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IRTRODUEGETIOCN

Ahe origin of the concept of a generalized inverse
i - -
dates bacdk to as carly as 1920 when Maore defined the
generalized inverse of a maﬁrizﬁ:' vhich 1s equivalent to

tlet & bea m > n matrix

over the field of comp.lex. nunbers, “’Ihgn & 435 the gcheralized
inverse of A 1f AG is the orthogonsl projection operatar
projecting arbltrary vectors onto the column space of A and
GA 1is the-orthogonal projection operator projecting arbitrary

frectors omnto. the column space of G,

Mobre (2933) discussed ¥his concept and ita properties
in some detail, Tgseng (1949a,1949b, 1956) discussed about
generaiized inverses of ‘bperwa;{:o'.i_cs in more genheral spaces and
Bjerhammer (1951) discussed the éenerél;zed inverse of a mabrix

in connection with an application to geodetic caleulations,

Ynaware of the work of Moore !and'a*bhers, Penrose (1955)

defined a generalized inverse oi‘ a matrix as folloys 2

SRR ¢ Let & bea mXn -nmatrik
over thé field of complex numbers, Then & s a generalized
inverse of A if (1) AGA = A (ii)_! GAG = 8 (111) (AG)* = e
and €iv) (8a)* = @A, PR T
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Penrose (1955,1956) showed that for cvery matrix there
exists a unigue generalized inverse, discussed several of its
important properties, gave applications to solution of matrix
equations and suggested a practical method of compﬁtation o)

the generalised inverse,

As was pointed out by Rado (1956) Moore's definition
of generalized inverse is ecquivalent to that of Penrose,
Such generalized inverse is called the Moore-Penrose inverse

i+ = 5 , . .
and A is used to denote the Moore-Penrose inverse of A,

Rao (1955), unaware of the eérlier ér contemporary
work, constructed a pseudo;inverse of a matrix which he used
in some lcast squares compﬁtétions. In a 5&pér~in 1962, he
defined a generalized inverse (g-inverse) as follows, proved
some interesting properties and gave applications of gFinverSes

to Mathematical Statistics,-

Definition 3 (Rao) ¢ Let A be a m X n matrix,
Then & n >Xm matrix G 1is a g-inverse of &4 1if x = Gy
is a solution of the linear system 4&x = y”'whencyer it is

»

conslstent,

Rao showed -that Definition 3 is equivalent to
Definitio  "R S Let A bé a m>n 'matrix;‘ Then

a n >=m patrix G is a g-inverse of A if AGA = Al
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A g-inverse of a matrix (in the sense of Rac) is in
general not unigue, A 1is easily observed (from definitions
o and 4) the class of all g~inverses of a mabtrix A contains
A", Rao (1965, 1967) developed a calculus of g-inverses,
¢lasgified the g-inverses according te their use and according

the properties they possess similar to those of the inverse
of a nonsingular matrix and suggesbted further applications to
Mathematical Statistics, Mitra (1968a, 1968h) gave an cquivalen
definition of a g—inversé, develcoped further caleuvlus of
g-inverses, used g~inverses to solve some m@trix‘eguations of
interest and explored the possitilities of some new classes of
g~inverses with applications, In a serics of papers; and a‘
monograph Mitra and Rac (1968, 1970) pursued the research on
generalized inverses of matrices and their applications to
various scientific diseciplines,

Scme other principal contributors to the theory and
application of generalized inverses are Ben lsrael, Greville,
Erdelyi, Odell, Bose and Khatri - to mention only a few,
References to impoftant.éontributions madco oy Ehese pecple and

others will be found in the ronograph by Rao and Mitra (1970).

A g-inverse, in the sense ¢f Rao, need only to satisfy

a much weaker condition than the Mocre-Penrcse inverse and
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hence, in general, is much easier to compute, As has been
shown by Mitra and Rao, for several applications Moo re~Penrose
inverse is not of paramount importance and any g~inverse
satisfying weaker conditions would serve the purpose, In this

thesls also, we point out a few such spplications,

Each chapter of the thesis has s detalled introduction

to it, Here we Jjust mention briefly the problems considered,

We start with obtaining a'characferisation of the Moore-
Penrose inverse, In chapter i, further, we discuss the inter-
relationships of g~inverses of a matrix A and the ﬁowers of
Aﬁﬁk, settle a conjecture of Mitra on g-inverses with specified
manifolds, solve some matrix equations of interest suggesting
an\application of these to distribution_of guadratic forms in
normal variables and consider several o%her problems of interest

in the calculus of g-invcrses,

In chapter 2, g-inverses of (A4 ! a)-are obtalned from
those of A and vice versa (a 1is a column vector) and an
application of these results to-recalculation of least séuares
estimates for data or model changes is demonstrated, Also a
result of Rohde (1965) on g~inverses of partitioned matrices
is extended, It is shown that his result hblds in ﬁore general

set up than the one considered by him,


http://www.cvisiontech.com

v

In chapter é, the problem of simultaneous reduction of
several hermitian forms is considered, We obtain solutions

to .this problem in several cases, A characterisation of semi-

simple matrices with real cigen values is also given,

Chapter 4 is devoted to the computations of generalized
inverses, Here two algorithms are suggested one of which 1is
the usunl Gaussian Eliminatlion type algorithm useful in comput-

ing g-inverses of simple matrices and theé other using Householder's

 transformations,” The second, we believe, will be useful in

computing‘gvinverses fairly efficiently, Two examples, worked

out using the sbove algorithms, are alsc presented,

The following notations are used in the thesis, Matrices
are denoted by capital letters  A,B,2 etec, and vectors by lower
case letters x,y etc, In chapters 1,2 and 3 we consider

matrices and vectors with elements defined over the field of

conplex numbers, In chapter 4 and section 2,6 we consider
matrices over the field of real numbers, Heowever, extensions

of these results to the complex case are straightforward,
Wull matrix is denoted by O, The symbols ¥, E} and 23 denote

'for all', 'there .e;z«:is_ts'-I and 'such that' respectively, E

denotes the n dimensional Unitary (or Euclidean) space,
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Lot .i.L =

(a

i

vi

) be m >Xn

natrix, Some functicns of

A .and the symbols used are described in Tabie 1,

Table 1
Function Symbol Description
Transpose -

Conjugate
transpose

Rank

Trace
Colurm space
Orthogonsl

complanment

Adjoint

Determinant

A*

R(A).

tr A

L)

matrix with (i, j)th elementzaji

matriz with(i, j)th elerent :aji

the nunber of independent rows

or columns of 4,

> T
=ik

vector space generated by the
colurms of - A ’

(o (4) =~ﬁmtﬁl) is orthogonal
complenment of Ms(4)

watrlx such that (x, &y) =
(aF x,v) ¥ x,y -where (.,,)‘
i Jares preduct,
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Definitions of special matrices are given in Table 2

Table 2
Type of matrix A | | | . Definition
1. Symmetric . A= Al
o Eermitian | , - A= AR
3. Idempotent | 2% = 4
4, Pogitive definite (p,d.) 7 x'Ax > 0 for all x
5, Positive semi~definite(p.s,.d,) x'Ax > 0 for all x
| x'Ax = 0 for some x
6, Non-negative definite(n.n,d.) xtAx > 0 for all x
7. Semi-simple  4=7PAP L for some P oang
A diagonal
8, Orthogonal ?7 AAY = A'pa =T
9. Unitary | COAMF = AR =T

4 classification of g—inveréés is given iﬁ Tables 3 and 4,
In the conditions G denotes g g~inverse of A of order m ><n
and rank r, PX denotes the orthogoﬁallprdjection operator onto
M(X), TFor a matrix 4, {A“}, {A;},{Ag} and {A%} deno te
respectively the class of sl1 g~inverses, the class of reflexive
g-inverses, the class of least squares g-inverses and the class

of minimum norm g-inverses respectivelv.
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Table 3 : Various ftypes of grinverses

i
.

Hotation equivalent conditions purpose
Ail GA=1 _ solving consistent eguat«
' " ions Ax=y when R{A)=n
A%l AG=T1T -~ solVing consistent equats
] ijons x'f=y' when R(&)=n
X AGA = A solving consistent
equations -
A - AGA = A, GAG= G © golving consistent
equations
N ‘ =i '
Al (1) AGA = 4, (GA)" =G4 minimum norm solution
(ii) GA =P A.#

Il
~
=8
[op]
e
il
i
[op]

(i) AGA least squares solution
(ii) 4G = P

g (1) AGA =. A, GAG =

oL G minimum norm least squarecs
(Gﬂf#&= GA, (AG?%=AG solution
(i) AG=>P; GAS P,

A matrix which is both a minimum norm g-inverse and a least

squares g—inverse of A 1s denoted by We some times”

7
£r°
consider two positive definite matrices M and N of orders m>ma

n >n respectively and consider the specific inner products

1

(x,y) = x*My ¥ x,7 ¢ B and (x,y) = x*Ny" ¥ x,y e B, In this
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case, minimum norm g-inverse, least sguares g-inverse and

minimum noym least squares g-Inverse cf 4 are denoted by

ANy AE(M) and A:;N respeetively, THw detailed conditions

vhich thesc g-inverses satisfy are given in table 4,

Table 4 ; Basic types of inverses

Notation

Equivalent conditions

purpose

()

(1) €AG)* = P,
(11) £G4 = 4, (GA)*N=NGA

(1) 4= P,
(11) AGA= 4, (AG)YMME=MAG

(1) 16 = P,, GA =P,
(11) AGh = 4, GAG = G
- (GA)*N = Naa,

(AGY*M = MAG

rinimum Nencrmlx#Ms]
solution of consistont

equation ix = y

M~least squares

[ (ax~y) *M(sx-y) ]
solution of lnconsis-
tent equations ix = y
niinimum N-norm and
M=lcast squares

solution of Ax =y
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CcH APTET ER T

CALCULUS OF VARIOUS TYPES OF g~INVERSES OF.MATRICES

1,1 Intrdduction and Summary,

Over the past decade ané a half several types of
generaiized inverses of singular and rectangular matrices
have been developed depending either upon the uses or upon
the propertles which they are required to possess similar to
those of the inverse of a nonsingular matrix, Along with
the introduction of several new types of g-inverses, develop-
ment of a calculus of these inverses has also been in
progréss. These studies have unfolded newer properties of
these g-inverses hitherto unknown, established interconnections
among the different types of g-inverses and probed into
computational aspéété 6f7the g~inverses, In this chapter,
we obtain several results on the calculus of g-inverses of

matrices,

In section 1,2, we give a characterisation of Moore-
Penrose inverse, the most well-known among all generalized
inverses, Motlivated by the beautiful resuit of 'Rao and
Mitra (1970),"‘ if G= A then G is -Ai if and only if
GG?%= (Aﬁtﬁ)_ "’we investigate in section 1,3 into the

conditions GGj&:should satisfy so that G= A, or A
W e
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under the assumpfion thath\G = A, In this seetion we alsc
obtain some results connecting g-inverses of A with those
of powers of NG and AAF, In section 1,4 necessary and
sufficient conditioné on A are obtained so that every

g-inverse of A 1is a minimum norm (least squares) g-inverse

of A4,

In section 1,5, we determine the class of all g-inverses
with power property of a matrix A when R(A4) =~R(A2) and
settle a conjecture of Mitra (1968) on g-inverses with

specified manifolds,

We show that a matrix is unicuely determined'by the
class of its reflexive/least squares/minimur norm g—inVerses,
in section 1,6, Using this we provide an alternative proof
of the result that a matrix is uniquely determined by the
class of its g-inverses, (This result is due to Rao and

‘Mitra, 1970},

In section 1,7, a theorem of Reo (1967) on projections
is extended, An inner product is explicitly'specified which
converts virtually disjoint subspaces into pairwisé orthogo-

nal subspaces,
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Section 1,8 isrdevoted to obtain a few results on nnd
matrices, Here the class of all nnd g-inverses of a nnd
matrix is determined, In section 1,9 a few matrix equations
of interest are solved and an application of one of the

results to the distribution of'quadratic forms is suggested,

1,2 A characterisation of Moore~Penrose inverse,

Several characterisations of the ceclebrated Moore~Penrose
inverse are wéll*known (Moore, 1920, 1935} Penrose, 1955;
Householder, 1964; Rao, 1967; Mitra, 1968a ~ only to mention
é few,). In this section another characterisation of Moo re=
Penrose inverse of A is given through a g-inverse of A
and that of a power of A#tﬁ, In this section we consider
the inner products (X,y)m = x*My and :ki,y)n = x*Ny in
B and BT respectively, Accordingly, A#¢ is definea by
the condition (4z, y)_= (x, Aﬁkﬁ)n ¥xe® and ye B
where inner products are specified as above, We prove

fheorer 1 ¢ Let A be a m >n matrix, Then a

n ~m matrix G is 4" if and only if one of the following

equivalent conditions holds,

Hyp _

(1) &= 4, and (GG [(a% 0P

wakernh:
[yvatene
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(11) ¢ = 4, and cF(ae™ )P = [(aFaP 277

for some positive integer p,

Progof @ The 'only if' part not only holds but is indeed

too modest as it is well-known that if G = Af

clearly & and (6% = [(4#W)PI* ang

¢* (ae™)P = [(aF P FTT 5

To prove the 'if! part, consider a general singular

value decomposition of A (See Rao and Mitra, 1970),

M n {
A= U |
0 ]

0
0

Vk

or all positive integers

then G

is

(1.2,1)

where U and V are matrices of order m > m and n > n

respectively such that U*MU = I

is a diagonal matrix of order » ><7p

and

VAT ly = T

with diagonal elements

as the positive souare roots of the ronnull eigen values of

Ria

A where r = R(4), low,

o1
G= 4, <= G= Nty
F

D“l

s

3

FDJ |

¥

J*DF# |

U*M

v

(1.2.2)
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Define for s =.1,2,...

- % + s - % ~ 8
%y =B ¥, D CL 2080
where YS 2 Ja® Af g Jdzwodd snd TER 4F £ 1S ever,
We need the following lemmas,
Lemma 1% Let G be as in (1,2.2). Then for every
positive integer s,
[ .-2s _-2st % %
{ B2 B D {(T+ X5 ). G+X)-T D ;
#.5 _ ~1 } =4
(GG )° = N -V |
| 2 g q 2
LFD {@+ X, g )e. (I4X)} D
and
F =2s-1 ~2Zgr L o -
D +D {(I+X (I+X1)-I}D s
(}#(GG#’)S =T V*
'J* % =1 2ls pa - % ;
D Ja+X, ). (T+X) 4D ._j

where , represents an unspecified submatrix in the last

n-r columns,

Lemma 1 s estahlished by induction on s,
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Lemma 2 ¢ The matrices £y s = 1,2, ¢.. defined in

(1,2,3) are semisimple wlth real nonnegative eigen values,

Proof: Observe that YS end hence ,D“Yg D*-afe

hermitian and nnd for each s, Therefore for each s,

there exists a unitary matrix L. such that LI D ¥ D L=a_

where A

is a real diagonal matrix, Define
‘ .

S
- 2 45

Ll : » e £ -
PS = D Ls' It is easy to check that PS Ks PS AS,

This completes the proof of lemma 2,

Coming back tc the proof of the main theorem, now

observe that

B I
(WFpp = wlv | Tk
L T 8 LB
[D2p+l 0
ma (4FpP F=wly U

5

LO 0
Hence in view of lemma i ' by

(GG#)P = (A DPT o™ B = £ e

J | 3
-...2p+4-2— = 2 3 3
D {(T+ X-Ep-l) e (I & ) = I} D =@ =
T+X, 1) .. @+Xx)=1= iITl lI+Xl=1=
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Xi=0 for i= 1,2,,..;2~1 in view of lemma 2,

Since p 2 2, X1=0 and X2==O’ Now Xl=0$

J=10:and X2 = 0=>F = (0, This completes the proof of
1if! part of (1), :The proof of 'if! part of (ii) follows
on similar lines as that.of (i),

Thus theorem 1 is established,

+

Corecllary ¢ Let A be a m >n matrix. G= A" if

and only if one of the follmﬁné equivalent conditions holds,

(1) ¢.= A; and (G#G)p =[{ A Aﬂ)p]_ for some
positive integer p > 2,

(11) &= Aq ~and G(G#'G)‘p =[(a A#)pA]- for some
positive integer p,

Proof: The corollary follows tr1V1a31y from theorem 1
once it is observed 17 O Lo () A <= G (A#) and
(B) 6= & <« ¢Fo ()t

One can ask the following question, If in conditions (i)
and (ii) of theorem 1, G = A, is replaced by G = 4 (any

g-inverse of A), coterls paribus, will G be ;A_Pm ¢ The

e

answer 1s in the nogatlve In fact G, then, may. be nelther

AE novr %:1‘ This is exhibltec &0 the follovrlng example, Take

i

" | {1 ~1 . [1 1y
fas N. - I,A:‘" O O a.n-d [-T = fo -a‘- ;E °
L 2
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A straightforward computation shows that G = &,

c#ock = (4% anty” but G # A_é. and G # A .

