 1o do
Enliers cormespond Lo negaiive values of the Pearson residual d(g, 8, ), 1e., values with
lews observalions than expeeled under the model — and have received litlle alwenlion
in the robustness literatare. Lindsay (1994}, however, recognized that the treatment of
Peprsan indiers by some popular estimatrors such as the MHDE can be the source of
& problem; inlers can canse a lgrger Bas in the MHDE relative 1o the MEE. This
point is further discussed in Seclions 2 and 5 below. Some empirical evidence ol the
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prablem cansed by ioliers in discrete models have been provided io Harris and Basu
(1934} and Basu el al (1990) where it has been shown that ap adjustiment for the
eatremd inlying cells can often lead to significant improvements in the small sample
performance of the procedures based on the Hellinger distance.

Although in this paper we consider the MNEDE, it iy possible o extend all the
wleas 1o a gencral class of disparties having bounded RAFs {defined in Section 2
below), which provides a class of procedures for obtaining rotest and asymprotically
cthcient estimators, A nateral guestion is how do these procedures compare wmong
themselves in werms of robusiness and eiiieiency. There has nol been any comprehens-
ive study on this, although some comparisons of the minimum Hellinger distance
estimator wnd The mimmuem nepative exponentiad disparily estimator, based on Lhe
approdach of mode] smoothing as delined in (2.6) below, is provided in Basu and
Sarkar {19944,

The rest of the paper is organized as follows, In Section 2 we discuss previous works
on Lhe negative expomential disparity and provide some rationale (Section 2.2) as o
why the complex looking negative exporen bal disparily leads W an estimailor which is
[Wlly eflicient and robust aeainst both cutliers and inlices. Sections 3 and 4, respec-
tively, conlain the asymploue clficiency and robustness resulis for the MINEDE. [n
Seclion 5 we present resulis of a Monie Cardo study comparing the efiicieney and
robusiness of the MMNEDE (o those af the MHDE and MLLL Some conclosive
romarks sre glven i Section 6

1, The neyative expenentigl disparity
2.1, Discrete mondels

For discrele models, Lindsay (1994) has introduced the MINEDE as a member of
the general class of depsity-based minimum distance estimators. Here we briefly
discuss minimum disparity estimatica in discrate models. Let { fu(x)}? represent a fam-
ily of probability mass functions having a countalle support and indexed by &, The
discrete case does not involve kemel denstty cstimation. Chiven a random sumple
1X . X, . X, ) from g distribution g, define g,0x) 1o be the observed proportion of
X5 taking the value x and Tet

O, B} = T il — filx) 1/ folx)

denote the “Pearson’ residual at the value x, which depends on the data and the
parameter . When there is o scope for confusion, we will write 8(g,. & x) simply as
#(x). Let G be a three times differentiable, strictly convex function with Gl — 0.
Then, the nonnegative disparity measure ¢ corresponding to & is defined as

Pl ) = Y GIS(x)) fiix) (2.1)
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The value of 9 that minimizes (2.4} s called the mmimum dispanly cstimator. When
Celdp—=1d 4 1lagld - 1 the dispanity

LG, 0= guxp[lopgls.00) — logl Lixi] 2
s called the Hkelihood disparite, and s minimirer s the masimuom likelihood
estimator (MUE of 0 Note thal (2.3 s a form of K ullback -] cibler divergence. On che
olher hand. Gidy = [{& = 1177 - 1) generates the sgnared Hellinger distance and

Gid) = [e" = 1] (2.3

generates the negative exponential disparity. {The alernative form of the nepative
exponential disparity in (1.3) corresponds 1o (8] = (7% — 2]} Other examples of
disparities include the Pearson’s chi-square, Neyman's chi-square, the power diver-
gence family (Cressie and Read, 1984, the blended weight Mellinger distance family
(Lindsay, 1994 Basu and Sarkar, 1994b, Shin et al, 19951 and the blended weight
chi-sgquare Fimily {Shin et al, 1996,
Lol ¥ reprosent the pradient with respect e 6. Under difterentiability of the moded.
the minimum disparity estimating equaticen takes the form
Vip =% ABNT i) = 0,

wliere
A = {d 4 1} G| - Gid) (2.

and €481 denstes the frst derivatve of Gidl The function A{d) 15 an inercasing
function on T — 1, wohand can he redelimed, without chanping the estimating properiics
af the disparity, so that A(0) = B and A = 1, where A(d) denoles the frst derivative
al Aa), This fonetion Ai#) iz called the residual adjustment function (RAF) ol the
dizspurity and plays a keyv role o determining the theorstical properuies of the
eetimatars, For the likelihood disparity the RAF 5 linear with Aié) — b, and after
the ubove standardization. [or the ITellinger distance Aidy =20F = 1102 — 17 and
tor the nepative exponential disparity

Ald) =2 - (2 + &1 (2.5

Note that Lhis carresponds exactly to the moditied definition of the negative exponen-
el clisparity Dy in 11.3) with the ussociated tunction & aiven by

