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Ahbstroct

A now family of network topologics containing multple loops s discussed in this paper. In the
proposed structire, N processers ate interconnected Lo form a graph Glm, N0, m = 3, where m is
o parameter of the graph such that & s an cven ooultiptc of moand (m -~ 1) 3 208 -2 o b
w7 210 The geaph GEm, N s hamiltonian with an average node degree (3 + 1,/m), when
i is cven and cxactly 3 when s is odd. Whercas, the maximom node degree is 4, The diameter of
Gi{we, ¥) is uvpper bounded by [11m/8141. A point to point muting algorithm has been
presented, Troplementation of ASCEND /DESCEND slgorithms in D4 m) time bas been discussed.
It has been shown that in case of a single node failure, the diameter increases by at most &.

Kewwordy: Azcend and Descend algorithms; Diameter, MNeiwork topology: Routing; Redundanl binasy
TepICscRiation

1. Introduoction

Designing efficient schemes for interconnecting a large number of computing ele-
ments o form an integrated multiprocessor system has become an important area of
recent research. Different network topologies exists in the literatere [$,1] for this
purpose. In designing a topology, low number of links per node (to reduce the cost of
imerconnection}, small inernode distances, large number of allemative paths between
cvery pair of nodes (for improving the fault tolerance), ete. are some of the key
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congiderations. Mosh, Aang, chordal ning, tree, hypercube, cobe-comnected eyele, cle. are
a few among the popular inerconnection wptogies used for parallel and distributed
systems.

The ring topolegy 15 widely used due to its structural symmetry and simplicity. The
rouling algorithm in 4 ring 15 very simple. Bub a ong with & nodes, has the didmeier
L& /2], leading o a large communication delay. The diameter can. however, be reduced
it adehitiongl links are introduced within 4 ring. Some of the topologies resulling from
such modifications are chordal ring [3], distributed loop network [4.6), etc., which have
been widely studied in the literuture, 1o a chordal ring, the degree of every node is 3,
while the dizmeter is O(VA ), N being the total number of nodes in the praph. In g
distributed loop network the lower bound on the diameter is (¥2N¥ — 1 — 1),/2, with the
degree of every node increased to 4.

We propose here a new family of network topologies. by adding a fow extra finks
aver the ring. A topology in this family has nodes with degrees ooly 2, 3, and 4 {average
node degree s less than or equal to 3.25) and has the diameter apper bounded by
[11m,/8] + 1, where m is a parameter of the graph such that m= 3, N is an even
multiple of m and (m — 135 2177052 o A o g 2 2IM7217 1 This shows that the
diameter of the topelogy is Oflog &) In respect of diameter, this topology is thus
superior ta bath the chordal ring and distribued loop network. The o] munber of links
used in this network is less than that in a distributed loop network and is no more than sth
af that tn a chordal ong. An alzoridm for point to point routing has also been presented.
The Ascend and Descend types of algorithms [12} can be very efficiently implemented
on this lopoiogy. Morcover, the swccessive values of N, for which the proposed
topology can be defined, are at an interval of 2m < 4 log N, That 1s, if & and N, are
lwer successive values of fhe ot nember of nodes with ¥ 2 N, then & N=2m.
This may be cootrasted with other fixed degree topolagies having ({log W) diameter,
e.g.. Moelius graph [10], de Bruijn graph [3], cube-connected cycle [12], etc., for which
the successive values of & are at much larger intervals. For atl such graphs, & is at
least 24, The proposed network graph is hamiftonian and in case of a single node
fallure, the diameeer may imercase al most by 6.

2. Deseription of the topolegy

We describe the topology in terms of a graph Glm, N) having the following
characteristics:

{a) & is the total number of oodes in the graph. Let the nodes be numbered as
Ol....MN—1

{b} m is o parameter of the graph such that m = 3.

{c) & is an even multiple of m such that ¥ = 2k % m, for some positive integer &.

(A (- 1 20 D27 W g g 2L 20

{e) The nodes are connected by the following three types of edges (all operations
below are treated under modulo ¥, unless olberwise mentioned):

(1) The node f is conaected to the nodes (74 1) and (i — 1. Thus the nodes are
connected in the form of a cycle. We call these edges as c-edges {(cyclic edges).



5. Sew Giupta of al. f Parallel Computing 22 (19970 2047 6t 2y

H 1 2 3 4 o 1] 7 &
] AR T A N T b
4 . iy +hy +y o
(a) Form - &
] 1 2 3 | L] G T & a 10 11
P T T A
il +hy =k Zha +hy =h= d

{h} For m =11

Fig. t. Hop distribution in sector .

(3 For = i< 2k 1, the node i.m is connected to the diametrically opposite node
(i + N/2). We call these edges as d-edges {diagonal edpes).

