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4 RESTRICTED COLLECTION |

FREFACE

This thesis considers and solves two problems in quater-

nionic Hilbert spacess

The first problem, whose study constitutes Part I, deals
with the description of normal operatorse By a simple modifi-
cation of complex methods their structure is fully clarified,
a complete set of unitary invariants is obtained and a func-
tional calculus is worked oute The most interesting theorem
here is that every normal operator on a quaternionic Hilbert

space 1s unitarily equivalent to its adjoint.

Part II studies representations in quaternionic Hilbert
spaces of a large class of objects including all topological
groupse The problem of obtaining all irreducible representa-
tions 1s solved by reducing it to the corresponding problem in
the complex cases The methods used are elementary (as the
generality of the results perhaps suggests) but the analysis is
non~triviale Of particular methodological interest ies the
importamce accorded to duals of complex Hilbert spaces. Partly
depending on the results obtained;interesting theorems in the
theory of quaternionic representations of compact groups and
'1oca11y compact abelian groups are provede The discussion ends
with a brief look at some aspects of quaternionic guantum

mechanics.
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PART I

NORMAL QPERATORS ON QUATERNIONIC
HILBERT SPACES
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INTRODUCTION

Several articles have appeared in recent years which
discuss linear transformations on finite-dimensional vector
spaces over the guaternions in terms of matrices, but the
general infinite-dimensional situation does not seem to have
received much attentione In particular, very little is known
about linear transformations on gquaternionic Hilbert spaces
apart from the obvious theory of Hermitian operators. There
are hardly any discussions of this subject, apart from the
brief treatment of PFinkelstein, Jauch,Schiminovitch and .
Speiser in their fundamental paper on the foundations of gqua~
ternionic quantum mechanics (1962), which gives spectral
theorems for unitary operators and skew hermitian operators and
a form of 8tone's theorem which says that weakly continuous
one~paraceter unitary groups on quaternionic Hilbert spaces
have skew-hermitian infinitesimal generatorsy Varadarajan's
book on the geometry of gquantum mechanics (1968) in large
varts of which Hilbert spaces over the reals, complex numbers
and gquaternions are discussed simultaneously.and Emch's article

(Emch, 1963) on quaternionic gquantum mechanicse

We shall now make a thorough study of the central area
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of pfoblems featuriné normal opératora and their structure.
The first four chapfers introduce qu@ternioﬂic Hilbert spaces
and develop a neat and powerfgl teckhnique of handling normal
5perators on such spaces and the next four chapters exploit
this theory to yield not only the complete structure theory

of the individual normal operator but also an understanding

of the structure of one-parameter unitary groups and weakly
closed abelian algebras of operatorse. In the treatment of
these problems the emphasis is on departures from the Gomplex
case and all proofs even remotely resembling proofs of similar
theorems on complex Hilbert spaces (almost all of which may be
found in the works of either Halmos (1957) or Segal (1951) or

Varadarajan (1959)) are omitted.
A brief summary of the contents is as follows:

Chapter I serves to establish notational and other con-
ventions and to collect together the elementary properties of
the division ring Q of qQuaternions. The structure of closed
division subrings of @ 1is then clarified and a classification
of equivalence classes of continuous one-parameter groups of
unit guaternions in terms of non-negative real numbers is
deduceds This is used later in Chapter V where we seek an
analogue of Stone's theorem on one-parameter unitary groups on

quaternionic Hilbert spaces.
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In Chapter II ﬁé give a quick sketch of the elementary
theory'of-quaternionic Hilbert spacese. Several examples are
discussed {among them a quater§ionic analogue of the Fourier-
Plancherel transform) to enable the reader to get the feel of

quaternionic Hilbert spaces.

If (sye) is the inneér product on a quaternionic Hilbert
space g then the complex part of (.,s) converts the complex
vector space underiying g into a compl2x Hilbert space.

This 1is called the symplectic image of Hs The quickest route
to an understanding of normal operators on H 1is via this
symplestic image: given a problem of E we convert it to a
problem on its sympletic image, apply the well-known methods
of complex analysis and then get back to H again. In
Chapter III this method is discussed in detail and the impor-
tant notion of an imaginary operator (which plays the role of

the 'i' in complex Hilbert spaces) is introduceda

Chapter IV poses the eigenwvalue problem for normal
operators, solves it for the finite-dimensional case and
explains how this may be generalized to the infinite-dimen-
sional situation., The important point is that specfral
measures alone are insufficient to describe the general normal
operator on az gquaternionic Hilbert space: 2 description is
achievable only in terms of a spectral eystem which con-
olsts of &a spectral measure together with an

'admissible' imaginary operator. Given a spectfal system
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T
it is possible to define the spectral integral for a class of

complex valued functions (more specifically,” the class of all
complex valued essentially bounded measurable functions whose
restrictions to a certain fixed subset are real). This defi-
nition may appear artificial at first sight but is very well-
behaved ﬁoth algebraically and analytically and on better

acquaintsence will turn out to *e guite natural., Also in this
chapter we study the structure of spectral systems and obtain

a complete set of umifary invariants for them.

Chapter V motivates and proves an analogue of Stone’s
theorem on continuous one-parameter unitsry groups on guater-
nionic Hilbert spaces to the effect that every one such can be

obtained as an integral of !'simple' groups.

Chapter VI considers the individual normal operator. It
is shown that every normal operator A on a quaternionic
Hilbert space may be completely described in terms of a
spectral system cenonically associated t¢ A and that a
complete set of unitery invariante for normal operators is
given by a multiplicity function based on finite non-negative
neasures with compact support contained in the upper-half of
the complex plane. Two interesting theorems which are not
true for normel operators on comglex Hilbert'spaces are

deduced:
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i) Bwvery normal operator A on a gquaternicnic Hilbert
space ds wnitarily equivalent to its adjoint A*.
ii) If A 1is hermitian and B commutes with every

operator commuting with A, then B is hermitian.

In Chapter VII we define the notion of a function of a
normal operator on.a quaternionic Hilbert space. DBased on
the definition of spectral integration as it is, it too is
artificial at first sight (eege, according to our definition
every function of a hermitian operator is hermitian) but is
completely viridicated by the analogues of well-known theorems
in the complex case it leads to: bn g, separables gquaternionic
Hilbert space if A 1s normal and B commutes with every
operator commuting with A then B 1is a function of A and
the set of 211 functions of A coincides with the smallest

W*~-algebra of operators containing A.

The final chapter considers commutative W¥-glgebras of
operators., It is shown that there are two essentially different
and C-algebras
kinds of such algebras, herein called R-algebras/,and that
every commutative Wr-algebra on a quaternionic Hilbert space

may be deconposed intc a direct sum of an R-algebra and o

C=algebra in @« unique fashions. Segal's methdds of analysis
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of operator algebras on complex Hilbert spaces are then
applied to R-algebras and C-algebras separately to yield
complete sets of unitary invariants for each of them and
hence for arbitrary commutative Wr-glgebras. This thecry is
then exploited to prove that on & separable guaternionic

- Hilbert space any commuting family of normal operators may
be expressed as functions cf a single normsl operator -
ancther gcoring point for the approach to spectral theory
herein developed., Finally we give = proof of the Double
Commutant Theorem for commutative Wx-glgebras which, while
having an elementary procf in the complex case, turns out to

be a surprisingly deep theorem in the quaternionic case.
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I. QUATERNIONI

1.1 Consider the 4-dimensional Euclidean space Ré, Let
1, 1, j, k denote the vectors of the canonical orthonormal
bagis for Ré. Bvery element g of R4 may be expressed
uniquely in the form g SR 1 + qli + qgj + qzk where
Qor Q3¢ Q1 Gz are real numbers. R4 becomes a division
ring if we define addition and multiplication of any two

elements p and g Dby

prq = (po+ ao)l + (py+ )i+ (pg+ )i + (pz+ aglk
and pa = (o= Py - Ppdp= Pziz)l + (Poay + Py g+ Pody~ Ppdg)?
+ (Dolo* Polg+ Paly = Praz)d +( Dol + Prlg* Prdp~ Pody

respectively. This division ring is called the division ring
of (resl) guaternions. We shall denote it by Q. The zero of
Q 1is the vector (0,0,0,0) and the identity is the vector 1.
For non-zero g€ Q, q—l = q?/]q[z where

¢* = gyl - gy i~ apd - qzk is called the (cenonical) conjugate

2 /2

1
of g and |ql = (qg + gy + q% + qg) ig the norm of gq-
It is easy to verify that for any two quaternions p and g,

(p)* = g*p* and |pal = |p. lql-

-!71-
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. The set of ?ll quaternions g of the form 'qO.l, d,
resl, is in an cbvious iscmorphisnm ﬁith R, the field of real
nunbers, Henceforth we shall identify R -with this subfield
and drop the '1's. With this understanding Q way be seen
to be a Banach division algebra over R. (It is of interest
here to note that Arens has shown (Arens, 1947) that any
Banach division algebra over R must be isomorphic to one

of R, ¢ (the complex field) or Q).

If q = dq + 971+ qgd + q3k 1§'a guaternion, qO will
be called the real part of q and g - qO the imsginary
part of g. A quaternion is real (imaginary) if its imaginary
part (real part) is zero. A unit quaternion is a quaternion

of norm once A unit imaginary is z unit imaginary quaternion.

We shall need the following two facts about Q. They

are proved in (Varadarajan, 1968), ppe—335=1377),

A) A gustbernion q commutes with every other quaternion
if only if q 1s real. In other words the reals constitute

the centre of Q.

B) If p, g€ Q, then p and g are said to be con-

jugate, in symbols D ewq, if there exists r# 0 such that

5l

p=rgr . It is easy to check that ' ., ' 1s an equivalence

relation over Q. The induced eguivalence classes are called

conjugacy classese p eand q are conjugate if and only if
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Re (p) =Re (@) and lp| = |g].

1«2 Cur purpose in this chapter is to identify the conti-
nuous one-paraneter groups of unit quaternions upto equiva-
lence, (Two one-parameter groups (pt ) and‘(qt ) are said
to be equivalent if there exists r £ 0 such that :rpfiﬁl= at
for all t). We start by describing the (closed) division
subrings of Qe Now if D is one such then D must contain
Re It follows that the centre of @ 1is the only division
subring of Q isomorphic to R What are the other division
gsubrings of Q 1ike? The following theorem answers this

question completely.

THEOREM 1.1

i) TFor every unit imaginary ©, the set
C(8) = [a+b®: a, b real ] is a division subring of Q

isomorphic Ho C, the complex field.
ii) ¢(8) = ¢(§) if and only if § = 4 6.
1i1) If § £ +6, then C(8) 0 C() =R .

iv) Every non-real quaternion ¢ belongs to a

unique C(0).

v) If D is a (closed) division subring of Q

different from R and Q then D = C(8) for some ©.
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vi) Bvery C(6) is a maximal set of commuting
elements of Q and converscly every maximal set cf commuting

elements of Q is some C(@),

vii) Given C(8)) C(@) there exists r £ 0 such
that

r0(6) ™ = [rar™ : qec(e)] = c(p).

Proof:
i) Obsecrve that 6% = =1 and make correspond a + be

to the conplex number a + ib.

ii) That ©(e) = C(- 6) is trivial. If C(6)=C(p)
then Q€ C(®) is of the form a+ b8, Comparison of real

parts and norms gives a2 =0 and b = i'l.

iii) Clearly & ( o(8)00(p). If there exists
qg=2+b@=c+dd, g £R, then b # 0 #d and since
¢(e) o c(P) 1is a division subring it follows that 9e c(e)
and hence that ¢ = + @.

iv}) If g 1is any nonercal guaternion then g¢ G(8} for

qli + q.gJ + QEk
e = « The uniqueness is a2 consequence of iii).
la = q 1

v) Clearly R {_ D. Since D # R, there exists a

wit imaginary ©& D and therefore C(e) (C D for that 6.

If C(8) # D, then we may find another unit imaginary Q€ D
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such that ¢ is orthogonsl to c{e). {(Wote that C(8) and

D are linear manifolds in Ré}. e would then have the four
mutually orthogonel vectors 1, ©, @ and €0 in D foroing us

to the conclusion that D = Q.

Cwvi) If g is any guaternion commuting with ©, then by
equating the corresponding components of ¢& eand &g 1t is
easy to see that ¢ must have tne form a2 + bO with a, b
reals This proves that C(®) is a maximal set of commuting
quaternions.

Conversely, if A is any maximal set of
commuting quaternions, then R (_ 4 exdd if p, g€ 4, then

-p, P+ ¢, Pg € Ae It follows that we can find a unit imaginary

@ ¢ A and hence, by the first part of the proof that A = c(e).

vii) By 3) above we can find 1 #£ 0 such that

e Q. But then = 0(8) = C(@).

The theorem i3 thus completely proved.

Out of the meny €(8), we shall choose C(i) and iden®ify
it with C. We may then speak meaningfully of guaternions being
complex and vice versa. We shall rause here to pick.up two
useful facts about the relationship between C and Qs  TLet
us denote the set of complex numbers with non-negative

imaginary parts by ot

"'"E""“"H—-‘__‘

@‘-m' .’_'..T_,ﬁ!,,'@'_.%j?? &\
‘;jﬁ&mn 1984 /"’/

,5/x

;—1’
/
o\

T CALCUTTA
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1) Every gquatcrnion q = qO + q1i+ q23+ q3k nay be
written in the form (q0+~qll) + (qg"qg ik = (qo+ q11)+
k(q3+ q2i)§i-e. every guaternion g may be written uniquely
in the form a + Bk =¢ + &k 5 wiaere o and § are complex.

In this representation we shall refer to o« as the complex

part of q-41in symbols, o = Com (g).

2) From B) it follows that every quaternion
a= gyt gt + qpf + gzl 18 conjugate %o q+ | g~ qO| i. ia.e.
every quaternion is conjugate to an clement of ¢V, Since
distinct elements of ¢ differ either in their real parts
or in their norms, we may conclude that the conjugacy classes
of @ are irndexed by elements of O+, the conjugacy class
corresponding to of +id being the set of 211 gquaternions of

the form pa p_l, P vVarying over unit quaternions.

We are now in a position to answer our main guestion.

THECREM 1.2

if il qt ) is any continuous one parancter group of
wiit quaternions then there exist 1) a unique non-negative
real number A and ii) a unit quaternion r such that

-1 ixt
8

rq T o= for all +.
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Proof: If Qs is real for all +t then 44 = 1. We
may then take A =0 and r = 1. If not all q are real
then ffom'Theorem lel we may conclude that the commuting
family | 4t ) 1is contained in a unigue (!) maximal family
of commuting quaternions and hence in a unique C(8). There

exists thereforc a unit quaternion r such that
e, rﬁl = oy (Say) ¢ C for all +. ( Oy ) is then an one-

parameter group of complex numbers of ricdulus one and there=-
fore there exists a real number X\ such that Gy = elkt .
By replacing r by kr if necessary ({kr) qt(kr)-l = &t)

we may assume A to be nonenegative. If u “is any other
non-negative real number such that Q o~ g 1KY then
Aut it

e = implying, by B) again, that cos ut = cos At

for all t and hence that u = A,
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IT. QUATERNIONIC HILBERT SPACES

2l Definition: By a Q-space we shall mean a vector space

over the guaternions. ({(All vector spaces we consider will be
assuned to be left vector spaces. Tor the basic theory of
vector spaces over division rings the reader is referred to
Jacobson (1983))s A4 norm on a Q~-space V 1ig a real-valued

function || . | on V with the properties

1 i =l

[~

Op =0 Oxr and erly 9f " x =10
i1) [laxll. = lqlsfi x|

i11) Hx+ gl £ Hlx[l+ 1yl

for all x, y €V and ¢€ Q. Anorm on V induces a metric
on V in the usual way. A Q-Banach space is a Q-space V
with a norm on it such that the resulting metric space is

complete,

Examples of Q-Banach spaces arc

1) Q(n)? the Q-space of all n-tuples (ql""’qﬂ) of

quaternions with the suvremum norm,

2) OQ(X)9 the space of all hounded guaternion valued
continuous functions on a topological space X, with the
supremumn norm .,

-l
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and 3) the space of all equivalence classes of essentially
bounded gquaternion valued measurable functions on a measure

space with the essential supremum norm.

An inner product on a Q-space V is a quaternion~-valued

function (eye) on V X V with the properties

1) (z, y) = {y, x)*

il

ii) (px + qy, z) p(x, z) + Q(Yv 2)

and  iii) (x, x) > 0, =0 if and only if x =0

it

for all x, y, 2 ¢ V and p, g & Qs From (i) and (ii)

follows

(xy py + qz) = (x,7)p* + (X, z)g*a

lf2 is a norn

It is easy o check that ||x || = (x, x)
on V (Finkelstein et al, 1962). A Q-space V with an inner
product on it which makes V a Q-Banach space with respesct to
the induced norm is called a quaternionic Hilbert space or a

g-Hilbert space.

The simplest example of a Q-Hilbert space is Q%)
n
with the inner product given by (%, ¥) = % £ ﬂ; where
r=1 '
X = (El""’ gn) amd ¥y = (ﬁl,aaa, nn). To consider more

general examples we need a few facts about the theory of
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integration of quaternion-valued functions (Netarajen and

Viewanath, 1967),

Let then (X, &) Dbe & measurable space and u a non-
negative (possibly infinite) measure on (X, Z ). A quaternion-
valued measurable furction f on (X, & )} is said to be inte~-
grable if [ |f] du < «. It is easy to check that
T=1f +1ify + jf, + kfy =g + kh 1is integrable if and only

JE < 3

if the real functions fo’ i, 1 f?, f are integrable or,

equivalently, if and only if the complex functions g and h

are integrable, Tor integrable f we define
[ fdu = [f du+ iffldu+ Tl fzd,u-l-kf LT

The integral has the following properties:
1) S(f +gldp = ffdu + [gdu
2) S pfadp=peffdue g
3) | Jfawl < Jiffdn

4) (fram)* = [ g

where f, g are integreble and p, g€ Q.

-

We define Lg (1) as the space of all equivalence

classes of quaternion-valued measurable functions f for which
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.|f|2 is inﬁegréble. Tor f, g€ Lg i e £ is integrable
and if we define (f, g) = [ fg*du then (f, g) is an inner

broduct gnd converts Lg () dnto a Q-Hilbert space. We

point out the impcrtant fact that if f =g + khy g, b conplex,

then f¢ LZ () if and only if g, he Lg (g), the complex

1),

We now give a brief sketch of the elementary theory of
Q-Hilbert spaces since it does not seem to be availzble in

printe

2«2 Geometry: The gecmetry of Q-Hilbert spaces is entirely
gimilar to that of complex Hilbert spsces. The norm gsatisfies
the parallelogram identity and the polarization identity takes

the form
aCx,y) = ey |1 2n || 2=y If + 1l zeigl® = 1] x-iyl|®

s 3l gy li® e 317 ll® e el meeyl] B - el x-tey 112

The Jordan-von Neumann characterization of Hilbert spaces among
Banach spaces - that a Banach norm is induced by an inner
product if and only the norm satisfies the parallelogram .
identity -~ is true for the guaternionic case too. The paralle-

logram identity implies the projection theorem. The concepts
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0f orthogonality, basis etce, are defined in the usual way.
The cardinality of a basis of a Q~Hilbert space H is defined
independently of the basis and is called the dimension of H.
H is separable in its metric topology if and only if its
dimension is less than or equal to f{o' We note in passing
that any basis (ea) of L% (1) 1is a basis of L% (g) too.

In particular (e “®i™X] is a basis in L%‘[O, 1] tooe

2e3 Lefte-orthogonality. Owing to the non-commutative

nature of guaternions the structure of Qespaces is in general
richer than that of complex spacess Eege in ng () if

S fF du=0 then [ fady = 0o But in LZ (8), [ fe*dg = 0
need not imply [ f*gdu = 0 in generals We may therefore

define f,'ge Lg (k)  to be ieftuorthogonai if [ f*gdu = 0.

For the trivial case when LS (4} = Q, pg* = 0 implies that
either p or q = O and hence that p*q = 0, so that the two
(2)

notions of orthogonality céincide. However in @ (and

hence in all LZ (u) over meagsure=spaces with at least two
disjoint sets each of finite positive measure) the two
concepts are distinct: +the vectors (1 « j, 1 + k) and
(1 +%, 1 «k), for example, are orthogonal but not left

orthogonals Therefore, it is in general a stronger statement

when we say that two functions are 'both ways' orthogonal than
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when we say that they are either orthogonal or left-orthogonal.
We meet with this concept in Mitarajan af Viswena®h,1967)
where an analogue of the Peter-Weyl theorem in the

quaternionic case is sought.

2¢4 Linecar Functionals. If ¥V 1is a Q-space and A a
linear functional on V then for a nen~-real guaternion g,

x -> qe A (x) 1is not a linear functional on V, but

x > A(x)eq is. Consequently the dual of a Q-space V is a
right vector space over 9, or, what is the same, a left vector
space over QO, the division ring crposite té Q. DBut this need
not vother us in our study of Q-Hilbert spaces where it is just

as true as in the complex case that ecvery bounded linear func-

tienal is wniquely of the form x -> (x,y) for some fixed ¥

Ze¢d5 Bilinear Wumctionals and Quadratic Forms. A bilinear

functional on a Q-Hilbert space H ’is 2 guaternion-valued func-
tion #(e,«) on X H with the properties:
i) B {px+qy, 2) = pf (x, 2) + of (y, 2)

and 1) #{x, py + q z) = £(x,y)o* + B(x,z)c*

A
where x, y, 26 4 and g, g€ Q3. The quadratic form £ (.)

" -
induced by $ 1is defined by @ (x) = #(x, x) for all x6 H .
A bilinear functional is unigquely determined by its quadratic
form, but the polarization identity is not the expdcted one.

It is rather ) 2
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ey ~
LPx,y) = F (x4y) - # (x-y) + 1 # (x+iy) - 1 # (x- iv)
~ A ™ ”~
v iff (zeiydk - 1 Flx+iy)k + F (xeky)k - F (x-k vk,
However if @ 1is symmetric (lece if £ {x, y)* = Hy,x))
then the above identity reduces to the expected one.

The boundedness of quadratic forms and bilinear func-
tionals is defined in the usual ways A bilinear functional 1s
bounded if and only if its quadratic form is bounded and

1Al aldite 1e g is symetric g = 181

2.6 Linear Tronsformeticns. We now come to the most

important difference between the theory of Q= Hilbert spaces
and that of complex Hilbert spaces, It is that, on a Q-Hilbert
space H , the operatior of multiplication by a non-real
quaternion is not linear: x => gx is not limear if ¢ is
non-reals It is this fact which makes life in Q-Hilbert spaces
very much more complicated (or, depending on how one locoks at
it, very much morc interesting) than in complex Hilbert spaces.
The best we can do when we want to associate linear transforme-
tions with non-real quaternions ¢ is 1) %o reconcile oursel-
ves to not being able to do this canonically and ii) to

: o \ A N THE
choose a basis ( e, ) of H , define Aq by Aq e = e,

for a1l o and exteng AQ by linearity and continuity to the
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whole of H. We would then have A x= 2 {(x, e ) g e Tor
= q o - a &

all xe As can be expected it 1s operators sﬁch as Aq that
we have to handle if we want to venetrate beyond the super-
ficial in ofir intended study of linear transformations. Ve
shall see in Chapter IV that there is a very neat and almost

painless way of deing this.

Tt is now clear that B(H), the set of all bounded
linear tremsformations of H into itself (hereinafter to be
called operators) is a Banach algebra only over the rsals.
But inspite of this fact it is possible to obtain a comple-
tely satisfactory description of atleast all the abelian

Wr_sub-algebras of B(H) as we show in Chapter VIITL.

The existence of adjoints of operators on H 1is proved
in the usual ways The definitions of hermitian, unitary and
normal operators follow., Every operator A may be expressed

. - 3 A\ ¢ AF L
wiiquely in the form B+ ¢ where B = ——5-=- is hermitian
A - A — N .

and C = = paall skew~-hermitian. A%t this stage we cannot
decompose ¢ further, but it will follow as a consequence of
our theory of normal operators that ¢ may be written cenonical-

1y in the form JD where D is hermitian (even positive!)and

J is an timaginary' operator (c.f, Pinkelstein et al, (1962)).
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A simple way of defining normal operators on a
Q-Hilbert space H 1is to chooge a basis (ea) of H #nd a

family «f quaternions (qa) such that sup Iqai < o gnd
by ,

define Ax =% (x, e ) q, ¢, for a1l x. This is in fect the
o a (04

only kind of normal operator there iz on a finiteudimensioﬁal

Q-Hilbert space.

On Lé () we can define a class of normal operators
in the following waye. 1f g 1s an essentially bounded

measturable function define R_. on Lé () by R_T = Tog

g g
('R' for right multiplication). It is easy to see that R

is well~defined and that Rg' is a normal opérator with
Ilellg esss sup. |gi, If the measure space under considera-
tion has the property that every set of positive measure con-
tains a subset of finite positive measure ther we can cven
show that IIRgll= ess. sup |gl, R, =R, 1if and only if

g =h [ul, R, is hermitian (unitary) if and only if g is

essentially real (of modulus one),

As a particular case of the above let u re & finite,
non-negative measure with compact support on the Borel sub-
sets of G+, the set of all complex numbers with non-negative
imaginary parts. By the canonical operator A, associated

i

with u we shall mean the operator on LZ {) defined by
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¥ %

(Aﬂf)(l) = T(AM)eX for all Ag 0T, One of our basic results
will be that every normal operator can be decomposed canonically

into a 'direct sum' of orerators such as A, .
r K

As a final example we consider an analogue of the Fourier«
- n
Plancherel transform on La (= o, ), Copying Rudin's exposi-

tion (Rudin (1966)) we shall say that one can associate to 2ach

o

o 2
fe L an £ €L guch that

o0

’\ ‘0
i)” for fe¢ L1 a® , T(+) = [ fi(x)e itx am(x)

i
Vexs

where m is times Lebesgue-measure,

/

. 7S : 2
ii) f => f is a unitary operator on L%(m)

Q
A |
and - 111) 12 fy(8) = J £(x)e T am(x)
A

f; () 1% am(s)

H

and(+lA(x)

. ‘
thon || @, ~ £ [l=> 0 ana [P - £fl-> 0 on IE (n) as

A 7y Q
A-> 4w, As in the complex case one may check that the opera-
tor * A ' intertwines the itwo operstors of right multiplicaticn

i |
by e and transiation by ~a , for every real uo.
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ITI. THE SYMPLECTIC IMAGE

/
3¢l If H 1is a Q~Hilbert space, since we have identified
the complex field C with a fixed subfield of Q, the additive
group of H may be considered to be a complex vector space.

