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Ahstract

A new genelic seurch strategy involving chmmosome differentiation inge two classes and g estriceed form of erossover
nperation is defined. Tts application to mulb-dimensional pattert reeognilion problens s studicd, Supenotty of the classifier
is esphlished for four sets of different antificial and real-life data. Schema analysis s provided.
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1. Introduction

Genelic Algonithms (GAs) {Goldberg, 1989} are randomized search and optimization techniques guided
by Lhe principles of evolution and natural genetics. They are etficient, adaptive and robust search processes,
producing near-optimal solutions and have a large amount ol implicit parallelism. Applicalion of GA o varioys
pattern recognition problers s deseribed in (Pal and Wang, 1996: Gelsema, 1993]. One such upplication
for desipming a classifier 15 o cxploir the searching capability of GA for placement of a number of lines
for approximating the deciston boundanics (Bandyopudhyay ot al, 1995}, The method involves encoding
the paramcters of the lines in binary strings called chromosimes, in the feanire space that yields minimum
misclassification. The superiority of the GA based classifier over the &-NN mile (for different valoes of &) was
demonstrated in {Bandvopadhyay et a1, 1945) lor hoth artilicial and reaf-life dala sets.

In this article, 4 new genetic search sirategy called GACD {GA with chromosome differentiation ) is proposed,
where the chromosomes in GA are differentiated into rwo classes. Restricted crossover is applied o these
chromoswmes where manng 1% allowed only between individuals belonging o different classes. This is anglopous
to the bhiological mating system which involves individuoals from two different sexes, male and female. It 15
proved that the scheina theorem (Goldberg, [989) holds for GACT as well; a short, low-order, above-average
schoma will receive sn increasing number of trials in successive generations.
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Fig. I. Basic steps in conventiol GA.

Subsequently, the pattern classification problem in N dimensions is forpwlated vsing GACD, where the
decision boundaries are now approximated by hyperpianes. Tt is shown that this classifier performs better than
the previows GA-based classifier {Bandyopadhyay et al., 1995). for both artificial and real-life data sels.

2, Description of GACD

In GACD (GaA with chromosome difterentiation ), rhe chromasomes are distinguished inw 2 classes, M and
F, thereby constituting two separate populations. These are initally gencraled in such a way that the Hamming
distance beiween the two is maximized.

The basic sieps of conventional GA or CGA are shown In Fig, 1. These steps are followed in GACD us well.
However, the imdividual processes are modified in order to incorporate the notion of chromosome discrimination.
The modified steps ate now discussed in delail.

Papalation inffalizarion. The structure of o chromosome of GACD is shown in Fig. 2. Herc the { hits, termed
data Bits, encode the parameters of the probleot. The initial two bits, tenned the class bits, indicate the clags
{M or F) of the chromosome. Two scparale populations, one containing (he M chromosomes (M population)
and the other containing the F chromosomes (F population], are maimtained over Lhe generations, The sizes
of these {wo populalivns, py and pp, respectively, muy vary. Let py +~ pp = p, where p s fixed {cquivalent
to the population size of CGA). Initially 7q = o = /2. The data bits for cach M chromosome are first
generated randomly, One of the two class birs, chosen tandomly, is minalized W ¢ and the other to 1. The data
bitz of the F chromosomes are initially generated in such a way that the Hamming distance between the two
populations ¢ in terms of the data bits) is maximum. The Hamming distance between two chromosomes ¢; and
e2 {ey,¢2 © £, denoied by h{cy. e1), is defined as the numbser of bit positions in which the two chromosomes
dilfer. The Hamsning distance belween two populations, £, and £, deootled by A( P, P, is defined as follows:

BPLPY =Y 3 hlene;), Vo EP, Yo P
i

Fitnesy computation. Oaly Lhe | dawa bies are used o compuie the fitness for the chromosomes 4 problem-
spocific manmer.
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Selection. Selection is performed over all the p (= py + @) chromosomes (ie. disregarding the clags informa-
tion}, using their fiiness values. In other words, 2l the chromosomes compete with one another [or survival,
The selected chromosemes are placed in the mating pool.