After introdueing d-edpes, there are 2% number of nodes in the network, which are of
degres 3. These degree 3 nodes divide the cycle, formed m {13, into 2k parls. We call
gach of these parts as a sector of length m. The sector jf congists of the nodes,
{jm, jm+1, jm+2,....0j+ Dm), 0<j=(2k - 1)

{31} Wodes in different sectors are intercomnecied by a thind type of edges, called as
hops or h-edges, as described below.

Starting from the node frr + 1. in sector f 0= f< 248 — 1, hedpes are imtroduced at
every alternate node (there are [m /2] such nodes in every sector). These connections are
done by the following ways depending on the valie of m. Let /2] -1 =1,

(i) The node fm +2i+ 1 is connected to the nodes [(fm + 27+ 1) £mx 277 %]
i—0,1,2,...1r/2] These hops are denoted by A .. ., respectively.

(iia} If r is even then the node jm +1m/2]+ 27 is connected to the nodes
{im+|m2l+ 200+ m=x 2% i=1.2,....r/2 These hops are denoted by &, 5,
respectively,

Fig. 2. The proposed graph G4S, 400,
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(ilk) T r is odd then the node jfm+|m/ /2]l +2i+ 1 is connecled to the nodes
[Cim+lms2]+ 20+ 1)+ mx2%) by the hops &, 5. i=0, L,....lr/2l

An example of the hop disiribubion in sector O of the proposce topology when m - 8
and m = 11 is given in Fig. 1. Fig. 2 shows the complete connection pattern in G(5, 40).
I is to be noted here that the largest hop originated from a seclor, is oy, 2, - A hop A,
will be referred to as even (odd) if i is even (odd). The connection pattern shows that
even and odd hops originate from different halves of a sector. The two hops connecting
avertex ¢ 1o v +m2 and v —m.2' will be referred o as +4, and A, respectively.

Average node degree of this graph is 3 + 1 /m, when m is even and exactly 3 when
#t 1s odd. Thus the total number of edges in the graph is asymplotically ~ 1.5 N,

Remark. If all the nodes in cach scctor (that is, the nodes fm, jm o+ Lo (F+ Dme— |
in sector j, Vi 0< = N/m)of GGlm, N) are coalesced to form 4 single node repre-
senting the whoele sector then the resultant graph will be a supergraph of the circulant
GIN/m, £1, =2, £2°, + 2% 20001y I35 7] {or recorsive circutant GIN, &)
for d=2 [11]}. Only in a special case, when & =m.2l" 27! the graph obtained by
coalescing the nodes in each sector of Glm, &) will be identical 1o GIN/m, +1, +
2, £2°, £27,, ., 2% w1y However, because of the typical degree distribution of
the nodes in a sector, the extension of the results regarding diameier, routing, cic. of
circulant graphs [5] or recursive circulant graphs [11] can not be directly extended to
Z{m, N} and then need a separate treatment as given in the following sections.
Moreover, the node degree (approximately egual to log, A} in the recursive circulant
graph increases with the total number of nodes . In the proposed topology the average
node degree is approximately equal to 3 and the maximum node degree is 4. In this
regard the proposed topology is more cosl elfective.

3. DDiameter of the network

In this section, we find an upper bound on the diameter £ of the graph Glme, ). To
start with, we discuss about a restricted redundant binary number system (o represent a
node of the graph.

3.1 Rextricted redundant binary representation

Definition. A redundant bingry representation of a number K =% __ &k _, --- k. is
one in which each digit &, 0=<i=r 1,15 an element of {0, 1, 1} and K= E7_ 2%

Maturally, A" does not have @ unigue representation in redundant binary system. Lor
example, the binary number 0111011 has the equivalent representations 1001101 and
1000101 in redundant binary.

Definitior. A redundant binary represcnlation, in which there iy at least one zero hit in
between two non-zero bits, will be termed as a Resiricted Redundamt Binary (RRB)
representation.
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Example 1. In the above example, 1000101 is the RRB representation of the binary
string 0111011,

Remark. This RRB representation is similar o the cononical signed digit (CSD)
representation [2,13] of a positive integer for the radix 2, Tt follows from the results in
[13] that the CSD {as well as RRB) representation of a number is unique and it can be
computed sequentially by scanning the binary representaton of the number [rom nght to
left. Thus, the RRB representation of a number N can be computed sequentally in
O (log ) time.

Lemma 1. In the RRE representation of N, the number of non-zero bits can be af most

[(Mog &1+ 1172}

Lemma 2. fn the RRB representation, the largest number M that can be ofrtained wsing
b number of bits is given by

(22 =13, if b is cven,

- 2% =1} +1, otherwise.

tadra

Proof. [t is clear that for the largest number, every alternate bit starting from the most
significant it will be .
If b is even. then

L=2"142"%4 ... 42=2(2%—1}.
Otherwise,

L=20 42t 3. 4202220 +4. O

Let w, he the total number non-zero bits in the RRB representation of a pumber x,
Further suppose that w¥ and w be the number of non-zero bits corresponding te the
even and odd powers (**0"" is excluded) of 2 respectively, in the RRB representation of
x.