Let us call this gs. For x, y € ES let us define

<%, y>=0om [(x,5)] (= the complex part of (x,y)).

The complex function < x, y > determines the quaternion-valued

function (x, y) uniquely., In fact
(X, 7) =< %, y>+ < x, ky > k -
m<X7y>-‘k<kx,y>’

It is easy to check that < %, y> is a complaex irmer product

on ES and indeed converts gs intc a complex Hilbert space
since < x, x > = (%, x) for all x., We shall call H° the
symplectic image of H bhecause of the close connection between
this concept and that of linear symplectic groups of Chewvalley

- (Chewalley, 19463 see also Finkelstein et 2l, 1962).
To fix ideas, let us Look at the symplectic image of

.2
QQ(u). For f = fj+kfy, g = g+ kg, I, f518,, B complex,

i = -  oa T i P
(1) = [ ferdu= f(Lf g+ fogod + klgyp ~f1 g, Day

-l -
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so that
{fyed=] (f18) + fzgg)d“ .

4

Identifying f¢ L% (#) with £ + 0.k in {LS ‘w1 we see
= 2
that for f,g¢€ Li(u), <f,g>=/[fgiu Cmsequently Li{u)

as a subspace of [Lé(u)]s has the standard Hilbkert structure.

Even though H and ﬁs are conceptually different,
since they have the same underlying set we shall not bother to
distinguish between functions on (and subsets of) H and H®
g€Xcept 1n cases where such a distinction helgs to make things
clearer, A typical example of the sort of staitement we will
nake is: a subspace Sof’AESis a subspace of H if and only if

ZC 8 implies kx € Se

Every operator A on H may be considered %o be an
operator (AS, say) on ﬂs but not necessarily cconversely., In
fact the spectrum of every A® s gymretric about the real
axis. For if (A®-T) were invertible then so would be (AS-X I):
tecause, given y& gs, there exists x6 ES such that
(4%-AI)x = -~ ky and then (A%-XI)kx =y so that (A-AT) is onto
and if (AS-AT)x = 0 then (A%-AI)(k x) = O implying that
x=0 80 that A= AT 18 1-1.

S

The map A -> AY is clearly a 1-L , norm-preserving

homomorphism from B (H) into 3(H®) considered as a real Banach
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algebra so that B (H®), the set of all 4°, is a subring of
Q(Es) and }S in fact a real Banach algebra, The map A4 «> 45
preserves adjoints aven: (A°)* = (A*)®. Consequently

A€ B(H) dis normal (hermitian, unitary) if end only if

4%¢ B(E®) is normal (hermitian, unitary). We can already

draw a non-trivial conclusion from these apparently trivial

facte,

We shall write A <{==> B to express the fact that A

and B commute,

THEQREM 341 If A is a normal operator on s Q- Hilbert
space Eg and B 1s any operaltor on H such that B {--> A,
then B {=-> A*,

Proof: Since A is normal so is A° and BY <w=-> 45,

By Puglede's theorenm B® <-w> (AS)* = (A*)87 so that B <{=->A%,

Let K denote the mep x -> kx on H°, K has the fol-
lowing properties: (x, yC ES are arbitrary).
1) 4n operator A on H° is an operator on H if and
only if A <=-> K,
2) K {ax + 8y) = a K{x) + 8K(y) for all «, BE C.
3) <Ex, Ky> =<y, X >

4) k=il = [ix|

5) K25 I, the identity operator.

6) < x, Kx> =0, If we agree to write x |° y in place of
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< Xy 5 > =\Q then we may say that x iSfo. In particular

Lge) [° k(] m i 18,

7) If (e,) is a basis for [, then (e, Ke ) is a basis
for H”.

8) If A 1is an opeYator on E°, then so is KAt = K71aK

and (KAK™F)* = KAE™L,
Broof:
<CKMK™ x, vy > = Com [(K&K™™ x, y)i

= Com [k{ax"t x, 7)1

com [k {< &™ %, y > + < A" x,ky> ki)

fE

- < ky, AK"T x>

)

5 B v, AT x>

=< xly ) wlox

it

com [(axx™ty, x™lx )]

= Com [(A*k-ly, ®)k]

I

om [ {< ak™ly, x> - k< ramk™hy, xode)

Hi

< x, Bax K71y 5,

9) If P is the projection on the subspace 8§ of ES,

then KP K™1 is the projection on the subspace K[38] =

[kx : x¢ 8] of E°.


http://www.cvisiontech.com

~2 G-

10) If P is the projection on the subspace S of H°

il

and
P |°SKP K™ then P+XPXK T ig the prodection (in H) on the
] il

subspace S(E)SKiS} of 1, ’

All these ten results are important to us. In what
follows we shall use them uninhibitedly and without explicit

mentione.

We now introduce and study a class of opefators to be
called 'imaginary' operators. The proofs involved offer a
very good introduction fteo the way in which we shall exploit

the symplectic image later ons

THEOREN 3.8 The following conditions on an operator dJ

on H are eguivalent:

1) J is normal and -J° is a projection

2) J is normal end J° +J% =0

3) J%¥ =~ J and I - JJ* is the projection on the null
space of J

4) There exists a basis (e ) of E such that Je = 1de

or O for all «a.

Proof:

: . ' ’ o >
1) => 2) Since -J° is a projection, (-Jz)“ L w5

5o that J° + g% =0.
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2 = 0k

2) =»3) J° is normal on HY. Let - E(.) be the

4
spectral measure of Jz. Then B\ : [hg + Rf|2 = 0} =T s0
that J° =iB([1]) - iB({-1]). But then (J%)*% = - J° anad

I - 3579 2 E([0]), the null space of J.

3) => 4) Notice that B([~il) = KE([1])K™*. Hence 1f
(ea) is a basis for E({i]) in ES then (ea) is a basis for
E({i]) + B({«i =TI -« 2 ({0]) in O. Bxtending (ea) to a
besie of H, we have J e =1iec if e €1 - E({0]) and

Je, =0 1if e € B({o]D.

43 => 1) Triviale

Note: In the proof of the theorem above we confused a
projection with its range. We shall do this more and more as

we go along without apologye.

DEFTITTITION 361  An operator J on H is imaginary if it

satisfies any one of the 4 (equivalent) conditions of Theoren
3e2s An imaginary operator is full if its null space is O

We point out the fact (noticed in the proof of the above
theorem) that if J is an imaginary operator then JS is
uniquely of the form iP* = iP” where P¥ and PT  are mutually
orthogonal projections in H° such that P =kt ¥ ana

B @ P = 40,


http://www.cvisiontech.com

’ =30 -

THEOREM 3,3 Let J and 1L be imaginary operators on

a8 Q-Hilbert space H such that Jx =0 implies ILx = 0., If
J <--> L, then there exist unique nmutually orthogonal projec-

tiors P and Q on H such that L = JP -« JQ and

P+ § = L*¥L.
Proof: If J° = iP*- iP” and 1° = iqQ* - iQ~ then
[P+, P7, 0%, Q71 form a commuting family of projecticns.

Since the null space of J (= I - PY = P7) 1is contained in the
null space of L (=71 - Q¥ = ¢7), ¢F = q"2*+ ¢*p” 2ana

po=

O =Q PT 4+ Q" P, Purtner Q° P =xot PRl ana

QF 2™ = KQ" P*K™ so that P = g*p* + Q" P ama

Q= QP + QP are mutually orthogonal projections on H and
L =JdP=JQ Also P+Q=Q(PY + P + Q7 (p* + P7) = ¢* + Q"=
I*L. If aiso L = JP'~-JQ" with P' 4+ Q! = I*¥L then firstly
P! + Q" =2+ Q and secondly since I*L C J*J, dP » JQ =JP'-JQ°
implies, on left multiplication by J*, that P - @ = P'-Q'.

Therefore P = P' and Q = 9'.
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1V. SPECTRAL MEASURES

4el  Let ‘A be a linear transformation on a vector space
V over a division ring D which is not a field. Let g € D
be an eigen-~value of A and x(£ 0) a corresponding eigen-
vector: Ax = qx. If g dis in the centre of D and y = px
is any multiple of x +then Ay = qy ;3 but if g dces not
belong to the centre of D, choosing p such that pqg # qp »
we see that for ¥y = pX, Ay = (p{lp-l)y # qy, so that in
general while a multiple of an eigen-vector is again an eigen-
vector it need not correspond tc the game eigen-value. This
heans that there is in general nc simple way of’describing
the action of A on the ray spanned by one of its eigen-
vectors. However, for the case D = , a neat description

may be achieved in the following manner.

If g 1is real we have no problem., Suppcse g 1is non-
realy by replacing x, if necessary, by px where p 1is so

o e C+, we may assume that Ax = AX

chosen that X = pgp
where Ag C*. If o 4 kB is an arbitrary gueternion with

@y § complex, we would then have Alax ) = AMax ) and

AkB x) = i(k@:x). Suppose now A = a+ ibe. Define an imagi-

nary operator J by dx=1x and Jy=0C if ¥y l Xe We

=31 -
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then have A(gx) = (a + JbXox) as also A(kBx) = (a + Jb)
(kpx ) so that for any quatérnion p, Alpx) = (a+Ib)(px).
We can say therefore that the action of A on the ray
spannedby x is completely described by the operator a + Jb.
This observation (due to Finkelstein et al, 1962) is central
to our theory. We show in this and ensulng chapters tnat
normal operators can be completely described in terms of real
numbers, imaginary operators (these two together replacing
the complex numbers in the case of complex Hilbert spaces)

and, of course, projectionse

4,2 Let us first lock at a normal operator ~A on a

finite-dimensional Q~-Hilbert space H. Consider A on ﬁs.
Prom classical theory we know that therc exists x # O, x€ H®

and AEC such that A°x = Ax., We would then have

A%(kx ) = Akx). This mesns that whemever A is an eigen-
value for A°, so is A and if § is the elgen-subspace
corresponding to the eigen-value X, then K[8] is the
gigen-~-subspace corresponding to N e If A ig real, it
follows that S = K[8] and hence that S is a subspace of

H evens If A is non-resl then §1° K(8) ana S(P)°k(s)

is a subspace in H. Let now hl, h2$..., %K be the distinct
real eigen—vaiues of AS and “l’“2""’“m’;1""’ ﬁm the
distinct non-real eigen-values, where the notation is so cnosen

that Mg € ot for a1l s, Let Sy be the eigen-subspace
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corresponding to A, and I.. the eigen-subspace corresponding

to m,+ We may then assert that
% = (3. s, 1 ®UE® @G kirdl -
T S s

Observe that for two vectors Xx, ¥ G'TS, for any s, if
<x,y>=0 then (%, y) =< x, 5y > #<x, Xy > k = 0, since
0 B x [T 1, so that a basis for T in H® 1is =2 basis for
? (D xl1,] in H (& similar argument was implicit in the
proof of THEOREM %e2)., We now choose a basis for H as fol-
lows: Choose a basis in H for each §S.j choose a basis in
ﬂﬁ for each T3 pool all these together and call the resul-
ting set (eg e ( ey ) is then a basis for H such that
for each T, A €. = a4 G4 where o€ ¢*, In other words

we have proved that if A 1is a normal operator on a finite

dimensional Q-Hilkbert space H, then there exists a basis

(et) for H and constants ayb C* such that Aey = agey

for 211 tj i.e. every normal operator on a finite dimensional

Q-Hilbert space can be 'diagonalized's (cf. Finkelstein et al,

1959) .
This representation of normal operators however is not

cancnicale A canonical form may obtained in the following

be the projections(in H°) on 8,
il

merners Let P, and Qs

and T, respectively., Then KQg K™~ 1is the projection
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i
(in ES) on K[Ts] and P, and R, = Q  + KQs K™t are pro~

jections in H, Dafine an imaginary operator J by

%% = 0 if xe (¥) 8
T r
= ix ir xe ()7 1

-

= = 1% if xé& (i), i7d K
5 5]

T By = 3, + ibs , then we have the equaticn

5] -1

A% = E AP+ Z(as + ibs) Qg + E(as- 1bs) KQ, K
or A= X NP, +'2(as + Jbs) RS.

We have therefore proved the following theorem:

THEOREM 4¢) Let A be a normel operator on a finite-

dimensional Q-Hilbert space H. Then there exist
i) a positive integer

11) distinct scalars A, Agyeesy AL € ot

iii) mutually orthogonal projections Pl’Pz""’ Py with
g B » I and
iv) an imeginary operater J such that J <-=> P, for

all v and JJI* = (:) [ P : A non-reall such that
ﬁ m m

T
M= Loz m +Jb )P

= i real.
where Km L i5s lbm’ am,“bm al
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That this way of decomposing a normal operator is unique

will be proved generally in the infinite~dimensional situation.

We ghall now examine how Theorem 4.1 may be extended to

arbitrary Q-Hilbert spaces,

443 Spectral WMeasures and Integraticn. The first step is

simple, We define a sype ctral measure on a measurable space
(%, Z) as a countably additive set function E whose values
ere in L (E), the lattice of projections in H, for which
E(Z) =0 and E(X) = I. The elememtary properties of such
spectral measures follows But the plot thickens when we pro-

ceed to spectral integratione

If B(s) 1is a spectral measurs on (¥, & ) with values
in L (H) then for every x, ye H, (E(s) x, y) is a quater-

nion-valued measure on (X, Z )3 and for every real-valued

bounded (more generally E-ess, bounded) measurable function
foon (X, £ ) we may define J fd (B(.)x, y) in an obvious
WY _(We shall not digress to discuss such integfals as we
need no more than their definition). Exrloiting the fact that
reals constitute the centre of @ one may show without dAiffi-
culty that @#(x, yv) = f fd (B8(s) x, y) 1is a bounded bilinear
functional on H (the crucial eguation is @(gx, y) =

g #{xy, y)o If f 1is not essentially real there may exist
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a q for which this dces not hold) and hence that there
exists an operator A such that (Ax, y) = #(x, y}. We

write A = f fd B¢ The following lemma is easily proved:

LEMMA 441
O ax if =S | 21® a(E()x, x).

) hail= EE(f) = E essa. sup |fl.
1iii) f(af + be)dE = a [f8E+ bf gd®, a, b real

iv) (a) £, => £ uniformly E= 2.c.

=> [|a, -~ alf >0
(b) f, -> £ pointwise E=- ace. and

(85(£)) bounded => [[ 4 x - Ax|| -> 0

where A = [ £,dE and A = [fdE

v) [fedB = [fdE [gdFE

and vi) [fdE is hermitian

whese ', "X € .and fn’ f, g eare BE ess.bdd real measurable

functions on (X, = ).

Having obtained these results it is easy to prove the
spectral theorem for hermitian operators - that given any
hermitian operator A on a Q-Hilbert space H, there exists

a unique compact spectral measure E(,) on the Borel sets of
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R such that A = [AAE where X is the co-ordinate function
on R = egither dircctly, as Finkelstein et al (1962) suggest,

or by an appeal to the symplectic image.

For the description of normal, non-hermitian operators
however this approach fails completelys As was observed above,
the spectral integral is not meaningful unless the integrand
is essentially reals We shall now describe a theory which
will enable us to handle all normal operators with ease and
power. As can be expected, we have to look to the imaginary

operators for helpe

DERINITION 46l TLet E{(.) ©be a spectral measure based

on (X, ) with values in L (H) and J an imaginary ope~

rator on He J is admissible weret. To E(s) if

i) J ¢=-> E(M) for all M€ %

and  ii) there exists R_& £ such that JJ* = B(X - RO).

Condition (ii) says that the nullespace of J must be a
value of E(.). It is easy to see that R, 1is unique upto
B-null setse It might help the reader to understand the role
of Ro in what follows if we mention that when we sssociate
canonical spectral measures with normsl operators we shall

take X = 0¥ and R, = Re
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Let now a spectral measurc E(.) on (X, Z } and an
inaginary operator J admissible werst. E(.) be given, Te .
shall call the pair (E, J) a speciral system. Choose and
fix R such that I - JJ* =E (R)). Let N denote the
real Banach algebra of all (eguivalence classes of) complex-
valued Eeess, bounded measurable functions on (X, % ) whose

restrictions to RO are real, with the norm defined by

Np(f) = E-ess, Sup
xeX

DEFINTTION 4.2 If feM, £ =1 + ifz, fl, f2 real

then [fd B wer.te J is the operator on H- defined by
SEAE = ( [HdE) +J ( JL,4E )

THEOREM 4.2 The integral J[fdE weret. - J. has the

following properties: (x, y € B and £, £, g€ M )
i) JSdE <--> [gdF .
ii) If A = [fdB , then || &x [l2 = flflzd ( "B(s)x,x).
i1i) &l =3mg(8).
iv) f(af+bg)dE = of fd% + vfgd® (a, b real).
V) (f E‘dE) = ( [PAE)*,
vi)(a) £, => £ uniformly il f£, 4B - [£4E || -> O.

(b) =P pointwise,(NE(fn)) bounded

=> || (J£,4B) x ~(f£4B} xi| -> 0.
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vii} [fgdE = ( [fdE) o ( [fgdE).

viii) A = [fdE is normal, A is hermitian if and only if
f dis B-esgentially real and unitery if and only if £ 1is

B-esgentially of modulus onee.

Proof:
1} It is ~2nough to prove that [fdE <--> J when
f is reals When f 1is a simple function this 1s true because

Jd {==> E, fThe general case follows,.

ii) Tet £ = £, + if,,

((B+JCY%, (B+JC)x)

B=[fdE, C = [f,dE. Then
2
I Ax||

it

8x [| % + Il cx|| ® + (Bx, J¢x) + (§Cx, Bx)

it

5" f2 =0 on M_,JJ*C = )

S1£ 1% a(B(Ox, ) + [l£51%a (B()x, %)

+ (Bx, JCx) + (J0x , Bx)

= [1£1* a(E(.)x,x) + 2 Re (Bx, JCx ).

To complete the proof we have to show that Re {Bx, JCx)=0.
If xe E(RO), Cx =0 and hence it ig true. Siﬁce B, ¢, J
are all reduced by E(R,) it is now enough to prove it for
x& B(x - Ro). Passing to the symplectic image, it is enough

to prove that Re ¢ Jx, BCx > = 0 for x¢ Pt ang P~
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separetely where J° = iP¥ - iP7. But, beéause BC = CB is

hermitisn, this is obvious.
N 2
si1)  {laxl|® = fi£]® a@()x, ®) ¢ NR(0° Ix 117
The reverse inequality too is obtained in the usual waye
iv) Trivial.
v) By definition [ fdE = B=JC and A* = B- JC.
vi) Straightforward.
vii) ILet 4 = [{dE :‘ffldE + Jffng = A+ Jhg

and B = [gdB = [gdE + 7/ g,dE = By + JB,.

Then [(£2)aB = [{(£8)~ fo8p) + 1(f18p + fo87) 1AB
= (41By = AgBg) + J(4,B; + AEBl)
(& + Jay)(By + dBy)

(Recause J2A2B2 = - Asz).

f

viii) Straightforward.

We thus see that inspite of its rather odd definition
the s ctral integral we have introduced behaves exactly like
the usual spectral integral in the compleX casc. Using this
integral we shall obtain an understanding of the structure of
continuous one-parameter unitarv groups in Chapter Vv and detai~

1ed information about normal operators in Chapter VI.
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444 Structure of spectral systems. We have seen that for

the description of a genersl normal operator a spectral measure
slone is not enough. ‘The description is achievable only in the
terms of a spectral system (B, J). Consequently, the struc-
ture theory of a normal operator on a Q-Hilbert space 1is nod
readily deducible from that of the spectral measure, as in the
complex case, unless the operator concerned is hermitian.

Our purpose’ in +this secticn is to show that by a refinement of
the methods used in the agnalysis of speciral measures, one nay
obtain a complete understanding of the structure of spectral
systems (considering them to be respectable entitities in
their own right) the resulting theory being applicable to the

study of general normal operators on Q-Hilbert spaces.

In what follows (X, £ ) will denote a measurable space
and R an arbitrary but fixed set in Z. All spectral systems

(B, J) we consider will satisfy JJ* = B(X - R ).

IEFINITION 4.3 TLet H and K be two Q-Hilbert spaces
and (B, J) and (F, L) two spectral systems in g and K
respectively with JJ* = E(X - RO) and LI* = F(X - Ro)- (E,J)
and (F,L) are said to be isomorphic if there exists an isomor-
phism ¢ Dbetween H and E, mapping H onto K for definite-

ness, such that
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i) ¢ B(M)x = F(Mf plx)

and ii) @ Jx =L@ (x)

for all x€ H and ME Z.

Our main aim is to obtain a complete set of unitary
invariants for spectral systems. (It is possible to achleve
this by considering separately the guaternionic srectral measure
B on the mull space of J and the complex sepectral measure
B° on P = 2 BEERE % 1 and then combining the two theories,
but we prefer the direct approach). With this object in view
we first snal yse an arbitrary but fixed spectral system
(B, J) in a Q-Hilbert space H with JJ* = B(X-R_ ). BE, the
ramge of B, is then a Boolean o¢-algebra and if E 1is the
closure of 3 in the set of all operators on E of norm less
than or egual to one endowed with the weak %Topology, then £
is a complete Boolean algebra and is in Tact fhe completion of
.

Let E denote the class of all projections on H which
commute with B (or, equivalently, ¥ )« P is a complete
lattices In the standard theory of sﬁectral measures one decom-
poses E in terms of projections in E. But here we shall g0
one better and decompose E in terms of projections in a

sublattice of P.
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Thie sublattice (let us call it Q ) is the set of all
projections in P which commute with J. Q@ 1is a complete
lattice by itself. If J = O, then trivisily Q =2 , bub
Q #P in general. Anticipating our theory, we can say that
a necessary and sufficient condition for @ to be equal tolP
is thet JJ* dis a row, but for the moment the following simple

example suffices to make our pointe

IXAMPIE 401 Tet H = Q'%), X a singleton set, B(Z) = O,

E(Y) = I and let J ©be defined by J (z, #) = (&i, ni ). If
now P is the ray generated by the vector (1, k) then PGP
put, since J(1,k) = (i, -ik) £ P, P £ Q.

Recalling that S€ P 1is called a cycle if there exists
an x€ 8 such that 8§ = Z(x), the subspace generated by all the
vectors of the form E(M)x, M varying over I, the above example
shows that there may eXistrcycles which, while of course belong-
ing to P, need not belong tc Q « If a cycle does belong to
Q, we shall call it a J-cycle. Lemmas 4.2 to 4.7 Dbelow give

us all the information we need about cycles and Jecycless.

Por x in H, wu, will denote the measure on (X, I)

defined by w (M) = (E(M)x, x) for all M€ Z.
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LENMA® 442
i) If x €S and Se P, thenm 32(x) T s.
ii) If y | 2(x), then 2(y) 1 2{x)

iii} =xe E(MO) and vl E(MO) for some M  in &, imp-

lies Z2(x+y) = 2(x) (E) 72(y) .

iv) If 2(x) is a cycle, then there exists an
isomorphism @ mapping L2 (nx) onto Z(x) such that @(1)=x
and  P(£ J) = BE@) B(£) for all fe L (), Me Z.

v) The restrictions of the spectral measure E to

(x) -and 2(y) are isomorphic if amd only if iy = K-
wig TE 8 C: a{x), se 2, then there exists MCE
such that 8§ = B(M) 0 z(x) = z2(B(M)=x).

vii) If $, Sy C 2(x), 8y, S, € B, then §) <->S5.

viii) If 8y, S, C z(x), 8y, Sy €y _si i S,, then

there exists ME & such that § (C B(M) and 5, C E(X-M).

The proofs of these results are entirely similar to those
in the complex case and are omitted.

We now proceed to look at J~cycles. From now on vectors
x for which Jx s JE (X = R J)x = iE (X~ R )x have a distin-
guished r8le to play. TFor convenience, we call such vectors

Jd=vectors.
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LEMMA 443
1) 2z(x) is a J-cycle if end only if Ix€ Z(x)-

1) If x is a J-vector then 7(x) 1is a J-cycle.

Conversely 1f a subspace 8 is a J-cycle, then there exists a

J-vector x6 § such that Z(x) = S.
i3i) Every 8¢ Q (in particular H itself) is a

direct sum of mubtually orthogonal J=-cycleSs

Broof:
9 Ir 2(x) is a J~cycle then Z(x) <~>J, by
definition, so that dJx& &(x). BSuppose, conversely, that
Jxg 2(x). , fhen B x = E(M)(Ix)e 2(x) for all M and since
Z(x) is spanned by the B(M)x, it follows that J leaves
7(x) invariante Remembering now that J* = - J, we can con-

clude that J <e==> Z{x), iees that Z(x) 1is a J-cycle.

11) If x is a J-vector, then Jx = JE(X - RO)X

= 1E (X - RO)X e 2(x) so that Z(x) is a J=cycle by 1) above.

The converse is non-trivial. We are given that S 1is a
J-cycles Therefore S = Z(x) for some x€ 3 and Z(X) <mmd Jo
Let y = E{X - Ro)x and z = .ELRO)X. Then x = y+ z and
by Lemna 4.2 1ii) Z(x) = z(y) (E) 7(z). 8ince Z(y) =
2(x) E(X - R,) a@dfji(z) = 2(x)EB(R,), 2(y) and z(z) are
J=cycles.

