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PREFACE

The work presented in this thesis was
carrisd out uﬁder the supervision of Dr. J.
Sethuraman, Research & Tralnlng Sehool, Indlan
Statistical Institute, Calcutts, and 1s devoted to
the study of some stochastle models of standby and
parallel redundant systems, Some of the reliabllity
characteristies studled are the expected time to
system fallure, the long-run avallablllty, expected
number of system fallures in & glven interval of
time, interval rellability ete. These rellabllity
characteristics will be useful in the better design
of systems and making management declsiocns 1n improv-
Ing system rellabllity.

The investigations carrled out in this thesls

are presented in four chepters which -are preceded by an

Antroductory chapter in which a brief history of the

development of Reliability Theory sand a revliew of the

literature pertalning to the work presented in thils

‘thesls have besn made. ' i

In chapter 1 is discussed the rellabllity of
a single unit system with (N - 1) units as standby and

the units on fallure are repaired by a single repair

iii
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faclility. Sections 1 and 2 of thilis chapter deal
respectively with cases of continuous or intermittent
usage of the active unit, while section 3 deals with
the same Sysfem when the spares deterlorate in storage.
The phase method, the supplementary varlable method
and the results of pure blirth and death process are
used 1n studying the varlious models.

The case of N unlt standby redundant system
with multiple repair facilitles with exponential failure
time and exponential repailr time distributions has been
studled in chapter 2. The analysis is carried out by
using the compensation funetion technique, In the firsat
two chapters, the Laplace transform of the distribution
of time £o gystem fallure and the assoclated probabilitles
have been derived first. These are then used to generate
the genersl process probabilities using renewal theoretic
arguments by observing that the time to system fallure
period and the system down-time period that follows it
form a renewal process. The general process has been
used to discuss-the varlous reliability charsascteristics,

Chapter 3 deals with the reliability of a
standby redundent system with two types of units assign-
ing preemptive resume and head-of-the-line priority repalr
policies for repalr of the failed units. The system cone

sists of two types of units, one type having only one unit
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the other type having two units « an active unit
backed by a standby unit. The two types of units are
elther serles connected or parallel connected. The
analyslis of this system has been made through the
seml~Markov process obtalning the Laplace transform
of the distribuﬁion of time to system fallure ete,

The rellability of parsllel redundant systems
- with two types of unlts assigning priority repair poli.
ciey for the repalr of the falled unlts 1s investigated
in chapter 4 using supplementary variable method. 1In
sectlon 1 has been evaluated the Laplace transform of
the distribution of the time-to-system fallure of =
(2,2) = parsllel redundant system while in section 2,
the long-run availabllity of a (Nl ’ N% ) = system,

Analytiesal inter-model and intra-model com-
parisons have been effected at suitable places in the
thesis. Apart from thls in all the chapters, the beha-
viour of the system has been studied by glving numerical
~values to the parameters involved and effecting compari-
song between the reliabllity characteristics of standby
and parallel redundant systems in chepters 1 and 2 and
studying the effect of different prlority allocatlon
for repair in chaptera 3 and 4.

Lastly, the procedure adopted in numbering

the equations requires mentloning., The first figure
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stands for the chapter, the seéond'figure denotes

the sectlon and the last figure the serial number of
the equation, Thus (1,3.14) means the fourteenth
squation of the third sectlon in the rirét chapter.
However, the equations in the introduction are
numbered serislly, A list of references of the books
and journals which have been consulted during the

preparation of this thesis is given at the end,

Directorate of /> N\t/L\._o}_w.
Sclentific Evaluation,

Defence R & D Orgenlsation R. NATARAJAN
New Delhi,
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INTRODUCT ION

The accelerated rate of technological develop-
ment since the World War II and especially during the
past decade is characterised by the development of more
and more complex systéms containing large numbers of
sub-systems, components and parts, The advent of space
crafts, electronic computers, cummunication systems,
complex weapon systems, etc. requlre equipments of ever
increasing effectivensss or reliability. The modern
systems are so complex that tne fallure of single in-
expensive part or component may cause the fallure of the
entire system, Therefore, reliability is theé concern of
2ll selentists and engineers engaged in developing a
system, from the desigﬁ through the manufacturing to its
final use. Rellability is essentially an attribute of
the design. If rellability is not built-in at the design
stage; no amount of production control will Improve the
systems rellablliity, On the other hand, systems deslgned
with high reliabiiity may deteriorate in their performance
due te lack of good quality control and maintenance. The
systems with high reliability are obtained not by-accidents
or coincidences but as a result of conscious effort by sall

concernead,
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The theory of reliability has grown out of
ever increasing demands of the rapld growth of modern
technology and the work 1n this field derived a great
impetous from the appliicational needs in missile industry
in the early 198503 [ Lusser (1952), Carhart (1955)_] .
Some of the areas of reliability research aret 1life test=
ing, structural reliability, machine maintenance problems
and replacement problemé. 0f these areas, we restrict
ourselves in this thesis only to the study of some sto-
chastie models to evaluate certain reliability characteris-
tics of the system under consideration. An excellent
survey of some of these models has been made by Welss

(1962 b) and Barlow, Proschan and Hunter (19685) .

THE DEFINITIONS OF RELIABILITY CHARACTERISTICS

Reliability has been deflnsd in different forms
in the literature depending upon the quantitles calculated
to suit the different rellability problems. These measures
have been deslgnated by different names: reliability, avail-
abllity, interval availabllity, efficlency, effectliveness
and so on, Barlow and Proschan {1965, pp 5-8) have pre-
sented & unified treatment of various concepts and the
quantities involved iIn the rellabllity studles. We shall

now define some of these including the ones we ghall be
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using in this thesls.
1. Reliability: Reliabllity is the probablility of
a device performing its purpose adequately for the perilod
of time intended under the operating conditions encountered #,
The period of time Iintended is also called the "mission
time" and 1s ordinarily assumed to be (o, t} . With
this definitlion, if T represents the 1life of the equip-

ment, the reliability R(t) 1s glven by
RetY = Po 0T >t) (o1)

As measures of dependability Hosford (1960, p 53)
defined the quantitles pointwise avallablility, interval
availability and limiting interval avallabllity.

£. Polntwise avallability: This is defined as the
probability that the system will be able to operate within
the tolerences at a given instant of time t. Let this be
denoted by P, (f) . The term "avallability" 1is used by
Walker and Horne (1960, p 42) for the same quantity.

3. Interval avallability: This is defined as the ex-
pected fraction of a given interval of time that the
system will be able to operate within tolerences. Repair
and/or replacement is permitted. Let this quantity be

denoted by H (a, b)., Then

# Radio-bElectronics Television Manufacturers Assoclation,
1955,
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L |
e,k )= g J Bt (0:2)

Loa o
18 the interval availability for the interval (a, b).
Barlow and Hunter (1960 a, pp 46-47) refer to essentlally
the same quantity as "efficlency".

4. Limiting interval avallabllity: This is defined
as the expected fraction of time in the long-run that the
gystem operates satlsfactorily.

To obtaln 1iﬁ1ting interval avallability simply
we cémpute'kyfii (o,‘t) in item (3) above., Barlow and
Hunter (1960 a, p 47) call this quantity "Limlting
efficiency"., Coleman and Abrams (1962), Bashyam and
Jalswal (1964) call the same quantity "Operational readi-
ness of the system. Gaver (1963) and Natarajan (1967, a,
b, ¢) discuss the same measure under the name "Long=-run
avallability®.

5, Interval Reliability: Interval rellability 1s
defined as the probability that at a specifled time, the
system 18 operating and i1t will continue to operate for an
interval of duration, say x. Thls was introduced by
Barlow and Hunter (19681, pp 206-207) for the case of &
system having single falled state. The comblned operatlion
during the interval 1s, of course, to be achieved wlthout
the benefit of repalir or replacement. To obtain this
guantity, let X{+)= 1 1if the system is operating in time
t, zero otherwise. Then the interval reliability R {x4)
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for ean Interval of duration x starting at timet is given
by )
ROw,t) = P [ Xtz 4 ¢ wetrx] - (o)

"Limiting interval reliability" 1s simply the limit of
R(x, t) a8 t > w» . Truelove (1961, p 27) calls this
"Strategle reliability", Subsequently, Natarajan (1967 a)
and Srinivasan {1967 &) havse used this measure to evaluate
the rellablllty of the systems. 1In chapter 3 of this
thesis, the upper and the lower bounds of this measure
have been generalised for the cass of a system having more
than one falled state, It 1s assumed that repalr and/or
replacement is permitted. |

Drenick (1960 aJlaléo has given a somewhat
different genersl model from whieh by suitable modificstions
he derlives definitlons of certaln quantitlies of interest in
reliablility. His formulation is in terms of a renewal pro-
cess. Failures during [0, t} oceur at times 1,,t,, - tajti<t;
¢ -t, <t 4 replacement 1s made Iimmediately following
fallure, A.gain function khbiﬁ,t) deacribes the economic
galn asccrulng from this outcomse, where L = (t,.t,,--1,)

Thus the expected galn U{(+t) upto time t 1s glven by

e )
gy = 3 W G0 40t [n ) ag Py [wit):w)

n=6

(0-4)
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where-f(t‘/an) 1z the joint conditionsl density of
failure at time t,<t, <. -t given that N(t) = n,

N(t) belng the number of failures in (0, t ) . Special
cagses of (0.4) yleld quantities that Drenick calls re-
placement rate, maintenance ratio, mission success ratio
and mission survival probability.

Other reliability characteristics of interest
and which have been evaluated in thils thesls, are the ex-
pected time to system fallure, expected duration of system
down-time, the expected number of system failures in a
given interval of tlme (O, t) . However, for the case
of intermittent usage of the system these characteristiés
are defined slightly differently using the concept of
tdisappointment! due to Gaver (1964). For the definltions
of these, one can refer to chapter 1., These characteristics
are useful in some management decisions, especially, the

provisioning of spares, repair facilitles etc.

TYPrS OF COMPLEX SYSTEMS

The description of the system which 1s under
investigation, 1s an essential part of any relisbility
study. Simplest of all the systems 1s the single unlt
system., The unit may be & component 1ike capacltor or
resister, a sub-system like a2 module of an electronic

equipment or an equipment 1tself like a power generat
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a single communicatlon recelver or computer, When there
are two or more units in a system, the system becomes
complex., In & complex system, the unlts may be connected
in serles or in parallel or in & combinatlion of both
these arrangements. The varidus system configuratlong
are shown in fig - 1.

Series system: This 1s defined as a system wherein
thse fallure of one unit will cause fallure of the complete
system. As shown in fig 1, the input of one unit 1is the
output of just previous unit in the arrangement.

‘ Parallel system: In thls system svery unit has a
separate input and output not affecting the input or the
output of the other, Hence, this system 1s defined as &
8§ystem wherein the fallure of all the units are necessary
to cause a fallure of the system,

If we know the reliability of the individual
units of the system, we can obtain the rellability of the
entire system. Por these relationshins one can refer to
rsome of the rscent books by Calabro (1962), Pleruschka
(1963), SAE Sub-Committee on Reliabllity (1963), Barlow
and Proschan (1965).

Having known the different types of systems
that we commonly meet with In practice, it i1s necessary

<
to know tne method of Improving system relliability. One
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of the well-known techniques of increasing the system
reliabillity is the use of redundant units. These units
may be arranged Iin parsallel as above or they may be kept
&g standbys to be used for replacement whsen the unit in
use falls, The former type of redundancy 1s called
parallel redundancy while the latter is called stand-by
redundancy. The redundant units may be identical units

or functionally same unlts. In the case of parallel re-
dundancy all the units in parallel are active, though one
may be In use. When the unit 1in use fails, the function
is done by the next unit. At any Instent, any one of the
units In parallel elther 1n use or otherwlse has the same
chance of fallure as all of them are active. 1In the case
of standby redundancy, the situstion is slightly different.
Here, the unit in use 1s the only one which i1s active and
the rest of the units are inactlive and when the primary
unit falls, immedlately one from the stand«by replsces it
or is switched on, In these studles, it 1s assumed that
the sensing switching mechanlisam 1s fully rellable and the
switch over time 1s negligible though this sssumption may

not held in some practical situations,

THE REQUISITES OF A RELIABILITY MODEL
The reliabllity studies of these systems malnly

comprise of two saspects, The first one: Construction of
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sultable models to evaluate the rellabllity characteristics
makling use of the parameters of the individual units whieh
are affected by the inherent design of the equlipment and
the manner in whiech it 1s used in the field (continuous or
intermittant usage) or other environmental factors like:
deterioration in storg¢sge ete. The second one 1s the
optimisation problemﬁééterminetion of the number of re-
dundant units so as to ovtimlise a stated reliability
sharacterlstic: subject to some restrictions like cost,
storgage space ete. This in 1tself 1s a seperate branch
of study involving sophisticated technliques like

analysis, mathemstical programing and information theory.
Early work In this line 1is due to M¥Mine (1859), Moskowltz
and Mc Lean (1956), Bellman and Dreyfus (1958) and Moore
and Shannon {1956}, For a good discussion on redundaney
optimisation, reference can be made to Barlow and Proschan
{1965), chapter &,

Our malin aim in thls thesls has been to study
the first aspect of the relisbility problem, namely,
gonstruction of sultable stochastic models to evaluate
the reliabllity characteristics of some of these systems.
Ho effort has been made to study the optimisation problem.

It 1s required of any stochastic model in the

»ellabllity studies of these asystem, a complete knowledge
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of the process involved and relevent assumptlons
governing it. The description of this stochastie
behaviour necessltates the specification of the
following:

1) Description of the system;

11) Definition of sultable reliability
characteristic of the system;

1i11) PFailure distribution of the individusl
units;

iv) Mode of replacement of the failed units;

v) Repair time distribution of the indi-
vidual unita;

vi) Repair policy;
As the descrliptlon of different systems and
the definitions of different relisbllity characteristics
have already been discussed, we shall now discuss brlefly
the remalning aspects.