Example 2. For x= 1000101, w,_ =4, w’ =2 and w’ = |
It is clear that when x s odd, w_=w +w’ + 1, otherwise w, = w’ + wl

3.2, Upper bound on the diameter

To find the chameter it 15 enough to consider the paths from a node 5 inosecror O, 10 a
node d = N/2, since all sectors look alike, Let d belong o the sector 8, 0= d<
L& /2m]. Starming from 5, we use hops o move across dilferent sectors. Bug to avail a
hop we may need to traverse some c-edges. With a view to minimizing the total walk
along the c-edges we would take either odd hops or even hops {depending on the value
of 5 and &) which emanate from only one half of every sector. A, may be included in
both the cases, Since sccessing &, is equivalent to accessing &, | twice. [m/2|—1 =1
= 1, it is always possible to get such a collection of hops, The method how we select
the hops to reach sector & starting from sector O is discossed below,
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First we find the RRB representation of the sector difference & (since the source is 0
here}, The set of hops corresponding to the non-zero bits of this representation will be
sutficient 1o cover these & sectors. Without loss of generality, et uws assume ihal
wy = wy. Therefore, it is wise to convert odd hops into even hops. In that case, the
reguired number of hops will be wy + 2wy’ instead of wy +w’. Now, let us iy o
estimate a bound on this number.

Case 0= d N4 e, 0= 82N/ 4m].

As 1< A= [N /4m|. the number of bits required for RRB representation of & is
| m ri 2}

For odd &, the Teast significant bit (Isb) in REB representation of & is non-zero and
hence the second sh is 0, Among the remaining | m /2] — 2 bits the number of non-zero
bits will b at most [(Lm /2] — 23/21={m — 2}/4], by Lemma I.

Thus, wi +wy' =|{m— 2)}/4]. After conversion, we need at most 2wy + wf + 1
nutnber of hops. Now, 2wf +wi + 1= 3007 + wi)] + 1 < [410m — 2)/4] + 1. Thus
the maximum number of hops required to reach sector & {using either even or odd hops
wlong with some + k) is lgﬂl[m — /4 + 1.

For even & wy 4+ wd =wy = [([m/2) — 13/2] = | m /4] Therefore. when we need
any conversion. the number of hops required is at most | ${]m /4[)).

Hence, the maximum nomber of bops required to reach sector 4, under the restriction
that either even or odd hops (A, may be included in both the cases) can be vsed, is

[f“fm when m mod 8 is 0 or 1.

24 4
8= K
{5 1 I + 1. otherwise.

Case 2 |N/dm| =< 5= |N/2m)

To reach this pant of our network, we may utilize diagonal edges. But if we include a
thagemal cdge in our path, we would not use any tA,, - _, hop.

From sector 8, if we use a d-edge we will reach the boundary of the sectors | ¥/ 2m].
From there we have to cover a distance of j sectors (in backward direction) to reach
sector &, where j=IN/2m}— 8. To traverse this distance we would not usc hops
+ R 2y oo Here, by Lemma 2 we have, 0= j= £(2!/"7*17" — 1)+ 1, which implies,
[.-"-’;"ImJI — (2% -V} g 5= |N/2m). For such a &, the maximum number of hops
required to reach the sector 6 can be enumersted as we have done in case 1. IF B,
represents this bound (including the diagonal edge), then

[
Az

Now, we are left with the case when [N/dm] < S |N/2ml— 302!/ — 1) — 1.
This runge is totally contained in the range 0 = 6 = 2{2'm721— 1), Thus in this case, the

m— 2
~4—) + 1, when mmod 8 i520r 3,

o J” + 2, otherwise.
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number of hops required W reach the destination sector & is same as the bound obtained
in case 1,

Hence for O &= | ¥ /2m ], the number of hops required o reach sector &, is at most
max (8, 8,). It can be easily verified that max( B, B,) is always 8, ¥

So far we have identified the appropriate hops required tw reach the destination sector
and have also enumerated a bound on the namber of hops. Now, we would find a
specific order in which these hops are to be availed so that the walk along the cycle will
be small enough to minimize the total path length. Let us introduce the following
notations first.

{1} x, denotes the node in the sector f, from which hops of type O are onginated.
Thus x; divides the sector j into two halves, Even and odd hops are emanated from
these two halves.

(2} By [a, ] we mean the set of the nodes a, a+ 1, a+2,..., b.

{3} Let f1, be the set of hops of either even or edd types, fequired to reach sector 8.
Suppose | H; | = p. Let u), uf uf be the nodes 10 sectar § such that the hops in
originate from these nodes and uJ { u < oo <uf. Again, we call [u.|., '] as the
range of A, In sector f

(4) Let the prajemort of d onto sector j be 4 node a’ in sector j, which is related to
d by the equation = (& - ) X m + d

It is ¢lear that to use the hops in J’-J’a {some of which may be repeated in the actual
path), ¥r, 1 = r s p, we most traverse through #] at least once for some scctor f,
0= j=2k— 1. Now, counting the number of c-edges involved in this traversal can be
eyuivalenlly mapped o the problem of counting the number of c-edges required Lo reach
d,, starting from s, with the restriction that any one of {z}, w3, } is traversed at least
once. We will now show that by appropriately choosing the order of the hops, this

|“7 Sector - O —'!

