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Ahbstract

Using ideas of supersymmetric quantum mechanecs we constnct g clss ol conditionally vxactly solvable polenbials which
are supersymmetric pariners of the lnear and radial harmonic oscillator. Furthermore we show that this class of problems
PORECSSCS SOme SYIMneiTy $truciures which belong o non-linear algebrms

1. Introduction

In quantom mechanics, there are only a few po-
tentials for which the Schrisdinger cqualion is exactly
salvable [1]. The class of exactly solvable prohlems
cun however be eolarged by using the inethod of gener-
aling isospectral Hamilonians [2-6]. Recently a new
type of problems has been added 1o the class of ex-
actly solvable ones. These are called conditionally ex-
actly solvable (CES} problems [7.8]. The main char-
actenistic of the CES problems is that they are exactly
solvable when the potental parameters assume some
specific numernical valucs. In this Letter our aim is Lo
conslruct & number of CES potentials using ideas of
supersymmetric (SUSY') quantum mechanics [9,10],
We shall also study the symmetry structure of these
problems and 1t will be shown that these symmetries
are related to some closed non-linear algebras.

In the neat section we will briefly review some alge-
braic properties of SUSY quantum mechanics which
are relevant in our construction of CES potentials, Tn

Section 3 we construct CES potentials which are part-
ner potentials of the one-dimensionsl harnonic os-
cillator. Besides the unbroken SUSY these probicms
dlsn possess s noo-linear algebra which is quadratic,
Secrion 4 discusses the same approach for the radial
harmonic oscillator, Hlere SUSY 1s broken and the re-
sulting non-lincar algebra for the CRES problems is of
cubic type. linally, in Seclion 4 we outline a general
constraction principle for CES potentials which are
the SUSY partners of exactly solvable ooes.

2. Sopersymmeiric quantiem mechanics
In supersyiunetic quanium mechanics [9,10] one

considers 4 pair ol so-called partner Hamiltonians H 4
which are defined by

dl
H.o=4aAA" = llﬁ = V_ix},
d?
H_=AlA=-] il SLEIR {1}

V() = wiin Llw'ia), (2)
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where W(x) denotes the SUSY potential, Wiy} =
{d/dx)W (), and the operators A and AT are given

by

1 d
A=— (— - Wl:x]) ;
dx :

1

— 131

At = (——dﬁ-‘-W{I}) (3

W2 dx

Passible rero-energy elgenfunctions of A gre neces-
sarily of the tormn
X

b0 =cep{ £ [ dwn ), (4)
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the functions (4) i3 normalisuble then supersymme-
try is said to be unbroken, while if none of them is
norinalisable supersymmetry is broken.

In the case of unbroken SUSY {let us assume that
i~ is normalisable) we have the following spec-
tral properties among the eigenvalues E.— and eigen-
[unctions ¥:%! of the partner Hamiltonians /-, n =
Dol 20ei s

E T =0y oL w B 50, (5)
1
#o = i@,
"I."'E'
1;.'[_'=. __AFWHJI (6)

AR/t
On the ather hand in the case of broken SUSY we
have the relations

kg Ao 2 i (7
i) = ! 41;-'—)
o .-"'-Ei
wl o l= ——AT-..rrf 5 (8}
v ESH

3. Construction of CES potentials for unhroken
SUSY

Let us now turn to the construction of the CES po-
tentials which are SUSY partners of the harmonic os-
cillator potential on the real line. To this cnd we con-
sider the following family of SUSY potenlials [[1].

]
-\ d- q
W(x)=x+)  —In(l +gx’)
1=l '

l 2gix
areyE,

which reduces to the SUSY potential of the linear har-
monic oscillator lor g = g2 = ... = gy =10, The cor-
responding ground-stare wavefunction for H_ reads
according to (4)

g =0, (9

w
T . dan TH oy 1 PRy
wr_:; \.L:I—LI:K];\ x f4J1111+E¢x 3 [ 1)

and is normalisable, Hence, SUSY 15 unbroken.

In order to demenstrate our principle for construct-
ing CES potentials with the help of SUSY quantum
mechanics lel us lrst consider the case & = 1. In this
casa the partner potentials (2) read

L T T Y 1 B 5 [ I I

ViR e 2
x° 4+ 2 47 y?

