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Abstraci

Computing pattern spectrum i5 one of the key methods for determining shape-size distributicn of objocts in the image. Mor-
phedogical algorithm for computing the pattern spectrum by suceessive opening and area computing is very costly on sequential
machings. In this paper a fam algorithm for the same using the chess-board distance transform is proposed.
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1. Intreduction

The problem of shape representation and shape-size description is very important in computer vision and
image analysis. An algebraic system of operators, such as those of mathematical morphology. are useful for the
purpose because when acling en complex shapes they are able lo decompose them into their meaningful parts
and separate them from extraneous parts as in (Giardina and Dougherty, 1990; Matheron, 1975; Maragos,
1989: Haralick and Shapiro, 1992; Serra, {982}, Serra {1982 ) has extensively used these size distributions in
image analysis applications to petrography and biology, Maragos (198Y%) has viewed the size distribution via a
concept of patiern spectrum and has extended the pattern spectrum 1o prav-tone images and arbitrary malti-
level signals. Morphological operators are suitable for parallel implementation and morphological algorithms
are very fast on parallel machines because simple and identical operations are applied simultaneously to many
poimis. Due to the same reason they, including the algorithm for computing the patiern spectrom, are usually
very slow on sequential machines. Here we propose a fast algorithm suitable for sequential machines for com-
puling the pattern speotrum with respect 1o a family of circles using the chess-board distance transform matrix
{as in [ Ghosh and Chanda, 1993} ).

This paper is organized as follows. In Section 2 we present some basic definitions of morphological cperations
and describe the pattern spectrum as in {Serra, 1982; Maragos, 1989), The proposed method is described in
Section 3 Section 4 presents the implementation and computational complexity, Section 5 presents the con-
cluding remarks.
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2. Preliminaries

Monechrome image or simply image, refers to 2 two-dimensional intensity function f(x, v), where x and »
denoic spatial coordinales and the value of f{x ¥) al any poinl (pixel) is proportiongl to the brightness (or
gray-value ) of the image at the point. Here we deal with binary images only. More precisely we deal with 2-D
objects represented as a maximal sei of connecied points having gray-value 1.

Let 4, B be subsets of F* or 7%, where F and £ are the set of real and integer numbers, respectively.

where A+p={a+p | acd} denotes the translate of 4 by the vector p.

(ii) Erosion  E(A, B)=ia | Bracdl= [ {d—8) (2)
B B

(iii) Opening  O(A, BY=D(E(A, B), B) (3)

{iv) Closing ClA, By =E{IMA, B), M {4)

# iz called the siructuring elernent.
Let # be a compact subset of the plane F?; such 8 is called a continuous space binary pattern. Let B have size
one, Then the set

rB={rh| beB} (3)

defines a homotopic pattern of size r, where r is any nonnegative real number. The shape of rB is the same as

that of 8. Now, il # is a discrete space binary patiern, i.e. a finite connected subset of the discrete plane 72, then

nl=0D(DH--IMD(DE, B), B), B),..), B), B). (6)
Htimes '

Eq. (6) defines a family of binary patterns generated by B parameterized by the discrete size parameter i {7=0),

1,2, ...}, By convention if n=0, nB={{0, 0)}. Multi-scalc opening of A by 8 at scale n=01, 1, 2, ... is the opening
of A by nB:

4, nBy=D{E(4, nB), nE) . (7
From {7), {1 }and {2) it follows that
ont= U (nB+p). (8)
(B4 pie-d

Hence (1A, »B) eliminates from A all objects or their parts inside which #8 cannot fit. That is why the size n of
#87 is referred to as synonymous with the scale at which the filter ©@{4, nB) operates. The pattern spectrum
provides a measure of similarity between a set and the collection of all structuring elements #8. The pattern
spectrum PS,(n, B} of a set 4 in terms of the siructuring element B is given by Maragos (1989) as

PE,(m BY=R[(NA nB)— (A, {(n+1)B)] foraz0d (3}

where ne? and #[ -] denotes the cardinality of any set. Since opening is an anti-extensive operation and A8 is
increasing as # increases,
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O[4, (n+ 1B 20[A, nB| fornz=0. (10}