Tmey wlay Wo o 8 Iy do ul, ufy m

- e W - va - '5 -

LL BN PN TR

o

{a) Traversal 1

P Bector - 0

]
) -
Fae ulgply wa 1 5 b dy vl T m

K 1

L N e

{1} Traversal 2

Fig. 3. Traversal | and Traversal 2.
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number can always be made less than or equal to m, by using af most one additional
hop of type 0.

Without loss of penerality let us assume that = En-

Case 1: s and d,, are in the different halves of the sector (). Let us consider the
following two subcases separately:

Subcase la: [s, d,] N [wh, wi]1=9. In this case either [u}, #flcd, +1, m] or
[ug, uf1210, 5~ 1} Suppose, [ug, uf] cld,+ 1, m]. Consider the situation in Fig. 3.

For s + 4, < m, use of the hops in #; requires the traversal from 5 to x,,_, using
c-edges, from x,,_, to x; using an additional hop &, and then from x, to ‘En using
c-edpes. Hence, the number of edges other than those in M is s +|m/ 2]+ 1+ ‘?n i
Im/2l=s+ Jc + 1. We call this traversal traversal-1. The maximurmn number of edges
covered in this traversal is at most m.

For s +d, = m, the required traversal is from s to w{ and from uf to d,, using
c-adges only, as shown in Fig. 3(b). Thus the number of edges other than those in £, is

j; s+nj-— ED =2m (.'; + f?n} = W

We call this traversal traversal-2.

For [uy, #f]<{0, s— 1], it can similarly be shown that the number of additional
edges required is ar most .

Subcase 1b: Ls, dy] Lol ufl= @, If [u). uf] is totally contained in [, d,]. then
the requited path is direct from s to d,,. using c-edges and the path fength is o, - 5.
Otherwise, it can be wekled in 3 similar way as we have done in subcase 1a In both the
situations the number of edges other than those in Hy. will be at most #e.

Case 2: 5 and d, are in the same half of the sector. This case can also be treated in a
simiilar fashion.

Remark. It 15 1o be noted here that in case 2 a different approach will give us paths of
smialler lengths, In this case we will use both even and odd types of hops comesponding
to the RRB representation of &, except those whose origins comespond to the points in
[s+1, d,— 1] We will replace each of these hops in [s + 1, d,— 1] by exactly two
hops of smaller length, The details are given in [14]. The length of these paths are at
most [5m/4f+ 2.

Combining all the above resulis, the length L. of the longest path between any two
nodes is given by

)

I_“EJ = 1” +2+m, otherwise.

+1+m, whenmmod&=2or3,

i=
21 4

A little algebraic manipulation yields the following result.

Theorem 1. The diameter D of the graph Glm. N) is given by D = Pl lm/8]+10f
mmod 8 is 2, 4 or 5. Otherwise, D < [11m/8].
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4, Routing algorithm

fnpue: (1) The soucce node s and the destination node o,
{2) The rwo parameters m and & of the topology.
Cuipur: A path from 5 0 4.

Procedure BREDR{ sector-diff, E. O}

/% E and O arc two linear arrays of maximum size | m /4], These arrays are used to
store even and odd bits of the RRB representation separately. “‘sector-iff " is the
difference between the scotor numbers of & and 5 )/

Step 1: Obtain the RRB representation of secror-diff.
Letitbe (b, b, _,...0, b, by)
Step 2: for i= 110 |m/4] do

hegin

Elil= bg,-;

s AR 3 I
end;
e b

Example 3. Far the source -destination pair (2, 42), the sector-diff is 5 and the values of
F and @ as computed by the procedure KRE are as follows:
Eltl= 1, E[2]=0, ¢[1]=10, 0{2]=0 and &= 1.

Procedure Hops (s, d. E. O, b, diag-edge)

/% Obtain hops in a specific order, in which they will be used o reach &, starting from
& and store that order {along with the cyclic edges) in a final array. * digg-edge’™ is a
boolean variable which indicates whether a diagonal cdge s to be included in the path or
not. The final array will be constructed on the basis of £, @, b and diag-edge. =/

Step 1: Obtain w s and wi oo e

Step 2: it (2, 007 Wi} then convert all the odd haps to even hops and
modify the elements of E and O in the way as described in Section 3.
else convert all the even hops to odd hops and modify the elements of E and O
accordingly.

