SCATTERING OF WATER WAVES BY A SUBMERGED NEARLY
VERTICAL DPLATE*

b, M. MANDALT ano P KDNINCE

Abstract. Some new tesulls ceoverning the scallering of suclace waler waves by o nearly verlical plale,
completely submerped in deep wates, bave Deen deduced enploving two mathematical methads The Lest
methad concarnms an integral equation fnrmulation of the proklem ahtained by a spitahlz ysz of Cireon's
inteeral theorem n the Aol recion, while the second method concerns a simple and atraiphtforeard
pertucbational analvsis aleng with the applicalicon of Greeen's integeal theeeen, The lew methods produce
tha zame result for the first arder corecctions to the reflaction and (ransmisgian cogthcients, Considaring
some particular shepes of the curved plate, numerical caleulations are also performed.

Key words. watcr waves, lincarised Lheory, nearly wertical plale, integral equation, pecturhatianal
technigue, reflection and transmission coellicients
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1. Introduction. Using lincar theory, waler wave scatlering problems involving
ohstacles admit exact solutions only when the obstacles are in the form of thin plane
barriers in deep water, when the motion is two-dimensional, and when the barriers
wre either vertical {of. Ursell T3], Lvans [ 1]} or inclined al special angles (cl. John [37).
The scattering prablem invaolving o parbally immersed nearly vertical harrier was
considered by Shaw [6], wherein he employed an integral equation formulation and
obrained the first-order corrections to the reflection and transmission coefficients—in
terms of the shape [unction ol the barrier. Recently, exploiting the idea of Evans [2],
alomg with an appropriately desipned perturbational anlysis, Mandal and Chakrabart
[4] deduced the analviical expressions for the first order corrections to the reflection
und transmission coctlicients of surfuce waves scatlered by a fixed nearly verlical barrer
for both cuses when (1) the barrier is partially immersed and (3i) the barrier is completely
submerged,

The present investigution is concerned with the scuttering of surface water wuves
by u nearly vertical submerged (xed plate in deep water. The corresponding plane
vertical plate problem was considerad by Fvans 1] far a normally incident wave train
and by Mandal and Goswami [3] [or an obliquely incident wave train. The problem
under consideration s attacked for solution by twa different mathematical technigques.
In the fivst technigue, an mtegral equation formuolation similar to Shaw [6] is emploved,
while in the other method a suitable exploitation of Evans’ [2] idea, along with an
approprigtely designed perturbational technigue wsed recently by Mandal and Chak-
rubarti [4], is invoked. Both methods resull in the same analylical expression lor the
first-order correction to the reflection and transmission coefficients. It is verified that,
when the depth of the upper edpe of the plate ends o zero, known results Tor a
partially immersed nearly vertical barrier given by Shaw [6], as well as by Mandal and
Chakruburti [4], dre recovered,
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2. Statement of the problem. We consider the motion of a fluid of infinite depth,
which is inviseid, incompressible, und homopeneous of densicy p under the action of
gravity only. We choase a rectangular coordinate system 10 which the y-axis is taken
verlically downwards into the fluid medium so that the plane ¥ — 0 is the undisturbed
free surface of the fluid and the position of the submerged fixed nearly vertical plate
alf arhitrary shape is given by 5:x = zclv), ¢ < 37 b where £ is 4 small nondimensional
number and c¢fy) is bounded for a = ¥ < & with e{a) =0, Assuming the motion of the
lud to ke irratational and simple harmonic in time with circular [tequency o and of
small amplitude, there exists a velocity potential which can be caprossed as
Be[@lx, »)exp (—ferr)]. Then ¢ x, ¥} satisfies the two-dimensional Laplace's equation

(2.1 Te=0 in the Quid region,
the lingarized free surface condition

{2.2) ch.+j—-t=l'} an y =10,
with K =%/ g, g being the acceleration due to gravity,

2.3 =
(2.3 i

1 on 5,

whers n denotes the cutward drawn normal to the surface of the curved plate, the
edge condition
(2.4} *"““Tu s bounded as »—=0,

where r 15 the distance from the two sharp edges of the curved plate, the infinily
requirements

