A Novel Approach to Computation of the Shape of a Dot Pattern
and Extraction of Its Perceptual Border

A. Ray Chaudhuri, B. B. Chaudhuri, and 5. K. Parui

Compuier Vision & Pattern Recopninion Unis, Indian Siatistical Instiiee, 203 B, T. Road, Calaiia 200033, India

Received Odober 6, 1995 accepled Seplember 6, 1996

A novel approach to defining the external shape of a dot
pattern is proposed from which the intuitive border of the set
is extracted. The approach is based on a new definition called
the s-shape, which can be generated by a data-driven procedure.
The s-shape generates a staircase-like border. To obtain a polyg-
onal border, an r-shape is defined for which the parameter r
is found from s, the parameter of the s-shape. The main ad van-
tape of this approach is that it can be computed in (An) time
for a dot pattern containing n points. The approach has three
basic steps: (i) choice of an appropriate 5 (and corresponding
rifrom the given point set, (i) generation of the r-shape, and (iii)
cleaning of inconsistent parts from the r-shape. The diagram
composed of the consistent edges of the r-shape is considered
the perceived border of the dot pattern. A new structural basis
called the dispersion matrix is evolved. Extension of the work
to the digital case is discussed. The algorithm for extracting
the perceptual border is fast since it is mainly composed of basic
operations such as nonnegative integer addition and logical
operations. Moreover, it can be implemented on parallel ma-
chines since the operations are local in the point space.

1. INTRODUCTION

Point sets with finite diameters in B" are encountered
in various pattern recognition and image processing prob-
lems. These points may correspond to feature vectors in
feature space [1], pixel in digital images [2, 3], physical
objects such as stars in the galaxy [4], or spatial data [5-7].
Depending on the problem, it is necessary to discover the
structure in the point set in the form of clusters, directional-
ity, and intrinsic dimensionality [8-13]. Registration and
matching of point sets are also needed in some problems
[14. 15].

Another problem of interest is to find the border, for-
mally known as the external shape, of a point set [16-25].
In B or B one can perceive the border of the point set
if the points are clearly visible as well as fairly densely and
more or less evenly distributed. Such a point set is referred
to as a regular dot pattern or simply a dor pattern ( DP)
(Fig. 1a).
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One way of defining the external shape of a dot pattern
is its convex hull [16], but in many cases the underlying
shape from which the points emerge is not convex. Edels-
brunner er al. [17] proposed a general definition of the
external shape (convex or otherwise) of a dot pattern as
a-shape and described an algorithm to compute it for a
given . Among others, Ahuja and Tuceryan [18] used
Voronoi neighborhoods as the structural basis for extrac-
tion of the perceptual structure of a DP. A perceptual
grouping is accomplished, and corrections on grouping are
performed through constraint propagation using a probabi-
listic relaxation process. However, ad hoc thresholds are
uwsed in almost every level of decision making, and the
overall processing complexity is quite high. Other notable
work on external shape of a DP is that of Toussaint [19].
His definition of a sphere-of-influence graph s free from ad
hocthresholds and is computationally efficient. However, it
is noted that when the DP is dense the sphere-of-influence
graph in most cases do not agree with the perceived border
of the DP.

The present paper also deals with the external shape of
dot patterns. Our aim & to propose computationally effi-
cient (linear, in terms of number of points) and robust
unsupervised methods where the number of parameters is
the only one which, when properly chosen, produces a
border of the DP reasonably close to the perceived one.

We develop our approaches in B? space although these
can be extended in B in a rather straightforward manner.

Let the pattern plane be partitioned by a lattice of square
grids. Consider the union of grids containing points of the
DP. If the grid-length s is properly selected, the “*smooth™
version of this union approximates the underlying region
of the pattern, and its border can be considered the border
of the DP. This is the intuition behind the new shape
descriptor called the s-shape (Fig. 1b). One can iteratively
generate a finite sequence of s-shapes, called the s-shape
specirum (Fig. 1e). In Section 2, the mathematical basis of
the shape spectrum is worked out. From this spectrum the
s-shape closest to the intuitive structure of a DP can be
selected using a parameter £. A new dot pattern structural
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[he proposed approach. (a) A “human” shaped regular dot pattern. (b) An s-shape of the DP. (¢} s-limes scale reduced {1} spectrum
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FIG. 1.
and its smooth version (morphologically closed by unit disk). (d) The dispersion matrix of the DP (e

04) () An sshape-based border. (1)

Mustration of rinterior, redge, and Fadjseen s (rextreme points) (g) The r-shape with structuring radius,
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basis called the dispersion marrix (Fig. 1d) is evolved. For
s-shape-based border extraction of dot patterns (Fig. le),
the dispersion matrix is extensively used.

To obtain a border of a DP smoother than the s-shape,
another external shape descriptor called the r-shape is pro-
posed. The idea behind this descriptor is as follows. Subject
to the proper selection of the radius, called the structuring
radins, the union of disks centering at points of the pattern
can be considered a representation of the underlying region
of the pattern. The r<hape (Fig. 1f) is the graph con-
structed by connecting the respective centers of each pair
of intersecting disks which are partially exposed to the
background. In Section 3, the r-shape and its related termi-
nologies are formally defined. Among the existing external
shapes, the r-shape is by nature closest to the ashape. The
relationship between the r-shape and the a-shape is ako
presented. The structuring radius for an r-shape is selected
from the same sequence of positive numbers that is used
for the s-shape spectrum. Based on the characterization,
after partial/complete deletion of inconsistent loops from
the r-shape, the remaining subgraph s considered the bor-
der of the dot pattern that is compatible with the per-
ceived shape.