. Theorem 1 tells us the following, Let & = A. If
further (GG#)p = [(Aﬂ‘A)p]_ for some positive integer
P22 or G#(GG#')p = (At p? ¥ 17 for some positive
integer p, then indeed (GG#)S = [(4#* 0% and |

] ! -
G#(GG#) = [(A:H: A)S A#] for all positive integers s,

1.3 Connection between g~inverses of A and those of

powers of A#A and AA#

The motivation for the results presented in this section

is the following beautiful theorem of Rao and Mitra-(1970).

' Let ¢= A, Then G= 4, if -and only if ¥ =(aF 7,

We prove

4

Theorem 2 ¢ Let G= A, Then

(a) G A if and only if 1GG#'=“ (_A#A)";

¥

i

B G

Al

A_EI‘ if and only if GG#-: (A#A);

- . ’ # ’ _
(e} G—'—'—_‘ Ak.,-m if and onl_y if GG = (A#ﬁ?ﬁm -

(a) A" if and only if o = (A#'A)J_r-.

m
iU
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Proof of (&)* ! "Only if'part follows trivially once

it 1s observed that G = A_C = ;7 Ag = A7 Y To prove the
#

—

. Then GG7 =(a™ )

= A—.
- A#AGA -

'1p' part we proceed as follows, Let G
(A#AG-A"‘") (;ﬁ{ AG - '*)3{7 * 406

oty L =0 = A"’?: AFA6 = g = A% . This

completes the proof of (a),

Proof of (Bh): Proof of (h) is complete in the sl o §
_ o
(a) once it is observed that R{(G) = R(A) <= R(GG#):R(A"’L’ A,

: P:r:ooflof fc): For the 'cnly if' part observe that

b= 4, = 47wt aceT = aF P = 1#,

£ m
= 667 = (A#A)é‘ - oo = (a#

).

This gompletes the proof of ‘'only if' part,

For the 'if' part, we first observe that G = & and
GG#= (A#A)" = 3 = A; in view of (a), Further,

¢ = A; eI o™ (3% = Fuae®= 47

.\;1‘&(} = G = %n,

This completes the proof of (c),

* As menvioned in the beginning of the section, theorem 2(a)
is due to Rao and Mitra (1970): We reproduce their proof
for complecteness, ‘
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Proof of (d.)' (a) follows tr1v1a11y from (b) and- (c)
This completes the proof of theorem ), i '

Corollary ¢ Let A4 bea m ><nv-.matri;s{, Let the

] : m 1] . R . 2
ilnner products in E and K be as defined in section

1.2, Let G= 4, Then
(a) G = £gyy if and only ir e ler = (aeMa)T
(B} '7G= Ly and G = Aegy'! if.and only if

oLex = (arMa)” 4
£ @y

= o] . =1 x = * yt
(¢) G hagg 1 and only if ,GM G (& MA)N_l

The corollary féllows_ trivially from theorem 2, The -
proof of the folloﬁng theorem follows in the same lines

as that of theorem 2, We state

Theorem 3: Let G= A, Then
#Fa = ¢ #

(a) G= A if and only if G ALY

e Iy . Foo P
(p) .G— Ny, if and only if G:,G_, (AA -)ﬁm
(¢) G= & 1f and only if @76 = (aa™)*

We now prove

Theorem 4: (a) G = Ly = ¥ (e IPa [ (aF )P ey

for all positive integers p,


http://www.cvisiontech.com

11

-+ +f | - et i
() & (6P = [(A" AP £¥]7 for some positive
Integer p and Gf”‘G = (AA#)E RSP

' — ! AL ; b i, m .
Proof of (a) % G = Af’m = AA#AA# AA# G#GG#: AA#AA#G#

= ILA#A, Hence the result is true for p = 1. Suppose the
result is true for p = 1, coesDye We shall show that then

the result is true 1c‘or p = po P l.

' 1 o 5o, il 'ﬁ
6= dyy = A(A#A)p L oa#a ol A#(G#G) 5 G#
canty2  act pfo (# pto F(HF oo HF ¥

1l

= (AA# = A(A#A)po oo = A(Aeaﬁé”ux)2 (A#A)poh
# p0+l

Pmof of the Statenment "G~—A£ = o (Gcﬁ‘;'f)p=[(M’*A)pﬁﬁe’ﬁ];1

follows on similar lines and the detaglls are omitted,
Thus (a).is establishad, 4

Proof of (b): Observe that &

4

B (AA# );{"m' = (G#G)p

= [(an™ P17 = (aa#)P (c#Fo)? = (oF )P ()P =
5% st yp (G#G)p o

r
L]

Hence, (G#G)' 2 (AA#);m together with G#(GG#)p =
[aF P 1 #F1 = (a# P WFe (LF P A#G#(GG#‘)I’(A#AJP I
P e g - £,

An appeal to theo rem 3(b now compléetes the proof of
pp n 3(b)_gow comp D

o T
Lo T 805 NG\
f 1 o% ..P , IAA;

\ b;o.‘,:hh cuvi/%-/

a
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This completes the proof of theorem 4,

Note * The condition G#G (AA#) in theorem 4(b)

can be replaced by the co'ndition(}(}# (A#A)ﬁm

We conclude this section with the following remark,
In theorem 4(b) the condit'ion, ”G#C.‘r‘.'; (AA#J"- '" canmot
be replaced by a weaker condition, In fact, G#G—(AA#)
and ¢ ¥ ao¥ = (A#AA?F) need not even 1mply that G = A,
This is demonstrated 1n__"the- follow1ng example,' Take

=

i (A5 -]é . /8/20 : J
A= . G = M=N= I’
0 o o /3780 + /3716) 2,

1.4 When is every g~inverse a minimum norm (least

squares) g- inve rse ¢

Rao (196'7) stated that if the rank of a m =n matrix
A is n, then every g*anOI’SO cf 4 1is a minimum norm
g~inverse of A, In this section we obtain a necessary and
sufficient condition for every g-—inverse'clﬁ-f» A to bé a

minimum norm (Qr Least squares) g-inverse of A, Wé need

Lemmg 3 ¢ Let A be & m =n matrix, . Then there

exists a n >2m matrix U such that


http://www.cvisiontech.com

13
() AU =0 and (p) UA# O

if and only if 1 < R(A4) < n-1,

Proof : Proof of 'only if! part is trivial, To prove
the 'if 'part we.prOCeed as follows, Let R(A) = r where
IS B = n—l; There exist two nonsingular matrices ' B

and C such that

where E is nonnull and F is arbitrary,
Clearly, AU =0 and UA# O,
This completes the proof of lemma 3,

Lorollary : Let A be a m Xn -matrix, There exists

a n ~<m matrix U such that

(a) AUF O and (by Ua=0

if and only if 1 < R(A) < m~1,
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The corollary triviaily follows from lemma 3,
We now prove

Theorem'5 § Let A be a m Xn matrix, " Every
g-inverse of A 1is A; if and only if R(4) is either
¢ or n,

Pooof @ Proof ¢ f T8 parh follews Erivielly once 16
is observed that if R(4) = n then every g-inverse of A

is a left inverse of A, To prove the 'only if' part we.

proceed as follows,

If every g-inverse of 4 is a minimum norm g-inverse

of 4, we have |
(G + U - caUAG) Ax%= 2% (1.4.1)
where G 1is a g-inverse of A and U 1is arbitrary;
From (1.,4,1) it now follows that
(I - GA) UAA_L#'——- g, . (1.4.2)

Let if possible 1 <.R(A)} < n-l, Then by lemma 3 there

exists Uj such that AU = 0 but U A # O, From (1.4.2),
it now follows that U A,A:#é GAU_ aff= o which in turn

implies that U, 4= 0,
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This 1s a contradiction since we chose U, > U 4# 0,
Hence R(4) is-.either n or o,
This complefes the proof of theorem 5,
The following corollary 1s easy %o prove,

Corollary s Let 4 be a m >n matrix, Then every
g-inverse of A is a least squares g-inverse of A4 if

and only if R(A) is either m or o,

Incidentally the main theorem of this section can
also be proved using general singular value decomposition

of a matrix, We omit the details,

1,5 A conjecture of Mitra on g~inverses with specified

mgnifolds,

Let G be a g—invefse of a matrix A ‘such,that either
ME@) = M) “or M(5*) = M, (A*), Mitra (1963b) pr@ved that
in such a case, for every positive integer P, PP P = 4P
and GPAPEP = 4P, (Henceforth we shall find if convenient
to call a g~inverse G of A with this proﬁerty as a
g~inverse of 4 with power property,) He then raised the

following question; '"'If G dis a g-inverse of A with power
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property does it follow that ecither M) = M or
JMo(axy =M (ax) s v

The answer in general is clearly in the negative,
Tt R(A) # R(A%), then it is knoun (Mitra, 1968b) that
there does not exist a g-inverse G ‘of A such that
either M.(G) =M (4) or JL(G*) = M (4*), However, the
Scroggs~Gdell pseudoinverse of 4, say G, indéed'éxists
for all matrices A and possesses the power property

(Sce Scrogegs and Odell, 1966),

We shall now give a counterexample even in the case
where R(A) = R(A%), Before o ddwthis, we determine the
class of all g-inverses of A with power property where
R(4) = R(A?), Beforé we proceed any further, we recall
that 1f R(4) = R(AB), the Jofaan representation of A

can be written as A =1 | L where ¢ and L
1 0 0
are nonsingular matrices, We prove
Theorem 6 ¢ Let R(A) = R(A°), Then G is a g-inverse
' | ' - et TV
of A with power property if and only if G=1L L
FFCJ

where F and J are arbitrary subject tothe condition

C 0
=3
that JF = 0, C 1s nonsingular and A= L [O ;} L
i
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(4s for ewxwuplsz in Jordan representation of A,)
Proof &
Proof of 'if' part,

We need
Len * Let G be as defined in Theorem 6, Then
_1.P 2 DR b
(¢ h . d
GP = L—l
- ~1,P71 ~1,P7%
e ) : F(¢,™) @

-

| g bt G
for all positive integers op, Where (C Yy and (C )
are interpreted as C and 1 respectively,

Proof ¢ Lemma 4 follows by induction on p,

In view of lemma 4, "if' part of the theorem follows

vy straightforward computation,

Ptoof.o'f "MonlsysE5hie pért;r

Observe that any g*ihvnrs G of A can be expresscd
[l . 7]

Mt
arbitrary, Now,

as G= 1L L"1 where f,F and H are

GAG = G =>H = FCJ { and A%GEA° = A% == JF = o,

This completes the proof of theorem 6,
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The followlng corollary is easily establiéhed,

Corollary ¢ Lett A be a .n >n matrix, TIf
c 0

R(A) = R(4%) = n~1 and A= L L"l, then every
- | O 0
g-inverse G of A4 with power property can be written as
2] O 0 . |
G= L L where either J or F or both
EREY
are null,

From theorem 6, it clearly follows that the class of
g-inverses G such that either M (G) = JNK(A) or
Meaxy = jy((ﬁ*) -1s only a subelass of the class of 511,
g-inverses with power property in the case R(4) = R(4%).
However if R(A4) = R(Az) = n~1, then thesé'two classes éfe
identical, Thus the answer to Mitra's query is in the .

affermative in the case where R(4) = R(Ag) = n-1,

We conclude this secticn with the following interesting
remark, Let G be a g-inverse of 4 such that M(G)=M(4),

Then Mitra (1968b) proves that

r. T FP_-T
alg® =g2i Tor 211 positive integers
r] Ty TooTy r; and r, such that 57 00)
and G A = A T -
2 - Bps
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It is easy to see that if a g-inverse G of 4 satisfies
the stronger property given in (1,5,1) then clearly
Mea) = M(a), A similar result can be stated for the case

M(g*y =M (am),

1,6 A characterisation of a matrix by the class of its

reflexive g-inverses,

Ras and Mitra (1970) proved that if .{;-f} = {B‘} |
then A =3B, It is well-lnown that A = B' = 4 =3B, In
this section we show that {;;} = {B;} => A = Bj and
{fx':e } = {B{’-j = L =B, Cc')r‘responding result for minimum
norm g-inverses follows as & simple corollary, Using the

results of this section an zltcrnative proof of the result
of Rac and Mitra is also presented, We prove

Theoren 7 ¢ A= B if and only if ‘{ﬂ;} = {B—r} )

Proof ¢ 'Only if' part is trivial, To prove the'if'part
we proceed as follows, Observe that {A;} = {B;,} => R(4)=R(B),
Let. A= CD and B = EF Dbe rank factorisaticons of A and
B respectively, By lemma 2,5,2 of Rao and Mitra (19703,

G e {A;} => G = D%l Cil where D%l‘ is a right inverse of

D and Cil is a left inverse of C, OSimilarly G e {B;} =
=il _aerll

R O

G=F
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Now, {ap} = {B,} =
T Dil cils = 1 (€., mi

(1,6,2)

1
H

=] =1
and D FR EL C

irrespective of the choices of right and left inverses of

matrices involved,

Furtner (1,6,2) suggests that JF%I EEIC is one choice

i .
of Dy substituting which in (1,6,1), we have

Pl peils o =
E."CCLE=1I, (1.6,3)

We note that for one choice of Cil G_Czl = Ps, the ortho go-

2
nal projection cperator onto M (c), Putting E£l=(E*E)—l E*
in (1,6,3), we have, after some simplification,

E* PCE: E*R == E = PCE :
| (1,6.4)

=> E = B
where 8 1is nonsingular,
We have, similarly,
D= TF (1.6,5)

where T 1is nonsingular,
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&

Substituting (1.6.4) and (1,6,5) in(1,6.2)we have

18”1l - E ey s 3

Henge 4= CD = CIF = CSF = EF = B ,

This completes the proof of theorem 7,

Corollary (Raoc and Mitra, 1970): A= B if and only

gy
Proof § 'Only if' part is trivial, To prove the:’if'

part, observe that C ¢ {A;} => C ¢ {AT} => C ¢ {Bf}, Hence

Ce {4} and De §B7} = R(D) = R(C) = R(A),. In particular

then R(D) > R(C) - Rkﬂ). By a

if C= A, and ‘D= B},

similar argument, it follows that R(G) > R(D) = R(B), Hence

Il

R(A) = R(B), Cleariy,'ﬂ(A) = T(B) and (£} = B} =
{A;}-= {B;}'~ n appeal to theorem 7 establishes the
corollary, |
Theorem 8 ¢+ 4= B if and only if '{A%T} = {BET} .
Proof 1 The 'only if' part is trivial, To prove the
'if! part observe that |

{Afr} = {BEP} = a(4) = R(B),

i
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Further {A}r} = {BEI‘} = A*A(B*B)“B* = phk

= M () =M(B) = P, = Py

=> A(B*B) B*B = 15A B = Py B = B
which is thus invariant under the choice of a g-inverse of
(B*B), By result (iie) in scction 1b,5 of Rao (1965) the
invariance holds if and only if A(B*B) B*B = A, Hénce |
A= B, ‘

The: following corollaries are easy to establish,

Corollary 1 3 A =B if and only if {A%} = {BE }

Corollary 2 ¢ A= B if and only if {A;n} = {B;l}

g

Cbrdllary 3 5%

B if and only if (& }= {Bur}

1.7 Extension of a theorem of Hao cn projection,

''Let A be a positive definite matrix and let A, be
m >:ni matrix of rank iy Lo L2 reeay i Sheh ‘that
ER(Ai) = m, Then the two statements

(a) A Aj = @ for all 1,j such that 1 # )

and (o) £ = 3o (af AA)TH
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are equivalent,'' This is a thecrem in Rao. (1967), Putting
A=1 we get virtually a restatement of the celebrated
Gochran's theorem which is of great importance in distribution

of quadratic forms in normal variables,

In this section,we give an extenéion of the above
theorem of Rao and also provide an inner product which converts
virtually disjoint subspacés intoc orthogonal subspaces, In
this section diag(ﬁla Az, ..;,”Ak) represents the partitioned
matrix i-th diagonal block of which is Ai, e g om0

gll the other blocks being null matrices,

Let 4 be a m > matriz, Let A, By Dde

matrices of order m ><pi,-n ?iqi respectively,

L (1,7.1)
i=1,2 k, Write A= (4 I...0 4) and -

B LN | »

B= (By t...t B,

il

Consider the following statements °
(a) & & By = 0 for all 1 and j such that 1 # j

o= * A Tk 3 ]
(b) G ? Bi(Ai A B,) A is a g-inverse of 4

where (4r 4 Bi)" is any g-inverse of Af 4 Bi

.(e) R(A* & B) = R( &)

and (d) Z R(A’i*‘fs.) =2 R(ABi) = R( 4)
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We prove . B
Theorem 9 ¢ Consider the set up as in (1,7,1). Then

{a) => (p) if and only if (¢) holds,

Proof?*

Brgof eif "if' part,

(a) == A% 4 B = diag((Af & By),..., (4F & B))

==l = diag((A{ A Bl)“, — Bk)”)
is a g-inverse of (A* A B) whatever be the choices of

GiF X B.) Tor & =R,

Hence, (a) and (¢) in view of theovem 2,1 of Mitra (1968b)
imply that G = BDA* = Z Bi(A§ A Bi)_A{ is a g—inverse.of
i _
<Y * B ke = i MY T TOpAR ]
4 vhere (Af o B,)" is-any g-inverse of "A¥ A B, for

fo2 15,20 ey i

This completes the proof of'if'part,

Breeif ©F leohily @ifl paet &

Again in view of theorem 2,1 of Mitra (1968h),

| -. * -i * b Ak = 5 — *

B diag((A¥ 4 B)7, ..., (A 4B ) )4 L => R(A* A 3).
= R(4) | (1.7.8)

This completes the proof of theorem 9,
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Theorem 10; Consider the set up as in (1,7,1), Then

b) = (a) if and only if (d) holds,.

