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SUMMARY 

Parameters estimates for the errors-in-variables model are obtained by solv- 
ing weighted likelihood estimating equations. They are consistent, asymp- 
totically normal and asymptotically fully efficient, and exhibit robustness 
properties similar to the minimum disparity estimators (Basu and Sarkar 
1994a) but are immensely simpler to compute and have some theoretical 
advantages over the latter. We illustrate the robustness properties through 
some numerical studies similar to those of Zamar (1989). 
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1. INTRODUCTION 

Consider the classical errors-in-variables model: 

/ x y~ = ~ i, Yi = yi + ei,  X i  = x i  + u~, (1) 

fo r  i = 1 , . . . ,  n ,  w h e r e / 3  = ( / 3 1 , . . . ,  f3p)', Yi and x~ deno te  the true 

va lues  o f  the var iab les  obse rved  as ]'~ and X i  = ( X j i ,  X 2 i , . ,  -Xpi) I 
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containing measurement errors ei and ui = (~qi, u2i , . . . ,  "U, pi) t respec- 
tively, and {xi  } and {6i = (ei, ul) '  } are independent sequences of i.i.d. 
random vectors such that x~ ,-~ Np[lZx, Exz] and ei ~ N[0, ~c~]. The 
common distribution of the vectors (~,  XI) is a multivariate normal dis- 
tribution. To make model (1) identifiable, we assume Ec~ is known up to 
a multiple (see Fuller 1987, Sec 2.3.2). The literature on robust estima- 
tion in errors-in-variables models is fairly small. It includes the works 
of Brown (1982), Zamar (1989), Cheng and Van Ness (1990, 1992) 
and Croos and Fuller (1991) on the classical model. Brown studied 
the iteratively reweighted orthogonal regression and Zamar investigated 
robust orthogonal regression M-estimators. Cheng and Van Ness ex- 
amined the classical and generalized M-estimators. Carroll and Gallo 
(1982) discussed the classical independent error model with replication 
of the predictors. Carroll, Eltinge and Ruppert (1993) studied the case 
where there are replicates of the observed predictors and the errors in 
the response and predictor variables are correlated. 

Basu and Sarkar (1994a), hereafter referred to as B&S, considered 
minimum disparity estimators (MDEs), defined in Section 2, of the pa- 
rameters of model (1). Unlike the robust estimators previously studied 
for this model, the MDEs have been observed to exhibit strong robust- 
ness properties while at the same time havingfidl asymptotic efficiency at 
the model if the kernel can be chosen appropriately relative to the model. 
Such kernels are known as transparent kernels (Basu and Lindsay 1994). 
In a modest Monte Carlo study reported in B&S the minimum Hellinger 
distance estimator performed better than the orthogonal regression M- 
estimator of Zamar (1989) with contaminated data for model (1). 

While the MDEs have several attractive properties, their asymptotic 
efficiency depends on the choice of transparent kernels which may not 
be available if the model distribution is not normal. In addition, the 
evaluation of the MDEs requires an enormous amount of computation. 
In this paper, following the approach of Basu, Markatou and Lindsay 
(1993) we consider weighted likelihood estimators (WLEs), defined in 
Section 2, which remove the above mentioned limitations of the MDEs. 
The disparity based WLEs are related to the MDEs and have similar 
efficiency and robustness properties but are far more practical in terms 
of the computational ease. In some numerical studies similar to those of 
Zamar (1989), the Hellinger distance based WLE appears to be competi- 
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tive to the minimum Hellinger distance estimator in te~xns of robustness; 
in a Monte Carlo study of B&S, the latter was seen to outperform the 
orthogonal regression M-estimator of Zamar (1989). We emphasize, 
however, that the purpose of this paper is not to find just another ro- 
bust estimator; the proposed WLEs, like the MDEs, also achieve full 
asymptotic efficiency at the model. 