In Section 4, the implementation of our approach in
digital space is presented. Here, Section 4.1 deak with an
algorithm on computation of the dispersion matrix. This
algorithm is used for border extraction, based on the s-
shape. In Section 4.2, the digital r-shape is defined and an
algorithm for its computation with the structuring radius
is presented. For efficient implementation and faster pro-
cessing of the r-shape, a successor-listing type of the data
structure is proposed. In Section 4.3, an algorithm for de-
tecting inconsistent edges as well as extracting the border
that is compatible with the perceived shape of the input
pattern is presented in detail.

In Section 5, the computational complexity of our pro-
posed algorithms and an overall evaluation of our approach
are discussed. In Section 5.1, it is shown that the complexity
of border extraction based on either the s-shape or the r
shape is linear in terms of the cardinality n of the dot
pattern. In this respect our algorithm is computationally
cheaper than the existing approaches, most of which re-
quire n log(n). All approaches mentioned at the beginning
of this section are of order # log(n). A few experimental
results on some typical data sets are presented in Section
5.2. Finally, the advantages as well as the limitations of
our approach, with a possible remedy, are mentioned.

2. 5-SHAPE SPECTRUM AND CRUDE BORDER
APPROXIMATION OF DP

Let S be a dot pattern containing # points. Let Whbe an
optimal (in terms of minimum area) isothetic rectangular
region (i.e.. a rectangle whose sides are parallel to the
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horizontal and vertical axes of reference) containing 5 i.e.,
S C W B2 For a given grid side-length s, let #{s) denote
a lattice of square grids, with horizontal and vertical sides
on the real plane. For any grid g, let

G(s) = U{g|g € 7(s),g 0 W D}
H(s)= Ulg|g € #(s).g N § = ®}.

(1)
(2)

(i(5) denotes the set-union of grids over W, while H(s)
denotes the subset of (iy) obtained by joining the grids
which contain at least one dot each. Let #/{(s) denotes the
number of grids in H{s). Then the area of f{s) is defined
as A(H($)) = #H(s) = &~

DerFmnmon 2.1, His), the hull of § induced by the
lattice () with grid-length s, is said to be an s-shape of
8. (See Fig. 1b).

If the points of § are distributed uniformly over W, then

[aw)

¥y = _!.I Fz
isexpected to be an optimal grid length in terms of underly-
ing region approximation of the DP by the s-shape. Usually
the points of § are distributed over only a small region of
W. The induced hall H{5) over § with grid-length § will
give a (first) approximation of this region. We can make
a better approximation iteratively as follows, where the
area of the induced hull is gradually decreasing.
Consider the sequence (v defined as
5, =7 when i= 1
_ A - 1)
= | =

\

(3)

wheni>= 1.

Henceforth Gis;) and H{s;) will be simply denoted as G,
and ff;, respectively.

Prorosimion 2.1, The sequences (s;) and (A(H)) are
both monotonically nonincreasing and convergent and if
5 is the limiting value of (s;) then

lim s, = s = lim A(H) — A(H (s)).

Proof.  Since

#H;=n ¥i,
we have
§H,
0= i wa &
=g
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Thus (s} is a nonnegative monotonically nonincreasing
sequence. As this monotonically nonincreasing sequence
is bounded from below () is a lower bound) it is also con-
vergent.

Now,

AI:L:;_]} = #f!;] * .!'f.]

= #f!‘._;] b4 (ﬂ o I‘.‘_E)
i

[ T—
= e (v, x 57
LN

M
= A(H).

Therefore, {(A(H;)) is also a nonnegative monotonically

nonincreasing sequence and hence is also convergent.
Let lim;_,. 5; = 5.

The sublattice H(s;) gradually coincides with His) as 5

tends toward s. Thus, we have by construction

lims; =5 =lim A(H)— A(H(s)). =

Ja

Note that s; in {s;) will continue to decrease; i.e., §; <
5.1 until each grid in ff; contains only one dot.

Now we will show that {s;) attains its minimum value,
i.e., attains the limit, which is strictly positive after a finite
number of steps.

Prorosimion 2.2, The sequence (s)) converges to 5 = ()
after a finite number of sieps.

FProof.

[#Hs
Y on

3| r

o, [ se
A} 5

o

By taking limits on both sides,

lim;. .z VFL _ limg. 84

Vi lim,_.. 8;
lim; . \VH#H(s;
::,"n“—_l:"‘:l' =1
W
= m#f;,=n.

Thus, {#/{;} = a convergent sequence of positive integers.
As any convergent sequence of integers contains at most
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a finite number of distinct integers, (#f1) has only a finite
number of elements which are distinct and the rest are all
equal to its limiting value n. Let

j = minii | such that #H; = n}.

MNote that this limiting value » is attained only when all
points of § are mutually separated by grids. Then by defini-
tion, any s;, for i =j, is constant and is equal to the limiting
value; i.e.,

5=8 Yizj
If possible let s = 0. By our assumption, since not all points
of § are collinear, A(IW) = 0=s5, =5=0.

Now, since (s;) is a strictly monotonically decreasing se-
quence converging after a finite number of steps, there
exists a positive integer § such that

T8>, Yi<j
otherwise.

=3

However, as 5;,_, = 0 and #non-null grids in f(s;_,) = 0,

I."# non-null grids of H(s;_;)
.= 4
] 1‘,' "

Sj—] = ﬂ,

a contradiction to the hypothesis that (= s;) = 0. Hence,
s=( m

DerFinmon 22, The sequence (M) is said to be the
s-shape spectrum of §.