Proof =

PRoOGH O Nl minrie

Observe that (b) => R{(a) = tr (G A)

* * - * ~oak |
Z tr(B (Al A By ) A7 A) = f tr((.fxi A .Bi) Ai ABi)
"‘A— B

2 R(Ai‘ .
€7
(1,7,3) and (d) together imply that
R(&F 4 By)=R(A¥ A)=R( L3, o 0 G R el S S (1.7,4)
= 3 0ok ih * i
et D= disg ((4f AB))7,,.., (& 13)7),
' Opserve next that
(b) =>4 BDA¥A = A => g% A BDA*LAB=A* AB .
= D= (4% A B) ", i (1.7.5)
We need o e
Lemma 5 & Consider the set up as in (1,7.1)., Irf ()

holds and (b) is true for some choice of g-inverses of

| (A{ ABi), i=1,2,,.0.,4k 1t iz true for every choice,
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Proof. Consider the couality

A=A = ) * 1 *
G ! if AZBi(Ai A IBi) Ai A _ (1,7.6)

and obscrve that for ecach i the matrix A Bi(Ai A'Bi)—AfA

is invariant under the cheoice of g~inverses of (A; A By)

in view of (1,7,4). This completes the proof of lemma 5,

Henceforth, without loss of generality (in view of
lemma 5) choose and fix g~inverses 6ccuring in D so that
ROCAF A By) )= R(AF & B;), Nobe that in view of (1,7.2)
and (1.7,3),

R(D) = ? R(A;Lk A Bi)" = 3 R(Ai;.k A B.ij = R{ A)=R(4* AB) (1':7'7)

Now, (1,7.,5) and (1,7,7) in view of theorem 2a of Mitra
(1968a) imply that DA* ABD =.D,

Thers % PR ) (A% )=
herefore, (ai A Bl) (Ai A BJ)(Aj A BJ) 0

whenever 1 # (157.8)

(1.7.8) = whenever i #

(&} 4 B;) (A 2B (af A Bj)(A§ ABJ)"(AF‘A.BJ)=O

=> yhenever 1 # J, AF 4 Bj = 0 in view of (2,3) using

corollary la.3 of Mitra (1963a),
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This completes the proof of 'if' part,

Proof of ‘only if' part,

Assume that both (a) and (b) hold, Then,
A¥ A= Aj*_‘ AG & = A{A (= Bi("'q ABi)‘ ;q) A=
. 3

B ABy (A A Bi)— AF A= B, (4F ABi)_ is & g-inverse of

Ll N

Hence, GA == § Bi(Ai*_.ABli)_ AT A= .?_L‘. (AiF A )—A;‘ I
This implies that R(4) = tr(G 4) = ? tr((Af A )”A{ AY =
% R(AF A,

3 i

Similarly we prove that R(4) = 2 R( ABi)"
. il

This completes the proof of theorem 10,

Now & few remarks are in order, If A is nonsingular

and &, = B,, ®hen (2) is equivalent to R(A) =m and (d)

is eguivalent to = R(Ai) =, When A is positive definite
1 _
+ (4) is implied by (b) for

If

N

gy b a)T K =T e DA 8 AT A
i il . _

7§ Ay & = m=trI= z triy &) = ? R(4;).

W
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Hence, Rao's theorem stated in the beginning of the section
can be restated thus |

Theorem 11 ¢ Let R(A) = m and A be positive definite,

Then (a) 4% 4 B; = 0 for =211- i,j such that .
¥ - i — A 3 T o
1# j <= (b) I ? Ay CAF A A AE 4 |

Ir B = M) @ M) @ .. @ M
represents a deéomposition of E" into mutually orthegonal
subspaces with inner product defined as (x,y)=x* py and
if P, = A (&F A.Ai)ué{_A denotes the orthogonal projection
operator projecting arbitrary vectors onto~ﬁl(ﬂi) (See
lemma 3 of Mitra and Rao, 1968), then theorem 11(b) asserts

the well-known result that such projection operators Pi

add to I,
Now let
B o M) @M @ @M L7
represent an arbitrary decomposition of E¥, We shall obtain
& positive definite matrix A such that for x,y e Em Sl

inner product is defined as .x* 1y, then M (4),...,M(4)

become pairwisce orthogonal subspaces,
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How we prove
' k
Theorem 12! Let A= (.21 b AP L ymere Ay, By
: 1=

are as in (1.7.9). Then (i) A is positive definite and

(i1) AF A ay = 0 whenever i # j.

Erogf ¥ Clearly  KWs peditive. derinite gince
| R(A1 g Ak) =1, Observe that - A is.a grinverse of

A A]i-* folr &= 1.2 k, (Sce complement 5 after

3y e e eyte

H

Tk - »
section 1b in Rao, 1965), Hence A¥( Z A, AF) E A
! £ 3=1 3
AJ’._"(Ai Aj’f)—Ai o {8 1L By atey e ObSEEVE. Ehatl Foir each &
A;‘(Ai Af)—ﬂi is invariant under the choice of g~inverse of
A; A¥ and further it is idempotent, Thus AF(4 A;)"Ai

is a g~inverse of itself, Thercefore for one choice of

1ey ™ = -
‘ (A:’f (j§1 ‘Aj AEI‘.‘) 1_ Ai) ~ we have

i

% ' A A * *y T *
Ai(.l\i (jzl Aj,,ﬁj) J-Li)‘ A Ai Ai(Ai Ai) .Al Ai

k
* =T
Thus, i‘zl A CAF A A A

k . :

=l
3, . A= . lNow an
191 Ay Ai

)

gppeal to theorem 11 shows that A;'L‘_A Aj’“: 0 whenever
i¥ ],

This completes the proof of theorem 12,
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1,8 g-inverses of nonnegative definite matrices,

T
-

In this section, we obtain the Mo St general form of
a nnd g-inverse of a nnd matrix, We also prove a few

more results of related interest,

Theorem 13 ¢ A hermitian matrix A has a nnd

g~inverse if and only *f A4 1is nnd, -

Proof % Theorem 13 is easy to establish and we omit

the proof,

We now prove

Tﬁéorem 14 ¢ (Most general form of nnd g-inverse)?
Let &MM* be a nnd matrix of order m >m rwhere M ls a
m <r matrix of rank r, Then G is a nnd g-inverse of A

if and only if G = K* where X =LM + U(I-MM)

where n 1s an arbitrary integer 2> r,

L is an arbitrary n >r matrix such that L* = Ir,
U dis an arbitrary n ><m matrix,

and W is any e~inverse of M,
Proof : To prove the 'if! part observe that since
M is a m *r matrix of rank r, every g-inverse of M

is a left inverse of M, Btraightforward verification
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establishes that X* dis a g~inverse of M, Further K™K
38 nnd, This completes the proof of 'if' part,

To prove the'only if' part we proceed as follows,
Let G = X*{ be a g~inverse of A= MM* where K is a
n <m matrix of rank n, Clearly, n 2 r, lNow
MMFK A MM* = MM* = MAK*KM = Ir' Thus K = KMM~ + K(I-MM )
where KM is a matrix such that M'K™KM = I, Hence
putting L = KM and U= X, it is easily verified that
the 'only if' part holds, This completes the proof of
theorem 14,

We now go on to prove the last theorem of this

section,

Theorem 15 % Let A be a nnd matrix of order
m>m and X be a s Xm mnmatrix of rank s, Then
XAX* 1is idempotent if and only if X can be expressed

as X = YC where

v o= LOeN)Th MR+ U(I-N(mRN)TL ey,

C 1is an' arbitrary matrix oforder p <m and of
rank p where p 2 g,

N is a p >t matrix satisfying the equation

CaC* = NN* vyhere + = R(N) = R(CiC*),
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L is an arbitrary matrix of order s >t ‘such that
L*L = It’
and U 1is an arbitrary matrlx of order s *<p such

that R{Y) = g,
Proof ¢ 'If! part follows by straightforward verificatlon

For the 'only if! part chooss C = X, L=N and
U =1 and observe that with such a chocice X can indeed

be expressed in the required form,

1.9 Solution of matrix cquations.

In this section,we solve the matrix equations
XiXA = X4, XAX = O and XAXAX = XAX and make a few
comments on some gsolutions of matrix equations which are

already Xnown,

Lemma 6 ¢ The most general form of an idempo tent matrix
H of order n ><n is given by H= C ¢ where C 1s an

arbitrary m >n mé-trix, m being arbitrary,
Proof of lemma 6 is omitted as it is straightforward,

We prove

Theorem 16 ¢+ Let A be a m > n matrix, Then XA

is idempotent 1f and only if X 1s of the form
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X = (CA) C + E(&L)*

where p, 4 % m-R(A) are arbitrsry positive integers and C,E and
(’PA‘) are arbitrary matrices of order p >m, n Xgq and m Xg
respeéti’vel'y such that A*A—L = @

Procf ¢ {((CAYC + E(Al)*)A = (cA)"CA is clearly
idemp'oten{c, Now if XA 1is ::‘Ldezipotent,' XA‘ is a g-inverse
of itsélf, Choose p = n, C =X, (CA) = X4, we have |
(CH7C = XaX, It is now clear that -(X~(CA) C)A=(A-XAX)A = O,

This completes the proof of Theorem 16,

‘Theorem 17 & Let A be a hermitian matrix of order
m >m, Then for a hermitian matrix X, XA& is idempotent

if and only if X is of the form
C*(CACMT C + &b DCADY*

where p,q > m-R(A) are arbitrary, G, .ﬂrl- afe arbitrary
matrices of order P ><m and ol % q respectively such
that A*AL = 0, D is an arbitraby diagonal matrix of order
q><q and (CAG¥)] ‘
CAC*,

G(CAC*)C* where G is a g-inverse of

1
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Progf ¢ 'If' part follows by straightforward verifi-
cation, To prove the 'only if' part observe that if XA
is idempotent AXA 1is a hermitian g~inverse of XAX,
Choosing C = X, G = AX4, (CAC*)] = AXAXAXLXA = AXA

we have, C*(CAC*)] C = XiXiX = XAX, Now the rest of the

proof follows on the same lines as in theorem 186,
This completes the proof of thecrem 17,

Theorem 183 Fof_a matrix A of order m >n,
XAX = O‘_if;and'only if X’ is a ﬁ >y matrix of the
form X = YC where p is an arbitrary positive integer,:
C 1is an arbitrary matrix of order p Xm and Y 1is an |

arbitrary solution of CAY = O,

Proof ¢ 'If! part follows trivially, To prove the
ol ] parh Lot Xb be a solution of the eguation
XAX = 0 and let, R(X) = p, Let X = YC be a rank

factorisation of x(’), Now YCAYC = 0'=> CAY = 0, This

completes the proof of theorem 18,

Theorem 19 7 For matrices A4 and W of orders
m >*n and g >m respectively, XAX =0 and WAX = Qo
if and only if X d1s a n =m matrix of the form

X = Y¥C where p 1s an arbitrary positive integer, C
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ig an arbitrary-;' p <m matrix and Y 1s an arbitrary

solution of the ecouation :*C—} IY = 0,
W

Iy

Proof of theocrem 19 is similar to that of theorem
18 and we omit,

Now we prove

Theorem 20 ¢ For a matrixz L of crder ~n,
XAXAX = Z4X if and only if X = Z + W vhere W is a
golution of the eoguation WAW =W and Z satisfies the
équations ZAZ = 0 and WAZ = O,

Rrooif @

Eroef of ".E" jpart:

Let Z2 and W be as given in the hypothesis, Then
(W) A(ZHW) = ZAZ + WAZ + ZAW + WiW = ZAW + W and

(W) ACZHEW) ACZAW) = (ZAW + W) A(Z+W)

i)

LAWLZ + ZAWAW + WAZ + WiW

ZEW + W,

i

Hence X = Z+W satisfies the conation XAXAX = XAX,

- Proof of 'only if' part,

Let X be a solution of the equation XAXAX = XA&X,

Observe that W =XiX satigfiea the couation WAW = W and
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(X-XAX) A(X~XAX) = XAX - XAXAX - XAXAX + XAXAXAX = O
Also WA(X-XAX) = XAXAX - XAXAXAX = O;
This completes the proof of theorem 20,

Mitra (19685 ) showed that the most general solution
of the equation WAW =W ig given by

W= Q(PAQ)] P

where P and § are arbitrary,

Using theorems 19 and 20 we therefore observe that the

mest general soluticon of the equation XAXAX = XAX is

given by

M= B ik W
wvhere W = Q(PBQ); P
and 7= ¥

C, P and Q being arbitrary and Y being an arbitrary
- .

solution of the equation (PBY = 0, It is well-known {

(Cgasawara end Takahashi 1951;Khatri,1963; Reo, 1965) that

normal distribution with null mean vector and dispersion
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fiatrix I, the aquadratic form x'Ax has a chi-squaTe

distribution if and only if

AL = LA,

Given a éymmetric maf_rix A, theorems 14 and 19 are
‘.useful in determining the class of all n,n.,d, matrices Z
for which the chi-square distribution holds for x'Ax,
Mitra (1968a) solved the dU_alfprohlem where given I, he
determinedthe class of all matrices A satisfying the

equation IEL = EAZ

The following theorem is due to Morris and Odell
(1968), We state the theorem as given in thelr paper and
make a few comments on this useful theorem,

Theorem 21 @ (Morris and Odell), Let n .be a positive

i»]

integer and Al be a p >g matrix and B, pe a P 7

patrix for i =_l_,_2,.,.,n, Define ©C; = -1}1, Dl = By,

1
i . e
e = A Beegr D T B 7 A B,y B m By 7P R gGe D e

B = ;f]’_ B, and F =‘I—AJ£A1_ Furthermore define

2
1

= = o = . : b,
N (I S ¢} for k= 2,3,,..,n, Then . A4X =38,
for 1= 1,2,,,.,n have a common solution if and only if
+ . | ‘ :
Gi Ci Di & D;.L for i =1,2,.4.40. In case there exists &
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solution, the general gommonmsolution is X = En & Fn 7

where Z 1s arbitrary,

We wish to point’out that in the above ftheorem Moo re-
Penrcse inverses are of no impcrtance, In fact, the theorem
as stated above holds even if the Moore-Penrose inverse 1s
replaced by any g-inverce(in the sense‘that is understood
in this thesis) wherever it occurs, In the latter case also
proof follows exactly on the same 1iné‘as that of theorem I,
Further, A, and By can be taken a.sVVI‘):.L >q and. py Xr
n, This is to say that

matrices respectively, 1 = 1,2,...,

4, and Aj need not have the same number of rows when 1 # §,

Making these modifications theorem 21 can now be

stated as

Theorem 220 Let n be a positive integer and let A

and Bj_ be p; xq and P =r matrices fo-r 1= 1,2,004,T
Define Gl = Al’ 1= Al Bl’ "Fl' = '(I'-Ai Al).
Furthermore, define Ck A F1~1’ Dy = B = A B _q,