Let 7% = 1 P* - iP" Dve the canonical representation of

8 . 5 .
J~ in ﬁb. Our result is proved if we prove that there exists
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¥,© pt such that Z(yO) e Z(y) = for then

X, =y, + 2z 1s a J-vector and Z(x ) = Z(yO) (+) z(2)

1

23)(3) 7(2) = 2(x).

Suppose v £ ?T  already. We may then write
y=y" +ky~ with vh,y " € p*. TWow, since Z(y) is a
J-cycle, Jy = iy" -~ iky~ € z{(y) eand also iy =iy + iky  ez(y).
Conscquently, v¥, y7e¢ z(y) and z(yh g; z(y). TLeb now
¥y, = vy~ = 2(yN)y~. Then ¥, € p* ana g 1 2(y™). Hence
Z(yl) 1 z2(y")e But then Z(yl) and 2(y") are both contained
in 7(y) so that an application of (viii) and (1i1) of Lema
442 gives, if y, =¥ +yp, Z(y,) = 2(y") (F)z(yy)s Tt is now
¢asy to check that y € Pt and Z(yo) = 7{y). As observed

esriier this completes the proof of (ii).

iii) Let S€¢ Q and let (Zr) be g maximal family-of
mutuslly orthogonsl J-cycles contained in 8. If S £ (2 2,
consider S, =S - (£)Z,. Then O # S €4, SO that eit;er
SOE(RO) £ 0 or SOﬁr(X - R,) # 0. 1In the former case for any
non-zero XE SOE (RO), 7(x) 1is a non-gzero J-cycle contained in
8§ and orthogonal to all the Zr’ znd in thé latter case since
SOP+ % 0, for eny non-zeroc x& SOP+, 7{x) is again a non-zero J -
cycle contained inm 8 and orthogonal to all the Z.. Since
(Zr) was assumed to be maximal at the ontset we have a contra-
diction in either case. Hence 8 = (E)Zr. The lemma is thus

T

completely provede
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TEFINITION 4.4 For any finite, non-negative measure

on (X, ), given R_€ I, the canonical spectral system (E“, JH)
associated o 4 is defined by the equations

i) E“(I_v')f = T Xy
and ali ) J#f = foi.(l - )LRO)
for a1l f¢ Lé () and Mg Z.

IEMMA 4e4 TLet p and w' be finite non-negative mea-

sures on (X, % )

i) The canonical spectral systems (E“, Jﬂ) and (E#.gJ“,)
are isomorphic if and only if W = u;,

i1) If B is any operator on Lé(#) which commutss
with E*L as well as JM’ then there exists a bounded measur=
able function h,  on ¥ such that B 1is coincident with
the operator of rTight multiplication by h_ on Lg(m. h i

essentially complex on (X~R_) and is unique upto w-null sets.

191 E =7 =P = .

1) By =Z,=E, =5y,

The proofs of these results are essentially similar to
those of corresponding results in the complex case and agre

therefore omittedes

DRFINITION 4.5 A subspace S of H is said to be of

type # for the spectral system (B, J) if 8¢ Q and the res-

triction of (E,J) to § is isomorphic tc the canonical
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sem (B, 7. )e
spectral system (ﬁug “)

LEMMA 445 TPor any J-vector x £ H, Z(x) is of type

g, for (B, J).

'
Proof: 3By (iv) of Lemma 4.2, we can find an isomorphisn

g from Lé (gX) to Z(x) such that ¥ E“(.)f = E(.) #f.

For this same @, since #(1) = x, for all Me I

¢JH(%M)

I

g (?(M'io?(X__R )
o]
=i¢ Eu(Milx— R_J.1

= 1 B(W) B(X-R_ ) #(1)

it

iE(X—RO)E(M)X

i

JE (M)x = J ﬂ(XM)

because EB(M)x, together with x, is a J~vector. It now
follows, via simple functions, that # J“f =JP (f) for all

fe Lg (u)e Consequently 2(x) is of type M, for (E, J).

IEFINTITION 4£¢6 i Sy SB £ 3, Sl and 82 are sald

to be equivalent, Slrw So  in symbols, if the restrictions of

the spectral system (E, J) to S and 8§, are isomorphic.

LEMMA 446 If =x, ¥ are any two J-vectors in H then

Z2(x) ~ 2{y) if and only if Ry & fy-
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- Proof: PFollows from Lemmas 44 and 4a.b.

Lemma 447 below is also easily proveds

LEMMA 447. Let x be a J-vector in H.
i) If 8 ( 2(x) and $c P2 thep SeQ. In fact
there exists M€ & such that S = E() 0 z(x) = Z2(B(M)x).

i1) If 8y, S, g; z{x), 8y, 8y £ Q, then 5 <=-> §,.

ii1) If Sy, Sy C Z(x), 8, S5 €3, 8 | S,y then

there exist disjoint sets M and N such that 8;=B(M)z(x)
and S, = B(N) z(x).

These six lemmas give us all the crucial results. Once
we have these we can just sail through the row~column mechanism
effortlessly. We therefore content ourselves with a brief sketch
of this part of the theory, displaying only the more important
results. The reader mey fill in the details for himself by
referring to the discussion on complex spectral measures of

either Halmes (1957) or Varadarajan (1959).

Every Pe F is called a column, TFor 8¢ Q, we define
¢(s), the column generated by S as the smellest column contain-
ing §+0(8)=0(F:sCPel ). Writing ¢(x) for ¢{z(x)
for any vector x one may prove that C(x) =0 {F : xc Fe E;] =
o {B): xe¢ BU), Me £ J. Columns of the form C(®) are called

primitive columns. Every column is a direct sum of mutually
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orfhogonal primitive columnse

Two subspaces Sl’ 82 .2 are called very orthogonal if
5 CF and 8, | P for some F€ F. A row is a direct sum of
very orthogonal cycles. Calling a row in Q a J-row, it is
easy to check that a row R 1is a J-row if and only if it is a
direct sum of very orthogonal J-cycles., If R 1is a J-row and

s C R, 8¢ P, then 8¢ § and is infact a J-rowe

A J-row R 1is said to be full in & column F if R is
maximal in ¥ iee. 1if R {_ F and if R' is any J-row con-
tained in F and containing R, them R =R'. If xCH is
arbitrary and R is a J-row full in C(x), then there exists a

J-vector y& R such that R = Z{y). Every two J-rows full in a

column F are sguivalent in the sense of Definition 446

For any column F, every two maximal families of mutually
orthogonal J-rows each full in F have the same power and this
cardinal, denoted by u(F), is called the multiplicity of F.

A columm F is said o have vniform multiplicity if O # G E; P,
Ge P dimplies w(G) = u(F)e- This happens if and only if there
exists a maximal family of mutually orthogonal J-rows full in F

which exhausts Te The lemma below may be called the Fundamental

Decomposition Theorem for spectral systemse
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LEMMA 448, DLet ¢ be the dimension of H. Tpen, Tor
every cardinal number u < ¢, there exists a column Fu such
that i) P 1is either 0 or has vniform multiplicity -u,
ii) the (F,) are mutually orthogonal and 1i1) 8 = u(g% L

Moreover, if [G u S ¢ 1 is any other family of columns

qt
with these properties, then G, = F, for all u.

Trom this cardinal valued function u on columns cone
passes to a multiplicity function u on ﬁ , the o-complete
lattice of (equivalence classes of) finite non-negative
measures o on (X, T) in the usual way, via primitive colunns.
To be a little more explicit, we first prove that S€ Q fiis
of type u for (E, J) if and only if there exists a J-vector
x &€ 8 such that 8 = Z(x) and = Hye In fact if 8§ is of
type n, thers exists a J-vector yE€S such that 8 = Z{y) end
My = He More generally if =x 1is a J-vector and g <<, »
then there exists a J=-vector y € Z(x) such that p = Hor®
For u€ N, the multiplicity of u, u(u), is defined as the
power of any meximal family of mutually orthogonal subspaces
of type n for (E, J). ul(x) ds then a well-defined multipli-

city function on H.

From the way we have defined wu, it is rather easy to
cheek that u (u) # 0 if and only if 4 = &, for some non-
zero J~vector x€ H. But in fact we can say more: u(f) # 0

if and only if u = 4, for some non-zero vector x€ H, not
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necessarily a J-vector. This happy refinement is a conseguence

of the lemma below.

LEML 449 For any x€ H , there exists a J-vector

e e e . 4

7]

i

vy H such that wu

v X
Proof.  TLet x, =EB(X -R)) x and x, = B(r,)x o Then
7} l M and p. = M, + M4, » If we now prove that there
i T s
. + : :
exists yls P such that Myla uxl, then ¥y = yp + %, 18 a

J=vector and uy g dee In other words, it is enough to prove
the lemma when x¢ B(X - RO)-

Let then x¢ B(X-R ) and write x = xt ¢ xx” with x7,

¥~ ¢ P¥. Then, as is easily verified,

+

(M) = < E() x*, x7 > + ¢BxT, x> +k < E(M)x, x>

+ < E(M)X+, v B kT,

The first two terms on the right side of the equality are
non-negative and the last two purely imaginary. Consequently
u (M) =0 if and only if E(MxT = 0 = B(M)x".

3 . + - + L
If we now define y by y =X + X or X =~ X accor-

ding as Re (B(M)x", x7) is non-negative or negative then

vE p*  and, as may be verified, uy(M) = 0 if and only if

i

E(M)x+ =0 = E(M)x~. Consequently by #yo The lemma is

therefore proved.
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We have shown, cver the last few pages, that given a
spectral system (8, J) in a Q-Hilbert space H Dbased on the
measureble space (X, £ } one may associate with it a multi-
plicity functionn u defined on N, the o-complete lattice of
(equivalence classes of) finite non~negative measures H. But,
even though u is defined is terms of both Z and J, in
point of fact, it depends only on B. In other words, iF E
is a spectral measure snd (E,J) and (E,L)ighy two spectral
systems then their multiplicity functions are the same. To
prove this, we shall prove that the multiplicity function u'
of any (E,J) 1is the same as that of the spectral system
(8,0}, or simply of the spectfal measure B, say ue Now if
g is such that wu(X - RO) = 0, then a subspace is of type &
for (E,J) if and only if it is of type wu for E, so that
() = ul()e It is enough therefore to prove that u' = u
when JJ* = I. Let now (”a) be a basis for u' and let

(8 ) 7be a maximal family of mutually orthcogonal subspaces

g
of type &, for (5,3) such that (2)(3) Saﬁ =H. (Bach
. a B
oy Saﬁ ig then a primitive column of uniform multiplicity).
p

But then u’(ga) = u(ua) and (ga) ie a basis for u t0Ce
Hence u' = Ua
After all this trouble, it is now but a few easy steps

to cur goale
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THEOREM 4.3 TLet (B, J) and (¥, L) Dbe two

spectral systems based on (X, T ) in Q-Hilbert spaces I and
K respectively with JJ* = B{X - RO) and LI* = P(X - RO) for
some R, € Z. Then (E, J) and (F, L) are isomorphic if and
only if they have the same multiplicity function. In particu-
lar two spectral measures are isomorphic if and only if they

have the same multiplicity functiome

COROLLARY 441 Tet E Ybe a spectral measure and J, L

two imaginary operators admissible with respect to E such
that JJ* = LI* . Then (B, J) and (B, L) are isomorphic. 1In

particular (E; J) and (E, J*) are always isomorphic.

We bring our discussion of spectral systems to a cleose
with the two “theorems below which will be of help to us when we
discuss operator algebrase. Their proofs parallel those of thelr

analogues in the complex case and are hence omitted.

THEQREM 4.4 The following statements regarding S£ g

are egulvalent:
i) & is a (J-) row
i1) If 8y, 85 © 8, 8y, 85 € Q, then 8 <==> 5
iii) If 2, and &, are J-cycles contained in S then
Zl <"'"‘> Zgu
iv) If 2, and 7, are J-cycles contained in 8 and
THBOREM 4.5 A projection P is a column if and only if

-y ya [ ~ oo ™ ~ s T
P NS i N "o,
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V. ONE-PARAMETER UNITARY GROUPS

5,0 In the complex case the one-parameter groups of unit
complex numbers are indexed by renl numbers A, the group
. . . it - :
corresponding to A  being e , 5 real. Hence, 1n a
certain obvious sense, the simplest kind of one-parameter
unitary group on a complex Hilbert space E is of the form

U :‘elt)‘I for some Tixed Mo Stone's theorem then says

t
that every weakly continuous one-parameter wnitary group

on H may be obtained as an tintegral'! of these simple
Zroups «

Turning now to Q-Hilbert spaces, one may say that a
simple kind of one-paramweter unitary group on a Q-Hilbert
space H 1is obtained by choosing any one-parameter group
(p,) of wnit quaternions, any basis (e,) of H and defining
(U,) by U, =p,e, forall «a. The obvious question then
is whether every well-behaved one-parzmeter unitary group on
0 is some sort of integral of these simple ones. We show

now that this question may be answered in the affirmative.

The crucial observabion is that to obtain the class
of all 'simple' one-parameter unitary groups as above, it is

not necessary for us to consider all the one-parameter groups
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of unit quaternions - it 18 enough to restrict ourselves to,
just one member from each equivalence class of such. This
is because, if (py) and (gq) are such that

xqt =t Py Ts | = 1, then the group defined Dby

U, e, = Qg © is the same ag the grou? defined by

U f p L, where f =re, for 81l o. Recalling now that

a o

we have proved in Theoremn 1.2 ‘that every one-parameter group
of unit quatermions is equivalent to cne of the form (eitx)
with x> 0 we see (because of Theorem 3.2) that every one of
these simple onc-parameter groups MNay be obtained by
chooging a non-negative number A, ag:gmaginary operator d
and defining (Uy) by Uy = cos (At)e I +J sin (At)e I

ich may be written symbolically as U = eJRt .

el ¥ith this motivation it is c¢lear that Theorem Sel
below may legitimately be called stone's theorem for conti-

nuous one-parameter unitary groups on Qe-ilbert spacess

Tet RY gtand for the set of all nan~negative real

numbers.

THEOREM Bel et (Uy) be any weakly continuous one-

parameter group of un.itery operators on a Q«Hilbert space H.
Then there exist a unique spectral measure Els) on the

Borel sets of RY and a unique imeginary operator J
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5.

¢
admissible with respect to E{.) for which T - JdI* = E([o])

guch thac

Ut =2 f elt?\ db W.I‘-’b. e
0
Proof: Consider (Ui ) e ES. Then, by'Stone’s

theorem, there exists a unique spectral measure ES(.), say,

on the real line with values in L (E°) such that

4o
< Ui x, y> = [ et ¢ ES(.) X, 7 >

- OO

for all x, y & B

We claim that X ES(M)K'l = B (<) for a1l Borel sets M.
This follows from the string of equalities below and the

uniqueness of the Fourier Transform:

4o
JoemtP g <k B () Kt ox, ¥

-

A 1 i

gt B o) K RS g >

o

(s}

= f e g cxly, B0 Kt x>

it
—
{
1
H-
t
>’

d < Es(x) Ky, Kx >

< U, Ky, Kx >
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w B

= { X, U?t v oY

S

$0 L

= f e ac<E M) % ¥
oo

= [ "ttt 4 ¢ ES(—K)X, T Dk

This result implies that 1f we now define, for Borel
sets M of RY, E(M) = B (W) Vv E(-M), then E(.) is a
spectral measure with vaelues in 1L (1), and that if we define

J by

J:iES[?\,:P\>O]—iEs[?\:?\<O]

then J 1is an imaginary operator on E admissible Weret.

T and I = JJ* = E{({0}).

To prove now that Uy = [ oItN 41 weret. J, we have

to prove that if

v

% cos tA4AE

sin tx dE

U

i
0
and W, {)

then Ut N Vt + JW, or, what is the same, that
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!

¢U, %, §7 > =< Ve Xy ¥ >+ < W %, J* y> for all x, y € H.

But
4o
Uy % ¥y > =/ 2 a ¢ B (W) %, ¥
REE S Y
= < B ([0]) x, y >+ [ e?hd« E le)x, ¥
O+

O=- .
+ [ elth 5 ¢ ES(.) Xy ¥ O
- o0

+00
CEB ([o]) x, y >+ [ ocos tad( ES(.)X, y >

O+

+OO
+1 [ sin tad < ES(.) X, ¥ O
O+ .

+ [ cos tAd <K ES(.)K X, 0 = 1 [ sin tad < KES(.)K X,y
O+ O+

+OO +OG
T cos tada(E()x, ¥) + / sin tx d < Ble)x, J* y >
0 0

it

i

<Ve %, ¥ >+ LWL X J¥ gy >y
'We have now to prove the uniqueness of the spectral

representations

Suppose that F(.) 1s any spectral measure on r*
with values in L () end I any imaginary operator

sdmissible Weret. F such that I - LI*x = F([0}) and
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+2O s
e &= f elkth d ¥ wWelrete Le
0

Let us define a spectral measure FS(.) on R with values

in L (%) by

H

F (M) = pm)p*t for a1l ¥  RY - [0]

F(-M)P~ for =11 M C R - &'

H)

(M) for M =[0]

il

- . e 8
where 1° = 1p* . ip is the canonical decomposition of L

discussed in Chapter III.

We then have

+DO
CUp %5 7 2 =£ cos ta d<(Pla)x, ¥ >

0
+ J sin tx 4 < Ple)x, I¥ v >
0

o0

+
CF[OD) %, 7>+ [ cos tax d < F(PT + P()P7)x, ¥ >
04

i

+DO
+ [ sin tx a < (F()PT + P(O)P)x, I ¥y >
0

.+.00
<P (oD%, y >+ [ cos tn & <Flo)x, ¥y >
_ O+

0=
+ [ cos taa <FS(.)X,y>
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g1

.}..00 O
+ [sin tad <1 F (x, y> - [ sin t2d <EPHF_(O)x,3>
0 b -0
+D° +OO
= [ cos tAad < FS(.)X, y>+1f sin tad < FS(.)X, v >
-0 - OO
+2 ;
= f ej"'t:,L d < Fs(t) Xy, ¥ O

- 00

for all x, y € ﬂs so that the uniqueness of the spectral
measure in the complex case helps us to conclude that

P(o) = B,(s)s But this immediately implies that

E(v) =2 P(4) and J = L. This completes the proof ‘of the

theorema
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VI. NORMAL OPERATORS

el We' are atlast in a position to obtain significant

information about normal operators on Q-Hilbert spaces.

We start with the spectral theorem, ILet A be a normal
operator on a Q-Hilbert space H o Then A® is normal on
HY, Tet ES(.) be the canonical spectral measure of £®:a° =
i AdE . We observed earlier that the spectrum of A° is
gymmetric about the real axis, This neans that the spectrun
is known as soon a8 its intersection with o* is known. Much
more than this is true. Theds spectral measure E_(.) 1is

knownn as soon as its restriction to oY 48 known.

LEMMA 6.1 FPor every measurable set M C C, E( M) =

KES(M)K'I, where M = L\ : : Ml .

Braof: If M is & compact set we may prove this using
the StoneéLengyel characterization of spectral subspaces

(Halmos, 1957). The regularity of E_(.) implies the rest.

COROLLARY 6,1 If M =¥ then E_{(M) is a projection

on H . Purther, if for M C %, B(M) = B_(MU M) then Z(.)

is a spectral measure on ot with values in L(g) *

"'62-—
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THEOREM 6.1 Tet A be a normal opsrator on a

G-Hilbert space H. Then there exists a unique spesctral

system (B, J) where T is a spectral measure on the Borel

gsets of 0Y and J satisfies JJ* = I - B(R) such that

A-—-'fkdE W.I‘.'t- J.

Proof:  Define B(M) for measurable M (T ¢t vy
E(M) = ES(MITﬁ). E(M) is then a spectral measure in H.
Define J on H by 3% =1B(c*-R)-1E(c- M.
Clearly J dis an imaginary operator on H and I% <am3
and therefore J <--> E(.). Purther JIJ* = E{CY - R) so

J is zdmissible werets. B(s). Consequently (E,J) is a

B (.)
that

spectral system with the required properties. We have riow to

prove that A = fAdE wer.t. Je Let XA =1 % ic with
real, and B = [b3dE, C = fcdE. We have to prove that

A =B+ JC for which it is sufficient to prove that

¢ AR gy pl o= @B 2 765 2y By _Bus

by E

< 4% %, y> =/ 2d <BEJ(.) x, y> by definition of E_(.)

S
SJra<E () % 7> +ifed< Es(ﬂ) X, v >

= f bd < ES(.)X, y>+ [ pd <E ()%, y>

H

I at-r
+ J va < B(x,y>+if ecd <E()x, ¥y >
=g : o*t.r

+1C{G+ cd < ES(-)X, y >
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B h

- fpa <B()x, y > + . bd < B ()x,y > + [ bd < KB_(OK™x,y>
R ¢t-r 5 ok B

mEF S edik Es(o)x, SR N e KES(.)Knlx,y>
ctor otR

+

=/d ¢ B(Ixyy > + Sbd < B(J)x, ¥ > + Sfed < JES(.)X,y >
. g otor

+ [ ed <IK3 (KT x, ¥y >

ctr

[ va ¢ Bl)x, vy > +f cd < Ela)x, J*y >

it

<B%%, 7> + < 3%, Iy >

< (B5 + %)%, v >.

The proof of the unigueness is equally simple. Let the
spectral system (F, L) have the required properties and let
A= NP wWeret. L. Cohsider 1° on H® =and let

+

1% = iQ* - 1Q” where Q7 1is the projection in H® on the

eigen subspace of " corresponding to the eigen-value i,
and Q~ = KQ'K™L. wWe kmow that Qb % kgt k™!, that

ot <am> [P0 *.* T8 ey [P)I%) anda gt + Q7 = LFL =
F(¢* -~ R). Define now & complex spectral measure FS(.) with

values in L( ES) by

if

F (M) = (PO ]® it M CR

(P(m)}% Q* ir umCct-w

P I® o~ i M ¢-ct
f

i

1
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Qur theorem wilil follow from the uniqueness of the spectral

representation in the complex case if we prove that
£ = [ 2a P, for then P_(+) =R (.) thereby implying

Flo) = B(.) as also J = L., But we have A = fldF WaTr st
L. Therefore,

<( [ bvar + L Sed®)x, v >

< S bvamx, vy > + < ( feam)x, ¥y >

S ba < P()%, y> o+ cd < Flu)x, ¥y o>

< Ax, ¥ >

it

i

= [ bd <P()x, y >+ [ bd<(F(QY
R ct-r

SR AD0 sy 7 >
+ [ cd < (P()QT + F(O)Q)x, TFy >
ct-r
=f be < FS(Q)X, y > + .f bd < F(')Q+ Xy ¥ 2
R ctRr

+ [ bd < F(.)KQ+K'1X, v o>

c*-r

+ [ ecd < TPt x, TRy >

ct-r

+ [ cda ¢ P(e)Q %, ¥
gh'=p

2 %bd < FS(.)x, y >+ Spd<r (Ox, v >
ctr

+ [ bd< Flodx, 7>+ 1 [foed< Fé(.)x,y >
c-gt ct-Rr
-1 f(‘d<FS(n)X,y>
Q=g+
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The proof of the theorem is conmblete.

COROLLARY G2 Tvery normal operator A can be written

uniquely in the form B + JC where B, J, C are mutually
commuting, B 1is hermitian, C dis positive, ¢ 18 imaginery

and Jx = 0 1if and only if 0Ox = 0.

Proof: If B = Re N 3B and ¢ =/ Im » 4B then

clearly B, C, J satisfy the required conditions and

. A+ AX
A=B+JC. B and C are unique because B = —5—— and
A = A%
02 = —-4£—§~é«l- and € 1is positive. TIf now. L and J are

two imaginary operators whose null space N 1is the same ag

that of €, then trivially Lx =Jx for x € N and if

3

X6 N-lg since there exists y € Ni such that Cy = x and
JC = LC = é_%ﬁgi , we have Lx = Jx again. This proves the

uniqueness of Ja

CORCLLARY 643  An operator B commutes with A if anc

only if B commutes with T(.) and B comutes with J.

Proof: If B {mame—e 2 A then BS Cmommmm=d A7 angd
hence BS {ebinas, NI ES(.) inplying that B (wmemee=w> B(,)
as well ag B (emosw—- > J. Conversely if B <~-> & then

stendard arguments (via simple functions) prove that B <-->
JRe A AT and B <--> [ Im\ &B. If also B ¢~=> J, then

obviously 3B <~=> A,
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We now turn our attention %o the problem of obtaining a
complete set of unitary invariants for normal operators. We

have first +the lemma below.

LilMA G642 Two normal operators are unitarily equivalent

if and only if their spectral systems are isomorphice.

Proef; Let 4, ¥ be normal operators acting on
Q-Hilbert spaces H and K respectively with spectral systems
(B, 7) ana (F, L) respectively. 4ind let Ty and Ty be the

gspectral measurecs of 45 ang ° on H and §S_ T ithiene

exists an isomorphism ¢ : E »> K such that B = d A ¢_1 then
=0, -1
3 . ¢S 15 ¢S and hence Py = ¢S Bg ¢S‘ so that

L LS. | 1 -1
() = Fe (MU M) = ¢S By (M U M) & = ¢S E(M)S¢S and

I

1l

‘ !
2ty (¢ - B) - 1 Fg(0 - %) = 1¢° Bg(0*-R)GP
“l
. i ¢S Bg( O - ety ¢S
g 85418
¢° 37 ¢

implying that » = ¢ B ¢'1 as well as L = ¢ J ¢‘1.
Conversely, if (E, J) and (F, L) are isomorphic with
F=0GEOG™ and O J 0 =e3 o L, then it follows rather easily
that 3 =0 A 07T
Prom this lemma and Theorem 4,3 we may conclude irme-

diately that two normal operators are unitarily equivalent if

and only if the multiplicity functions of their assocciated
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Spectral Systems sre the same. DBut we can be more explicit and
charactorise the multiplicity function attached to a normai
operator via its spectral system directly in terms of the
operator itself. Tc see this let N be the set of all finite,
non-negative measures with compact support in ¢*.  (We need
not consider measures with non-compact support because the
multiplicity of every one such will be zero in the case we are
interested in)s For u € N the canonical operator AJu asso-
ciated with u is the normal operator on Lg () defined by
A‘uf (A) = £(n)re It is easy to check that .the spectral system
of AJu is (Eu, Jﬂ), the canonical svectral system associated
with u (see Definition 444) defined by I (M) £ = f. X and

Juf — f.i. (1. = XR) e

Por u€c B, a subspace S of H ig said to be of type
y for A if S reduces A and A Testricted to S is
uwnitarily equivalent to AM; iee. there is an isomorphism
@ LE(H) ~> 8 such that Q(Aﬂf ) = A (), If we observe now
that the spectral system of the restriction of A to S is
but the restriction of the spectral system of A to 8 and
use Qorollary 6.3 and Lemma 6.2 we can say that B is of
type w for A if and only if S 1s of type u for (Bygd )

We therefore have the following theorems
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THEOREM 6.2 et A be a riormal operator'on a Q=-Hilkert
space g. Tor every finitey non-negative measure gy on the
Berel subsets of C+, let us define wu{y) as the cardinality
of any maximal family of mutually orthogonal subspaces of
type u for 4Ae Then u is a well-defined multiplicity
function amd two normal coperators are uvnitarily squivaelent if

and only if their multiplicity functions are the same,

With this theorem the structure thecry of normal

operators on Q-idilbert spaces is cormplete.