The finiteness and positivity of {s) ensures that the
s-shape spectrum s computable.

The s-shapes are a union of fixed sized squares. Thus,
the border of an s-shape has a staircase-like appearance.
Further, if the value of s; s small, an s-shape may contain
holes and its border may appear cracked. Thus, the border
of an s-shape in the spectrum is considered to be a crude
border of the dot pattern. Any hole filling as well as border
smoothing algorithm (conventional or morphological) for
digital images [26] gives a better appearance to the s-
shapes. We proceed to make a smoother shape approxima-
tion called the r<hape. Each s-shape in the spectrum can
induce an rshape. However, it is useful for the user to
know which value of 5 and corresponding r one should
choose so that the rshape of DP agrees well with the
perceived shape. Thus, an automatic choice of an appro-
priate 5 (and hence r) from {s;} &5 in order. At first, the
sequence (s;) is further analyzed for better understanding
of its capability to give rise to an appropriate value of 5.

Note that until all points of § are mutually separated
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by the grids of H,, 5; continues to decrease. The rate of
convergence of the sequence mostly depends on the homo-
geneity and structure of the DP. The terminal value s
cannot give an appropriate grid-length unless the points
of § are highly regularly distributed. It can be considered
to be alower bound of the side-length of a so-called optimal
grid. However, considering the sequence (s;) to be a spec-
trum of grid-lengths, we can select a suitable grid length
v as follows.
For a given small (=0}, let

Fe-1 — S

=55, {.s‘,-}}. (4)

5§ =max j 8.
N

DerFmviTion 23, The quantity s is called the s-measure
of dispersion of the dot pattern §.

Let the grids of &; be ordered in 2-dimensional array.
Then G; will induce a matrix ({g;,)), for example, whose
({, m)th element denotes the number of dots in the grid
situated at {th row, mth column position.

Dermamion 2.4, The induced matrix of ;. 1.e., when
the grid-length is equal to the e-measure of dispersion, is
said to be the induced dispersion matrix (or simply, disper-
sion matrix) on the dot pattern S. The dispersion matrix
is denoted by DMAT(S).

Fipure 1d illustrates the dispersion matrix of the DP of
Fig. 1a where the value of £ = 0.4.

Derrvimion 2.5, The binary projection of the dispersion
matrix (b)), for example, is denoted by DMAT,(5)
and defined as

hbn i 1 ifg]'m = ﬂ

(5)

= otherwise.

The dispersion mairix can be used as a structural basis of
the DP. It can be considered to be a gray scale image,
whereas its projection can be considered to be a binary
image where each object pixel represents a nonempty grid
of H{s). It represents an s-times scale-reduced version of
the s-shape where s is the s-measure of the dispersion of
the DP.

Consider the collection of binary projections of {(g,,))
corresponding to &, for (i = 1,2, ..., k). If the collection
is ordered by i then the resulting sequence of binary images
(#;-times reduced ;). as well as their smooth versions,
show how the s-shape spectrum captures the underlying
structure of the DP. Such a spectrum and its smooth version
{where each projection is morphologically closed by a 3 x
3 structuring template) on the DP of Fig. 1a is presented
in Fig. lc.
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In Section 4, a digital implementation of an s-shape-
based algorithm (s = e-measure of dispersion) for border
extraction of a DP is presented. The computation is done
over the binary projection of the dispersion matrix. Note
that the cardinality of the projection is less than that of
the DP.

3. r-SHAPE

Let § ={Py, Po, ..., P,} be a set of # points in B? and
let r be a positive quantity. Let D,(Q) C R? be the closed
disk with radius » and center (., and let C.{Q) be the
boundary of D,((). The boundary and the interior of a
closed set A will be denoted by bdr{A ) and int{A), respec-
tively.

Consider the union of all disks with fixed radius r center-
ing at points of S. If the perimeter of the disk centering
at a point, say Py, is at least partially exposed to the back-
ground then the point is said to be an r-extreme point.
Otherwise, it s called an r-interior poini. Mathematically,
P, € § is an r-interior point of S iff C{P,) C int(UL,
D, (P)). Let

E (Pi) = Ci(Pe) — i"t( U Dr{Pi})‘ (6)

The following lemma can be easily verified.

LEnna 3.1,
point of 5.

F.F; is said to be an r-edge if E ()N E(P) # ¢

Note that P;P; is an r-edge if both disks centering P; and
P;, respectively, have a common point (say Q) that is ex-
posed to the background with respect to the union of all
disks centering points of 5. (See Fig. le).

Any r-extreme point P; being an end point of an r-edge
is said to be an r-verex of 8. Thus, the set of r-vertices
consists of nonisolated r-extreme points. The number of
r-edges passing through an r-vertex F; is said to be the
degree of that vertex and the other ends of these edges
are called r-adjacent vertices (or simply r-adjacents) of P;.
If P; has more than two r-adjacents then F; is said to be
an r-branch vertex of §.

E (P = o if and only if P, is an r-interior

Dermimon 3.1, The r-shape of S is the planar straight
line graph whose vertices are the r-vertices and whose
edges are composed of redges. (See Fig. 1g).

An r-path (or, simply a path) in an r-shape graph is
defined as a maximal alternating sequence of r-vertices
and r-edges, beginning and ending with r-vertices (referred
1o asend vertices), such that each r-edge is incident with the
r-vertices preceding and following it. No rvertex appears
more than once and all r-vertices except the end vertices
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on the path are of degree 2. A path can be expressed by
a string of r~vertices. In a diagram of the r-shape, a path
represents a simple curve.

