Skeletons from dot patterns: A neural network approach
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Abstract

Boundary detection is a well studicd problem in the contest of shape extraction from dot patterns and digital images. Foc
itages, particularly binary images, another frequently encountered issue is finding the skeleton of the object. Untortunately,
in the case of dot patieras, the skeletonization problem has not received much attention due 1o (he lack of a proper definition
of a dot pattern skeleton. We present a method, using artificial newral networks, bo cxtract the skeletal shape of a dol pattern
and clemonsteate that the skeleton thus obtained i3 close to the percepmgl skeleton. The neural network model propesed
here is & modified version of Kohonen's self-organizing model. [¢ is dynamic in the sense that processors can be inserted
(o deleredy during the leaming process. Unlike in Kohonen's map, the number of processors here need not be known a

prion.
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1. Imtroduction

Shape extraction from visual patterns in two dimen-
sions has been widely studied in the field of pattern
recognition and computer vision. Such patterns can be
in the form of an image or they can be dot patterns. A
suitable representation of shape of an object is often
a prerequisite for recognition and classification of the
ohject and hence the shape extraction problem has re-
ceived considerable attention. Several techniques are
developed for detecting the outer boundary of dot pat-
terns (Preparata and Shamos, 1985; Edelsbronner et
al., 19%3; Parui et al., 19937, for example, convex-
hulls and alpha-hulls. But hardly any work has been
done on skelelal shape of dol patlerns excepting the

“MST skeleton” mentioned in ([ Zahn, 1971}, On the
other hand, & number of techniques, known as thin-
ming, have been developed for finding skeletons of im-
age patterns {particularly tinary images) {Lam et al.,
1992; Datta and Parei, 1994,

For a dot pattern, unlike in the case of a binary im-
age, a skeleton cannot be properly defined. But vet the
human visual system can extract the perceprual skele-
ton from a dot pattern. For example, a dot pattern hav-
ing a definite shape (say, “8"-like} is recognised by
the human brain almosi as casily as for a binary im-
age having the same shape. But the conventional thin-
ning algorithms that exiract skeleton from binary im-
ages do not work for dot patterns due to the lack of a
proper definiion which poeses a problem in formulat-
ing a computational method for a dot pattern skeleton.

In the recent past, nevral network technology has
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been showing a great deal of promise in arcas where
conventional computing poses problems. Severul neo-
ral network models have been proposed so far { Rumel-
hart and McClelland, 1986; Pao, 198%: Carpenter and
Grossberg, 1992, Lippmann, 1987) for various ap-
plications. Neural network models or simply “neural
nets” are massively paratlel interconnections of com-
putational elements (processoers) that waork as a col-
lective system and thus provide a new form of paral-
lel computing. Stariing from an initial set of weights
¢usually random) these rules indicare how 1o adapt
or adjust the initial weights to improve performance.
Thus parallelism and adaptation are added advantages
ol neural network medels, The present work uses a
neural nelwork based approach to get a plecewise lin-
car approximation of a skeleton of a dot pattern, Tt is
found that even without a proper definition of a skele-
L the proposed technigue 15 able 10 generalc skele-
tons that are quite close to the perceptual skeleton.

In the present work, a dynamic self-organizing neu-
ral netwaork mode] is proposed for extraction of shape
from a 2D dot patiern (also called o planar ser) in
the form of a skeleton. In Kohonen's self-organizing
model {Kohonen, 195897, the set of processors and
their neighbourhoods are fixed (topologically) and do
nel change during learning. This may posc problems
in many situations. Bor example, when the set of input
vectors represents a prominent shape, it may happen
that the reference vectors or weight vectors lying in
sero-density arcas are alfected by input vectors from
all the surrounding parts of the non-zero distribution
{Kangas et al., 1990}, This is particularly true for a
problem like shape exiraction which needs dynaimic
change in netwaork topology. In the present paper, 1o
overcome the limitations of Kohonen's model, we sog-
gest some modilications of 1t in which the set of pro-
cessors and their neighbourhoods change adaptively
during learning, in order 1o extract the shape of a doi
mittern in the form of a skeleton.