Glap=(e™* =2}
2.2 Revelupment of the nepative expenential disparioe
The graphs of the RAFs for the Iellinger distance and the negative exponential

digparity, together with that of the likelihood disparity which corresponds o
Aidr = doure providad in Fig, 5 of Lindsay (1994). The figure shows thal the RAF«ior
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both the Hellinger dislance and nepative exponential disparily have sirong down-
waighting cifects on surprising observations (large positive Pearson residuals), ic,
Ald) < d lor large positive & The curvature parameter of the disparity, which 15 the
second dertvative of the RAT al vero, denotwed by A5, has been used by Lindsay as
a measure of the trade-off berween robustness and second-order cfficiency. Large
negative valoes of A; correspond to robusiness properties, since (n this cose the RAF
quickly becomes flat compared to that of the likelihond disparity, thus prowviding
higher downweighling effect for surprising observations relative to the likelihood
disparity (node that for the Hellinger distance 4, — —{.5). On the other hand, when
the curvature parameter is zero, the estimator is second-order efficient io the sense of
Rao (1961} However, [ooking at the nepative side of the & axis in Fig. 5 of Lindsay
{1994). one can see that the Heilinger distance fails 1o shrink the effeet of large negotive
residuals, in fact it magnifies them. IT coc wishes the estitmation procedure to be robust
against both infiers and outliers {relative to the maximwm likelihood estimation), in
the sense that | A(d), < |d] for large {in magnitude) & values, the corresponding RAF
must bave curvaters parameter zera, since it must cross Aid) = 4 at 4 = 10; thus the
procedure must be second-order efficient. The third derivative of this RAF, if pol itself
zero, must be negative so that large Pearson residuals (both positive and negative)
shrink towards zero. These are precisely the considerations which led to the develop-
ment of the negative exponential disparity, far which the second derivative of the RAF
at zero s wero and its third derivative al zero is negative one [see Lindsay. 1994,
Section 7.2y In fact, the pegative exponential disparity can be thought to he generated
starring from the RAF in (2.5 via Eq. {15) of Lindsay (1994}, who showed that for any
given differentiable increasing function A(F), one can construct an assouled dispar-
ity measure p. Thus, the pegative exponential disparity provides downwetghting lor
all residuals (positive and negativel while the corresponding estimator is second-order
efficient at the model

2.3 Conrpons podels

To generalize Lindsay’s (1994) work to continuous models { fi: ¢ e @, Basu and
Lindsay (1994) also apply 1the same smoothing to the model densicy £ that s applied
L the data Lo define

Alxy = | wix e ) 4E )
where F, is the cumnlative distribution function of f. Then, to ablain the casimalor of
i Tor a disparity measure p corresponding Lo a convex, thrice differentiable funcrion
& with (0] = 0, Basu and Lindsay minimize

"f;(ﬂnLJrlT _fijfx})ﬁ[x}dx 2.6
.}rl'-".x} s

o
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instead of minimizing

Sy - SNy 2
(';1{ L ol ).f.-;[:c]d.r (2.7}
. Jul) #

wilh respeet 1o @ while keeping the bandwidth b, of the kernel function constunl For
cxample. 1 case of the negative cxponenlial disparily their approsch mimmises

jﬁ{uxp[— iﬂfr—l l)—l - ]}j,_i_.[x]dx,

g _IT-;L‘L"II

i 11 = H G

wliich is the negative exponential disparily belween g, and f. Note that §,0x1 15 an
unbiased estimatar of fiix). in the Basu—Lindsay approach the minimum disparity
estitnators are tobust and generally consistent for a piven value of the bandwidih af
the kernel tunction which s not varied with the sample sice m. One docs not need o e
f, 20t zero as w — oo, a5 15 convenbionally daone There is oo loss in elliciencey due 1o
the smoothing of the model, if suiuble kernels called rransparent kernels, ke the
wormal kernsd for the normal model, are ysed (Basg and Lindsay, 1994 Basy and
Sarkar, 1994ch I however, a Lransparcol kernel 15 nol wsed, the mimmum disparily
estimators are asymplobcally normal, but no longer enjoy full asymplotic eliciency.
Ta overcomne this problem, in this paper we combine the ideas of Beran (19771
Tamura and Boes {1986) and Lindsay (1934 and estahlish the asympuotic elliciency
and rebustness of the MNUDE erespeetive of the ranspareney of the kernel. The
numerical resulls presented in Section 3 also show the insensilivity of the MNELIE Lo
inliers. a property that the MIIDE does not share.

3. Asymptotic elliciency

In thes section, under some regularily conditions, we fivst show the exisienece and
consistency of the MNEDE and then establish that the MXNEDE, like the MHILE, 5
asvmplotically as efticient as the MY under #,,. Under differentiabihiey of the model
Falx) with respect w0 [ let wth, xy — dlog fiu{x) /00 and let

Hidi = | w2 5y hlehdx P21
denote the Pisher Informution, We firse consider the problem of exisenee ol ihe
MMNLDE, Dheline Lhe negalive sxponential dispanly functivoal T:% s 8as Tig = #,
where i, salisfies

g i1 — min Dig. ), (3.3
[
provided such a 8, exists, where I{-,-1 is as defined in (1.1} Naote that £, also

mininizes Dy, 01 Sinee Ty may be multiple valued we will use the nowation Tig)
to indicate any one of the possible valoes chosen arbitrarly. Our first proposiion
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gives conditions for the existence of 8, Unless mentioned otherwise, all the liorits we
cansider below will be as n— oo

Proposition 1. Assume Hh

{a) the parameler spdee O 15 compact;

(bt for @ 2 B2 fe (2] # fo(x) on o sel of positive Lebesgue medsure,

(c) falx] iz comttfnnows in 0 for afmost ol < (with respect to the Lebesgue measure),
Then, (i for any g = % there exists a 0y € © such that Tig) = 6., and ([ for any 6% € 8,
T foad = 8% {5 unigue.