Let us recall the existing definitions for the a-shape [17].
Let @ be an arbitrary real number. A generalized disk of
radins 1/ is defined as a closed disk of radius 1/aif o =
0, the closed complement of a disk of radius — 1/ if o <
(), and a closed halfplane if & = 0. For a set § of 2-D points,
the q-frudl of § is the intersection of all generalized disks
of radius 1/a that contain 8. A point P in 8 is a-exireme in
Sifthere exists a generalized disk of radius 1 /o containing §
such that P lies on its boundary. Two a-extreme points P
and @ of § are a-neighbors if there exists a generalized
disk of radius 1/ containing § such that both P and Q lie
on its boundary. The a-shape of § is the planar straight
line graph whose vertices are the a-extreme points and
whose edges connect the respective a-neighbors. As o ap-
proaches zero, the a-shape becomes the convex hull of §.

In [20]. a close relation between r-shape and a-shape
was established. In all terms (e.g., r-extreme point) and
transforms (e.g., £,) defined to find the rshape, at first the
union of disks is taken and then the interior of the union
is considered. On the other hand, if the interior of each
disk is taken and then their union is considered, then the
edge joining the points P; and P; satisfying E.(F) N
E,(P;)# ¢ is an edge of the a-shape (@ = —1/r).

By using properties of a-shape [17] and r-shape, it can
be shown that the rshape is a subgraph of its respective
a-shape. The r-shape graph does not contain any point not
having a neighbor within its r-distance but such an isolated
point is a vertex of the respective a-shape. In addition to
the isolated points, other vertices may exist in the a-shape
(e = —1/r) that do not occur in the respective r-shape.
For example, consider an a-extreme point P, such that
C,(P) ¢ Uiy int(D,(P)) but C,(Py) C int(U7, D,(P)).
Then there exists a point & on C,( P ) such thatif it belongs
to any disk D,(F;), its boundary C,{F;) passes through (.
Since P; is not an r-extreme point, at least the boundary
of four disks intersects at ( so that @ is covered by the
interior of the union of disks. All edges in the a-shape
with one end at P, are weak edges that do not occur in
the respective r-shape. Here, by a weak edge we mean an
edge that disappears when the value of the graph parame-
ter is slightly changed. In this case, if e is slightly decreased
from (— 1/r), these weak edgesdisappear. Thus, the r-shape
is more stable than the respective a-shape (i.e., when a =
—1/r).

Itis clear that the rshape is different for different values
of r. To get a percepmually acceptable shape, a suitable
value of r should be chosen, and there is no closed form
solution to this problem. We have not come across any
literature on proper selection of the equivalent of r, ie.,
a. In principle, one should be able to get an appropriate
value of r, called the structuring radius, from the dot pattern
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itself. (The disk centered at the origin and with radius of
appropriate length r is said to be the structuring disk.) Note
that for each s; we can find an r-shape where r = 2.
However, we shall consider the r-shape corresponding to
the s-measure of dispersion. The selection of the structur-
ing radius is justified by the possibility of the existence
of a single point in diagonally opposite corners of two
connected grids.

DeFNrmon 3.1, The quantity 532 is called a structur-
ing radius of e-stability (or simply structuring radius).

We would like to point out here that “perceptual struc-
ture”” of § cannot be defined uniquely. It will vary from one
person to another to asmall extent. The e-factor introduces
such a notion in the structuring radius. If we fix a value
of £ in a suitable range we obtain an acceptable sshape
ibased border) and r-shape. For more or lessevenly distrib-
uted DP, £ in the range 03-0.5 (typically (1.4} is a good
choice (see Fig. 3).

31, Characterization of [nconsistency in r-Shape

Due to local irregularity in distribution on the pattern,
some edges in the rshape (even for a structuring radius
r) are redundant and inconsistent with the perceptual struc-
ture. This inconsistency can be characterized by:

(i) one or more simple closed contours of negligible
length (e.g.. A in Fig. 5k);

(il) multiple paths between two branch vertices (e.g.,
multiple path exist between B and C in Fig. 5k).

From a graph-theoretic point of view a successor listing
of a graph is a data structure used for the graph representa-
tion. Asin the r-shape graph, where the ratio of the number
of edges (¢) to the number of vertices (v) is very low, this
successor listing is very convenient for storage, retrieval,
and manipulation of the graph. In general, the structure
of a successor listing is as follows. After assigning to the
vertices in any order the numbers 1,2, .. . v, a linear array
is constructed for each vertex & whose elements are the
vertices which are adjacent to k [27].

A soccessor listing type of data structure, referred to as
r-shape listing, is used to clean the border of DP generated
by the r-shape by tracing over it the route(s) from one r-
vertex to another. lts composition and the way of tracing
by using the listing are described in detail in the section
on implementation.

In the r<shape, a simple closed curve of length less than
the perimeter of the structuring disk (=6 * r, where 6 is
an approximation of 27) is considered an inconsistent loop
because of its negligible length. However, since the distri-
bution of points in a DP is more or less even, the average
length of redges is approximated by r. Thus, a simple
closed loop in the digital implementation is considered
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inconsistent if the total number of r-edges on the loop is
less than 6.

If more than one path is detected between two branch
vertices then such a path, if not the shortest one, will be
deleted if the total Euclidean length of that path and the
smallest route between those branch vertices is smaller
than the perimeter of the structuring disk. However, in
digital implementation, as in the above case, to determine
the validity of a path between the two branch vertices we
consider only the number of edges in the closed loop. A
path between two branch vertices is considered inconsis-
tent if the total number of r-edges on this path and also
on the corresponding shortest path is less than 6.