In the peuwral network model discussed here, the
weight updating rules are similar to those in Kohonen's
sell-organizing feature map. But during the learning
process new processors can be added to or old pro-
cessors can be deleted from the network, The initial
topiogy here is simple (linear with a small number
of processors) which grows adaptively Into a more
complex lopology to deal with higher order struclures,
Similar types of dynamic neural networks have been

suggested by seversl authors for vector quantization
{ Choi and Park, 1994), estimation of probability dis-
trbutions in the plane (Fritzke, 1991) and shape clas-
sification {Sabourin and Mitiche, 19937,

In Secton 2.1 we propose a neyral network model
for simple patterns like arcs. In Section 2.2 we propose
a modification of the mode! Lo deal with more compli-
cated patterns having branchings, forks and crossings
(we call them together tree-like patterns). Still an-
other modification is made on the model in Section 2.3
1o consider patterns that contain Joop structures. In afl
these cases, the starting strecture of the network is lin-
ear only. It is the dynamic nature of the network that
enables it to learn the strocture of the input pattern and
o expand (topolegically ) accordingly. The formal al-
garithm and its justification are given in Section 2.4
Resulis and conclusions are piven in Section 3.

2. The network model and learning algorithm

Kohonen's feature mapping net is an array of pro-
cessors where each processor is connected o one or
more surrounding processors and every processor is
assigned a weight vector, The et of processors is nor-
mally represented in either one or two dimensions. The
map 15 adapted on the basis of a set of input faature
vectors which can be of an arbitrary dimension. The
dimension of the weight vectors is the same as that of
the input vectars. Suppese the array of processors un-
der consideration is represented as {1, 72.. .., 7, ).
The neighbourhood N; of the processor m, is {7, | .
is connected 1o 7, } which includes ;. The processor
i has a weight vector W, whose dimension is m. Sup-
pose the set of input vectors is 8 = {P), P, ..., Py}
where the dimension of each P; is also m. The updar-
ing rute for the weipht vectors iz as follows.

At time instance f, let P be presented to the net
and let Wiled = Cwa (), walf), .., vy #3) be the
nearest weight vector to P, Then, the weight veetors
of the processors within the neighbourhood of s, are
updated in the following way {Kohonen, 1939}

“"Iu}f!'-!- |:I = Wp{f:l 'FCE{IJ[PJ: = .‘Fp{r.:ljs

forwp e N O<ealt) <1, (1)

wherc the starting weight vectors W, ({}) are chosen
af random and 0 < a(t) < 1 is the gain term at time
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t satisfving (i} «{r) decreases to 0 as ¢ tends o oo,
(i) ¥ ety = oo and (iii) z&l{f} < oo These
conditions ensure that Wi{7} converges,

2.1. Arc patterns

We now deal with inpul patterns having an arc
shape, like characler patterns “C", “L", "N", *&"”
(Parui et al., 1995%. The structurs of these patterns
can be represented by a linear structure. We start with
a net having a Winear structure represented by a list of
processors (e, e, .., 7y | where o is connected
1o exactly two processors ;) and 74 {the two end
processors are coonected to exactly one processor
each). Here the input feature vectors are the coordi-
nates of the points ol the planar et and hence m = 2,
§={P. ... Py}isaset of ¥ points where P, =
{xj, %), The weight vectors of the processors o are
updated ireratively on the basis of the paints in 5. The
initiz] weight vectors of my are, say, (v (01, wa(0)).
Suppaose, the point F; is presented at the sth iteration.
Let dist{ Py, Wedr)) = ming[dist{ P, Wil2}}] where
Wilr)is the ith weight vector al the rth iteration. In
other words, ¢ 15 the processor whose weight vector
is the clesest wo P, Py updates the weight vectors in
the following way:

Wt 4 1) = Wo() + a0} [P — Wolr} ],
forp=k—-1.%4%k~1 (23

If this updaling continues then the weights tend to
approximate the distribution of the input vectors in an
orderly fashion. Note that the processors do not move
physically during updating. Tt is the weight vectors
that are made to change o define the ordering. One
presentation each of all the points in § makes one
awesp consisting af & ilerations, After one sweep is
completed, the iterative process for the next sweep
slarts agatn from Py through Py Several sweeps make
one phase. One phase is completed when the weight
veelors of the curment sel of processors converge, that
15, when

Wilth — Wit'l| < forallr, (3

where ¢+ and ¢ are the iteration numbers at the end of
lwo consecutive sweeps and e is a predetermined small
positive quantity. Only after a phase is completed, are
processors inserted or deleted. Suppose, at the end of

the sth phase, the weight vectors of the processors are
Wil ... Wapn (1) where n(s) is the number of
processors during the sth phase and r, is the total num-
ber of iterations needed to reach the end of the sth
pbase. It now the weight vectors of two neipghbour-
ing processors become very close, the processors arc
merged. 1T their weight vectors are far apart, a proces-
sor is inserted between them. More formally, if

|Weitsd = Wi (e

= min I!]'I"?r'{rsj Wi_1(t = 8y, (4}

i=b....p[¥]
then the two processors 7y and 7, are merged and
the new processor has the weight veclor [Wi(r,) +
Wiep (£:3] /2, 1T, on the other hand,

|Wilt,) — Wi (e

Ry HAX |Wild) — Woy  (1,3] = &, (5}
then one processor i inserted between & and g
and the new processor has the weight vector | Wi{r,) +
Wii(2,)] /2. Note that §, and 8; are two predeter-
mined positive quaniities such that §; = 5. After the
insertion and merging of processors, the next phase
starts with the new set of processors. The process con-
timues until, at the end of a phase,