Prool. Fix g e % We will show that IH g, ¢} s continuons in . From assumpticn {a) it
would then follow that there exists a ¢, € & such that D{g, B, — ming Dy, ) We now
procecd W establish contmuwity of £4g,d) in . Let £, — @ as » - oo, We show that
Dig, hy— Dig, ) as v — o Conseder

D e} = exp(1) | exp[—0(0)f (1.0 dx - 1.

Note that
exp[ — )/ o lxh] fuix) = 5 (x)

and by assumption (<) expl —gix/fy (x)]55 (2] converges to exp[ — g(x)/ felx)] filx)
while £, {x) converges ta fa(x). Since lim,_, , | fo (¥)dx = [ fi(x}dx = 1, by a generalized
version of the dominated convergence theorem (Royden, 1968, p. 89) [exp| —gix);
Litxb] ftxbdx converges to | exp[ —gl{x)/ fa(x)] fo(x)dx and hence Dig.8,) -+ DHg. #)
HE I — T

To prove (i}, note that alterpatively for G¥(#) — (e ™% — 1 4 ), instead of & in {2.3),
we can write

D fin, 0] — | G*(3{ Fy, 0, XV} fulx) .

Mow GF(5) 15 g nonnegative gnd sirictly convex [unction with 4 = 0 as Lhe unigue
poinl of minimum. Therelore, for cvery @, D £, 00 = O and DY 5., (1 = 0 if and only if
S i, (1, x} 15 equal Lo zero on the support of the distribution £ which, by assumprion
(bh 12 true i and only if = 0% Thercfore, £ -, 0) is uniguely minimized at
=t 0O

Using the line of reasoning used 1o the proof of Propasition 1 it Is also possible to
give sufftcienl condiions [or the existence of & minimum disparty eslimalor {or
a general disparity measure g defined in (2.7 'This can be done by assuming, for
imstance, that the RAF for the disparity is bounded.

We can also apply Proposition 1 to a location-scale family

<:j;. =§_,|"(;[_t —y']): O=fpuoyel— o, =l rx:}}, J coatinuous,

P
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where Lhe parameter space 15 naod compact. This 15 hecaose [, o) can be repara-
meterized as = (8. 75 where {§ ) 1% delined by p=1ani(f), 7= tan(f;1
i B e 8, = mfd w2 0, w20, and the arguments mothe lasy parapeaph after
the prool of Theorem | Beran (1977, pp, 447 448} are applicable.

Hiving estublished the extstence of the MNEDE m Lhe previous proposition, we
now lurn Lo study some [grpe sample properbies which are closely connected o the
comtinuily af the lunglional T. We have the following result on Lhe contnuity of 1.

Proposition 2. Let g, be any fxed density in & and let [, be o sequence of densities in
& Jf Tignl s nunigue then under the asswnptions of Proposition 1 the funcriona T 1y
conRtiuuous af gn In the sense thar if g, — g 0 Ly then T, converges to T{gnl.

Proof. Let g, — g, in L We will show thal T'ig. 0 — 1{g;:] By contmumity of g, 0,
iz O there eadsts 8, such that B g, 00 = ming, £g.. 7 Thus establishing contimuicy
of T 15 equivalent to showing that i, — ;. We now claim that 1t is enowsh w show
that

sup |[f4g,. 8y Pgs, #1] 0, 3.3
[

T see Lhis, nole that if #, does not converge Lo By, by compactoess of &, there exists
i, # 0y e & and o subscquence 8, such that £, 1/, and hence by the continuity of
gy 0% we have Digy, 0,0 + D{gp. 0,0 Also from (3.3) and the definition of ¢, tfor
woz AL i follows thut Bige. 8.1+ Digy. B} Therefore, Pagn, 9.0 = Digg, b contra-
dicting Lhe umigqueness of T. Finally, to establish (3.3) note that for a fixed =, letting
1= galx] and py — golxl by the mean vidue theorem for the Mnction expl - /v
we have

gl ) g u{-‘i}'—! . [ 1 [ grixi
BEp| — = —ex == | = | X - @glx) el =), . | #x
: L falx) } p[ falx] e ol i RSP G |8
whera ¥ (x) s a point belween v — g dx)and p, = g0 Notethal g*(xix = Dand
hence exp[ —gF (&) ftxh] = 1 for all v, for all x and Tor all 3. FPherelore,

—exp| - #ei¥
: ARV

:IIIT {-IC} ] .
e dZ L g epdy

m_q,,.rjj.—ﬂ[gmﬂnguxp{nj x| w2
; fiix)

‘ Jlxvdx

= exptl)

(N

' 1
CLgalxh - galx) J —exp
| i I

.