We shall now exploit this theory to deduce two interes-
ting properties of normal operators on Q-Hilbert spaces which

have no analogucs in the complex case,

In the heuristic explanation of the properties of normal
operators on complex Hilbert spaces it is often said that
normal operators behave like complex numbers. We may make a
similar statement with regard to normal operators on Q-Hilbert
spaces ~ They behave like quaternions} The two theorems below
reflect the two properties of quaternions that (i) every
guaternion q dis conjugate to g¥ and (ii) if q is real
and p commutes with every quaternion commuting with ¢, then

p 1is rezal,

THBOREM 6.3 Hvery normal operator A on a Q-Hilbert

space 1ls unitarily equivalent to its adjoint A*.
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Procf: Cbhgorve that if the spectral system of A is
(E,d) then the spectral system of A* is (E,J*) and use
Corcllary 4,1.

THEOREM Ge4. If A 1is a normal operator on a

Q-Hilbert space E and B 1s an operator which commutes with
every operator commuting with A, then B is normal. If 4
is hermitian, sc is B({) .

Proof:  The first part is trivial. As for the second
part, in view of our structure theory,, it is sufficient to
nrove it when ﬂ = Lg(u), # being a finite, non-negative,
compact measure with support contained in R and (Af)(N\) =
f(X)eXe But then B <w--> EM(.) and therefore by Lemma 4.4
there exists a bounded measurable function ho such that
Bef = foh  ~ for all fe Lé (#) and by the hypothesis of the
theorem B commutes with every operator of the form f - foq
where q 1s a fixed quaternion. Consequently qeh, = hoq[uJ
for all quaternions g and we are forced to the conclusion
that ho is essentially real and therefore that B is

hermitian,
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VII. PUNCTIONAL CALCULUS

n, We shall now give a definition of the concept of a
function of a normal operator and develop a functional calculus.
This ig elgebraically (and understandably; more complicated
than in the complex case but the geometric ideas underlying
it are the game. The vindication of our thecry is an analogue
of a theorem of von Weumann which we obtain: in the case of a
geparable Hilbert space, the sev of all functions of a normal
operator according to our definition coincides with the smallest
weakly closed {rezl) self adjoint glgebra of operators contain-
ing A

Throughout this chapter we shall let 4 be a fixed but
arbitrary normal operator on a Q-Hilbert space H, E(s)
(ES(.)) being the spectral measure of A(A®) end T the
imaginary operator of Ay B will denote the range of E and

? the completion of I.

Let M denote the class of all complex~valued, measu-

rable, E-ess. bounded functions f defined on % whose

restrictions to R are real.

DEFINITION 7.1 For f& M , we define f{(4) by

F{L) = [ TAE werete Je

-71L~
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ve
Observe that secording to this definiticn every function

0of a hermitian operator is hermitian !

The following elementary observations and Theorem 7.1

velow are immediate consequences of our spectral theory:

i) For a, b real, £, gcl, (af + bg)lA) = af (A)+bg(A).
ii) For f,geﬂ , f(a).g{a) = (f.g)(a). In particular
f{A) <-=> gl{a).
i11) For £ €M, n = 1,2,... and fe M,
a) if (f) converges wniformly to £ then £, (4)
converges uniformly to T(A),

b) if £, converges to f pointwise and boundedly,
then fﬂ(ﬂ) converges to f(4) strongly.
iv) £{4) is unitary (hermitian) if and only if £ 1s
E-cssentially of modulus 1 (real).

v) TPor any operator B on H, if B <~-> A, then
B (m=> £(4)e

THREOREM 7.1 If A is a normal operator on g Q-Hilbert

space then there exist a positive operator B and a unitary

operator U such that B <~-> U and A = BU.

Qur first problem is to give explicitly the spectral
system, (F, L) say, of f(A). If the E-essential range of
£ is a subset of C+9 then one would expect that

F(M) = B(£™ (M) and L = JE (M) where M, 1is the set of


http://www.cvisiontech.com

e

points on which f 1is non-real., Once this is noticed,

Theorenm 7«2 below becomes understandable.

Let us introduce the following notation. TFor feM, let

f . " / ~ At

M, (=m,) =(xr: £fN)eC - R)

- il

M_ (=M.} =(x:£(N)ec -~
£y .

M, (= M Yoo=( x: £(NER )

”~
and define a function £ by
~
Sy = () if N g WM
x = T(X) if AE M_ .

THEQREM 7.2 If P is the spectral measure and L the

imaginary operator of f(A), then F(M) = B(? =l (M}) ana

L=JE () -J8 ().

Proof: Define a function f_ on C by
£.(0) = £(2) if N e
= £()) if il Ol €F 5

We claim that [f(A)]s = fS(AS)m For let

reale. Then
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A

f(x, 3> = < ifl(A) + J fz(A)]X, y >

<t {x, 7>+ ¢ £ {4) x, I*y >

Ik

J £1a <EQe)x, ¥ > + J f,a ¢ Ble)x, J*y >

=£ fld < ES(Q)X, Yy >+ f fld < [ES(Q) +KES(-)K”1]X93T>
+
¢t-r

¢ [, a<IB(s) + KB (K ]x, 3% ¥ >
¢*-R

= [ f£1d < ES(.)X, wE o N f£1d < ES(.)x,y >
R otp
& f£1d < E(a)x, y>+ [ £,84¢< JE,(e)x, ¥
+ = +
¢~ C ¢T-R

+ .[‘ fzd < JES (C)X, y >
G o™

= f £,d < ES(.)X, vy>+ f (fl + ifg) a < ES(.)X, v >
L c*-r

+ [ L (£, = ifg) 4 < ES(-)x, v >
a-C

n

Jeac E ()x, ¥ >

< fS(AS)x, v D

Therefore, F_, the spectral measure of [(£(4)]° is but

S,
the gpectral measure of fS(AS). This, we know, is given by

FS(M) = Es(f;1 (1)) where E_ is the spectral measure of 4°.
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Hence for M (R

p(0)® = P (M) = Es(fs"l (M))

s, LE1an v (F70 )]

-t (F1 o)

and Tor. ¥ C ¢t - R
(ra) 1S = P (M U W) = E-(£7F (MU M)
8 [=] 8
= Es(fj" (M) U f's‘l (M)

= B (£ () + B (277 ()

i

B (221 () + B (L £5F (0)])

= B (7} () (2t (0 1)

"

e (Ft vl b

(T =1 ).

Therefore, for all M (; g*
ron) = 2(F L ().
As for L, since L = il on
P (¢* - R) = B (5" (¢* - R)) = B (M, U w_)

=5, () + ESQ_ )
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| i
L it follows that L = JE (M+) - JE (M_). The proof of tue

. theorem is conipletee.

Vext, we ask if a function of a function of A, say
flg(4)), is again a Enction of 4. Here again, if the
B-essentizl range of g 1is contained in ¢t (fo g 1is not
defined otherwise), then it is to bhe expected that

f(g(4)) = (fog)(i)e The general case is given by Theorem 7.3

below,

We need to introduce some notation again. Fix f,gf
end define

N, = (x: g(M)ect-gr, f(g(r))ect - R)

U e T s % £le(a) e ¢ = @
N_=(x: g(M)ec =R, flg(a))e 0 - ¢¥)
U (a: gMec -cf, flg())e ct-n)

o

I

it N, -N_.

+

Define the function h on C by

n(A) =T (Z (V) if e N,

lf

(F (8 0NT ir reX

= £ (20O if NE N, .

THROREM 7453 fleg(a)) = h(A).
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Proof: Tor a normal operator B, let us denote the
associsted spectrsl measure and imaginary operator by EB(O)

and. JB. We have

Ef(g(A)) = By(y) ¢ Pl =22t o

BB "t ()

il

~ NN
by Theorem 7.2, since h = fog . Also

iDN

T . . T T
“E(g(a)) T Ta(a) “gla) (my) - Ja(4) Eg(A)FM_)
5 £~ (Mf))- T o (4) (2t (Mf )

i

J
g(4) gl
J = JE (M8) - JE( ¥8 ).
" Tga) () - Il )
Combining these two equations, we deduce that
— -+ I - —
Te(a(n)) = ¢ E(N,) = JBW )=y )

by Theorem 7«2. Therefore flg(a)) = h(Aa).

7 a2 These preliminaries concluded we move on to a
study of the deeper properties of the functional calculus.
Our first result is an analogue of von Neumann's characteriza-
tion of functions of a normal operator on a separable complex

Hilbert space.
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For a normal operator B on H let Ig denote the

' range of the spectral measure of Bg EB its completion and

JB the imaginsry operator of B.

THEOREM 7.2 If B is any operator on H which com-

muites with every operator commuting with 4 then B 1s

normal and By O F . If E ds complete, in particular if

H is separable, then B 1s & function of A,

Proof: B is clearly normal. If PE€ Eg is arbitrary
then by Corollary 6e3. P ¢=e> A and consequently, by
Gorollary 6.3 again, P <{==> B(.) and J. Also if Q is
any projection commuting with A, then B <=-> Q and hence
P (w=> Q¢ By virtue of Theorem 4,5 we may then conclude that

= & , then there exists a

I3 |

P F. Therefore, By C E. 1If
complex measurable functlion g on ¢t with values in ot

such that Eg (M) = E(g_l(M)) (This is proved for the complex

case in {Varadarajan, 1959). This proof applies to the

quaternionic case £00).

Observe first that g must be E-cssentially real on
R. This follows from the fact that the restriction of B to

L(R) 1is hermitian (a consequence of Theorem 6e.4) so that

n(r) T By(r) = B(g™ (R))
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which implies that IR - g"l (R)) = 0. We may therefore
assume, without loss of generality, that g 1is real on I,
iies that g€ M. We shall now produce an f such that

A
f=g and B = £{4A).

Por convenicnce let us write L = Jg. Since B {e=> 4,
B ¢--> J and hence L <~=> J. 4also, since E(®) C; EB(R),
Jx = 0 4mplies Lx = O. By Theorem 3.3 L = JFP - J Q where
P and Q are mutually orthogonal projections sommuting with

I and P + Q = I*¥L T J*J. But then J*L = P - Q so that

I is any

(e 30T (2 - 3L

? e — and Q = s I now

arbitrary projection on H which commutes with 4, then

R <->J and L <~=> B so that R <{--> L. Conscquently,

P, Q ¢(--> R. Hence by Theorzm 4.5 P, 0 € I = . [emembering
now that P and ¢ are orthogonal, we may find twe disjcint
sets N, and N_ suck thet P = B(N,) and Q= B(N_).

Define now a funciion £ Dby

F{N)

Il

g{n) m RO R

il

z(n) i A

(learly then f = ¢ end one mey verify that B = f{4). The

proof of the theorem is complete.
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We shall now obtain the characterization of the class
of a1l functions f{(4) of 4 promised at the beginning of

this chapter. But first, a lemna.

LOMMe 7,1 Let M be o compact subset of OF. Iet
! and Q Dbe the classes of all real (1) functions of the
= &
_ 1q A+ MT
form p(x} = Z ar(——jy——) and
r=0C
n —
_NE ~ A28
gz o2 bs(‘"g——)
S=C

respectively, where the real counstants a., bS are arbitrary.
Let € be the class of all finite sums of functions of the
form peq with p& P and q€ Q. Thené is unifornmly

dense in the algebra of real continucus funciicns on MO.

Proof: € 1is an algebra separating points and contain-
ing constants.

Let now LA] denote the weak closure in B (H ) of the
set of a1l polynomials p(hA, A*¥) in A4 and A* with real
coefficientse. LAJ] is then the smallest Wk-algebra contain-
ing Aland I). Tet O(4) denote the set of all functions of
4 and [A]"" the set of all operators which commute with every

operator commuting with A
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THEOREM 7«5  §(a) (C [a} = {a)'"n If E is complete,

in particuler if H is separable, §(A) = [A] = [alv.

Proof: Firstly, using the fact that B{.) is concen=
trated on a compact set and Lemma 741 above, it is clear that
f{a)e [A)] for 2)l real, E-essentially bounded continuous
functions f on C'. It follows that B(M)e [A] for all
closed s=ts M and since E(.) is regular, taat B C [4].
But {A] is weakly closed and every element of F is the o
weak 1imit of elements of B, Therefore B c; [4]. Also,

since & C [4], £(a)e [A] for all real E-essential

hounded f.

Secondly, J& [A]l. To prove this let us write

A= b+ ic, b, ¢ real, for all X C ¢*. Then

- A% .
A—g—é— = [ ic 88 wer.t. J. Define fér every positive

integer n, a real-valued function f, on o™ by

I

£,(2) =1/c iR T B A
= 0 if ¢Ne Lymw

Then fn(A) £ (A} for 211 n ana
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JLED o1/l = f  Lord 4B werete
c> 1l/n :
=l i e E.d B Welwete J

= Ao A g (a) ¢ (Al

Teking the limit as n -> o,
J=JdB {x: ¢ >o0]¢ La,

Trom these two observations it is cbvious that

s C ale

Goming to the proof of the equality [A] = [A]", we
see that it is enough to prove that {A]"C; [A] as the
reverse inequality is trivially true. But if B¢ [4}'" then
by Theorem 7.4, EB C; F and also LG [A] (because
L=JP~J@ for P, Q€ E). Consequently Be [4] so that
[A]"C; {ad.

Finally if B is complete [a]" C F(4) by
Theorem 7e4 again so that Q(4) = [A] = fAl'n  This proves

the entire theorches
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VITI., COMMUTATIVE W*-ALGEBRAS

841 In this chapter we shall make a thorough study of
commutative Wr-algebras of operators on a Q-Hilbert space.
Inspite of the fact that these are algebras only aver the
reals it is possible to obtain a completbe insight into their
struéture by applying Segal's methods of analysis of their
complex counter parts (Segal, 1951) to the spectral theory

developed in the last four chapters,

DEFINITION 8,1 A collection of operators A on a

Q-Hilbert space H is called a W-algebra if i TE W ;
i1) If A, B¢ A then A+ B, AB, A* and al (a real) all
belong to A and iii) A is closed in the weak topology

on B (H)

Tn the case of a Wr-algebra of operators on a complex
Hilbert space, the algebra is abelian if-and only if every
operetor in the algebra is normale But not so in the quater-
nionic cases Wnile every abelian W¥-algebra consists only of
normal operators, there exist Wx-algebras of normal operators
which are not abelian. The set of all right multiplication
operators on a finite measure space (mentioned in Chapter 1)

is, for example, one guche The structure of such algebras

-8% -

-
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is very interesting, but we chall restrict ourselves to the
abelian case for the present. The non-abelian 'normal'

algebras will be discussed elsewhere by the author.

In what follows A will denote a commutative W*ualgee
bra (henceforth abbréviated to CW*A). The set of all projec~
tions in A which is a complete Boolean algebra, will be
denoted by. F o+ We note here that one can always find a
spectral measure E, based on a suitable measurable space,
whose range is exactly F. This is an easy consequence of the
well-known Stoneg-Loomis representation theorem-on Boolean

c=algebras (Varadarajan, 1959).

An example of a CW*A on a separable Q-Hilbert space is
the set of all functions of a normal operator A (Theorem
7e5). One of the results of this chapter (Theorem 8.7) will
be that every CWA on a separable Q-Hilbert space is of
this form for some normal oper¥ator A. Observe that we do
not say 'for somé hermitian operator A's This is not true
in genersal because, in our functional calculus, evsry func-

tion of a hermitian operator is hermitiane

DEFINITION 8.2 Let A and B be two WA s acting

on Q~Hilbert spaces H and K respectively.
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i) 4 end B are said to be algebraically isomorphic
if there exists a 1=-1 map § of A onto B such that
for all A, B & A 2and a real, @#a A) = a @A), g(h 4+ B)=
J(a) + #(B) and F(AB) = gla). #(B).

ii) 4 and B ere sald to be unitarily equivalent if
there exists an isomorphism U of E onto K such that the
canonical map @ which sends A on H to vAUt on X

]

ig an algebraic isomorphism between 4 and B.

1ii) Tet n be any non-zero cardinal number and S &
set of cardinality mn. For each s in § let K Hie) ra
copy of K. ILet K [n} be the set of all functions x(s)

on & with x(s) ¢ ES for all & and & l!x(s)iF { e
sCS
ol @

sp
converted intc a Q-Hilbert in the usual way, The n=fold copy
of B on K, B {n] in symbols, is the set of all operators
Bon K [n] which are of the form (Bx)(s) ={(ax)(s) for all

s¢ 8 and some AC éa 4 is sald to be an n-Iold copy of B

if & on H is witarily equivalent to 2 [n] on K (nl.

It is easy to see that if @ is an algebraic isomor-
phisgm then (i) ¢#(0) =0, #(I) =1I, (ii) P 1s a projection
if and only if @(P) is a projection (because a normal opera=
tor A is a projection if and only if A° = 4) and (iii) J

is imaginary if and only if @(J) 1s imaginary (because, Wy
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Theorem 342, & normal operator A is imaginary if and only
e A2 + A% = 0)e ¢ has many more pleasant properties, as

will be seen.

DEFINITION 843

i) A CW*A A is called an R-algebra if every A

in A 1dis hermitian

il) A CWrA 4 is called a C-algebra if there exists

en {imaginary) operator J in A such that J2 = - I.

An example of an Re~algebra is the set of all functions
of a hermitian operater on a separable Q~Hilbert space and an
example of a C~algebre is the get of all functions of a skew
hermitian operator with a trivial null-space on a separable
Q-Hilbert space. In the notation of Ingelstam (1964) an
R-algebra is a R2 real normed algesbra and a C-algebra is a

real normed algebra of complex type.

We now prove, in Theorem 8.1 below, that every CWxA
is a direct sum of an R~algebrs and an C-algebra. It is an
amusing coincidence that Theorem 8.1 of Ingelstam says that
a commutative real normed algebra satisfying one of two
algebraic conditions (neither of which, incidentslly, need be
satisfied by a CWxA) 1is a direct sum of a feal normed alge-

bra of complex type and an Rg—algebra.
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If -A is a CWA and P is & projection which commu-
tes with (every operator in) p then < may be restricted

40 a WA on DP. We denote this by 4 P.

THEOREM 8el1 If A 1s a CW¢4, then there existe a

wmique projection ¥ in a such that A ¥ is a Cealgebra
md A (T - F) is an R-algebra. In other words, every

CW¢A is a direct sum of an R-algebra and a C-algebrae

Proof: If there exists a non~-hermitian operator A
in &, then [Al, the smallest We-algebra conbtaining A s
contained in {_ and therefore, by Theorem 7.5, trhe canonical
imaginéry operator associated to A, is in _13: . Consequently,
if A were not an R~algebra to start with, & contains non-
zero imaginary operatoré J. For every one such d, -Jz
is a projection in 4 . Consider a maximael family of
mutually orthogonal projections F in & of the form

2

wd for some imaginary operator & : FOC = - Jozc, say. Then

F:EFOc is in A » If we now define JzZJ(x then JG{;
G o

and -I° = P so that 4L P is & C-algebra., Also A (I - F)
is an R-algebra, for, if not, there would exigt non-zero
imeginary operators J in & with 3% (T 1 - F, contradicw

ting the maximality of the family (% J.
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To prove uniquencss observe first that the resthiction
of a C~algebra toc every reducing subspace 1is again a
C-algebra. Hence if G were any projection in ;é- such that
AG is a C-algebra then & (;__ 7, for if nof, A(G-F) would
be a C~-algebra and (’FOC) would not be maximal. If G had
the further property that & (I - G) is an R-zlgebra, then,

for the same reason as above, F (C G. Hence the theorem,

We shall refer tc A F and A (I - F) as the complex

and real parts of A respectively.

If X is a topological space, we denote by QR(X)
(CC(X)) the real Banach elgebra of all real-valued {complex-

valued) bounded continuous functions on X,

LEMMA 8,1
i ;g is an R~algebra (a C-algebra), then there
exists a compact Hausdorff épace X, unique upto a homeo-
morphism, and a map ¢ from &. to CR(X)(CC(X)) which is

an algebraic isomorphism preserving narms and adjoints.

Proof: Suppose first that A is an R-algebra. Let
X be the Stone space associated with F——F 1s then iscmor-
phio via P => P%, say, to the Boolean algebra of open-closed

subgsets of Xe. TFor real linear combinations of elements of

F, define § by #( S a, P.) =Za.Xpx ¢ £ is then a
T
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a norm-preserving alg:sbralc isomorphism between uniforily
dense subalgebras of A and Cp(X) and hence may be extended
to a norm-preserving isomorphism between A and ¢, (X). That
X is unique upto a homeomorphism is a consequence of the

fact that Op(X) 1s determined upto sn algebraic isomorphism.

Let now g be a C-algebras We claim that if Jd 1is
any full imaginary operator in.;é, then every operator in A
is uniquely of the form B + JC where B and C are hermi-
tian operators in A  Now every operator A in A is
normal and hence, by Corcllary 6.2, is of the form B! + LC'
with B', C' hermitien and L imaginary all belonging to
4 (Theorem 7+5)s But then 1L ¢==> J and, by Thecrem 3.3,
is of the form JP - JQ for some mutually orthogonal projece=
tions P, Q& P (!). Define now B = B’ and C = C'P - C'Q.
Then. B and C are hermitian and one may check that

A =3B +JCe The uniqueness is cleare

To complete the proof of the lemma we have only to
proceed as in the case of the R-algebra adding the extra defi-
nition that @(J) = i 1 for an arbitrarily chosen full

imaginary operator J in Ae.

THEOREM 8.2 Let A and B be CWAs acting on

Q-Hilbert spaces H and XK respectively. Then any algebraic
isomorphism @ betwsen A4 and B preserves norms and

adjointss
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Proof: Suppose first that i and 3 are R~zlgebras.
Then, using Lemma 8.1, éﬁd the fact that any algebraic
isomorphism between Cp (¥) and Op(Y) where X and Y are
topological spaces is norm-preserving we can conclude that
¢ is norm-preserving. That @ preserves adjoints is

trivially trues

If 4L and B are C-algebras, then again by Lemma 8.1

and the work of Gelfand, Ralkov, Bilov (1946),

we can conclude ‘that 7 is bicontinuous in the norm
topologies. Since every hermitian operator in a CW+A 1is
the uniform limit of a sequence of real linear cowbinations
of projections in the algebra it follows that @A) is
hermitian if and only if A 1is Iermitian and that
Hd(a)}|= Il 4] for hermitian A. Let now J be any full
imaginary operator in ﬁ.. Then every A€ A 1is of the form
B+J0 with B, C in 4 hermitian, by the proof of Lemma
8el, so that #{ax) =¢ (B ~ JC) = #(B) - g(3)g(c) = gla)*,
Consequently, @ preserves adjoints. That #  preserves
norms follows from [iA\F = || ax all = || #(axa)l] (becouse
A5 is hermitian) = || @(A)* #(a) | = || gAY |} *.

Suppose, finally, that & and B are arbitrary
GWxA s, Let Fy G be the unique projections in A4 and B

respectively splitting them into their real and complex
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parts (Theorem 8e1). We claim that ¢  .interchanges A F

with B G and A(T = F) with B (I - G). Tt is sufficient

to prove, because of symmetry, that #(#) C &, which, in

turn, is proved if we prove that B.#(F) 1is a C-algebra.

But this is

4 which is

true, since, if J 1is any imaginary operator in

-

ull in P, then #(J) is an imaginary operator

in @{(F)s Combining this fact with the earlier

proof, we have

in B full

part of the
|4l

and @P(Ax)

nax ({1 AR}, || A(T-F) || )
max ]| g(ayall, |l g (T-a)()
g(a) ]

glam* + (A(I -~ F)*] = g(A)*G + gA)* (I~ G)
AlAY*,

This proves the theorem.

We display as a Corollary a result whose proof is

impligit in the proof of the abcve theorem.

CORCLLARY 8.1 Two CW+A s are algebraically isomor-

phic if and only if thelr complex and real parts are

(separately) algebraically isomorphic. In particular two

CWxA & are unitarily equivalent if and only 1if their complex

ad real parts are unitarily equivalent.
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Because of this corollary, to obtain unitary invariants
for COWFA & it is enough to obtain unitary invariants for
0-algebras and R-algebras individually, =2nd this 1s whal we

shall do.

DEFINTTION 8e4  An R-algebra ( C-algebra) is maximal if

4t is not strictly contained in any R-algebra (Cralgebra).