Crossover. Crossover is applicd probabilistically between an M oand an F parent chromosome. Fach parent
contributes one class bit to the offspring. Since the F parent can only contribute a {F {ils class bits being (43,
the class of the child is primarily determined by the M parent which can contribute a 1 {yielding an M child)
or u O {vielding an T child} depending upon the bit position {among the two class bits) of the M parent
chosen. This process 1 performed for both the offspring whereby cither two M or two F or one M and one F
offupring will be generated.

Crossover s carried oo ontil (a) there are no chromosomes in the mating pool, or {b} there are no M {or
I} chiromosomes in the mating pool. In the former case the crossover process terminates. In the latier case,
the: remaining F (or M) chromosomes are mated with the hest M {or F) chromosome, Note that if al the start
of the crossover process, it is found that the mating peol contains chromosomes of only one class, then the
crossover process is discontinued.

Mutarion. Bil by bit mutation is performed over the data birs only with probability poy. The ofass bity are not
mutated,

Nore. Elitism is incorporaled by preserving the best chromosomes, among both the M and F chromosomes. seen
till the current generation either instde or outside the population.

3. Schema theorem for GACD

A schema, of same length as the chromosomes being considered, is a string over the alphabet {0, 1,4}
{where # represents the don't care symbol). it represents the subset of all the binary strings that match the
schema at positions where the Taller has 15 and Os. For example, | 3HHHEES 1 a schema of length 100 It
represents all the binary sirings of length 10, which have 1s in the first two mosi significant positions. The
defining position of a schema s a position whete 1t bas cither 2 1 or a ). The defining fergth of a schema is the
distance between the last defining position and the first defining position, and is obtained by subtracting the first
defining position from the last defining position. The order of a schema is the number of defining positions in
the schema. Thus the defining length and order of the above-mentioned schema are 1 and 2, respectively. The
schema theorem (Goldberg, 1989}, which is of fundamental pnportance in GA, stales that short, low-order,
shove-average {characterized by fitness value} schemata will receive an exponentially increasing number of
trials in subsequent generations.

In rthis section we prove that the schema theorem hoids for GACD. It is also shown thal in certain cases the
lower boeund of the number of schemata sampled by GACD g larper Lhan o equal & that of CGA. Enumeration
ol the different lerms and terminology are given first, followed by an analysis of GACD with respect (o schema
sampling. In general the M and F parameters are denoted by subscripts m and f, respectively, while parameters
wilh no subscripl denote that these are applicable over both the M and F populations.

I Terminology

m tha toral population size which i3 assumed 1o be constant.
Pl i} the M population sizc at time £
prlen: the F population size al Ume ¢ note thal p = pg () + prith.
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f the average fitness of the entire population.

. a schema,

i the average fitness of instances of schema i over the enotire population.
T the average fitness of the M population.

e the average fitness of the F population,

J the length ol 4 sinny.

iRy number of instances of schema A oim the popalation at dme .
Bl (Rt number of instances of schema & inothe M population atl Goe ¢
mlf 1) number of Instances of schema fin the Fopopulation wt time 2,
dih): the dediming lengih of the schemsa b

LR the order ol the schema A

e the probability of crossover.

T Lhe probahilily ol mutation.

Superscripts s and o with any ol the sbve-mentioned symbols indicate the comesponding values atter
siefeetion and ceossuver. respectively. It is 1o be noted that the following equaliries will hold for GACD lor any
value of /.