The remainder of the paper is organized as follows. We discuss 
the MDEs and the WLEs in Section 2. Application of the weighted 
likelihood estimation to model (1) is discussed in Section 3. Section 4 
presents results of a simulation study showing robustness of the Hellinger 
distance based WLE under an errors-in-variables model with nonnormal 
error distributions. In Section 5 we demonstrate the performance of the 
Hellinger distance based WLE through a real dataset; and in addition, 
we illustrate the computation of the Hellinger distance based WLE for 
a trivariate real dataset with two (non-intercept) explanatory variables. 

2. MINIMUM DISPARITY AND WEIGHTED 
LIKELIHOOD ESTIMATION 

2.1. Minimum. Disparity Estimation 

B&S have reviewed minimum disparity estimation (Lindsay 1994; Basu 
and Lindsay 1994; Basu and Sarkar 1994b) for a family of continu- 
ous models rr~/~(-), indexed by/3 E IR p. Let g l ,  Z 2 , . . . ,  Z++ be k- 
dimensional i.i.d, observation vectors from ~rz,~(z). Minimum disparity 
estimators are obtained by minimizing disparities PG (f*, ~7~,}) which are 
density based distances with the special structure 

= i i 
where ,f* (z) is a nonparametric kernel density estimator, 'm,~(z) is the 
model density smoothed with the same smooth kernel function and G is 
a real valued thrice differentiable convex function with G(0) = 0. Also 
~*(z) = [(Tn, i~(z))- l  f * ( z )  - 1] which is called the Pearson residual 
at z by Lindsay (1994). The squared Hellinger distance corresponds to 
G(m) --- [(m + 1) 1/2 - 1] 2. The minimizer of the likelihood disparity 
which corresponds to G(x)  = (a: + 1) loge (,z' + 1) is called the "MLE*". 
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The estimating equation of the MLE* is 

.[./ f :*(z) o , .. O m (x)dz 

0 , 
1 -~m~(x)( tz  = O. 

(2) 

If the kernel chosen is transparent (see Basu and Lindsay 1994 and B&S), 
then MLE* is equal to the usual maximum likelihood estimator 

Computation of the MDE requires iterative techniques including nu- 
merical evaluation of integrals. For multivariate observations this entails 
numerical evaluation of multiple integrals. Computation becomes more 
and more time consuming as k, the dimension of the observation vectors, 
grows. We next describe a modification of the above estimation method 
which avoids this problem without sacrificing efficiency or robustness 
properties. More details of this modification are given in Basu, Markatou 
and Lindsay (1993). 

2.2. Weighted Likelihood Estimator 

The minimum disparity estimating equations can be expressed as 

o~Pc, = . . . .  A(&(z))  mS(z ) dz = O, (3) 

where A(x) = (1 + x ) [ ~ G ( x ) ]  - G(x). The function A(x) is the 
residual adjustment function con'esponding to a disparity G. Usually, 
A(x) is redefined such that A(0) = 0 and dA(:r)]:r,=O = 1. This 
means for the Hellinger distance A(x) = 2[(x + 1) 1/2 - 1]. Most of 
the theoretical properties of the MDE is governed by the form of the 
residual adjustment function. For disparities like the Hellinger distance 
the residual adjustment function can strongly downweight observations 

d2 At with large Pearson residuals. The quantity A2 = d.-~. ~x/[ .~=0 can be 
used as a descriptor of the robustness of the MDE; large negative values 
of A2 lead to greater robustness. For the Hellinger distance A2 = - 1/2, 
and but for the likelihood disparity A2 = 0 See Basu and Lindsay (1994) 
for more details. 
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Tim estimating equation (3) can be rewritten as 