Step 3: /* To lind the order in which the hops are to be used + /
if (3, + d; < m) then use the traversal-1
else use the traversal-2 (as discussed in Section 3)

Example 4. For the problem addressed in Example 3, the following values are computed
by the procedure Hops: w? - |, wl = (1. The order in which the edges will be accessed
are as follows:

e« P e P e

Here, — ¢ denotes a cyclic edge in counter-clockwise direction.
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Procedare Find-Path (5, d, secror-diff)

/ * This pracedure finds the hops which are o be ingluded in the path and the onder H
in which they are 1o be used to reach « starting from s * /

Step 1: range 4—[%{1["’*"2- - 13
if {0 < sector-diff = range) then
hegin
diag-cdpe + ““false'";
RRB( secror-diff. E, O)
end;
else
begin
diay-eclpe < "true’”;
A # to indicate whether a diagonal edpe is 10 be included * /
sector-diff — —(N/2m — | — sectar-diff ),
RRB( sector-diff, E, O,
end;
Step 2: 5,5 ds/mlxm
dyv=d —|d/ml> m.
Step 3: /+ assume thalt 5, = d, */
Hops (s, d. E, O, b, diag-edge);

/ * Main Program = /

begin
distance —{d~ 5 + N mad N;
sector-diff — (ld/m|  |s/m] + N/m) mod N/m
if disianee < m then
walk along the c-edges from s to ),
else
it sector-diff s N/ 2m | then
Find-Path (5, . sector-diff)
clse
begin
distance «— N — distance;
if diszrnce = m then
walk along the c-edges from s to d;
clse
begin
Find-Path (5. d. N/2m — sector-diff );
Keeping the order same, change the sign of all the hops obtained;
end;
end;
cnd.
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Example 5. According Lo the above algorithmn, the following two paths are computed for
the spurce destination pair (2, 42) and {13, 81) in (5(8, 256},
Pathfrom 20 42 2 - | 20 —=255 23] 23022037 245 544 2 43 = 42
Path from 13 10 85 13—+ 21 = 20— |9 = |8 = |7 —=§]

Tt can be verified that execution of the above algorithm requires Olog A} steps. The
path is computed onee [or 4f at the source node in leems of the hop types taken in order
and attached to the transmitted message. As there are m different types of hops
{including hoth positive and negativel, log m hils are needed fo designate each hop.
Hence, the total number of bits required to specify a patk s Olm log m) =
Oflog N log log V).

5. Fault diamecter

It is clear that the graph is biconnected, To find the diameter in presence of a single
faulty node, we procesd 25 follows.

Let P be the path between Iwo nodes s and J, obtained by the method discussed in
section 3 with the path length £(P) < [11m /8] + 1. In presence of a single fautty node,
if the faulty node f lies on the path P, then there may be two possible cases: (A) the
faulty node lies on a sector other than the sector O and the destination sector, {B) the
faulty node is i the destinanon sector. The case for the faulty node lying in sector O can
e treated in the same way as case B,

Case A. Let b, and A (g <7} be two conseculive bops 10 be accessed in the path P
and suppose while traversing along P, we enter the sector f by using the hop &, and
leave (hat sector by using the hop k. Let v, and v, be the respective nodes in seclor
from where ki, and A, originae.

The fault would affect the path if any one ol the follwing occurs:

Case 1 The nade i itself i faulty,

Case 22 The node o, is a hive node but the hop &, would take us to such a node
which is fuuoley.

Case 32 An intermediate node within the range [{-;J., e ] is faulty,

We do not consider the case when the node w, 13 fuulty. Because o that case. the
sitnation will be identical to the case 2 ahove for the sector from which we enter sector
1. We comsider below each of these cases separately.

Caxe 1. Instead of using a hop A, we can use four hops of type {r — 2). Thus, in this
case the path length would be increased by three, Therefore, the path tength would be at
most L{PY+3<f+3

Case 2. In this situation, we teplace & by the bops {—h,, —h.. —A,. K _.} 1o
ypitss the faull. 1 &, is used Lwice in P, then we replace those hops by {6(—A,_), 24, .}
Thus the path length could be at most L(P) + 6 < L +6.

Cave 3. We consider two subcases,

Subcase Ja: The faulty node s of degree 2. Let v, and v, , be the two neighbors of
the faulty node f, and =k, and +#,,; be the hops originated from these pwo nodes
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1:"1 LN R vr
th, iy z thyz Eh,

Fig. 4. Faoliy pode is of degiee 4.

respectively. To bypass  f, 4 sequence of five additional hops, namely,
{—h, =k, ~h, k. h_,} can be availed n betwesn #, aml A Thus the path
length would be at most LLP) +5 <L +5.

Subcase 3o The fuutty node is of degree 4. This sitwation is ilhestrated m Fig. 4
Assume, g+ 7= and r#7+ 2 To bypass f, a seyuence of hops
{=hr g —hqe =ty gn =Rz —hy — Wy —hy, 4] can be used in between 4,
and #,. This will increase the path length by 8.

Now. £ is a conservative estimate of the upper bound on (/). While computing /2]
we assumed that the path £ contains either all the even hops or all the odd hops at least
once. Bul o this case, we see that there are at least three hops, namely, f,_,, #; and
£, 2 which were nol included m P This rednees the upper bound on FLP) o f—3
Therefore, in presence of such a faulty node, the path length would be at most
LR +ial+5.