(2.5} 0, Vg =0 as p—m
Further, we assume that
. el pl~¢ (X y+Re'(—5¥) as x> x
[2.6) T
¢lx, yl~ Te(x, p] as x -+,

where o'{x, y}=exp {(— Ky «iKx) is a train of surface waves incident on the curved
plate § from negative infinity, and B and T are the {complex} reflection and trans-
mission cocthicients to be determined,

3. Integral equativn Tormulation. Tn this case the total field ¢{x, p) 15 given by
{(3.1) w{x vl =p'(x, y} +D(x, p}

where ©{x 3] is the scattered velocity potential and satisfies the Laplace’s equation
in Lhe Nuid region, the linearzed frec surface condition (2.2, the edge condition [(2.4),
the infinity requirements (2.3}, the condition on the plale as

b S

{3.2) E — on 5,
H aH
and the radiation conditiaon
i Mx, ¥}~ {T—1}eup (—Kv FiKx} as x =+,
13.3
v, v~ Reap(—Kp—iKx} as g - —0,

In view of (3.3}, ®ix ¥) represents an outgoing wave at infinicy,
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Ry an appraopriate use of Green's integral theorem in the fluid medivm we obrain
e . el
(3.4} 2adlEn)= | fish—{op.&n)| ds
5 ah s

where 7/5n denotes the outward normal derivarive on 8 f{s) 15 the difference of the
velocity potential acrass the plate, and G{x, »: £ 5} s the nsval Green's function (¢f.
Thorne [71) for water waves delined by

\ J‘“’ (kcos ky— K sin kp)ik cos kn— K sin kn)

i kik®+ K?)

cexpi—kla— &l dk+2miexp |-RKiy+a)+iKix -4k

(3.5) Gix,y £ 0=

Now we consider perturbations to the vertical plate solution (see Appendix A)
for small values of &0 and assume that

Flel=miecly)+n, v) ~miecip)—o, 1]
=1y} efilyhr 00,

Utilizing (3.2} into (3.4) and using (3.6} we finally obtain the integral equations for
foly) and fily) as

(3.6}

b -‘D
(3.7} J Tl 6 fa,;, o, n)dv=—2wiK exp{—Kn} a- el b,

J- .-'FJU’

: T I e e N
{3.8] J f:-mj]l“rﬂ.n}af_- €'(n) m}l‘ax | {d}‘!{ Y J J

el
< Gl vy e, 2) d}'—zi‘TKd [eintexp{—Knl} a< g h,
7

ared

{r?.a ¥ie, ) dv

respectively. The salution of the integral equation (3.7} is given by {see Mandal and
Coswami [3])

{19) folyl=exp (= Ky} J W {uhexp (Ku) du
where

Dr,{dﬂ—.vz'r
4. . _:II .dl b.: ) _'

[3.10H W= -7:.- =yl

Here the constants £7, and a';, are given by
{3.11) £, =2i/A,
and

(312) du =1

J‘" (d.—w')exp(Ku)
fu?—a?)¥3p? = ﬁ'z

where 4, i3 given in {3.21) below.
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Using arguments similat to Shaw [6] (also see Appendix B} the integral equation
{3.8) can be reduced to

B T &
(313} == j __fl{y}ﬂ—{n_. Pioow)dy= er -{cl[r,r] exp [ —kxnl] gy b
dn 1, 1
This implies that the first order correction f,(y) Lo _f i1 15 independent of the vertieul
plate solution £,{¥).
Now, [3.13) can be reduced to

n 2y

(3.14) I U {vh zdv=KA, 2ok (g exp{—Kx) a-=ylh,
u .]' -n

with

(3.15) W)= KAy} L fiip)

and the integral is in the sense ol Cauchy principal value and A, i5 an arbilrary

constant. Thus

[3.16] filyl—expi—Kp) J Uy exp { Kul du

&

whoere

i 4K
Didi =1 +— 5{x)
(317 Wiy =~ E

E.I'-':l'-"—'l:b‘. _]..l-"]|-"—' o= F b:

with f3,=—-KA /T,

E'fr—r:"'i:l2 EyE L )