[ A(6 ~) + 1.] + . / . . . / [ - ~ - + ~  (6* 1) [ ff-~,n)!~(z)] dz 

o �9 

. . . .  L ",---YJ 

(4) 

where F* is the distribution function corresponding to f* and w(x) = 

(x+ 1)-~[A(x)+ 1] withw(0) = 1, ~w(x)l:r,=0 = 0and ~w(x) la :=0 = 
A2. But equation (4) is a weighted version of the estimating equations 
of the MLE* in equation (2) with weights w(.). In analogy to equation 
(4) one can define the following estimating equation for 13 

i.e., 

where 

,,-~ ~ w(~*(z~)),,(z,, 13) = 0 (5) 
i =1  

c 9  
u(z,~) = ~ log~ m~(z) 

is the usual maximum likelihood score function and F,~ is the empirical 
distribution function. Note that the kernel smoothing is now o1@ in the 
weight part and not in the score part of the above equation. Just as one 
does in iteratively reweighted least squares estimation method (Beaton 
and Tukey 1974; Holland and Welsch 1977; Birch 1980), equation (5) 
can be solved iteratively by updating the weights w (.) at every stage. The 
solution/~ of the above estimating equation is called the WLE, which 
depends on the choice of disparity G. 

By the results of Basu, Markatou and Lindsay (1993), the WLEs are 
asymptotically tully efficient at the model. Under the model, asymptot- 
ically the weights w(& (Zi)) tend to one and equation (5) behaves like 
the maximum likelihood score equation for all the disparities. In addi- 
tion, WLEs generated by disparities like the Hellinger distance may have 
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good robustness properties since the weight function w(.) downweights 
observations with large Pearson residuals. Unlike the MDEs, the WLEs 
do not require a transparent kernel to achieve full asymptotic efficiency, 

2.3. A Root Selection Criterion under Multiple Roots 

Like the quasi likelihood estimates (Wedderburn 1974) the weighted 
likelihood estimates are obtained as roots of a set of estimating equations 
and the computation is not based on any specilic optimization criterion. 
Any nonlinear equation can potentially have more than one root. While 
computing the MLE by solving the ordinary likelihood equations, the 
multiple roots problem can be resolved by considering the root at which 
the likelihood function is maximized. This approach is not possible 
with the weighted likelihood estimation method when equation (5) has 
multiple roots. 

However, since the estimating equation (5) is obtained by simply 
replacing the smoothed model and smoothed empiricals in equation (4) 
with the corresponding unsmoothed versions, one approach to root selec- 
tion may be to compare the roots against the parallel disparity measure 
whose minimizer is obtained as a solution of equation (4). While it can 
not be guaranteed that this method will always solve the multiple roots 
problem, we expect that this will help us identify the good roots and 
reject the bad roots most of the time. To illustrate this, consider m~ 
to be N(/L 1) model, kernel function to be N(0: h 2) with h = 0.5, 
observed empirical distribution F,,(z) to be the mixture distribution 
[0.SN(0, 1) + 0.5N(10, 1)] and the disparity to be the Hellinger dis- 
tance. Then, 7t~/~ is N(/L 1 + h "2) and the kernel density estimator f* is 

the [0.SN(0, 1 + h 2) + 0.SN(10, 1 + h2)] density. In this case, using the 
Hellinger distance based weights three roots for the estimating equation 
(5), i.e., for f w(b*)[Om,~/Ofl]dF,~ (z) = 0, are observed --one close to 
0, one close to 10 and one exactly at 5. An investigation of the Hellinger 
distance (parallel disparity measure) between f* and m~ as a function 
of fl reveals that the distance has one local maximum at 5, and two local 
minima - one close to 0 and one close to 10. Thus, the parallel disparity 
measure allows us to isolate the bad root of the estimating equation in 
this case. 
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2.4. Comt~umtion of the WLE 