Fallure time distributions: As wlth human 1life, each
population of similar units exhibits life characteristics
with respect to time. We suppose that the random varisble
T denoting the length of l1life of & unit has a probability
density funetion ( p.d4.3¥) #4(t) which is zero for
negative t. Moreover, the failure times of different
units will be assumed to be mutually Independent, The
distribution funetlon F (t) of the random variable T

g#lves the probabllity that a unit has falled by time t.
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it

That 1s
+

F(t) =P, [ Tet] = § 400da (0°5)
o
Evidently F(t) 1s a non-decreasing function of t with
Flo) =0 and F{(+) = 1 | In the reliabillty studies
more often the complementary function R(4) = t- F(+) 1s
used., Thls 1s also called the "Survivor function" or

the reliasblillty function.

Then R(t) = LT >t] (c.6)

Clearly R(C) =1, R (= )= O and R(t) 1s non-increasing

function of t. Also

$E) =Sy R L) (o0.7)

assuming that the derlvative exists.
Another functlon of Interest is the faillure rate
funetion "{+) . This is defined for these values of t

for whiech F (+)<1i, by

MN(4) = 4 /[ t- F(H)] (0.%)
and 1s the same as tage-specific failure rate', instante-
neous failure rate'! and the 'force of ggg;i%i%y' asg used
by ths ac%?ries. In extreme value theory, thls is called
tIntensity function' (Gumbel, 1958), Thils has been widely
uséd in the reliability theory under the name 'hazard rate!
88 A{(4)dt representz the conditional probabllity thet a

-r-‘- gl e~ ‘h«-.

ﬁ}\i, 3 4
a2 _T ig ? Fﬁ \;«m\
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unit will fail in the interval CU,t+4¢) given that it
has not failed upto time t. Using (0. 7)) and (0.8 ) we

can write

t |
|- rCt) = exp [~ X an] (0-9)

and 4 ‘
F) = A eap (= AmAu] (o-10)

In most of the typical situations the 1life of
8 unit can be broadly divided into three periods: (1)
the period of infant mortality; (ii) the perlod of use-
ful 1ife having only chance fallures; and (iil) the
wear-out periocd. The hazard rate A(t) 1is very high in
the Initial stages and sharply decreases as timeﬁﬁasses
in the first period, During the second period, the
hazard rate is constant and fallures during this period
follow & completely random pattern. This period 1s nor-
mally the longest of the three and the useful period too.
Most of the units, equipments are designed for use In
this pericd. Finally, in the wear-out perlod because of
ageing of the unit, the hazard rate lncreases. The plot
. of hazard rate A(¥) agalnst t would look like & trough.

A number of familles of distributions have been
ugsed for the life length of electronic and mechanleal

components and the fatigue fallure of materisls. A4

12
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detalled discussion of these distributlions are found in
welss (1962 b), Barlow anfl Proschan (1965) and Cox (1962).
Reference can also be made to g;;ﬁ {1952) and Mendelhall
(1958), Some of the important families of fallure dls-
‘¢ributlons are the exponentlal, the gamma, the Welbull,
the normal and the log normal. Of these familles, the
gemma, the Weibull and the normal have lnereasing fallure
rete for some parameter values while the exponentlal has
constant fallure rate,

The Weibull distribution is applicable to the
large group of problems In which an event 1n any part of
the object affects the object as whole, Thls distributlon
has been used to describe fatigue failure (Welbull, 1939),
vacuum tube failure (Kac, 1958) and ball-bearing fallure
(Lelvlein and Zelan, 1956)., This is moét useful to des-
eribe wear-out fallures. The form of Weibull distribution
and 1ts fallure rate functlon are gilven bijeibull distri.-

butions:
ol
d-1 At =
fray=2rett e Al =hat  w>0 430
(o.11.)
The fallure rate 13 lncreasing for « > 1 o
The gamma dlstribution has been wldely used to

build stochastic models of telephone traffic, gueuelng,

inventory and reliabillty studles because of its mathe-
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mathretical tractablility. The distribution and its

failure rate function are given by Gamma distribution :

ol _ s - 2t
X{}”‘r,)k\e *»+ }\kik\ 2
$(4) = — y At) = P =
r(h) r(!"‘) S{, n{»hd(_‘u
"ok >0 , 4+t 20 (012)

This distribution also has ineresasing failure
rate when k >4 . A well-known property of this
distribution is that it can be generated as k-fold con-
volution of an exponential distribution whose distribu-
tion and fallure rate are glven by

Exponential distribution:
i(*}:)\é’}&)}\(*):}‘) }‘:-'O)'f =0 (0.!3)

The exponential distribution has constant
failure rate and 1t characterisss that part of the life
of an equipment where the failures occur in a purely
random fashion, This distribution has been thoroughly
studied by a number of people, the basle one being
Epstien and Sobel (1953).

Just as central limlt theorem plays an
important role to provide a basis for ths use of normal
distribution in many statistlcal procedurss, so does =
1limit theorem by Drenick(1960 b) for the distribution
of positive random ;ariables, aprear to favour the use

of an exponential 1ife time dlstribution. On the
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strength of this argument, exponential fallure time
distributlion hes been sssumed in a number of models
in this thesis.

Mode of Replacement: Replacement of & unit may
' be as a result of preventive malntenance policy or
the failure of the units. A continuous checking 1is
essential to detect the functional deterioration or
the fallure of the unit. For this purposs, cptimum
cheeking procedures and preventive malntenance and
replacement policles heve been evolved by a humber of
people of whom reference can be made to Hunter (1962),
Welss (1962 a) and for optimum inspection procedures and
to Flehinger (1962), Barlow (1962 ¢) and Radner end
Jorginsen (1962) for preventlve maintenence and replace-
ment polieies.' However, in this thesls, only replacement
after the equipment fallure 1s considered. To detect the
fallure, the system is conceilved to have & asensing-
switching mechanism which switches on the redundant unit
immediately after the fallure of the unit in use. It is
assumed that the sensing—switehing srrangement 1s fully
reliable and the switch-over time 1s negligible though
this assumption 1s a 1ittle restrictive, Recently,
Srinivasan (1966 b) has considersd the reliability of
a single unit system with single standby wherein the

switeh-over time i1s not negligible,

15
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Repalr Time Distribution: Units on fallure are
repelred by & single or multiple repair faclilties.
Let TJ,T;"'T;"' be the durations of repsir on
guccessive units at the service facility. We assume

'

that the V. are independent positive random varlables

and are identically distributed with the probabllity.

P“{ ¢ T;g 4+d13 = St} d+t

S{t) in general has an arbltrary form and for purposes
of analysls, it is useful to express S{(t) in the follow-

ing form

"
() = N exp =) qerda ] e (o)

where 'fo7d*’ represents the first order conditional
probability of repair completion in the interval (t +d¢)
given that the repair has not been completed upto time E-
Some of the commonly used repair time distri-
butions are the exponential, the K-Erlang, the degenerats,
the negative bonomlal and the geometric. Of these, the
most favoured ones being the exponential and the K-Erlang
distributions, for the same reasons as mentioned in ths
case of a failure time distributions™Mhen the repair time

&
1chontant T 5, its density function is glven by

S(t) = 6(t-17)


http://www.cvisiontech.com

17

where O{Y¥-T) 1s Dirac delta function having the pro-
bablility concentration at ¢ . This distribution 1is
obtained as a 1limit of K-krland distribution as K tends
to infinity.

Recently, Lisbowitz (1966) has studied the
effsct of varlous repair time distributions in increas-
ing the time to failure of a two element redundant
system and came to a conclusion that this increase over
that of & single element non-repairable system depends
only on the product of the failure rate A and the mean
of the repalr time distrlibutlion and not on 1ts form.

Repair Pollicy: The repalr policy comes into the
picture whenever there 1s more number of falled units
than the repalr facllities avallable. In such a situa-
tion, the units on their failure walt at the repair
facllitles to get repalred. The repair policy followed
may be "first failed first repaired" or "“random selection
of the units" or selection of thne units assigning some
priority.

The problem of priority assignment arises when
there are two or more types of units to be repalred. The
normally adopted priority assignment policies are the
head~of'-the~line, preemotive, alternating and dynamilc
priority repair policles. In this thesis, only head-of-

the-line and preemptive repalr policles have been con-
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gldered and a description of these policiles can be

found in chapter 3 of this thesls,

MARKOVIAN SYSTEMS

In all the reilabllity models consldered in
this thesis, it has been &ssumed that the fallure time
distribution and repair time distribution of the units
is either exponential or arvitrary distribution. In
those models whereln both these distributions are ex-
ponenﬁial, the process is Markovian, There are a number
of techniques available for the solution of these pro-
cezses; for example, the generating function technique.
Moresover, tp the models dlscussed here, the totallty of
units from which the fallures can occur is finite and
hence these models are finite source models, These pro-
¢cesses ¢an be identified with a birth-death process, a
" detalled study of which has been made by Karllin and
Me Gregor (1957) by the methoéﬂ§pectral analysis.

Another useful technique, speclslly useful
for finite source problems for analysing Markovian
Systems 18 the compensation technlque of Kellson (1962),
- Thls method has been made use of in chapter 2 of this

thisls 1n studylng the relliabllity characteristics of

15

a standby redundant system with multiple repsaslr facilitles
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and wlth exponentially distributed failure and repair
times, The compensating functlon technigue is useful
when the fallure and the repair rates are independent
of time and the transitions in the process are skin-

free,, The description of thls technique can be found

in chapter 2,

NON-MARXGOVIAN SYSTEMS

1If, on the other hand, the distribution of
the fallure tiﬁe and repalir time are other than exponen-
tial, the assoclated stochastle processes are not
Markovian in continuous time and hence the study of
these non-Markovian processes calls for speclal tech-
niques, These techniques have been primarily developed
for the study of certaln gqueueing processes such as
%/G/1, GI/%/R, etc. and are borrowed for the analysis of
similar processes iIn reliability models considered here.
The techniques developed are: (i) the Imbedded Markov-
Chain method of Kendall (1951, 1953), (ii) the Supple-
mentary variable method due to Cox (1955), (111) the
Phase method of Frlang, Luchak (1958), (iv) the Extended
chalin method of Gaver (1258) and (v) the Seml-Markov
process metinod of Weiss{f1956b} 096238 and Fabens (1959).

Kendall (19821l) observed that though the gueusing

process of M/G/1 or GI/M/1 type are non-Markovian in
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contlnous time, it 1s posslble to extract a Markov
Chaln at certalin discrete tlme points called "regenera-
tion polnts" and this Chain was called the'imbedded
Markov-Chaln' by Kendall. Usilng Fellerts theory of
recurrent events, Kendall dilscussed the stesady-state
behaviour of the Chain. Thls method has extensively
been used since then in the study of non-Markovian
systems.

The supplementary variable method introduced
by Cox (1955) and extended to translient studies by
Kellson and Kooharian (1960) consists in carrying along
with a process X(t) of motivating interest (such as the
number of falled units 1n the system, the time to system
fallure etc.) as many supplementary variables ‘Y((f)
as are required to maske the joint process {K(*}fﬂ{ﬂ,YJ“;“g
Markovian 1n continuous tlme. The discussion is then
conducted on the state-space or the phase-space
(% Y%,4:5° - - ) of the statewspaée. The formulation
leads to a gset of difference-dlfferentlal equations with
assoclated boundary equations, Thess are then solved
to obtain either the transient or the equillbrium solu-
tlons. The abstract formulation of this method can be
seen In Kendall (1953) who called it the 'augmentation
technique', but it was Cox (1955) who appllied the method

to derive the M/G/1 equilibrium solution. Application
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of this method can be seen in Jaiswal (1961, 1862, 196518,b)

Thiruvengadam (1963, 1965 a, b) Subba Rao (1965)1?67),
Keilson (1962 ¢, 1964) and others.

The phase technique, essentlally due to Erlang,
consists in replacing the failure time and repalr time
distribution with the Hrlang E - distribution which 1is
nothing but a k .fold convolution of the exponential
distribution with 1tself. The parameter k provides an
extra degree of fresdom permitting one to control the
variance as well a3 the mean. This distribution i1s of
great‘importance by virtue of its analytic simplicity.

A failure time or a repair time of an individual unit
having this distribution may be regarded as conslisting of
k. successive tphases' in sach of which the time spent

hes the same exponential dilstribution. A greater gene-
rality 1s obtained if one divides the fallure time or the
pepalr time into equal exponentlally distributed phases
end assigns to each perlod a probability €, of consisting
of r-phases. kxamples of the use of this method can be
geen in Gaver (1954), Luchak (1956), wishart (1956).

gaver's extended chain msthod (1959) is an ex-
tension of imbedded Markov-chain method of Kendall which
{3 not in itself suited to the study of processes in

sontinuous time. In the M/G/1 process, Gaver conslders
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tthe state of the system' at regensration polnts, which
are the service initiation points, is made by T, the.
time of the service initilation on the n-th customer and
m, the rmumber of customers left behind in the gqueue at
the instant. The sequence of joint values g‘h&(T“) ,1}»3

.constitutes a two dimenslional {arkov Chaln on the co-
ordinate space (n, t) described by the sset of distribu-
tlons PTL(anf) or assoclated densitles. Gaver con-
siders the busy perlod process first and obtains P im,t)
within a busy period in terms of the one-step transition
probabilities. From these are deduced the busy perlod
densities and by consldering the 'general process! from
the Renewal theory point of view, the time dependent dis-
tribution Iin ™M and walting tlme distribution in the
general process are obtained.