32 Anafviis of GACH

Lel us consider the eftects of each operation, sefectfon, crossover aml mutetion separately on the number of
instances ol a schema £

Selection. Since proportional selection s performed, the probability of selecting a string with fitness §, is given
by fi/ j.’_=] fi. Henee the number of instances of the schoma i after selection will be wiven by

i (1)

¥
=mih, 1y Ll
iR * 7

f‘|=1 f.'
The nomber of instances of the schema A thut will be present in the M and F populations, respectively, must
obvigusly be proportional to the fraction present in the two populations before selection takes place. Or in other

wiarils,

mi(h b+ Ly s mih, i)+ p#*

& i L 5 mll:l[..h:t:l
wrn (ht ”_mm“t—i-”*—m(h,fj' {23
Similarly,
d mi{h,
H’Ir{h,EJ.' I]zﬂ‘ls‘{h,f‘Flj*m. .[:3"

Crossover. To analvze the effect of crossover (assuming single-point crossover) on the instances of the schamg
f, its probability of disruption is first caleolated. Instances of the schema that are members of the M population
are congidered first. The analysis for the Fopopulaton is unalogows. For the presenl, lel us assume that an
instance of the schema from the M population, if nat discupted by ceossover, is placed in the M population
agai.
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Schema & will most likely be disrupled due to crossover if (i} crossover occurs (with probability wc); {ii)
crossover site falls within the Grst and the last defining posilions {with probability (A /07— 113 and (it}
crossover occurs with an instance of some schema &* in the T population such thal &% is not comtained in A
(with probability [ (ke + 13 pi(r+ 1)), (Note that if & is containcd in &, then crossover can never
disrupt A, ie., schema £ will survive in both the offspring. Schema A*, on the other hand, may not survive
crossover il all,)

Taking the above-imentioned three conditions into accounl, the probability of distuption ol A in one instance
of the schema may be written s

H{ k) mylb.t+ 1)
ME*I—-I:‘(I_ p—1) F (4]
Hence the probability of survival of one instance of the schema in the M population is given by
Bih) mi(hyt+ 1)
1_#C*I—I*(I_W . ':5]

Consequently, considering s, (i, 1 + 1) instunees (after selection) . alter crossover we get

skt |
a{hjx[ _Ith.BE ) (6)

FR pilr+ 1)
The “greater than™ sign comes becouse even after disruptive crossover. the schema A may survive,
Similarly the nwmber of instances of & that will survive crossover in the F population is given by the relation

1 B(H et Chr+ 1)
. s ¢ =1 1 s pelEeiewy, ]
pilh e 1) 2 ng(h,t }( ”“*3—1*[' Palt=1) D "

It had previonsly been assumed that if an instance of } is present in the M (or I¥) populadion, and it £ 14 not
disrupted due to crossover. then il survives in the M {or F} population, Tn reality the situation may nol be so,
Lat P hc the probability that & survives in the M population, when il is originally present in the M population.
Hence {1 — Py} is the probability thal fi goes to the F population after crossover, Similarly ot P and (1 Py)
be the probabilities that i survives in the M and F populations, respectively, when it is originally present in the
F population.

Thus the modified equation for schema survival due Lo crossover is

molhot+ 1) lhe— 1) (l—m;*

H’E;::;{hFI_:_I]:P1nﬁi1(h1f+1)+szH§{h,f+|_}_ {E'}

The second teno i3 inroduced on considering the instances of & that are present in the F population, which
survive crossover but are placed in the M population. Similarly,

AR D =1 = Ponlh e+ 10+ (L Pomi e+ 1), (9]
Adding Eqgs. (8) and (4) yields the number of instanoes of f present in the entire population after crossover;
m =1 =rt (bt + 1) + mi{ht+ 17,

ar

Fh e+
(R4 1) 2 :rr,:(h‘r+1){|_#c‘5(f” ]:I_mf( + }H

D Pi(i+ 1)
wodiit) i+ 1)
— i h 1141 — I o . 11
bt ‘{ -1 [ PXCERN ” e
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Using Eqs. (2) and (3). and the fact that mi A, v} = s (R e} + mp(f.0), the chas, ol inequality (10} may be

WL 45
k. hot—1 ;
—— ]_p,caih} s mm'i thamii ke J+m!;fh.!}mm{h_.r+lj _
(1} prte | Lk i+ 1)mih 1)
Miacn (At + 1) 2 R+ 1) ( ,uhf”‘f = a‘IJ. ()