Finding the WLEs requires the construction of the appropriate weights 
and solving the weighted likelihood estimation equation (5) iteratively. 
Note that the estimating equation (5) of the WLE is a sum over the data 
points rather than an integral over the entire support of Z; consequently, 
the evaluation of the WLE requires no numerical integration. We il- 
lustrate the computation of the WLE for the normal model, i.e., when 
m;3(z) is the N~(/z, E) density. Given the data Z1, Z2 . . . .  , Z,,, where 
Z i = (Z,:I , . . . ,  Z,i~) ~, it is convenient to use the multivariate normal 
kernel N(0, h'2I) with covariance matrix h2I, since for the multivariate 
normal model smoothed density m)~ itself becomes the multivariate nor- 

mal density of N(/z, E + h2I). The kernel density estimate is calculated 
a s  

' [ ] f,(~) = n_l ~ 1 1 = (27r)p/2 exp - 9 - ~ ( z  Z i ) ' ( z -  Zi) , z  E ]Rk. 

The Pearson residuals 6(Zi), i = 1 , . . . ,  k, can then be computed as 
6(Zi) = [(m~(Zi))  -1 f*(Zi)  - 1 t to," any set of initial values of the 

parameter vector/3 consisting of the distinct parameters in/~ and E, and 
one can construct the initial weights as 

w(6*(Zi)) -= (6*(Zi) + 1)-I[A(~5*(Zi)) + 1]. 

Let pj and Eij denote the j-th and (i, j )  the element of # and E respec- 
tively. The weighted likelihood estimating equations given by 

y ~ , w ( 6 * ( z ~ ) ) ( z ~  - # 9  = o, j = 1 , . . .  ,~ ,  
1=1 

and 

1l 

Z w ( ~ * ( Z i ) ) [ ( Z i j - l z j ) ( Z i ~ : - # t ~ ) -  Eij]=O, i , j =  1 , . . . , p  
1=1 

can be iteratively solved for #j ' s  and ~ij 'S, by constructing new weights 
at every iterative stage. 
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2.5. On the Asymptotic Efficiency and Robusmess of the WLE 

The WLEs, like the MDEs, combine certain robustness properties with 
that of full asymptotic efficiency. The influence functions of the MDEs 
and the WLEs are exactly the same as that of the MLE and can be un- 
bounded. See Beran (1977), Simpson (1987), Lindsay (1994) and Basu 
and Lindsay (1994). All these authors have recognized that the influence 
function is not an adequate measure of robustness for the MDEs such as 
the Hellinger distance estimator and its relatives. Below we show that 
the same can be true for the WLEs. For the MDEs, the outlier shrinking 
effect is provided by the residual adjustment function A(~) (see Lindsay 
1994), whereas for the WLEs this downweighting effect is provided by 
the weight functions w(6). For a robust disparity like tile Heilinger dis- 
tance, A(5) < < 5 for large positive 5 values representing large outliers 
(see Figure 3 of Lindsay 1994), and the corresponding weight function 
w(~5) = [A(3) + 1]/(6 + 1) will be significantly downweighted from 1. 

We now examine the influence function of the WLEs. For simplicity, 
consider the case k = 1. Let ~I/3 denote the distribution function of the 
true density m,q. For z C IR, let M~(z) = (1 -e)~,I;3(z) +eXy(Z), e > O, 
be an e-contaminated version of 3/i/~(z), where Xu(z) is the distribution 
function corresponding to the density which puts mass 1 at z = y. Let 
T(-) be the WLE functional defined on the space of distributions. From 
equation (5) it can be seen that T(Mt~ ) =/3 ,  so that the WLE functional 
is Fisher consistent. Define the influence ftmction IF(y) to be 

I f ( y )  = T(l)(y) : O r ( M , ) l , = 0 .  