= B -1 7 k-1 Ce Dy and Bo=F g (I-G C)

for k¥ = 2,,..,n, Then %X:Bi for 1= 1,2,...,n have

a common solution if and only if €, ¢, D. = D,
‘ 4 TEL T i

for i = 1,2 ,,, .n. In case a common solution exists. the
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general common solution is given by X = En + Fn Z where

4 1is arbitrary,

Proof of theorem 22 follows in the same lines as
those of theorem 21l which ds due %o Morris and Odell and

we omit the proof,

Notlce that the conditions in theoren 22 are
easier to verify in general as one can éompute any
g-inverse and check the conditions in theorem 22 vhere
as in theorem 21 each time one has to compute Moore-Penrose
inverse, As mentioned in the general :'Lntroduction, this
is one¢ situatvion where any g-inverse serves as geod a

purpose as M-P inverse,
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CHAPTER 2

g ~INVERSES OF PARTITIONED MATRICES AND APPLICATIONS

2.1 Introduction and Summary,

Greville (1960) gave an interesting formula connecting
AT with G4, = a)+ where a is a column vector, The same papel
described a use of this result in least scuares polynomial
curve fltting where the dégree of the polynomial has to be
determined by fitting polynomials of successive degrees in
starges until a satisfactory fit is obtained, In the absence
of a table 6f orthogonal polynomials Greville's formula
should prove to be highly expedient. Cline (1964) gaﬁe
formulae to obtéin AT from (A § B)+. Thése formulae though
mathematically elegant do not scem to.be-éasily computable
when B itself contains more Than one column as several
other Moore-Penrcose inverses have to be computed in the

process (though of lower order,)

In this chapter, we develop formulac similar to those
of Greville and Cline connecting g-inverses of 4 with
the corresponding g-inverses of (4 % a) vhere a 1is a

column vector, We consider 4, A, A% , A, and &t for
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this purpose, In sections 2 and 3 tyo parallel sets of
Ibrmuiae are'developed, one for computing-‘CA % a)“ fTom
£ and the other for computing A from (A 2w Ih-
sections 2 and 3 we consider only the BEuclidean norms,

In section 4, the results of sections 2 and 3 are genheralised

where we consider more general inner products,

The reéults of sections 2, 3 and 4 are useful in least
squares computations, First let us consider a linear model
Y=23 + ¢ where D(e) = GEI, The results of section 2
are useful when one looks for revised estimates of parameters
when either an additional uncorrelated observation with unit
variance 1s considered or an extra parameter is added to the
linear model, The results of section 3 are useful when one
wishes to compute revised éstimatesrof the femaining parameters
if a suﬁerfluous parameter is dropped out from the original
linear model, These are also useful in the dual problem when
an outlying observatidn wrongly considerced has to be removed
from the analysis and one has to work out the consequent
corrections in the least squares estimates, Now consider a
linear model X = X + & vwhere _D(a) = Ac32 where A 1is

a known positive definite matrix, The results of section 4


http://www.cvisiontech.com

42

are useful in making the recalculation of least squares
estimates for date or:model changes in this case, These

applications are discussed in detail in section 6,
In section 5 we discuss g~inverses of a sum

of two matrices, In section 7 application of
the results of the first few secticns to least sguares

recalculations is illustrated by é few examples,

In section 8 we extend a theorem of Rohde (1965)
on g—ihverses of partitioned matrices, The object of
this section is only to show that Rohde's results are

true for a much wider clasz of matrices,

2.2 Derivation of g-inverses of (A ! a) from those of 4,

In this section, we obtain several types of g-inverses
of (A3 a) from the corresponding types of g-inverses of A

in two mutually exclusive and collectively eXhaustive-caseS,
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namely, a ev'/(4) and a #ZM(4),

Lét G be.érgrinverse of a m Xn métrix A "and
ae B, Then it is well-known (Rao, 1967) that
aeM(A) <= AGa = j, Thus given g g~inverse of A, one
can check, using the above mentioned result, whether a

vector a beiongs to M.(4) or not, Now we shall consider

Case 1 + a Z M)

et A be a m >=n matrix and G be a %
g-inverse of 4, Let ae E° but a ¢z (4),
(2,2,1)

Define d = Ga, ¢ = (I-AG)* (I~AG)a,
bis -5%5 and © Xf = (G* ~pd* % b)y, J
We prove -
' R
Lemma 1 3 Consider the set up in (2;2;1);"c‘ #s &

nonnull vector and c*a 1s real and positive,

Proof ! c*a = a*(I-AG)* (I-AG)a is clearly real and
nonnegative, PFurther ¢ =o <= c¥*z =g <= (I - AG)g = O
<> g eﬁ{(A), Hence under the set up (2.2.1) c¥*a ¥ o and
¢ # 0, This completes the proof of lemma 1,

Note : In view of lemma 1, definition of b in (2.2,1)

is valid,
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We now prove
Theoren 1 ¢ Consider the set up in (2,2.1), Then

(1) X= (a

!

A B

a)ﬁ‘

i

(i13) X = (4 a); if G = A;

(1ii1) X' = (4% a), 1if and only if G = A

Gl 2= CA B a)£ if G = A—E
and (v) X= (a3 )" ir o= A,
Proof, , . g
Proof of (1) and (11) % Observe that by construction

b*A = 0* and b*a = 1, Now a straightforward verification
completes the proof of (i), Proof of (ii) is similar to

that of (i),

Proof of (i1i) * It suffices to show that X (A 1 a)

is hermitian, Now,

- GA ~ d b¥A Ga - 4 -b*a

X(A ¢ a) = .
. . b*A b

Reeall that b*A= 0%, Further Ga = db*a since b*a = 1.

Hence X = (A :a);l <=> (@p)*= GA <= G = A;l,
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Proof of (iv) and (v) $ (4% a)X = AG -~ Adb* + ab* =
A5+ (I - A0) aa* (T-AGY* (I-AGY/o*a SAG +(T~AG) aa* (T-40)*/c*a,
| since’ G = 4y, |
= bvsetve that = AG is hermitién _ané_so g5 -
"-(I-AG)_aé*.(I-AG)*/c*a in viey of lemma 1, Thus (4 % a)X
is hermitian, This completes the proof.of (iv), (v) is

‘ similarly established,

Bamark 1 3 (v) of theorem 1 is due to Greville (1960).

Semark 2 { In the case of (iv) and (v) of theorem 1,
¢ 1is reduced to the form (I~AG)a since G = AE g

We now prove

Theorem 2 § Consider the set up in_‘(2,2.l). Then
(1JX = (A3 a)_ => @=,4 4if‘and only if G a e M. (Ga)
(ii1) X = (A

a)i => G = A—g if and only if (AG)*a=(AG)*AGa

and (1i1) X = (4 ¢ a)' = ¢ = £ if and only if C a & M (GA)
and (AG)*a = (AG)*A G a,
Progf ¢

Proof of (1) ¢ X = (4% a);', and G oa e M(GA) =

GAG - GAGgb* + Gab* = G == GAG = G, This completes the

proof of 'if'! part, Now, X = (4% a), and G= A
=> GAGab* = Gab* <=> GAGa = Ga <=> Gae M(G4).
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This completes the proof of lonly #f'. part,

Proof of (1) : (AG)*a = (AGY* ACa => (AG)*(I-AG)a = 0

=> (I-AG)a = (I-AG)* (I-AG)g => (I—AG)aa*(I-AG)*(I-AG)/c*a
= (I~4G) aa*(I-AG)*/c*a is hermitian, Hence, X = (& § a){
and (AG)*a = (AG)* AGa-=> AG 1is hermitian., This completes

the proof of 'if' part, Now G = A,

L
AGa, This completes the proof of 'only if! part,

=> (AG)* AGa = AGAGq =

(111) follows from theorem 1 and (i) and (ii) of

theorem 2,

Now we shall consider

Case 2 ¢ a e.M(4),

We prove
Theorem 3 & Let G he a g~inverse of A and - a eM(h)

Let d = Ga, Then the following hold,

T

FE - db*]
(i) . i
b

1
=l

it

(4% a) where b is an arbitrary

vector,

i

- G - db*_i e s _
(1i) o | Py 2 a), " if and only if -G = A

and b e M(G*),
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(i1i) Let b be an arbitrary vector, Then

G-db*7 - -
b* = (A a)ﬂ if and only if G = AK 1
] ' Gudb* e (1l
(iv) Let » = G*Ga/(l + a*G*Ga), Then . =(&la), ]
b
=
if and only if G = A%.
(v) Let b be as defined in (iv), Then
[@-dbfi b g
’b* | = (A a)" if and only if G= A,
Broof! _ ‘
Proof of (3)! Observe that a g M {A) == AGa = a,

[G-ap¥|
Hence (A § 2a) By = AG w Adb* + ab* = AG where b is

arbitrary, Further AG(A { a) = (A a), DNotice that this

holds for every veector b, This completes the proof of (i),

Proof of (1i) and (iii) ¢

fo~ap*

|
o* |

GAG - db*Ad} ‘
e, (2.2,2)

b* AG T

Now G= A, and b e M(G*) <=> GAG = G and b*AG = b*

[G - db*] L | ;

<= L p i = A @ a)r in view of (2,2,2), This
i = :

completes the proof of (ii).
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(iii) is a trivial consequence of the fact that

5] | G - ap¥) '
AG = (A a) { J where b is arbitrary,
, A

i

Pr@eLt e sCla

Proof of 'if! part ¢ a e M(A) and G = A;l => GA

G a a*G*G A G g a* G¥
=] =t

L a*GrGy 1 + o*G*Ga

is hermitian and db*A =

Ga =~ db*A is hermitian, Further, a eM(4) and G = A;l =

o O B
b*4 = = (Ga = db*a)*, Finally;
1 + a*G*Ga ,
a*G*G g
[ = is a real number, Hence it follows that

1 + a¥*G*Ga

e @
g j (A : a) is hermitian, This completes the
b .

L

proof of 'if' part,

Proof of ‘'only if' part § CObserve that

|} (4% &) is hermitian => GA - ab*a
. ‘ (2.2

is hermitian and (b*A)* = G a - d b¥a,
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{

Now, (b*&)* = Ga - db*a => db*h = G a a*C* + d a* b d* ,
(2,2.4)

=> d b¥A is hermitian,
]

From (2,2,3) and (2,2,4) it follows that

G~ db¥’

. l_(A *a) 1s hermitian = GA is hermitian, ,
L = AL 4 !

This completes the proof of (iv),

Proof of (v) follows from that of (1) - (iv)

Thls completes the proof of theorem 3,

Remark 3 % 'If' part of (v) of theorem 3 is due to
Greville (1960),

2.3 Derivation of g-inverses of A from those of (4 3 a),

In this section we obtaln various types of g-inverses
of 4 from the corresponding g—invérses'of CH By |SEEE
(G* ¢ b)Y* be a g~inverse of (4 * a), We consider the
problem in three mutually exclusive and collectively
exhaustive cases namelj5 a Z M(4), aeM(4) and b*a # 1,
and a e M (&), b*A# 0% and b*a = 1, (That these are
indeed mutually exclusive and colleéfivel§-exhaustivé is

established in lemma 2 giveﬁ below, )
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We piove _

Lemma 2 ! Let (G* ¢ b)* be a g~inverse of (& % a),
Then a ¢ M (4) if and only if Db*4A = 0% and bp*y = 1,

Pzgoi:: : : :
Proof of 'if' part ; (G* 3 b)* = (4 ¢ a)" =

AGA + a b* 4= 4 ' (2.3,
and AGg + a b* g = 4 (2,3,

Now

0¥ and (2,3,1) = G = 4 i

i

b¥*A
b*a =1 and (2,3,2) => AGa = 0 and g # o,l
From the above arguments it follows that
(G 4 py* = (42 a)7, v*a= 0% ang E*a =1 -=> a &M (4

(for, a el (4) = 4 G a=a=0 which is a contradiction

to the fact that b¥a = 1,)
Ihis completes the proof of 'if! part,

Proof of 'only if'! part $

(2,3.2) and a ¢M(4) = 40a = a(1 - b*a), .and & ¢ M (J

=>l—b*a=o==>b*a=1.
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Now, y eM{a) == (L a) (& 1 b)Yy =y=A4AGy+ abry

=> 5 b* y auhf(A) since A G y and v e M(4),

Further, a Z ML) and a b* y e M(A) => b*y =0,
From the above arguments it clearly follows that

a ¢ M (D) and (6% 1 p)* = (41 a) = b= O%,
This completes the proof of leﬁma 2.

Remark 4 3 o ¢ M(A) and (G* ¢ D)* = (4 ° a)°
= A Gg= 0,

Note ¢ Given a g-inverse (G* { ©)* of (4 ¢ a), one

can use lémma 2 to determine whether a e M. (A) or not,
We shall consider

Case 1 3 a Z M),

We prove

Theorem 4 ¢ TLet (G* ¢ b)* = (43 a) and a ¢ M (4,

Then the following hold,

(1) G= 4

(11) et (&* 2 b)* = (A: a). . Then G = A, . if and

only if G g = 0
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(iii) - 'G= A end Ga = ©' if and-only if

(G* ¢ by* = (A : a)m

(iv) Tet (G ¢ b)* = (43 a)E . Then G= £
if and only if a e ©(4),
)-i- +

(v) Let (G* 3 b)*= (4 a)’, Then G= 4

if and only if a e © (A),
Broof §
(1) i1s a trivial consequence of lemma 2,

Proof of (ii} : Ga= 0, (G*: b)*= (42 a), =

GAG+ Gab*:=G=0GAG This completes the preof

14

or

'1f' part, A4Agaln, G = A; and (G* 3 bY* = (4 a); =

Gabd*=0= Ga=Gab*a= 0, Thls completes the proof

of 'only if! part,

el ol Rifil : 06F TmE = G a)% => GA is

hermitian and Ga = (b*A)* = 0, This completes the proof

of 'if' part, Again, G = A; and G a=0=>Gi is

i

hermitian and O = G a = (b*A)*, Further b*a =1

- H

Thus G=Ai;1 and Ga=0= (6" v)*=(A1 a) .

comnletes the proof of 'only if' part,

(b*a)*,]

This
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Braaf A (58

Proof of "if''part * From lemma 2 it follows that

o ? M (D) = b*a=1 and Db*A= 0%, Further ac® (4)

= A*a‘: 0, Now, (G* : p}* = (4! a)i = A G+ ab* is
hermitian and G is a g-inverse of A => 4 G = (AG + ab*)AG
= (GXA* + b a*)AC = G¥A* AG => 4G is hermitian, This
completes the proof of 'if' part,

-
Proof of 'only if! part § G = Ag => AG is the

orthogonal projection operator which projects vectors onto
M (A), PFurther from remark 4 it follows that a g M (&)

and (GX 2 p)* = (4% a) = A G a= 0, From the above
arguments it is clear that under the hypothesis a e® (4),

This completes the proof of 'only if' part,

(v) follows from (i) - (iv),
This complietes the proof of theorem 4,

Now a few remarks are in order,

Repark 5 ¢ Let a ¢ M(4) and (GF : B)* = (41 a) .

Then G = A, = Ga=0 and (o g amE=" (R -Et,

Remark 6 3 Consider the same set up as in remark 5,

Then
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(i) G = ; = a ¢G(4) and (G* 2 b)* = (A 2 a)

and (ii) G =AY = a :®&(A) and (G* * B)* = (4 * a

——— -

To obtain A;,. AE and AT from s & a)r , (A ¢ a
and (4 % a)” respectively one can use theorem 4 when

aelo (4). In the next two theqréms We'obtain these g-invens
for A from the corresponding ones of (A ! a) where a is aff

arbitrary vector not belonging to J (4).
We prove

Theorem 5 . Let a #M(4) and (G* :‘b)* =iy a&- .

A* a b* G* \ |
Then GG* I + A% s one choice for
1 =~ Db¥* G¥A¥g / :

)

Proof : From theorem 2 (a) of Chapter 1 it follows that!