The semi-Markov process is obtained as a gene-
ralisation of the Markov process, Let ¥ = (P(}) denote
the transition matrix of a time homogeneous Markov-Chailn
with m 4+ 1 states (that 1s,i,j;.011,2, ceeem),  We
shall now define a stochastic process { z {t),t 2o }
where Z(t) = { dsnot es that the process 1s in the state
i at time t. Given that the process hag just entered a
state, say i, the selection of the next state is made
acdording to the matrix P :(_P(}). The distribution

funetlion for the 'stay' of the process in state 1 given
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that the next transition will be to state } is denoted
by F”({) . These F,;{t) are called the waiting-time
distributions. Let F{) = ( Fq(f)) . The process
1s Markovian only at certain "Markov polints" in time
¢t which the state transitions take place. If we
specify the vector of initlal probabilities ( a,,a,, "
6., }» the resulting process is called a semi-
Markov process (S.M.P}s Thus an SMP 1s a stochastle

C el 7\,{
process which moves from one to another of & cenvert-

eble number of states wlth the successlve states visited
forming a WMarkov-Chaln and that the process stays in a
given state a random length of tlme, the distributlon
function of which may dspend on this state as well as

on the one to be vislted next, It 1s thus a Markov-
Chaln for which time scale has been randomly transiormed.
The counting process Nj(*))(i:o,g- .m) assoclated with
this SMP 1s called a Markov renewal process (MRP). A

time homogeneous Markov-Chain is an S.M.P. where
Fff(f):’ o , t <1

= 4 , v oz

A stable, continuous time parameter Markov process 1s

an 8.M.F. in which 811 wait time distributions are ex-

ponential, that is
-2t
Fl;')(‘\“); 1- € t

W
O
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for constant 15 >0 for every 1. If there 1s only
one state, & Markov Renewal process becomes the ordinary
renewal process. The method of S.M.P., was applied by
Fabens (1959) to queuelng, and by Welss (1956b, 1962a) to
Inventory models, to problems in relisbdbility and egquip-
ment maintenance and by Barlow {1962b)to counter theory
snd rellabllity problems, Srinivasan (1967a) has used
this method to evaluate certain reliiabllity characteris-
tlcs of 2 two-unlt standby redundant system with repair,
A combinﬁtion of above methods have been attemp-
ted for solving many of the reliabllity models considered
in thils thesis. The general procesa of some of these
models can be viewed as a renewal process with each re-
newal cycle comprising of a time to system fallure (TSF)
period and a system down time perlod. The TSF process
has been obtalned by any one of the above methods and
renewal theoretic argument 1s then used to obtain various
rellability charscteristics, A good account of renewsal
theory csn be found in § Feller (1941, 1949, 1957),
Smith (1958) and Cox (1962) |. '

RELIABILITY OF SYSTEMS WITH REPAIR

In most of the reliability models considered

in the literature, 1t has been amssumed that the failed
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units of the system are replaced by new ones lnstanta-
neously. O©On the contrary, in many of the systems we
come across, the failed units are repairable and they
become a3 good as new after repair.

r Barlow and Hunter (1961) have Investigated the
reliability of a single unit system which is repaired
upon faillure and returned to operation after repair,
Their work is an extension of earlier work by Takacs
(19513, 195% b) and Weiss (1956 d4.), on counter theory
problems.

When there are more than one unit in the systen,
we are confronted with complex systems with a series or
parallel redundant or standby redundant configurations.
Garg (1962, 1963, 1965) has obtained the measures of de-
pendability as defined by Hosford (1860) ior complex
systems with ﬁnits in serles and with a single repsalr
facility.

The aspect of repairability of failed units
has been further elaborated in this thesls to cover
gsystems with parallel or standby redundancy. It is to
be noted that in these cases, a unit after repair is put
into operation if the system is parallel redundant and

is kept as standby If system is standby radundant.
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PARALLEL REDUNDANT SYSTeMS WITH REPAIR

The stochastic behaviour of the N component
parallel system can be 1dentified with that of a simple
machine interference problem with N machines or finite
source models with ¥ units, These models have an imme-
"diate applicatlion to the reliability problems., For the
study of machine interference problems one can refer with
advantage to the work of Khintchine (1952),'Pa1m (1947)
Benson and Cox (1951), Takacs (1951b,1956, 1957, 19594,
1962), Cox and Smith (196l) and Thiruvengadam and Jaiéwal
(1264 ) . Barlow (1962 a) in an expository paper has
given a number of repairmen problems as applied to re-
liability of complex systems. He describes the general
repairmen problem as follows.

Suppose we are given m identical units sto-
chastically inaepenaent of one another and supported by
n spare units. Unless otherwlse stated, =211 unlts are
operating at ¢t = 0. Suovnose that éach falls according
to & distribution F. Furthermore, suppose that we have
a repalr facility capable of repairing 4% units simulta-
neously. Obviously,‘we could conslder the facility as
consisting of 4 repairmen. The following repair policy
has been observed, If all repairmen are busy, sach new

failure jolns a waiting line and waits until a repairman
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| becom;as free, It has been assumed that the repalr
times sre also independent, ldentically distributed
random varisbles with distribution G. Figure 2 will
be helpful in explaining the various models of repalir-

- men problems.

ACTIVE UNITS SPARES
—— F — n
m

REPAIR FACILITE

— G

A

Flg.2 Repairman Problems (Barlow (1o62 é))
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The object of studying repalrmen problem 1s
to determine how reliability can be improved by the usse
of rsdundant units._ In repairmen problem, 1t ls assumed
that a total fallure of the system occurs when all the
machines are in the falled state either undergolng re-
_Eair or waiting to get repaired. Often we are Interested
in the distribution of TSF and 1ts moments. Barlow has
obtained the solution of these problems by identifying
the stochastie behaviour of these models with those of
the machine int:rference problems or telephone trunking
problems., In most of these cases, he gives the stationary
probabilitles and the mean recurrence time to the state of
system fallurs.

Further, when the failure time distributioy and
the repsir time distribution ars exponential, the basic
process of the repalirmen problems 1s Markovian and corres-
ponds to the blrth and death p}ocass. For this casey
Barlow has glven not only the stafionary probabilities but
also the distribution of TSF. When at least one of the
distributions F and G is non-exponentlal, the distribution
of TSF has not yet been obtained. A study of this distri-
bution has been made 1in chapter 1, section 3, of the pre-
gent thesis for the N unit parallel system with single
rebair facility and with exponentlal fallure time and
general repalr time distributions. This parallel system

belng one of the repalrmen problems, has been discussed


http://www.cvisiontech.com

s

as a particular case of standby redundant system with
(N~1} spares wherein the spares deteriorate in storgage
with the same rete as the failure rate of the unit in
use., Further, in chapter 4, section 1, 1s considerad

a complex. system with two types of units such that two
ﬁ%its of one type in parallel are connected to two units
in paraliel of the other type. This sytem is called a
(2,2) = system. In general when there are N, units of
type 1 1n parallel and No units of type 2 in parallel
in the system, the system is called an (Nl » N2 ) -
gystem. Allocatlon of priority for repalr arises when-
ever there are more than one type of failed units. In
sectlon 1 of chapter 4, the distribution of TSF of a
(2,2) - system has been obtained under the assumption of
exporentlial feilure time and general repalr time distri-
butlons assigning thé head-of~-the~-line and preemptlve
resume priority policles for repair of the falled units.
The analysls 1s carrled out through the surplemsntary
variasble technique. The effect of interchange of prioriw
tles on the expected TSF has also been studied for the
particular case when both the fallure time and repair
time distributions are exponential and it is cbserved
that the adoption of head-of-the-line priority discipline
for repair yields higher expected TSF than when preemptive

resume discipline i1s adopted. The material presented in

29
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this section is based on a paper published in IEEE
Transactions on Rellability [Natar'ajan, (1967 b)J :

We consider the general (Hl s N. } ~ system

2
in section 2 of chapter 4 and obtaln the long-run
avallabllity of this system under the same assumptlions
as in section 1. Investigations are carried out firsat
by obtaining the probabilities associated with the

busy periocd process of the repalr facility., Then the
general time-dependent process in which busy periods
alternate with the 1dle periods has been studied in
terms of the busy period probabllitles and the proba-
billty of finding the repair facllity idle st time ¢,
Pinally, the long pun availabllity of the system has
been obtained in terms of the steady state probabilities

for the twoe vprilovrity repalr policies.

STANDBY REDUKDANT S5YST wws WITH RLPAIR

Very little work is availlable in the literature
for the rellabllity studles of standby redundant systems
with repalr of the failed units, Srinivasan (1966 a) has
studied the TSF of two-unit standby redundant system
where both the fallure time and repair time distributions
are arbltrary. This belng & field so 1little explored
that the bulk of the presént thesis has been devoted to

the relliability studies of standby redundant systems.

30
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Chapter 1 of this thesis discusses the rellability of
a system with singlie unit in use and (N -« 1) units as
standby and a single repalir facility. Sections 1 and 2
deal respectively with the cases of continuous usage or
intermittent ussge of the active unit, In section 3 has
Been discussed the relladilitr of the same svatem wlth
spares deteriorating in storg¢age. A couparison of the
reliability charscteristlics of the ¥ unit standby re-
dundant systems with those of the N unit parallel systems
as well as with the standby system when the spares de=
teriorate ln stor¢age has also been made in this chapter,

The case of N unit standby redundant system
with ¢ repalr facllities with exponential failure time
and exponentlal repalr time distributlion has been studied
in chapter 2, This analysis caniﬁéed to study the effect
of increasing the number of spares sgalnst the effect of
Increasing the number of rspalr faclliities to achleve a
desired reliability of the system, The results of thils
chapter are also compared with those of parallel redundant
systems with ¢ repalr facilitlies. The material of this
chapter 1s based on a forthecomlng paper in Operations
Research (Natarajan (1967 c)) -

In chapter Z 13 considered the reliabllity of
standby redundant system with two types of units assigning

head=-of-the-line and preemptive resume priority repair
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pollicies for repalr of the failed units., The system
consists of two types of units, one type having only
one unit and other type two units -« an active unit
backed by & standby unit. The two types of units are
elther series connected or parsllel connected, The
analysls of the system has been made through the semi-
Markov process (S8§P) aporoach.

In all the models consldered in this thesis,
an attempt has been mede to obtaln the distribution of
time to system fuilure and its first two moments wnlech
are then used to gtudy some of the rellabllity charac-
teristics of the system such as mean recurrence time to
the state of system fallure, the expected number of
system fallures in a glven interval of time, the interval
relisoility and so on. It has also been pointed out in
ehapters 1 and 2 where there are only one type of units
in the system that tihe expected time to system fallure
can also be obtalned in terms of the long-run availability
of the system,

It is hoped that thess reliability models will
be of use 1n the better deslgn and utilisatlon of modern
squipments and systems and thus promote the better underw
aﬁanding and atillsation of the advancement of science and

technology for the benefit of humanity.
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CHAPTER 1

RELTABILITY OF A STANDBY REDUNDANT SYSTEM
WITH A SINGLE RoPAIR FACILITY

The use of redundancy is a well-known tech-
1lque of improving system reliabllity. Redundancy 1n
1 system can be achieved either by a parallel arrange-
nent or(a standby arrangement of the units. Units may
e components of an equipment, sub-systems or equlipment
chemselves., In a parallel redundant system, all the
iits of the system are connected in parallel and are
In operation to start with. When a unit fails, 1t is
repalred immediately and put into operation. The system
fallure occurs when all the units are in the failed
state simultaneously., On the other hand, in a standby
redundant system, besides the unit functioning in the
gystem, some units are kept in reserve as spares to act
as standby., That is, when the functioning unit fails,
it 18 replaccd by one from the spares and the system
sontinues to function ti1ll . all the spares are used and
gystem fallurs occurs when there are no more spares left
out when a unit under operation falls., This chapter 1s
devoted to the study of a single—uﬁit system with (N - 1)

spares., As soon as the unit fails, it is replaced by a
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-‘ : y
" unit from the spares immediately &nd the system corne

_* tinues to function. In addition, the falled units are

]

_;ébpaired by a single repalir facility and after repair

°ir'opmpletion, are returned to the spare pool to d&¢t as

' ““standby., Fallure of the system occurs only when the

L ﬁnit in use falls and no spare is available for replace-

"ffu@nt. That 1s when there are (N - 1) falled units and

1y

" the unit in use also falls., Examples of these types of

* "pedundant sya?ems are to be found in power generation

.," systems, commnication systems, surviellance systems etc.

4
L]

"..Figure 1.0a 1llustrates this systems

: - i
| ACTIVE | STANDBYS
UNIT | A  Nef
..
- i REPAIR | .
o T IFACILITY T

W oy

Fig.1.0(a) Standby Redundant System with Repair

As the usage pattern of the system 4s an
important factoer affecting the system reliability, we.
shall study the reliability characteristics of the system

3
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when 1t 1s in continuocus usage end when it is in inter-
mittent usage. If the system 1s intermittently used,
the fallure of the system when the demand for its use
exists is called "disappointment" {Gaver (1964)} .

In both continuous and Intermittent usage cases, system
non~availability for use i1s critical and $he one aims
to keep the system in use as much as possible. 1In
achleving this, some of the important reliabllity cha-
racteristies for making management decisions arej the
average duration of time the system remaining in use,
the average duration of time the system remaining in
the falled state, the mean number of fallures of the

system 1n a glven interval of time, the expected number

of repair completions in a given interval of time (0, t),

the long-run avallability of the system and so on.

The quallity of spares has a considerable effect

on the reliabllity of the system | See Weiss (19628,

Sehweitzer (1967%. When the spares deterlorate in storage

‘to achieve the same reliability we must have more number

of spares 1ln storage. We propose to investigate in this
chapter the effect of deterioration of spares in storage
on system reliability.

This chapter on Standby Redundant System con-

slsts of the following thres sections,

35
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SECTION 1: RELIABILITY OF A SYSTEM IN
CONTINUOUS USAGE

SECTION 2: RELIABILITY OF A SYSTEM IN
INTERMITTENT USAGE

SECTION 3: RELIABILITY OF A SYSTEM WHEN
THE SPARES DETERIORATE IN STORAGE

In the flrst sectlon, we study the system
under continuous usage and obtain the Laplace transform
of the general process probabllitles by forming difference-
differential equations and solving them. Then, through
renewal theoretlc arguments, we obtain the distributions
of time to system failure and recurrent times. Using the
first two moments of these distributions we derive the
expregssion for the expected number of system failures in
& given Iintervel (0, t). The long-run availability and
the 1imiting Interval availability of the system are also
discussed {;Natarajan (1967&)} . In the second and the
third sections similar discussions are made for the system
under the assumptions of intermittent usage and deterio-

ratlion of spares in storage respectively.