“dalx) — gylxy dx

s expll)

Thereiore, supg |D{ge. 0 — Dige. 03 < explD |guix) — gy{xilde =00 This com-
pletes the prool of (3.3, []

[ the rest of the paper we assume that the assumptions of Propesition 1 hold.
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Remark 1. Let the true density f5, & #,. Deline the kernel density estimate of 3 (x) by

= 1ol - X 5
== w(Y ; ) 134

ui=]

where w Is any nomnnegative Borel measurable function such that jw[x]d_r =1,
Assumec that J, = _1'|§,,[x,1 — fufx) dx converges to O almost surely (as) Then, by
Proposition 2, 8, = T(4,) converges to 8, — T{f, | a.s. Henee, fexh -+ f5, (%) as. for
gvery x, and by Glick’s theorem (Drevrove and Gyorti, 1985, p. 10) j' [ fofxh = f5 [x)ldx
converges 10 0 as To obtain the rate ol convergenee of J, 10 zero, we can apply
Theprem |in Chap. 1 of Devrove angd Gyorli (1985) 1o gel 07, =0 < ¢ ™, where
F o= 0 docs not depend om the true density §

Apain by Theorem 1 in Chap 1 ool Dovroye (1987), 4 necessary and suellicicnt
condition for [ |#.(x) £ (xHdx =0 as. s that b, -+ 0 and nh, -+ 2, and rom the
previous paragraph it follows that j|_}?r‘|[.1'}' Folxl|dx =+ as Howewver, o morc
intercsting question is whether the negalive exponential disparily between f; oand
S, converges fo U oas In Faet, an applicaton of the diminated convergence theorem
vieldy the following resull,

Propositien 3. Lt g, be ax defined in (3.4) and assume that b, — 0 and nh, — oo, Ther
DN fo ) converges to 0 a8

Remark 2. In praciice, onc ofien uses the automatic kernel density estimator {see
Devroye, 1487} of the form

"
dalxh = fncyn) ™ 30 wllewm) Hx - Xp],
i<l

with bandwidih o, s, where 5, = s{X,, ..., X018 2 robost seale estimator and e is
a sequence of postiive constants. This allows one Lo choose the amount of smoothing
ax g lunction of the amount of variation in the data, sand may help prevent smoothing
the data wa much or too littde. In this case under the assamptions that ¢, — 0,
e, — 2 and w3 (s, — 81 is bounded a5 where 5 is a finite, positive constant, we have
V gz — fi (<) dx — 0 as. (Devroye and Gyorfi, 1985, Chap. 5. Theorem 3). Then it
tollows from Propaosition 2 that f; {x) + f5 (%) a5 for every x whers 4, denotes Tid,)-
Then. as in Proposition 3, one can show that 207, By) converges Lo gero s

Having estahlished the consistency ol the MNE(2E we now proceed to establish s
asymplotic nommality. tn what follows, we will assume that the model fi(x) 5 twice
continuously differentable with respect o 0, and £4g 03 and Dhyig. 0) can be twice
differenriated with respect to & nnder the intepral sign. Since A(4) and AiS)1 1 Srare
hounded for the negative exponential disparity, a set of suthcient conditions for the
ghove wre For any e @, o= 0 and & o (0 - 2,0 4 5,

(i) | fatxll = Kalx), | Kefxidx < x;

ik [l = Lalx), | Lafxpdx < o

(i1} 17 (4, ) fulx)] < Myix), { My{xpdy < o
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Theorem 1. Lel the true densicy belony to %y and be denoted by . Let 0= T
where §, 15 the kernel density estimare defived in (340 Assime the following:

(ay For ony seguedce of estmoiors gp) conzerging to fae @ v prebabilitn.
[ frl[.xb — £ (3] dx conzerges te zero in probability.

b For any seguence of estimotors o, conrterging o 0, & in probabiliiy.
_F [, Al b — iy, 0 S5 160 i comperges T sero in probabilitg.

1ol Fit) = oo and [ [w' it e e fodx) — with, xb f ()3 dx = Dan w| — 40

1) N S0P e SUPee g § AT+ e (X) ] di = o,
where wf = (v p = hozo 2 81 and (7010 denotes the second derivative of (21 with
FOSPECT TO X

O R RN S N Al (I A e )

11w s semmweatric abowr 00 kas compact support 8 amd Is hwice contimiousiy
differcrniahle,

Far the folfowing assumptions et Tz, ; denote o sequence of positive real mumbers
goang T iefinity, Tncondition () (- ) derotes the Indicator function.

(el msup, o PUA, - gt = a0 00

fgn VR L, Xhy ] x] Y edx) 0 D,

{i) M, =sup, . sup, ! fi b 1 Baifs el = O
Then, 1Y200, — 0,1 converges in distribution fo N0 (8.

Prool. Tirsd observe thal by condition {g] and Remurk | we have
dalxl = fu i) as for cvery v,

and
liaix] — fofx), die = 0 as

Let Dyl d,. 60 and ﬁml[g,,. M denote the first and second derivatives of b, 1 with
respect to [, Since B, minimizes Dhyig,. M over &, the Tayior serics expansion ol
Pl d, 81 wround 4, vields:

O = Byide. 0. = Bulda, to) + (0, — 035w, 0%,
where 1 4= 4 point hetwesa 6y and {,. Tence,

', 8y) = [Duldn U] 1T -0 Dyt da. a ]
It now sufices 1o prove that

Dyl e, 03— 18, {3.5)
and

— D, ) = N0 T 13.0)
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We firsl prove (330 Nole thal

Bt 07 = — [ 40308, 08, 0 irl)dx

w

&

) A 03 DL + UG, OF, 1 Tu0F, 3} f ) dx,

where Af8) =1 — dlexp[— 48] Now

| 406(3,-87. ) oo = ) dx = [ | AU (G OF- XN Lfucl) - Ao (6)1 et

52 | 1Al ftxddv— 0 (3.7)

using assumplion (ab and Lhe Tagr cthat for the negative caponential dispancy
suap, | Ald) = 2 Also

A G O [+ B, 05, 28] [0, 20 frr{x) — 12 (0. 6 o, ()T dx

= | VA G, 0 N1+ 81 G, 0F. ) D1 1267 (87, 20 fop () — P (B 0b fe ()| dx
< B | 2 (0¥, x) fip (x) - 20, %) filo)jdx —= 0 3.8

