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Existing muftistage interconnection netweorks (MINS) which are based on 2 x 2 swirtch-
fng efernents are generally of size N x N where N is a power of 2. So in situations where
we need o conmect N processors and N resources and N is an arbitrary number (not
necessariy a power of 2) we have w go for a network of size N x N where
N = 2Me8 ¥ This causes a wastage of resources. ln order to overcomne this problem
wo proposc a new MIN called the Generalized Shuffle Exchange (GSE) of size N x N
where N need not be a power of 2, but only an even number. It uses N2 switches per
stage and the mumber of stages @5 equal 1o [log N, We show that GSE s a full-access
network, Le. every mpui can veach every owtput of the network, Routeing between any
inpui—ouwiput pair in GSE iz simple and can be done by nsing a roufeing vector, gener-
ated from the mput and oniput addresses. When N is a power of 2, say 2%, GEE reduces
for @ comventional n-stage rerwork with a wigue path for each inpet—ouiput pair. But, if
2"V« N < 2", given a specific input, there are 2MEN _ N outputs for which there
exint alternative pathy. Therefore, 1o realize any N x N permutation in GSE, we are to
select g set of N conflict freg paths, one for each input—owiput connection. Here, we
heve presented a scheme for determining whether a given perpnudation is reafizable in

the GXFE in « single pass.

1. [Introduction

Multistage interconnection networks (MINs) of size
N » N, where N = 2", for n > | have been known for
a long time. There exists a wide class of MINs, cp
omega, delta, baseline, reverse baseline, banyan, etc.,
which are known as full-access unique-path interconnec-
tion networks (Wu and Feng 19380, 1981, i.c. there exists
a umiguc path between any input—output pair. Some
have log, ¥ stages for & inputs and are blocking by
nature, whereas Benes and (2 log; & — I)-stage shuffle-
exchange networks are examples of rearrangeable MINs
which can rcalize all possible permutations of inpul-
oulpul connections {Abdennadher and Feng 1992);
some rearranpements of cxisting conneclions may be
required Lo accommaodate some new paths,

The conventional full-access unique-path MINs are
designed for & =2" only., Thus, when the number of
inpults & is nol a power of 2, we have 1o go lor a

MIN of size 28" « 21 ¥ 4nqg this causes wastage
of resources as there are 218 _ & exira links per
stape. For example, with & =1030, 1024 < & < 2045,
we are to use a conventional full-access MIN with ||
{[log N]) stages, the number of switches per stage will
be 1024, with 2048 links per stage. Among these only
1030 links, equivalently 515 swilches will be used at a
time. Therefore, an appreciable amount of resources will
remain unutilized.

In this paper, we take the idea of perfect shuffle, as
can be done on a deck of cards, to propose a2 new & x &
multistage  interconnection  network called GSE
(Generalized Shufle Exchange) In faet perlfect shuffle
is a well-known form of interconnection in multipro-
cessor systems, first introduced by Stone (1971). Given
a veelor of & clements, the perfeot shuffle of this vector
cawses a permutation, elements of the first hall of the
vector are imterlaced with the elements of the second
hall. This interconnection has been found notl only to
be uscful for particular algorithms but 1o have a wide
variety of applications. So far, & has been assumed Lo be
a power of 2 only. In this paper, we apply the concept
ol perfect shuffle to construct the generalized shuffe
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Figure 1.

cxchange network (GSE), where & can be any even
integer {as we require & /2 switches per stage, we need
not consider the case when N is odd). 1f 2" < & =< 27,
the GSE will have n stages which s the minimum
number of stages required Tor full-necessibility, With
only N/2 switches per stage instead of 2"', the GSE
will be cheaper by o Tactor of N/N,, where
Ny = 2" = 3loe N,

We show that GSE 15 a lull-aceess network, and des-
lination tag routsing can be applied as in a conventional
shuffle—cxchange (SE) network subject 1o a simple trans-
formation on ithe destination address, We have then
developed an algorithm lor routeing in GSE. For a
given input x, we have identitied the set of ourputs for
which there exist alternative paths. Now, given an arbi-
trary permulation, the problem of determining whether
the permutation is realizable by the network in a single
puss or nol 1s referred Lo as the permutation admissi-
bility problem (Shen e af. 1995, Shen 1995). Here, we
huave outlined a scheme for resolving the permutation
admissibilily problem on o GSE.

The rest of the paper is organized as follows. Section 2
presents the structure and some properties of the GSE.
In §3, we prove that GSE is full-access and gives an
algorithm for routeing. In $4, we analyse the permuta-
tion admissibility problem and show how it can be
resalved.