Let us denote the tern in the curly brackeis by o Thus we may write

In this context a slight medification of the schema theorem (Goldberg, 1969} s catled For which provides a
better lower hound of the numhber of instances of & that survive after selection and crossover. An instance of
schema & may be disrupted duc to crossover #ff il 15 crossed with an instance of another schema 4% such 1hat
B* is not contained in & and the ather conditions lor distuptive crossover held, Accounting for this detail, the
distuption probabihly should be recalcalated as

S(i) : m“(h,{;!ﬂ
e = ——P :

Hence after selechion and cressover

Maalh t+ 1) = mé (A, r+l}{ lf':_h: [J gL ”!‘;H}]}. (12)

Lot us denote the term w2 (B ¢ |- 13 p by B Thos

Wega (R T+ 1} Z2m(hr+ 1) {1 #c@[l }

Mutation, Since the conventions] bit by bit mulation 15 applied on the strings with a probability g, the
probabihity of disruption of one bit of the schema is g, Probability of its survival is 1 — u,,. Hence the
probability of survival of the schema is {1 - u)¥*®". Thus the number of instances of the schema A thal arc
present in the population at time £ -- [ (ufter selection. crossover and mutation) is given by

mopenl Bt~ 1} 2w (4 1) {I - ‘;,'i':f; (1 a}} {0 - )@Y

Approximating the rh.s., the inequality may be written as

L
moani it E LY 2t lhor - {1 - %{]ﬂ{l oy Iu,,,{_}{h)}. (137
Simnilarly, Lhe cquation for COA s given by
Sk
Micgal Rt + 1 2ol (Rt 1% {1 . ”’;r_{ll (1—M —,u,mﬂ{h)}. (14)

In order wr compare Bigacp(h. ! 4+ 13 and mcga(h, ¢ — 1), we consider the following cases,
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Case i Let i (At} = pe(, ) =y, Inthat case md Che+1) = m}-{fz.:+1} =mgy. Notw that m( k. 1) = 2,
wi{ht + 1Y =2mz and B =2mz/p . Then

g A mm | mm ) m P _p P
S 2y \pHe—1} o pi(e+1) ] 2 \pple=Dpi(e+ 1) ) T [ dpite 4+ Dpa e+ 1) |

The minimum valuc of the lerm in square brackets is 1 when pf (¢ + 11 = p}{i + 1). Henee @ 2 2. This in
tumn mdicales Lhat lower bound! mgacg (R 6+ 111 2 lower_bound (mcga (d. ¢ + 111, 1.e, the lower hound of
the number of instances of some schema A sampled by GACD is better than that of CGA,

Cose i, Let mp (B0} = g, 0). Let mg (k. v} = yme(it) where ¥ = 1. Then s, (B, r= 13 = ymi (L d+ 1),
Note that sl B, 0) =mpl b 03 1 —ph et Dy = o (A 130 ) and F=mih, t + 1) | + 9} /p. Thus,
we Iy write

] (TMr{ﬁ1r}M§{ﬁ,f+ 1) mlh, yymi(h,t l})

(L + 1) st U T ety
milh,t + 1}y 2 Comihe+ D(l+y) oy 7
S pilt—Lypile+1y ) P 1=y pi(r+ piie+1)
o 7 ;
(1 +¥¥ piie+ 1)psir -+ 1}
Now, in this case o = 8 if the following holds:
¥ Pt N p -y

4

(15)

= o = 4
{1+ 2 pile+ Dps e+ 1) 7 \/};;{:H}pmwu T

Since the above-mentioned condition (inequality (15)) canmat be slwsys cnsured, we cannot conclude that
lower_bound{mgacn (=11} 2 lower bound(mogaf £, 14110, (Note also that both the functions (1 + ¥/ /%

and p/ ,l’l,-"rpﬁ{r + s (r 4+ 1) have minimom value 2.}

in order to experimentally compare the values of ;s and mgacp. an optimization problem is considered.
Let F{x) = x° he the funclion o be oplimized. A population size of 30 (initially 15 M and 15 F chromosomes
are comsiderzd for GACDY and chromosome length of 10 are taken., with g, = 0.8 and gy, = (.01 The
varialion of the number of instances of four schemata with different characteristics is presented over the [irst
five generations in Fig, 3(a}-(d}. Note that any instance of the schema |#HHHERER will have x valees greater
than or equal t 512, whereas, that of (REREEEEEE will have values less than or equal 1o 51T, In other words,
the resulting strings comvesponding ko the former one have higher Amess values than those of the latter one.