4

by assumption {b), and the fact that for the negarive exponential disparity
sup; | A(3H1 — 8} = B, where 8, is a positive constant. Now using the dominated
convergence theorem we have

-

ALa(ﬁllr{J:,.fJJﬁ:[xjd_tF r, 0

+

and hence by {3.7)

A3 G, 07, %)) fyg (xpdx - 2 0,

o

By assumption {c) and the dominated convergence thearem it follows that

P ~

l A, 0¥ [ + S5, 1, )] (B, xhfo (x) dx —T

En +

= ({g, ) fo (xhdx,

and, hence,
A G- OF, [ + 85, . x) ]2 (0F, x) fmdx) dx -1 i u?{flg. x) fulxpdx

" -

by {3.8), Therefore, we have {3.5).
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Next we prove (36) Note that
"2 Dyl gy B =0t | ALB( Gy B X0 fo 20 dx,

Therefore. it is encugh to prove tha

a

i l 5. B 51 i [¥) by —or N0 140,)) (1.9)

N

and
whe i‘[.»1[é[r§...ﬂn,xj} — dge . x1] S, (e T 0. ERL
¢ Yoserye that
A e e AR AR L
and hence 13.Y) lollows rom Berun (1977, lgs. (312}, (3.13). p. 452} Next we show

{3,101, Mote that

r

et GV
"‘]-{i}ffh Hn Y'” - f}{[}mHGst - q(\(_y__{xb_,) ) l ) [ ( |r|;- [‘L} } _- LJ

pa a Fl
Bl Al T
o Tt i (341
) _|‘L..I"-.i..l-"3],-) —‘ . :

for some By = Osinee A{t* - 1y (£7 1) = Byt - 1 for every nonnegative ¢ (see
Lindsay, 1994, p, 1107, Thut-._

} L] ﬂﬂsx}:l - Cﬁ‘{ﬂ". thx} |||r|..'b{-xf'dt

rte ’ |A{5{£?m r]Ihx}] = ‘Hﬁh: . x) |_Jl;ﬁn|;-tt|| dx

(gl XY — (5 0y, i dx

i

)
r,IJ._FHQ

MNow we consider

§1i2 i [ bt — i fa (a2 ] 7 (g, )] dx (314
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It is bounded by the sum of vwo terms:

2n'i3 ’ L{Ga (a2 (EGdx 112 12 (b, x] | dx

il

2t E gl — I 1 e, XD, da,

w

The first term represents the Hellinger deviadion of the gstimalor 7, rom its mean and
ity convereenee 1o zero in probuahility has been catablished by Tamuora and Boos
{1956, p. 226) wsing conditions (g)—(1) The second werm represents the bias in the
Hellinger metric and ils convergenes Lo wero in probability fTollows rem conditions (d)
and (g), This compleles Lhe proot, | ]

Condition (a] in Theorem | says that the second derivative of fi(x) with reapect {o
fhis L, conunuows in probability at the model while eondition (b] says thac
F, [ {rp, x}] {expectation being computed with respect to the density £, (xh} s continu-
ouy in probability at the mdel. Conditions (2] and (h] are simple contimuily conditions
angd are satisfied, for example. by the distributions belonging to the exponenttal family.
The second part of condition i) 15 satisfied, for nsiance, i wifly, x} is uniformly
continuaus in x on compact sels, The conditions {g)- {1} have been used and discussed
by Tamura and Boos {1986, Thearem 4.13,

The problem of the bandwidth selection is very important and il bas been studizd
by several authors, See, for exaumple, Hirdle et al. {1988), Marron (1989), and Hall and
Marron (1991). For our problem we need h, ~n 2% where 0 < 8 < §, which is
dictated by condition (e} of Theorem 1.

4. Rohustness

We now study the robostness properties of the MNETDE. We do this by examining
the behavior of the functional T defined by (3.2) under a mixture model for pross
errors, Our approach iies in studying the x-influence curves of T, as was done by
Beran (1977) for the MHDE, Beran showed that (o assess the robustness of & (une-
ticnal with respect te the gross-error model it is necessary be exgming Lhe o-inluenge
curve rather than the influence coerve, excopt when the infleence curve provides
g unilorm approximation 1o the a-inflluence curve. For this reason we stody the
#-mnfAuence curve for the MNEDE. The rosults are sumnarized in the following.

Thearem 2. Lz fi, o= (1 - @) fu+ 2., where 5, denotes the wniforst density o the
iterpal jz - ez 4 &), where g = D iz amadl, o &, 2 e {0 10, e . Then

(1) for every 2 (0, 1) and every e @, under the assumplions of Preposition 1, and
wider the condition that T f L 1 iv waigne for all =, T{f,, .} 5 o bounded, continious
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fimetion of & such tha

lim T4, 0=1, (413
[zl
) Wma [T 0= 1HM | [haixiedd, v ] dx, (4.2

where IO iv ax defined in (31}

Proof. Lol 4, denole T{ £, ). We fist show (41} Le., (. — 0 as |z] = 20, Suppose nat,
then wathout foss of ganerality, by going to a subseguence if necessaty, We may assume
that ., v &) # d as 2] -+ o, Observe that

Do s D0, L0 14.3)

lor cvery £ & Then by a generalized version of the dominated convergence theorem
{Rovden, L9639, p. 59)