4. DIGITAL DOMAIN IMPLEMENTATION

Let § = {P,, Ps,....P,}be aset of ndiscrete points (a
discrete point is equivalent to a pixel in image processing
terminology) where P; = (x;, y;) € J? is the integer lattice
and let each P; have a label or color i. Let [ be a binary
image where almost all object pixels are disconnected but
densely and more or less evenly distributed in a subregion
of I. Then this image [ can be considered an image of
a dot pattern. From [, the set § can be constructed by
mere scanning.

4.1. Computation of Dispersion Matrix: Estimation of s
and r

Srep 1. Find

" "

a~—minx;;, b —maxux;
=1 i=1

n n

c:—n1i1ny;: d:—m:alxy.-:
AW)Y (b —a) X (d —¢).

(W is the optimal isothetic rectangular region whose four
vertices are respectively, top-left corner, e (a, c); top-right
COrner, w (a, d ) bottom-left corner, e (b, ©); bottom-right
corner, walh, d).)

Compute

[A(W)

Sos '\.lll " A

My~

b
d

" —a
iy

S
."'l'ru'f— '- -
Sy

Setr«—1;5; «— A(W).
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Step 2. Initialize the entries of two matrices of order
4""{:—] x -'h"'ra—l Ll — u;m — 0.

Set count number of nonnull buckets: ¢, < 0.
At each point P; (for i = 1,2, ..., n), compute

T Xp—a|,

F-1 ’

mo— I-Q‘I s
81

Ay =l + 1:

if (dhn = 0)

o=+ 1

uj'lﬂﬂ = 1"
Step 3. Compute

((gm)) = ({asm)});
((Byn)) < ()
5 =8 X 'IE

M ’-b :u-| :

Step 4.

1f(“—_‘ f_rz)lhen

"l-"l

i s8]

ii. structuring radius 'Er-r—i.-,;_J‘VEh
iii. dispersion matrix is ({gg,)):
iv. itsprojection is ((By,,) )

elseset 11+ 1;gotoStep 2.

MNote that for estimating the structuring radius, explicit
computation of ({gy.) 1 by, )) is not necessary, but at each
iteration the number of nonnull grids is required.

4.1.1. Computation of an s-Shape-Based Border.
Step 1. Find the projection of the dispersion matrix

((Z1m))-

Step2. Smooth ((by,)) by a binary morphological closing
with a unit disk. (The unit disk is a 3 * 3 window having
center at the (1. 1) position.)
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Strep 3. The border of the resulting output of the closed
version after its s-times magnification followed by a transla-
tion to the point wy,is considered as an approximate border
of the DP.

Examplesof s-shape-based borders along with the inputs
are shown in Figs. 1-5.

42, Digital r-Shape and Iis Computation

The discrete disk with radius raround P isaset DD (P))
of pixels, P = (x, v) so that the distance of every F from
P, satisfies the inequality d(P, P;) < r + 4 Moreover, the
label of each pixel P in DD.(F;) is i

Let .+ be the set of ordered pairs defined as

F={P,L(PYL(P)= max i}

PEDDAF)
The border of .+, denoted by bdr(+]), is defined as

bdr() = {(P, L(P))| at least one of the 4-neighbors
of P has label 0},

The interior of 7, int(.+]) s defined as
int(.#) = = — bdr()).

Let the set of labels occurring in bdr(.#]) be #(bdr(#)) =
IL(P)(P, L(P)) € bdr{#)}. P;is said to be an r-extreme
pixel in § iff i & A(bde(5).

Consider the 8-connected components of bdr(.#, ), each
having the same label. The number of such components
is greater than or equal to # ¢ (bdr(+7)). In general, a com-
ponent with two or more pixels will have exactly two end
pixels, viz., the pixels having exactly one B-neighbor in
the component.

Let ¥ be the set of r-extreme pixek in 8. For P; and
P;€ 7, P;P; will be an r-edge of § if an end pixel of a
connected component with label i in bdr{+]) and an end
pixel of another connected component with label j{i # j)
are 8-connected. Then P, is an r-adjacent of the r-vertex
F;. The degree of the r-vertex of P;is the total number of
r-adjacents of P;.

The r<shape of S is expressed by a diagram consisting
of r-edges.

4.2.1. Computation of r-Shape.

Step 1. Create a structuring disk of radius .

Step 2. 47 is computed by placing the structuring disk
as a mask centered at every point Py, y) (i=1,2,...,
1) as follows. Each pixel  in the square neighborhood
(of side-length 2r + 1) of P, is considered. If 0 is under

the disk 00, F;) then the label i is assigned o Q.
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Step 3. The square neighborhood (of side-length 2r +
1) of P;in .+ is scanned for each . If in that neighborhood,
a pixel P exists with label i such that a background pixel
(i.e., pixel with label () exists in its 4-neighborhood then
P; & an r-extreme pixel. Further, if such a P has an 8-
neighbor & with distinct label j{i # j = () such that () has
ako a background pixel in its 4-neighbor then F;is an r-
vertex and P, P; is an r-edge of 5. But if such a Q does not
exist for any P, then that r-extreme pixel is considered an
isolated one.

For P;, find all the mutually distinct labels of the Os
with properties stated above and the ith row of successor
listing is constructed. Let the stored labels be i; (j = 1, 2,
g k) where &2 {12 s b =108 Ly e 1) Then
the r-adjacents of the r-vertex Py are P Pi,. .., P

The r-shape 5 a combination of r-edges which can be
drawn using the successor listing. In this case, the successor
listing is composed of # linear arrays where the ith array
contains the label of r-adjacent(s) of F;. If the ith array of
the successor listing contains j(=i), then the r-edge PP,
is drawn. (Note that each edge in the r-shape diagram is
drawn only once.)