For sny WA 4 , let S (4) denote the WA of all
nermitian operators in A, A' the WA of all operators
which commute with & and ¢ (A) = 4 nA', the CW &4 of

all operators in A which commute with 4, lse. the centre

i} An R-algebra A is maximal if and only if

1) A Cezlgebra & is maxinal if and only if A = A"

Proof:
i) We shall first prove that if A is any R-algebra
then C (4") C; §(§'). We have only %o prove that if
J £ 0 is any imaginary operator in 4', then there exists an
imaginary operator I in A' such that JL # LJ . Given

such 2 J, let E be a spectral measure whose range 1s
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exactly F, and consider the spectral system (B, J). Tet 'x
be a vector such that Jx = 1x. "Then (B, J) restricted tc

P
J ) on LY (u. ) (Lemma 44¢5).
x My Q "x

Let L Dbe the operator on H which is 0O on Z(X)l‘ and

72(x) is isomorphic to (E#

on Z{x) 1is isomorphic to the operator £ -» f.3j on

I (MX) via the same isomorphism which intertwines

Q

(E , J )} with (8, 3) on &{x)s Then L <> J, but

By Hy

L ¢~~> F and hence L <-=> A, This proves thatv
ea T stan.

Let now 4 be a maximal R-algebra. Chviously AT c(a")
~ Ci,ﬁ (é{). Ir 8 (AY) Ci; A, then there exists a hermitian
operator A <==> £ but not in Ae But then we may construct
an Re-algebra containing both A and A, thus violating the

naximality of A. This proves that 4 = 0 (&%) =5 (4").

Conversely, let A bé an R-algebra such that A =C(A")
= 3 (g‘)¢ Then svery hermitian operator which commutes
with A 1is by definition in é;@iﬂ and therefore in g. Tt
follows that A is maximel. This concludes the proof of
i)e ii) If A = A', then A 1is maximal, as every C-algebra

containing A must be contained in A'.

As to the converse, it is enough to prove that every

normal operator A in &' is in A. But if A £ 4,
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then the smallest WxA generated by A and A 1s a C-algebra
containing g strictly, a contradiction.
Hence the theoremn.

COROLLARY 8.2 A CW*A 1is a maximal abelian self-

adjoint algebra if and only if it is a maximal C~algebra.

Let now R (C) denote an arbitrary but fixed R-algebra
(0-algebra) acting on a Q-Hilber® space H. Depending on the
context E will denote the set of all projections in R or
Q and E a spectral measure based on a measurable Space

O,
set of all projections on H which commute with R and § the

(X, &, ) vhose range is exactly E. P will denote the

set of all projections on H which commute with C. HNotice
that if J is any full imaginary oprator in G, then Q 1is
precisely the set of all projections which commute with E
and J 8o that the concepts of J-cycle, J-row etc., with

respect to the spectral system (B, J) are defined independently

of Jde

Let dJg be any one full imaginary oprator in C. The

lemma below is a direct consequence of Theorems 4.4 and 8.3.

LEMMA 842
1) TFor the R-algebra R, if ScP, then S8 1is a row

if and only if RS is a maximal R-algebra.
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ii) For the C-algebra C, if 8¢ §, then S is a

J -row if and only if g8 is a maximal C-algebre.

Consider now R « Lf Sy, S5 € E and are equivalent
(in the sense of Definition 4e6) then it is clear that RS,
and RS, are witarily equivalent. Smilarly, for @, 08
K S ¢ Q are equivalent then C8, and CSB are unitarily
equivalent. It follows that for R (C), a projection WBF
has wniform multiplicity n  if and only 1if RF (CF) is an
n-fold copy of a maximal R-algebra (C-algebra). Theorem 8.4

velow is then a direct consequence of Lemma 448

THEOREM Be.4 Let A Dbe either an R-algebra or a

g-algebra on the Q-Hilbert space He Tor each cardinal n £
the dimension of H, there exists 2 projection P, in A
such that 1) P, is either O or of uniform multiplicity
n, ii) the P are mutually crthogonal and i P, = I and

1ii) the map n -> P of cardinsle to projections in A

with properties 1) and ii) is unique.

DEFINTTION 8.5 TLet ( ¢, T, u) denote & non-negative

measure=-spacece. Let ;5# be the set of all operaters R, on
2

LQ(u) of the form R ef = fes for some quaternion-valued,
measurable, essentially bounded function s on (Y, Ty, The

subecollection gi Q&g} of all operators in éu' with s
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essentially real (complex) is called the real {(complex) multi-

plication algebra of the measure-space (Y, T, Mo

1+ the measure algebra of (Y, T, u) is a complete
measure bearing ring in the sense of Segal (1951) then one

may verify that QE'(QEJ is infact an R-algebra (a @-algebra).

LEMMA 8.3 Let 4 De an R-algebra {a C-algebra). The
following conditions are equivalent:
i) There exists a cyclic vector for g.
ii) & is maximal and every projection in A satls-
fies the countable chain condition.
iii) A is unitarily eqivalent to the real (complex)

multiplication algebra of a finite measure sSpace.

The proof of this lemma follows easily from the spectral

theory of Chapter IV and is omitted.

LEMEA 844 Tet A and B  be two maximal R-algebras
or C-algebras aching on Q-Hilbert spacss E and X Tespec-
tively. Then they are algebraically isomorphic if and oniy
if they are unitarily equivalent. In fact if @ is any
algebraic isomorphism between A and E then @ is induced
by an isomorphism between H and K and is consequently a
homeomorphism in the weak, strong and norm topologies.
Further for smy A 1in 4 and any function f(A4) of 4,

Flr(a)) = £(B(A)).
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The proof of this result is essentially the same as the

proof of its analogue in the ccmplex case and is omitted.

TEFINITION 8.6 Let A be either an R-algebra or a

C-algebra and let P, Dbe ad in Theorem 8.4, The Boolean
algebra B(n) of all projections in 4 P 1s called the

meagsure algebra of & for the multiplicity n.

The B(n) are complete measure bearing rings in the
senge of Segale. Theorem 8.5 below is now proved exactly

like Theorem 3 of Segal (1951).

THEOREM 8.5 Two R-algebras (C—algebras) are unitarily

equivalent if and only if their measure algebras for the same

multiplicities are isomorphice

With this theorem it is olear that a simple set of
unitary invariants for either an R~algebra or a C-algebra is
given by a Boolean-algebra valued function on cardinals
venishing for sufficiently large cardinals where the Boolean
algebras are all complete measure rings and that all such
functions may occur, It follows by Corollary 8.1 that for
arbitrary CW¥A's two such functicons serve to characterise

them upto unitary equivalence.
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Strictly speaking the values of these functions are
equivalence classes of Boolean algebras. As Segal suggests
these functions may be replaced oy functions mepping pairs of
cardinals o cardinals with the help of Mzharam's classifica-

tion of measure SpPaces.

8,2 In thig section we deduce some interesting conseguences
of the theory developed in the previous section. As in the

complex case our basic result is as follows ..

THEOREM 8.6 Let & be an R-zlgebra (a O-algebra)

acting on a Q-Hilbert space H. Then there exists a maximal
R-algebra (C-algebra) M acting on a Q-Hilbert space K to
which é is algebraically isomorphic (with preservation of
adjoints)}. Any such isomorphism $ of A onto M is
bicontinuous in the weak topology and has the property that

if f is any bhounded measurable complex valued function on

¢t which is real on the real line, then for any 4 in 4,
F(£(A)) = £(#(a)). The algebra M is unique within unitarily
equivalence and the dimension of K is not greater than the

dimension of H.

To prove this thecrem we have only to handle the proof
of Theorem 5 of Segal (1951) a littls more delicately. This is

left to the reader. So is the proof of the corollary below.
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COROLIARY 8,3 Any algebraic iscmorphism between two

OWeh s ig weakly bicontinuous and preserves the functional
< J . + =
¢aloulus for bounded measurable complex functions on g =

oy
which are real for real arguments.

We elevate another corollary to Theorem 8.6 to the

rank of a theoreme

THEOREM 8.7 TLet I be a separable @-Hilbert space

and A any CWA on H. Then there exists a normal operator
Ain A such that A consists precisely of all functions of
Ks ' IE i, is an R-algebra (C-algebra) then A may be chosen

to be hermitian (skew-hermitian).

Proof:  Suppose first that g is an R~algebra
(C-glgebra). Then, by Theorem 8.6, there exists 2 separable
Q-H4lbert space 3 and a maximal R-algebra (C-algebra) ji on
K +to which A& is algebraically isomorphic (via @, say) with
preservation of functional calculus. NYow, by Lemma 8.3 B 1is
uniterily equivalent to the real (complex) multiplication

glgebra of a finlte measure space G % s

Note that Lg (¢) is then separable. Conseguently,
we can choose a rezl measurable function ho on (Y, ?) which
lies between 1 =nd 2 and which has the property that if # Is

any T-~measurable function on Y then there exists a
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Borel-measurable function +t on [1, 2] such that
?
f(\) = ﬁ(ho(k)) for 211 Xs (Such a h_ always exisdis.

See Varadarajan, 1959)..
P

1f now i (amd herce B) is an R-algebra let A, be
the operator (in B ) of multiplication by &k, 3 A f = fuhy

for 211 £, If & (and hence B) is a C-algebra let A, be
the operator (in é) of right multiplication by 1ihj :

Aof = feleh for 211 f. In either case one may check, because
of the way ho was chosen, that B is precisely the set of

a1l funections of AO. If now A = ﬂ”l(AO) then clearly A

is the set of all functions of A

If A is an arbitrary CWrA, let F€ P be such that
AT end 4 (I - F) are the complex and real parts of 4
respectively. By what we have proved, we may say that there
exist B, C in A sucﬁzégF is skew-hermitian (with spectrun
bounded away from 0), C(I - F) is hermitian and AP is the set
of all functions of BPF and i (T - P} the set of =211 functions

of 0(T - P)e Defining now A = BF + ¢{I - F), it is easy %o

verify that A is the set of all functions of As

COROLLARY 8.4  Any cormuting set of normal (hermitian)

operators on g Separable Q-Hilbert space can be expressed as

functions of a single normal (nermitian) operator.


http://www.cvisiontech.com

-101~

8e3, If 4 1is any Wx-algebra of operators on a
complex Hilbert space, nob necessarily ebelian, then the
Double Commutant Theorem of von Neumann says that 4 :_ﬁ".
The proof of this theorem is quite elementary and depends on

the observation that for any vector x 1in the Hilbert space

[Ax + A€ A ] 1is a subspace.

Even if A 1is a W¥-algebra on a {-fiilbert space one
feels +that the Double Commutant Theorem ought to be true, but
the above proof fails because now A is only a real algebra.
And no other proof seems available either for the general
W*-algebra. However when 4 1s a CWHA we can deduce a prnof
using the theorems of this chapler. But even for this perticu-

lar case, the proof is non-triviale

THEOREM 8.5 Tf A is a OW¥A then A = 4",

Proof: Beosuse of Theorem 8,1 it is enough to prove
this theorem separately for R-algebras and C-algebras. We
shall prove it now for R-algebras. The case of the C~algebra

is handled similarlye

Tet then A be an R-algebra, E the set of all projec-
tions in A. We may assume without loss of generality that
E is & column of uniform multiplicity,'say n. Then there

exists a Q-Hilbert space K and a maximal R-algebra B on

K such that & 1is the n-fold copy of B on XK.
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If now Ag &', then, in the notation of Definifion 8.2,
i is reduced by each Ks* Let Aé be A restricted to Es .
‘§ince a4 1is abelian A¢ g (A') and hence 4,68 (B, By
Theorem 8.3, ASB é. To prove that A€ a, we have to prove
thet Asl = Asz_ for 8ll §qs Sp- If sy % 85y consider the
eperator U on K [n] = E defined by Ux (s) = y(g) vhere
y(sl) = x(sz), y(sg) = X(Sl) and y(s) =0 if s # 891559
Then clearly U <-=> A, Hence A {~=>» Us But then ASI= A

et 32

As remarked earlier this completes the proof of the

theorem,
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QUATERNIONIC REPRESENTATICNS
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INTRODUCTION

The theory of unitary representations of topological
groups in guaternionic Hilber* spaces is of importance in
thé sfudy of quantum mechanical systems whope logics are
assumed to be standard logics associated with gquaternionic
Hilbert spacess This is well-known, but to date there
have been only three articles on this subjects One by Jauch,
Finkelstein and Speiser (1963), one by Emch (1963) and one by
¥atarajan and Viswanath (1967). The first and the third
together give the complete theory for the case of compact groups
and the second obtains partial results in the case of the

Lorentz groupe

We shall now consider quaternionic representations in a
very general context, of which guaternionic unitary representa~
tions of topological groups constitute @& particular case,
and show how one may obtain all irreducible guaternionic repre-
sentations as soon as &1l irredioible complex representations
are known. Our success is due to our ability to define the
finite dimensional concepts of conjugates and transposes of
matrices for ope¥ators on Hilbert spaces in a canonical fashion
so that the methods of Frohenius and Schur become applicable

to the infinite~dimensional case as well.
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A brief chapter-wise summary is as follows:

Chapter I introduces Q-representations and collects
together the basic facts regarding thems A theorem which
gimulteneously characterizes and classifies irreducibhle

g-representations in terms of the structure of the commuting

ring is provede

Chapter IT deals exclusively with the complex casce
Duals of Hilbert spaces are introduced and the contragredient
of a complex representation is defined canonically as a repre-
sentation in the dual Hilbert space., Irreducible complex
representations are then classified into nonreal, potentially

real and pseudoreal ones exactly as in the finite~dimensional

casce

Tn Chapter III the concept of quaternionification of a
complex Hilbert space is defined and the relations between the
extensions of conjugates and transposes of operators asgociated
with the Hilbert space to its quaternionification are studied.
The most important fact here is that extensions of skew-symme-

tric operators are hermitiane

Chapter IV deals with the relations between complex and

quaternionic Hilbert spaces. Necessary and sufficient
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gonditions for the irrgducibility of quaternionifications of
irreducible complex representétions as'ﬁell as symplectic

inages of irreducible quaternionic representations are obtained.
It is then shown that there is a canonical one-one correspon-
dence between equivalence classes of irreducible quaternionic
representations and physical equivalence classes of irredu-
cible complex representations which allows us to compute the

former from the lattere This is the main theorem of Part 11,

Chapter V deals with compact groupse Orthogonality rela-
tions among matrix elements are investigated and a neat‘analo—
gue of the Peter~Weyl theorem is presented, It is shown that
with each irreducible quaternionic representation is associated
s real-valued function called its Q-character which determines
its equivalence class uniquelys The chapter ends with a brief

discussion of the ahelian casece

In Chapter V we prove two interesting theorems for the
case of a locally compact abelian group Ge In one we desgcribe
the structure of the spaee of continuous homomorphisms of G
into the unit quaternions and in the other we show how one may
express arbitrary quaternionic unitary representations of G
as integrals of irreducible ones in an essentially unique

Nanner
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Ohaptef VI deals with the problem of deséribing the
represenfations of a locally compact second countable group
in the group of sutomorphisms of the state space of a quantun
mechanical system whose logic is assumed to be the lattice of
subspaces of a separable quaternionic Hilbert space. This is
solved for two important casessthe real line and the Lorentz
groupes We remark here that BEmch too has studied this
problem (Emch, 1963) and has reached conclusions similar
to ourse DBut EmchTs methods compel him to postulate addi-
tional axioms for quaternionic quantum mechanics whereas

we do not need to make any assumptions, except of course

the bagsic one about thé logic beingz standards
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Let 8 ke a get and s «> s* an involutory bijection
on. Se Let g be a complex or quaternionic Hilbert space
and B (H) the set of (bounded linear) operators on H. A
representation of - 8§ in H is amap 4 from S to @(ﬁ)
for which A(s*) = A{g)* for all s¢ S. This definition
is clearly general enough to subsume unitary representations
of topological groups and representations of Banach algebras
as well as spectral measures and systems of imprimitivity.
411 theorems which we prove for representations of § hold
&or these special structures too, and the prcofs are the
seme modulo the verification of a few additional tOpologicél
and algebraic conditiomse Since such verifications are inva-

riably trivial we shall not spell out the detailse

The concepts of irreducibility, (unitary)} equivalence
ctce, for represcntations of S are all defined in the usual
way (Mackey, 1955). The basic result in the theory of repre-
sentations is Schur?s lemma: If A and B are two represen-
tations of § in Hilbert spaces ﬁ and ﬁ *respectively
(either both complex or both quaternionic) and T is any

bounded linear map from é to X intertwining A and B,
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then the restriction of A 'to the complement of the null
'SPace of T ig equivalent to the restriction of B  to the
closure of the range of T. We state explicitly two conse-
quences of this result which we shall need later on ! (1)
I A and B are irreducible and T # O intertwines
them, then T /1|7 || is unitary, (ii) If A =2 4A =218

o B 6
are two decompositions ¢f A 1into irreducible subreprese

tations, then every Aa ig equivalent to some Bﬁ'

Let A be a repregsentation of § 1in H. We shail ¢
call A a Cerepresentation or a Q-representation accerding
as H 1s a complex or a qaternionic Hilbert space. We

shall not consider real Hilbert spacese

Let H be a Q-Hilbert space with inner product (oye)
and QS ite symplectic image with inner product <e,e2. it
A ig a repregentation of § in E, the symplectic image
of A is tho O-represémtaticn A° of § in H° defined
in the obvious waye If X dis the map x ~> kx on ﬁs,
tnen K <-=> A%, Further a projection P in H° commutes

aith A% if and only if KPK™L <-=> 4%. (Recall that if

-]

P projects onte the subspace P then =+ ¥PX projects onto

the subspace [kx : xe PJ).
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By a gg;frspacq‘of H we shall mean a SUESpace P Lot
SOL B S ()

is a basis for E, then the closure of the set of all finite

5° such that P |5 KPK™ and P 8° KPK™

complex linear combinations of the (ea) is :a half-space

of H and every hzlf-space may be obtained in this waye If

P “is & half-spaceé of ﬁ and (ea) is a basis for P, then
(ea) is a Basis for E as welle ZEvery 3¢ ﬁ is uniquely
of the form x+ky with x,y€ P, and ilz”g = {IXlIZ+ }\yl[z s
Por %, y&€ P (x,y) = < X,y >« ALl these results are proved

in Chapter 3 of Part I.

We shall now prove a theorem characterizing +the irredu-
cibility of Q=representations. This is an analogue of the
well=known result that a C-representation is irreducible if

and only if its commuting ring consists of multiples of the

identitye

Let A Ybe a Q-representation of S in H and (ea)
a basis for g. By the matrix elements of A with respect
to (ea) we mesn the gset of functions on S defined by

(A(s)eﬁ, e,) for every a, B.

DEFINITTON lel

i} A is of class R if there exists a basis for H

with respect to which the matrix elements of A are all reale
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4i) .A is of class C if A is not of class Ry but
there exists a basils for E with respect'to which the matrix
elements of A are all complexX.

iii) A is of class Q if A 1is neither of class R
nor of class Ce

Tn terms of halfwspaces A 1is of class R or @ i

and only if there existe an invariant half-gspace for A(AS).

THEOREY 1.1 Tet A be a Q-representation of 8 1in
E and let E be the commuting ring of A. Then A 1is
irreducible if and only if R 1is a Banach division ring.
Further A& is of class R, C or Q according as 5 is
isomorphic to the quaternions, the complex numbers or the
realse

B wient R Whatever be A, R 1is clearly a Banach sub-
algebra of E(E).

Suppose A is irrveducibles Observe first that every
M in R must be of the form a+Jb, where a, b are real
numbers, b > 0 =and if b > 0, J 1is a full imaginary
operator on H commting with A (cfe Emch, 1963). Our
spectral theory of Part I implies that this is certainly

true if M  were mormal for then the spectral measure of M
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would be two valued and hence concentfated on a singleton.
The general case follows by applying this argument to the real
and imaginary parts of Me Thig observation implies that if
Mg R, then H is invertible and ML = (a=b)/(a%+ 1°) =
M*/lymngbelongs to E. Glearly M => u™t s Con RO
Consequently 3 ig a Banach division ringe The converse is
trivi ally verified, since the reducibility of 4 1implies

the existence of (non-invertible) projections in R.

L i is a division ring i1t must be necessarily
isomorphic to R, ¢ or Qe Suppose é is isomorphic to Qe
Then there @xist full imaginary operators J, L € E such
that JL = = LJe We shall prove that there exists a basis

(e,) for A such that Je, =ie,  end Te, =ke, for all g

Let (f,) be 2 basis for H such that Jf, 288
for all oe Such a basis always existse Since LJfa= --JLf(x
for 211 a, the matrix of 1T with respect to (fa) -has the
form (kaaﬁ) with 28 complex for all «,Re This implies
that if x Dbelongs to P, tke halfespace spanned by the

(fa), then kLxe Pe Therefore, if O # x& P and Lx # kx
then x* defined by x* = ix + ikLx 6P again and is such that
x* £0 and Lx* = kyx*, Consequently there is always an

X6 P with Tx =%kx, x £0. Again if ye P is orthogonal
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- to such an x ‘then 50 glso is y* ='iy + ikﬁy'gj?.If now (eg
is g maximal orthonormal family of wectors in P sugh that Lea=
ke for all o, then (ea) ig easily seen to be a basis fqr

P and hence for H. Since J and L commute with A and

o Le& = ke for all «, it is easy tc conclude that
the matrix clements of A with respect to (e ) are reals

Je = 1le
&

Suppose conversely that the matrix elements of A with
respect to = basis (e ) are all reals _Then 3 contains .
all operators of the form Me =g, for all a, g € Q, 90
that R 1is certainly not isomerphic to R br Cs ﬁ must

therefore be isomorphic to Qe

Next let 3 be igsomorphic to €. Then there is a full
inaginary operator J 1in Re Le% (ea) be a basis for E
such that dJe = iea for all ae Then A& <{==>J implies
that the matrix elementa of A with respect to (ea) must be
complex, so that A 1s of class R or Ce. But A cannot
“be of class R, since E is not isomorphic to Q. Conse-
quently A must be of class ¢. Conversely, if A 1is of

class O and the matrix elements of A with respect %o (e&)

are all complex, then the full imaginary operator J¢ defined
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by Je, =de, for all o« isin R, ‘g0 that R cannot
. be isomorphic to R. On the other hand R can not be
isomorphic to Q, because A dIs not of class Re. Therefore

R is igomorphic to Co

The last part now follows easilye. The proof of the

theorem is complete.

P el et
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TT. CONTRAGREDIENTS AND THE FROBENIUS
SCHUR THEORY

In Hilbert space'theory the concept of the dual space
is generally neglected for the very practical reaéon that
for the majority of problems Riesz's theorem renders its
considerétion unnecéssary. There}s however a class of
problems, which in the finite~dimensional case are vhrased
in terms of conjugates and transposes of matrices, in whose
study duals of Hilbert spaces figure natufally and promie
nently, as we shall see in this chapters Our viewpoint
leads us to define the contragredient of a C=representation
in n canonicazl fashion as a representation iwm the dual
Hilber% space. This seems to be the natural way of treating
this aspect of representation theory, as it enables us to
obtain neat generaligations of some clagsical theorems due
to Wrobeniug ond Schur to the infinite dimensional cases
Also, this approach goes well with our handling of the
concept of gquaternionification which is explained in the

next chaptere

Let G be a complex Hilbert space and G' dits dual.

We shall denote a typlcal element of é' by f and the
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element of G' related to x¢ & via Riesz's theorem by x'.
Ty ey X' s ﬁijeotive, conjugate linear and norm-preserving .
G' becomes a complex Hilbert space if we define the inneT
praduct on @' by < £f,2>' = <y, x> where f =x', g=7y'
and < e, «» iz the inner product on G. The map x - x

is then antisunitary {(If £ and G are complex Hilbert
spaceg then U: F => G 1is anti-unitary if it is conjugate
linear and satisfies (x, y) = (Uy, Ux) for all x, y& Z)

If (e,) 1is a basis for G, (e!) is a basis for G' called
the Dbasis dual to (ea). Because a composition of two anti-
unitary maps is unitary, we may identify (G')' with & by

identifying =x'"' with x. We shall do s0.

e shall now make a series of definiticns, justifying
them as we go alonge The gpaces of operators on G, on &',
from G to G' and from G' to G will be denoted by

B (&), B (&), BlG, &) end B (G', & respectivelys

1) Let A be an operator on g. Define A on ('

by A x' = (Ax)'s Clearly A€B (g&'). Purther if (ea) is a

1 ia 5 S : “-"'-_." a |
basls for G and Ae, = Z aaﬁ ea, then A eﬁs bX aaﬁ eQL .

P« o
4 1is called the gonjugate of As It 1s easily checked that
(243)" = A + 3, (ad)” =« A (a complex), (4B)™ = 4 B,

(%) = ()% and |Jall = | X ||,
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; o) A = (A%)7 = (K)* is ealled the transpnéé of A

Note thet A'c B (Gl)e If (e ) is any basis for & and

M R

he, = 4L @ & , then Ate] =
o o P

C ap

aﬁa e&. Futther
(44B)? = At4B', {af)! = adl, (AB)! = B'A',
()t = (A% = I |
ana || 4l = |4l

»

3) TLet 0gB(g') ed define C on & by 0x = (Cx')' .
¢ B(g) and is the conjugate of Ce For AL B(&), |
ix = (R x)*' = (4x)" = Ax, so that O «> 0 is the inverse of
the map A ~» Ae Together with (1) this implies that A-> A

is a conjugate linear isomorphism between B(g) =na B(E".