P fos o f b o DL — b o, i1 14.4]
as 2! v, By id3) and (4.4) we have

Dl — 210000 = DL - w0 Yied 43
Now consider

D¥ix fot) = ptexp{ {1 —aa(f.nxl] - Dl @dLfinx)) fiixhdx

"

where & i5 a5 delined in (1,2). Since
G¥{a) =qexpl ~(1 18] 1 10l -2

is o nonnegative and strictly conves lunction of § with & — 00 as the unigue point ol
minimum, B fy, o s 0 anless 80000 x) =0 onoa sel of Lehesoue measure vero
which, hy assomption (b1 of Propesition 1, 1s toue if and only 170 = 0. Since #, # 1,

¥ (o fo, 001 = D%a. fu, 0.
Because Dl — =1 fi, 1) 15 & stricthy inereasing function of D¥e, £, 0 this implies
DIl = w1 f)= DI 2l fL 8

which contradicls {4.5), This concludes the proot of (4.1), The continnity of . fullows
tfrem Propasition 2, and the boundedness of (/. 2 & %) fellows from the compactness
ab &,

Maw wi prove part (i) Note that since J. minimizes D0 f,, 1) over & the Taylor
series expansion of ﬂflf,{._ -0 around F pives:

U‘ = JI':"‘[..lr:' Rzt H:] = JI':'"[ F!-. k] H} | I-Il-"ilz e Li'”_‘j[ Jrl It fff :Is
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where (17 is a point between ¢ and {;. Therelore, we have

=0 aTlD(f,..0) 4.6
rx D fua 82 |

where
Bifi, o) = — | ALy oot 20 o) dlx,

and

Bify, .05 = - J A f5.0 2 U, XD il X0

+ ’ AGA{ fug o 0, 5NLT A+ B(fe e V5. 0T (0F, %) frplx) d,

where: A( -} 1% the RAF, Now

lim B i, ., 0%) = I{g)]

a1

aud

s YOS, 1) = — (i, x) dx,

o

the last limit follows by L Hospital's rule. Therefore, by (4.6} the result Tollows. O

The iimit in part {ii) of Theorem 2 viewed as a funclion of z, defines the inQuence
curve of the luncuonal T at £, The inflluence curve of the MMNLBIDE mdicates its
usymplobc chitcieney at the model. Clearly, the right-hand side of Eq. (4.20can be an
unbounded funetion of 7; however, [rom part 1) of Theorern 2, Tor every 2100, 1),
a "Tfi .0 — 01 called the a-influcnee curve of T, is a bounded, continnous
[uncltion of - and

I]im 2 YT d—F1=0
sox
Thus, T i robust against 100x% conlamination by gross errors al arhbitrary =

Since the infuence curve of T is ynhouwnded, it does not provide a uniform
gpproximation W the bounded z-infleence curves. Therefore, the robusiness of T,
with respect to the gross-error model, cannot be assessed just by examicing the
influencs curve, indicating its limitation in this ¢ontext

5. Simulation results
In vur simulalion study we have compared MHDE and MNEDE 10 the MLE in

lerms of efficiency and robusioess against ontliers as well as inliers. We have dope the
camputations for the normal medel and also for the linomial maodel. For comparison
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Huber's M-cstimales for the logation parameter have also been pravided in the
normal model.

51 The uwrmal mode!

Under the normal model Mi e %) with both parameters unknown, we compared
the performance of the MNEDE of g with the MHDE. the MLE and Huber's
M-estimator (Huber, 1964) when the dala were generated from a varicly of con-
taminated normal diswibutions. For computing the MNEDE und MHIYE wi ysed
the Epgiuechnikor kemel to get an aulomatic kernel density cstimate from the dila of
the farm:

] L] : \ \ %

iz Xo- Ny
fHxi=— % 11'( = )1
S S T

where wix) = 07501 — x%} far x| = |, and 0 otherwise, The simulalions were per-
formed using the values 0.5, 0.6, 0.7, 08, U9 Tar o, and the scile ecstimate s, was set
equal 1o L48 xmedianl X; - median(X,;) 1 The numerical integrations were ped-
tormed wilh Simpson's ane-third rule, and the Newton Raphson algoothm was used
to salve for the roots of the estimaling eyuations. The estimales

07— medianiXx), A = 148w mediani | X; — ™))

were used as che staceing values of ¢ and . ITuber’s M-estimare of the location
parameter g was computed by solving Y, e "X, — j) =0 using Huber's -
tunction with the tuning constant & — 1,345 where iz — xif x = b, rix) = hif
g bl — kBt x = —b During the iterative computation of the M-estimate «f
it the scale parameter was estimated as ¢ — 148« mediani' X, - median{X¥ 4|} and
kept fixed. Adl vhe results presented in this section are based on LM replicatiaons, with
sampes of +1zc 50,

We considered the following cascs: The dita were generated Trom (1) pure N 1)
chistribution, (i) 0% X000y - 000 N3 T {008 300003y + 000 NG 23, and (ivy (G5
MG, L] - (RS L L L ko cach gnse, o= 0 s our lafgel parameter. Case i) puts
a small normal conlamination wilh ik mean helng at a point three standard devi-
ations away from the target parameter, whereas case (11] creates 4 much heavier tail
relative 1o the true distribution. Case {iv), on the other hand, stadies the eflect of
making the tails lighter compared wr the true distribution The results are presented in
Tables 1-4. On the basis of these inuted simulations we sce that the MHDE and
MNEDE have pood performances at the medel {having small mean squarte crrars)
while Breinp reascnably good under comtamination. Alsoe nole that the MHADE and
MNEDE are appheable 1o general parametric models and not restricted to location-
scale models.