[f g=1{-2, then the sequence {h , £} in P will be replaced by the sequence
{—h,. =k, =k, —h, =k —h, hy_5 b} I r=1+2 then the sequence {4, &)
in F will be replaced by the sequence {h . B,_., h_y, h_s. By, By By, R L Thus,
the path length will be increased by 6.

LCase B, Let os now consider the case when the tanlty node lies in the destiinanon sector.
Of course, we assume that '+ d. Actually, the fault would affect the path 2 only if it
lies in that part of the destination sector which is included in F. Let us catl that part as
the resmicted portion of the destination scetor. These restricted portions will be dilferent
loor dilferent raversals [tom 5 1o E,:, as discossed in the tast part of Secton 3. We shall
consider those cases separately.

Cuse 10 When 5 and d, are in the different halves of the sector .

Subcase 1a: [s, d, ] niul, uf]=8.

(i0 s+ <m Here. in the destination scetor (hat is, in scctor 60 the resteicled
portion s from x; o 4

If o is a degree-4 node, assume that the hops originating from o be of ype 4. To
bypass the fault in the restricted portion, we shali use two additional hops + £ and — 4,
in#. While traversing along P, as so0n as we encounter an origin of % (in some sector
other than the destination sector) we will use that hop /. As a result, after using all the
hops in My, we will reach the sector {5+ 29). From there we will avail — & , (o reach
the destination. Thus, o this case, we can bypass the faull al the cxpense of only two
additional edges.

If & is not a degree-4 node, assume + 4, originate from o + 1. Here also the same
technique of inserting ”n'q. —h“,] in £ will work. But in this case four additional edges
may be required {two cyclic edges along with two hops) to bypass the faull
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(i} 5 + ¢f = m. This sitwation can be mekled inoa way simitar w case (1) above,

Subcase 1o lwy. wilCls, ). Here, corresponding o the path P, the restricted
portion in fthe destination seclor s from uf to 4. Ler us consider the followimy twao
Cises,

Case [ak 10 cf,;, and {u,'-_,, wh}are inthe dilferem halves of the sector then ko avoid the
resiricted portion in the destination sector, we will choose any one of the following twa
optiony:

Omtien 1 Withoul loss of generality, Tet us assume thar the path P contains only even
type of hops. Thus, the wtal number of hops inchided in P owili be atmost 245 +wf + 1
The pew traversal can be done as follows. Bartng from 5, ose only c-adges 10 reach x,.
From there use fry to reach x) i sector 1. From sector §, start using hops in increasimg
orcler of magnitsde. Aler useg all the hops in My, ose only c-edges to reach . Thus, in
this case, the total path length will be

e it i
L{PI}E?_J""' | +E+m—d.:.+'2w§'+u-;+1,

Cpion 2: In this allemative path, we will use only odd tvpe of hops. As a result. the
range of &, will now be in the other half of the secror, That is, [, ##] and d, are now
in the same half of the sector, But at this potnt [u). 4] may not be a subset of [ 5, d, ).
The number of hops m his case will be 2wy + w! + |, Here, we shall bypass the fuult
by the same technigque (at the expense of at most 4 edges) as we have faken in the firs
part of the subcase 1a. 'The wtal path leagiy will be

i ik e
L[P3}=_-;—:E+1+ ﬁ—?+21v‘;+wl;1+]+4.

Now, min{ L), AP, < (LIPI+LIP N2 11m/8 4+ 5. This shows that the
path length may increase by at most 3, in presence of such a fault.

Case (b If o, and [n), wf] are in the same half of the sector then if we interchange
£ and o, the situaton will be identical to the case {a) aboyve.

Siehoase 10t [u,'}, whl—Ls, E,:] = .

This situation can be treated in a stmilar way as we have done in subcase 1a.

Case 2 5 and d, are in the same half of the sector.

With respect to the path P, discussed in the remark made in Section 3, the resericted
region in the destination sector will be included in the portion from x; w4

Let the hops that originate from either 3,3 or J_;\ — 1 be of ype ¢ according to the
sitvation whether o is a node of degree 4 or not, respectively. Here, to bypass the fault.
the sequence of hops [.hq,_ 1+ #g_ s ] can be inserted in P,

From the abwrve dscussion, we can conclude thar in presence of a single fault, the
diameter of the topolagy can be increased at most by 6,

6. Implementation of’ ASCEND / DESCEND algarithms
When ¥ is a power of 2, a class of parallel algorithins. known as ASCENDY and