4) Tet Me3B (G, G')e Recall that MeE (g', &) 1is
defined by < Mx, £ > = < x,Mf> for all x€ G,
fg Gtsy We now define g B (g'5§_) py Mxt = (Mx)'. W is
colled the conjugate of M, If.(e ) is a basis for & and

Me. = Hm _ e', then Me '=s ZH® ;€ e Further
o & ap «

§ “a S

P

oy

(T-111+M2)" = 1 + Moy ()" =g % end (M| = HE il o

5) T wes (6!, 6, ¥ e B (g, &), the conjugate of

W, is given by Tx = (Nxf)‘ for all x€ G. Again clearly
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M =M so that M => B is a conjugate linear isomorphism

between the Banach spaces E (g, G') and E (9;9 G)e

6) It is casy to check that (M)* = (W)™ = M', saye
Mt is cslled the transpose of M. Note that M' maps &
'"" 4 i G —1 1 !
to G'a If (e ) is any basis for & and lMeg § s Ca
then M'eB £ 3 mBoc e&. M ~> M!'! is a Banach space isomorphism
‘ Y4
on B (G, G').
7) TFor -NeB (Q', G), once again its transpose

Nt = (§%)” = (¥)* and N => N' is a Banach space isomorphism

on B (&', &)

8) The operations ;, *  gnd ~  are mutually computing
and each of these commutes with the operation =l of taking
inverses vwhenever the latter is defined. Further the rela-
tiong beitween these various operations are precigely the

expected onese

skewegymmetric according as M = M!' or M = = M'.

fhege nine observaticns offer a converient and oanonical
way of looking at conjugates and transposes of operators on
complex Hilbert spacess Once we accept it, the generalization

of the Probenius-Schur theory is immediates.
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Let A be a representation of § in the complex

Hilbert space Ge

DEFNITION 241  The contragredient of A is the repre-

sentation 4 3 s - Als) ofis &' @ G's

0learly A is irreducible, unitary etce, if and only
if A is soe Also A 1is equivalent to B if and only 1f

A 1is equivalent to j:

THEOREM 241 Let- A be an irreducible representation
of 8 in Q and let A be its contragredients Then exactly

one of the following ccnditioms holds:

1) A 1is not equivalent to A
'ii) There is..a symmetric unitary operator intertwining

A and -f:o

iii) There is = skew-symmetric unitary operator

intertwining A and R

Proof: The proof is the same as that in the finite-
dimensional case, but is reproduced here because it is short

and elegants

Suppose A and A are equivalents Then there is a
unitary operator M such that MAM* = 4 (M is unitary if

and only if N™ = I¥)., Taking conjugates we have T 4 M' = A
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Hence MU X (M M)~ = A, But A is irreducible so that

MH¥ = el for some complex number e. On the other hand i
Wi = T whomce M M' = I. Now M ¥ =cI and MM'=I
together imply that @¥W' = i, whereas WM = ¢l and 1D QZ[
together imply that MI = cMe Conseguently ¢ = ; IN o

W' = 4 M. The proof is completed if we note that if N 1is
any cperator intertwining A and A then N is a constant

multiple of M.

DEFINITION 2.2 (cfe Wigner, 1959) An irreducible

repregentation A4 1is noureal, potentlally real or pseudoreal
according as A satisfies comdition (i), (353 pE=I(L11i] Jo

Theorem 2.1 asbove,

We now obtain conditicns for A to be potentially real,
or pseudoreal in terms of the behaviows of A with respect
to a basise Apart from belng very useful to us later on,
they establish that each of these three properties is shared

by equivalent representations. But first a lemmae

LEMMA 2.1 Let Me B (G, G
1) M is symmetric umitary if and only if there exists

a basis (e ) for G such that Me = e, Tor all o

ii) M is skew-symmetric unitary if and only if there
exists a basis of the form (ea; fa) for G such that

Me =f ' san i = - t 7 23]
e, - d Mfa ea for all o
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Proof: i) If M is such that MNe = ed' for some

basis (ea) of @, then clearly M 1is unitary and

i

- -]
‘e = I¥ = (W*e )Y = Y '
it ey i €4 (1 e ) {M ey ) e,

Mea so that M is
gmmetrice Conversely suppose M is unitary and symmetrice
For %€ G, let % = ix = iM¥x's If Mx £ x' to start with,
then x* £ 0 and Mx* = ilMx - ix' = iti'x + (ix)' = ifMrx') '+
(i)' = x*', Therefore, there is always an x # O such that
Mx = x'e Let (ea) he o maximel orthonormal family of vectors
in ¢ ouch that Me, = e ' for all aj (e,) must then be

a basis for Ge For let, if possible, y be such that

Hy |l=1 and yLle, for all a. Clearly then My #y', so
that % = iy= iMxy' £ 0 and My* = y*', as observed earlier
in the proofs But then y*, as may be easily checked, is

orthogonal to all the €y contradicting the maximality of the

(ea). (ea) must therefore be a basis for é. This proves 1i).
o rr +1 A = L P o e o !
ii) et M be such that Me = f ' and M/ e,

with respect to a basis (e 3 £,)e Once again M is clearly

3 g te =(Mxg 'z N, M =

unitery while M'e (01 e, ) £ Me, and M'f

(M*fa’)' =e ' =»~MNf for all a, so that M = = M'J Conver-

sely let M be a skew-symmetric unitary operator. If e 1is

any vector in G, llell=1, and £ = (Me)'(eg) then [[fi[=1

and f] e since
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Ce,(Me)'> = < He, e'>" = < e,M¥e') = < e,(Me)"

- < e,(Me)"%

i

Mlso Me = £1 and Mf = M(Me)t = = M(M'e)' = - M(Mxe')"

= = MM*e! = = ¢!, Therefore there always exist orthonormal
pairs (e, £) in G such that MNe = f! and Mf = = e'le
Lot (ea; fa) be a maximal family of mutually orthonormal
pairs of vectors in G with this property. if =xe G,
I x l= 1, is orthogonal to all these then, as is easy to
check, (x3 (Mx)!') is agein such a pair orthogonal to all of
them contradicting the meximality of the (e ). Consequently
(e,3 £,) 1is a basis for G. This proves (ii), and hence

the lemmas

COROILARY 2,1 If ¢ 1is finite-dimensional and M is

skew~symmetric unitary, then & 1is even~dimensional. In
particular every pseudoreal finite~dimensional representation

ig evenw~dimensionals

PUEOREM 2,2 Let A Dbe an irreducible representation

of 8 in _&o
i) A is potentially real if and only if there exists a
basis (ea) for g such that < Aeﬁ, e, ? ig resgl for all

(0 29 Bo
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i1) A is pseudoreal if and only if there existe a basis

(eag fa) for & such that e

<Aeﬁ’ea>=<Af5’f(x>wd <Aeg’fa>=“<ﬁﬁ’ea>

for all o, e

Proof: i) 1If (ea) is a basis for G such that

< Aeﬁ, B > = aaﬁ is real for a1l «, R, define M by
Me(1 2 ea‘. By Lemma 241 M is symmetrisc unitary and

MAMT T e,
P

= Mie = & 8 e ' whereags Ae. Ve X a e
& o 2 B af «o

g ap :

X aaﬁ ea' for all Be This implies %hat AN = X, so that
o

A 1is potentially real. Going the other way, if 4 1s poten-

tially real chcose (ea), using Lemms 21, such that Me = ¢’

where ¥ 1s a symmetric unitary operator intertwining A
= =t - J -] ' .

T t . t o M = 1

and Aes Then § aaB ea = A gﬁ & MAM eﬁ § aaB ea

implying thereby that a_, = a for all o,B.

o ap
ii) To prove the 'if' part define M by le = £
ond Mf = ~¢ 'y Then M is skew-symmeiric unitary and the

o o
given relations between the natrix elements of A ensure that
At oy =K ogt amd A £yt =L L' for all

Cengequently MAM“I =& and A is pscudoresl. TFor the 'only-

if' part choose a skew-gymmetric unitary ¥ for which MAM—léi


http://www.cvisiontech.com

14

Tm]l24w

and then, by Lemma 2.1, a basis (e_j fa) for G such that
e = fa‘ and Mf = - eai. The required identities fcllow
by equating the coefficients of ea' and fa' S T

MAM™ e b = R e '

p B

The theorem is thus completely proveds

OOROLLARY 2.2 If A is nonreal (potentially real,

pseudoreal) and B is equivalent to A, then B 1is nonreal

(potentizlly real, pseudoreal).

The proof is simple and is omitted.
Tf A sand B are two C-representation of & in &
and H respectively, then A and B are said to be physi~

cally equivalent if there is an operator intertwining A and

B which ig either unitary or anti-unitary (Varadarajan, 1968).
Clearly physical equivalence preserves irreducibility and every
repregsentation is physically equivalent to its contragredients
Consequently A is physically equivelent to B if and only

if A 1is equivalent to B or Bs If A is not nonredl end

A is physically equivalent tc B then A 1is equivalent to

Be We spell out these details here, but shall make use of

them in latter chapters without explicit mentione
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We shall end this chapter with a well-known result on

compact groups which we shall need later one The proof is

onititede

it 44 b e

THEOREN 2 a3 et G be a compact topological group
and X the charaeter of an irreducible unitary C-represen-
tation U of Ge Then U is nonreal, potentially real or

pseudoreal according as

SEiPlag=0, 4 or -,

- - ap w—
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ITI. QUATERNIONIFICATION

Just as a real Hilvert spacé can be complexified to
yiéld a complex Hilbert space, so a complex Hilbert space
can be fquaternionifiedf to yield a gquaternionic Hilbert
spacce This process enables us to dispense with the naive
point of view that ;every complex matrix is a quaternionié
matrix' and helps us to study the inter-relations between
(-representations and Qerepresentations from a sound geome-

tric viewwpcinte

Let § be a complex Hilbert space and led 0 bhe the
set of all pairs [ x, y ] with =x, y€ é. H  becomes a
(left) vector space over the quaternions 1f the action of

g=a + kB € Q, «, § complex, on H is defined by

qe [%, y] = lax =By, 8x+ o ¥yl

Further H Ybecomes a Q-Hilbert space if we define the inner

product (., «) Dy

({z,y1, L ,y%]) = < x,x% > 4 <y*, 7> = < X, y* 2k + < x¥,y> k

< w, -
where <s, e» is the imner product on G« H is called the
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»
r

Consider now ES, the symplectic image of E. The set
of all vectors of ES of the form [x, 0] is a subspace éf
ﬂs which is in an obvious isomorphism with G. We shall
identify & with this subspaces Again, the set of all
vectors of the form [0, xi 1is a subspace of H°, This
subspace is identifiable with G', the dual of G, with the
help of the correspondence xT <-» L0, x] since « [O,x] =

[0, o x] = (& ) =g xt for o complex and

(lo, xi, [0, v1) = <y, x >e Whenever convenient we shall

write x for [x, 0] and kx for k[x, 0] = [0, x].

With these two identifications, we may say that &
and G' are half=-spaces of E, mutually orthogonal in Es
with K{é] = [kx: xe¢ g 1 % é?. Suppose now K 1s an
arbitrary Q-Hilbert space and P is a half-gpace of K.
Then K is identifiable with Pq, the quaternionification
of P considered as a complex Hilbert space by itzelf, and

kK[p] is clearly isomorphic to P', the dual of T

Tn the next chapter we shall have occaslon to congl-
der not only the symplectic images of quaternicnifications

but quaternionifications of symplectic images. In dealing
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with the latter concept one has to be a 1little careful td,

note this points If H 1is a Q-H2lbert space and K = (gS)Q_

L]

then for [x, 0] ¢ K, xe H, x[x, 0] = [0, x] and not
[kX, O]l
Our next step is to extend operators assoclated with

T to QQ' We have the lermma belows

LEMMA 3¢1 Tet P and § be half-spaces of
Q-Hilbert spaces H and X respectively. If T 1is any
bounded (oomplex—) linear map from P to @, then T may
be extended tc a unique bounded (quaternion -) linear map
TQ from E to Xe. The map T «=> Tg is real-linear and

preserves norms and adjointse

Proof. Beceuse P 1is a half=-space of H every
%€ H is uniquely of the form 2z = X+ ky with x, y¢ P2 and
li z l\z = llxl@ + l\yl{z. Define T, by TQZ = T%X 4 kTy.A
Tg is easily checked to be quaternion~linear. The uni-

queness of the extension is obvious.

T m» T. is clearly real-linear. Since

Q
g xll= |l2ll ana

1oqli= ) f i ot T B2 o 0 s
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I7g2li2 = |ITes xey 12= o<l + Nl 2yl2< T2 (18112

for a1l =z = x+ky € E, x,7¢ E, HTQH= il ol Fipally,
noting that the (complex) infler product on a half-space is
but the restriction of the (quaternionic) inner product on
the original spaée, we have, for all

z = x+ky €4, x,y€ P and w = u+kve X, u,v € 9

n

(TQ z, w) = (Tx+kTy, u+kv)
(Tx,u) + (Tx,v)k* + k(Ty,u) + k( Ty,v)k*
(x,T*u) + (x,kT*v) + (ky,B*u)+ (ky,kT*v)

(z,(T*)Q W)

il

implying thereby that (TQ)* = (T*)Q. (Here (eo,e) stands

for the imner prodvet on H as well as K).
The lemme is proveds

COROLLARY 341 If G 18 a complex Hilbert space, E 'é

Q

and T is an operator in B (&) or B(&') or B(G, G') or

Tl

B (G', &) then there is a unique T, € B (H) such that

T, X =Tx for all x in the domain of T. T => T is
i

Q
real-linear and |1 TQ|§= ]iT]{,(T*)Q = (TQ)*.
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LEMMA 542 Let A, B¢ B (&), ¢, DeB (&),
e B (g, &', Ne B (&', &)

i) Ay [x, v] = [Ax, 2&y] for 211 [x, vy} el .

iii) Cg = EQ, o} = gl (CD)Q =0y T

Q" Q°

iv) Mé[x,_ v} = [~(My)', (Mx)'] for all [x,yle H .

) (MA)Q = MQ (cm)Q = GQ Q! MQ = - MQ ; Ma ‘M{]

vi) N, = = N

Q Q' Na = - N(‘Q’ (NU;)Q = N GQ, (A.N)Q=A N

Q QQ’

i 5 il = N M .
vii) (NR)Q IQlQ

The proof of this lemma is straight forward and is
omitteds Note that as a consequence of (v) above My

is hermitian if and only if M 1is skew-symmetrice

-t e e el e e e
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IV, THE COMPUTATION OF Q-REPRESENTATIONS

" In this chepter we shall show how one may compute all
the irreducible Q-representations of 8§ given all the

irreducible C-representations of S

There are two obvious ways of relating ¢-representations
and Q-repregsentations. If A is a ¢-representation of 3
in G, then its quaternionification Aq * 8 -> [A(s)]Q is
a Q-representation of 5 in gQ. Again if D 1is a Q-repre-
sentation of 8 in H then its symplectic image
5 s => [D(s)]® is a Cerepresentation of 3 in 1%, Our
firat task is to examine when these correspondences preserve
irredueibility. We shall find it helpful to reserve the
symbols 4, B, E, é for the complex case and D, E, H, k

- "

for the quaternionic case.

THEOREM 4.1 Tet D be a Q-representation of 5 in

I and let 7° be its symplectic image.

i) SEf 7° 48 irreducible, then so is D
ii) If D is irreducible, then p° is irreducidble

if and only if D is of class Qs
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1i1) If D° 1is irreducible, then it is pseudoreal.
*  iy) 1f T° 4m reducible, them D° = A+ A for an
irreducible C~represéntation A such that Ay

is equivalent to Da

Proofe i) If D is reducible and P <=-> D is a
non=trivial projecticn in E, then DP° <m=d D° is a non-

trivial projection in ”ﬁs, so that D° is reducible,

ii) Let D be irreducibles If D 1is not
of class Q then there exists a halfespace P of H
reducing De This is the same as saying that P 1is a non=
trivial subspace of ﬁs reducing DS, so that D° must be
reducibles Suppose conversely that p° is reducible, Let
P Ybe a nom-trivial subspace of ﬂs reducing p°e Then
K{P] = {kx: x¢ P] reduces 7° and hence P - K{P] = - (say)
reduces D°s P £ O, for if P =K[P] then P would be a
non~trivial subspace of g reducing D, contradicting the
irreducibility of De Further P _ 1® k(e ] vecause
ke ] C k[P], consequently P, @%k[p ] = H because it
is a nonegero subspace of H reducing Ds This means that
W is a halfwgpace of H reducing D Therefore D can

o]

not be of class Qe This proves (ii),
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iii) If (ea) is a basis for H, Lea; kea) is a basis

for ﬁs with respect to which the matrix elements of D°
satisfy the identitities ofy Theorem 242 (ii), 50 that D°
is pseudoreals

iv) ILet D° ©be reducible. By the argument in (ii),
there exists a halfespace P  of I reducing D Let A
be the restriction of D° to Pe Then A is the restric-
tion of D° 1o K[PolI so that D° = A + Be A is irredu-

citle, for if © #P ( P, reduces A then P +K[P] #0
reduces D implying that P + K[pl = ﬂ and hence that

P =D To prove that AQ is equivalent to D, we have only
to observe that if (em} is any basis for Po’ then (eaj

is simultaneously & basis for PoQ and H and that the matrix

elements of Ay and D with respect to (e ) are the same.

The proof of the theorem is completes

Theorem 4.2 below was proved for matrix representations

of compact groups by Jauch, Schiminovitch and Speiser (1963).

THEOREM 4,2 Let A be an irreducible C-representa-

tion of 8 In G and let Ag be its quaternionifications
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il ‘T6 Ay is irreducible, then so is A.
i1) If A dis irreducidle, then A4, 1s irreducible
if and only if A 1is not pseudoreale.

iii) If AQ

ig irreducible, then it is not of class Q

iv) If AQ ig reducible, then AQ =D 4+ E for two

equivalent irreducible Q=representations D and E such

that D° 1is equivalent to As

Proof: i) If A is reducible and P 1is a non-
trivigl subspace of G reducing A&, then P + K[P) is =
non~trivial subspace of QQ reducing AQ, so that AQ is

reducible, !

ii) Tet A Ybe irreducible. If A 1is
pseudoresl, then there is a skeww~symmetric unltary operator

M such that MA = AM. But then MQAQ = AQMQ, because

AQ = KQ. Since M is skew=symmetric, M, 1s hermitian on

Q
H=0y end is clearly not a (real) multiple of the identity

because it maps & to G'. Consequently AQ is reduciblews

To prove the converse, we have to prove that if AQ
is reducible then A is peeudoreal. Now, if AO were redu-

cible, then there would exist a hermitian operator T on H
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which‘is not a2 multiple of the identity, such that T <~ AQa
Congider T° and B = [AQ]S on H°. Iet P and R' Dbe
the projections in H® on Q' and G' respectively. Let

. = PT° and T, = B'7°P. Then T, and Ty commute with

1

Be. But then T may be considered to be &an operator on G

1
commuting with A, since B = A on &. But 4 is dirredu-
cibles Therefore T1 = ZI for some real number At This

jmplies that T, £ 0, for if Ty = O, then for all X8 o

°x = T°Px = (B+ P')T%Bx = Ty x + TyX = Ax 30 that %= 21,

contrary to our assumptions. HNow Tz may be thought of as an
operator from G to &' which intertwines A -and Ay
gsince B =4 on é}. Because A ( and hence A4) is irredu=

cible end T, # O, Schur's lemma implies that /|| 2, 1l 1s

unitarye To complete the proof that A is pseudoreal we have
only to prove that To is skeww-symmetrice It is easy to

see that To* & &' -» G is but the restriction of the

adjoint of To in ﬁs to G'e Therefore To* = PTP'. on

G's Also, if T,' is the transpose of Tyy Tp'x = (TB*X‘)'ﬂ

KT *Kx for x€ Ge Combining these observations and recalling

that P! = KPK™L = = KPK, we have T,' = KPTR'K = KPK ™K TSP 'K

= P'TOKR'K = = '7°P = = T,e T, 1is therefore akew-gymmetrice

4s observed earlier this proves (ii)e
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i1i)  4s trivial because 1% is a nalf=gpace ~of

H which reduces &Q.

iv) " Buppose that AQ ¥is reduciblé. 'Then A is
pseudoreal by (ii) end hence thereisasymmetric unitary opera-
tor M such that MA = AM, Thefefore MQ {2 AQ and MQ
is a nermitian unitary operators Consequently there exist
two mutually orthogonal projections, P+ and P~ say, in

++P“=Io

4 which reduce AQ and satisfy M = pt-P7, P
et D eand E be the restrictions of AQ to PY ana P

regpectivelye

Because M is skew-symmetric and unitary, o Lemma Zel,
there exists a basis of the form (ea; fa) for G such that
We, = ki, end Mf = =ke  for ell a. Define
e + ki e = kf
g =1 & % and b = & %, It is not diffi-

a /-é /,2.

cult to verify that (ga; ha) ig a.basis for H and that

gy © P+, hae P- for all «. Consequently (ga) is a basis
for P+ and (hg) a basis for PT. If we now make use of

the identities between the matrix elements of A with respect
to (ea; fa) vouchsafed us by Theorem 2,2 (ii), 1t is

not hard to establish that
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(Dgﬁy ga) = (A.QgB, ga)

¢ hog, e > + < heg, £k

B

= (&g By, h) = (EhB, h ) for a1l «,p.

¢learly then D is equivalent to E. To prove now that D

is irreducible, it is enough to prove, by Theorem 441, that

0° is irreducible., But this is true since the matrix elements
of D° with respect to the basis (g3 kg ) are the same as
those of 4 with respect to (e 3 fa) so that D° and A

are equivalent and A is irreducible.
The theorem is completely provedes

LEMMA 441 TLet D be an irreducible Q-representation

of 8 in H which is of class Q. Then (DS)Q = By+ B, for

some two irreducible Q-representations Fy end E2 equiva=

lent o De

Proof; By Theorem 4.1 D° is irreducible and pseudo=-
‘real o H'e Let (eas fa) be a basis for ﬁs so chosen that

(ea) is a basis for E and £, = ke“. Then the matrix elements

S

of D° with respect to (ea; fa) satisfy the identities of
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Theorem £e2e (ii).By the proof of Theorem 4.2 (iv) we may

write (DS)Q = El + By in such a way thet E, and E, are

gquivalent irreducible Q-reéresentations and the matrix ele-
nents of Ei with respect to a basis of the form (ga; kga)
are the same as those of D° with respect to (ea; fa)' But
then the matrix elements of D and B, with respect to (e,,)
and (ga) respectively are identical, implying thereby that

D and By are equivalents Since E; end E, are equivalent,

the lemma ig proveds

LEMIMA 4.2 1) If A and B are two irreducible
C-representations of S acting in F and G respectively,
then AQ is equivalent to BQ if and only if A 1is physi-

cally equivalent to B.

ii) If D and E are two irreducible Q-representations
of 8 acting in H and X respectively, then D° 1is physi-
cally equivalent to E° if and only if D 1is eguivalent to

E.

Proof: i) If A is physically equivalent to B, then
A is equivalent to B or B. Since By = EQ, to prove that

A, and BQ are equivalent, we may suppose without loss of

Q
generality that A is equivalent to Be. But in that case if.
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7: F ~> G is any unitary operator intertwining A and B

then T

3’ the {unique) extension of T 40 EQ is clearly
wnitary and intertwines AQ and By 80 that AQ is equiva=
lent to BQ.

Gonversely, let A, be equivalent to Boe Note Then that
Ag is equivalent to'Bg, gince, if U 1s any unitary operator

intertwining AQ and BO then U° is a2 unitary operator -

intertwining A_Z and BZ. But now clearly AZ = A+ A and BZ:B-JB?.
so that Schur:s lemma helps us to conclude that A 1is equiva-
lent to B or B iees that A is physically equivalent to Be

Thig proves 1)e

ii) That D° is equivalent to E® if D is equivalent

to E was observed in the proof of i) aboves

Tet D° be physically eguivalent to E°. We may assume

without loss of generality that ¥ is equivalent to E°,
for if .U intertwines D° and E° and is esnti-unitary then
XU intertwines D° and E° and is unitary: KUD°=KEU=E KU,
because B <-» K« The proof that D ig equivalent to B

depends on the class of Ds

Suppose that D 1s of class Qe Then, by Theoren 4el,
7° and E°  are irreducible and pseudoreals By Lemma 4el,

(DS)Q=D1+D2 and (ES)Q=E1+E2 where Iy and Dy as
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alao El and Ez are equivalegt irredﬁpible Q=representations
such that 1D, is.equivalent to D and B, 1s equivalent to
B, On the other hand (DS)Q ig equivalent to . (ES)Q by 1)
above, since p° and E¥ are given to be eguivalente

Schur's lemma then implies that Dy is equivalent to Eq.

Consequently D is equivalent to T

Y

Suppose that D 1g not of class Qs Then D° and B
are equivalent reducible C-representations and by Theorem 4.1,
?° = A+ E, E° = B+ B where A and B are irreducible
C-=represcentations such that AQ is equivalent to D and BQ
is equivalent to E. By Schur's lemma again A 1s equivalent
to B or B so that 1) implies that Ay 1is equivalent BQ'

Jonsequently D is equivalent to K.

The lemma is completely proved.

We can now state and prove the main thecrem of this
chapter. All representations considered are reﬁresentations
of Se The reader is reminded that the adjectives potentially
real, nonresl mnd pseudoreal are applied only to irreducible

C=representations of S

THEOREM 443 i) If A is a potentially real

C-representation, then its gquaternionification A, is an

irreducible Q~repregentation of class R. Every irreducible
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Q-representation of class R 1is equivalent to the quater~
nionification of "2 potentially real C-representation. Two
potentially resl C-representations are equivalent if and only

if their quaternionifications are equivalente.

ii) If A is a nonreal C-representation, then its
quaternionification AQ ig an irreducible (=representation
of class Ce PEBwvery irreducible Q~representation of class C

Qq,\.l.‘\ vale nf s
isAthe quaternionification cf a nonreal Cwrepresentation.

Twe nonreal Cerepresentations ars physically eguivalent if

and only if their quaternicnifications are equivalente.

iii) If D is an irreducible Q-representation of class
Qy then its symplectic image D° is a pseudoreal Cerepreser-
tation. Bvery pseudoreal C~representation iQXEEgM:;;plectic
image of an lirreducible Q=representation of class Qe Two

irreducible Q=representations of class Q are equivalent if

and only 1f their symplectic images are eguivalent.