TT L L DO 12
2 E—g|.r- {1+g|x*} >

MNaow if we pui gy = 2 then the first of these poientials,
V., reduces o that of the linear harmonic oscillator,

J.
i
v.)=% g, (13)
Z i
V_(x) sl 4 _____l_fl.x e 2 {14}
2 (1+2xY pa2ey? G

Iy this case the energy eigenvalues of the Hamillonian
H_ are obvicusly given by E/7' = 1 + 3 and the cor-
responding cipenfunciions (£, denows the Hermite
polynomial of degree 1)

SV 2nany VR H L x) expl X2 /2)
(15

"nr""!'+}|:x:| = a7

are the well-known eigenfunctions of the linear har-
monic oscillator [1,12]. Because ol this knowledge
we ¢an now obtain the cigenvalues and eigenfunciions
of H .. associated with the potential { 143 viathe SUSY
relations (3% and {6). The ground-stare wavefunc-
tuon [ollows [rom (107 and the ground-stale energy
vanishes because of unbroken SUSY, To summarise,
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Fig. 1. The CES porential ( 14) (solid line) and its SUSY partner
{13y (dashed linc). The horzontal fines indicale the fiest fve
cigenvalues of . associated with this CES parential and the up
and down armows sketch the action of the creation and annibilatcn
operators &1 and & on eigenstates of H—, Motz that the ground
state (E5™" =0} is isolated due w unhroken SUSY.

the complete spectral properties of H - with potential
(14 are given by (r=0,1,2,...)

BT =0, Ell=n+3,
Wi (x) = O +227) T exp(— 2 /2),
‘f’rfIffo =(n+3)" I"IIEAT'I'II;| N x)

_ expl- X/

= v.f-zr;+|”!|:n+3}v.r‘m;

4x
X(Hﬁ_—!(-’-’}+i—:‘2—x_ffﬂ[x]) . (16

Here we would fike to stress that the potential in (12)
is not exactly solvable unless g, = 2. That is, (12}
is indeed a CES potential, In Fig. 1 we have shown
graphs of the two potentials {13) and { £4),

Here naturally arises the gquestion whether this con-
ditionally exact solvability of H_ can be related o
some undertying symumetry structure, This expecta-
tion is supported by the fact that ies SUSY partner & .
does have a well-known Lic-algebra structure which
allows fur a complete and cxact solution of its eigen-
value problem by pure algebraic methods. Introduc-
ing the standard harmonic-oscillator annihilation and
creation Operators

a(d,

u@(dx ‘)‘

towoido . B

d—ﬁ(—d_t—'—x), (17)

a=

and noting that H., = a'a+3 one immediately verifies
thust

[a,a']=1.

(18)

[Hyal=—a, |Hya]=a.

The anmibilation and creation operators act on the
cigenstates of &, as follows,
:N-",& R ﬁ‘ﬁ'[”

n—i

alwit = yny 1wt {19}

Now the SUSY relation (5) and {6) suggests to con-
struct similar annihilation and creation operators (or
the system H. [3],

B=AalaA, Bl=4"4'A. (20)

Actually, from (6) with E.7) = B\ = p + 3 and
(1% one finds (#=0.1,2,...)

Beis) = n(n + 2 (n+3) wY,
Blw ! =+ (n+ 3t D 21

42

and B, ™' = B!w; ™) = 0. Hence, by repeated ap-
plication of the operator 81 we can create all states
ahove the first excited state ¥~ of H__,

13 o
w,{_‘fwf s (B w7, (22

Pnl(n - 2) 1 n 4+ 3!

where the normalised state ¥~ is given in (16).
With the help of (21} it can be shown that -, B and
BT satisty the following commutation relations,

[H..Bl=-B, [H_,B'1=8,
[BT Bl =5H_ 3H" (23)

and thus the symmetty algebra of the CES problem
H_ is a guadratic ome, Let us note that the alge-
bra {23) as it stands is only defined on the orthogo-
nal complement of the kernel of H_. That is, on the
space spanned by the excited energy eipenfunctions
of H_ {cf. Fig. 1. However, because of the relations
H_w, ™' =B}~ = B'[ ™) = 0 the domain for this
algebra may trivially be extended to the full Hilbert
space L?(R). Nevertheless, the state ¥ ™’ cannot be
created via B from the ground state ¥ ™' and vice
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versa ¥, ' cannot be reached via an appication of &
on %!~ because BT = )

Mext we consider the case & =2 in (9}, As inthe
previous case wi lind bere that for a particular choee
of the nuw two parameters g and g2 the potential ¥,
reduced to that of the harmonic oscillator. To he more
caplicil we have

.J:z 0
V,I;J-']=?+§. (24}
. ¥ o odAmmiim-m)—-2-g
Vo(x) = — : -
ix) 7 waEe

_dmm/(e—g) 42 Amxt
1+ gox? (1+g22)°

dgx? ”
ii BN L

; (25]
(14 gxty® 2

where we have msed the following parameter sclin V.,

g2 =24 /873 (26)

For this set of paramerers we can oow obrain (also via
SUSY) the spectral properties of H_ with polential
V_ as given in (25). Because of unbroken SUSY we
have (m=0,1,2,...)