Thus #[2(A4, rB)] is nonnegative and 15 decreasing as n increases, Since A is finite, there exists a positive
integer N¥=max{n | (A, nB) =0}, Then % [O(4, ) | =0forall n= N,

Eq. (%) suggests that the pattern spectrum can be computed by snccessive opening followed by set subtraction
followed by arca computing {pixci counting) progedore. The method of computing the patiern spectrum by
direct implementation of Eq. (9) is referred to as “conventional method”™. It is evident that the conventional
method is very slow if implemented on a sequential machine, at least when N Is reasonably large. Here we supgest
a fast algorithm for computing the patiern spectrum using the distance transform of the binary image. A detailed
discussion of the distance transform can be found in Rosenteld and Kak (1982).

Since 8-connectivity for objects is popular, in this paper we consider the chess-board distance defined as d{(p,
gy=max{|x=ul, |y—2|} where (x, p} and (u, v} arc coordinates of p and g respectively. To each pixel in a
given set A, the distance transform assigns a number which is the minimum distance between the mixel and 4°
(1.e., the complement of A). For 4 binary image these numbers form a matrix DT whose elements are: DT (x,
Fy=ming 3 {d{p, g)} such that pix, ¥)ed and g{1, 2)e4% That means if DT (x, y)=nand B={(-1, —1),
t—1L0n(=1,1) (0, =1, {0,0), (0,13, {1, =1}, (1, 0%, {1, L)}, then at most {#— 118 centered at {x, 1)
can fit in A. In other words, Q4. rB)=1J{nB+(x. 1)} for all (x, ¥) such that DT(x, ¥} =n+1. Secondly,
mux, 2T (x, ¥)=N+1, Therefore, #[ (A, 18) ] can be compuled from the distance transform matrix DT and
#(nB].

3. The proposed method
In this section the mathematical basis of the proposed algorithm is presented. Let us recall Eq. (9) which can
be rewritien as:
PS4(n, BY=#[0(A, nB) ] -®[O(A, (n+1)8)] forOsnsN,

Forcground 4 of the binary image may be considered as the union of 4,, A5, ete. We know, if A, As, ..., 4, are
#1 5e1s then

#FE( Ay uad,)
=Y #4 = ¥ #(AnA)+ EB#(A A 0 A ) (= 1)HA N oA, ) (113
In the present comicxt, the set 4, is defined as follows. Consider any arbitrary distance transform value {, then
Ai=1{x ) | max{|x—u|. |y—v|}<!{&DT{w, v)2f}. (12)

That is, 4, {1=7=<m) consists of the pixels lving within an upright square of size {27— 1% around (u, ). So, the
firstterm of Ba. (11) s 2 #4,=m= (2 — 1%
Now let (x, %) and {x, ¥,) be the coordinates of the central pixel of 4, and A, respectively. So the number of
pixcls in the set (A,m.4,) is
[24+1— | —x; | 1« [28+ 1= [»— 1] .

For each 4; (1<ism) we take 4; {1</<m), 50 that the number of {4,~.4,) considering all { and j {i /) is
{¥). Then the sccond term of Eq. (11}, Le. X #{A4,n4,), cquals

¥ OE {2!+1—|x,-—x,-|}*{2£'+1—IJ-';—}’,-'I})-

i ffaesiy

Meat for the third term of Eq. (11}, e, 2 #{4,~A,0 A, ), let (% 1) be the central pizel of 4. Firstly, the
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relative distances of each central pixel from the other two are determined. Then we consider the maximum
distance alung x- and p=dircetion to compulte the number of pixels in {4;m.4,~4,), which is

[2i+ 1 =max{|x,—x.[. [ —xe|. |x,—x:|}]= [2{+1 —max] |y =y | {0i=vels =]} -

For gach 4, (1<i=m) we take 4; (1=j=<m) and 4, {1 sk=<m). So the number of pixels of (A~ A;,04,)
congidering all ¢, jand & (i), ik, j=k)is (T). 5o,

T a(Aindind)= 3 L %[EH emax{|x—x|, Ja=xl, |X—2x]}]
[
{irink)
o [2+1=max{|y =~ | D =del. Iv=2ell].