GG*  Gb | [A*A axgl
(G* ¢ by* = (A% &), = i
£ b*G* D la*A  a¥a

-

Further a # M (A) = (a*h o a¥a)* & M[(A*A & A¥a)¥]

Hence (2.3.3) and (2.3.4) in view of theorem 4(i) and the
fact that (B*) = (B )* for any matrix "B imply that
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EG* : b)* =(4 .‘.a)é and a /M (4) => (GGF1Gb)Y* =(A*A 1 A*a)”
(2,3.5)

Observe that A%*a =M (4*a), Now, a £ M(A) and (CG* 2 D)* =
(4: a), = AG + ab* is hermitian and b*a = 1 =b*(AGtab*)a
= 1= b* G* A*a + b*b a*a, Hence under the hypothesis,
b*G*A*a = 1 => p*pa*a = 0 => cither a or b is null vector ==
b*a = 0, This is.a contradiction since under the hypothesis
b¥a = 1,

Hence under the hypothesis b*G¥A*g # 1 l(2,3,6)

We need lemma 3 which we state below and prove,

Lerma 3 ; Let (G* ¢ ©)* = (4% a)” and b*a # 1.

ab*
Then G( I + T -p%5 ) 1s a g-inverse of A,

Proof of the lemmz { Under the hypothesis, it follows

from (2,3,2) that A4Ga = a(l - b*a), TFurther since b*a # 1,
it follows that a = AGa/(1-b*a), It now follows from
* &
(2.3.1) that (I + 788~ = &7,
This completes the proof of the lemma,

An appeal to lémma 3 leads in view of (2,3.5) and

(2.3,8) to the result that under the hypothesis
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AFE o &% N
GG*(I + Y = (4*A)
1 ~ b*G¥a¥g

which in turn implies that

A* g b* G¥ "
GO*(I + )  Ax o= Ap o
1 ~ b¥G¥A*g .

This completes the proof of theorem §,

Remark 7 ¢ The g-inverse of A constructed in theorem 5
is in.fadt Kéx*'

We now prove

(At a),

Theorem 6 ¢ Let a ¢ JM(4) and (G* ; b)* = B
Then
b b¥ _
(1) G (I - = 4
: b*b
(11) 6 @ -2y = L ir (b= (42 ).
B B » "
(1ii) @ (I - ) = AE if (G* 3 b)* = (42 a)g i
p* b
- i b b* o - * * _
(iv) G(I—b*b)zam I {6 .,b)=(A.a)m
b b* + | +
and (v) G (I - = A if (G* * bY* = (A ¢ a)
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Proof ¢ (i) follows trivially,
Proof of (ii) ¢ Under the hypothesis, GAG + Ggb* = G

* * ¥
and honee  G(1 ~ ZE) a6 (I - RRD) = can(z - )

* x_
= (G - Gab*) (I - %xbg) = (I - %;bg). This -completes the
proof of (ii),

Proof of (1ii) ¢ TUnder the hypothesis, AG + ab* =

- b b*
G*4*+b a*, To show that 4G (I - ¥

Y is hermitian it

b
1 G b b* , b hrGAA* _ |
»F B + 0

suffices to show that 4G -~ G¥A* - ¥ b g
01 & p A GDb b* b _b* GFar
NOW’ A.u" bt G*IL* e -b*-b + b*b
(G*¥A*+ ba* — ab*) bb* Dbb*(AG + ab* - ba*)
ba* = ab¥ o - = = 0,
b*Db b*bh

Tais completes the proof of (iii).

' *

Proof of (iv) * G(I -~ %EE)A = GA is indeed hermitian
since (G* ¢ b)* (A § a) is hermitian, This completes the
proof of (iv),

(v) follows from (1) - (iv), This completes the proof

of theorem &,
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Remark 8 ¢ (v) of theorem 6 is due to Cline (1964),

Remark 9 ¢ Consider the same set up as in theorem 6,

Then
W p* - ' _
(i) 6(I - Y= A = (GF ¢ D)= (4 a) if
(I ~ AG)D
a = —_'b*'b L3
‘ m B _ - i
(1i) G6(1I - ) = A, = (Gf : bp)*= (A a), 1if
(I = .LC‘LG)b
and only if & & et
p* b

it
S_)
=
o
[op}
ok}
il
(@
{

(111) (T =~ g*g*)

(@ 2 b)* = a5 a) i

b b* + | +
(iv) G(I + Y= A = (GF ; b)* =(4 a) if
b* b
8 2H, b EClgigﬁﬁlh .

Remark ]O ¢ Consider the same set up as in theorem &,
Then |

-

(1) G(I - ab*) = 4

(11) (I -~ ab*) = A; if and only 1f (G¥ ¢ b)* =(4 ° a),
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5%
We suall ww consider

Casé 2 e aeJL(4) and b*a # 1,

We prove
Thegrem 7 ¢ Let (G* ¢ b)* = (4] a) and b¥*a # 1,

Then the following hold I

ab* ”
(1) . (I + m) 5 A
P b* i = = I*AG 7
(i1) G(I o J——,—g—l = a) = A, eand D 1 - ¥, If and

only if (G* 3 B)* = (42 a), .

! * -
(124 “elIer F22wr) = & 5 (Ga)* = B¥A  and  B¥a 43

real if and only if (G* ¢ bY* = (4 ¢ a.)r:l o

) * -
(iv) G (I + i_ajfb_*a) = A, if and only if

—

(G¥ ¢ DY = (43 a)

i. .
(v} G(I + iﬁ:-t?_b‘%) = A+, hF = __Q'_F__A_Q__ (G a)* = h¥4

@ % P g

and . bMa Je peadl If dhd ENAPEL fEF BUDB)* = LA a)+.

Proof *

Proof of (i) 3 Observe that b*a # 1 => a ¢ M (4) and

that (1) is the same as lemma 3,
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Proof of (ii) * Observe that

"a= 4G a/(1 ~ b*a) - (2,3,7)

(G*  P)* = (Ata), =9G=0GAG+ G ab* - (2,3,8)
I‘ B .

(,b* = b*¥A G + b*a b* (2,3,9)

From (2,3,9) it clearly follows that
(B* 2 b)* = (41 a), = b* = b*A ¢/(1 ~ b*a),
Now assume that (G* * bB)* = (4 °* a); . Then, we have

L4

ab* ab* Gab* 4G GAGab*

1 - b*a 1-b*a

G(TI + ) AG(T + )= G 4G+ +
1-b*a 1-b*g - 1=b*a 1 - b*a

Gab* AGab* ab* ‘
+ [ e = G(I + E:E;E%. This completes the proof of
"if! part, To prove the ‘only if‘ part we proceed a;\foiégﬁi:\H\
b* = b*4 G/(1-b*a) = Db* = b*A G + b*a b¥, Further, (G*ib)* =
” | N i ab* ) _ L brad .5 B

P a G(I + ———) = & and b* = ————— imply that
’ 1 - b*a “r 1 - b*a

- EE&LJL_. _JLjL___ Gab* AG Gab*

G = GAG + 7 1 -, _ab:%¥§%§ 1-b¥a
* * - '

GAG + Gab* + Gab* + $8R=al_ . BabZ _ guc 4 Gap*, This

completes the proof of ‘only if! part,
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Proof of (3id) ¢ To prove the 'if'! part we proceed

as follows. (G* @ b)* = (A a); => G = (b*A)* and b*a

is real, Yow (G* % b)Y* = (43 a); => GA + —“ﬂ;hgf“

is hermitian since G4 1s hermitian

and b*a 1s real, This completes the proof of 'if' part,

ab* L
Now, assume that (G* ¢ b)* = (A% &), G(I + “ﬁ%g;a)_= A s

G a)* = b*A and b*a is real, To show that (G* { b)* =

B

AL é); it suffices now to show that GA 1s hermitian,

Under the hypothesis of the ‘only if' part,

* *
GA + %_%DE%Q is hermitian and %g%géa is also hermitian,

Hence under the hypothesis, GA 1s hermitian, This completes

the proof of 'only if' part,

Proof of (iv) : Observe that (G* 3 B)* = (4 ¢ a) =

s J'\LG'a AG‘sii)* - ¥ ab*
a T “b*a => AG + il "b*_a, AG + ab . Hence G(I 4 il _b*a)

= A% if and only if (G* ¢ b)* = (4 & a)i p

the proof of (iv),

This completes

(v) follows from (i) =~ (iv),

This completes the proof of theorem 7,
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hemark 11 & 'If' part of (v) in theorem 7 is due to
Cline (1964),

we shall finally consider

Case 3 § b*a =1 and b*A# O* ,

Let (G* : b)* be a g-inverse of (A ¢ a) such that
b¥a =1 and Db*A # 0%, Let the j-th column of 4 and the
j=th row of G be denoted by a, and g§ respectively, Since

d
b*A #£ O, 12t its J=th coordinate b*aj #a, Define ¢ = a t c
snd let E be the matrix obtained from G by replacing its
j=th row g% by gf - b*, It is simple to check that (E* 3 b)*
is a g-inverse of (A $c¢), lMoreover if (G* § b)* is a
reflexive or least squares g-inverse of (A4 { a) then so is
(E¥ ¢+ p)*¥ of (4% ¢), Observe that b¥c = b*a + b*aj 71
so that thg methods of the previoﬁs case‘can be applied to
obtain a g-inverse of A from (E* | b), Thus we arrive. at the

following

Theorem 8 3 Let (G* ¢ b)* = (A ¢ a) such that b*a =1
and b*A # 0*, Let b*aj gc> (aj is the j-ph column of A),
Let E be the matrix obtained from G by replacing its j-th
row by 'its j-~th row - b*! kdéeping the other rows unaltered,

Deno te
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X=EI = ¥
\\ b*a'j e
Then
(1) X= A
= L - ¥ = . =
C (1) X=oa i (& 1D) (47 a),

and  (ii1) X AE if (& § p)* = (42 a)g .

Tt ig intercsting to record that the two types of g-inverses
left out in theorem 8, namely minimum norm and Moore-Penrose
inverses never occur in the case under consideration, This

we show in
Theorem O ¢ If (G* ¢ b)* = (4% a)r_n then
b¥a =1 <= bi‘A = Q%

Proof ¢ Observe that under the hypothesis A™b = Ga,

fow it is easy to check that b¥*a = 1 <= AGa = 0 <=

M* = 0 <==> Ap¥h = Q, This completes the proof of theorem 9,

2,4 GExtension of the results in sections £,2 and 2,3 to more

general inner products,

In this section we obtain minimum norm and least squares

g-inverses of (A : a) from those of A4 and vice versa
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considering wore general inner preducts, Let M and N

be positive definite matrices of orders m “m and n Xn

N 8]
1 J be & positive definite

respectively, Let Nl =
o lex s

matrix of order (n + 1) x (n + 1) where N is as specified
above, Define (X,y)m = x*M y ﬂ;r X,V € Em, (x,y)n =x*Ny
for x,y ¢ E" and (x,y) = X*Nl y for x,ye E(n+l), We use
these motations throughout this sectlon without explicit
mention, We recall that Aff,(M)’ A%(ﬁ} denote resgpectively
a M-least squares g-inverse and a minimum N-norm g-inverse

of A where 4 ,1s arm xn matrix, Throughout this section
we assume that A i1s a m =xp .matrix and &, a m x1 vector,
We only state the relevant results here without proof as

they follow on similar lines to the corpesponding ones
(correSponding to Euclidean inner products) in the previous

two sections,

s

Theorem 10 ¢ Let G = A and a ¢ M.(4)., Define
£(M) i
d=Ga, c= (I~ ABa, b =c/c*M s and X = (G* ~ Mbd* sMb)*,
] h H

Then X = (a: a)" -,
£ ()
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Theorem 11 ¢ (a) Let G = A;n(N) and a £ M (4),
Define d = Ga, c = (I -~ AG)* (I - A%)a, Db = c/c*a and

I = (G* - bd*+b)* Then X = (A a)_,y y if and only if
A m(N'L) |

0 ¢ M (), () Tet G~-—~A§IN and a ¢ M (a), Let 4,b

ad- X be as defined in theorem 10, Then X = (4 3 ayy
1

if and only if € e M(4¥),

Theorem 12 3 (a) Let G= 4 and aeM(4), Define

d = Ga, Then (G* - bd* ; b)* = (A a)—z (M)‘if and only 1f
G= A where b 1is an arbltrary vector,
£ (M)

(b)Y Let G= A and aeM(4), Let ©=0 and
5=1, Define d = Ga and b= G¥N G a/(1 + a* G* N G a),
i C J- * o * = o. - q
Then (G bd* ¢ b) (a4 a)m(Nl) if and only if

-

G= Ay

(c¢) Consider the same set up as in (b), Then

>
il

(42 a);‘(ml if and only if G = A,

Theorem 13 5 (a) Let (G* 3 b)* = (41 a)y gy and

a ¢ M (4), Then G = 4
4 (M)

(b) Let (G* I b)* = (43¢ a);l(Nl) and a £M(4),

if and only if a e & (4),

Then G = ‘[’r-n(N)°
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(c) Let (G* 3 B)* = (A% a)y and a M (),
Then G = A&N if and only if Ga = 0 and a* MA = O,

. Mp)* = A T T and a ¢ M(a),
(da) Let_(?* + Mb) ( a)ﬁfM) and a

bb*M ) =
is A .
b*Mb £ ()

Then G(I -

Theorem 14 & (a) Let (G*$ Mp)* = (4 ¢ a)"{ -

Lt ( ab*M : .
b*M & # 1, Then G(I + ——) is 4 .
: 1~b*Mg 2 (M)
(b) Let (G* Mp)* = (A3 -a);(Nl) and b*M a # 1,
ab*M = ' X
Then G(I + b*M.a.) = 4 e
| Remapk 127 Tet (G¥5 M0)* = (43 a)". Then a #M (1)

if and only if b*Ma =1. and Db*Ma = O*,

Thus, the case that 1s left out is the case where
b*MA # 0* and b*Ma = 1, This is analogous to the corresponding
case 3 in the previous gection and the situation can be

tackled in an exactly similar way and we omit the details,
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9.5 grinverse of a svm of two matrices,

Let A B,C and D be matrices of orders m Xn,
mxr, n>xr and T >r respectively, Further let
D be nonsingular, Let G be a g-inverse of A, (2,5,1)
1

Denote W = C*GB + D~ and assume that W  is non-

singular, Let X = G - G B W lc*a,

We prove
Theorem 15 ; (i) X = (ABDC*) if either
M@)o M(8) or M(C)T M (4%) or both,
| (1) X = (A + BDC®), if G= A, and
cither M (BYC M (L) or M (C)CT M (A*) or both,
(111) X = (A +BDC*)_  ir M (C)T M (4¥)
and G = .Bgl
(iv) X =(aBDC*), ir M(B) Ma)
znd G = AE R
(v). X = (aBDC*)* if M (B M (4),
Moy M(a*) and G = AT,
Proof : »
Progof of (1) ¢ G = & and M (B)C M (A) = (4+BDCH)X =
i+ BDC*G - B(C*GB+D~1)"1 ¢*G - BDC*GB(C*GB+D 1)Tlc*G = AG =

(4+PDC*) X (A+BDC*) = AG(A+BDC*) = A + BDC* (Since MB)c ML)
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T N S TR s
-he proof i: similar in the case when MACY o M (A*%), Thig

completes the nroof of (i),

Proof of (ii) - (v) -follows from proof of (i) and

the definitions of the g~inverses involved,
This completes the proof of theorem 15,

We now give several interesting corollaries of

theorem 15,

Corollary 1 ¢ Let G = A and B*GB + p~1 be non-~

singular, Then G - GB(B*GB + D 1) 1B*G is 5 g-inverse of
A+ BDB* if either M (BYC M (4) or M(B*)c M (4*) or
both,

Corollary 2 ¢ Let A be an,n,d, matrix and D be

positive definite, Further let M@B)c M(L) and G be
a g-inverse of 4, Then B*GB + p Ll s positive definite

and & - GB(B*GB + D"1)"Ip*g is a g-inverse of (A + BDB*),

Proof of Corollary 2 { Note that under the hypothesis

B*GB is Invarisnt under the choices of g-inverses of A4,
Further, since A 1is n,n,d, there exlsts a ﬁ.ﬁ.d.
g-inverse of A(See theorem 13 ofVChaptef 1.}, Hence B*GB
i g dy 1 Land DL 4 B*GB 1is p.d. The rest oflthe proof
follows from Corollary 1. | |

This completes the proof of Corollary 2,
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Cc.olrla,- - o (Rayner and Pringle, 1970), Consider

“

the same set up as in corollary 2 with D = I, Then

G- GB(I + B¥GB) © BXG is a g-inverse of A + BB,

Corcllary 4 + (Rao and Mitra, 1970), Let G =4,

5 be a vector and d,a nonzero scalar, Assume that

G a a*G

é + a*Ga # 0, Then is a g-inverse of

é + a*Ga

L+ d g a* if either a & M(A) or a e M (A*) or both,

Corollary 5 ; (Rao, 1965), Let A be nonsingular

and Dfl + B*4 1B be also monsingular, Then
s

;1w mle eralp + p1Yy"L B*xaTl is the inverse of

A + BDB¥*,

Remark 18 ¢ To obtain g-inverses of A from those

of 4 + BDC* one can use theorem 15 as A = A+BDC* + B(-D)C*,

b

©.6 ipplication of the results obtained in sections 2.2-2,4

to re~caletlation of least squares estimates for data or model

changes,
Consider a linear model E(y)=Xg .and 'Bﬁy)=621 l
vhere y-is a n X1 random vector of observations, X is g