Proof: i) If A is potentially real then Ay is
irfeducible by Theorem 4e2. If A acts on G, by Theorem 2.2,
there exists a basis (ea) for é with respect to which the
matrix elements of A are 21l resl. But then (ea} is @
basis for G, and the matrix elements of A, with respect

Q o
to (ea) are a1l real. Therefore A is of class Re
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Oonversely, if D is an irredicilble Q-representation cof class
R acting in ﬁ, let (ea) be a basis of ﬁ with respect to
which the matrix elements of D are all real and let P be
the half~gpace of H pgenerated by the (ea). Than the
argument of Theorem 441 1iv) implies that the restriction

of D° to PO ig a potentially real C-representation whose
quaternionification is equivalent to D. The last assertion
is an immediate consequence of Lemma 442, because for poten-
tiglly resl C-repregentations physical equivalence implies

aquivalencee

1i) By Theorem 442 Ay 1s irreducible and is of class
R or C. But AQ cannot be of class R, for if it were,
then it would be equivalent o the quaternionification of a
potentially real C-representation and Lemma 42 would then
imply that a nonreal C-~representation and a potentially real
G-representation are physically equivalent, which is impos-
sibles Therefore AQ is of class C. Convergely if D is
any irreducible Qwrepresentation of class G, ther by
Theorem 4el, D° 1is reducible and there cxists an irreducible
C=representation A such that A is equivalent tc De A
has to be nonreal, for if A were potentially real I would
be of class R and if A were pseudoreal D would be redu-

cible. The last assertion 1s a consequence of Lemma 4e4Z.
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1ii) If D d4s irreducible and is of class Q, then
D° is pgeudoreal by &he@rem 4els If A 1is any pseudoreal
C=representation then, by Theorem 4e2, AQ is reduciblé and
there exists an irreducible Q-representation D such that
D° is equivalent to A. Such & D has To be ¢f class Q,
for if not, by Theorem 4al, D° and hence A would be redu-

civlée The last part once again follows from Lemma 4eZ2.
The theorem is completely provede

COROLLARY 441 Let A be a pseudoreal C-representation

of 8 acting in G. Let (e j fa) be a basis for G with
respect to which the matrix elements of A gatisfy the
jdentitics of Theorem 2e2. (ii)e Then the Q-representation D
acting in the gquaternionification of the (complex) subspace

sparmed by the (ea) defined by

De. = % [< Ae

8 z 5’ €, > + < Ae

8’ £,2 I T
is an irreducible Q~subrepresentation of AQ which is of

clags Qo

Theorel 4e3 establishes a onewone correspondence between
equivalence classes of irreducible N~-representations and

ph¥sical eguivalence classes of irreducible C-representations
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and suggests the following procedure for obteinihg maxipal
families of mutually inequivalent Q-representation of §
whenever we have available such maximal families of

C-representations:

Consider a maximal femily of muitually physically inequi-
valent potentially real (nonreal) C-representation@. Then
vheir quaternionifications constitute a maximal family of
mutually inequivalent irreducible Q-representations of class
R (class C)e Consider a maximsl family of mutually (physically)
inequivalent pseudcreal C-representations and choose an
irreducible Q~subrepresentation from each of their guater-
nionifications. Then they constitute a maximal family of
mutually inequivalent irreducible Q-representations of class
Qe Pooling all these, we have a maximal farily of mutually

inegquivalent irreducible Q-representation.of Se

We end this chapter with a remark on abelian represen-
tations of Se. Let A be an irreducible C= Or Q-repre-
sentation of 8§ such that the set of operators [A(s}] is
a cormuting familye Since this family is closed with respect
to adjoints, every A(s) 1is normale If A 1s a O-represen-
tation then the spectral measure of every A(s) is trivial

so that every A(s) is a multiple of the identity and


http://www.cvisiontech.com

14

=li5-

.
s

consequently A is onefdimensionala This is true eyen if
A 1g & Qerepresentaticn and may be deduced from the results
of tris chapter without resorting to the spectral theory
of Part I as follows: A can not be of class Q because
if it were then A would be an irreducible C~representaw-
tion of dimension > le Hence A 1is of class R or C.
By Theorem 4.1 A° =B + B for an irreducible C-represen=-
tation B such that BQg Ae But then B 1s one~dimen-~

sional so that BQ, and hence Ay is one-dimensionals.

In particular we have the result that every irreducible

unitarv Q-representation of an abelian fopological group

is one~dimensional
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Ve COMPACT GROUPS
As wags observed in the beginning of Chapter I, unitary
reprasentations of topological groups are a special case

of our formulation of the theory of representations. In

this chapter we deduce the theory of unitary Q-representa-
tions of compact groups a&s a corollary of our general theory
and the classical theory of unitary Cwrepresentations of
compact groupss Some of the regults we obtain are stronger

than those of Natarajan and Viswanath (1567).

Let & be a compact topological Eroupe We shall cone-
sider only unitary representations of & throughout this

chapter and drop the adjective funitary’e.

THEOREM Sel  Bvery Qerepresentation of & is a direct
sum of irreducible Q-representations. Bvery iwreducible

Q-representation of G 1is finite~dimensionala

Proof: Let U Ye a Q-revresentation of G 1in J5
Consider U° on és. Then by the classical theory there
exists a subspace P of ﬁs such that the restriction of

U5 +to0 P (let us call it 4) is irreducible. But then

. =P 8%k [P] is a subspace of H end the restriction of

Q
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U to PQ is clearly identifiable with AQ' If A is either
nonreal or poténtially real then AQ is an irreducible G=re-
presantation by Thecrem 4e3. If A is pseudoreal then the
procedure of Corollary 41 yielde a subspace of PQ Wﬂich
reduces AQ {nence U) and on which AQ ig irreducible. In
any case there always exists an irreducible subrepresentation
of U, A standard application of Zorn?s lemma allows us %o
conclude that U is & direct sum of irreducibles. That
every irreducible {=representation of G 1is finite~dimen=-
sional is a consequence of Theorem 43 and the obvious fact
that the symplectic images and quaternionifications of finite

dimensional spaces are finitewdimengional. The theorem is

provedes

Let U be an irreducible Qerepresentation of G 1in
E of dimension ne Then the matrix elements of U with
respect to a basis (e,) of H are continuous functions on
G and therefore belcmg to Lé'_ (@), the Q-Hilbert space of
queternion-~valued functions on G square~integrable with
respect to the Haar measure on Ge We shall now investigate
the orthogonality relations between these matrix elemnise

It ig convenient to introduce some terminologye
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A basis (e,) ok ﬁ is said to be gﬁjtedrto I = 2
the matrix elements of U with vespect to (e,) are complex
if U is of class 0 and real if U is of class R. Iet.
{u..J = [(Uegy e.)] Dbe the matrix elemonts of U with
respect to a basis (e,) suited to U, The functions are
all real if U is of class R, of the form a.g + ib,, if

U is of class C and of the form' a., + 1P  + Jopg + kdrs

if U is of class Q, the functions a, b, c, d being all

reals

IEFINITION 5.1 The representative functions of. U

with respect to (e,) are the n° functions [u, ] 1if U

is of class R, the 2n2 functions [a.g» brs] if U is of
2 > L] A
class C and the 4n® functions [a rs? Plg? Cpe? drs] if U
is class Q. A set of representative functions of U' is
the set of all representative functions of U with respect

to some one basis suited to U .

LEMMA Bel TLet U and V be two inequivalent irre=-

ducible Q~representations of G

1} Bvery set of representative functions of U con=
sists of mutually orthogonal nonegero real-valfled functions

in Lé (6),
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1i) If U dig of class Q then the matrix elements
of U with respect to any bésis areAmﬁtually bothﬁays-
orthogonal non=gero functions in LZ(G). If dim (U) > 2 and
U 1is such that the matrix &lements of U with respect to

every basis are mutuslly orthogonal then U is of class Qo

i1i) Every representative function of U is orthecgonal

to every representative function of Ve

Proof: 1) TLet (er) be any basis suited to U and
let [urs] be the matrix elements of U with respect to
(er). We shall prove that the representative functions of
U with respect to (er) are non-zero and mutually

orthogonal s

If U is of class R then these are the [urS]
themselves. By Theorem 4.3 the [urs] are the matrix elements
of a potentiszlly real C-representation which is in particular
irreducible so that by the well-known complex theory

= l o> t t
J Wy Ui 48 = F Bppr 0o TOT all r, s, r', s8', where

+the @a's are Kronecker 0d's and n is the dimension of Ua

If U is of class C, then agein by Theorem 443 the

[u.,] are the matrix elements of o nonreal C-representation


http://www.cvisiontech.com

so that [ uy, Uptgr A€ =% Bppe Ogg0 and

*

¥ U g Er's‘ dg = 0, Tor all Kl 1. g0

by the complex theory. From these relations it is easy to

\ . e N ' B s
conclude that, if u, = a,.  + 1o, s then the 2n~ functions

Lo, brsJ are mutually orthogonal and

2
/ aﬁs dg = [ by, dg =-—%i for all r,s

- g0 that they are all non=zeros

Finally, if U dis of class Q, let

Upg = Bpg + 1hp + Jop  + Ky

= a ..+ ib.g + (drs - icrs)k.

Gonsider U° on H°. By Theorem 4¢3 U°1s pseudoresl. By

ol assical results the matrix elements of US with respect

to the basis (e, ker) are none-zgero and mitually orthogonal.
But this latter collection of functions 1is cnly.

[ars + ib.gs * Ao - icrs]‘ Tt is easy mow to conclude that
e .
the 4n” functions [ars, by Opgs drs] are non-zero and

mutually orthogonal.
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Thus 1) 1o proveds

11) The first assertion follows readily from 1)
gince any two distinct matrix glements of U with respect to
o basis are linear combinations of disjoint sets of répresen=

tative functionse

To prove the second assertion we shall prove that if
U 1is of class R or C then there is a basils with regpect
to which the matrix elements of U are rot mutually ortho=
gonale. Let then 5 be of ctlass R or Coe Choose first a
basis (er) suited to Ue IT (fr) is any other basis,

] L g o :
let us write fs = ? T g er. Then e, = % ¥, . fr and 1if

the matrix elements of U with respect to (e,) and (£,.)

¥
t?w HSw utwmrt

are respectively [urs] and [vrs] then v

for all r, se Bxploiting the orthogonality relations between
the repregentative functions of U with respect to (er)

obtained in i) we may prove that, for a1l T, 8y T'y 8%y

_— Pl 1 S |
f VI‘S V;,lsl dg = ———"(1+9)n JGEW Tk . [mT't 'm;"t glmr_t m*r'tijms‘w
L)

where @ is O or 1 according as U 1is of class R or
Ce

If we now choose (fr) such that
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2f; = (L = 3)eg + (1 + k) e

Rfy = (1 + k)el + (1 = k)ep

fr = er for r > 2,
then ag is easily checked,f vqq vEo dg # 0 so that the

[Vrs} are not muitually orthogonale. This proves (ii).

ig proved by a reasoning similar to that in 1)

iii)

We can now offer an analogue of the classieal
Peter-Weyl Theorems. Let CQ(G) denote the space of guater

nion valued continuous functions on Ge

TEROREM 5.2 Let [U%] be a maximal family of mutually. inequi-

valent irreducivle unitary Q-representations of G. Let™ [A%] be
a corresponding family of repregentative functions. Then.[Aq]

is an orthogonal family of non=-gero continuous functions

fundamental in Cq(G) and Lgun.

The proof this theorem is an immediate consequence of

its classical analogue and Lemma 5e¢l. It is omitted.

The Peter-Weyl Theorem can be formulated in another

way in terms of subspaces associated with equivalence classes

of repregentationse To see this let the equivalence classes
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of irreaucible Q-repregentations of & Dbe indexed 5& Lo

N, the dimension of any irreducible Q-representation of

type o, is called the order of the type as o is sald to ke of
¢class R, C or Q accordinglas representations of type «

are of c¢lass R, C or Qe

IEFINITION 542 For every type «, E* is the (Lleft)

linear manifold spanned by the matrix elements of all poseible
Q=representations of type « with respect to all possible

DASCSe

TEMMA 5.8 i) If qg Q and feF% then fqe F%,

50 that F* is a right linear manifold.

s g : " O o g
i) If f = £ + 1fy + jf + kL€ B® then £ ,fy,f5,f5
e 1%
531) If fe F* then f*¢ F%

2

o
iv) E@ is of dimension ni, 2n; or 4na according as

o« 18 of class Ry, C or Qe
v) F% is bothways orthogonal to ¥ ir o A B.

Proof: i) If U is any Q-representation of type
¢ with matrix elements [urs] with respect to a basis (e,)

then, for any quaternion q # O, lal =1, [a*w,. a] are
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the matrix elements of U with respect to the basis (q?er)
implying. ‘hereby that u,., a6 E° for a1l r,ss If q £ 0

is arbltrary u,.5 a4 =

[ql.urs(q/4q|) ¢ ¥* for ali r,s. Since
any f¢€ Ea ig a (left) linear combination of matrix elements,

the result follows.s

i1) We now know that for sll p,q€ Q; pfg € B
Merefore f, = Re © = [f=~ ifi= jfj-kfk] g . Since £y,
fg, f3 are the real parts of -ifl, vjfg, - kf3 regpectively

ii) is proved.
ii1) 4s an immediate consequence of 1i)e

ivi Tet U% be any Q-representation of type o« in E
and let 2% be the set of representaztive functions of U
with respect to a basis (e,) suited to %, By (i1) A% C %
We shall prove that Ea ig generated by the functicns in
2%, Let V be any Qerepresentation of type « acting in a
Q=Hilbert space E and let Evrs] be the matrix elements of

V with respect to a basis (fr) in K. If M is a unitery

map from HE to K such that MUM"l =V and f =21, Me,
n
0 % = .
Mes = 5 nie fr then clearly B tzw nws Uy n%r and
. ?

congequently v ig a (left) linear combinaticn of the

rs
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representative functions A%, If we now recdll that, Lecause
of Lenma Del, A% is a set of non-zero mutually orthogonal
2 2

2 .
y 2N or 4n~ according as «
a

functions of cardinelity n B

a

is of class R, C or Q we find that we have proved iv).

v) mnow follows from Lemma 5,1 iii) if we remind
ourselves that the representative functions are always real

and hence commute with 2ll quaternionse
Thie proves the lenmriae
The theorem below is another formulation of Theorem Dol

THEOREM 5.,2' If 5 F® denotes the set of finite
&

sums of elements of Ua EF, where ¢« Tranges over all types

and ( % F*)7 the uniform closure of Z 7%, then
a aQ

01)"

I=f

' 2
G [ Fa = - *
‘( P 0o (6) and 8 F% = Ly (a)
We now go on to obtain a complete set of equivalence

invariants for the irreducible Qerepresentations of G

If A is an operator on a finite-dimensional Q-Hilbert
space H, then we define the trace of A by Tr(4) =

1/2 Tr(4°) 'where A° is the symplectic image of A on ﬁs.
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Tt is easy to see that if (er) is any basis for F then

pr(s) = Re T (4 e, er) and that Tr{a) = Tr(MAM’l)- for ail
x .

jﬁvertible M on ﬁ. The followlng definition is due to

#inkelstein , Jauch and Spelser (1963) .

IEFTNITION 5,5  If U is eny irreducible Q-repre-

sentation of G then jts Q~character is the function w(g) =

7 (U{g)) s

Note that x(g) is always a real valued function, If
(er) ig n basis sulted to Uy then x(g) = § Re(U(g)eT,er)
ig n swa of representative functions which are non~zeroc and
mitually orthegonal so that x(g) is itself non-zero., In
fact [ X(g)zdg =1, 1/2 or 1/4 according as U is of
class R, C or Q since, as proved in Lemma Bely the squaré
of the Lz-norm of a representative function of U 1is

%, E% or Z% according as U 1is of class R, CorQ, n

being the dimension of U. Also, clearly equivalent Q-represen-—
tationg  have identical Q~characters and inequivalent
Q=representations have orthogonal Q=-characters. We have there-

fore proved the following theorem.

THEOREM 5.3 Two irreducible Q~-representations G g

are equivalent 1f and only if they have the same Q-characters
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Qmcharacters of inequiwvelent Qereprescntaetions are orthogonale
A Qerepresentation is of class R, C or @ according as the 5

square of the Lzhnorm of its Q~character is 1, 1/2 or 1/4

/' The algorithn given in Chapter IV for obtzining maximal
families of mutually inequivalent irreducible Q=-representa-
'%ions in a general context can now be specislisged "to provide
a rule for computing all the Q=characters of G glven all
the (irreducible) Gwmcharacters of Ge Recall Theorem Ze3,

which says that an irreducible g=representation with character

¥ is nomresl, potentially real or pseudoreal according as

S &) =0 (1)

= +1 (2)

or =~ 1 (3)
Rule: Every rezl C-character X(g) determines a

Qucharacter X{g) = X(g) or % X(g) according as X satis-
fies (2) or (3). Bvery non=real C-character X determines
a Qmcharacter X(g) = Rel X(g)l. 411 the Q-characters are

obtained in this waye


http://www.cvisiontech.com

—11880—

We bring our discussion of compact groups to a close
with a few remarks on the abelian case. Let G ve 2 compact
sbelian groupe. Then, as was obgerved in the last chapter,
every irreducible representation of G, be it complex or
quaternionic, 1is one-dimensional. Let us look a¥b the converse
problems In the complex case the Peter-Weyl theorem implies
that if G 1is a compact group such that every irreducible
G-representation of ¢ is one-dimensional then G is abelian.
Purther, this is equivalent to saying that if G 1is a compact
group such that every jrreducible C-representation of G is
abelian then G is abelian. In the quaternionic case however
these two statements are not equivalent and in fact, the first
is not true while the second ise. To prove that the second is
true we have only to observe that, under the hypothesis, every
irreducible Qerepresentation is necessar ily of dimension® 1
and is of class R or C (for if & Qe~representation A were
of class Q, then 1° would be irreducible, abelian and of
dimension > 1 which is impossible) so that every irreducible
G-representation is of dimension 1 and conseguently, G 1is
abelian. To show that the first statement is not true we give
an example of a non-abelian finite group whose irreducible
Q-representations are’all one~dimensional. We denote by i

the group opposite to G (feee, the elements of ¢° are
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those of G and the group operation in q° is given by

gehl = hg) .

Bxemple: * Let G e the quaternion group, 1ls€e,
G =[+1, 21, 23, + %k}, Consider ¢°, We show that every

. 3 . o . . .
irreducible Q~representation of & is one dimensionale

If g€ Q, let Rq denote the linear transformation of

the Qmspace Q, given by Rq(p) = pq for all p in Qs

Gonsider the representations:

1 ->» B 3
( ) & g’

o

(2) g»)Ag:Bl for all g€G 3

(B) g => Ag-",:-’Rl if g=2%1, 1,
= R-l otherwise)

\(/4:) g => A =R1 if g:_-&_-.l_,
= R-l otherwise;

(3) &=> A

L

g R1 if g=+1, + k,
= R—l otherwisces

Tt is eagy to verify that the above five (one~dimensional
and hence irreducible) Q-representations are mtually inequi-

valents If E? is the subspace in L%(GO) = Q(S) asseiated
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w. th the rth-representation above, then El has dimension
four end each of ihe remaining F  has dimension ones It
Follows that G° cannot have any irreducible Qerepresen-
tation inequivalent %o all the five above and in particular
that ¢° does not have any Q-representation of degree

groater than onee
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VI, LOCALLY COMPACT ABELIAN GROUES

In this chapter we shall prove two thecrems about
witary Q~representations of a locally compact abelian group
Ge In one we study the structure of the space X of all
continuous homomorphisms of G into the group of unit quater=
nions endowed with the compact=open topologys We show that
X is compact if G is discrete and that if G is compact
then cortain equivalence classes of X are closed=open in
¥. TIn the other we seek to express every unitary Q=repre-
sentation of ¢ as an integral of irreducible Q=representas
tions of Ge It is proved that this can be achieved in a
unique menner except for the ambiguity imposed by several
forced choices between 1 and =i. This theorem is a

generalization of Theorem Hel of Part L.

"Let |q] = [q: g€ Q, lg] = 1] denote the mul¥iplicative
group of unit guaternions. The centre of o] dis the double«
ton [+ 1}s TPor every unit imaginary © € lq] et c(8) =
[a+ 10 : 2, b real, & 4b° =1J, Then C(8) is an abelian
subgroup of |Q| and every strict subgroup |Q| different from
its centre is of this forme C(6) = C(¢) if and only if

b =40y if ¢ £6 then c(0)()C() = [; 1}e Given 6 amd
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¢ there exists rg lal sueh that r r‘"’1 = 6 and hence"
sueh that r c(¢)r'1 = ¢(e). In particular, writing _c(i);{cr'
- the multiplicative gfoup of complex numbers of medulus one -
given ¢{&) there exists r such that rer™t =i and hencerj
such that rC(Q)r"l = |C|. 41l these observations are imme~

diate consequences of our results of Chapter 1 of Part 1.

We need another important fact about |q]s For every
neighbourhood U of 1 ¢ @] let U =[x x,xz,..., xe Ul.

Let us call a neighbourhood U of 1 distinguighed if the

sets (U,) constitute a local base. at 1s Distinguished
neighbourhoods exist. Eegs U = [q: |ge1] < 1/2]1 1is one
suche (Proof: Let q = . q+@1 + god+ ggk  belong %o
|Qb g2 U if and only if aq ? 7/8. Therefore if gq€ U,
then [ =1]% = 4(1~a%) > 4(1-q,) = 2|q=1]® o0 that

l@=1] > /8 la=l]e It follows that if q€ U, then
2

lg~1| < 2 . Oonsequently as n goes to infinity the
diameter of U decreases to 0)s It is easy to check that
every neighbouihood ¥ of 1 which is contsined in U is
again a distinguished neighbourhcod of 1 80 that, we may
always choose distinguished neighbourhcods to be gsympetric,

cloged etce
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Consider now a locally compact abelian group Ge Let X
denct e the space of all continuous hémomorphisms of G into
{Q]« Tor every xe X and r¢ iql rX'rﬂl(g) =r x (g)r "
is again in X Let Uub call x and ¥ in X equivalent if
there exists r such that y = r x v~ It is casy to check -
that we have defined a genuine equivalence relatioﬁ on  Xa
If now U 1is any irreducible (and hence oncedimensional)
unitary Qerepresentation of G in the Q«Hilbert space H
then for ug H, |ju {|=1, U(ghu = x(g)u for some =x(g)e|a}
for all g in Ge xig => x(g) clearly belongs to Xs If
vg H 1is any other unit vector in H +then v =ru for scme
re |q] so that U(g)v =r x(g)r'l v for all ge This means
that U determines an element of X upto equivalence. '
Conversely it is easy to see that every xg X determines
an irreducible unitary Qerepresentation of G upto equivalences
Therefore the set of equivalence classes of irreducible
unitary Q-representations of G 1is in an one-to-one corres-
pondence with the set of equivalence classes of Xe. This is

the reason for our interest in the space X,

Observe that every complex character of G belongs to

Xe X therefore distinguishes between points of G. TFor

X6 X let B, = {r x r"lz re 1Q|] be the equivalence class
x 4 ‘

containing x. x is resl if and only if E_ is the ...
singleton X . If 2.4 is not real then Ex contains
exactly two complex characters and thegse are conjugate
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to each other. For if x is not ¥eal then x(G) is contained
in a unigue €(®)e If r is such that rer™ = i _then
y=1rxrt oig complex and belongs to E,e Also ¥ '= k‘x =t
£ EX. Suppose now that zg Ex is complexs Then g = sys;l

for some s = o + kf{ay # complex) and sys'l = (o + kg)r

y(G-%8) = |al®y+ BI°FT +x T 8 (y=F)> But z is
complex and y # ye Therefore cither ¢ or B must be

nauy

zero implying thereby that z =y or ¥y

For x, y¢ X their pointwise product ‘xy) need not
belong to X in general because |Q] is not commutative. In
fact xy € X 4if and only if either x or ¥y 1is real or |

x(G) and y(6) are contained in the same C(6).

Let now X be invested with the compabt-Open topologye
The class of all subsets of X of the form
NK,U = [x: x(X) C; U}, where K and U are compact and open |
subsets of ¢ and |Q| respectively,is a subbase for the
topology of Xe A net (Xa) of elements of X converges to
x€ X in this topology if amd only (x.,) converges to x uni=
| formly on every compact subset of Ge The theorem below

degeribes the structure of this topological space Xe

_THEOREM 6+1 X equipped with the compact~open topology

is a locally compact Hausdorff space which is second countable

if & 4is second countable, The map [r,x]-)rxr"l 1s continuous.

o
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Bvery EX is compact in X, If X is discrete then every
x€ X is reals If ¢ is 4iscrete thenm X 1is compact and if

G 1s compact then every E, 1is closed-open in X.

Proof: If x, y8 X and x(g) # y(g) for some g in
Gy, let U and V be disjoint neighbourhoods of x{g) and
y(g) respectivelyes Then N[g],U and N[g],v are disjoint
neighbourhoods of x and y respectivelys. X is therefore
Hausdorff. To prove that X is locally compact it is now
enough to prove that there exists a compact neighbourhood of
every x in X, For this 1% is in turn enough to prove that
if X 1is a compact neighbourhood of the identity eg ¢ .and
U is a closed distinguished meighbourhood of 1€ |Q| then
NK,U is compact in X. But this may be achieved exzctly as o
in the classical case (Weil,1938) by showing that ¥ o ig
closed in X endowed with the topology of pointwise conwver-
gence and that on NK,U the compacteopen topology coincides .
with the topology of pointwise convergence. We omit the '
detailss That X 1is second countable if G 1is so is easy to

s€ce

We shall now prove that the map [r, x] => rx v~

‘from ° IQI Xx X to X 1is continuouse Because |Q| is compact

it will follow that EX is compact for all =x€& X.PFix x
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and r and let Np y (U open) be a subbasic neighhourbood
’
of '?xrnl. Then rx (K)r"l is compact ahd is contained in

Us There exists therefore an open set V such that

rxK)rt CV C T CU. Let V) =2 Vr, U=zt Ur,

Then Vl and Ul are open and x(X) C; V C:? (:U +Choose a

neighbourhood W of 1€ {Q] sgch that W ¥y W C: U. If
now ye My y_» s€ rW, then sy(g)s € rWVfN rl C: rUl
y l -

- -1 : o
C; U for all ge € so that sys™ € Wg ye Since Np ,  and

4 g
rW are neighbourhoods of x and r respectively, we may

conclude that [r, x] => rx r-l is continucuss As remarked

earlier Ex is then compact.