& = |Wilt,) — Wi ()| = & foralld, (6}

Condition (6) means that the weight vectors of no
two neighbouring processors are either oo close or oo
far apart. The processors {on the basis of their weixhi
vectors) at this slage give an approximate global shape
of the input pattern (Fig. 1}.

2.2, Tree-like patterns

Here we deal with patlerns that have branchings,
forks or crossings (we term these fealures as june-
tions). For example, consider character patterns “T™,
"X, Y™, Here it is required that a processor in the
net has more than two neighbours, In the case of arc
patterns the nomber of netghbours (call it degree of
the processor) for each processor was known and was
fixed during the learning process. But now a proces-
sor (representing a junction in the pattern} can have
a variable number of neighbours and the number is
not known a priori. We shall discuss bow to learn the
degree of the processors.
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Fig. 1. Differeat steps of convergence of the net for an ae pawern
“5° Circles represent processors and lings joining them represent
links, €a) initial nct, (b)) the net after 19 sweeps. (21 the net
after 86 sweeps, (d) the final net after 261 sweeps,

Let us consider a pattern with a fork. As initially
we do not have any topelogical information about the
pattern. we start with a finear net with five processors
(shown in Fig. 2¢a)). After a number of iterations
some processor forms a significantly small (decided
em dhe basis of some threshold) scute angle with ity
two neighbours (Fig. 2(b} ). This happens because by
a property of Kohonen's feature map, the net tries to
span the entire distribution of the input pattern and,
also, the wopoelogical relationship of the pattern is pre-
served in the net. Suppose processor X fonins an acule
angle with its neighbouring processors ¥ and Z. This
suggests that there is o junction lving between ¥ oand
Z. Hence we take the following actions (Fig, 2ic)}
when processor X forms an aeute angle with its neigh-
hours.

Action 1.

(a) Create a new processor, say £ {denoted by a solid
circle), halfway between ¥ oand Z.

(b Delete the link between X, ¥ and the link between
X 2,

{c) Establish links hetween {7, X, between €7, ¥ and
between I, £,

e

Fig. 1. Different steps of convergence of the ngt for patcr “A™
Cap After 12 sweeps. (b) formation of g0 scuee angle afer 94
sweeps, o after 15 sweeps with g new processar (solid circled
credated with degree = 3, (d) after 394 sweeps immediately before
[oop formation, () final net afier 518 swoeps,

Thus a new processor LY, with a higher degree which
corresponds ko a junction in the pattern, 15 created, The
same actions are Laken for all the processors forming
a significantly small acute angle. These actions are
taken after a phase is complete, to adapt the wopology
of the input and then the subsequent phases are contin-
ued o enable the net to approach towards a closer ap-
proximation of the shape of the input pattern. Similar
principles used in the case of arc patterns are [ollowed
for insertion and deletion of processors and for con-
vergence of the algorithm. For this the conditions £ 43,
(57 and (&) are modified o accommodate all possibla
pairs of neighbouring processars as follows, If
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[Wele) — Wi (5]

= rmin min
=lmi S e e N, —{md

:H‘}(f_.;:l = wf-'{f.fjl = 8.
(7]

then the two processors 7y and 7y are merged and
the new processor has the weight vector [Wiir;} +
Wy (¢,)]/2. If. on the other hand,

|Wile,) — Wie(s,]]

= max max |Wi(s;) — Wielt)] > .
[1_] R ﬁl,.'i‘lv-;lrlrl':-"f'f {Tr-'}
(8}

then one processor 1s inserted between m; and . and
the new processor has the weight vector [Wi(r. ) +
Wi lr,.)]/2, After the insertion and merging of pro-
cessors, the next phase starts with the new set of pro-
cessors. The process continues until, al the end of a
phase,

forall i, & = |Wi(t,) — Wels,)| = 81,
Y e M — {mil. (!