(2.18) Si__uj=][ 1 O WNexp (—Krh i,  a<y<b
T T 'l-

Expression (317} involves the arhitrary constants 1, and 4. Since f,{b) =10, it fallows

[rorm (3067 and (3.17) that

o K
L DA —uhi+ o Stul
§3.149) J‘ﬂ P TR BT uxp | Ker) e —0
giving one equation to determine [, and 3. The viher cquation is obtained from the
original integral cquation (313} after substituting £ () (obtained from (3.17) chrough
(3.18)) and evaluating the different imegrals resulling in a faetor cxp {— K« in hoth
sides. Thus we obtain

; : 4K iH ;
§3.20) DA +—A-2K J e'irlexp (—2Ky) dy —
w 4
where
(3.21) A= o — B - iy
s F'fuj :
o= = du,
-r w =il tﬂ - J .}J
]
: F,-I'u]l
(3.22 = oY s d
L ) |B_| 1s I:J.IJ—ﬁ' }1.--|:-u3‘_b':ll.'7 b,
b Fj[u‘l : e
L fu’ —a )y imip — ' du, F-0.1, 2 with

o
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(di—uexp(—Ku) forj=0,
(3.23) Fiwy=4i{di—whexp(—Ku) [lorj=1,
Sludexp( Ku) for j—2.
Fquations {3.19) and {1.20) determine the constants I2, and d;.
To determine the rellection and transmission eoefficients we assume
(3.24) R=R,+eR +0(z% T=T,+eT,+0(".

Making £— Fx and £— —o, respectively, in (3.4} after vsing (3.3) and (3.5) we fnd

er T _'r-':'lg

r.=1+Pf,.
[3.25)

R=P°+ QI a

n=F- Q1 B
where

P,=K j fiyhexp (—Ky) dy,

i | oo o ; :
3.26) P=iK J Sy ety exp (Kl dy,

1
=k [ fily)exp (—Ky) dy.

- i

P, can he evaluated and we Gnd that

t3‘.27':| R-:l=_‘--:"w'lla'r.l
and
(3.28) T.={e, AIA

These expressions have already been obtained by Evans [1]. Similarly, utilizing (3.9),
{3.10), and the condition that £, (Bt =0, we find P, as
k *h
Po=—iKD, [K [ elvlexp {—ZKy}{J

w o

(dl—u’)exp (Ku)
'::u:' = ﬂz}J.-:{bz_ ul:ll."z

du} dy

bz 3 ) 5
(e —ule{uexp{ Kul
J.o fut—aty' et -uty? oy

Alse using (3.16), (3177, and #1{k) =0, the expression for ) given by (3.26) reduces
L

1 45
{3.30) QL=—£(D|‘F| "_Tz)r
s

MNow we invoke the argument wsed by Shaw [6] that the transmission coefficiemt
T remains vnaltered when a scattering body is reversed but the incident ficld is left
unchanged. We obtain, replacing sely) by —eey),

T=T,+&F, et
=1, —ed,+ e
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This gives T, =0, so that P, =,. Hence R, =2P,, and utiliziog (3.29), we find in this
Ldse

i i 3 = 1
. . . (d,—u eip(Ku)
RETSR, [R I SRR 'EK}':'“_... =)y ‘m} d“:

(3.31)

J {dl—wciu)exp (—Ku) }
'+ e |.

i I:u: - (JZ}I_-'_'-‘{&J_MZJL."J

However, it is difficult o prove P, =), directly from their integral forms. For the
corresponding immersed hartier problem, Shaw [6] also mentioned that a direct proof
of 1his is “very hard™ ro find.