Next, we prove that if =xg ¥ is non~real then there
exists a net (Xa) in X which converges to x, but is such
that x #x for amy oe This will establish that if X
is discrete then every =x€ X 1is real. Let 8,6 G Dbe
such that x(go) is not reale If V 1is any nelghbourhood
of 1€ |Q] +then there exists vy €V such that ry <~+~>x(go),

because if it were not true for some V then x(g ) would
commute with every clement of that V eand hence (since |q}
is connected) with every element of |Q| which would imply
that x(g ) is real, contrary to our assumption. Now (ry),

congidered as a net in the obvious way, converges to 1 but
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Ty #1 for any Vo Consequentiy the net rv,x.rgl»convergeq
to x but ry X rgl (go) # x(go) for any V  so0 that

ry X r;% # x for any Ve

If G is discrete, taking X = [e] and U +to be any
cloged distinguished neighbourhood of 1, X = NK U is seen
¥

to be compactes

Finally, let G be compacte Fix x in X. Then given
any neighbourhood U of 1, using standard methods we may
produce a neighbourhood ¥ of x such that if ye ¥, then
v(g) x ()™ ¢ U for all g. Suppose now that x is real and
that U is a distinguished neighbourhoodwf le Then for
ye N, z = yx"l e X so that z (&) g U 1is a subgroup of |Q]e.

Hence z(G¢) C U, for all n, Since U is distinguished,

it follows that =z ® 1, ie.ea that ¥y = x. This proves that
B, = {x] =% 4is open, if x is reals If x is nonreal this
proof fajls because 3 need not belong to Xe. We have to

approach this case rather carefully.

; ]
Iet x be nonreals Since Ex contains complex characs

ters we may assume without loss of generality that x is
complexe Again, to prove that Ex is open, it is enough

to prove that x is in the interior of Ex’ for if N (C EX
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18 any neighbourhood of x then for any y=r X g E_,
PNyt is a neighbourhood of y contained in B . In
other words the theorem is completely. proved if we érove
that when .x is nonreal and complex then there is a neigh~
bourhocod N of =x such that y& ¥ dimplies ¥y =7r X et

for some ré& {Q]e

Let U be a distinguished neighbourhood of 1. Choose
first a neighbourhood ¥y of x such that y¢€ Nl implies
v(g) x(g)’l € U for all ge G. We may assume w1thout loss

of generalitvy that Ny 1is of the form Ny = (“) K_,0
- Sm=1 '

with x(x,) C Uy, K, compact, U, open for all s and

=]

n

(_ K e Choose now open sets V, such that x(K) C
: 8= i
o

C: U, for all s, and a meighbourhood w of 1

el -
such that W Vs w c; US for all se let NE = (7 E% V .

_ g=1
Then N, is a neighbourhood of x such that if ye N, and

r¢ W then ry file N+ Suppose now we can exhibit another

neighbourhood YNy of x which has the property that féf-
y€ Ngy there exists re¢ W such that ry r*l‘ is compleXe
We claim then that the theorem is proved. The reasoning is
as follows: TLet N = Nz(—)NS. Then N is a neighbourhood

0f xe. Let ye Ne DBecause Y& N there existe re W noa-i
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such that ry’r'l ig complexs DBecause yeE Né and rg W,

ry‘r'l [ Nl. Therefore ry{g) r-l X(g)’l €U for all g€ Gl

But vy r™

% =Ty r“l X“l € Xe But then the range of =z 1s a subgroup

and ¥, being both complex, comuie. Hence

contained in a distinguished neighbourhood so that g & 1.

Therefore y = r'l X Te

We now show how to get hold of Nso

Jince W 1is a neighbourhood of 1, there exists 9,
0 <9 <1, such that if }r-l]z < 9d then re We Since x

is nonreal, there exists g, in G such that xfgo} = c+id

-]

o 1f necessary we may

with d # 0e By replacing g, by 8
assume that 4 > 0s Tet £ =34 /16 and let N; be a
neighbourhoocd of x such that yg N, dimplies ly(&g)x(g)* -1}
= |y(e) - x(g)| < ¢, Such a neighbourhood always exists

as we observed earlier in the course of this proof. We

shall prove that N, has the required propertys

3

Let y& N;e Write y(go) in the form a+ b@ with
a, b real and & = 6;1 + 92j +6; k a unit imaginary. By
replacing b by =b 1if necessary we may assume that
9, 2 0« At this stage for all we know b may be O and @

arbitrary but we shall soon see that 1t is not the cases
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=170

o 1(a+ ) - (et 10)}? < &
o (am 0)% + (bay- F + 1705+ 0F) < g (&)
S (sHoR g
=> Ja=c| <« &°
o> |a®- %] = lamclela + 0| ¢ 2lamof < 26
=) \bz - dzt = l(l - az)- (l-— 02)‘ = laz—czl < 282
= 4% -1° < 26°

2 2 2 2 a% §° 2
=> b >3 ~2° > & ~THEy 248 /2

Consequently

5

& (024 08) < vP(efwed) ¢ & ¢ e (vy (W)~

2 9 28 &, 2
= 0 405 < Fxy = o < 0°/64 = |61, 1851 < 3/8.

2
: 2 _ 2 . Al s :

2 o - 1]% = 2(1-0)) < 87/64

=> |6 » i} < 3/8 o

Choose now r =T+ rli + rzj + rsk guch that Ter = i g
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By replacing 'r by’ ~r if necessgry we may take to be

non-negatives Again, by replacing r by ar where
a = (=r_+ rll)/ /r% + 1] 1if necessary, we may assume that

r, = O« Then

| 8 =i < 3/8

= |rir - i|2 = lir-rilz = 4(r§+ r%) ¢ 3°/64

2 . .2 2
= 15 +Trz < 3 /256
e 100 & o 2 . AR
=>r, 2 Tg=1eTy Ty >1 - a°/256 > 1 - 3°/128.

This, together with (B) => l1-0;r | < 8/4s

Therefore lr—llz lr@r"l - Gr"llg =|1m or~H®

]

2{(1-0y7 )+ 85Tz~ Gsral
< 2[|1—Gir0|+ IGzllrsl + |93||T2|]
< ofe 4 8°/4 < B

Phds fmplies thet T € W, by our choice of 2.

If we now observe that (&) C c¢(e), then we have
proved that there exists T€ W such that ry‘r“l is complexe

As was pointed out earlier, this proves the theorem completely.
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We now turn our attention to he problem of expressing
every unitary Q-representation of & gs on integral of
irreducible ones, We consider only the case when G 1is

secbnd countablee The basic idea behind our approach is the

game as that explained in Chapter V of Part I for the

cage of the real linece

Tet us first get a few technicalities out of the ways
et Y be the character group of Ge The relative topology
of Y considered as a subset of X coincides with the usual
topology for Ye Let ﬁ be the smallest o=algebra of sub-
sets of Y containing the open sets of Yo We shall refer
to sets in § as Borel sets of Yo Iet Y, be the set of
211l real characters of Ge YO ig a closed subgroup of Ye

A Borel section of Y 1is a Borel set A of ¥ such that 1)

Y  is contained in A and ii) if y £ ¥, then exactly one
of y and y Dbelongs to Ae That Borel sections exist may

be seen in the following mannert

Introduce an equivalence relation in Y by defining ¥
and z to be eguivalent if and only if y =2z or Z .
This relation is only the restriétion to Y of the equiva-
lence relation on X we have been dealing with so fars Let

7 denote the resulting space of equivalence classes of i

and let B be the cononical map from Y to Z» If Z is
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given the quotient topofégy then @ 1is continupus and open
so that 2, along with Y, is a locally compact second.
countable Hausdorff space, Since T 1s c~compact and §
is continuous we may apply the Federer-Morse lemma
( see .Veradsrajan, 1968 ) to get hold of Borel cross-
sections for 8. But these are precisely the Borel sections
of Y ,

Let Q be the smallest o-algebra of subsets of 2
containing all the open sets of Z. Then (Y, 8) and
(zZ, ) are standard Borel spaces in the sense of
¥ackey ( Mackey, 1957)s If A is any Borel cross-
section for B then 38 1is a one-one Borel map from the
standard Borel space A to the separable Borel space Z so0
that by Lusin's theorem (Kuratowsky, lQ%g ) g is a
Borel igomorphism between A and Ze (It follows that Q
coincides with the quotient Borel structure on 2).
Consequently if A and A, are two Borel sections of ¥
then the natural one-one correspondence between A1 and A,
given by y =» sglﬁl(y), y€ 4, is a Borel isomorphism
between Al and Az.

Suppose now that H is a Q-Hilbert spaces ILet (B, J)

be a-spectral system based on (Y,B) and acting in H. If
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for every g€ G we define the operator U(g)- on H by
Ulg) = f y(g) daB(y) with respect'to J, then it i easy to
prove, usiﬁg our results of Chapter IV .of Part I, that .

g = U(g) is a unktary Q=representation of G in ib
Gonversely if ¥ is any unitary Q-representation of G in
A we mey show without difficulty that it must be an integral

with respect to some spectral systenm based on (v, B)

(cfe Emch, 1963 ) The reasoning is as follows: .

Since [U (g)] is an abelian family of unitary opera-
tors there exists a half=space P of B which reduces u®
This follows readiiy from our results m CW*A's obtained
in Part T. Tet V be the restriction of U° to P Then
.V is a unitary C-representation of G in P and therefore
there exists a spectral measure T on Y acting in P such
that v(g) = [ y(g)aP(y)e If now we define (E; J) by
B(1) = P + KEGDK™L ana J° = 1F(Y) = iKB(Y) K™*
then (B, J) is a spectral system based on Y acting in H
and U(g) = [ y(g)aB(y) with respect to J. (The details

are easy to check and are omitted)e

We have thus shown that every unitary Q-representgiion
of G may be expressed as an integral with regpect to some

spectral system based on the characters of Go This apectral
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system need not be unigue. In fact, the consideration of

a few finite-dimensional’examplés will show that the spectral
system can ®ary erraticallye However if we demand that the
spectral systems be poncentrated on Borel sections of Y

(a demsnd which is consistent with our apprecach to the
problem) then we can say qulte a lot about them as proved

by Theorem 642 belows Notice that Théorem 5.t of Part I is a

particular case of this theoreme

THEOREM 6.2 Let U be a unitary Q-representation

of G in ﬁ. Then, given any Borel section A of Y there
exists a unique spectral system (B, J) based on A and
acting in H with I~ JJ* = E(YO) such that Tt

Ulg) = Sy (g) @B(y) with respect to Je The spectral
neasure B is defined independently of the section A in
the sense that given any two sections the natural Borel

isomorphism between them preserves E.

Proof: Comsider U° on ES. Let E, be the unique
spectral measure on Y such that Ug)® = fy(g)dEs(y).
It is easy to check, as in the proof of Theorem Se1 of
Part I, that ES(M"'I) = KB, (MK for all M in B, so
that, if N 1is a Borel set in 7, then E: N -> E(N)
defined by BE(¥) = Eg(p“l (N)) is a spectral measure on Ze
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Let nowh%e any Borel section of Ye Transfer E
from Z to & using Be Define J Dby 7% = iEs(A- YO) -
1B (Y= A)e We may then prove that U(g) = [ y(g)dE (y)

with respect to J and that (E, J) 1is unique exactly as

in Theorem 541 of Part I. The detalls are omitted.

The very definition of E shows that it is defined
independently of the section Ae The theorem 1s therefore

proveds
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VII. QUATERNIONIC QUANTUM MECHANICS

In this chapter we study qu&nﬁum.mechanical systems
by assuming that the logic of propositions of .such a gys tem
is represented by the lattice of subspaces of a quaternionic
Hilbert spacee Our discussion leads us to the conclugion
that, roughly speaking, thePe are exactly as many elementary
particles in quaternionic quantﬁm mechanics as in complé€x
guantun mechanics.

The approach we adopt i1s that of Mackey, as enunciated

by Varadarajan (1.968).

Let H denote a separable infinite-dimensional quater-
nionic Hilbert space and L the lattice of projections of H.
We shall assume that L vepresents the logic of propositions

of the physical system we wish to studye

A state of I is a real-valued function p on L such
that (1) 0 ¢ p(P) <1 for a1l Pe L (ii) p(0) =0, p(I) =1
and (iii) p( E Pn) = g ﬁ(Pn) for any sequence (Pn) of mutually
orthogonal projectionse 8§ 1is the set of all states of L.

8 1is a o=convéx gets An automorphism of 8§ 1s a bijection
on § which preserves o=-convexitys The get of all automor-
phisms, denoted by Aut (8), of 8 1is a group in a natural
Waye
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. Let G bYe a locally compent second countable groupe A4
representation of ¢ in Aut (8) is a homomorphism g => D,
of G into Aut (8) such that for each PeL and pe S, the
map g w (Dgp)(P) is Borel on G with respect to the smallest
o=algebra of subsets of G containing all open sets. Repre=-

sentations of G in Aut (8) are the basic objects of our

studys

We shall now describe S and Aut (8) in terms of opera-
tors on He Let W denote the set of all bounded, Hermitian,
non-negative operators on H of trace ones W 1is a o-convex
sete For every AgW the map p, : P -> tr (PA), Pe L, is
welledefined and is a state on L. Gleason's theorem asserts
that the converse is true: every state of 1 is uniquely of
this forms A => p, 18 a o=convex isomorphism between ¥ and
end S

Let U denote the set of all unitary operators of H.
For every Ue U, A ~> U.il.U""1 defines a o~convex bijection on
¥ =and hence an automorphism of 8. Conversely, given any
D& Aut (8) there exists Ue U, determined uniquely upto-sign,
such that ‘ZDpA ; Pyay~l® Conmequently Aut (S) is. isomorphic to
the group P~ which is the quotient of U modulo the doubleton
group [+ IJ. fbr the proofs of all these propositions the
reader is referred to Varadarajan. (1968).
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We shall now show that representations of G in
tut (8) mnay be replaced by continuous homomorphisms of &

into P. We have first to study U ' aid P in some detall.

U, equipped with the strong topology ( = the weak

topology), becomes a second countable topological group and
the associated Borel gtructure of U makes U a standard
Borel spacees Let =n denote the canoﬁical homomorphism from
U to R« If P 1is endowed with the quotient topology then
n is an open continuous map so that P too becomes a second-
countable topological groups The functions U ->|(Uf,g)]| for
f, 2 € H are continuous functions on U which are constant
on the 2 cosetse They may therefore be Llifted to continu-
ouls functions on Pe We claim that the topology of P is the

smallest which makes sl these functions continuous.

To see this let AUB, Uys Upy ee. be a sequence in U
such that |(U T, gl > |(U0f,g)l as n «=> 4 for every f,
26 He We shall prove that =n(U,) ~> n(UO). By replacing I%lby-
UnU;l we may assume that U = I, Now H Unllﬁ 1 for all n so
that, by the weak-compactness of the set of all operators of
norm at most 1, there is an operator U and & subsequence

(Uhk) of (U,) such that, for every f,g€ H, (Uﬁkf, g) => (Uf,g).

But then |(Uf,g)| = |(f,8)| for a1l f,g. In particular Ut
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is orthogonal to every element orthogonal to fe Hence for
every £, there is associated a quaternion, sey Qe such
that Uf = grfe If f and g are orthogonal then

U(f+g) = Uf+Ug implies Qe = df = 9g° Therefore if (f,)

is an orthomormal basis for H then there is a 4 guch that
Ufn = qf for all ne Applying this observation to the basis
obtained from (f,) by changing £, t; pfy, where D is any
unit quaternion, we see that pqp-l = ge Oonsequently gq is
reale But |(Uf, g)| = {(£,8)| for a1l f,g. Hence dq =42 1
or U=+1I. Since each U, 1is unitary U, => U in Ues We
nave this proved that (U,) has limit points in. U =and also
that the only possible limit points are + I. Choose nNow a
neighbourhood N of I in U such that =N = [-U:Ue N) is
digjoint with Ne Define a sequence ¢ of numbers by

n

9, = = 1 if U 8 = N, Qn = + 1 otherwises Then it is easy

to see that 9 U, ~>I in U and hence that =x(U,) =

n(8 U ) => x(I) in Z.

Next, we shaw how to obtain sections for =®e. For every
f,ge Hy let Ep = [u: Re(Uf, g) > 0}s E, . is clearly an
v & 18
open set in U (which is nonempty if both f,g are NoN=zero)

meeting each P copst of U atmost onces If f= g, then

Ef,f is a neighbourhood of the identity Ielﬁ and =
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restricted to Ep is a homeomorphism. Choose now a coun-=
o+
table dense set D in H and look et the collection Ef,g
with f, g6 Hs. Re-enumerate them in the form. 1’E2"" with

B o= Ef F for some non-zero £& D. Define a seqence Iy
’

by

»

po= B O (BU(-B)UE, U(-Ey) esn VB 3 U(-Ey 1)

for n 2_ 2e

Let F = E;Fn' Then F 43 a Borel set of U. F meets each

x atom exactly once - For if neither U nor - U belongs to

P for some Ug U, then neither U nor U belongs to }{En.
But then Re(Uf,g) =0 for all f,g€ D implying thereby

thet Re(Uf,g) and hence (Uf,g) is O for all f,g€H =0 that

U = 0 and hence is not unitarys.

7 is therefore one-one on F =nd maps F onto E.
Since T, with the relativised Borel structure is standard and
the Borel structure of P is separable n 1is a Borel isomor-.
phisn between F and P. In particular P 1is a standard

Borel space.

Let ¢ be the inverse of m on F. Then c maps P

onto F and has the following properties:
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i) ot u => clu) is Bpfel ‘
ii) nlc(uw)) =u for 211 wue 2

iii) ef{x(I)) =1 .

H

iv) There is a neighbourhood N of %(I) such that
for u, veé ¥ ecluv) = c(u) c(v) ond such that c is conti-

nuous on N

In what follows by a section for = we shall mean a

map ¢ from P into U satisfying (i) - (iv) @obovee

THEOREM 7,1 If G is sny locally compact second

countable group then representations of G in‘Aut (8) corres-
pond in a one-one fashion to Borel (and therefore continuous)
homomorphisms of G into E.

Pfoof{ First, let g => Déa be a representation of G

in Aut {(§) ond let g <> u, be the induced homomorphism of

g
¢ into Pe¢ For g choose UgQ_II such that n(Ug) ='ug." To
prove that g => U, is Borel, it is enough to prove that for
every two unit vectors x, yeH3g -» ](nggy)i is Borel,
Write A =nd P for the projections in ﬂ onto the rays
spomned by x and y respectively. We may toake A to belong

to W =nd P to Le Then
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np @ = p g B =T nI°.

Ugﬁﬂg

Since g -> D, is = representation of G in Aut (8) 1%
follows that I(ng, y)|2 and hence i(UgX, y)| is Borel on

¢. As observed esrlier this proves that & - Uy is Borel.

Conversely, let g =2 ug be a Borel homomorphism of G

into E. Choose a section ¢ for n and deflne Ug= c(ug)

for all ge & =2 Ug is then a Borel map of ¢ into U.

Define, for every g€ &, D, in Aut (8) by DPp= pU )
g &
g => D, is clearly a homomorphism of G in  Aut (8) which

induces g=> w, and is in fact a representation of G in

g
put (8) since for any p =py €8 and Pe L,

_ p
= = U
DgpsB) = P AU_l(P) tr (RULAUST)

g £

is Borel hbhecayse g =» Ug ig Borele This proves the theorem.

Becauge of this theorem the objects of our study are Borel
(continuous) homomorphisms of G 1in 2. For convenience we
shall call them representations of ¢ in P. Every unitary
representation gw> Ug of G induces a representation g-)n(Ug)
of ¢ in PR. If G 1is connected then distinct unitary repre-

sentations inguce distinct representations in Pe. This is
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* because if (Ug) and (Vg) are two unitary representations such
. g .
function .a(g} teking values 414 Sihce (Ug) and (vg) are

tHat n(Ug) = u(Vg) for 211 g then V_ = a(g)Ug for a

continuous, so is alg)y But a {e) =1 and § 1is connected

8q that alg) & 1Y

THEOREM 7;2 nie & A simpiy ‘cormected; then every
representation of ¢ in P is induced by a unique unitary

representation of G.

Proof: ILet g -> u_ be a representation of G 1In E.

23
Choose a section ¢ for =« and let N be a neighbourhood

of w(I) en which ° e  is continuous and has the property
that for u, ve N, c(uv) = c(u)e(v)e Define Ug, for all g

for which u_€ W, by U_= c(ug). Then g => Ug is a continu-

g £
oug local homomorphismi Becauyse § 1 gimply connected, fﬁis

may e extended o 4 %ﬁlﬁé’«r&répﬂesmﬁ&twhaaﬁ (F,) segits

(Ug) induoes u in a Beighbourhood of the

£ g
identity in & and hence (becsuse G is conhected) every-

since ﬁ(Ué)'g'u

wheres The unigqueness of (Ug) is a consequence of the con-

nectedness of G, as observed earlier,

The theorem is therefore proved.
From the two theorems above it follows immediately that
the dynemicel group of a physical system (which is a
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' representation of the regl line R in Aut (8)) whose logls
of propositions is identified with L 1is of the form
D P -> P

%

for a ﬁﬁigﬁe unitary representation (Ut) of Re To (Ut) we
may apply Stone}s theorem which we have obtained in Chapter 5
of Part I+ A4ccording to this theoremcthere is a unigue
spectral system (B, J) on the non-negative resl numbers such
that I-7* = E[0] ana Uy = [ gB(r) with respect to J.
If we write H for the unbounded self-adjoint operator on
the Q~Hilbert space H defined by the spectral measure then
JHt

we may write the above equation in the form U, = @ . The

following theorem is immediates

THEOREM 7.3 Let H be an infinite~dimensional separa-

vle Q-Hilbert spacee If (H, §) 1is any pair of operators on
H such that H 1is self-adjoint and non-negative (poseibly
unbounded), J is imaginary and Jx = 0 if and only if

Hx = O, then there is a unique dynamical group Dy of § such
that for each t, Dy transforms the state corresponding to
Ag § to the state corresponding to eJHt Ae'JHt. Conversely
every dynamical group of 8 is induced in the abaove fashion

for a unique pair of operators (Hy J)e
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We now go on to a discussion of representations in 2
of the relativity group G = the comnected component of the
complete inhomogeneousrLorent% group. Since G is not
simply connected we can not describe these in terms of
unitary representations of G, but inf; particular case which
interests us we may show that they are induced atleast by the

unitary representations of G*, the covering group of G

We shsll call a representation g => Uy of G in P

élementanz if the collection of operators ﬁﬂl[ugJ is

irreducible. Two elementary representations (ug) and (vg)

are equivalent if there exists a unitary operator M on H

such that for any choice of (Ug) and (vg) such that

x(Ug) = u_ and ﬂ(Vg) = Vg n(MUgm'l) = u(vg). An elementary

£

particle in its free state or a free particle is an equivalence

class of elementary representations of G

Tet G* denote the oovering group of G and ¢ the
covering homomorphism. The kernel of ¢ 1is a doubletons, We

shall write it as [+ ex] where e* is the identity of G*.

THEOREM 7e4 Let G denote the- connected component of

the inhomogeneous Lorentz group and G* 1its covering group.
Then there is a one~-one correspondence between elementary

representations of G and irreducible unitary representations
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of G* which preservee equivalence.

Proof: Iet gt => U, be an irreducible unitary repre-

g*
gsentation of G*_. Then U?-e* ==~§I so that U-e* =P - Q for
two rutually orthogonal projections P  and Q whope sum is
Te But U_.« commutes with every U;'g* and (Ug*) ig irredu-
.ciblee OConsequently either P or Q 1s 0 and U_x= % I,
This implies that g% > Ugy = n(Ug*) is constant on the atoms
of 8 so that there exists a homomorphism g => U, of G in
E such that ug = ug(g*)o(ug) is even continuous, because
¢ is open and continuous, sO thet it is a representation of

G in P. Since (Ugﬁ) ig irreducible (ug*) and hence (ug)

ig elementary.

Jonvergely let g -2 U be an elementary representa-
tion of Ge Then g*=> Ug (%) is an elementary representation
of G*. Since G* is simply connected, by Theorem 7.2, there
is a unitary representation (Ug*) of G* which induces (ug*)
and hence (ug), as in the previous paragraph.(Ug*) is clearly

irreducible.

Coming now to the problem of equivalence, it is easy to
gee that if (Ug*) and (Vg*) are equivalent irreducible unitary
representations of G*, then the induced elementary represen-

tations of G are equivalente Conversely, let (ug) and (vg)
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be two equivalent elementary representations of G. Then
g*-—> ug(g*) and g* = vg(g*) are equivalent elemeﬁtary
representations of G*. Let (Ug*) and (Vg*j be their
corresponding unitary representétions. Then there is a
unitary operator M such that ﬂ(Vg*) = w(MUg* M—l)' for

all g* so that there is a function a(g*) taking only the
e

values # 1 such that Vg = alg*) BO, M But then alg*)
is continuous and ale*) = 1. S8ince G* is connected,

algc) ®1 or Vo = MUg*M"l for all g* so that (Vg*) and
(U..) are equivalent,

g*

The theorem is therefore provedes

I

Because of this theorem the free particles in guaternio=
nic quantum mechanics may be identified with equivalence
classes of irreducible unitary Q-representations of G*. To
obtain the free particles, therefore, we have to write down
a maximal family of mutually inequivalent irreducible unitary
Q-representations of G*. Since 1t so happens that the free
particles having physical significance all correspond to
Q-representations of class C, we shall in fact write down
only these latters By our results of Chapter IV, to achieve
this we have only to get hold of a maximal family of
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mutuslly physically ineduivelent (irreducible) nonreal ==

O~repregscntations of G*. But. this has been done by Wigner

‘(Theqrem 1244 of Varadarajan, 1968). So there is nothing

else Tor us to doe
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