DESCEND tvpes of algorithms [12]. can easily be implemented on the proposed
network topology,
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Suppose, & =2Y and the oput data e, a,....,a, | are stored in the processors
PlO, PLL). ... PLN — 1], respectively. An algorithm is in the ASCEND class if a
seguence of operations s cwmied our berween a pair of data that are successively
20,2',0..,297" processor locations apart. In DESCEND class of algorithms, the
operalions dare carried oul just imoreverse onder. These classes of algonthms have
applications in the problems like cwclic shiff, Mionic merge, odd-even-merge, Fuost
Fourier Transform, shuffle. mareic transposttion, bitoric sorr, ete. Now, We shatl
discnss the implementation of such algorithms in our case, For brevity, we shall discuss
here onty the ASCENL type of algorithms, For the ease of discussion, let us first
renumber the nodes of ({m, &),

Renumbering of nodes. Lot & =2% and m=2". Therclore, g =27+ r + 1. Since
there are & /m= 297" sectors, Gm, N contains 2977 eyeles each of length m + 1,
consists of m c-edges and a single hop Ay, Let us number these eyeles as 0, 1,0, 27977
— 1, 5o that the eycles § and (5 + 1) mad 2977 bave one node in commen. The node in
cycle O from which the hop k. is originated. 15 now renumbened as 0. The remaining
nodes are numberad from 1 1o & — 1 along the fargest cycle of length &, so that the
cycle ¢ now consists of the renembered nodes {im, im+ 1,... (i + D)m}. We would
also represent any such renumbered node by an ordered pair (f, p), 0=z 2577 — 1.
D=zp=m—1=2"— 1. where ! represents the cycle number which thiz node belongs
to and p represents its distance from the node fm. Note that, since p < nr. every node
will have a unique representation by such an ordered pair. Thus, to address any of the &
nodes, we require g bits in which the most significant ¢ — » bits would represent the
cycle number and the least significant » bits would represent the position of the node in
the corresponding eyele. Also, if a node is renumbered as n, then, n=12" +p,

ln our later discussions, we refer o a node by this renumbered value.

Before going to discuss the implementation, we now describe an ASCEND type of
alporithm in the following two steps. where a basic operation between the two
processors PLi] and PLr] bas been indicated by OPERCGE, 4, PLiL PLr]), when r=i +
2% bit {7} denotes the jth teast significant bit of the binary representation of .

Proc ASCEND

Slep 1: /+ Provess data elements within each cyele of length m+ 1. * /
lor cach L O= 15 2% "= |, do in parallel
for j=0to r—1do
Tor cach p. = p = 27 - 1 do in parallel
if bit { p} =0 then
OPFER( p, j, PI(L p3), P+ 27, pY)

Step 2./ # Process data elements across the cycles. = /
for j=r to g—1do
for cach £, 0 7= & — | doin parallel
if bit, (£) =0 then
OPER(:, j, P[i], P[i + 27D
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Fiz. 3. Hop distribution.

Step 1 can be implemented in a similar way as it was discussed in [12]. Fhis step can
be executed an (e, N in time linear in cycle length, that is, in O{m) ome, We shall
now discuss the implementation of step 2 on s, N). As an example, the hop
distribution in cycle 0 of {27, 2%) is illustrated in Fig. 5.

Initially, let us start with the assumption that the data element «, is stored in the
processor PLi], Vi, 0= i< N — 1. We shall now concentrate only on those operations
which involve . the data element initially stored in the processor P[0] Swp 2 of
ASCEND algorithm demands that the operations between the pairs of data elements
stored in the processors {£[0L PIRD, (#[0) pLI6D. (PO), P[32D. (P[O], Ple4l).
(P[0). P[128]} should be carried out successively, At first. using the hop k. the
processor P[] and P[8] can communicare with each other so that any operation can be
carried out between ap and ay. To perform the later operations, the data elements are to
be shified to some other nodes where the suitable hops are available. This can be made
possible by suecessive shifting of each data element through all the nodes in the cycle,
which it belongs to. From this point it is clear that the comresponding positions within a
cycle must be same for the data elements among which operutions are to be camed oud.
MNow, by three successive shifts, the data element which is actually stored in P[0] can be
brought to the processor P[9] from where the hop &, (whick is actually a direct
connection between cycle 0 and cycle 2) can be used to perform an operation with the
element which was supposed to be stored in the processor PLLE] initially. Then to avail
the next hop originating from the node 4, again two successive shifts are needed, The
next available hop is 4, which connects cycle 0 and cycle . With the help of this hop,
an operation cun be carried out between the elements which were initially stored in the
processors P[0] and P[64]. But, to fulfill the requirement of ASCEND algorithm the
third operation must be between the data which were initially stored in the processors
P[0] and P[32]. Therefore, initially a,, must be stored in the processor Pl64]. Similarky,
uy, should be placed initially in P[128] and a,; in P|32] Thus, we see thal some
appropriate permutation must be specified for initial distribution of data elements among
the processors. In general, the required permutation is described below in the inputting
scheme.