SECTION 1
RELIABILITY OF A SYSTEM IN CONTINUOUS USAGE

In this sectlon, we shall be investigating the

rellabllity characterlstics of a system in continuous usage.
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The description of the system requires a knowledge of

the fallure processes, repalr processes and mode of re-
placements. Therefore, these processes are defined below.
1. Fallure of Individual Units: We assume that the
fallure time distribution of the Individual unit 1s ar-
bitrary and 1s approximated by the well-known phase
method [ Morse (1958), Luchak {(1956), Jaiswal (1961j}

The fallure time is assumed to consist of r exponentlal
phases with parameter A (¥ : t-4) with probability C.

J

such that X C, = 1 . That 13, if X denotes the time
v 1

for which a unit has been under operation, then
1
Fety = P [ x ¢t - §

fa]

_>\{ -1
C, e O xat txo0,270

1 (f-i){

ot DMy,

Further, the failure times of the individual units are
+1dentically and independently distributed according to
(1,1.1).

2. Mode of Replacement: As soon as the operating unit
fails, it 1s replaced by another one from the spare pool
ingtantaneously. By this, the system 13 nut into opera-
tion iImmedliately without any replacement time or switch-
over time. .
3; Repalr Process: A unit on fallure 13 taken for repair

immedlately by a single repalr facility, if the facility

is free; otherwise, it walts in a queue. The unlts are
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repaired in tneir order of failure, l.e. first falled
first repaired. Let {Eﬁl} ,n = ty2, - represent the

sequence of repalir times, Then we assume that

- i
D(‘{'):‘P““[eﬂs{']: 1t~ € {50)}\70
(1,t.2)

That 1s thne repair times are negative exponentlally
distributed, Further, we Introduce the followling defi=-
nitions which will be used in the analysis of the system

in this section and later as well,

4, Time-to-System Failure: We define the time-to-systen
fallure (T3F) as the duration of time from the instant

the system starts operating tiil the instant it fails

for the first tlme due to non-availability of a spare

unit for replacement. That 1s, during the TSF period,

the system 1s in the "up state".

.5. System Down-time: The system down-time (SDT) is
defined &3 the duration of time the system falls to the
time 1t 1s restored back into operation by tne completion
of a repair on a unit, The distribution of SDT 1s obviously
Dit) = “J-—E‘Nt .

6. State of the System: Let the random variables n(t) and
m(t) represent respectively the number of falled units 1n
the system at time t and the number of repair completions

by time t. Then, we define the state of the system to be

{(myn) if n{(t) = n and m(t) = m, m and n taking the positive
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integral values.

7. First Passage Time Distributlon: Denote by th(+)
the distribution of time taken to reach the state > (t17)
for the first time, starting initilally in the state
MY = L . Here, we are defining states with respsect
to n{t) alone. Then GQ‘NU),E # 8N  represents the dis-
tribution of TsF, G, ., {t) represents the distribu-
tion of SDT and is equal to D) and G, t) repre-
sents the distribution function of the recurrent time
to the state N

8., Flnally, we define the Laplace transform of a func-

tion ¥(+) as

- © st
£{sy = {f e Fet) At \ Re () >0
[~}

and the Laplace 3tileltjes transform of a distributilon

function F{t) asg
f-24)

A - At ) :
Eiwy = J € A FLt) Rels) >0
[a] .

Now we proceed to investigate the general
process probabilitles by forming difference-differentisal
equations and obtaining the Laplace transforms of the

state probabllities,
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GENLRAL PROCESS PROBABILITILS

The proceas of the system can be viewed a&s one

in which time-to-system failure periods alternate with

system down-tlme perliods during which the system 1s being

restored to operable state. When the system starts func-

tioning after restoration, there are still (N-1) failed

40

units in the system. If the system continues to function,

repalr completion and fallure of 1individual units take
place a number of tlmes and the system fails again when
all the spares are emptied, These cycles repeat. Thus
in this process, transition from any state (m,n) to any
other state (m',n') is possible. We call processes per-
mitting such transitions, the 'general process',

Let us define the following m-step transition
probabilities assoclated with the general process for
transition from any state 1 at time t = 0 to any other
state at time t.

(o
1. P o (¥,%) - the probability that at time t, there
are n falled units in the system and the overating unit
is In the ¥ ™ phase of its failure time,

(.}

2, P, ., (f) - the probability that at time t, the
3

aystem 1s in the falled state as the system failure takes

place when all the N units in the system, namely, the

‘single operating unit and all the (N-1) spares are in the


http://www.cvisiontech.com

41

falled state simultaneously, Defining the random vari-
able Y{t) to denote the phase of the failure time of

an operating unit, we hnave

(a2

“Pl'in (T’Ft’) = ’P'f’ "ML*‘)CM’Y\{J&):W 3\)({"‘:?/ ("‘p)1:3)
» “(9'):;}\’\"\(0‘):03

and OE!:EM)OrLﬂ,(M,)oc‘.V‘éijmao
(m)

T Ut ) g P [ G6) 2w mtt) = N [mer=t ,mb’”],
o (1.,4.4)

It 1s observed that the general process is Markoviean

© ¢ L &N m

\v

with respect to the state space over which the set of
probabilities (1,1.3) and (1,1.4) have been defined,
Therefore, 1t is esuasy to construct the difference~
differential equations governing the process by connect-
Ing the various state probabllitlies at time t and t + A

and taking the limit as A — o , Thus, we obtain

n (=) {m™) ()
Ge o (t,4) = ~O+p) Py n(v +}+A?‘.n(1+f)r{f')
Cmi-1)
+ A C, 'P {H(.HJFP (.,m!(v)-g)’(i,ys)
(my W\E.o()15~f4j.,c.:*n¢94-'l
f.'— £ {m)
.MF’(.,“U,H = '(AH‘A)P (J 1) +AC:P, RS (s
‘ (m-!}
_ 4"*P,h+r(J;'f) afo,O(ﬂ(N*i
{(w (») (my
il y
.é-‘_Pt',N—l(?"{') = “’UR*PKBP QI(T+)"‘>‘C P1N2(1+]
™)

{m -1)
5 AP.,N NEFTIY +p C, P, - (+) (%1
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4 P(‘q‘l} : (m) (M)
:f} i‘;*\‘l-' (th) 5 "'(XJ-EM) P{"\‘"r (}'JF{-) 4 ACJ ?L k'-‘(I.rf.j

(m-ﬂ A (1)"8)
+ k Ca ?c‘)M k‘t)

§

‘ ?(W\} (‘M) {‘.“;)
Sl ) s - P : P Ty ke
. A ¥ SR uNH)*A it',w“’nﬂ L )
{ () () ()
i Peo () = = X P (9,4) 4 AP (ve1,4)
Cw-13 R CINATY
+ o Py (v, t) 1674y
1 v Cand -

;5,{"'.6 (V) 5 = P'a (_),1)4,,4?{\4 Cy.t) i)

%

3ince the system starts at time t = O with 1

falled units and the newly commissioned unit being in
g (w3 I
the ¥ phase, P£{ (+,01: €, (22te¢n}, Therefore,

L]

the iritial conditions for this process are

(G
| ?“,‘Y\. (?,0) = Sa-.m. g{"“ C_,p ({3"l9-’)

where 5‘? 1s the Xronecker delta function.
To facilitate the solution of the above equa=

tions, we define the generating functions

)

-s; )
i (1,1.13)

ot kan ™
‘Pi]w(\r>zu+): Z— £ -PL"

e

O YL N
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: tnd 20 e L}
Po.(x4) = 2 z Po (1) (1, 1.14)
s w6 !

which are convergent for | 21 ¢ |

In terms of the generating funetions (1,1.13)
<and (1,1.14) and the Laplace transforms, the equations

- {1,1.5) to (1.1.11) becoms
"( EE P+A) Pt.,’ﬂ (ﬁr"zl-’sﬁ) ® k;éc',n'( 'fd!,?',é) + '\Cy Fu‘ » M) (1’2'4)

+ zp P vizsyat, Cr o (4,4.05)

“(rapte) P i ; ,2,5) 4",\Cj' T’;m_'(i;z,,&‘) + z 4 P (},2.8)

€0+ )

+8:,C; 70 (4,1.16)

~(rapis) Po (v,z 80 4 MC, P
! {

(12

3 M-

4 )P‘\’N_! (ver,2,5) 4 Z pa C. E'n(?"&):o (4,1.17)

L s) B et (3,2,5) + VC, F. 1(",‘1;(3) + ZIuCJ' ?\rmfi,f57""'0

£, N
(1,1.18)

- Cpan) Po(2,8) o+ 3 P.,N_I (1,%.8) ¢ 6 (1,3.19)

i

<= (24 3) Pc‘,n (+,2.5) + > P:‘

4

1 (¥41,2,5Y 4 Z M P1 ] (v,%.3) =D
{1,1-20)

;. (/\4(6') F!‘ (j. -2 4 o .
;0 o 4o ) = M Pt.”(JaZ;é):O (1,,"21)
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In obtaining the sbove equations, it was assumed that
= (m)
Gn (7T.8)=zp at oo . Further, let us alsc

define the followlng generating functions

3 - LY
o P = s 0
¢ (z.=,5) : I x P{ h(-{’z’ls') andd Pz, %,9,8): 2 4 4,0z 4.5
f Y6

w":f

et

4y ’E

Multiplying (1,1.15) to (1,1.21} by appropriate powers
of x and y and summing over Y from Y:! fo v, and
over n from n = 0 ton « N, we get

> Moz

[(,Mf.i&,z”}--jz e J P(= ¥,y ,.5)

Al

T - A [‘i-’-}C“‘)J b

' L¢3 -
:

L ]
¢ 3 g - . S = . MTo
4 P 2 8) 4y LY [Aap - o JTi-ey]
+ =P ; ¢

— P z 5 - L , t

ol Ol Y Wt ] )4-2,-1({— lj)ﬂi‘bfzixrb)w"kj C(*n)
(1,1.22)

X

¥

:
where Ciany = 20 % ¢
b | i

Choosing X such that the coefficient of 7 {z.4,9,3) 1in

(1,1.22) becomes zero, helps us in evaluating

Net
n - .

Z Y Pt.m(ﬂ,z,é). Accordingly, 1f we put «n (4,1.22)

LA ]

T o = ¥ (»ey)
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and simplify, we get

Mot .
C:;(Z',Lj’,b) - mz;;g 3& 5"371(112)!5’)
{ .ot
=2 ti Pz(u-.;.)};‘\; T"-’o(_-f,:r;,,zs)_;.:a(c-'jn) “E.)N(Z,/_s)
B 4y’ P Nf.z,,ﬁs_)(-!-“f;)C(Y}.;.tjttit‘/)] Al -3cw>]
2 [ :

(1,1.23)

The denominator of (1,1.23) 18 a polynomial of
(1es) _th degree in y and has, therefore,( +:) zeros. By
Rouche's theorem, 1t can be easlly shown that this equa-
tion has j zeros inside and one outside the unit circle.
Since the expression on the left hand side of (1,1.23) is
regular in the entlre Y plane, the numerator must vanish
at all the {y+1) zeros of the denominator, thus gilving

rise to (j++) eguations in (j+:) unknowns, namely

B - .
Z §- . I s Ly =5
g B Bl ‘:iq)z'; Ve Tioit2,8) + }‘(""59)1’;,”(‘“’ s

A

e C(V) =0, €212, Ury)
(1’*"24‘)

where Y, = Xy, / Faspt s —pez) and Y, are the roots

of -y T C, Y -0

It can be shown in this case that the (}4+:)
equations are linearly independent 1f we assume all the

(j+1) zeros of the denominator are simple for, the
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determinant of the coefficients of F; (v ,z, ) and

-

?.&( 2 5 in (1,1.24) can be shown to reduce to

1O)-1) i

2 st ¢ )\ (‘j[-')
A = {(=->r) I!?’A —
Log L Ormea)y-re
3 31
! ‘J" -j' t‘J‘ (’i{
e J-
- l {JZ hjz sz L’lz
T NES]
! I RN
e dher Ny, a;
(1,1.25)
where
J ?
M(1-9p ) 4y [mz- TFE ZC{ A
t o 5 —_—
gt 4 Ji] e T LOskes)yy -z i
% /
Ap l-1)

(Adp sy, -px%

Froﬁ this, it is observed that & will be
non-vanishing and, therefore, the (1) equations are
linearly independent provided the roots are not egqual
to unlty and are distinet. In the case, when some roots
are repeated, a modified procedure as in  Wishart {(1956)
mey be followed. The ()41} unknowns %LQ(TJLA) and

%cﬂq(z,b) are solved by using Cramer's rule. 1In

particular we obtaln
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4 I ;i B
T - Y 5 C. (A e) PR 5
- - 5 -1
) boot (‘39-1) vz [(*4}**/5)’13-}42] H"Q
Fl‘ N(zué) = N
! ’ S J At v
341 y4ban ¥ G == d: ?
e g e ] B
5 0 Yt Y [rz-peay] & I0Gmyepe [ O
gt ")g‘i ' Lt
(>4 f‘*ac)!j(-‘f"z‘
(1,1-26)
where
A b Y 5 i-i 5
e T = "‘3-),_' = ] (Y- Y)
i ' hjl ‘1»\ tj:}' w= 1
t2” . MEIF IS 2.
LI - T 9., y®
. 2 - 1,1.27
i jl-u LJ!:‘-H ‘j;_‘: ( > )
1 (1 ik
: j‘.:-*’ IJ'H tj;-n 1

As 5;,q(23;5) is the generating function of the Laplace
> {m)

transform of the probabilities P.  (t) , we obtain
P (1
is in the failsd state starting initially with 1 failled

, the probablility that at time t, the system

units irrespective of the number of repair completions
by putting <=!' in the generating function P, M(z,{)‘

That is
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(M‘) ;
(t) = [P, N
;I oz

+
() = o L g1

N =

o0
,,“Z;o? (1,1

Hence, the Laplace transform of i g{t) can be easily

obtained from F; ,¥/4) in (1,1.26) by putting =1t .