Now by generalizing the last term of Eq. (11),1.e. (—1})™#(d,~ Az 1m0 can be found as follows.
Let the eoordinate of the central pixel of A, be {x,, ¥, ). S0 the sleps are:

Firstly. find out the relative distances of cach central pixel from the others along the x-direction {say), that
is, find out

t-xl —X3 |~ !I| —Xa |1 LERE |xl Xy AN |s rea |-xm -1 — A | '
Secondly, find out the maximum of them. say d, ., where

il max How—x

l=5iasm, L s (120
Similacly we can find out the maximum relative distances along the y-direction, say d,. .. Finally,

#A A re A = (2 = V] = [(2H ] — ) ]

Different way of interpretalion

In our presentation if PT(x, 1.) =1 then A, may be defined as {fB+ (x;, 1.)}. So the computation of the first
term of Eq. {11) is straightforward and the computation of the second term is more or less manageable. But
computing the third and the higher terms is very costly because relative positions of many sets are involved. Cur
basic aim is 1o reduce the computational cost. If we implement the above idea then the computational cost will
be too high. In the following discussion the above idea of computing the cardinality of the combined sets is
interpreted in a slightly different way. Now we arc interested in finding out the number of additional pixels due
to each set A, given the number of pixels added already duwe to the set 4, Earlier we bave used
#{Aypo Ay =#A+#4,—H (40 A;). Presently we  consider, for the same purpose, the relation
#{A;uA) =#A,+#(A,—4,). The idea is that during raster scan of the distance transform as we encounter A,
ve. D (x, ) =1, we search for the nearest A/'s in the previous rows and in the same row but previous columns,
and once found, the number of additional pixels due to 4, is determined depending on the distances.

Algorithm

for 1 <i=N+1do C=0;

forall (., ) T DT{x, y—1)=!do
if DT {x, y=1)=[then

else If D7 (v —n, y+o) =/ (for 1 <o, v 2= 2) then O=Crtug [2]
else Cy= o+ (21— 1); [3]

elseif DT(x—1, p)ztthen O=C4{2/-1) [4]
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else T DT {x—u,v—1 )=/ (tor 1 Sy, 1 =2/—2) then
if DT {x— b, vz d (for | 2, 15,202 then

C=0— {2122l —u 2= 1—v )21 —u {2 -1 —u ), [5]
else C=CAH {2 =172 {1l —p M 2= 1—p), [6]
else if DT (x—w;, v=15) =/ (for | £ uy, 1, <5212 then
C=CH M1V = (2= —u ) (22— 1 —14 ) 171
else C=C+ (21117 [8]
enddo;
enddo,

[Note: “if DT, vyz! (for 1w, v52{—2) then..” means loop untl D7 (w, ») 2/ i3 true, and when the
conditiyn 1s satisfied the statement is cxecuted. Sceondly, “2™ s varied in the inner loop, |

Hence the pattern spectrum is computed as

PYL BV =0 =0 forlig!aN and PS(Y. Bi=C04, .

4. Computational complexity

Il may be of inferest o compare the computational complexitics of ihe conventional method, the fast algo-
rithm suggested by Bronskill and Venctsanopoulos {1992} and our algorithm for computing the pattern spec-
{rum. Before going 1o the detailed discussion let us categorize the foreground or the objects in two types: 5, and
53 The object in which the pixels baving the same distance transform value are connected 15 called an &, tupe
afyect, otherwise it 1s called an 55 fppe object. Examples are shown in Fig. 1. The computational complexity for
the pattern spectrum 1% invarant to the tvpes of object when the conventional or Bronskill's method is consid-
ered. In our case, however, the iype of the abject is important,

First we study the computational complexity for the various algonithms for S, type objects. Let 4 be one such
object. Let the number of pixels in 4 be { and let the number of pixels having distance transform value [ be o,
{for l = f< &+ 1 ). Then obviously

Hy=Ry> Ry = Ry= Ay ald Byttt tigptieg, =0,

The radius of & maximal disc centered at (x, ») that can fit in the object is equal to {DT{x, ¥) -1}, ie, ({~=1)
ir DT (x. =1, and the number of pixcls in the disc of radius ([—17 s {2/— 132

In the convenitonal method the number of operations to erode with a disc of radivs (/—1)is {2/— 2%+ O and
the number of operations to dilate with the same discis 27172 #5050 the number of gperations to open
with a disc of radius (7= 1) &5 {2/ 17« [O+ Z 2 n.]. Finally the total number of binary opetations to com-
pute the patlern speetrum is