The choee of ¢, in compuling f*{x) is a delicate issue. Based on our remark after
Theorem ] regarding the choice of the bandwidth, for the uncontaminaled model we
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Tihle 1

Ernpirical mean and mean squate etoc (o paren-
thescep of the MHDE aod MNEDE of the Joca
fean paramcter for data eencrated onder M0, 1
for sample stz 30 for difteron valuss of o,

I'ahlz 3

Cmpirical ciean and oean syquilce erooe (i1 pars-
theses) of the MHIIE ad MMNEDTE of the loca-
fiel paramersy or Jdara geperated  under
ALAMID, 1T+ 0000, 231 for sample sme S50 for
different valyss nf o,

o HI NT

3 Q006 (0,0205) Q011 (0L02L00
1 QAI00T (LT {0 ({I.il'lﬂn?:]
i CLONNE (0L0206) A.4010 (0.0207)
¥ L0008 (00205 1010 (002061
0.0 0.000% (0.02604)

hean 1mca aquate errorp of MLE

Q0010 (0.02086)

Q00T

0, Ho MED
i3 OO (00257 (LNERZ (1113247)
a6 DO (D 02s0) (10131 4111248
% 00031 (002608 OLOHR [0 06249)
0.f D02 [0.0261) 0003} 10 02501
04 D032 (00262 D043 {10251

[[FXER{RIN
hlean cmewn square coror] of Huber's M-
eslimale = (K0 {L0214)

Tahic 2

Empirical mean and mwean squins oot {in palso-
thezes) of the MHDE and MREDE of the lnca-
Lon  patametzc G dala generated  under
GAMNEL 1T QNI 1Y Ter sample s2e 30 [or
dillerent walees of ¢,

Mean Imean square srrary of MLE = (LG
1828 °7],

Mewn |mean square ermor] of Tober’s M-
estitiiate — 1 00ME [(LG246),

Table 4

Empitical tean acd mcan squatc crenr (in paten-
theses) of the MHDE and MMNELE of the log-
Lm  pazarneter  for  dala peeeraled  under
QAN 1Y 1 DETY 21010 b sample size 30 [or
differcnt values of o,

o HI? NEID o HD MY
0 {12260 (0L0NF7) L1549 f.07400 0.5 0003 100113 DS [0 34)
0.6 01,2341 (0.0935) .93 (00777 0.6 D02 [D0132) L0023 01 33
.7 0,246k (0.0965] 02005 ([0.0E06] 7 Q011 00131 023 1001321
¥ (2462 {BY7) B20TT {RUIEIF 8 00011 001310 00023 [0.0132
by 02310 (1 10HT) 112146 HREED) 1y QOEL (00131 OLOHEZ2 (10332

Meen |miean square erroal of MLE - 02990
1012413

Wean (mean sguare srrar] of Huber's M-
estimate — 02011 [A0717)

Mean [mean squale ecior) of MLE - 0.000%
[ER KN

Mean [mean square errnsl of Huher's M-
eslimeate = GOHE (0131).

need ¢, to be of the order s % # where 0 < & <}, However, at this point we are not
able to come up with 4 good eslimate of d for a general sample size. One way to hnd
i best choice of § 15 1o define a criterion that retates the consistency and the MSE of
the density estimator and the MSLE of the MMNLEDL Allernatively, for a given sampie
size #, one can choose o, such that under the normal neodel the MNEDE of the mean
¢ and its MSE roughly match the MLE of ¢ and its M3, respectively. Beran (1577,
r 401 discussed & similar eriterion for the choice of ¢, in computing the minimum
[ellinger distance estmales of Lhe localion and scale parameters in the normal model.

We alzso studied the performance of the estitmators under the contaminated model

Fixl =l — Nl 1) - alif2 2.1],

(5.1}
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v illusteate the performance of the YMLE, MHDE wnd MNEDE apainst inbicrs. Ye
used the actual density of the conlaminated distributiom in (5 1) rasher than a densily
eslimale obluined from the data, Note thal a positive value of the conlaminiating
proportion @ In (3.1) generates an outlier and a nepative value generates an imlier. Lel
Filx)] depote the true deosity Tunction N0, 0 Let Ty, Ty and T denole the
inctionals defined on %, the set of all densities with respect Lo the Lelbesguc measure.
cotresponding to the maximum likelinood, Hellinger distance and negative expongn-
Ll disparity estimation methods respectively, Lot

Tadl iy - Tallfh
Tinl f) — Tund )
ATwrn = Tuenl fob — Tad S0

A TM L.

ﬁlTI!T:I

Mute that AT vy, ATy and A'fypp measure potential biases in estimmation introduced
by an c-contaslination. We have used & — 0.2, 0.1, 0.05, 0.01,0005 00071, hKKA5,
Q03 D001, 0001, —0002, —0003, -, From Table 5 we see that the
negative exponential disparity produoces less bias than Hellinger distance for contami-
natiems above (W, With the value of £ increasing in magpitude in the negative
direetion, ihe M HDE has inereasingly more bias than 1he MLE, wheras the MNEDRF
his inereasingly less bias than the MLE,

5.2, The binomial mode!