DISTRIBUTION OF TIME TO SY3TEM FAILURE ARD RECURRENCE
TIME TO STATE N

How, we comnnect the general process probabili-
ties FT)N(13 wlith the first passage time distributions
G“N(T) by simple probabilistic argument, enumerating
the possible ways in which the state N could be reached
at time t from tne initial state 1 at time t = 0, The
Gfﬂd(f) , U % represent the distribution of time-
té—system failure and Gltﬁif) represents the distribu-
tion of recurrent time to the state N. When ¢ # ™M the
state n(t) = N at time t starting with the state 1 ini-
t1ally can be reached in the followlng way. The system

starting in the state 1 initilally reaches the state N

 for the first time in time & <%t , Then in the interval

49

.28)

(*,%) the system reaches the state N at time t starting

In the state N at € . Obviously, the first event is a

first passage event and the second a general process event
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and, therefore, we can write

t
-Pl',Nt‘f) = jo PN,M (-t..’t)ci(;.'-,u(’t)

1

G (e P, (1) T4 N

49

(1)1'29)

- where * denote the convolution operation, When U= B

the system inltially starts in the failed state and
the state n(t) = ¥ 4s achieved 1f @)} no transition

from the initial state N occurs in time t or b) a

transition occurs for the first time from the initial

state N, through N-1 stec, to N In time T <t and start-

ing at T In state N the system reaching again N at

t. Thus

PoL(t) < [1__—,_)(“] + GN’N(H* Pz (1) (1,1.30)

Taking the Laplace Stieltjes transform (LST) dn both

sides of (1,1.29) and using the expressions for P; ,
and 'PN,N (2) obtained from (1,1.26) by putting =z -
and 1 = N, we have for the LST of the dlstribution of

time to system failure,

- ! ?‘-;N (‘ﬁ) ?tl:" ('&J
R
| P8 Vs 27

(.3}

4
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Y41 ; t . » .
; (-UHE de ; €19 -
ted - 2 \.\\ (‘j'\f"‘.],g)

Yg= 1 vz [(A+,-+,>}‘5(_N]~‘—< .
ves syt sl

. [ N 1] T A l
et Ity 3 0L (M) I
S —— 7 - e T 094-95) (

£= Yot A= [(aapdadyrp] Ne s 1,1-31)

ves, v, ok

h

and the LST of the distribution of recurrence time to

Lhe state N obtained from (1,1.30) is given by

Fat
~ ""D(/S')
I NP (1,1-32)
' P (8)

(e PR

Particular cases:

The LSTt's of the distribution of time~to~-system
failurse In the particular cases; (1) when the fallurse time
distribution of individual units iIs K-Erlang and (i1i) when
it is negative exponential, will now be obtained.

(1) K-Erlang failure time distribution:
In this case, S«=} , ¥ =h- ang Cy=z0, v £k

so that (1,1.26) becomes

SR , ks
s~ T Ghey)
. S (L’"'){(“*”"‘)‘J!’f‘]h-'v:izs‘;v,/safi
@(. [4) =
s A Y bt !J'\Hf-'z 244
. ) i
ey — eyt 11 199792)
fe0 (90 [ 4 pts)y,-p] v

‘{‘/5‘)1)-’5 #‘e

(4, 1-33)
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where Y,,4, - -- are the roots of the equa-

' \jiz+!

tion - 4 - y [7 o }k =5
( \JP-P,S)&,—-H A

(i1) Exponential fallure time distribution:

In this case, C,:\ ¥=z4{ &and C,=0 , ¥ #F1

go®that (1,1.31) becomes

'
~ 9, L1 -7 )= v (1-52)
< Y
G, ((&) = , (1,1:34)
gy (- =) - gy (=)
i 4 2 3
AyE
where 4, ,Y, are the roots of the equation 1 - =&
(24 pea)y-p

SOME RELIABILITY CHARACTRRISTICS

We shall now evaluate some of the lmportant

" pelisbllity charscterisics mentioned at the outset., Let

the random variables and T4 represent the time to

system failure and the duration of system down-time res-
pectively., ULet in the general process, the system start
operating at instants 1, <t <t, - -~ Thﬁn.'tﬂ(k)? th'{h-i

will be comprising of the k ® TSF period and the

succeeding SDT period. In fact, we can write

v lky = b -6 o T k) T )

k-1
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we call 7T,{k) the k th renewal period and the se-
quence{'tguﬁ}(ha-i) constitute & renewal process and
{Tl(h)ﬁ(h 217 & modified renewal process. [ Cox (1962)

P«28 ] . This renewal process 1s shown in figure

" 1.0(b).
* ! i /
E t,
— ! —+ } | ‘ f
T T4 T2 T, 0 T3 T, 4
'to .tl " {2 A 3
2 () v (2> T 19

Fig 1.0(b) Renewal Periods

.f
Denoting by £ (T ), the ¥ th moment of the random
variable T, we have from the result of renewsl theory

for the expectation and the second moment of the random

variable T

R
E(Te) = E ., (Tu) + E(T4) (1,4.35)
e(rl) = B (THy + £ (T4) ORED)

where the suffix (N-1) stands for the initial state at
which the TSF starts within the second and subseyuent
renewsl periods. The moments of the TSF process when it
starts initially with any state i, L 4 N can be obtained
by differentiation of G; (») with respect to -4 =and

taking the 1imlt as .5 .» o . In particular when the
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fallure time distribution of individual units is expo-

nential with parameter A, we have from (1,1.34)
E(T)Fvé-é-r/s) ! . L |
(T T 4 e = [*W-H**-—(—*---.)'
. 3 f"{"?) i-f P” P

Cand putting { = n-j (1,1-37)
=

N
R L= I G

i

i- € » £ M

Since E(71,) - i; , the expected duration of repalr
time, the expression for mean recurrence time E(T,) in

(1,1.35) becomes

) N N4l
E(zg) s o b e (AP 7 1 <
® g B ?N[ ] 5@ ftf” [ V- o (ﬁ)i'39-)

and the expressions for the second moment of T, and (p

are given by

poot
2 E“(Th) e f’ N4+|
+
" {N + (i-gy pA }J (4,4.40)
and
E(7 ) 2 + ..;P_ [ :
T"‘ b~ f P'L('_P)z {( N-—I)+1(>(¢+,!_ )}

('?"‘4!,\
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Using (1,1.38), the ratios of the expected
TSF to the expected SDT {(which i1s also the same as the
sxpected repair time of the falled unit) for various
values of ¢ and N have been calculated for the case
of exponential fallure time and repalr time distribu-
%ions. Thege values are plotted in logaritimlic scale
against ¢ for various values of N in fig.l.1l. It may
be observed that there 1s a steep decrease 1ln expected
TSF. as ¢ Iinoreases. It also emerges from this flgure
that when ¢ » 1 , increasing the number of redundant

units does not appreclably increase the expected TSF.

LONG~-RUN AVAILABILITY OF THES 2YSTEM

When the system continues to operate over
fairly long perlod of time, it passes through a number
of up-states alternating with down-states. Uslng the

renewal property of the process, we can write ?{Nyt)as
1

- &
Penltl s G D 1- D]+ SO Pu o (o) A P Og1) (1,142

where ¢A%?(3wl) denotes the renewal density glving the
probability of occurrance of at least one restoratlon
from the downnétate to up-state, i,e, to the state (N-1)
at time y, the system having initlally started with 1
failed units, Let the sﬁeadynstate probabllity b” re-

present the L '?{ ;(1) . Then by apvlyling
Fep oo !
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W0 OF EXPECTED TIME TO SYSTEM FAILURE TO
EXPECTED SYSTEM DOWN TIME FOR VARIOUS F AND
" N OF STANDBY REDUNDANT SYSTEM
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Smith's (1954) theorem to (1,1.42) (for the statement

of the tneorem see chapter 2, gection dealing with

L

. T
ergodic properties) and noting that = ja‘Pwﬂsﬂ(*)'4+

= E(-T‘_,‘) we have

<
B b= § P 414t
[ ﬁ(TR) ) e ;N
- MBS
£ (Te) poELT)

eM(i-¢)
?”'ﬂ (13"43)

Iy

t -

for the exponential failure case,

The long-run availability of the system is
defined as the probability that the system 1s in the
up-state when 1t operates over a long period of time

and 1is, therefore, given by . b . That is
N

Long-run Avallabllity - 1-b,
i ECTs)  Fea (T
T TRy ez
P
= —;:‘;H (",‘-44)

for the case of exponential failures,
Thus, we observe that the long-run avallability
of the system 1s also equal to the ratio of the expected

time to system fallure to the mean renewal perlod.
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LONG-RUN AVAILABILITY OF THE STANDBY REDUNDANT
SYSTEM FOR VARIOUS N AND ¢
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The long-run avallabllity of this system for
various combinations of f and N has been obtained by
using (1,1.43) and 1s graphically shown at flg. 1l.2.

It wiil be observed that the curves for long-run avall-
abllity 1ncrease sharply at the beglnnling stages and
*tend to flatten out as N increases, It is evident that
there is almost complete system avallabllity for small
values of ¢ and for practically small number of
standby units. However, for large values of e (€ 21)
as the curves flatten out, 1t 1s practically not posslble
to achleve any arbltrarily hilgh degfee of system avall-
abllity as 1t requlres very large number of units, Fig.
1.2 can also be used tc determine the number of standby
units to be used for a given € to achleve 90, 85 and 99

per cent of system avallability.

Number of system failures in the Interval (0, t)

The successive points of occurrance of system
failure form & renewal process, Define the random varl-
able ™y as the number of system failures in (0, t). We
note that the system failure states alternate with the
gystem up-states and the comuencement of system down-
state at t £ 0 1s not counted as a renewal, The random
variable N4 forms one of the most Interesting characteris-

tlcs of the process, When the system starts Initially
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with the down state, the renewal process 1s an 'ordinary
renewal process' and wnen it Initially starts with up-
state, it is a modified renewal process, Dencoting the
renewal function by H(t), the expected number of system
fallures by E (™;), the probabllity density of GN‘NH)

and G;,N(” by gMNH) and Efw +y i # o We have
Mty = B ONg) (%,1.45)

The Laplace transforms of H(t) for the modified renewal

process is given by [Cox (1962) p.46]

-

= o802
LN
H_M(b) = =
s [ - ’3~’N(/.‘:)J (1, 1.44)
- and for the ordinary renewal process is given by
P %N, (/5)
H, () < i (1, 1.47)

A t- ﬁmﬂ(b)]
Now, we study the form of H(t) for large t through 1ts

Lapléce transform using Tauberlan arguments, The Laplace
. transform of (C]N,)\\(+) and gf;’* () as 5 o can be
expressed as

ﬁmm (6) = 41 - 5 ECT, )4 A" E ("t:) + o {») (1,1.48)
and

‘}C,N (Y = 1— A E(.(’tu)-k/si"f‘-(’fh?') + o(s") (1, 1.49)

Using (1,1.48) and (1,1.49) in (1,1.46) and (1,1.47) and

expressing in terms of powers of 4 we obtain

e

A
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- ECet)y .
Mo = : e a L EAT) L, 45D
A* ECTY 25 {E(’?",_')]z‘mm; El.(z—.f)’k O(‘:‘%) (1 ‘)
E(Te ) ‘
;& () = -—'——- 4~ “—“'—"R"'__" = «-'- } J
) ST ECTY 23 (ECT]T s #els) S,

Formgi inversion of (1,1.50) and (1,1.51) glves the ex-

L4

pectéd number of system failures in (0, t) as t -> o0 1

= t E(TL E.’(F-u

tm._("'{) : o+ 2 ) - ___i--;) il 0(1) (1)\.52)
ECT) 2le (v E ()

_ + £E(T)

Eo (Ng) = + = =1 a2 el1) {1, 1.52)

EC(z) 2\ (v

where the suffix m and o for i on the left side stand

for the modified and ordinary renewal process respectively.

Interval Rellabllity

Interval reliability R (x,t) 1s defined | Barlow
and bunter (19€l) , Barlow et al (1965) ] as the pro-
bability tnat given the systen is in the up-state at time
t, it will continue to be in the upstate without reaching
the down-state for an interval of duration of x. The
l1imiting interval reliability is simply the 1limit of

R (x,t) a8 ¢ —» » . Then it 1s easlly seen that
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-t
R{x,4) = | 1+ — Glrm(++z}] + So [{-—-—-Gmhu(*ﬂ}#z)]dq‘((tj,h

(1,1.5u)

. where ohj?fgj) denotes the probabllilty of a recurrince

of restoration from the down-state to up-state, l.e, to
state (N-1) at y. The limit of R(x,t) as t -» = follows

from Smithfs theorem and 1s given by
ot

k _ ‘ Sx [ e GN—I ()]Aﬂ
Eom: Rixt) = N g (t,1.59)
b~ ot £ (7,)

£ {%:) belng the mean recurrence time.

Integrating by parts the numerator of (1,1.54),

the upper and lower bounds of the limiting Interval re-

- 1liability are obtained as

E . (.Tu’)“" H i E_ (TM
ik £ :‘“"” Rix,t) ¢ LT i,154)
E.(?i‘,z) S E{T)

which is always trus.

When the fallure time and repalr time distribu.
tions are exponential, the lower bounds of limiting in-
terval reliability have Been calculated using (1,1.56)
with p = 1.0 and ¢ = 0.2 for variocus values of N. These

values have been plotted ageinst the interval length x

. snd are shown in fig., 1l.3. From this figure, one can
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OWER BOUNDS OF LIMITING INTERVAL RELIABILITY
OR VARYING LENGTHS X OF THE INTERVALS
(STANDBY REDUNDANT SYSTEM)

TEPETRIRTITY 1l Loaos el 7 wnl PR U TR ATy | L bt sk
10 10° 10 10” 10 10° 10’
LENGTH OF INTERVALS X — -

f 1@ng a vardl
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determine the number of standby redundant units re-
quired to achieve & stated interval reliability in a
“glven interval of time x.