The r-shape computation is illustrated in Figs. 2a—d. For
easy understanding and representation, instead of integers,
letters A—X are used in their natural orders on 24 pixels
present in the pattern. The labeling of the pixels by a raster
scan is shown in Fig. 2a. The output of Step 2, 47, isshown
in Fig. 2b. The label of r-adjacent vertices detected in Step
3 are shown in Fig. 2¢. The resultant rshape is the diagram
of Fig. 2d.

43, Extraction of Perceived Border from the r-Shape

To get an automatic border from the r-shape that is
consistent with the intuitive shape of the dot patiern the
structuring radius r s first estimated. From that r, the r-
shape s computed.

4.3.1. Listing of r-Shape. As stated earlier, due to lo-
cal irregularities, even under the structuring radius r, some
edges in an r-shape may appear inconsistent with respect
to the perceived boundary of the DP. A modified successor
listing, referred to as an r-shape listing, is constructed to
trace these edges and is denoted as List (S). This can be
stored in a matrix (say, L) of order n % [ 27 (r + 1)] where
each of the first two entries of the ith (i = 1,2, ..., n)
row, ie., L[ 1] and L[i, 2], contains the degree of P;
and the remaining entries are the labels of its r-adjacent
vertices. The first two entries of each row are henceforth
referred to, respectively, as deg and deg’ and the remaining
entries constitute the string of r-adjacents (or simply the
adjacent string). The initial choice of L[i, 1] = L[i, 2] =
deg = deg’ for each r-vertex of the pattern is justified in
the following algorithm on border cleaning.



EXTERNAL SHAPE/PERCEFTUAL BORDER OF A DOT PATTERN

4.32. Finding the Consisternt Edges in the r-Shape.
After constructing the List, (§), the algorithm for selecting
the consistent r-edges and removing the inconsistent ones
from the r<shape s performed through structural analysis
using the following three steps: (1) tracing of primitive
linear structures, (2} selection of path(s) from multiroutes
in between branch vertices, and (3) removal of simple
closed loops of negligible length. Note that from this r-
shape listing all possible paths from an r-vertex can be
found.

Instep (1), a primitive linear structure means a path of
r-vertices whose one end is free, i.e., a vertex of degree 1,
while the other end i either another vertex of degree 1
(meaning a simple linear structure) or a branch vertex
(meaning a tail-like structure). A linear structure can be
found starting from an r-vertex of degree 1 and including
the successive r-adjacent vertices until a vertex of degree
1 or a branch vertex is found. Let this output string be
denoted by lin-str. An efficient lin-str computational ap-
proach is described below.

By checking the first column of L, one free end of a
linear structure is detected (provided it exists). Let F; be
such an end vertex. Then both values deg(i) and deg'(i)
are replaced by 0 and the first entry of lin-str is set to i.

Now the label (say i), of the adjacent vertex, F; , of F;
on the linear structure, is the value of L[i, 3] (which is the
first and only non-zero value of the ith string of r-adja-
cents). Therefore, set lin-str[2] = i;. Find the position with
value { in the i;th string of r-adjacent vertices. If 1[i), 2 +
{f] (for { = 0) is equal to i then replace its value by 0
and swap it with the content of L[i;, 2 + deg'(i;)]. This
processing has been done to avoid a redundant search
because with this operation a null entry occurs only at the
end of an adjacent string. This removal of traced r-vertex
label from the r-adjacents string is referred to as condi-
tional popping.

After the conditional popping, deg'(i;) is reduced by 1.
If deg(i,) is equal to 2, both deg(i;) and deg’(i,) are set to
0 and if L[, 3] = i, then set lin-str[3] = i..

This process is continued until a label, say i, is found
whose deg is not equal to 2. Then P; is either a branch
vertex (of deg(i,) = 2) (which means the linear structure
is tail-like) or another free end (if deg{i) = 1) of the
simple linear structure under consideration. Note that the
length of the lin-stri, i, f2, . . ., i;] minus 1 is the number
of r-edges in the linear structure (which is & here). The
diagram of the traced primitive linear structure, which is
part of the r-shape, can be drawn by following the successor
labels in lin-str[i, iy, i3, . . . , ;] and joining the correspond-
ing vertices.

After all the edge lying on the primitive linear structures
are traced and removed the List(S) contains only the
edges on paths between branch vertices and the edges in
the simple closed loops. Note that any remaining path from
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a branch vertex always ends at another branch vertex. (A
loop may be formed at the same branch vertex.)

Since the perimeter of a discrete disk of radius r is of
order O([2ar]), the degree of an r-vertex is also of order
([ 2zr 1). Thus, all paths from a branch vertex which are
not (already traced) tail-like linear structures can be stored
in a matrix, say, M of size k % n, where k = [27r|. For a
dense pattern, we have k < n.

Except at the starting vertex, the tracing procedure of
multipaths in between branch vertices is exactly the same
as that for primitive linear structure. The deg column of
List, (5} is scanned and if for the bth row we have deg(b) =
2 and deg'(h) = 0 then the vertex Py is considered the
starting branch vertex and is tagged by a pointer (let us
call it branch vertex pointer). The labels of the end branch
vertices to which Py is path connected, the number of -
edges on the path (path length), and their row position in
M are stored in three linear arrays, referred to as X, ¥,
and Z, respectively. From X, the existence of multiroutes
between two branch vertices can be easily found. If b’ is
the label of an end branch vertex in X that repeats r times
then it signifies that there exist 1 paths between Py, and Py,
(b == b'). The path of minimum length between Py, and Py,
can be found by checking the values in ¥ and correspond-
ing Z. Consider the rest of the paths between Py, and Py,
Any one such path and the shortest path makes a closed
loop. If the total number of r-edges on this loop is less
than six then the path is considered inconsistent.