From the nature of the problem it is obvious that the number of instances of the frse three schemata shoold
increase while that of the last schema should decrcase in subsequent penerations, As cxpected, Lhis is the case
tor bath CGA and GACD, except 4 minor temporary expetimental deviation in each case (e.g., 2nd generation
in Fig. 3{a), 5th generation in Fig. 3(h}, 2nd generation in Fig. 3(c), and 2nd generation in Fig. 3(d)).
Howewer, the growth (decay) rates for schemata with high (low) fitness values are greater for GACD as
campared to CGA. although bith could find the optimal value of x (=1(23).

Iin the following sections we demonstrate that GACT s superior to CGA for the pattern classification problem
described in (Bandvopadhyay et al.. [995). The classifier was designed using CGA for a two-dimensional
feature space (& = 2), imvolving the placement ol 8 number of siraight lines for approximaling the clas
boundaties. This conventional GA based classifier was found to be superior to the B-NN rule (for different
values of £},
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Fig. 3 (a] Varamon of number of instances of schema 1#48RRERES with menemtivns for the funciion fTx) = A%, (b} Maration of
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First of all, we calend the said problem of classification [or any value of W (Section 4) where a fined
number & ol hyperplanes is considercd to approsimate the decision boundary. {Notc that the exlenston of the
scheme of line Tepresentation in (Bandyopadhyay et al.. 1995} w higher dimensions is not a straightforward
one hecause it would involve 2 constraint equation that must be satisfied. This, in tumn, {eads o the complicated
issue of getting unacceptable solutions of chromosomes. Howewer, the trigonometric form of representation
described in Scclbon 4.1 avoids this problem by being unconstrained in nature.) Finally, a detailed comparison
of GACD-based classifier with thal of CGA is shown m Section 5.

4. Pattern classification problem

Here we describe the hyperplanc representation and fitness computation schemes required for formulating the
elagsification problem in kigher dimensions,
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4.1. Hyperplane representotion

Froen clementary geometry, the equation of a hyperplane in N-dimensional space ( Xy-Xo— - —Xn) ix given
by
kycosan_) — Gy sinay_| =d, (1&]
where
Bu_y=xn_1cosaw_a + By_asinay_a,

By_z=xy_zcosan_s + Fy_ssinay_s,

B = x;cos e + Bpsin ay.
The various purameters are as follows:

X the ith feature of the sampie points.

[ #1.X%z,. ... %x): & point en the hyperptane.

ay—y- the wngle that the enil normal o the hyporplane makes with the Xy axis

ay—z: Lhe angle that the projection of the normal in the {X)-X3— - —Xn_ 1 ) space makes with the Xy_; axis.

e1: the angle that the projection of the normal in the (X, -X3) plane makes with the X; axis.
oy the gngle that the projection of the normal in the (X)) plane makes with the X axis = 0.
d: the perpendieular distance of the hyperplane from the origin.

Thus Lhe & tuple {a, o, .. e, ) specifies a hyperplane in ¥-dimensional space.
Each angle «;, f=1,2,... . N — 1. s allowed to vary in the range of 0 to 27, If & bits are used o represent
an angle, then the possible valucs of @; arc

B8 2w 2w 2w, 38 2, (20 — 135« 2,

where & = 1/2%,

Omnce the angles are fixed, the orientation of the hyperplane becomes fixed. Now only 4 must be specificd in
order Lo specily the hyperplane, For this purpose the byper reclangle enclosing the sample points is considered.
The hyperplane passing through one of the vertices of the hyperrectangle and having a minithum distance, dmin.
from the origin is specified as the base hyperplane. Let dfag be the length of the diagonal of the hyperreclangle
and let the bits used for specifying « be capable of generating values, say offer, in the range [0, diag]. {The
number of bits gpain controls the precision of 4.) Then d = d,,4 + offrer.