{a) o) fe) {d)

000O0OOOOOGOC000000 COOCOOCOOGGO0000000  GOOSOOCOCOCOOOOGE00 DOOOOOOOGOC0000
0111111111111 21113%0 0111112111111111110 1141 G000000011110¢ 1131160000001 111410
G11111111112111111¢ M ESEES2RIRE2SEEEE10 01111100G0000H 11110 01253 00000001 2221 0
011111311111145434130 M 233FIFIIFIZZIF0 011111 000000011111C 012321 COODDOOL 2321 G
011111111111113133%10 O122222334332222710¢  Or$111411111111111¢ 222111111111 22540
01111133133 11131141 % 011111 22333221111310  o1111111114$4411110 01111l 283222111110
0000111111111 00000 GOO001 1 222221100000 0000011111111 00000 000001 11 £288] 1 00000
CO0G00111 1111 000000 SOOO001111111 GO0000  GOM0000111111GG00GE GOO00001 11111 G00000
COGGOGO000L 1 0000000 GOGOEMI] 1 3000000 Q00000000 1 OGCG00G0 COOO0C0001 1 00000000
COOOS00000300000000  COOMOOOOOOO0GOC00 00000000000 00000:00 QOO0 RO0GO0000

Fig. 1. {a) 5 tvpe abject. b)) Ity distance transform, (o) 52 tvpe object. (d) his distance transform.
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N+l M+
12 [(2L|}%{Q+ ¥ nk}]. f13)
=1 k=t

Hence the order of computational complexity of the Conventional Algorithm s O {N+ 1 1),

In the modified afgorithm suggested by Bronskill and ¥Venetsanopoulos { 1938), the structuring element is a
disc of radius one. The number of pixels of this disc is 9. Now the number of operations to erode with a disc of
radius L is [9+ 2 2/ ne ] and the number of operations to dilate with a disc of radius (/— 1) is [F+ /s Z {5 re 1.
Thus the number of operations to open with a disc of radius ({—1) s

Nil N+l N+l

O« kz .Plk-l-'gthk; nk=9:[n;+{f+1}]-ixjnk.
=i =11 iy

Hence the total number of operations 1o compuie the pattern spectrum is

A+

¥ [9-[n;+(f+1}]* N_';fj r.!k:'. {14}

=1 E=r+1

Hence the order of computational complexity of the modified algorithm is O( { ¥+ 1 }*).

We first apply the chess-board distance iransform algorithm to the binary image and then apply the proposed
algorithm for finding the pattern spectrum. Before finding the complexity for the algorithm it is necessary to
discuss the computational complexity for the chess-board distance transform, The seguential algorithm to com-
pute the chess-bozrd distance transtorm requires 9 binary operations and | addition operation per pixel. We
have numbered the different steps of the proposed algonithm on the tight-hand side. Let j be such a step. Let the
probability of action j due to distance transform { be denoted by P[S].

Then both experiments and intuition suggest that, for an %, type object, B[5]=F[6]1=F[7]=0for all i
P;[2] and P;[8] are very small. Before going into detail let us assume F;[ 1] and P;[3] are equally likely for the
distance transform I Then the number of binary operations for distance transform { is

N1 K41
{zmll & "k}+{'{2+21"ff2}-ﬂ[2]'[l—Pf[”] & ””’}

+{{2+2Nf21'1"‘;[3]'[l—Prlll—P;[?-]] S nk}

==

A
+{{2+23""f2]'=°.'[4]'[] -Al1]-Fl2]1-Fl3]] E: ng}

+{[z+:w;z+ (2N/2)2+2:2N/21-B(8] (1 P11 —P[2] - P[3] —P4]] kf: nk}

= (2R 1+ (N+2)-P[2]-[1 =P[1]]
+(N+2)P3] [1~P1]-B[2] ]+ (N+2)-P{4]- [L - PL1] - P (2] - P[3]]

LE!