In this section we demonstrate the effimency and robusiness properties of 1he
ANEDE in the discrete case. Computation of minimum disparity estimators o the
discrete models, unlike in the continuous case, does nol require kerngl densty
estimation and has been described in Section 2. We considered the hinomialim. p)
model and chose m = 12 and p = L1 as the true parameter vakues,

In Table 6 we present the empirical efficiencies of the estimateors MHEDE and
MMEDE compared to the MLE for sample sizes 25, 50, 100, 250, 300 and 1000, basad
on 2000 replications in each case. The efficiency of the MHDE and MNEDE
comparad to the MLE has been estimated by the ratio

_MSEQMLE) _ MSE(MLE)
MECIMITD L)Y MSLIMNEDE)Y

respeciively, where MSE denotes the mean squace error. The standard error of the
catimaled efficiency has been estimated by the appraximate formula tor the variance
of the rutio of two-dependent random varables oblained by a second-order Taylor
series expansion. The numbers in parentheses in Table & represent the standard errors
for the empirical efficiencies. Table 6 shows that under the uncontaminated maodel Lhe
WMINELFE performs a little better than MHIE in terms of both empincal mean and its
standurd errar.
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Tahle & Tablc 6

Relutive biax for Mellinger distanes and nepative ex-  Kmpencal cfficiency uoder the hinomal (12,001]
peacolin]l dispacily uander the contaminsled model  model

el Ly cUT[2 207 e dillecent values of & I oo A

—_— Sample size MHDE MMNEDE

& .-j.'f'“”_,-'."'l. ) I\II. -""-T.uun.".-'f! Twu

———— 13 1k BAZ (OO0 (348 (0O
2 0332 0083 1 DN OO0 0576 (0.005)
Ml (2.1 .134 100 0403 (0,008) LR (51044
(.05 {1496 [.244 25 (58 (000 (L0 (003
ik 744 0.75R S04 [3.0°700 [00.005) 0.993 [{0.002)
Q.00 0.535 111 1010A) HOES (04 1.0 (0L0H2
LALEN] 1NES 0.944
(LOS {1975 0.&07
1O {LORS 0.598
(.00 .99 [0.99%

— .01 R Lh] 0992

—0.0H2 L1232 [.50538

— (L3 1.221 10.920
.00 1383 (538

Mext we consider the performance of the estimators under contamination. Let fix)
dencte the true binomial probability mass function, x=0,1,2,_..,12 Following
Lindsay's (1994, pp. 1083, 1102-1104} idea we have considered a4 contaminated
versien fiix) of f{x) to assess robustness of the estimators against outliers as well as
inliers, where

Flx) =101 — o) fixh + cplx)y (5.2)

¢ s the contaminating propertion, y is the contaminating value and z, is the indicator
lunction at . ie. 3 (x) = 1 for x = and (%) = 0 for x # y. A positive value of
 penerates an outlier al x — y and a negative value generates an imlier. Let Ty, T,
Tuen AT, ATyp and AT, be defined as m Section 5.1, using the conlaminated
brnomial model Lix)of (520 We have used & = 0.2, 001, 005, 007, (U005, 0001, 0.0005,
OO003, (0007, - 000, —00002, — 00003, - 00004 and the value p = 6 which has
a probability of approximately (WHKMOT 1 uneder e true moedel. From Table 7 we see
that the negative cxponeniial disparity produces less bias than Hellinger distance for
contaminalion leyvel above 00001, With the value of ¢ increasing in magnitude in the
negative dircction, the M HIME has inercasingly more bias than the MLE, whereas the
MWL has increasingly less bias than the M LE, dermmonsirating robust performance
of the MNEDE against inliers as well

In this section we have exhibited the performance of the MIIDE and MNEDE
{reladive to the MLE) in the presencs of infiers for the hinomial madel, Further insight
into the behavior of these estimators in the presence of inliers can be ablained by
examining the count data models such as Poisson and geemetric. In such count data
maodels for any finite sample size the problem of inliers is bound to crop up in the form
al cpty cells, which represent the cxtreme cases of inliers, For more discussion on
this see Harris and Basu (1994),
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Table ?

Brlative bins for Hellnger distangs and negative cxponenlial
disparity firr the contaminated model 11 — SBin 12,0017 -
el x) For difforent valaes of =

i@ AT AT, AThe ATy
02 19.132 LA
iyl 0.5 A2
LS i.2001 1.1Zz2
0. 370 (103
(.15 0472 0,204
0,001 {715 #7234
LLLKIOS LRI LI
[NRLLAE] 1 Hid (I R513
NALALD LUSA f1.3s
—LL.0HK 1038 1993
(L0002 1.12% 967
0,000 3 1,222 4410
— (LR | 3l [EEER

fr. Conclusive remarks

The MNEDE, like the MHIIE, 5 a very allractive robust estimator since 1 atlains
its robustoess properties without sacrificing first-order efliciency at the model. In this
paper we have established the asymptotic efficiency propertics of the MNEDL and
prescoted some robusiness resulls using the -inflluence corve. A particularly nice
feature of Lhe MMNETDYE 15 the robusiness 1l provides against inbiers, a property that the
MHDE does not share. On the whole, the MMNLEDE appears to be a promising
estimator and a major competitor of the MHIDTE within the class of cobust firsi-order
efhicient estimators. We are currently investigating further robustness features of the
MINEDE for both outliers and inliers for continuows models such as the strong
breakdown poim for outliers. Defining a similar feature for inliecs scems 1o be
a formidable problem at this stage. We are also studving the problem of peneralizing
our resulrs by the case when we have a sample from a stationary ergodic Markow
zhzin,
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