Taking the derivatives of both sides of equation (5) under the contami- 
d l l z  \ hated distribution -Me and using w(0) = 1, ~ '~  (x)lz=0 one gets, after 

some simple algebra, T(1)(y) = (I(/3))-lu(y,/3) where 

u(z,/3) = O l~ rn~(z) f ) 
0/3 , i t ( /3)=,  [u(z,/3 

the Fisher information about parameter/3 in model m:~. In particular, 
this is satisfied by the WLE generated by the Hellinger distance based 
weights, and the MLE (which is also a WLE with weights identically 
equal to 1). Under standard regularity conditions the asymptotic distri- 
bution of a Fisher consistent functional T(-) at the model can be derived 



Robust estimation in measurement ertvr models "195 

using the expression 

'~,~/2(T(F,J - / 3 )  = 'n.--~EL,/F(Z0 + Op(1), 

with F,~ denoting the empirical distribution function. See, for example, 
Femholz (1983). This implies that the asymptotic distribution of the 
WLEs and the MLE am the same, indicating the full asymptotic effi- 
ciency of the WLEs and the potential of their influence function to be 
unbounded. 

Howevm; the first order influence function approach may give an 
unreliable prediction of the bias AT(e)  = T(M~) - T(M;3) of some of 
the WLEs under contamination. Hem, for p = 1 we present an analysis 
of the bias function of the WLEs which parallels that of Lindsay (1994, 
Section 4). Up to the first order of approximation, tile bias function of 
all the WLEs is, the same: 

AT(e)  = eTO)(y), 

so that the first order analysis fails to distinguish between the MLE and 
other WLEs that exhibit robustness properties. However, the second 
order analysis can be more informative and may provide more insight 
into the robustness of the WLEs. This is given by: 

~2 . 

-  TO)(V) + 

where T (2) (y) = O2/Oe'2T(me)]e=0. One could consider the ratio of the 
quadratic to linear approximations of AT(e)  as a measure of adequacy 
of the first order approximation. Note that this ratio is given by (1 + 
[T(2)(y)/TO)(y)](e/2)). Provided the signs of T(1)(y) and T(2)(y) are 
opposite, this indicates that the first and second order approximations to 
the bias of the estimator will differ by more than 50% whenever e is larger 
than ec,.it = IT (I)(y)/T (2)(y)j, with the second order approximation 
predicting smaller bias. A tedious but straightlbrward calculation for 
T (~) (y) gives 

T(2)(y) = ( I ( /3) ) - l [ f l (y)  + A2,f.2(y)]T(~)(y) (6) 

and 
ee.rit = 1(I(/3))-l[f l(y) + A2f2(y)]j  -1, 



196 A. Basu andS.  Sarl,'ar 

where f l ( Y )  is exactly as defined in Proposition 3 o:f Lindsay (1994), 
and 

d 2 d 2 , 
A2 = ~ A ( z ) l x = o  = ~ ,~(z) lx=;o .  

It follows fi'om Lindsay (1994) that f l  (Y) = 0 for the mean param- 
eter of a one parameter exponential family model. However, in general 
.f2 (9) is a complicated function of y involving the kernel density esti- 
mate and the true model density, but we calculated the values of f2(Y) 
at the normal N ( / L  1) model, using true/3 = O, and normal kernel with 
variance h 2 for several values of h and y. The results are presented in 
Table 1, and are similar to those of Lindsay (1994, Table 1). Note that 
the values of f2(y) in Table 1 are all positive, indicating whenever A2 
is negative (e.g., in the Hellinger distance case), the second order ap- 
proximation will predict smaller bias than the first order approximation. 
Thus, even though the bias predicted in the normal model for the robust 
WLEs due to the presence of a contaminating observation at y using the 
first order influence function approximation can be quite large, the true 
bias can actually be quite small. Table 1 also shows that f2(Y) increases 
as h decreases. Therefore, choice of smaller h values for the N(0,  h 2) 
kernel will lead to greater robustness for disparities like the Hellinger 
distance. For multivariate data, one strategy may be to select h as a 
suitable small multiple of the average of the median absolute deviations 
(MADs) of the components of Z .  In Examples 1 and 2 in Section 5 
below we have taken h to be approximately l/5(average of the MADs) 
and used h = 0.5 in Example 1 and h, = 0.05 in Example 2. 