+[(3IN+2)+N ] -PIS] [1=F[L]-P[2]-F[3]]-F[4]: a—Zr iy
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={2P (1] HINF2) [R2]+A[3]+F[4]] [1-A[1]]
—{(N+2) [P[3]-P12] - P[4] Fi[2]] - P[4]-Pi[3]]

N+l

+[{N+1PE+ (N+ 1)1 RBI[1 P ] -P[2]-F[3]] - P [4]] &Ef Ry . (13a)

Now again F[2] == P;[3] and F,[8] has the order Q{1 /N4 1). So {15a) can be written as

R (N2 (P[] 1=F (1] ] =-R[3]1]2]-Fl4)-2[2]

Nt

—P[41-PL3D)+ [OUN+1)-O(1/N+DI-2PIID)} T .

Hence the order of computational complexity of the proposed algorithm is

[OIN+F 1+ (N2 (N + 11O+ 1) —O(N+)O(N+ 1) —O(N+ 1) O(N+1)
—O(N+DIONHINFOUN+ DD FONH D HON+ 1)) .

Now the number of addition operations is
AL +A2] (0= +E[3]-(1-F[1]=-F[2])
+ B4 (1= B[1]=P2]=F[3]}+=O((N+ 1)) . (15b)

Hence the total computational complexity from (15a) and (150 is O{EN+H17)
MNext we study the computational complexity for the vanious algorithms for 5; type objects, For S; tvpe objects
P51, M(6], £ 7] are not zero. So the number of binary operations for thesc sleps arc

T2+ 2N+ 124+ 2N/ 2PTRLS T =T - R [2] - F[3] - Fi[4]]
HI2+ AN+ 1)/ 24 (2N 2P| PRI =Pl 1] - PU2) - P[3]1 - Pi[4]1-F[5]]
24 (N1 24 (IN2V 2N 2TR 7] (1 =P 1] =P 2] = P 3] = P 4]

A+

=fil3]-Fl6]] kE. m=O((N+1)%) .

MNow again F[2] = F[3] and A[5]. BE6], £,17] are small compared to Fy[ 3] or P[4] and P,[ 8] has the order
QL N+ ).

Then a similar approach as above suggests thai the compulational complexity for 8, type objects of the pro-
posed algorithm is also of the order ol O/{ (N +1}3).

Henee for hoth §) and 5; types of objects the computational complexity of the algorithm is O{{N+13%).
From this it can be adjudged that the time complexity of the algorithm will be less than for the conventional and
modified algorithims.

The pattern spectram, as defined in Eq. {9), is computed in two steps. First, the distance transform DT (x, v)
is computed vsing the two-pass algorithms designed for sequential machines as in {Rosenfeld and Kak, 1982),
Second, the cardinality of the combined sets corresponding to 07T (x, ») =/ is computed using the proposed
algorithm. Finally, the patlern spectrum PS,(# B) 15 determined. During implementation of the algorithm, a
look-up table is used instead of computing the addendum for different local spatial distributions of the pixels
{ %z ¥). The algorithm is tested on a large number of images containing 5, or 5, or both types of objecis. Com-
puter programs for the proposed algorithms are written {(in C) and are executed on a PC-AT-286 on 15 MHz,
Some examples are shown in Figs. 2-4, where {a) shows the input image and {b) shows its pattern spectrum.
Time requirements due to the different algorithms are listed in Table 1.
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Table 1
Figure no. Fig. 2 Fig. 3 Fig. 4
Type 5 8 S5
Size 0d 64 fidh 3 G G 3 il
Proposed 390 s 1.54 5 Yaits
Conventional 200l s 14,0 5 146.05 5
Muodified 14,69 5 957 11.27%
{Bronskill

5. Conclusion

This paper presents a fast algorithm for computing the pattern spectrum for sequential machines. The algo-
rithm is based on the distance transform using the chess-board distance metric, since in most of the image
processing works S-connectivity is assumed for the objects. It is experimentally found that the proposed algo-
rithm {including the sequential method for computing the distance transforms ) is much more efficient than the
conventional morphological algorithm and the modified algorithm proposed by Bronskill and Venetsanopaoulos
{1988) for computing the patiern spectrium. Since the structuring element B is convex, it can be decomposed
into smaller discs or into simpler structures. In that case the computational efficiency of the conventional method
is greatly improved as in [ Zhuang and Haralick, 1986; Xu, 1991 ). However, this approach 15 nol atlempied
because the order 15 still not better compared 1o the proposed method.
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