It cun be casily shown thal as “a,” the depth ol the upper edge ol the curved
plate, approaches the free surface while *h" the depth of the Jower adge, is kept fixed
(ef. Fvans [1]3,

M

do=0. a,=0, .= K (Kb}, v.—=hwl{Kb).
Thus
D, =2ii 0K (Kb} —iml { Kb}
Substituting these values into (3.27) and {3.28} we obtain
R, =—iml (Kb} K, (Kb)— izl { Kb}
T, =K {KBIAK (Kb - fad, (KB},

respoctively, which were obtained by Ursell [#] for a partially immersed vertical bacrier,
Similarly, wtilizing the approximations of ¢, o, 8., v, and D, as g {=a/b)+ 0
(b Gxed) in {3.31), we ohtain

4K b
R —— — | - K 1 (—2 K
! b{K.{Km—irnf_m}}[ j cly}exp (~2Ky)

2y ; [ K e K
{ :*ﬁ%l?.ffv}du]@_f zc_'iz.f'fﬁ'i._@d},}

TR [b‘ y:_ju_'

(332

which in the notation of Shaw [ 3} becomes

4Kb ki Cwexp (— Kb
= g T : (2K bt ;i
. K,[Kb}_,-f,;,mb}[”’j1‘7'1‘} s ’“ (1 ) “}

¢ C(t1 exp (Kbt}
i i1—17]
where (1) =of{— 807 b
4. Solution by a perterbational analysis. For 4 nearly vertical plate we can assume

£ to be very small. Thus neglecting ©(#7) terms, the boundary condition (2.3] can be
expressed as (cf. Shaw (6]}

o de d { A }

411 —f{top)—s—cipl- (La, plp =0 @yl b,

{ P ) iy w}ay ¥l ¥

This suggests an cxpansion lor ¢(x, ¢} as

(4.2} elx, 1 oeh=gulx, p) Feeix )+ O,
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and a simnilar type ol expansion lor K and ' given by (3.24). Here we confine our
attention to determining the constants £, T, K, and T, only, as we urc interested
in evalualing oonly the firsi-order corrections to the refllection and transmission
coeflicients. LUtilizing the expunsions given by (4.2) and (3.24) in {217, (2.2), {4.1),
(2.4}, (2,57, and (2.6}, alter equating coellicients of & and ¢ [tom both sides ol the
results derived thus, we obitain that the functions ¢, and 4, must be the solution of
the following 1wa independent mixed boundary value problems piven by P, and P,
respectively.
Problers T',. The problem is to determine the function &, (x, ¥} satisfying

Vi, =10 in the fuid region,

dip,
K{P,-,-F#_[] an p— 0,

oy
e n on x—10, e ool B o
X i

#'*F e, is hounded as r— 0, where r is the distance from {0, a) and (o, b)
oy Voo, = us yeom,
i, ~exp i —Ky+iKx)+ R, expi Ky iKx) asx—=-x,
Po Toexp{—Ky -+ iKx} as x— b0,

Proldem B, . The problem is to derermine the function ,(x, ») satisfying

(P11} T, —10  in the fluid region,
; A
(PL2) Ket =0 ony=0,
ay

i ] P, :
(P1.3) oS (+n, ¥l=— {:?U:J ¥ (+a, v}} on x =1, @y,
) Ax |:|‘_'|.= : ar N 3 F
(P1.4) FY %, is boanded as # s 0,
(PL.5) .Y, >0 as ye,

[ : g, Ryoeap (— Ky —iKx) as y—=» —x
P16}
o - Toexp(—Ry FiKx)  as x—= boo

The function ¢, x, ¥b, which is the solution of the problem P, is a discontinuous
function an x =1, a <2 p <. b, and therefore the houndary condition (T1.3) must be used
carelully on the two sides x — ¢ and x — o " of the line x =0,

The explicit solution «,(x, ) of the problem P, is given in Appendix A To find
the tirst order corrections to the reflection und transmission coefholents, the explicit
solution ¢, (x, 1) to the prablem P, is not necessary. These can he obtained n the
following manner wsing a technigue similar to that wsed by Evans [2]. For this we
apply Green’s integral theorem ta the harmonic functions ¢, and ¢, w the region
bounded by the lines

y—=0 -A=x=A, x— X 0=p=Y¥; =Y, —-A=x=A,
x=X, O=p=Y, x=0" gy x=0, a=p<h,
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and circles O and C; ol small radivs & with centers ut {0, B} and {o, 2], and we
ullimately make X, ¥ tend to infinity und & = 0. Using the same argoments similar o
Fyans [ 2], we abtain in this case