2.3, Leop patterns

The techniques discussed so Tar do not work for pat-
terns that contain loops (for example, character pat-
terns AT “RT P Let us look at pattern “A™, Our
alzorithm can generate, on the basis of the principles
discussed in Section 2.2, an incomnplete skeleton as
shown in Fig, 2(d). We are yet to complete the loop by
means of bridging the gap { between processors E and
Fin Fig. 2(d)). This subsection proposes a method
of doing this.

The asymptotic values of the weight vectors con-
stitnte some kind of vector quantization (Kobonen,
1989 In particular, the distance measure and the up-
dating rules as considered in our algorithm, induce &
partition of the input pattern space as

S;={F, disti Py, W) < distf Py, Wy) Yk}

The above partition is a Yoronol tessellation which,
in the present situation, means partitioning of the in-
put pattern space into regions within each of which
all input vectors have the same weight vector as their
neargsl one. Therefore cach set 5 is associated with
a zingle processor. In fact, by properties of Koho-
nen’s model, two processors will be neighbours if the

twa respective Voronod reglons are close 1o Lhe pattern
space since Kohonen’s sell-organizing map preserves
the topological relationship. Hence in our case, it is
expected that two processors having close weight vec-
tors should be neighbours. Therefore, we join two pro-
cessors by a link if they are close enough, but are not
already joined. The closeness is determined on the ba-
sis of &2 Formally, the loop joining step can be stated
as follows.

Action 2. Tor every processor, its nearest processor
among other processors (eXxcepting its neighbours) is
tound. If the distance between these two processors is
less than &5, then they are joined by a new link.

WNate that after Action 2, the weight updating pro-
cess continues untif condition (%) is satisfled.

2.4. The algorithin

Summanzing the above discussion for all the three
Lypes of patterns, the proposed algoritho can be briefly
stated as follows:

Step 1. Initialize t = 0;
Initialize the weight vectors Wir),r=1.2 .. . . n
wilh random values,

Step 2. For all input patterns £y, f=1,2,... . ¥,
update weight veclors according to rule (2,

Step 3. If condition (3} is Talse golo Seep 2.

Step 4. Merge or insert according to {4} or (5).

Step 5. IF condition {6} is false goto Step 2.

Step 6. IF no processor Torms a spike gowo Step 9

Step 7. Create a new processor for each spike by Ac-
tion 1.

Step 8. If condition (2) is false golo Step 2.

Step 9. If condition in Action 2 s false goto Step 13,

Step 10, Join each such pair of processors by Action 2.

Step |1 If condition (9} is false goto Step 2.

Step 12, Goto Step 6.

Step 13. Stop.

For arc patierns, it is easy w0 see that the resolting
net, after convergence, gives a skeletal shape of the
pattern. Here the array of processors is linear and the
inputs are from a two-dimensional distribution { Ko-
honen, 1988, p. 153). In the present model, we start
with & given number of processors and at the end of
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a phase, we obtain gn outpul stmlar 1o the Kohooen's
maodel. Afier each phase either a processor is deleted
OF [WO CONSEeCUtive Processors are merged to a single
one. In the process of insertion and merging, the ex-
isting global ordening of the processors is never dis-
turbed. Noie that each phase here can be regarded as
a full execution of Kohonen's algorithm because each
phase starts with a given number of processors and
stops with the sume number of processors. Thus the
only difference between our modal and the original
made] 15 that the Former s 2 repoelilive apphication of
the latier, evervtime increasing/reducing the size ol
the net withouot disturbing the global ordering. From
the fact that once the processors are ordered they re-
main so for all ¢ { Kohonen, 1989, p. [43), the oulput
nel in the proposed model will give the skeletal shape
of the pattern as is given by Kohonen's model.

For tree patterns, after a few phases (when almost
all the weight vectors are positioned within the pattern
or ab least quite ¢lose tr it), a spike in the net is
replaced by a “T7-like struclure locally. The stariing
nel being lingar, 4 sprke here represents 4 junction in
the locai neighborhood of the parrern. The method is
repeated after each phase. For an “X"-like junction
twir such replagermnents are required. For other parts
ol the pattern the argument holds as well since a tree-
pactern is & union of arc patterns.

For loop patterns, the algorithm {upto Step &)
yields only a tree-structured net. Subsequently loops
are formed on the basis of 83 IF bwo processors are
closer than Sz, but not already joined, they arc joined
{Fig. 2(d.e)}). The value of & ts used here since for
all other processors we allow maximum distance 8:
between two neighbouring processors,

3. Results and conclusions

The above method has been tested on several char-
acler patierns. Some of the resuits are presented here.
Figs. 1-4 show the intermediate steps and the final out-
pui skeletons for the "8"-, “A"-, “X"- and "a"-shaped
palterns, respectively. The input dot patterns are gen-
erated rom a uniform distribution over the underlying
shapes. [n the figures, a circle represents a processor
and a line joins twa circles if the corresponding pro-
cessors are neighbours. For all the test patterns, the
enttial vahie of o is taken as 0.01 and the initial net

) =
&

t
e E T

Fig. 3. Dilferent steps of convergence of the nee for paremm X",
(a) Afrer 54 sweeps, (hy—{e} intecrmediate stuges, (6 final resule
ufter 575 swegps.