SECTION 2

RELIABILITY OF A SYSTEM IN INTERMITTENT USAGE

Unlike the case where the system i3 used con-
tinuously as in section 1, In this section, we consider
a system which 1s used only during the period when the
demand ror its operatlon exlsts even though it may be
functioning. The disapvointment occurs when the system
fails within a period of existance of its demand or it
1s already in the falled state when the demand occurs,
Natufally, the states of this process depend upon the
exlstance of demand for the use of the system. Correg-
ponding to sach state of the constant usage process, we
can agsoclate a state of tne lntermlttent usage procesas.
The state of the system 1s described by the random vari-
éble n(t), the number of falled units at time t, 1In the
constant usage process, n(t) varies over 0, 1, 2... N
whereas in the intermittent usage process, it is assumed
that n(t) takes the value s when the demand for the
system does not exist and takes the value N+ 1 ¥ j when

the demand exlists, ] denoting the number of falled units

60
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in the system varying from O, 1, 2 ... N. We dlstin-
guish between the probabilities corresponding to the
intermittent usage process and the continuocus usage
process by placing an asterlik () over the former.

| In order to relate the probabilities corres-
ponding to the intermittent usage process with those of
**he continuous usacre process, we define two probabilities
‘?.H) and P(+) ., Let P (t} denote the probability that
the déemand for the svstem exlsts at time t given that 1t
existed at an initial moment. Lot XA be the probablility
of demand oceuring in time (t, t + &) and p, A be the
probability that the demand terminates in (t, t + & )},
Then connecting the probabilities at t and t + & , We

have

Polden) = Pilt) Dim a1 Pty ] oo

Transposing and taking the limit as & - o we obtaln

d ST e — p

;}- -Pl('i) = e Al""}-\g P;(’*) + )\'

Integrating this linear differential equation, we have
- (rap)t

Ny o
< (t,2-1)

Polty o o 4 :
’\‘4"\' Ao by

Similarly defining P(t) as the probabllity that the
demand does not exist at time t, given that 1t did not

exist at an initlal wmoment, we obtain
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(= ( A.—f 'Ml)-f

Moy Y
: Q Ci,2:2)

HGE ‘

A.‘i"f‘r A|+’p\’

Let P.;(4#) denote when the system is in
cdntinuous usage, the probability that at time t there
are j falled units in the system glven that it started
with 1 failed units at time t = O and let‘??j“) denote
when the system 1is 1ntermittently used, the probablility
that at time t there are j failed units in the system
glven that it started with 1 falled units initlally,
Now using P.{#) and P(1) we derive a set of relatlons

*
between ?ﬁ(+} and ?;I(*} . These relations are

Py ) 2 PO P U

+ t-o,y,2 - M
Ly [1- P00 ] P (8)
Yo 0,4,2 N
4
e i G A P4)]) P (4)

L 3

P C (1) = P L) P (1)

Mal L N )

*
Denoting by (;;j(*) the distribution of first-passage

time from the state 1 to the state j in time t in the
intermittent usage process, the Laplace Stleltjes trans-
form of the distribution of time-to~disapoointment and

the LST of the distributlon of recurrence time to the
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disappointment state, the disappointment state being
the state 2N + 1, are cobtalned by applying (1,1.29)
and {1,1.32) with suitable modifieations, ¥From the
state possibllitlies in {(1,2.3) and using enumerative

arguments as In section 1, we have

?af— + o . %
IR & 1 T & . .
« 52 (+) JO Grayamee BTV () 5 A # 704
? *‘ ‘ - ‘ ‘ + ° "
2wy, Ny hL} = [!' 5 H)J -+ SD C;Zme,‘?_&ﬂ ({'“t)d ’szn iml(t)
H
which on taking L3T yleld
n % AW A #
P i
; f>?H+f(b) - C;x,zm&ifﬁ). F)2M+U2M+!(A) » X f 204l
-4 5
and o ( ) 2 4)
2@ 1 - D (3)
?zaw»i,:zuw {+} = ] ({,l.g)
‘ f Gy sy, 2 ()
* "'Q‘!*Ht)'{'
where D (4= 1- 2 ,ithe distribution

of the duration of disappointment time., Here the

‘auffix of takes the value 1 + N +1 or i sccording as

initia}ly the demand for the system exists or does not
exist.

Ir ﬂﬁ is the probabllity that initially the
demand for the system use does not exist and f, = 1- By
is the probability that initisally the demand for the
gystem use exist, then the dlstribution of time-to-dis-

gsppolntment can be written as
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» * %

C‘m‘,lw-(%] :fg‘c‘f ,;‘ué-nub} +{"‘2C"* (+) (*)2"4‘)

&
NEtdd , Fautd

the LST's of wnich using (1,2.4) reduce to

A E A % A ¥
ﬂ> ‘ f 4
{3y < ¥ 1",’2.~u('5) Pmu-:)zn»u (/5') )
A, 7l 5) o« ;{Bf e - /_’,1 e e i (e) 2;’)
% ro* { % * (3)
P 1,.;4.:,2_9«14("”) 2adty 2NAE

Applying the appropriate relations from (1,2.3) we
* *

can now obtain ?r ol ) SRS ey (+) A
# 3
?2”4!12.1\( 4t (’f) in terms Of P‘(‘i" )P('%) and P“,N(*)
Heﬁie | H()f{ﬂl)*
‘ 3 . s - -
Poanay (1) = L=PUO] P 1) - Py ti-e 37 W
3 ok )
* l \ M (3 Hi ) t+
. T — Lo sl ' {4
?N.“i' 7?'”4‘ (-{) = t)'{+) P’d‘l:\!’ {‘{) P‘;"_':“;_| E1 + A' Q ‘J 'P "IN( )
{ 1
(1:2:%)
and
. X . _(;HN'H
- 2 A 1 iy )
?2;«!,1,‘4,{4) = r.(’{) ?N)NH‘) -;:'; Y1+” g 2 JPN,NH)

Takling tne LST on both sldes of tne wbove relations,

we have

P B )
i ~ /5 2
i.) N {'b) - L P{,N (5) b P\"N (3 A R )J
Mot }"I o P!"‘é
~ A A
A ' Mo 3 3
P N2vd g Dby (./5) * i/ P,‘)ﬂ () +.5 - ?'. ('\r"'f‘c"”,é)‘
2 A4 po )\\ ko g;,‘?,}.o N w

(1i9‘9)
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A ¥ ’
3 = i F LAy (1\-\-\-\ A
TR ‘,‘Z.N*‘ }‘ . »n “\b\ -+ 5“ }\I ‘ ﬁ » \ 1 ‘)

Therefore, making uee of tne relations (1,2,2), the

k]
expression for G o, 2040 () becomes 14
A

N o '
| 2 XA ot
& o, 2 Nt (s) = [ 'Pu g (2) + A, . e FN,M( o P .3)]

A, " 1+ 5
{(5 {?‘ﬁ(»)_ﬂplm P (2P ‘)J

o
N [l __,_/5 'F-n ( Ay +Js‘}
R Pz{ ?”“(A)+ Ay A pts D8 j e J

(1 s 2 .15)
~
where F:  (4) 1s obtained from (1,1.26) by putting
a3 ——
Z: 4 and spplying the relation Fi,. (2) = 8P (%)
Rext, we ghall derive the expression for the
Let E_(7) denote

expected time-to-~disaprointment,

the expectatlon of the time-to-disapoointment, T, irres-

pective of whether the demand for system use initially

»* kol
exists or not, Let E,(T)and E, .;(7) denote the expected

time~to-dlsappointment when initially the demand for use

does not and does exist respectively, Then
» N »*
E T R F’LE; (7)4‘(!.; EN“*_;'(T) (153.“)

ot
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-

and 1s obtained by differentiating the LST of & _ (%)
In (1,2,10) with respect to 4 and taking limit as

A -=» ¢ «» Therefore,
~ *

{2)

™
=
-
S
s
{
b T
¥

CLamdy

A

A & i
oL - { ‘Pt‘,n.) (8) - WM—FM;*«S ‘P‘-’N()\N‘Pt +47)

-

Ao A5

e

H

&S A
* ?N'N(Ai"-pl*—rs)

=3

2]
(8 + ~——-
B } Ay Mgt pt s

S

Eale)
- E;(Tu) _‘ R ...-—{ . i»' PM {3 &{4").} )” (A‘*P‘)]
E(TJ) )\1{’&"""‘!3 .
(1, 2.42)
Similarly,
.*
i . £ {7

EN-H-rE (7) - Et‘(’“)"“ SL5e) : [P “""’Pl)"’“? (h*l“!‘ﬂ

E(Ty) > (*"‘Ht 713

Multiplying (1,2.12) by P, and (1,%.13) by P2 and

adding we obtain

E*f'f) - E(T ) 4 M.—-—L-—M [(} {1 ;‘ f}\ﬂn}#l; (Aﬁp).
¢ Y R I A A ‘J

~

(t,2:14)

where E(T.) reprssents'the expected down-time, E,{7,)
the expected time~to-system failure from the state 1

and EN(T;) s the expected recurrence time to the
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state N, all pertaining to the case of continuous usage
of the system, already obtalned in sectlon 1., The ratio
E(74) / Ex(%)  has also been obtalned as G:i;@ Puu (1)
using Smith's theorem and i1s given by (1,i.45).

It is interesting to observe that in {L,2.15)
the expected time-to-disappointment 1s readlly expresslble
as the sum of three terms, the first one belng the ex-
pected time to system fallure in the case‘of cqntinuoua
uasge of the.syétem_and the second and the third tedm
giving the addlitional contribution due to the use and

non-use pattern of the system,

- It also follows from the above result that
& - - ' B B B
‘:d (‘ ) — E:(‘“s L) """:'1""'5 ol 5""!6‘ ‘--;—; - . that is

when the mean period of use is infinite and the mean

period of non-use is zero - & fact which 1s 1ntdtively

obvioua, |
G G

In (1,2.5) substituting for P;~ﬂ,1n+1 ()

~n

from (1,2.9), we obtain the expression for G}én+,’2“+4léj

" which uniguely determines the dlstribution of recurrence

time to dlsappolntment and 1s given by

A =
A % 1— D ()
"’G‘z i '(;s) : : ,
N, LN A R
)\ A
22 Py 6 gl L P Aepds)
Mt e ! My et

(t,2.13)
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The maménté of the distrivution of recurrence time to

dis;tppointmant are obtained by differentlating (1,2.15)

with respect to » at 2:o . .
Denoting by E;“{’l‘;)_ and E, (?5L7

" the mean and the gecond moment of recurrence time tf;.

respectively, we have
* 3 *

5 £ — 1+ 6
Eiudr\(?pl )‘- AEO i Ga»ﬂ,iu-&l(’a)‘] :( '4?6)75.(?;“3)

and

»

2 L % *

E‘)M+I[TR ) = -i [f.._ éz 2w (A)J
) oAl R

5ty o A 22

Y
. [;‘:’; n m(ﬁ)} [—,} { "*f” (,;/b ,mﬂ&})

A

My A *
-+ P C x4 ) J A
(v py= M0 - X+ g PN,N(“) M _]
Whare ' (1 )Q_.I-l)
A3 = \'Hu,\t
g +4('-¢ ) = the expected duration of dis- = -~
appointment o By
s - mtf o
= S‘(la(eu e } = the second moment of duration of = ]
o disappointment CIE TR &
”~ ; ‘ : A ‘
Pan (0 = o - -me)f
mE(TY pE(Y) T M wOirp) o j ot Pu ult)

[~}
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(i‘;ww} : =BT+ Boe “’”J
Are f»—E {T'q

Moy #
?E‘ of At [ R E! = v-n-T‘-;-—
» Y

$
Disappointment free System Avallability

In the intermittent usage case, the rellabllity
characterlistics corresponding to system avallabllity is
the disappointment free system availability which is ex-
plained now, When the system 1s operating over fairly a
long period of time, it passes through a number of "up"
states alternating with "down" states wilth demand for
gystem use arlsing Intermittently, The systfm disappoint~
ment océurs at time t when the system reachea the state
2N + 1 whatever be its inlitlal state, Let the steady

%

state probabllity P2~4| represent 1im 1 —2> =

#*
P o 2ney (t) . Then by Smith's theorem |Smith

3

(1954)]
i &%
brer ‘;27‘ st '(J:JE ) ' (1,2418)
£ (TI';) Mo+ _ i+ f‘ E(Tﬂ) 3

Defining the long=-run disappointment free system avall-
‘ *

ablility to be = F e
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Long~run disappointment-free System Avallability

t!
1
-~

i

e st .('+F. ) 4
porp Vst ] E(Te)

b+ b v g () (1, 2-19)

1

since
E(T:) = -—;l;- 4 E, ., {Ta)

obtained in (1,1.39).
. %
Ageain, using (1,1.,43),the sxpression for i- P: in .
M4t

(1,2.19) oan be rewritten as

b b e (- k) &
2aid b - N o m' »

where 1-P, 18 the longerun availlsbility of the

system under continuous usage, Hence,

[Long-run disappeintment free System

- Avallsbility ‘
- longe=run Availlability of System Il £ b
under centinuous usage 5 ep e (1’2‘2°)
) i

showing thereby that this difference depends only on P,
~sorresponding to the eontinuous usage of the system and
¢, » & parameter indicating the usage pattern of the

 gystem., It may be observed that the quantity on the
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right hand side of (1,2.20) tends to zero or P,

according as f, tends to zero or is very large. There-

fore, the disappointment free system avallability is

equal to the long-run avallabllity of the system under

continuous usage when f,=¢ and tends to unity when

F, —> #0 . The long-run avallability of the system has

been caleculated for various combinations of N, P and Pl

and are given In table 1.l. An examinatioh of thls

table reveals the following polntas:

(1) the long-run availabllilty increasea_with
inerensling Pl as well as with Increas-
ing N;

(11) as P increases, the long-run availability
decreases;

(111) whsn both P and Pl are large ( > 1) in-
ereasing the number of standby units
does not apvreclably lncrease long-run
avallabllity of the system.