h ? il i ;
i, = j [%Hv. ¥)— { ¥y =2 (o, J’]}
: & toay | ay
(43} }
if i
— g o 3 elpl — (—i, ﬂ” ey,
Pt —o, p ay{':y]a-_u ik
in which we have made use of the condition (PL3).
From {4.3), wang the solutions for ¢.{+o, ¥} (sce Appendix A), we obtain the
analytical expression for the first order correction R, to the reflection coellicicnt as
4K b foidi—uTexp (Ku)
R—| K Ay exp{—2Kyp) = = du r d)p
o R e e
J‘" (dl—w lelw)exp{—Ku} i }
R ET R R L R T S

i 4

(4.4

This [s in fact the same expression given by (331} abtaincd by using an integral
cquation Formulation.

Mext, in order to ohtain the first order correction T, to the transmission coefficient,
we again utilize Evans’ [2] idea, along with the application of Green's integral theorem
to the harmaonic functions W, {x, v} and ¢ (x, ¥) in the region mentioned earlier, where
Foix, vl =g d—x p} to fnally oblain

[} 5 =
i oy,
it = Tty vl {+a,
i j [ . ﬂ}llay{th ay{ uyfl}

(4.5 ;
; d A4y
_II'r,|_ LV — Ay — [ — I Feill
A= 'L}H_l’{f-'}} > i r!,J]H i

in which the relations {P1.3) have been used, Utilizing ¥, (~o, ¥1=¢. (T, v} in {4.5],
integrating by parts, this produces

a ) L}
iT, = [{‘-{y}{ wol—0, }'ﬁ'ﬂ%%Hu,y} oolte, ¥) =2 (—a, }*}H ,
255 ay r-a

and this vanishes after using (A5} Thus T =1 This result also holds lor a partially
immersed or completely submerged nearly vertical barricer, us was shown rceently by
Mundal wnd Chakrabarti [4] and earlier by Shaw [6] (for the case of a partially
immersed plate). Shaw [6], however, used an argument based an symmetry to derive
this result for the partially immersed plate, while Mondal and Chakrabarli [4] proved
Lhis analyiically.

3. Discossion. An analviical cxpression lor the fitst order eotrection to the reflec-
tion coefficient is obtained here for a surlace waler wiave lrain incident on g Tully
submerged fixed nearly vertical plate whase upper and lower edges are at o depth g™
and “h,” rezpectively, below the nean free surface. The problem is atlacked lor solution
by using two methods, one method being bused an gn integral equation formulation
af the problem and the other being a perturbational analysis. The sceond method
seems Lo be rather simple compared to the first, as the desired results are obtained
relatively easily and fairly gquickly. The known resulls ot a partially immersed plate
are recovered us a spocial cuse.
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For numerical Hlustrations we have considered three ypical forms of ¢ p), namely,
(i} a fixed vertical sinusoidal plaie given by = ebsin w{v - al, (a < p = h); (7i} 4 fixed
slightly inclined atraight nlale given by x = ebiy  al/{h-a), a < y < b The reflection
coeficient |R) (=|R, + =R ||} is computed correct up to six decimal places for different
values of the various parameters, g, Kb =02 04, 06, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 5.0,
70,90, e =0001, 0005, wh=3, 10, 15,20, and p (=a/b} =001, 085, 0.25 .50, 0.75
[or each parliculur type of submerged plate. Some representative numerical results are
given in Tubles T and 2. Tt i3 ohserved that the various values of |R; for most cases
diller from | R,| (i.e.. che vertical plate result) ondy in the sixth decimal pluce. As terms
of the order ol £” are neglected in the analysis, this indicates that the influence of &
is not of much significance for these types of nearly vertical plates.