Table 1. Values of f.~(y) in the e,~pression for T(~)(~v) in Equation (6) Jor 
the norntal exantple for valTous vahtes of y and h,. 

y 2.0 2.5 3.0 3.5 4.0 4.5 
h 

0.25 14.18 45.18 174.45 797.71 4435.26 30601.03 
0.50 4,26 11.00 32.18 101.03 352.32 1410.95 
0.75 1.75 2.84 5.28 9.91 18.70 36.41 



Robust estimation in measurement error models 197 

3. WEIGHTED LIKELIHOOD ESTIMATION IN 
THE ERRORS-IN-VARIABLES MODEL 

Since in model (1) the joint distribution of Zi = (~, X~i) ~ is multivariate 
normal, the model parameters can be determined by a straightforward 
application of the weighted likelihood estimation method considered in 
Section 2.4. Here ~r~i~(z) is the Np+t(/.r ~) density. In the weighted 
likelihood estimation procedure any smooth kernel can be used to obtain 
a nonparalnetric density estimator and to smooth the model density. In 
particular, if the Np+l(O, h2I) density is used as the kernel, where I is 
the (p + 1) x (p + 1) identity matrix, then the smoothed model density 
m i} (z) would be the Np+l (lz, ~ + h2I) density. Then, given a particular 
disparity Pc;, the corresponding WLE of the parameter vector can be 
calculated by iteratively solving equation (5). From the viewpoint of 
robustness some disparity measures are more desirable than others. In 
our study we have investigated the WLE with weights based on the 
Hellinger distance (with A(x) = 2[(.~: + 1) ~/2 - 1]) and the results are 
presented in Sections 4 and 5. In computing the WLEs, unlike the MDEs, 
we no longer have to choose a transparent kernel and any other smooth 
kernel would work as well. 

We now discuss how the WLE relates to the estimators defined by 
Brown (1.982) and Zamar (1989). The MLE of et in model (1) minimizes 
the sum of squared orthogonal residuals o17 the observations Z1 . . . .  , Z~, 
with the residuals measured perpendicular to the estimated plane. Thus, 
the MLE is the orthogonal regression estimator: Generalizing the idea 
of Beaton and Tukey (1974) in constructing a robust estimator for the 
regression problem when there is no measurement error, Brown (1982, 
p. 75, eq. (6.4)) considers iteratively reweighted orthogonal regres- 
sion estimator for the special case of model (1): Yi = /3xi, a straight 
line through the origin. Brown introduces two sets of weights in mod- 
ifying the likelihood function each intended to downweight outlying 
coordinates (X,i, Y/). Zamar (1989, p. 150, eq. (3)) defines the or- 
thogonal regression M-estimator using a robust estimate S,,. of the scale 
of the orthogonal residuals and a robustifying loss function that down- 
weights large orthogonal residuals. In Zamar's approach an observation 
Zi = (~,  X~i) ~ is considered an outlier if its orthogonal residual is large 
in comparison to 5',~. In case of the WLE, its robustness results from 
downweighting large Pearson residuals ~5" (Zi), in which case an obser- 
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vation Z,: is considered an outlier if the kernel density f * ( Z i )  at Z i  
is large relative to the smoothed model density m~3(Zi ) at Zi .  Thus, 
the WLE downweighks observations which represent large residuals in 
a probabilistic, rather than geometric, sense. 

4. SIMULATION RESULTS 

To investigate the small sample performance of the WLEs we carried 
out a Monte Carlo experiment for model (1) using weights based on 
the Hellinger distance. The experiment was designed exactly lbllowing 
Zamar (1989), as was done by B&S. Here we give a brief description. 
The model considered is 

Yi = ~1 Jr- t~2Xi, Yi = yi + ei, X i  = :ri + ui, 

with 

xi "-' N(O,  1), ui "." CN(0.25, a2; 0.05), ei "~ CN(0.25, v 2, 0.05) 

where xi ,  ui and ei am all independent and 

CN(a~2, ~7.~, e ) =  (1-  e.)X(0, a ~ ) +  eN(O,a~) .  