B =2-+/8/3,

E~'=0, Ell=r+3,
T x = Cll+gxt) !

% (1+gox'1”
P S (x) = (n e 5) TR ATE Y (1)

Vexpi—x%/2),

_exp{—4/2)
S Haln + S)

Ty 3
« |:H,,-_]{J."ﬁ % (i (. AR \"H,ﬁ{:}}

1% 1+ paxt s |
(27

Thus V_ as given in {23) is vet another CES potential,
that is, exactly solvable for the particular choice {26)
of the two paramelers g) amd g1

Iny this case the algehra corresponding to {23) is
given by '

|H_. 8t =BT,
IHE {28}

[H_.Bl=-E,
[Bt.B]=9H -

where B and 87 are defined as in (200 but now with

| d 2 2
e ( PN, ) i SRR - oy
dx [+ g x5 14 gax®

Similarly, we have retalions analogous to those given
in (21} where the tactors (n=2), (a+3) and t 443
have Lo be replaced by (n+ 4%, (a+5) and (n + 6],
respecltively. Finally the relation analogous o (22
reads

{28

e / 415
w1 = \, W+ 430+ 5)
n=0,1..... {301}

@) ¥,

and the ground-state wavefunction is given by (10)
with ¥ =2 and parameters (267,

Clearly if we consider higher values of &, we can
oblgin further CLES polenlialy which are SUSY purt-
ners of the harmonic oscillator in one dimension, The
underlying symnetry ulzebra for the excited states will
be of the form

[H_.B|=-8. [H_.B'| =8,
[R,B] =aH . —3H" (31

where e is soine constant depending on the & poreniial
parameters g1, g2, -. .. gn-

4. Construction of CES potentials for broken
SUSY

So far we have studied CES systems for unbroken
supersymmetry. 1o this seetion we shall construel CES
potentials which are SUSY partners of the radial har-
monic ascillator with broken SUSY. In other wonds
we will now consider quantum mechanics on the half
line x 2 (. The Tamily of SUSY potentials which we
will consider is a generalisation of the previous one,

N

.9 15
wq11_r+L1+g; :“x L oy30. (32
I'

The commespending zero-energy solutions tead accord
ing to {4)

”
VaE (x) = Cx P N enpl £27/2) Hf b g )b

(33)
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Clearly, because of ¥ = 0, neither ".""ﬂr' Y onor ‘!'-"é_] are
normalisable and bence SUSY is hroken.

Here let us only consider the siimplest case & =1
for which the partner potentials read

. I_ ¥iy+ I_]_ 2ye + 3y —2_|2’y—-—'.?
=5t ag 1+ 212 T
{34}
P w1 4+ 2 ¥+ 35
Py ;'; B, 2
4gix? L mta =2 5
{1 +gxt)* 14 gpat

Obwviously, for g9 = 2/(2y — 3} the potential Vo re-
duces to that of the “radial harmonic psciflator”. That
is. the effective radial potential of a theee-dimensional
isotropic harmonic oscillator for a given angular mo-
mentum ¥ Note that we do not limil ourselves to in-
leger values of y but allow for all non-negative real
values ¥ = . The spectral properties of this one-
dimensional quantum system are well known [1,12],

EV' =2n42y~5, n=012...., {36)
'I E'.n‘ T
i+l = —
i ¢
w LY 0y o7 exp( —x*f2), (37}

with LT denoting the Laguerre polynomial of degree »
and parameter a [12]. Therefore, because of broken
SUSY by {7y and (8) we have

El ' =2n+42y~5,

1
(=) = lyet 11 38
L TTSA {38)
where

1 d ¥+ 1 2oix )
Al - —=x~ + 5
\ﬁ( dx * X 1 4 g xf

Thus we have found yer another CES paotential, note
that gy = 2/(2¥ — 3}, which i5 associated with the
radial harmonic oscillator, See Fig. 2 for the graphs of
the twa partner potentials (34) and (35},

With the help of the annihilation and creation oper-
ators [ 19) for the harrnonic oscillator on the real line
we may introduce annihilation and creation operalors
for the cadial harmonic escillator [12],

W T T T T T T
'.!!r'-:| 1
1

w1 -

(S 3}

(5]
T
I
1

wrEk o ey — . - =]

3 3 34 1

Fig. 2. The CES potential {330 (sclid line} and its SUSY partner
(3d) {dashed Hnc) for v =1 and g =2/5 The hardzontal lines
indicate the fimt four eigeovalues of the cormesponding SUSY
Hamiltonians H4 . Mote that due to broken SUSY the creation and
aenitilation operators DT and D acl o all eigenstates of I ax
indicared by the vp and down amrows,