Appendix A. The explicit form of . x, ¥} can be derived from the genceral result
given by Evuans 1) However, we deduce it here from the result given by Mandal and
Coswami [3] in the form

(A1) @alx, 31 =exp (—Kp | IRX} & xaix, v)
whuere
1 f
(A2} XolX, ¥) =~ I fudmiGle, 7; x, p)dn,
=T d
Tawl k|
x=rchanwlv—al, a-~-pk
B| :|R, +:R,,
e =007 r= L3
Kh p=alh | %] wh =310 wh =151 wh- 3.0 wh =150
itd M. 0131972 01314077 Q151075 038113 L3R
’ 1105 {ILIWEEST DORRESRE 0098807 (AT LRI
i {1LH N.nd3357 1647363 0447362 0647554 0.647451
7 Q.08 (. saaes 464937 0404032 04065137 L]
% ol £l itaddi MhARd G asasl2 0667147 (La6TORS
d G5 0407773 TS 0LANTHR K 0,40HE421 040595
Tantk 2
[Hi= R, - el
e = 4,001 =I5
Y=l gl exp —ay) ) - w=rcly—alexp (-] ]
a=iyaih s shiy- ol iy b § shiy -aj
e Rl [h—a)
K pw=aih wolr = 5.0 wh=154 i v b wh =54 ah - 130k a-<p b
i 0 131073 h1XInTs 011174 121675 LR3I (.131047
: (1415 [HO Rk [LIWERST THOREEET (LSS EST {NFERAT Q098346
|3 4X1}] hed1as? ChATEET Lh64735T L7338 1LA47337 NLAATRST
- (.45 (L2 E (ndindag LTt Mot Q464023 0404028
< 041 hifagdl Lk Gebad LG4 2 LE A hd G4 IR EEY] [RXETETET i

PRIk 0407772 0407 7R AT TT S (1.7 D477 0.AITRLY
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&, fAv) being the same as given in $# 3 and 4, respectively. Using Glo, o 2, ) given
by {3.53) in (A2}, we can caloulate ¢ x, v) explicitly for x> as well as for x=21),
(A2) invalves fwo integrals  which can be simphlificd. One  intesral s
2K [ fiylexp (—Kv)dy, and this is Z2iv./ 8, and the other is [ fi(n)x
ik cos kn— K sin kg) dv, which is simplified to —{2i/ A )7{k} where

o (dl—xT)sin J‘m
Fiky=—
[_ ! J‘ {‘II _azy Z{b__

N S .

Hence we finally obtain

el pl= Et—"iﬁ-? exp (— Ky + iKx)
(A3) A
_}i;ﬂ J{’ I[k}(k o Ky ; KI '::1 ky}exp (—kx) T —
and
w.(x, y)=exp (—Kp | iKx) —;; exp (— Ky - iKx)
{A4) ’

dk  For x =20,

2 'r J(k)k cos ky— K sin kplexp (kx)
rd, B2+ A2

From (A.3) and {A.4) it can be shown that
expi— Kyl ¥,

fexp{—Ky) {* rd',’;—u’} exp{ Ku}
A W

(A5 g to,¥i=Cexp{-Ky)t dn a-iy b,

expi{— Ryl p=h,
Appendix B. 1l can be shown that
Aals 3 A
{B.I} "o, y;0,m)=—"2(0, 5, 0,m).
AX &
We proceed as in Shaw [6] to note thart
adr| g : 3
—i = =l(p—n), as F=0,
axiy=p 1‘5""'5.)’_1?:' '

where & is the Dirac delta (unction. Thus wsing (B.1) we lnd

{B.2}

e,
da¢

The kernel in the Orst integral in the right-hand side of (3.8) can be written as

|:{:{:rﬂ +I‘{']‘}]I—J>i+{(_‘[y} i +r_f1j;}:t:| (o, v, o 9l

Utilizing (B.2) and (B3}, this reduces 1o

(B3} —mdiy—m) as £

am=ig

—w“cin] ﬁ‘5+f;’{ﬂ) i }a{u—n]—{{'(yj gl r{J}—}va—:rﬂ}
i1 1) ;

= ml{ely)—clnlba"y— ) {e{n) Fe'(p1}8 Ty — )]
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After using the properlics of the delta funclion and by integrallon by parts we lind
that the first integral in the right-hand side of (3.8} is zero.
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