4.2, Firness computation

The hyperplanes encoded in the chromosomes partition the feamrs space mto several regions. The class
associated with each region is determined in the tollowing manner; for each region, the class of the maximum
number of training dala points thal lie in this region is identified. The region is then assomed to be associated
with rhis class. Points of other classes that lie in this region are considersd 1o be misclassified. The number
ol mixclassilied samples in each region is compuied in this manner, yiclding the total number of misclassified
samiples, miss, associated with the particular arrangement of the hyperplanes, The fitness of the comresponding
chromosome is then computed as (/ — miss), where # is the size of the traiming dats.
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Fg. 4. Block divgram of gencoe pattemn classifier

Onee the hyperplane representation and fitness compuration schemes are fixed, the GACDY algorithin can be
applied to the pattern classification probleng divcetly. The block diagram of 4 genetic pattern classifier is shown
in Fig. 4 for the convenience of the readers. Here “Cien™ and “mux _gen™ indicale the current generation neoiber
and maximem number of penerations, respectively.,

The following section provides a comparative study of the GACT-based classifier {CACD-classifier) and the
previous GA-based classifier (GA-classifier) for several datu sebs.

5. Implementation and experimental results

A population size of 20 v chosen. Two different values, numely (08 and (0.3, are wsed lor the crossover
probability tor two scts of cxperiments. The mutation probability 15 vancd in the range [THH, 0333 over
every 100 generations for a maximum of 1500 generations. Inidally gy has a high valee, therehy ensuring
sufhcienl diversity in the populatioh. Subsequently il 15 decreased gradoally to the mimmuym valee, when the
algorithm is allowed o make 2 detailed search in the solution space. The mutalion probability is again increased
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Fig. 7. Heal-life speech data, Yows! dgat, in the ficst and sceond formant fequency plabes.

inclicating an increase in the randomness of the search, In case the optimal string was alrendy obtained, elitism
ensures thal i is not lost,

Results on four data sets are presented, The 2-dimensional artilicial dala sets, ADS1 (Fig, 5) and ADS2
{Fig. A}, consist of 557 and 417 points respectively belonging to two classes. The real-Life speech data, Vowet
derter (Pal and Mitra, 1992}, consisis ol three feature values {cormesponding to the three formant frequencics)
and six classes {8,u.f,u.e.0). Fig. 7 shows the class structures in the first and second formant frequency
plane. fris dara comprises 150 samples having four fealurcs and belonging to three classes with 50 points in
gach class,

The resulls shown {Tables | 0 3) are the average values obtained over 10 simulations of GACE-clasxifier
i abbreviated GACD) and GA-clessifier (abbreviated CGA). 10% of the data sel is wsed for training, The
remaining 90% data points are used for testing,

Note. {1} The lables show the average number of data points that are misclassified by the classifiers durng
lraining (eeiss), and the percentage of the correetly recognized test data (recogn. score).

{ii) The values of H (number of hyperplanes) are chosen intuitively hased on previouns experiments ¢ Bandy-
opadhyay et al, 19953 with the dals sels.

For all the data sets it is seen from Tables 1 and 2 that in wrms of the recognition scorcs, GACD.classifier
porliems betler than GA-classifer both [or the raining and est data, A point o be mendoned heee is that
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Table 1
Compamdive 1esoits [ e paslemn classification problems for g - 08
12ata kel L Avgnnber of peneralions “Ireining Tesling
{rviy. mifss ) {ervy. recoum. soire)
GACIY [T} CrACTY LA CACD Ciin
ADS ] 5 5732 §543 0 07 173 3189
ATI52 5 2005 U115 0 LN o053 L1
fris 5 S 405 )] i 234l w9 o9
Yowsd 5 1500 b5 714 9.4 Taum T332
Tahle 2
Companative tesulty for the patern clussificabion poobles for g — 4.5
12t =ct H Avy. number of generbions "Training Testing
{@va Hmiszh (v MeCOgH. Seore)
GACE COA GAacCh L - (ALY COA
AL 5 51833 R25.5 [ +4 9300 4289
ALSD 5 1] 25 Th5.5 1} LI Y23 8532
frix b 432 ad 4 [ & G378 a0 21
Towet 5 LE1X1 1500} ] 1L TA.43 73485
Table 3
Yuniatiot of the ave. o3t IeeDgnition seome for Wowel g with H for g = 0.8
H Traniog [avp. mis) Testing (vg. Fecagy, fooee)
GACD-clasrifier COt-clursifier CGACT e fatnifier LA -classifier
4 125 13.4 T2y THER
3 74d 4 7395 7132
& 70 4.1 .25 T125
2 85 15 559 8¢ 60,33