For each of the (or, ~-) combinations considered by Zamar (1989) one 
hundred samples of size 20 were generated for the random variables 
Y~, Xi under the above model. Computations were done using the same 
set of 100 samples of size 20 used by B&S. The true value of/31 was set 
to zero and 32 was chosen at random unilbrmly between - 5  and 5. In 
B&S computations were presented lbr the two estimators of [32: (i) Tl, 
the orthogonal regression M-estimator of Zamar; (ii) T2, the minimum 
Hellinger distance estimator. In this study we computed (iii) T3, the 
WLE using weights w(6*) colxesponding to the Hellinger distance. In 
computing Ta (as well as T.2) the N2(0, h2I)  density with h = 0.5 was 
used as the kernel. 

To evaluate T2 and T3 we computed the initial estimates of the means, 
variances and covariance P x ,  PY,  cri{~, cry- and a x y  of X and Y variables 
as lbllows: fix = median(X1, X 2 , . . . ,  X~z),/~y = median(~q, Y2,. �9 �9 
)~), &x = 1.48x m e d i a n ( l X l - [ ~ x ]  , IX .2-[ tx[ ,  . . . , ] X ~ - [ t x ] ) ,  &y = 
1.48• median (IY1 - [ty[, IY2 - fi, YI , . . . ,  [Y~ - [ty[) and 5 x y  was 
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computed using the covariance estimate formula as given in equation 
(2.7) of Huber (1981, p. 203). 

The criterion m defined in equation (6) of Zamar (1989) and used 
by B&S is applied here to measure the performance of the WLE. For the 
i-th estimator T/, it is detined by 

100 [ 11 + Tij/32jl ] 

j = l  

where E i and/39~j are respectively the i-th estimator and the true value 
of [32 for the j-th replication. An estimator is better than another if its 
value for measure m is smallel: 

The simulation results am summarized in Table 2. Numbers for 
estimators TL and T2 given in B&S are presented in Table 2 for the 
convenience of comparisons. Under the contaminated distributions (i.e., 
for (c~, r)r(0.5,  0.5) in Table 2), the WLE based on Hellinger distance 
and the minimum Hellinger distance estimator have performed equally 
well in terms of robustness, and both of them have outperformed the 
orthogonal regression M-estimator. The numbers show that the WLE 
and the MDE are very close; what they do not show, however; is that the 
Hellinger distance based WLE is by far much easier to calculate than 
the minimum Hellinger distance estimator. 

Table 2. Simulated pelformance nteasure m for the estimatol:~ T~, ~ and 
7~; Tb Orthogonal M-Estimator; 73, Minintunt Hellinger Distance E~ti- 
mator; T..3, Weighted Likelihood Estimator based on the Hellinger distance 
(using 100 samples of size 20). 

0.5 0.5 0.2194 0.1581 0.1558 
0.5 2.0 0.302I 0.2273 0.2230 
0.5 5.0 1.0172 0.2027 0.1893 
2.0 0.5 0.2974 0.1952 0.1979 
2.0 2.0 0.3526 0.2506 0.2561 
2.0 5.0 0.8959 0.2360 0.2315 
5.0 0.5 1.4596 0.1669 0.1659 
5.0 2.0 1.4217 0.2354 0.2413 
5.0 5.0 1.6589 0.1856 0.1815 
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5. APPLICATIONS 