Finally, in § 5, we muke some concluding remarks and
discuss Uhe scope Tor future work,

2. Generalized shuffle exchunpe (GSE) network

We give an example of a A x 6 GSE in Fig. 1. The
inputs, ouipuls and the outpul links of each stage are
labelled as shown in the figure. Here, the number of
slupes 15 equal 1o [log 6] =3 and the total number of
switches is equal 1o 9. Compare this with the total
number ol switches in an & x 8 shuffe-exchange (SE)
network, which is equal Lo 12, Nole that each stage of

outputs
L U0
L Li~1
U U2
L L~3
Ura U4
3 —t1=5
stage 1 stage 2
62 6 GSE

GSE involves a shuffle and switches are used for the
exchange.
The shuifle operation can be formally defined as fol-
lows.
Definition 1: A shuffle can be represented by a function
she {0, (N1} = {0 1,... . N-1},
where
2x, if x < A
shix) = z O

r
2x=-N4+1, il'xg%.

Drepending upon the state of the switch (crossed/
straight} there may or may not be an exchange, The
operation ol a switch can be formally defined as:

gw e {2x, 2x 4+ 1} — {2x,2x + 1},
where
¥, if no exchange takes place,
y+1,
y=1L

swip) = if exchange and y is even,

if cxchange and y 15 odd.

Of the two output links of a switch, we call the even
numbered link the wpper ouput and the odd numbered
link the fower output.

Chr definition of shuffle and exchange also applies to
the case when & 15 a power of 2, i.e. the conventional
log & stage S8E network is a special case of GSE.

There follows here a set of notations and definitions
to be used in the analysis ol the GSE network:

x source nodefinput, x € {0, 1,..., ¥ - 1},
¥ destination nodefoutput,
refol,..
n number of stapes = [log, V],
Stage 0 first stage from the input side,
Stage #— 1 last stage from the input side.

LN =),

We give a routeing algorithm to connect any input x to
any output y. In such reuteing we only need to specify al
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cach stape whether the lower or upper output will be
used, i.e. the path can be uniguely specified by a rou-
teing vector R=r,_#.z---##p. % € (0,1}, where

0, if the upper output of the switch at
_ n—1—iis used
= 1, il the lower output of the swilch at
n—1 =115 used.
Example 1: A path 4 — 3, i.e. from input 4 to output
5. will have the routeing vector R =011, as bas been
shown in Fig. 1. The bits in £ determmine which output
link (upper or lower) should he followed. Note that for
the path 1 — 5 the routeing vector is also the same (Fig.
1. O

Linder this definition of R it is immaterial whether the

i put to the swilch is lower or upper. Hence, we modily
¢ lunction sk and define a function 5 called shift as
orws.

efinition 2: A shift can be represented by a function

il Vs oo o U T s W 2]

1€ere
\.r
2x, if x < ‘3
six) = O

N
xr—N, jl',rl:%.

ote that s{x) is always even, i.e. as il the outcome of a
¢ uffe always goes to the upper input of a switch, s{x}
¢ 0 also be expressed as yx) = 2y mod N
The function of a swilch is represented by two func-
s g and f defined as follows.

efinition 3:
g:{0,2,4,. .. N2} = {1,3,5,... ,N=3, ¥N-1}
fF:40,2,4,..., ¥ -2} —{0,2,4,... ¥ -2}

vhere g{_‘[} =x+ | and fl:'fjl = X. L

As glx) is an odd number, applving g implies that a
lower output of the switch is used. { is an identily opera-
tion and f(x) is always even. Thus, / carresponds to the
upper output of a switch.

3. Routeing in GSE

I this section, we show that a path between any input x
to any outpul v can be sct up as follows,

{i} Apply a simple transformation on the destination y
to get »".
(i) Use " as the routeing vector to get the path.

3.1, Rowleing vectors in GSE

From the previous diseussion it follows that corre-
sponding to a routeing vector R there is a path P(R)
which is a sequence stgsty - - - 5t,_a5t,_,, where t; £ {g, 1}
indicates Lhe operation of the switch in the ith stage and

; i if.f'n_]_r'—j,
R 1 Sl T—

Mow, if the path P sonnects the source node 0 to a
destination node p, then P and p arc related by a
simple relation which is stated in the following lemma,

Lemma 1: P{R) is a path berween input O and owniput y if
R=y

Proof: Let R=r, r,_z---riry. As defined belore,
PIR) is a sequence sigstys - - - 88,_q51,_ |, Where

r_{EJ iFr_ =1
R Ty )

From the definition of g and £, il we operate P{R) on the
source node 0 = (00 --. 0, then we will get the following
Sequancc:

0 — {-"-“J} +r.'1—l::| e [32{[)} 1 | B g2 —
— (50 + 8" Ly 5 g ary )
where s denotes ;i successive shifi operations. Since, r;

arc cither 0 or 1, «*{r,) = 2%(r,). Hence, Lhe path P con-
nects the input 0 to output ry_ 2 hrp=R=1. 0

Corollary 1:  Destination tag routeing is possible when
the input is O as the routeing vecior is simply the n-bit
binary representation of the output p.