(Fig. 1{a}} is the same. The value of e is chanpged
over time as e( ) = 0.01 /01 +¢ /10003, where ¢ is the
number of iterations. The value of £ is taken as 0001,

It is to be noted that the parameters 8, and 8 con-
trol the distances between two neighbouring proces-
sors, These distances are larger (and the processors
are fewer in number) for higher values of &) and &;
and smaller (and the processors are more in number)
for lower values of 8 and ;. Fig. 5 demonstrates the
sensifivity of the oulput skeleton to the valoes of &
and #. Note that small valucs of §; and &; cause a
zigzag skeleton (Fig. 5(a}} and large values of §, and
gz produce only a crude approximation of the shape of
the pattern (Fig, 3{c)). The optimum values far the
input pattern in Fig. 5 are 8;=0 and S.=12 (Fig.5¢{h}},
The proper values of &) and &; depend an the thick-
ness of the pattern and not on its density or radius.
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o

Fig. 4. Infferent steps of convergence of the net for patiern 2",
[a) Alter 42 sweeps, {hh={¢) intermediate stages. (d) final neg
alfler 551 sweeps,

In the present work, & is always taken as 28, and &
is approximately the thickness of the pattern. The pa-
rameters &; and & are chosen manually and their op-
timum values are judged subjectively. Automatic de-
termination of the optimum or near optimum values
of these parameters is a topic of further research,

Higher values of & may lead (o a less accurate ap-
proximation of the shape of the pattern and 1ts smailer
values give more accurate approximation of the shape
though the time taken for convergence will be longer,
One possible value of & that will work is half of the
average nearest neighbour distance in the dol pattern.

A skeleton, representing a region-based global
shape of an object in a binary image, is well-defined
and can be compwted in several ways. On the con-
trary, skeletons for dot patterns are not well-defined
and hardly any techmique is available to {ind a skeletat
shape Irom a dot pattern. The lack of a proper defini-
tion for a dot pattern skeleton poses problems for its
computation. The present work demonstrates that a
neural network hased technique to find such a skele-
ton can overcome these problems, This technigue is
ahle o produce a skeleton which is very close (o the
perceptual skeleton of the input pattern.

We have proposed cerlain modifications of Koho-

Q

Fig. 5. Bensitivity of the cutput skeleton o the values of &) and
3, (al & =4dand by =8, (b) & =6 and §1 = 12, (c} &;=9and
da = 14

nen’s self-organizing newral network model 1o get an
applicahle model for shape extraction from dol pat-
terns. The initial net has the simplest possible struc-
ture and a small number of processors, Such a struec-
ture can deal with arc patterns only. We explain how
to update the net structure to deal with tree-like and
loop patterns also. In all these cases, in the mitial net,
cach processor {except the two end ones) has only two
neighbours, Daring the self-organizing process, some
processor may acquire more than two neighbours, 1f
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Fig. 6. i} Original binary imoge, (b} NSE = 4.5 {c) NSRE = 0.7,
(di NSR =09,

necessary, angd in this way, adapt their ngighbourhoods
dynamically on the basis of the input. Thus, not only
the net grows in size but also the neighbourhoods of
the processors change according to the local topology
ol the inpul pattern.

The proposed atporithm would be uselut in skele-
tonization of binary images in the presence of noise.
The conventional thinning algorithms are susceptible
lo noise. Although some of them can tackle boundary
noise {Datta and Parui, 1994), they fail 1o preserve
the essential topology of the pattern in the presence of
neise in the interior of the object. For example, a noise
pixel in the interior of the object normally leads to the
creation of a hole in the output skeleton. On the con-
trary, the proposed algorithm is robust with respect to
such noise pixels even when the noise-lo-signal ratio
(NSR] 15 very high where the NSR 15 defined as

Mumber of noise pixels inside objoect

MNSR = — 10
MNumber of object pixels 19

When the NSR is very high, a binary object becomes
a dot pattern. Hence the proposed algorithm for dot
patterns can be used in such situations, It is found that
even in the presence of 90% random noise, the outpur
skeletan represents the skeletal shape of the original
pattern {Fig. ).
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