Example 1. We consider the data on simultaneous pairs of measure- 
ments of serum kanamycin levels in blood samples drawn fi'om umbili- 
cal catheter and heel venapuncture of 20 babies given by Kelly (1984). 
This dataset was analyzed by Zamar (1989, Example 2, Table 3, pp. 
154-1155) who argued that it was reasonable to assume that both mea- 
surelnents were subject to random errors with equal variances, i.e., the 
identifiability condition of model (1) was satistied. To illustrate the be- 
havior of different estimates in the presence of outliers, Zamar changed 
the second observation vector (33.2, 26.0) to (39.2, 32.0), the latter is 
the outlying point in the upper right corner of Figure 1. Through throe 
fitted lines, Zamar (1989, Figure 2) showed outlier-resistance of the or- 
thogonal regression M-estimate and outlier-sensitivity of the classical 
orthogonal regression estimate. In Figure 1, in addition to reproducing 
Zamar's fitted lines, we display the WLE-fit for the contaminated data. 
In computing the WLE the initial estimates for the iteration were cho- 
sen as described in Section 4 and used the normal kernel with h = 0.5. 
Like the orthogonal regression M-estimator, the WLE line (estimated 
intercept -6.43, estimated slope 1.35) is insensitive to the presence of 
the outlier. 

Eranq)le 2. We now illustrate weighted likelihood estimation for the 
tfivafiate dataset given in Table 2.3.1 of Fuller (1987, p. 131) on log 
crop (Y), log extension wood growth (X~) and log girth increment 
(X2). The dataset has 5 observations. Fuller computes the MLEs of the 
regression equation 

yi =/30 +/31:rii +/3e:r.2i 

using a 4 • 4 matrix S~  as an estimate of E~c, the covariance matrix of 
~i = (ei, ~toi, 'ltli, "lt2i) ! where "uoi = 0 denotes the measurement error 
for the intercept variable. For this dataset we illustrate the computation 
of the WLEs of/3o,/31,/32. 

First we obtain the Hellinger distance based WLEs of/2 z of ~z  = 
(#Y: lz.\h, l ,x2) ,  the mean vector of ()L X~ X2) to be 1.9481, 3.9954 
and 0.5(i)87 respectively, with the initial estimates chosen as described 
in Section 4. We use the N:3(0, h2I) kernel with h = 0.05. The final 
weights w( , (Zi)) attached to the observations Z~ (Yi, Xli ,  X2i) ~, 
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Figure 1. Four different fits for data in Table 3 of Zamar (1989). ORML. 
WLE, CORE1 attd CORE2 represent the orthogonal regression M-estimator 
(Zamar 1989), ttte Hellinger distance based weigttted likelilzood estima- 
tor; the cta~,wical orthogonal regression estimator using all data. and the 
classical ortttogonal regression estimator with second observation deleted 
respective(~,. 

'i = 1, . . . ,  5, are observed to be 0, 0, 0.9794, 0.9041 and 0.8727 
respectively. This indicates that the first two observations are possible 
outliers and the Hellinger distance based robttst WLEs are likely to be 
better than the MLEs obtained by Fuller (1987, p. 132). 
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Next to compute robust estimates of/}1 and/~2 using the WLE of 
/z z we modify Fuller's method of MLE computation as described in 
Theorem 2.3.1 of Fuller (1987, p. 124). We calculate the 3 • 3 matrix 

-1  t~ 

- i,z)(Z  - i , z ) '  

i=1 

and find the smallest root of the detenninantal equation I M ~ z -  ASCii = 
0 where S'~ is the 3 • 3 submatrix of S~c obtained by removing the 2nd 
row and 2nd column of the latter. Let M~.  x be the 2 • 2 lower submatrix 
of 1 V I ~ z ,  let S , ,  denote the 2 • _9 lower submatrix of S*~ and let S,,c 
denote the 2 x 1 vector obtained by deleting the first component of the 
first column of S~c. The smallest root ~ is found to be 2.982 x 10 -9. 
Then the Hellinger distance based WLEs of/31 and/32 obtained by using 
(/31~, f32)' ( M  x x  ~ S * w u , ) - l ( 1 V l : ~ , y  " * = - �9 - ~S~,~,) are observed to be 
0.0567 and 2.1801 respectively, and the Hellinger distance based WLE 

,73o = f zy  - f31f ix  1 - f3f ix9 of/30 is found to be 0.6125. 
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