For routeing between any input x [x = 0) and some
output y, we claim that the routeing veclor can be gen-
erated by applving a simple transformation on p,

Lemma 2: A path P(R) connects input x to ouwtpnt y, §f
R =y —5"(x) (mod N).

Proof: Let R =r _1#a_a Pk

We can wrile the sequence of links through which the
path P goes as follows:

x = {s(x)+ ry_ ) — ($Hx) Fsray Freg) — o
= {Sn{-“-) +S"_|!‘”_| ___sn—}!r”. 2 i &K +rIZI:|r

where ull numbers are modulo N.
Thus, the operation F finally leads to the link
sx)+ R (mod N) = s"(x) + 3 — 5"(x) (mod N) = ».0

Corollary 2:  The routeing vector for connecting x and y
is the same as the routeing vector for connecting 0 and y'
where ¥ =y — s"(x) (mod N).
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We  have defined s#{x)=2x mod¥. Henee,
#{x)=(2"x) mod ¥ and for an input-oulput pair
{x, ¥}, routeing vector R is equal to (v = 2°(x)) mod N.

Theorem I: GSE is a full-access netwerk.

Proof: The prool follows directly from Lemmas 1
and 2, |

2, Alternative paths in GSE

For an N x N GSE, 2" <« N < 2", the routeing
veclor can take any of the 27 values but there arc only
N < 2" destinations. So, given a source node x there
musl be some destination nodes which are routeable
by maore than one different routeing vector. Now we
give the following lemma.

Lemma ¥ Given o routeing vecior R, N < R'<2" - 1,
i R = R — N routey from input x to autput p, then R
rottes fram X to v, Also, the two paths corresponding to R
and R are disfoins.

Proof: We have N <R <2"—1, which implies
DER ~-NL2"—N—1. By Lemma 2, p=us"(x)+
R — N [(mod &) Hence, y=2s"(x}+ R (modN),
which proves the first part of the lemma.

Lot R=v_qry_a - rirg and R =r_ri_a. . riry.
Also let the path corresponding to & be

Yoo =y g —a=y ae{ll,. . N1}

and the path corresponding 10 R be

bedol,... . N—1}

b= by b = b=

To show that these two paths are disjoint we have to
show that a; 3 b Tor all i Now,

o ] i ]
'bi = ""rlk.'l-'l + ral—lr.ll—i el
and
T .
o = 5N+ Faoifeez - P

Bul,
I !

'
L L e # Fuotteo1* Pumin

because, otherwise

! i/ I
Y SRR e

FoFpaz ' Fpp = N
For some 7 < n— 1 and since we need at least 7 bits to
represcnt &, this is not possible. Hence, the prool. O

Corollary 3:  Twe dixjoint paths corresponding to R and
R' do not pass through any common switch (exeept the
switches at stage-0 and stage-{n — 1))

Proof; a;, % are the output links of the switches [a:/2)
and [#;/2]. Il can be shown as before that for all 7
D<isn- |, [af2] # [K/2]. mi

Remark 1:  Given an input x, there are 2" — N destina-
tions of the form (" (x} + /) mod ¥, 0 < <2" N |,
for which there are two disjoint paths. For the
remaining 28 — 27, destinations which are of the form
(#"(x}+ A mod N, 2" — N < j < N —1, there is only a
single path, H]

For each source, we can draw a reachability tree
showing the paths from source 1o all the destinations.
A roachability tree for N =6 and source node 0 is
shown in Fig. 2. Here, the root node is the source, the
leaves are the destinations and intermediate nodes are
switching elements. The edges from upper and lower
outpuls Irom a swilch are represented by two links
labeled u and | respectively. Also, the reachability tree
for some source node x, x < N/2, is the same as the
reachability tree for the source node (x4 N/2), as
s} = s(x + N/2) (actually they are the inpuls to the
same switch in the first stage). Note that there are alter-
native paths for destinations 0 and | from the source 0.

destinations

Figure 2. Reachability tree with source node 0
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4. Permutation admissibility of GSE

An N =N MIN (N =2" with log, N stages is a
blocking nctwork, because two paths for two source-
destination pairs may demand the same link and there-
fore cannot be established simultaneously. This is called
conflict,

Definition 4: An N x N permutation is said to be
aefmissible to 2 MIN, it & conflict-free paths, onc for
ciach source-destingtion pair can be sel up simulta-
neously through the MIN. O

Determining whether a given permutation can be
realized by a MIN in a single pass is relerred to as
the permuotation  admissibility (PA)  problem.  An
MM log &) algorithm for the PA problem on uan
N x N MIN (N = 2"} with log N stages has been dewvcl-
oped by Shen er af. (1995). In Shon (19495), this work has
been extended to k-extra slage cube type (k-EMCTN)
BIliNs and it has been shown thatl a given permutation is
admissible in &-EMCTM, if and onaly if its conflict graph
is 2% colourable.