)
a nxm matrix of known coefficients,p is a m=1vector (2.6.1)

of parameters,and E(y) and D(y) denote the expectation |

and dispersion matrix of ¥ respectively,


http://www.cvisiontech.com

O- 0 . 70

ﬁ is said to be a least squares estimate of p if

(y - Xp)!' (y - X8 ) is minimum when 8 = B, Clearly

Fal -

g = Xi ¥y where Xi is any least squares g-inverse of X,

' 2
. ~ R
Further if R(X) = r, then 0% = —2— here
Rog=3r‘y- v' Xp.
- A g
Suppose Xi is computed and B and 0 % are

obtained from the formulae quoted above, We now consider

two types of problems,

Problem I ! 4An additional observation ¥ n+1s the
expected value and variance of which are El X4 iBi,

(where Tne1, 1 are known constants ) and o2 respectively
is given, Further Yn+1 Is uncorrelated with Yis
1=1,2,40eyn. In the light of this new observation the

. Fal - 2 g
estimates 8 and o ° are %o be revised,

To solve this problem, we proceed as follows, Denote

X! = (X:n'l'l l’...’:’irl'*‘l,m)'. HeI‘e the probleﬂl essentialj._y iS

ry- -
to compute T . Observe that i.?{] =((X' ¢ X)m)'
g

£
N x
( _

and .er ((X L )'. Thus the problem is to find (X' * x)


http://www.cvisiontech.com

T

15:3
given (x4 o If XX X = % then one can use theorem
3(iv) to compute(X' % i); p Othérwise, theorem 1(1i1) can
e nsed to compute (X' ¢ X);. " Opnce thls is computed the
rest of the analysis is easy, |
The case where a new.ﬁarameter is added to the model
.an be dealt with similarly, This is illustrated by en
example in section 2,7, |
We now consider

Problem II . Consider the same set up as in (2,6.1).
nt of

Suppose the model is overspecified and the last compone
g is redundant, It is desired t&jobtain the revised
estimates deleting thellast_compdnentfof B and the corres-
ponding (last) column in X, |

Let us wrife X=(z°*x) and B'= ('Y': ﬁm) Where
B is théllaét component of p and X is the laét column
of X. The problem is to compute Z%Zﬁsing (z :_X)E .
Let (23 x)g = (G' * b)!, Check vhether x'z=o, If so
using theorem 4(iv), we note that @ = Zé‘; Otherwise
check whether b'x # 1, If so, use theorem 7(iv) to obtain
z, -from. £, If dlx=1, check whether b'Z = 0!,

1f so, use theorem 8(1ii) to compute Zi . Otherwlse use
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either theorem 5 or theorem 6(iii), Observe that once Zi
is computed the rest of the analysis is easy, The case
where an observation is dropped and the revised estimates
are to be obtained can be dealt with in a similar way.

This again is illustrated by an example in section 2,7,

Now consider the ssme model as in (2,6,1) but let

D(y) = Mo® vwhere M is a known p.d. matrix,. Then

~ A2 Rz -

p =X y and ¢ =  where T = R(X) and
L1y

B2 = yuly - yrixg

o]

Let us now consider the problems considered in the
earlier case, We shall indicate how one can use the results
of seetipn 2,4 to solvé these problems, In problem I, we
consider only the case where a new observation which is

uncorrelated with the previous observations is given, Thus

—

g - (M o
one has to compute !,., where Ml = .
g S N : g &
200h

But 1t is well=known (see Rao and Mitra, 1970) that

—_— X o k

ten = 1= = t d = y" t

i [{x* * X)m(Ml)] and X{(Myl) L (X )mCM)] ’

~ 1
204 %)
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iow one can use thoorem 11 or 12 to obtain (X s x)_ M
, T m(My)

glven (X‘);(Ml) according as x & M (X') or not, One may
2

slso memamber that Var(z) = 6 0 = Var ( ;;") =g
&

(vhere & # 0), Problem II, in this case, can be solved
in an exactly similar manner to the previous case and the
theorems Tto be used are given in section 2,4 and do not

need any further elabcration,

In either of the two models if one wishes %to compute
the estimates of the staﬁdard errors of estimates of
estimable linear parametric functions one should know
(XM X)) where D(y) = M 62. This is easily computed from

Xy( -1 as the following theorem of Rao and Mitra (1970)
L (M ,

(3ee theorem 2(a) of Chapter 1) suggests '! Let G = X,

Then G =3, _. if and only if GMG' = (xixyT,
R

2,7 MNumerical illustration,

Given below are

(1) an observation vector y on a vector Y of
random varisbles obeying a linear model E(Y) = Xp and

D(Y) = g°1

$

(11} the matrix X of the linear model,
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(iii) X, , a least squares g-inverse of X,

{

(iv) B = Xz ¥, a least squares solution for the

unknown parametric vector By

(v) Rg, the residual sum of squares

and

Fas

(vi) o C

, an unbiased estimate of o2

S~ =3 4.7,

2 o " 5.6 7
1 T 4 4.2
. 1 2 1 9.6
X" . H Yy =
1 0 &l . 2.4
0 1 2 2.4 J
[ 5 A 1 o3 3
24 12 8 24 8
- L 1 i ) 5
X . 8 4 8 - 8 8
0 0 0 0 0
1.8167]
é\ =1 2!1500

0.0

based on
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o ~ R
= * i * a = r . = = =
RO v¥y - y*X 8 0,51 and o 5 -5 0,17

2,7,1 Suppose i* is dzcided to rewsrk the least squares

solution excluding the last observation, 2.4,

3"2 1 0 '
411 rof
Let A = s o 1| and @ = |
] o -1 LE

otice that we are reguired to work out AE, a least

sguares g-inverse of A based on X% where X = J...0 .

et _peix 1 g
! 24 12 8 24
sl 8 1 il 1 B
Let &% = -3 4 3 8
0 0 0 o
= el 3
and b¥* ( 5 ) 0 )
A‘W_
Thus BN = (G* * b),
a* |
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Since conjugate transpose of a lecast squares g~inverse of a

matrix is a mirimum norm g-inverse of the conjugate transpose

B G
(4% il = (}
] b*

Further b*a = ‘g # 1, Hence applying Theorem 7(iv), we have

we have

T 1 ]
< - 0
3 3
1 2
P = 0
% 3
ab* 1
(A*) =G (I+ b*a)=. 0 3 0
25- -1 0
1 1, ]
3 3 0 3
n i & il 1
Hence A{ = 3 3 3
0 0 0 0
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The revised estimate of 8 1s

[ 2.06577
8 = { 1,7333 ’
0 ]
2
oS
2.7.2 Suppose with the same data as in 2,7,1 we are
required to fit a revised model E(Y) = (X % x) fﬁ
[ o
yvhere x¥ = (0 O 1 O 0), Then we proceed as follows,

-

Wg shall compute (X !x )5 based on k:‘l . Since
X x# x it follows that x#M(X), 4pplying Theorenm

1{iv), we have
X; - do*|

b* J‘.

where d c = (I = XJS, Jx = x - X‘dr and b= c/c*x,

|
mr'xi
P4

*,,(_1

1
Wi
e
1
-
t
A
S
-
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Hence

o gl 1]

S 0 0 3 3

1 21 Z

9 3 ¥ 3 3

(X ¢+ X} = 0 0 0 0 0

¢ 1

. 2 4 oL

= it . 3 3

The revised estimate of parametric vector

b
e 1.8667
[pt 2 ,2000
OD‘I —
L q.l 0.0' .
| -0.4000 )
2 B
The residual sum of sguares, R = 0,45 and o? = E%E = 0,285,

2,8 An extension of a theorem of Rohd: on g~inverses of

partitioned matrices,

Rohde (1965) proved the following theocrem on g~inverses

of partitioned matrices,

‘ & LB
Theorem 16 (Bohde) 3 Let M = l-
G

_J = (X 1K )% (K oK)

D
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I+ ABFCA - A BF
and G = ' where

-F CL

et
]
!

F=D ~- CA B, Then the following hold .

(1) G=M.,

(11) If & and F in G are replaced by A, and

Fr then G = M, .
(114) If F 1is nonsingular and 4 and F in G
are replaced by A and F'l then G is indeed M,

In this section we extend this result, We pese the

following question and provide a solution to i€,

Let M = and A Dbe a g~inverse of A4,

Let F =D~ CAB and '
(2.8.1)

[ 4 + 4BY CA” - =~ BF

G = - - where F  is

any g-inverse of F,
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What are the necessary and suffiliclent conditions under

which G is a g-inverse of M ¢
The saswer is contained in the following

Theorem 17 * Consider the set up as in(2,8,1), Then

(a) G is a g-inverse of M if and only if
(1) M(c(T - A A< M(F)
(11) M (T - AA)IB)Y e MAF')
and (iii) (I - A4 ) BF ¢ (I ~ 4 A) = O,
(b) If A and F in the expressions for F and G are

replaced by A, and F_, then ¥ is always a g-inverse of
r? .

¢ (no further conditions being recuired),

Proof *

Eropf of (ay?

T AN + AABF CA - BF CA™ -ANBF + BF
MG = i |
| CA - FFCA FF_
[ -
[T A+ AABFCA A~ BF CA A ALB - AABFF{
- AABF C + BF C + BFF
and  MOM = .

CA A~ FF CA A+ FF C D
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} " .
Mwe NED - o0 LD ead oaly if

(1) A"B - AL BFF + BFF = B <= (I « AA")B

]l

(I ~ AL ) BF F <= M (((I-447)BY)c M(F")

(11) Ca A - FFCA A+ FF C = ¢ <= M (C(I - £ A))C M(F)

and (ii1) AL BF CA A - BF Ci A- LABF C +BF C =0 <=

(I -~ 447) BF C (I~4 4) = O,

This completes the proof of (a). Proof of (b) follows

by straightforward verification,

Note : In the presence of conditions (i) and (ii),
if the condition (iii) holds for some choice of F—, then

it holds for every choice of F ,

Now we give a few interesting special cases where the

conditions of “heorem 17 indeed hold, We prove
Theorem 18

Let M=
C D

pomem ey
.
us]

A —

where M (C'Y M (A') and M(B) € M (4) and consider

I' and G as defined in theorem 17, Then (i)} F is
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invariant under the choices of g~inverse of 4 and(i1) G 1is
8 g-inverse of M,
Proof ; (i) follows trivially,
To prove (ii), observe that
MoA(CY e M4 <= ¢ = Ch A, for any choice of
g-inverse A of A
<=> (C - CA L) = O

and M (B) € M(4) <=> (I - a4°) B = 0, for any choice of

g-invarse A of A,

Thus if M (BYC M(4) and M(C') © M(A')  the

conditions of theorem 17 are satisfied, Hence G 1is a

K

g-inverse of M,

The following corollaries are easy to deduce,

Corollary 1 :

= (X 2 X* (1Y)

B B

If M =
: c D

R WS |

i

- * : - + +
vhere R(Xl Yl) R(Xl) R(Yl)t then G as defined in

theorem 17 1s a g-inverse of M,
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Corollary 2 & (Rohde) ¢

C D

A B _ ‘ ‘
If M= [ }=(X1:X2)*(X1:X2)
then G as defined in theorem 17 is a g-inverse of M,

Theorem 19 ¢ Let M be as defined in theorem 18
md G as in theorem 17, Ifin G, A and F  are
replaced by AE Iand FE , then G is M';L if and only
1t MCA YT M(F), If in G, A and F~  are replaced by
ﬁ;l and FI; then G is M;l if and only if |
M aBIYYC M(FY), Ifin G & and F  are replaced.

by 7 and FY, thea G =M if and only if

Ay

M sty M (F)  and M ((ATB)T) < M (FY),

Proof of theorem 19 is straightforward and is

therefore omitted,
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CHAPTZER 3

SIMULTANFOUS REDUCTION OF SEVERAL HERMITIAN FORMS

3,1 Introduction and Summary.

Simultanecus reduction of two hermitian forms one of
which is pos;tive definite to diagonal forms by means of a
nonsingular linear transformation is well-known (See Rao,
1965); In an interesting paper Mitra and Rao (1968)
considefed the problem of simultaneous redution of a pair
of hermitian forms, They obtalned in several classified
cases neat necessary and sufficient conditions for simultan~
eous reduction of a pair of hermitian forms to diagonal
forms by means of cogredient and contragredient transforma-
tions, They also obtained a neceséary and sufficient
condition for several hermitian forms %o be reduced simul-
taneously to diagonal forms by a single unitary transfor-

maticn,

In this chapter we obtain in several cases necessary
and sufficient conditions for simultaneous reduction of
several hermitian forms to diagonal forms by a single non-

singular linear transformation, These are obtained in


http://www.cvisiontech.com

85

gections 3,3 - 3,8, In section 3,2, we give a character-

£
Hsation of semisimple matrices with real elgen values and

show lhat Several semisimple matrices commute pairwise if
and only if they can be expressed as polynomials in a
ommon. semlsimple matrix,

It is interesting to find that the conditions for
similtaneous reduction expressed 1n terms of g4inversé5
(as given here) make the expressions quite neat and
Intuitive,

In addition to the general notations cited in
introduction to the thesis we use the following notation

in this chapter, TFor a m =Xn meatrix A of renk T

>
kL denotes a matrix of order m >m~r and of rank m-r

such that A% PPL = 0,

3.2 Some useful theorems,

Tn this section we prove two useful theorems in

linear algebra which are also of ihdependeﬁt interest,
Theorem 1 ¢ Let Ay, Ay eeey A be semisimple

matrices of the same order, Then A, Aé; couy B

commite pairwise if and only 1f they can be expressed
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as polynomials in a common semisimple matrix,
Proof : Proof of 'if! part is trivial, To prove the
'only if'! part we proceed as follows,

Since A, 1 =1,28, ..., k are semisimple matrices

it follows that (See theorem 9,5 of Perlis, 1956)

e
I

B.. + ,.,. + sy E

% &
i 11 i1 L5 iﬂi ’
where
(1) B;; 1is idempotent ¥ i, b
(ii) Eij Eij’ 0 if J# j' ¥ i g\ (3.2.1)
is J
and (i1i) 2 B, .=T1 ¥ { ’
i

Further, since Al,...,gk_ commite pairwise 1t follows

that (again see theorem 9,5 of Perlis, 1956)

E,., E

13 1]

Define B = 2 a: % . « Boo ... ;
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are

l uoonék ll,iz’c..’ik

all distinct,

First obgerve that

some £

= OF 4 ie#je for

This clearly follows from (3,2,1) =and (3.2.2).

jgain trom (3,2,1) and (3,2,2) it follows that

and

CElil'"Ekik) (E‘lil"'EKik) : Elil"'.Elcik

2 - 3 En' LN E 3 = Io
IR Elll 21 ﬂklk

Now, an appeal to theorem 9,5 of Perlis (1936) yields

that B 1is sémisimple_

= 3 w =
further observe that . 28 o Bgy e Eki i
Toseseyly 2 k

and also sum of all such similar products by omitting for

example the principal idempotents of Al is the identity

ratrix,

Let p( . ) %be a polynomial function with complex


http://www.cvisiontech.com

88

coefficients, Then observe that from (3,2,1) and (3,2.2)
it follows that |

1 i ) 1, 2,0.0,

B) = = (G b an =g o BotiApac o al @t
b S PAG3 4 1k) Elll 2212 Eklk )

Now there exist pol}nbmials Pps M7 L3000, K
such that -

c. . ) = a0, forall mMyiqedesecesin.
Pm 1iyd5,000,dy M 4 LB R 'k

[Lagrange's method can be used for constructing such.
g€ A

polynomials, ]
Hence | | ;
(B) 7= 2 - (c 'Y
- C g, 0e ey ’n 11""’ k Ell g 1y
= ( Z vew B )Y BRa®, 2 Hug?
1, Elil rklk 1 =1 iy hi

Am for m= 1,2,,..,K,

This completes the proof of theorem 1,
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Corollary ¢ If AMyhAgyesey By are semisimple matrices

-
hich commute pairwise then therc exists a nonsingular matrix

I such that T & Tk g diagonal for 1 = 1,2,...,K.