Number of disappointments in the Interval (0, t)

»*
Define the random variable, M, as the number

o ‘qu\A‘. <
of disappolntments aééerélﬁ% in the interval (0, t).
Using exactly the same argument as in sectlon 1 to find
the expression for the expected number of system fallures

in the interval (0, t), we obtaln the expected number of
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TABLE 1.1

Long~Run Avallebility of A Standby
Redundant System With Intermittent
Usage For Varilous Values of { And ¢, .

Pzo 2 Prora f:o6 F=08 ¥z o P-1-2

P,= ") 1 .83488 L7T1712 . 62877 . 55996 . 50496 . 45897
2 ,93806 .B9846  .B1666  ,73945  .66997  ,60710

4 .9987%  ,98462  .94438  .88005  .B0198 72344

6 .99995  .99756  .98096  ,93399  ,85856  ,77081

8 .99998  .00961  .99318  ,96162  .89999  .79501

0 99999  ,99994¢  .99759  ,97672  .90995  .80923

0ros | 1 .84127 72790  .64291  L.BT671  .52381  .45957
: 2 .96928  .00232 82363 74937  .68254  L.62207
4 .99878  .98521  .94650  .88462  .80952 73397

6 ,99995  L.99765  .06169  .93651  .86394  ,77954

8 .99999  .99963  .99344  L96309  .89419 80282

Q .99959  .09994  .99769  .97765  ,91342  .81650

poot 1 84848  ,74026  .65914  ,59595  ,54546 51323
! 2 .970687  .90876  .B83165 78076  .69730 63925
4 .90884  .08588  .94593  ,88986  .81818  .74606

6 .99996  .99775  .U8E5Z2  L9B3U38  .B7013  ,78956

8 L95999 .99965  .99374  .96476  ,89899  ,81178

0 .99999  .99995  .9977%  .97865  ,91735  ,82484

poos |1 .38889  .B80953  .75003%  L70370  .66667  ,63570
2 L7849  .93163  .87655  ,82456  JTTTTS 13545

4 ,99915  ,98965  .96255  ,91923  ,86667  ,81378

6 .99997  .99833  .98718  ,95554  .90476  .B84568

8 .99999  .99974  .99541  .974l€é  .92593  .86397

0 .99999  .09996  .99833  ,98435  ,93939 87155
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TABLE 1.1 (Contd.)
P
" P:ny F=0'4 Fzo'% P08 P-4 P12
ﬂ‘ra 1l . 91667 85714 . 31252 LTTTT8 75000 72878
2 . 98387 . 94872 . 90741 . 86842 «B3333 . 801568
4 . 29954 59224 « 27191 23943 « 90000 + 56033
6 . 99968 «599876 +« D139 « 966867 . 92857 88426
8 . 39999 . 39881 . 98656 . 98062 « 24444 . 89648
10 . 29009 . 92997 . 29879 . 988206 « 95454 « 20366
ﬂ:zb 1 . 94444 . 90476 37602 . 35186 « 33333 . 31786
2 . 9B9EE . 96315 . 93827 ,91228 . 38889 « 36773
4 « 29957 + 39483 . 28122 . 25962 « 33333 . 20689
& | ,99298 .39918 « 99368 £ T8 . 25238 . 92284
8 « 992998 . 99987 L2877 98708 26297 « 23008
10 « 99899 . 99998 « 99919 .99218 + 36970 « 93578
ﬂ=§0 1 . 7222 . 35218 « 93751 . 92592 « 91667 . 20883
2 « 99463 982091 « 23914 . 95614 « 23333 . 93387
4 . 9YET0 « 29741 . 92064 » 97981 « 96667 + 95345
6 . 39990 . 29959 . 92679 . 38888 . 7639 . 96142
8 . 95999 . 39883 . 99886 98354 . 98148 « 36383
10 « 99399 99989 « 99960 « 39609 « 98485 26789

73
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disappointments in (Q, ¢t) as t — = as
¥

2 #*
d t E, e (T ) E. ()
EM(N{)s--—;-— ' -+ w____.____zﬁ e L +O(,,)
E 2’ L4 i | [
-tgmu( ) .Z[E_;,N”(T,g)} Elm'(%’g) (k2819
* r
* t EJN-H(TR )
EO(Nf); x p =4 P 1 4+ o(t) (1,2-22)
E:u_n(fﬂ) 2[ E;gm,,,(‘z’é)]

where the gufflix m and o as in section 1 stand for the

modified and ordinary renewal processes respectively.

INTERVAL RELIABILITY

The definition of "interval reliability" is
modified slightly for the case of intermittent usasge of
the system. Here, we define this &s the probability that
the system 1s in the dissprolntment«free state at time t,
snd will continue to be disappointment-free for a further
period of x and we denote the gams by 'R*( »,t) « The
"limiting interval reliablllity" i1s simply the limit of

3.'3*(1;%} as t — % o+ It can be easily seen that

& * t X *
R () = L1- G o (X)) fmf Fe 6y g, (T4 ]t (30
e 1,2:23
where d‘)‘f'(g,%) denotes the probability of a recurrence

£ *’ P
of disappointment-free state at y, The limit of K (x, 6D

as ¥ —% ,5 Tfollows from Smith's theorem and is given by
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o0

+*-
e o = jx,[""g‘lm,zwn{ﬂ)}{{‘j
L P ﬁ 2:-24)
t e o L% ;
t'.‘ZM~+|( A )
-
2 zufﬁga{) being the mean recurrence time to the

disappointment state,
Integrating by parts, the upper and the
lower bounds of the limiting Interval reliability are

cbtalned as

o *
E T) o e Bo (T)
P27 < PR wst) & “;
* 1 > 00 ’
EZMH(T’;} E:‘enu {TR)
{t,225)
SECTION 3

RELIABILITY OF A SYSTEM WHEN
THE SPARES DETERIORATE IN STORAGE

The first two sections of this chapter dealt
with the reliability characteristieé of a single unit
system with (N-1l) spares in continuous as wsell ss
Intermittent usage., In these models, when ths unit
constituting the system fails, it was inmmediately re~
placed by a spare and the falled one was repaired by a
single repalr facllity and returned to the spare pool

to ect as standby. In this sectlon, we impose an asddi-
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tional condition that the redundant units can fall in
storage and study the effect of this deterioration of
spares. -The rellabillty of a standpy redundant system
above in which the units are not repalred on failure

has been investigated by Welss (1962c) and Schweitzer
(1967). Welss has obtained the distribution of TSP

and its first and second moment for a single unlit stand-
by redundant system and has shown that sven a small
amount of spare deterloration results in serious degra-
dation of asystem reillabillty. Schweltzer, on the other
hand, considers a N unit serles connected system with m
spares and glves expressions for system reliabllity and
its asymptotic expressions in powers of spare failure
rate. Also, he gives graphs that yleld for arbltrary
failure rates of spares and parts in use, the minimum
number of spares necessary for achleving system reliabi-
lities of 9C, 95 and 99 per cent, Similar models in
which fallures can be one of two types have been also
considered before 1n the 1iteratufe, particularly by
Proschan and Collaborators (195¢), (1960) who were Iln-
terested 1n determining the optimal spare parts kit for
a system of components 1n serles, glven & flxed amount of
capital to vrovide the spare parts and by Barlow et al
(1963) 1n determining the number of serles sub-systems in

parallel to maximlse system reliability.
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The model considered in this section differs
from the models of Welss and Schweitzer, in that, we
have introduced 6ne more factor, namely, the repair of
the failed units. Filgure 1.0(c¢) will be helpful in
1llustrating this system. This naturally increases the
system reliability. We have evaluated for thls system
the expected tlme to system failure, expected syatem
down=-time, fhe expected number of fallures of the system
in a gilven interval of time (0, t) and the interval re-

1ilabllity of the system

B ACTIVE s STANDBY '
UNIT - UNITS N-I
f §
i REPAIR |
FACILITY

Fig. 1.0(c) \
Standby Redundant System with spares
Deteriorating in Storage and with Repair
We now describe the fallure process associated
with the units in use and storage, the replacement mode,

repair polley and the repair process,
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1, Failure of Individual units: The individual units
fail while in use as well as in storage. The fallure-
time distribution of units in use ié negative exponen-
tial with mean rate of fallure A, and of those in
storage 1s also negative exponential but with rate A. -
2. Mode of replacement: When the operating unit falls
1t 1s replaced by a unit from the spare pool instanta-
neously. |

%, Repalr:t The operating unit on failure 1s taken for
repair Immedliately 1f the repair facllity is free, other-
wise it waits In & queue. The units whieh fail while In
etorage are alsc repalred by the same facllity and for
repalir, they also Joln the gueue, The repalr is strictly
according to first falled first repaslired, After repalr
the unit 1s returned tc the spare pool,

Let ©,,6,,. &

1 be the duratlons of repalr

of successive units undergoling repair, The sequence {8,.}
18 assumed $0 be a secuence of positive Independent random
variables identlcally distributed with the‘density funec-
tion 5S>} sguch that X

Dex) = P [ Bngx] s st Sk
Further, let ")} d4x be the first order condlitlonal
probebility of repalr completion in { n,nadn) givem that

repalr has not been completed upto x , Evidently, we have
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X -
S{n) = ‘r)f’“} €xh {“"jn "ﬁ-fﬂ)c{u} , (*:3'2‘}

it 1s also assumed that the repair process ls indepen
‘ dent of 2ll other processes.

We define the random varisble n{(t} as the
number of failled units In the system at time t. The
state of the system is sald to be n at time t if
n{t) = n.

The definitions and assumptions regarding
time~to~system fallure, system downetime, first passage

time distribvutions are the same as in sectlion 1.

GENERAL PROCESS PROBABILITIES

The genersl prodess 1n thils case, as in
gection 1, 18 one in which the TSF perlods alternste
‘with SDT perioeds. Translitions fram‘any stats 1 to any
other state ] are possible in time t, Again as in
section 1, at instants where the system 1s restored to
operation from the down-state, the state of the system
is N -1,

. The general process has.the rolléwing asscclated

staté probabllities for transitlon from state 1 at time

t = O to gtete n at time t,.

79
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?I’,’ﬂ(f] = ?q [“(*]:'ﬁ"\- /7’1(0).‘:;— J )Osn;.t.‘.{,N (5135)

o e .r
?;,“ (X;‘f)eh! . P~r‘ i 11{—(—-') IR L 4 £ T 4 'dex /n(ﬂ): iJ ('1)3’4}

o £ Y\.,;. ]
where 1'2 is a random varieble denoting the elapsed re-
pair time of the unit under repair at time t, The pro-
bability P . (x,4)dx represents the probability that
at time t there are n falled units In the system with the
elapsed repair time of the unit under repair lying betwean
% gnd x +4x , the system having started at t = O with
1 failed units, It may be noted that the general process
80 described 1e Markovien with respeet to the state space
over which the set of probabllities {1,3.4) have been
defined., |

We derlve the difference~differential equatlons
governing the genersal process through continuity arguments,
connecting‘the probabilities at time t + & with those at

time t and taking limite as OH-»e , we obtain

2o+ R it - .
i'at o 4 g ACNa1-m YA, + "!]fx)}?’,m(x;*7

_-;[?n-l—l;(men-#)]?,-‘ﬂ,,(x,‘f} )DS,;SL‘}‘I{.V\_&N

&3-4 2 4 ﬂ!x?}‘?;ﬂ‘(x,+} g Ay P;}NQ(xﬁ? (1,3:6)

]
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3 e ,
{5-{. 4 f—x 3y 4+ R —1) A, Jﬁ{m)j 'p‘.”(*;“ =0 (1,3.7)

{;E 4 M +{N-1Y 3, j?i,a () = 5?"?:,*(«;})7‘{1)"1 {1,3.8)
The tcoefficients (N-1l-n) Ag on the left hand side and

(R - %5) A, on the right hand side of the equation 7

(1,3.5) arise because of the fallure bshaviour sassumed

for the units in storage, For, when thers are n falled

units in the system, any one of (?;T‘*“-? Spares may

fall and the density function for the same 1s

(N-1=-m ) X, enp i-( m*“)Azt}

In deriving these equations, the exlstance of right hand
derivatives at (= o 1s assumed, Also, the probabllities
are essumed to be- zero beyond the specified values of ™ -
Consliderations of the movement of the system in
the state«spsce when a repalr completlion occurs, leads to
the boundary condltlons
| R
?“)“(o,-t) - So '.P;),ﬂ“(h‘f)*f](al)c{x ' (1, 3.9)
. T od
?‘-’1 (o, )= Sa LI (= ,+) ‘q(x',)'({,( b

¥

i i,3.1
+( Ay N"")\;L) 'Pfjg(*), ( o-)
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]
Piwloaty =0 (1,3 )

Since the process startdwlith 1 falled units initislly
'P‘.“v'ﬂa (’X ’0“’ ] 6:_,1'\ 8{'3') ( l)?.ni?_‘)
where B;#\ 1s the Kronecker delta function and &fx?

the Dirsc delta function.