We now present a scheme for resolving the PA prob-
lem in GSE. Given an input-output pair {x, ), there
may exist either one or two paths in the GSE. This
can be found as follows. We first find a routeing
vector R={y-2"x}'modN. f 0= K<2" - N -,
then there are two disjoint paths with routeing vectors
Rand RFR=R+N. Butif2"--NgR<N -1, then
there is a single path.

The links in each stage are numbered from Go & — 1
and we can identify a path from x to p by a sequence of
links fyfy --- b5 Loy, where fy =xand [, | <7 < nisthe
link in the path after a swilch n stage { — 1. Now, lor
each source and routeing vector pair, we find the respec-
tive links used by the path in stage i, (0 < < n) by the
equation . = (s} + re_is ) mod N,

Definition 5 Given an ¥ x & permutation w. if’ there
exist lwo paths for m sowrce-destination pairs each,
{m < N), we define an (N +m) x (n+ 1} transition
matrix T, in which each row represents a path as a
seguence of links {; used by the path, 0 < i < m O

1234
Example 2: Consider a permulation == (ﬂ 5) .

153124
Here, ¥ =6, n =3, and & = raryrg. The links used at
different stages are shown in Table 1.

From this we construct the transition matrix T, as
shown below.

Table 1. All possible paths for permutation =

¥y RIR hh=sixjd+rn L=slhl+n h=sh)+n
0 0 0 0 0
f 1 3 0
1 5 k! 2 3 5
2 3 5 3 4 3
11 1 0 0 |
7 1 3 1
4 2 0 2 4 2
f i 1 2
5 4 0 4 2 4
& ) 5 4
[0 00 [I‘.]

o 1 30

1 2 5 5

2 5 4 3

300

T =

i1 31

4 2 4 2

4 3 1 2

34 2 4

5. 5 =8 4

From this transition matrix T, we iry Lo construct an
N x (n+ 1) path matrix M which has anly one row lor
each source destination pair such that in each column no
two elements are wdentical. (Two identical elements in
some column 7 indicates thatl two paths are uvsing the
same hnk al stuge { and hence there 15 a conflicl} I,
for any given 7', such a path matrix M does not exist,
w is not admissible. For example, we have been able to
construct a path matrix A Tor the piven T, as shown.

a0 09

1 2 5 3

2 5 4 3
M =

31 31

4 3 | 2

5 4 2 4

Here, in each column no two elements are identical and
hence the permutation « is routeable by the paths repre-
sented by the rows of M.

Remark 2: A permutation w15 admissible in GSE, if
and only if we can select N rows from T, one for each
source—destination pair, such that in each column no
Lwo clements are identical, O
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5. Conclusions

We have removed the restriction on the size of a MIN
and introduced & » & generalized shuffle-exchange net-
works with [log A stages. It has been shown that GSE
i5 a Tull-ngcess MIN which can interconnect any number
of processors at minimum cost (even when the number
of inpuis & is odd, the number of switches per stage has
to be [N/2] which is the required number of switches
with & + 1 inputs). Routeing in GSE is simple and the
routcing vector can be computed wsing Lthe destination
address in constant time, since for a path x — p, the
rouleing vector R = v — ¢"(x) {mod &) (Lemma 2).

When NV 15 not a power of 2, for some input-output
pairs there exist allernalive paths which are digjoint.
This fenture adds some fault-tolerant capabtlity to the
GSE and makes it more altraclive.

The scope of Muture research on GSE includes the
following.

(i} Permutation capability of GSE: the aim is to find
the number of permutations realizable by GSE and
1o characterize such permutations.

{ii) To design a rearrangeable MIN using more than
[log N number of stages. It is known t(hat when
M=2" the 2n — | stage SE oetwork is rearrange-

able (Abdennadher and Feng 1992), ie. the net-
work can realize any M = N permutation. When
2" < N < 2" the minimum number of stages
required for rearrangeability is greater than
2in—1)—1=2n— 3. Our conjeciure is that there
exists an integer ¥'. 2" < N’ < 2", such that for
2"« N < N', the minimum number of stages
required for rearrangeability 15 2w =2 and for
N' < N < 2" the corresponding number is 21 — 1.
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