CGACH- clossifier wirgined zero misclassification in all the 10 simulagions, whereas this 15 nol rue for the G A-
clasvifier. Tior cxanple, it ok 7 and 6 simutations corresponding to g, = (0.8 and g, = 0.5 in the case of
ADSI, and 8 and 7 simulations cormresponpding o g, = (LR and 2, ={1.5 lor ADS? when 7ero misclassification
wag ohtained.

Since the Vowe! dode has a considerable amount of overlap, both GACD-clussiffer and GA-clessifier {uil o
artain zere misclassitication even until 1500 penerations for both values of .. Note that for ADS1 and ADS2,
CACD-classifier performs considerably better than GA-classifier in terms of the average aumber of generations
required Lo oblain sero miselassification. For fris data, it is comparable.

To demanstrals the variation of the recognition score with H, we present the results for only Vowel doser,
since it is a real-life. overlapping data. Table 3 shows the resuils for g, = 008, As expected, it s found that the
misclassification during training gradually decreases as f increases for both GACD-classifter und (FA-classifier.
However, the results on the test data indicate that increasing the number of hyperplanes does not necessarily
increase the generalization capability of the classificrs,

&. Discossion and couclusions

A new methodelopy GACD, based on chromosome differentiation in genetie algorithms, bas been deseried,
and its application o the problem of pattern classification in &-dimensional space has been smdied. Tt is foond
that GACD results in un improvement of performance of the GA-based classilicr in (Bandyopadhvay el al.,
1805,
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The schema theorem i proved to hold for GACD. Tt has also been theoretically established that in muny cases
the lower bound of the number of instances of a schema A sampled by GACD is greater than or equal o that of
CGA. Becuuse of this, GACD s better able to cxploit the information pained so Far. Again, inifializieg the M
and F populations in such @ way so as to masimize the Hamming distance between them, and allowing mating
betwaen individwals trom these twe dissimilar popolations, cebanees the exploration capability of GACD. As a
result. GACD appears Lo strike 4 betler balance between exploration and exploitation, which is cruemal Tor any
adaplive oplimization technique, thereby giving it an edge over the conventional GA,

An asnalopy o the GACD methodology devcloped here can be found in sexual differentiation in nature.
Mature, like in {3ACD, generally does not permit vnrestricted mating in living beings. In human genetics, X
and Y chromosomes are used to distinguish between the male and female classes. Bach parent contributes one
chromosome 10 the offspring: the sex of the offspring is primarily deterimined by the male parcnl. Similurly,
in GACD, two bits are utilized tor differentiating the chromosemes into two classes, with the M parent being
primarily tesponsible for the class of the offspring. However, note thal the similurity between the patural and
the artificial genclic system is very naive.

It has been proved in (Bhandari et af., 19963 that any elitist model of GAs will definitely converge o the
optimal string as the number of iterations tends Lo infinity provided the probability of going trom any population
tor Lhe one containing the optimal string is greater than zero. Note that the conventional mutation operation alone
enspres that thas probability 1 greatee than eoro. Since GACD utilizes the convenbional murtation operation and
incorporates glitism, the above-mentioned criteria are fulflled. Thus GACTY is also guaranteed to provide the
optimal siring as the number of iterations goes to infinity.
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