Inputting ol dala elements. Let the sequence of hops orieinated from the nodes of the
cycle 1, 0= /<29 "— 1, in the order (7, 1). (L 2),....(0 m — §h (L4 1, ©) be desip-
nated as (k. & ...k 3, where o=2" L Clearly, B, =Mk, For cxample, the
sequence of hops in any cycle of G(2°, 2%) is &y, h,. By, By, hy) (here, by is the
diagonal edge of length 27). The sequence of hops {h;.v i r._l,__.,Izr."} can be alterna-
tively designated by a sequence of numbers (i, i,.....7, 5 Thus, for G(2°, 28}, the
sequence of hops is denoted by {2, 4, 3, 1, 0).
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W pow delioe 4 peonatation o, associaked with Glm, WY as Tollows:

[q—r g—r—1 ﬂ']
- I ; Sl b

i I o

For €:(2%, 2

_={4321a
"2l 4 3 1 of

If e scan the top cow of w, from the nght end, we get the Ngures comespond w the
types of the hops o he successively laken Tor execuling step 2 of the ASCEND
algorithm. The botterm tow of w7, . on the other hand indicates the otder of the hop types
aclually cxisting in the nelwork Glm, W), when scanmed from ong end of 4 cycle of

length wr.
Lot the processor Fl7] e placed at the node i The N dats elements a,, @..... 24,
will be distributed amoeng the processors P[0], Pl1)..... PIN — 1], in such a way that

the element a; will be stored in the processor P{ jl, where, i ={f, p). j={I', p) and the
binury representation of £ i obtained by wking the permutation +, on the Winary
representation of 1

Let us oow discuss the implementation of step 2 on (i, ¥

For a fixed § the computation corresponding to the for loop in siep 2 can nol be
exccuted in one parallel step, because wathin a cycle only one node s actually conneeted
to a node at 2/ distance apart, ¥j, r = j= g — 1. Therefore, by means of successive
circular shifts all the data elements in the cycle should be brought to thar node, so that
OPERL.. j, .. .} can be executed. For each j, this step requires 2° + 1 (= m + 1) units of
time. However, this computation can be pipelined and the total time required to execute
step 2 cun be reduced o only Ofm).

Step 2 cun be explained in the [ollowing way.

Code section for the processor (1, p) in Seep 2:

/% Assume that f = = '(1), where o, | deootes the inverse permutation of 7, That is,
the hinary representation of ! is obtained by taking the permutation 7' on the binary
representation of [ Moreover, if {/, p) is 1 degree-4 node then assume that =4,
originate from fhar point. Let b represent the kth bit of I. The value of & can be either §
or .=/

fori=1tw2m+ 1) do
bewin
Step (2a);
UL p)is o degree 4 nogde) then
itm-—p+2lcicm-—-p+1 then
il (&=t} then
use +#, ta communicate with the processor (7 + 2%, p) to perform any operation
on the data elemenis stared in these twa pracessars:
/# 1f { p =0} then perform this operation on the data which the processor ([, (1)
has obtained from ({13 & ¢
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Tahle 1
Comparison of (e, ¥ with different wepologies

Moo of nodes Y Chonlad ring Distributed lnop network Proposed network

Mo, of links Dviameter Mo of links Diamerer No. of links Drameter

9 144 =9 192 =7 152 <%
256 R4 =15 H512 =11 A0 < 11
G0 b L 1280 = 1B 02 =14
1536 2304 = 38 0T = 2R 2368 =17

LGRS 3376 =3 7168 = 42 5504 = 1o
clse

use — A, to communicate with the processor ({ — 2%, p} to perform any operation
of the dala clements stored in these two processors;
/ * If ( p = 0) then perform this operation on the data which the processor (J, 0)
has obtained from (4, 1) %/
Step (2bk
if { p = 0) then
send the data to (£, p— 1)
else
send the data which was obtained from (1. 1) to (Z+ 1,0 and that which was
ohtatned fram (f — 1, 0) to the processor (I — 1, m — 1 Jend

Since the nodes .m0 < § = 2977 — 1) are at the joint of two successive cycles, cycle
i and (i — 1) mod 2977 — 1, care should be taken for proper pipeline of data elements
within a cyche, by keeping two separate registers for the two cycles.

The for loop in step 2 is executed 2m + 2 times. Moreover, for each 7, (< = 2m),
it takes lwo units of Uime, one for step 22 and another for step 2b. Theretore, the time
required to execute step 2 is 4m + 2 units, that i O(log N} time. So, we can conclude
that the ASCERD class of algorithms can be implemented on Gm, &) in Cllog N)
units of time, when N is a power of 2.

7. Comparison with other topologies

Table | comparcs the number of links and diameter of G{m, &) with those of the
chordal ning and the distributed loop network, for different values of N,
8. Conclusion

A new family of graphs with constant node degree and low diameter has been
introduced. With a slight modification in the definition, this family of graphs can be
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comstrugtad for wll most 21 possible valoes of M Given A IF A s the noarcse munber
to &, ¥ = N, on which the graph is defined, then constract a graph with & nodes.
Delete N — & number of degree 2 nodes, evenly from each sector. The diameter,
DN, would be upper bounded by DCY') and the maximum node degree would remain
same a3 in the original graph.
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