i
We now obtain a characterisation of semisimple matrices

jith real eigen values, In later sections we come across

wnditions involving semisimple matrices with real elgen
jalues and thus this theorem may not be quite out of place
kere, We prove

Theorem & ¢ A is semisimple with real ‘eigen values
M

if and only if there exists a positive definite matrix

sich that M A ML = g,

hooef 3

Proof of 'if' part,

p Let M be a positive definite matrix such that
HAML= 4% Since M 1is positive definite M = BB*
where B* is a nonsingular matrix, Thus

BB*A B*¥ L Bl = g% = Bx 5 px"1 = g1 px 3

= B* AB* 1 is hermitian => B* aB*"1 ig semisimple
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with real eigen values = A is semisimple with. real

glgen values,
This completes the proof of 'if! part,

Proof of 'only if' part,

If A4 is semisimple with rezl eigen values then
there exists a nonsingular matrix B such that
B ABL= D where D is a real diagonal matrix, Hence

= -7k
BABL=0D=0*%=581 5% mis in turn implies that
B¥B A BT1B*™! = A%, Cloarly B*B is positive definite,

*

This completes the proof of 'only if' part,

The following interesting result of Mitra (1968)
follows immediately as an idempotent matrix is indeed a

semisimple matrix with real elgen valucs,

Corollary (Mitra) ¢ If A is an idempotent matrix,
then there exlsts a positive definite matrix M such that

*

MoANL o ax

We state below a theorem given in Mitra and Reo ¢

(1968), for completenecss,
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Theorem 3 { Let A4, Ag,...,Ak' be hermitian matrices

)f the same order, Then there exists a unitary matrix T
sien that T A T* is diagonal for i = 1,2,,,., k 1if

and only if Al""’ﬂk commutbe pairwise,

3.3 Simultaneous reduction when one of the matrices is

nonsingular,

We prove

Theorem 4 3 Let Al,Ag,...,Ak be hermitizn matrices
of the same order and let Al be nonsingular, Then there
exists a nonsingular matrix T such.that T Ay T* isg
iiagonal, 1 = e Pme gy | 13 @nd, enly if

(a) A A;l is semisimple with real eigzen values

for 1 = LIPERECIN
and (Db) Ay A{l L. = Ail AJ_ for all 1 and 3
J J '

Proof | Proof of ‘only'if! part is trivial, To prove

the 'if' part we procced as follows,

M N T I R e

commute pairwise,
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I S

Hence (&) and (b), in view of theorem 1 and the
coroliary after theorem 1, imply that there exists a non-
. d =R ] : =Ly~1
singular matrix M sucp that for each i, Mugiﬂl M *= D,

where Di is a diagonal matrix with real elements, Now,

: a "I—-, r } X 4 . o
VLM A W=D = WM W=D M

Di and M Al M*  commute for 211 5 I
ilso observe that Dl"“’Dk being diagonal matrices

commute pairwise,

Hence'b? theo rem 3, there exists a wmitary matrix L

such that L M A M¥ L* and I, D; L* are diagonal for all

ity
Thus,
L M Ai M* I* = T, Di L* L M Al M Tk 4% dizgonal

fork = 1,2, . .,k,

Put T =1 M and observe fthat T - is nonsingular

ands’ % A T* is diagonal for all i,

This completes the proof of theorem 4,

Corollary * Let A15 Aoy weey 4. Dbe hermitian matrices

e

of the same order and let A, be positive definite, Then thers
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exists a ronsingular matriz T such that T Ay T* is

e 1 <
fiagonal for all 1 if and only if AjAThs = AjAllAi

for all 1,3.

Proof ¢ Corollary follows trivially from theorem 4
once it is observed that Aiﬂil is semisimple with real
eigen values (being similar to Ai) Thaig A ;jghermitian and

Al is positive definite,

We now state a theorem anglogous to the theorem
corresponding to simultaneous reduction of a pair of
hermitian matrices by contragredient-traqsformationsmeee
Mitra and Rao, 1968), The proof of this theorem follows

on similar lines to that of theorem 4 and is omitted,
Theoren & @ Let Al’ Az""’ﬂk be hermitian matrices
of the same order and let A, be nonsingular, Then there
exists a nonsingular matrix T such that T A T* and
(r*y~1 A "1  are diagonal for each i if and only if
(a) & 4 is semisimple with resl elgen values for

1= 2.,k and (0) A A Ap = Ay Ay 4 for 3,02 20,k
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3,4 Simultaneous reduction of several arbitrary

hermitian forms,

We prove -

Theorem 6 ¢ Let

Al’ Az, » B A{ be hermitian

matrices of order n >Xn such that xﬂi(éi)C:Lﬁi(Ai) for
i=2,...,%k. Then there exists a nonsingular matrix T

is diagonal for all

3uch that T Ai T* i if and only
if

(a) Ay Ai is semisimple with real eigen values
for 211 i
= ’l"" o e .m: . L
and (Dz “iﬁlAj AjﬁlAi V¢or all i,
where A, iz some g-inverse of Al.
e
Brgaf! 2 '

Proos of "if! part

(a) =é ™V in view of theorem 1 and the corollary

after theorem 1, imply that thére exists a nonsingular

matriz M such that M 4, A‘i}f‘l = D; where D,

is a real
s i
dlagonal mavri:,

—

M (o M (4 4 oA, AT ML =D, = M o4 Mk
UL(%)c:v,(gr amiryxﬁ %-M‘ D% LAy
D. M Al VA = Dl"'“’Dk cnd M AlM* commutg pairwise

Dyyeee, By are diagonal they commute pairwise),-
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The rest of the proof of 'if! part follows on the

‘same 1lines as that of theorem 4.

Proof of 'only if' part.

Tet R(Aq) = v -and without loss of generality let
f’a1 0] ,
T oA T* = where A, 1s a nonsingular
1 B . : . x
0 0

diagonal matrix of order r Xr,

Partition T%* = (T? :-Tg) where TF is of order
0 1
n Xr, Observe that ATVTg = O .which in turn implies

that &; T¥ =0 for 1 =2,,..,k, (This is so because -
- : Ay 07
&{(Ai)CLﬁi(A1),) Hence T A, T* =

. , where Ai
0 0

-
is a diagonal matrix of order T X< e

- Clearly, A; = m* | 2 O' T 1is a g~inverse
| @rn ' |
of A1, -
Now,
Tk 0y a7t o
- -1t -1
AiA1 = {4 _ e It T
O O;! O O V :
_1 3
.| as A 0
- 1 i~ T
0 0
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which is clearly semisimple with real eigen values,

It is easy to check that & A,I Aj = Ay A’i by

2 j' | )

for all %

-

Note : Theorem 4 can be deduced from theorem &,

We state below a few interésting corollaries which

are easy Lo prove,

"..’

Corecllary 1 @ Let Al’ AK be hermitian

natrices such that A= _§1 iy 1is nonnegative definite
and M(4)C ML) for 1 =1,2,,,.,% Then there exists
a nonsingular matrix .T such that g Ay T* is diagonal

for & = 152,05,k 1 IF andienly @f Ai A' Aj =_Aj A Ai

for all i,] where £ is any g-inverse of 4,

Corollary 2 o Let 'Al,ﬁo,...,ﬂk be n;n.d, (non-

negative definite) matrices of the samo order " Then there

exists a nonsingular matrix T such that T Ay T ig

diasgonal for each iy

if and only if Ai L Aj = Aj A ”Ai
2 3 .

for all i,j where A= Z Ai and A ig any

i=1

g-inverse of A4,
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We now give a sufficicnt condition fer hermitian
‘ ) \ . _ .
Fyaﬁrlces Al,hg,...,ﬂk to be reduced simulbaneously %o
diagonal forms by a nonsingular linear transformation,
We prove

Theorem 7 § Let ‘Al’AZ""fAk ‘te hermitian matrices
of the same order, . Then there exists a nonsingular mabtrix

T such that T 4 T* is diagonal if

(a) R(NA) = R(N 4 ¥*) = R( Z N A)
: : L i=1
-k
where A= 2 A and N¥ = A% ;
i=1 *

(b) r; A, is semisimple with real eigen values

il

where ]'i A -k E(N 4 N*)T N A and Ai

© is some g-inverse of A,

(e} T, A{ f} = F& Ai T; for i,J = 2, o,
(d) N A N* (N 4 N*)  is semisimple with real
eigen valugs

and (e) N A NF(NAN*)TN iy

N AjN*(NAN*) N A, N¥

for 1, = 2,;0.,1{,


http://www.cvisiontech.com

98

Proof * TFirst observe that Ti N¥ =0 for 1=1, 2

se eyt

Hence T; = Ji Al and .T; AE = r;‘Air where Ji‘ is gome

matrix and Alr 1s a-reflexive hermitian g-inverse of

Al’ fOI‘ i = 1,2’..."&{.‘ Let 1_\_]. == C D C* Whel’e Moy i

\.J\J I‘
and D

is a nonsingular diagdnal‘matrix with real diagonsl
elements, Let Air = Y AY* yhere Y*Y = Ir and A is
a nonsingular diagonal matrix, Then Air = 7 D1 g

where Z = Y(C* Y)ml, Clearly C*2Z = p+ Now consider

Z* - G |
N
where G = Z¥4 N*¥(N A N*)

Observe that (z* ~ GN) A = 7H T; y A=

-
EE 0 1

Thus g giS* = I
‘ *

- L 0 i Al N_;_

where E, = z* [} Z for 1=2,,..,k

D 0
and ] Al g% = 1 z
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Farther for each i,EiD_l is semisimple with real eigen values as
|;A£ iz semisimple with real eigen vzlues, Also f}A{f}=T}A£r; for
all 1, = E, p-L Ey = E, DlE, for a1l 4,j. Hence by

theorem 4 it follows that there exists a nonsingular

patrix L such that L Ei L*¥ s diagonal for 1i=2,.,,,k

and L D I* is diagonal, Further (a),(d) and (e)

together with theorem 6 imply that there exists a nonsingular

matrix M such that M N A W¥M* is diagonal for

L

S

Let T = Then clearly T A T S

<
PTY—

C 5|

[—"—" B

diagonal for i =1,2,,,.,k, Further T 1is nonsingular

as L,M and 8 are monsingular,

This completes the proofl of theorem 7/,

3.5 Concluding remarks,

The conditiong stated in theoyeﬁﬁz are nol necessary,

This is exhibited in the following @%amDIU ~§t% =3 znd
l’ T @ o) i"o cC 07
0 ' l 1 I
l 0 0 w s i 0 1‘ 0| and A= 0]
L 0 0 0l 1 0 o\ =il | 0 1_1

Observe that condition (a) is iola;eﬁ.
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CHAPTER 4

COMPUT ATIONAL METHODS OF GRENERALIZED INVERSES

4,1 Introduction and Summary,

There are‘séveral methods for computing the Moore-
Penrose (M-P) inverse (Penrose, 1956 ; Rao, 1965 Ben Israel
and Wersan, 1963, Boot, 1963; Pyle, 1964; Golub and Kahan,
1965; Ben Israel; 1965,1966 to mention some,). To compute
Aq, A% or Ag one need not compute A% as has been pointed
out by Rao (1965, 1967). In fact, to compute any of -4,

L

- i1t is just sufficient to have an algorithm to

3
compute a generalized inverse of a matrix (See section 4.3),
In this chapter we present two computational methods for

computing a generalized inverse of a matrix,

The first method, based on reduction of a square
matrix to Hermite Canonical Form (HCF) by elsmentary row
operations is presented in sections 4,2 and 4,3, Here we
give ‘a simple and usual pivotal condensation-like glgorithm
to reduce a square matrix to HCF, 4s Rao (1965) observed,
if H= B4 is in HCF and B is nonsingular then B = 4 ,

As is well-known the Gaussian elimination type algorithms
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are not very stable and this method is no exception, However,

this is an elegant and simple method to compute a g-inverse,

The secoud method is based on reducing anrafbi£réry
ratrix to bidiagonal form by orthogonal trahsformétions
(Householder type), computing a g-inverse of the bidiagonal
natrix and adjusting the g-inverse for the orthogonal
transformations made in the beginning, This is described in
detail in sections 4,4 and 4.5, This method is the same
zs that of Golub and Kahan upto the reduction to bidiagonal
form, To get M-P inverée they obtain the singular value
decomposition of the bidiagonal watrix using a Q-R type
elgorithm (for QR algorithm, see Francis, 1961,:1962), obtain
M~P iﬁverée of the dlagonal matrix with singular values in .
the diagonal (this is.very ceasy as thQIM-Pinverse cf & diagonal
matrix is véry simple to-compute)'and then_adjust for the N
orthogonal transformations made in the process to get M-p
lnverse  of the giﬁen matrix, From the examples that we,
have worked out on an clectronic computer, we find théf the
method described here is as satisfactory as that'of166fhb |
and Kahan, However, only a detailed error analysisr(which

has not so far been attempted very systematically for g-inverse


http://www.cvisiontech.com

102

computations except for the work of Colub and Kahan) can

place the several algorithms in the proper order of merit,

4,2 M algorithm to reduce an arbitrary square matrix

to Hermite Canonical Form,

Definitionl; A square matrix A = (aij) is said
to be in Hermite Canonical Form (HCF) if (i) a5 =0
whenever 1 > j, (ii) ay4 i1s either 0 or 1 for ecach
i

,  (iii) 254 = 0 for all i # j if agy = 1 and

(iv) ajy = 0 _for all F 4P a;; = 0,
We give below an algorithm %o reduce a given square

matrix 4 to 'HCF by elementary row operations on A,

_ Algorithm ¢ Let 4 bhe a‘square riatrix of order
n >n, The algorithm consists of n sweep-outs, = For
notational simplicity the (i, j)-th clement of the resultant:
matrix aftéreach sWeep—out is denoted by éij,'-The detailed

steps are given below,

Step 0: Set 1 = 1

Step It Check whether a;5 = 0, If so, go to step 2,

Otherwise go to step 5
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Step 2 ¢ Check whether ayy = 0 for all J such

that 1 < j'g n, If sv, set m =1 and
86 to step 3, Otherwise let k be the
émailest’integeﬁz(i_<;ﬁwg,n)'such that

oy #°0, Co to Stég;é*

Step 8 { Check vhether aj; = 0 for all sudh
that m < §J <i, If so go to étep g, 1If
not let k_ be the smallest integer
(m <k < 1) such thab. akim#lO.”.Checkm
whethgrf,ékk = 0,  If so go tdfstep 4,
Otherwiss 18t m = k + 1, Chegk whether
m=1i, If so, go to step, 6, DOtherwise

start atep 3 again,

Sten 4 ¢ . Interchange i-th ahd k~th rows, Go %o

step 5, P2 GOy B ey

Step 5 ¢ Perform sweep-out to make (i,i)-th element
unity and all other elememts in i=th column
zero, (o to step 8., -

Step 6 | Check whebher 1 = n, If so the process is

complete, Otherwise step up % by .1 and

go to step 1,
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Observe that we have used only elementary row
operations all through and that this algorithm indeed reduces
& square matrix to HCF, lotice that this algorithm is very
similar to the usual Gaussian elirination method for
computing the inverse when the matrix under consideration

is nonsingular,

4,3 Use of the elimination algorithm in section 4,2 to

compute various types of g=inverses,

Let A be é'given sguare matfix; Aply on A the
algorithm given in section 4,2, Let B be the matrix
which is the product of the matrices corresponding to the
elementary row operations made (product taken in the proper
order,), Hence BA = H where H is in HCF, Then clearly

(See Rao, 1965), B is a g-inverse of maximum rank of A,

If 4 dis & m =n matrix where m < n then the

square matrix C ﬁ[léi is constructed, Let D ‘be a
0

i
1

g-inverse of 'C.‘ Delete the last n-m columns in D

to get a g-inverse of 4, Observe that this is a g-inverse
of maximum rank, The case where m > n  can be disposed

off similarly,
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The matrix H itself is also of considerable interest

E

in several applications, 3o one can apply the algorithm on

4* I so as to reduce A4 to HCF, As a result of the

application of the algorithm'in place of A "and I one gets

:

H and B respectively,

| ' ,
Rao (1967) gave‘the following expressions for Al ,

& and A,
A ﬁVA’(A AV | | : (4.3.1)
A% = (A'A)i.A‘ | pu + (4ﬁ3‘2)
and AT = (A'A) &' = AT(A A‘); A el 5.5)

for any choices of g-inverses occuring in the expressions

on the right hand side in (4,3,7) - (4,3,3),
Hence it follows{that

A+

1l

(AT AY = 4'A (ATA ATA) A L (4.3.4)

Ay =8 ATA-ANT A AT © (4.3.5)

To compute At one can use the formula (4,3,4) vhen

m > n and the formula (4,3.5) when m < n,
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Mitra (1968a) gave an equivalent and more compact,

formula for A+ as

AT = At(ata AT A, (4,3.6)
It may be noted that the formulae (4,3,4) and (4,3,8) can

also be derived from (4,3,8),

However for computationai purpoées (4,3,43 and (4,3,5)
are more useful as for example the expressions for which the
g-inverses arerto be computgd_are nnd, If C- is nnd; in
applyiﬁg the algorithm‘oflthe previous secticn on C, one
never needs step 3 as a result of which some checking can be
avoided; The previous statement is easy to prové'aﬁd hence

the proof is omitted,

4,4 g-inverse of =a bildiagonal matrix,

It is well-known (Golub and Kahan,-1965) that any
m >n matrix can bz reduced by Householder's (orthogonal)
transformations to bidiagonal Iﬁrm. In this section we
exhibit a g-inverse of a block bidiagonal matrix of =
particular type, 'In the next section we shall show. that

any bidiagonal matrix can be brought to the type, for which
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a g-inversc 1s exhibited in this section, by simple elemen-
tary Operations whence one can compute a g-inverse of an
arbitrary matrix using this method, We now define a block

bidiagonal matrix,

Definition 2 ¢ A matrixz A4 of order M =N 1is

said to be a block bidiagonal matrix if it is of the form

[ Ay Ay O e OT.