The consistent paths from the branch vertex (which is
tagged by the pointer at present) are identified by the
labels of Z. Now each consistent path can be drawn by
following the successor labels of r-adjacent vertices or-
dered in the row of M identified by Z.

In this way, all branch vertices and their connecting paths
are detected and r-edges on these paths are removed from
List,(5). Note that if there exist multiroutes between two
branch vertices, the tracing over the path never repeats.
For example, if for path-connected branch vertices Py, and
Py, the label b is less than the label &' then all paths
between P, and P, are processed when the branch vertex
processing pointer is at the bth row of List, (5).

The rest in the List (5) correspond only to those edpes
that lie on a simple closed loop where each r-vertex is of
degree 2. Now to search an r-vertex on such a closed loop,
the deg’ column is scanned from the top. If P; is the lowest
labeled r-vertex on a simple loop then deg'(i) = 2. This
label i is placed on the first position of the output string.
Both deg(i) and deg'() are set to zero. The first member
of the string of adjacents, say, {* s tagged as the label of
the end r-vertex. If the label of the second adjacent vertex
of P, is i, then i, is stored in the second position of the
output string. After condition popping at the ijth adjacent
string, the other adjacent vertex of P, (say F;) is found.
Until an r-vertex of label i* is found, the same procedure,
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FIG. 1.

Computation of the r-shape. (a) The labeling of the pixels by a raster scan (Step 1), (b) =7, the union of labeled digital disks (Step 2).
(c) The label of detected radjacent vertices (Step 3). (d) The resultant rshape. (¢) The rshape listing and extracted border in the form of strings
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FIGURE 2—Continued

i.e., conditional popping and storing at the output string,
is repeated. If the number of r-edges is less than six, the
r-edges on the loop are considered inconsistent. Otherwise,
by tracing the successive labek in the output string, the
corresponding r-edges can be joined by line segments. In
this way all existing simple closed loops are traced out.

The diagram, that is composed of these so called
consistent r-edges, is considered the perceived border
of 5.

The r-<shape listing and the extracted linear structure, as
well as the loop (at a branch vertex) existing in the r-shape
of the dot pattern of Fig. 2a, are presented in Fig. 2e.
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FIG. 3. The perceptual compatibility of border (g lies in the range 03-05) (a) A “polar bear” shaped dot pattern. (k) The s-shape-based
extracted border along with the DP (for & = (L5). (¢} The s-shape-based extracted border with the DP (same for both & = 0.3, 0.4). (d) The r-shape
along with the DP (e = 0L5). (¢} The r-shapes [for the DF are same for & = 0.3, (0.4,
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3 : d

FIG. 4. Two more examples of dot patterns where r-shapes are [ree from inconsistent edges (e = 04). (a) The inpul pattern, (b) the sshape-
based border, and () the rshape, (d) the inpul pattern, (¢) the s-shape-based border, and () the r-shape.
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a T : : 3 — b.-

FIG. 5. Examples of dot patterns where rshapes are not ree from inconsisient edges (e = 04). (a) The input pattern, (b) the s-shape-based
border, (¢} the rshape, and (d} the final extracted border; (¢} the input pattern, ([} the sshape-based border, (g) the r<hape, and (h) the final
extracted border; (i) the input pattern, (j) the sshape-based border, (k) the rshape, and (1) the final extracted border.
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FIG. 6. Robustness in presence of noise. (a) The rshape-based extracted border along with the input which is a corropted version of Fig. 3a
by 15-dB SMER noise. (b} The r-shape-based extracted border along with the input which is a corrupled version of Fig. 3a by 10-<B SMNR noise.

5. EVALUATION OF PROPOSED APPROACHES

51, Computationad Complexity

From the construction it is clear that for a given s, the
border based on the s-shape is linear with respect to the
cardinality of DP. We will show that the computation of the
r-shape as well as the extraction of the perceived border, as
a whole, is possible in linear time. First, the complexity of
the r-shape computation s examined.

311 r-Shape Computation Complexity.  Since gener-
ation of a discrete disk with radius r at each point of DP
requires a constant time (O(r*)), 7, can be computed in
(Nn) time. As described in the algorithm on r-shape com-
putation, for each point P, pixels in its square neighbor-
hood with sides of length 2 + 1 are scanned and processed.
If P 1= a pixel in .+ with label i in the square neighborhood
of P; then its 8-neighbors are alko traced. If in the 8-neigh-
borhood of P, there exists a background pixel as well as
a pixel ¢ with a label distinct from i, then the 4-neighbor-
hood of @ is scanned to detect whether () has any back-
ground pixel. Therefore the worst case computation for
each pixel in square neighborhood of P requires 32
(= 8 x 4) comparisons. Thus, checking whether a pixel is
an r-interior, an isolated r-extreme pixel, or an r-vertex,
as well as finding its r-adjacents, requires a constant time.
Therefore, the redges of an r-shape can be detected in
() time.

5.1.2. Perceived Border Extraction Complexity. For
eximation of the structuring radius, it is evident that in
each iteration, the computation of ((b,,)) is linear with
respect to .