N, D% 4 vl
I
it B2, (39)

2yt
which together with A, for (34) obey the following
linear algebra [12],

FH el =-2c,
le,c'] =4(H, -

The operators ¢ and ¢! can be shown [12] to act on
the eigenstates of H, as follows’,

[Hc'] =2¢!
¥ =742, (40)

L S W o B
et = 2min 4y o 12w (41)

n—1|¢*
Cwitt= 2k 1 e+ ¥ L3P 4

To determine the algebraic structure associated with
the CES potential § 35) we now consider the following

operators,
D=aAteA. Dt=alcla (43)

where

1 d | 2
gt e b T e AL
V2 dx £ 1+ gix?

with gy = 2/(2y+3), The operators D and DT act Tike
annihilarion and creation operators oo the cigenstaies
of the partner Hamiltonian & .

I Mote that in By, {18.3.13°) of Ret. [§2] the prefactor on the
nght-hand side should read -2+ /50 b o — :';_].
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DE V= —Alnin+y+ 12 n+y = 3/2)
x (44 5/01'2el
D=l = 4 (n+ L} n+y+3/2)
x (n+y+ 52 (n+y+ VIR 4

Henee, we also have

v = (S 4, 02,0+ D),

x (DTywd {45)

with (7). = I'(z + n)/f{z) being Pochhammer's
symbol. The normalised ground-state wavefunction
explicitly reads

0 VIY+ 5
! 2
VT
x (1 + _2_5_1__;) Fexp(—x%/2) . (46)
1+ mxs

With the help of {44} it can be shown that £, D7 and
H_ obey the following non-linear algebra which is of
cubic Lype,

VH__ D) =-2fi, [H..pY1=2p7,

[D7, D] =—8H) +(12y+42)H? - (24y4+52)H_ .
(47}

In vonirasi io ihe unbroken SUSY cases s Sy aunstiy
algebra is realised over all the states (cf. Fig. 2). As
in the example of unbroken SUSY, in this case also
we can ohtain {urther CES potentials by considering
N=23,...1

£, Concluding remarks

In this work we have constructed a number of CES
poicatials, which are the pariner potentials of the solv-
able lincar and radial harmonic oscillator. Obviously,
the present approach can also be applied o other
solveble problems characterisad by a shape-invarant
SUSY potential @. Sce, [or example, Ref, [ 10]. Using

then the ansarz W{x) = & x) + f(x) the potential

Volx) = LIt (xn + ' (o) — 2
= 2B(x} f(x) + F(x)] (48}

will be exactly solvable if the function f obeys tha
generalised Ricran equation

Frxy + 24800 flx) + Fixd = const {4

for certain values of parameters contained in ¢ and f.
Then the partner potential

Voix) =% '@ (x) — &'(x) -2 {x) - const,
(50)

will becotne a CES potential. The corresponding spec-
tral properties of H are easily obtainable via the
SUSY relations {5)-{8}. Note that the present ap-
proach differs {rom the usual one [4,6], which also
leads to Eq. (49, however, with a vanishing constant.
Whereas tn the usual approach one weks for a solo-
tion of (49) for a given & and vanishing constant*
the present approach looks for soletions of (49) with
# non-vanishing constant but particular values of pa-
rameters contained in 7. Another difference between
the present approach and the usual one is that the for-
mer s also applicabie 1o cases with broken STISY.

Iin this paper we have also oblaingd the algebraic
struciure associzted with the newly found CES prob-
tems. In contrast to the usual exactly solvable prob-
lems which are associated with linear Lie algebras,
these CES problems can be related to non-linear al-
gebrus. To be more explicit, the CES potentiaks which
are SUSY partners of the tinear oscillator will give
nse (o 4 guadratic algebra. In essence, this is a conse-
guence of the cubic type of the ladder operators {20)
for the CES potcniial. In contrast 1o this, the Jadder
operators (43) for the SUSY partners of the radial
harmonic oscillator are of guartic type (& fourth-order
differential operator} and hence will lead to a cubic
algebra. For other shape-imvariane potentials there are
no such ladder operators known and, bence, we do not
expect to find for the commesponding CES potentials,
obrained via the general method outlined above, some
non-linear algabraic shucture. Clearly, the linear and
radial harmonic oscillator treated in the present work
arc very special in this respect.

T s case, (493 actuslly reduces o Bemonlli's oquatien,
which 15 much easier 0 solve,
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Finally, iet us note that these types of symmetry al-
gebras are not totally unknown and have been stud-
iod hefore | 13-16] in connection with other quantum
models, However, 1o our knowledge, the present work
is the first fo related such non-linear algebras with
SUSY and CES problems,
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