. i sid e (4,4,1)

0 0 8o posic ‘
L Aﬂn_i‘
where the matrix in (4, j)-th block is of ordcr ml ><nj
where E my = M and E n, =.N,. In partlcular, 1f each

i=1 : =] o
block in the abave matrix is an element of the fleld
(i,e, a scalar), the matrix 1s called a bidiagonal matrix,
Let A be a matrix as defined in definition 2,

Define
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| Byp By . By \
i
Q Bgg eov Boy |
B — " e PRON L .o
L.O O b e Bnn N L
: . ‘ (2.4,2)
where Bii = A‘ii for i= 1,23000,}1 L
B.,., = -B A.,.. ., B,
1] i J= 0 Tl
for each i, d = 141,40

and for 3§ = by o 00 gli=d

We prove

Iheorem 1 ¢ Let A and B be as defined in (4,1,1)

and (4,4,2) ‘respectively, If either M (Ai,iﬁ)C‘M(Aii)

s s U ! (AY
L2 4k, ...,0-1 Or‘yq(Ai,i+1k:‘WL(Ai+l,i+l) for

lysee,n~1 then B ig g g-inverse of A4,

Proof ! Let us demote the (1,3)-th block of 4B and

ABA by (A'B)ij and (ﬂBA)ij respectively, Clearly,

and for each i = lysesyn-1

(AB)ij RO if 4 =

(AB)ii = Ay Bii for i =12 n

k4
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(BB)gs = Ay B3t Bgn Bi¢h3

for J = itl,..ey0,

Henéé;'“
(ABfa‘.)ij = 0 1if ‘1 > |
and for each 1 = 1,2,.:.,n#1f
(BA)y 5 = (Ayg By gor t 8 54 Bian, 501 A5m1,0 T L 4 g
(A -Biy ¥ Agyq Bys1g? 445
for § = itl,.,.,0
where By is interpretted as O if 1i.> ], = "J

b= " _Jf‘L .B.'—
B g1 T Ay By Mg Tafiaa Aagge T

. . ‘B, i . .
A'i,iq-l i+l,4+1 A1+1, i+l

aer

= Ay Byg Apa T A Bas A Praagn Al an
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If either lM(Aj.’iﬂ:)c: M (44) or

My Moy, 1+1) then clearly (ABA)y ;u1=k , ,.Cholce off
i being arbitrary, 1t follows that (A B A)i,i+1 = Aii+l

1f either M (5470 € M (a5) or M(al 0 ML 5410

Once again choose and fix 1, Let 3§ > i+2, MNow

(AB A= Ay Byy o Bi-1,5 T A1 B, 5-1 A4en

- e d B et
(A“.Ll J = J-LJ Jd AJ:J

o

B, Boa o o B AL
A 0 SreiE T =) AJ-lﬁ JJ AJJ)

IfM(A!_l < M(Ajj) then clearly (A B 4);, =0

Also if J/L(Aliﬂ) C M (4;) then again (4 B By =0
since under this condition, Aii Bii = —Aii+l Bi+l£ for
all 4 > i+1,

Hence A B A= 4 ir eitherM(Ai.+1)CM (A_.Li)
for 1= 1,“.,n 1 or Nt(%mﬁi)“‘JA’(A1{b1+l for

il 0= K i

This completes the preof of theorem 1
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The following useful corcllary follows as a special

case of theo:em (8

Corollary % If A= (aij) is a bidiag&nal matrix of
prder n >n then B is a g"invérse‘of A if either
8;4 =0 =D ai,i+lz o for 1 = 1?2,7,,,n—1 or

o for i=2,...,n where ‘B = (b,,)

o = = 3
A © ai-l,l 1]
is defined as
.. =0 i > ]
blJ if ; ]
- . . S N
bis = agg where a.y a1 if agy ¥ o and
835 % C4 where c; 1s awy constant.
i =
for 9 = LI,2,..0td
and  byy = "By jepagg ybyy  for J = Ath....n
for cach of * = 1,,.,,n"1,

Theorem & ¢ Let X =T AV' be a symmetric matrix
where U and V are orthogonal matrices and = 4, a bidiagonal

matrix such that a;, = 0 => B for 11 T2 .o 0T

84,447

Define by, = ¢ 1if a.,. = O, therwise define b

il ii i} _as in
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the previous corollary, Then C = V B U' is a g~inverse of

X such that T (cho M (D),

Proof : We need
Lempa 1 ¢ If 4 and B are as defined in the
theorem 2 then “A(B')C M (A),

Proof of lemma 1 is computational and we Qmit the details,
- Now, observe that C. is a g-inverse of X, {further

since X is symmetric X = VA'U', From lemma 1, it follows

?
that 4 D such that B=D4', Hence X =V D A'U! =

VD VIV A'U' = VD V'K,

This completes the proof of theorem 2,

The above theorem can be useful in the following
situation, Let 2Z2Z'= X, Suppose: X = U 4 V' vhere
U, V and & are as defined in theorem 2 and let "B be
computed as in theorem 2, Then 2Z'C = Z . Thus, in such
& case, the minimum norm g-inverse of 2 that is computed

by the above process is indeed Z+,

4.5 fmother algorithm for computing g~inverses,’

In this section we present an algorithm to compute
a g~invérée.of a matrix usiﬁg the_corollary after theorem 1

and the fact that any arbitrary matrix can be reduced *o
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bidiagonal form by Householder's orthogonal transformations,
Once we have an’ algorithm to compute a g-inverse, it can be
pade use of to compute various types of g-inverses as has

already been described in section 4,3,‘

Mgorithm ¢ Let X be the given m >n mabrix

(-m __>_ 51’1) 3
Step 1 ¢ Reduce X by means of Householder's
srensformations to bidiagonal form (See Golub and Xahan,

1965), Let U'XV= A where U and 'V are orthogonal and
L is bidiagonal, |
Step 2 M
Substep 2,1 % Set 1= 1. (o to substep 2.2
Substepz.é i Is &.. ==; ¢ If'yés, go to substep
2,3, Otherwise go to substep 2,6.
¢(3'? If yes, go to

81,181
substep 2,6, Oftherwlise g0 to

Substep 2.3 ¢ Is

substep 2,4 -
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Substep 2.4 . Set gi;: 1. Set 255 = a3 347

(Replace the velue of a5y by that

of ai,i+l)' Go to substep 2,5.

Substep 2,5 ¢ Is 8544 4417 = © ¢ If yes, sct
s =0 and go to substep 2,7,
I rog sed my 1 and
RO i P o : =
By = By . o Pael, 141 %

Go to substep 2,7.

*

Substep 2,8 Setﬂi - o, Go to substep 2.7,
Substep 2.7 ¢+ Is 1 =mn-17 If yes, go to step 3,
Otherwise step pp 1 by 1 and go

to substep 2,2,

Step 3 Compute the n >xm matrix B as follows |
il —1 s - o
) a1 1 B ? = G E
by = for 1= 1,2,4..,00
13 3 e — :
1 : if agy =°
.. = = b. . . o Gl for 1= 1,2,44.,07]
Py 3 D5 5-1%3-3,0 °i AT R
and for each 1,
j = i+l,...,0,
and b.. = O whenever 1 > j or 3 = T,

i)
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Go to step 4,

Step 4 &
Substep 4,1 ¢ Set i=n-1, Go to substep 4.2,

Substep 4,2 ¢ Is £, = 17 If yes,replace ''(i+1)-th
row of b'' by '!'(i-th row of B) +({i+l)-th
row of b)'! go to substep 4,3, Otherwise

go to substep 4.4,

Substep 4,3 1 Is n; =1 ? If yes, replace ''i-th
column of B!'' by '‘(i-th column of B) +
p; ((i+1)~th column of B)'t, G to

subster 4,4,
Substep 4,4 3 Is 1 =1 % If yes, go to step 5,

Otherwise step down 1- by 1 and go
to substep 4,2,

Step 5 ¢ Compute X = VE U

A-few interesting remafks are in“order.

Remark 1 ¢ In step 2 we make soﬁe simﬁio elementary row

and column operations con the bidiagonal matrix obtained through

step 1 (if necessary) so that we can apply corollary

g~inverse of this matrix, In

o

following theorem 1 to get

step 3 we actually compute the g-inverse of the bidiagonal
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ratrix as described in the corollary, In step 4 we adjust
the g-inverse for the eiémenﬁary operations made in step 2,
In step 5, 'we adjust the g-inverse for the orthogonal

transformations made in step 1,

Remark 2 7 4t the end of step 1, R(X) = R(A),
Observe that step 2 does not alter the rank of A, Inlstep
3 we compute a reflexive g*invefse df. A, In fact, we can
compute a g-inverse of specifi‘ed rank, For example 1if
R(4) = r < n, to obtain a g-inverse of rank T + D
(where O < p < n-r) make b, = ¢ where ¢ # 0 when
ay4 = 0 fér p of the zero diagonal elements in A and
for the rest n-r-p zeros in diagonal make the cprre5pondin;
diagonal elements in the g~inverse (of bidiagonal métrix)
zero, 1t is easy to check that in this case we get a

g-inverse of rank 1 * p. (Opserve that R(B) = RCE), T

4,6 MNumerical illustration,

In this section, we give two examples, thesfirst“
using the elimination algorithm given in section 4,3 and
the other using the second algorithm in the previous

section,
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L. -

I -1.0000

-1.5000

e

v

-0.8333
"'O- 3353
1.1667

-0.5000
T

0. 0000

~0+5000

-1

o5

1.,0000

1.5000

0.0000

0. 5600

0.1667
0. 6667
~0.8333

0.5000

1{7

0.0000

0,5000

1.0000

0.5000

1.5000
-1..0000

-0, 5000

1. 5000

040000

0.0000

1.0000 -

0.0000

1.0000
-1.0000
0.0000

1.,0000

1.0000
0..0000
0.0000

0.0000

0.0000
0..0000
04,0000

0.0000

0.0000

10,0000

00,0000

0.0000

1.0000

0. 0000

-=1.0000

"2 . OOOO

oy

—
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-

~0.6250  1.0000  0.1250 -0.1250  0.7500 . 0.6250

-0.5000  1.5000  0.0000 0,0000  0,5000  0.5000
= 0.0000  0.,0000  0.0000 0.0000  0,0000  0.,0000
Ay

o

st =

-0.2500  0.1667 0.0833 - -0.0853  0.3333  0.2500

% -0.1250 0.6667 «0.0417 0. 0417 0.,0833 - 0.,1250
A

0.3750 =0.8333 -0.0417 0.0417  -0.4167 =0.3750

~0.7250  0.5000 0,1250 ~0.1250 0.2500 0.1250

Example 2 : The following example is worked out on IEM 1401 EDBM
using a program in FORTRAN II with mantissa 15 and modulus 5. The

results are represented in & mode.

i 22 16 2 3 7 R

14 7 10 ¢ 8

-1 13 -1 -11 3

A = -3 -2 13 -2 4
9 8 1 -2 4

g 1 -7 5 i

2 -6 6 5 0

4 5 0 -2 2
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A

_-0.65162057E-O1

-0.54150507R=00
0+56639806E+00
~0.95583508E=00
0. 161067 44E=C0

.Q,d5407276E—OO

0.156830898-00

]

~0.658593208-00

~0.416666678-01
0.58117138E+00
=04 57959906E+00
0.99135220E+00
-0.15369497E-00
~0.46481918E+00
0.68238994E+00

~0415585692E-00

0.33564815E-~02

-0.4782 0580E-01

0.6T77384TE~01

~0.838749138-01

0.184049628-01

0.34451778E~01,

~0.67018256E-01

0.17575122E-01

~0.634259265-01

0.88833421E~00

«~0.959185018+00

0.15237072B+01

-0.2559%117E-00

- =0.696571458-00

0. 1082 69575+01

-0.25555992E~-00

-0.39583333E-01

0. 552 T9088E-00

=0.56485849E~00

0. 94449686E~00

=0, 15007862E-~00

~0+43954403E-00
0. 6564072 38-00

=0.15145440E-00C
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(A=

.

-

0. 40987089E~01

~0.20283880E~Q0

0.19921696E-00

_—Q.37476836E—OO

0. 630656 T8E~01

0.18879932E-~00

 |=0.245015168-00

0. 59046124501

=
e

~0.162565038-01
0.22520101E-00
-0.19365688E~00
0.38059594E~00
~0. 50685822E~01
~0+ 18599162E-00,
0.24768017E-00

~0.53075853E-01 -

0. 3566704 5E-03
~0.57962992E-02
0.22211229E-01
=0, 117T1T43E=01
0.6244 1595802

0. 151463 60E-02

~0.15698353E-01

0454412 466E-02

~0.24428382E.01

0.34201856E-00

=0+ 36687098E-00

0.58636599E-00

=0, 9784074 1E~01
~0. 26864 860E~00

0.41553692E-00

~0.97819539E-01

~0.15761305E~01
0{21906865E—OO

~0.203037708-00

 0.37191286E-00

=0.535075428-01

~0.17814319B~00

- 0.24886682E-00

=0.55097154E~01
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s

0.2112 9808E-01

011097756801
-0, 79166667E-02

(A;)'ﬁ 0.551282058-02

| 0.14318910E-01

0,489585338-02

0.15064 103802

bt

0.93108974B~02

0. 46153846E-02
0.,22115385E02

 0.27403846E-01

© ~0.50000000E-02

0.98076923E-02

-0.25961538E-02
~0.15000000E=01 -

0,74038462B-02

-0,21073718E-02

0,20528846E-01

-0.38862179E-02

0. 35750000801

-0.89743590E-03

~0.201362188-01
0.153125008=01 _

-0.16987179E-02

0.7604166TR=02
-0,20833333E-03
~0.27604167E-01
. =0.5416666TE~02

-0, 50000000E~02

0.128125008~01

O.12§95§3§E—01

0 «50000000E~02

0.38060897E-02

0.1001602 6E-01
0.42067308E-02
0.1041666TE-01

0.32051282E-02

0.26041667E-02

~0.62099359E-02 |

0.160256410-02
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(a%) 1=

Plwaie

0.211298085-01

0493108974E=02

~0.79166566T0-02
04551282058=02

0.14318910E~01

0.15064103E-02

S

Remark

~0.11097756E=01

0.48958333T~(0

0.46153846E-02
0.221153858-02

0427403846E~01

=0+ 50000000E-02

0.9807692 3802
~0.25961538E-02
~0. 15000000E=01

0.74038462E-02

This is an example for which AA'

~0.21073718E~02
0+205288461-01
~0.388621798-02
0.33750000E-51
-0.8972 3590803
-0.20136218E-01
O.155125OOE;O1

~0.16987179E~02

0.76041667E~02
~0.20833333E-0%
~0.276041678-01
~0.5416666TE=02
~0.50000000E-02
0.12812 S00E-01
.0.12395835E;OT

-0, 50000000E-02

0. 380608978-02
0.10016026E~01
0.42067308E-02
0.10416667E-01
0.32051282E-02
-0.62099359R-02
0.2604166TE-02

0. 160256498-02

il

satisfies the conditions of theorem 2

and thus as pointed ont in the comment after theorem 2, A; computed by this

algorithm is indeed AT ag is observed above.

——
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