In Proposition 3.1, we have shown that in the analog
case, the limiting size of the bucket is attained only after
a finite number of steps. However, in the digital domain,
since the structuring radius is an integer, in the worst case
2(Ls=) + 1) can be considered asan upper bound of iteration
number, where s, is the estimated length of the cell after
the second bucketing of 5. Since for a dense pattern s; <
n, the structuring radius estimation can be considered lin-
ear with respect to #.

As discussed earlier in the case of r-shape computation,
the time required for computing the listing, List, (5}, is
ako linear with n. Since the degree of an r-vertex is
O([27r ), in a worst case situation, the total number of r-
edges is O([2mr |n) = O(n). Now recall that each r-edge
of the rshape is traced over List,(5) only once. It can be
easily verified from the detailed description of the algo-
rithm that each of the three modules, namely tracing over
the linear structure, selection of path(s) from multiroutes
between two branch vertices, and finally the selection from
simple closed loops, requires only O{n) computation. Thus,
finding the consistent edges of the r-shape requires Ofn)
time.

From the above discussion it is concluded that the time
complexity of extracting the border (which is reasonably
close to the intuitive shape) & linear with respect to the
cardinality of the pattern.

52, Experimental Results and Discussion

We have tested the proposed algorithms on several syn-
thetic dot patterns. The results are quite satisfactory. We
have experimentally found that if £ liesin the range 0.3-0.5,
the extracted border s compatible with the perceptual
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FIG. 7. Siwaton for mixed point paiterns. (a) The components of the inpul are disconnected. (b) The r-shape-based extracted border with the
input. (¢} The denser component is embedded in lighter pattern. (d) Extracted border with the input.

border of the dot pattern. For a given DP (Fig. 3a) the s-
shape-based extracted borders for & = 0.3, 0.4, 05 (the
shapes for & = (1.3, (0.4 are in fact the same) are shown in
Figs. 3b, ¢, respectively. For the same DP, the r-shapes
{along with the input) are given in Figs. 3d, e.

Ower a few other typical dot patterns the borders based
on the s-shape, r-shapes, and finally extracted borders
(these are proper subgraphs of respective rshapes) are
presented in Fig. 5. In all these cases £ has been fixed at (0.4,

Owr proposed algorithm is the first of its kind to extract
the perceived border for a given DP in O{#n) time. On the
other hand, any algorithm for shape extraction based on

the Voronoi diagram. Delaunay triangulation, the mini-
mum spanning tree [28], or the sphere of influence graph
needs at least On log n) computation [29]. In a digital
case, the number of iterations required for getting the
structuring radius of a DP is very low. For example, in
all the abowe listed figures of the r-shape the number of
iterations required are less than four. Except for a very few
operations, the computation is based on integer addition,
subtraction, and comparison. Thus, our method of border
extraction of dot pattern is very fast and efficient.

The proposed algorithms for the structuring radius esti-
mation and the r-shape (r-shape listing) are locally comput-
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able and can be directly implemented on parallel machines.
In [20], where the concept of r-shape was first introduced,
we proposed an algorithm for r-shape computation that
could be implemented in single instruction multiple data
computers viz. on the CRCW-5M (concurrent read, con-
current write, shared memory) computer model.

Owur method can be easily implemented on hardware
where the proposed border extractor can be treated as a
low-level vision operator.

Though the proposed method is designed for a single
set of dots pattern, the boundary extraction algorithm is
directly applicable also for disconnecied doi patterns pro-
vided the dispersion measure of individual components is
more or less the same. By disconnected dot patterns, we
mean that the perceptual structure contains topologically
distinct components and the minimum distance between
any two DPs is more than twice of structuring radius. For
example, in Fig. 4d and Fig. 5i (& = 0.4), the number of
such disconnected dot patterns is 2.

Owr proposed border extractor of dot patterns s robust.
Consider the case of noisy dot patterns, where we assume
that some points that are not of the original § are intro-
duced (let these points constitute the set §') and a few
points are deleted from the original DP (let 5" be the
collection of these deleted points). Then § = §' U (§/5")
can be considered a noisy version of the dot pattern §.
Such a sitnation can arise when a binary image of a DP is
degraded by salt and pepper noise. If this noise level is
low, the proposed perceived border extractor works well.
Two resulis are shown in Fig. 6. Figures 6a, and 6b illustrate
the borders {along with the respective inputs) when the
pattern of Fig. 3a is corrupted by 15 dB and 10 dB of SNR
noise, respectively.

To find the shape of mixed point panerns, where it con-
sists of dot patterns of different s-dispersion measures, a
cut-one-out approach is outlined below.

+ Find the dispersion matrix for the mixed point patterns
and find the most dense component in it.

* Trace back the induced pattern of this most dense
component of the matrix in the original mixed pattern and
extract its border separately.

* Remove the extracted part from the mixed patterns
and repeat the whole process.

This approach should be modified when the patterns are
not disconnected (i.e., when the distance between two DPs
is less than the sum of their respective structuring radii).
At the intersecting zone, the border of the denser pattern
may be considered the common separator and the border
of the less dense pattern should be modified accordingly.
Two cases of mixed dot patterns are shown in Figs. 7a and
7c. In the first case (Fig. 7a) patterns are disconnected but
in the latter (Fig. 7c¢) a denser pattern is embedded in
another DP. The results are shown in Figs. 7b and 7d,
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respectively. The details of the above approach will be
discussed in a forthcoming report.

MNote that our approach on external shape computation
can be extended to data in higher dimensions. This ap-
proach can also be applied to data clustering where the
final output in the form of a set of edges will give the
boundary of a cluster.
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