The case of =13y

The solutions of these equations when A, ¥ s
is diffieult to anslyse. As such, we investigate the
case when H~i¢: A, , This problem has the same structure
as that of & N unit parallel system or a machine inter-
Terence problem with N machlnes studied by Thiruvengadam
and Jaiswal (1963, 1964) and Thiruvengadam (196%, 1965)
¥966) . Recently, Downton {1966) studled the dlstribu-
tion of TSP for a N component parallel system with general
repalr time distribution through the Semi-Markov process
method, Here, we conslder this case for two reasons:
(1} we give an alternative method based onm discrete trans-
forms for deriving the Laplace transform of the distribue
tion of TSF end (2) thls analysis will enable us to study
- the effect of fallure of the spare units while In storage

on tne rellability characterlstics of the system. Let


http://www.cvisiontech.com

83

\,=A,: A (8&y)., Then the difference-differential

equations governing the generai process probabilities

are gliven by 9 ‘
{% + %x A {(R-nT A~ q}fﬂ‘)}#ﬁ‘.;n {fx;*{} {Ren )X P;’“’*('x;\»’
b ; (153 13)
g z \‘ 15331
[+ ma] P40 = 5, Poatx ) o dx SR

with the boundary conditions

e .
Penlodt) e § Po i (ad) qioduns 640 NARHY Uy3005)
However, the modifications > > A, does not affect the
initial conditions and, therefore, they are still the‘
same as given in (1,3.12).
Taklng the Laplace transform of the equations

(1,3.13) to (1,3.,15) and using the inltial condition at
(1,3.12), we obtaln

v .. = - - :
K;"i palbimgd N ’}"”*/-‘»'j Ponl,8) = () s Py (x,5) «1-5;‘“ Bta)

N x A2, o N (ﬁ,%-i&)
ol

[nasa] B, () = 5§ B x,8) o0da (4,27
fe ]

— o)

Pemlo,5) = 59 Poonn{1,2) Meodx 4 bin NATE)  (1y3.08)

We observe that the sst of equatlions (1,3,16) are
differential-difference equations with variasble coeffi=-

clents, The usual generating functlon technique leads to
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partial differentylal equations (in x and the variable
of the generating functlon) which are very difflecult te
solve. In order to solve such types of equations, we
meke use of the following dlscrete transforms
{ Thiruvengadam & Jailswal (1964) } . .
VP I -
— 2 j " ] 3“
. 3:%
The 1lnverse transforms expressing ?;’“(ﬁ)b) in terms
of B ,1%5) are given by |
LT | J- . v
i 15 N-—‘Y‘\-FJ s . .
T":}m (o, = ; ) ( ; ) B s Namay (,.5) (\,,‘3.9,0')
3= 0 o <€ M &N
which can be verified by substitution.
By means of the discrete transforms (1,3.19)

the equationa (1,3%.16) are reduced to & form in which
they can be easily solved, To apvly this transform
first change n to N-j in (1,3,16) and mltiply throughout
by Ki) and sum over J from J = nto J*= N - 1l.

After simplification, we obtain

{-—m +':\>«+"r]ht') :-I—/b] E‘*,n(x’a} s (“;l) 8\'9!’) (&,3-2&)

>
I

where K,i \ 0 1f M>) by definition .
ek
The boundary conditlions transformed into

L
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' b
E.',M(b;,&) = So iE::(-mfN,,g.')' 4-5;,1‘“,{1:5}]%}!1?(‘%

P . P (¢ ,3.22)
I D ICESOR Y L) B :
The equation: (1,3,21) has the solutlion
L - ' x
E LW (X,,&‘} = A.:&.n l’“;:&‘)\gitai"(”\,‘*/b)m—*so"’!%u}r{u] .
§ Ciy 2 23)

whhoeet A;,"ﬂ(o’é") = Bt‘,n(“’b‘)*k“)

Ueing (1,3,23) in (1,3,22) and 1lntegratlng, we have
[ R - | i= - .= N‘;.)
A;,“(E;A7L1* S{vmx+a)) = iﬁ;)(xﬁ]‘:}(m—-\.\#&‘) 4—&%

) (:‘" )(N; +.8) F‘,’b[,&) +(N;’) M A -"r:"-’blrﬂ (1,3 -24)

Now, we observe that (1,3.24) is a difference equation,
To solve thls difference equation, we define the follow-

ing products P N
55 L N JON

N @ ’é-ﬁ g("'}‘*"&’}

C (5 = — £
& 4 - 81} ? ?
1 £+-1

- and
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é é(fkﬁj)

‘ o A= 5(1144) .

It csn be essily verified that

= t - t
¢, (s = ST Les] c, () = [1- S(Gas) ] C ity (1,324

Dividing (1,3,24) thraughout_%q’ C;'{gg, there reaults

As e, 3) Ay ;
e G P LRI

c’ht2) el 15? N A

== QAR | .-L—- 4, 3.
+ o rp“:@(é)(’n CW’!(A) ( ’ 11’)

Changing n to 0, 1, 2,.., upto n and adding all the

resulting equaticns, we ehteain

—

A n (22 {Z(m,t ...L_ (mm)f?a () Z{”}eﬂﬁ}

Qf§

k]

s, wZ(""‘ Jerm ] (120

We define the values of B's and, therefore, A's ta be
gero beyond the specified values of n, namely &t n = N
and n- « 1, Using (1,3.26), the esquation (1,3, 28) cAn

be rewritten as
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i l oy i R ""'""
( o ) ,_!___ —(Ml‘h’)') ‘Pl‘ () ( (}("g"f.ﬂ

5. ( ) - c'ﬂ-i(")l)-“
s VO p AT i i Coy 1o L P

{‘. g('ﬂ-\-"f“ﬁ}
[

o
— LA ) ———
NN L) E{S ¢ \ch,m} (1 Tl

b}

Also, changing n to N in (1,3.29) and noting that

A{)J°;A3 = 0 by definition, we obtain by rearranging

the resulting terms

—

Pl G ____biﬁ_.w_m (G, 3-30)
i ( N A [i-— -i;(,-s)] s
whers
-1
M-s N ,
e N*! L] s
B e ?;,( )c"e () {Z&(f‘cq_«;,n}
and -1
) ( L‘;’(M-.) o g(u\._i.._.
D alE ;;; o C."*‘m X L feo e

It may be remarked that b.(5) represents the
L T of inltial busy period distribution of the repair
faucility the busy period starting initlally with 1 falled

units in the system and‘gkﬂjthg busy perlod distrilibutlion
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starting with the fallure of a unlt at t = 0,

The expression (1,3.30) for T.;L-)D(a) can also
be obtained through slmple probabilistic arguments by
consldering the alternating busy and idle periods of
the repair facllity with initlsl busy period starting

with 1 failed unilts in the system at t = O,

2o
Now let . o
oW (5 = )e%,*]'(et,zs)piq(
i 3 N
— = BId | ﬁ-— S(')'\#u&v(&') -
T!lﬁ?i E{ T (‘5‘_) = j E?;w]"nx }/-:S)A"-{ - T ) A;’“(Op,éj
’ b At

€ N 3.31)

Therefore, using (1,3.31) in {1,3.29) we have

- Cor(a) (e _
B u;__m._i,»[ f_(& )Zt_,__ ,_\(Mf,a)? (%) Z\Q}C ()

S ]
| ) f"-i“}]

+ uﬂ’ (5) Z(Nm ) f»)] (1,3.32)
ws R

The Laplace transform of the general vprocess probebllity

?;le{) can now be obtained by using the inverse trensw

forms expressing P!'s in terms of B's as in (1,3.20) and

is given by

Mot

i,

?i. (5,.} Z E*) B ( ') (7-133.53)

)
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DISTRIBUTION OF TIME TO SYSTEM FAILURE

The relationships conneeting the genersal pro-
cess probabllity P (t) with the flrst passage time
distribution C}‘-!.d {t) whieh 1s 1in faet the distribution
of the TSF, have already been obtained in (1,1,22) and
(1,1.30) by simple probabilistic'arguments. The dige
tribution D(t) of SDT for this case is given by
D(t) S S(x)dx , which 1s nothing but the distribu-
tlon function of the repair times, Now, taking the
Laplace Stieltjes transform on both sides of (1,1.29)
and (1,1.30) we obtain the LST of the dilstribution of

89

TSF as :
. A
2 ( R I
é“) )
L3y = Pin e (v, 3-34)
PM,&! b’) ’PNH‘Q(A)
and that of the recurrence time to the system fallure
state as A
B {~D(s ? N
S e B e 3.38
w2 ?,M(z-) ’

where the expressions for ¥},“f5) 12 obtalned by using
(1,3.32) in (1,3.33) and that for P,  (5) 1s obtained

by changing 1 Into N in the sxpression for 'P;,utﬁq

so obtalned. We have, therefore, from these relations
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L RS } - 4
- C: ‘
. N Gl = ("“‘L b
FHN(,&)-’Z IR IZ “ ;
jzo | {0 G. 05
j =
=, WY i
~re )T, 2 €)c (" "“’ ‘#) Z( )c f«.w}
ffo € -1 f 2
g : (1, 3.30)
> ( SAPY
M,N(lb) = Z ‘} [ (!\)A'{'—,}}P ('b) Z(f‘)c I’S) 7
J-D j A4+ L -
= wety
4mp’,§)2(') ,)J (1,3-31)
Subsatitnting forlggN(A) and Nu {2) from (L;3.36)
and (1,3.37) in (1,3.34) we obtsain the %'JS),the LST

of TSF, The moments of the distribution of TSF can now
be obtalned by successive-différentiation of (3;}“(5)
with respect to .4 at 4= O . Denote by E (T4} and
E.(T, ") ,the first and second moment of the TSF
distribution when the system starts with 1 falled units,

Also, define - g

o _{ S v 2} ]
i EE o : .
fov., L o4- 360 , £>0 |
ey B . (1)5'38)
2 . ¢ -
"y | =]
Then making use of the following limits
\ 3 £:.14

P .v{!,,:,,,\' { y ":
1) me e
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-x} -
> ! e ol
{,m ”__Ln . -__L , f_; . &a
H) A R, Py C’k_f,g\) C£

.4 £« ik

¢ Ty wiat

C,
o 'Ll E.’. "'f
; f () £ 3
/{—W‘n’ AL (""“"“"“" ): 1
oA — 29 K] =
Wl mens AL’ - [-“"4“"23;“(1&1["5“”
CQ 23—)1 *o
brcpvid:l"l—(’
A o0 | (1, 3'39-)
e (13 . j x‘l Sta) rt?(.
where ] - =
' & :‘ G|
v ) Ay < (,5, Cﬂ(é)) : w](” e_____“_'___
J G-I Y e [_—- -4-2 S 3y (1-5060Y]
& Z ‘]L N
c%,vb.‘rm
. 1 & f~ L=
e 4 ( : 3 B (i) /¢ !
o - - 5 _
i c=do dsbrGa) 1, sk 2y T gr,.\)h*--“*"“ﬂ]
P ! RN |
Co i :
P ary b

N
£ ) and £ A (Ta)
%e obtain the expressions for
We .
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A

R P s [Po =P (0]

A2
220 (o) : |
[ { +,3-40)
where 4 {,n (0] = [j,a (s iyu () )J L
. Lo B (s - b
and PN,N {g) = 5D O -5 NN ~ = N
" the steady state probabillty of the stata'N. Henee,
M-t ~
Ec(Tu) [b 7 Z ( )“‘ + Z(ﬂ) JA
L3 “,‘. -.L'
J —: NF‘ A N} }
5 (a: ) N T b, Z;( ) (l.yfc q Zl( )
- £ C 1’_' )
£y €-1
(1,3-41)
The steady stéte probabllities F. and bu can be shown
to be independent of the initial state of the system
and the expressions for b, and ﬁn are obtained from
{(1,3.30) end (1,3,36), Thess ars |
Nt
. = ; : Ner } U
el L h[wni.( 2 )g‘
-N Aed B 1,N fow . ¢ L 1
+ Z t"’) Jo J"" €
v F
\ U y (1,3-42)
e P - M g :
bos a2 P, () 2 L o o s (1,3-43 )

In the case when the inltial state 1 = N - 1, after a

1ittle simplification, we have for the expéeted TSK
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Nt ) }-4
E () =L |y )iwy_(,n Co N 5 (N1 o
& { a )zt ] P:o( g )Ca 5
Wt -
+ by en C"'} (5,3-44)
b ja 3

Here, we observe that by using the expreaslons for
bo and bN in (1,3.43) and (1,3.42), the value of

E”»*(Tg )} reduces to

‘1('“"'\*)4 (1.3.2¢)

-
b

witleh can 8lso be proved alternatively by thne use of
Smith's taeorem on renewal theory. For, tne TSF period
followed by a SDT period constitutesa renewal period.
Using (1,3.45) the ratio of the exvected TSF
to the expected SDI can be calculated for any glven
repair time distribution end the effect of repair time
distribution on the reliability of the system can be
studled. Fig.l.4 deplcts the ratio of the expected TSF
to expected SDT when the repalr times areﬁ (1) exponen-
tlally distributed and (11) constant, The variation with
»* 0.4 and 0.8 and M = 1 has been shown against N . It
13 observed that the ratlo :% €. (T is higher for
constant repalr time case than for esxponential case. This

fact 1s to be expected as in the constant repair time
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E EXPECTED TIME TO SYSTEM FAILURE Ewn(7,) FOR
RALLEL REDUNDANT SYSTEM WITH CONSTANT REPAIR
IE AND EXPONENTIAL REPAIR TIME DISTRIBUTIONS

A- CONSTANT FAILURE RATE
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case, at least the varlability of the repalr times is
eliminated. Further, it may be noted that not mucﬁ
gain In the reliabllity of the system 1is achieved by
jncreasing the nmumber of parallel redundant unlts beyond
a certaln Jlimlt, e.g. beyond N = 6, In this case,.

Now, the second moment of the time-to-system
failure distributlon when initlally the system starts

with I failed units is glven by

r A A Aoy A
Ei(ﬁ):{-i &, mJ L [0 R, (o) +2E,() P, (e_J
£ peg "
(1,3.4¢)

where

~ ¢ A
PN,ﬂ(a’?:[ﬁ‘ Pw(é"J (;} ,&E S +s Zi«!) jl«s}})

Jre

N~

=\>:"][*+IZL“".&’.§ {1+NJ~*]Z{N")J’ J}

"

N (1 |
{ﬁl (1)"6}"’_ "Nh) ZUM)C {-—«——--1* Z ”*p,n[t S(vﬂ}}

1 g
s .3"‘ ¢ ﬁ('&)
oy aet b F a2 e mn
+ :?_"l‘ 3 A {iﬂ\*} ‘lv' 2‘3{11)[1-s(sx)]J}

p, by (14 wn}*’}“? <, )]
£

Gy

. Z (N“‘) lb'" %:;;E“*l]'}}
+¥iz—‘()gﬂ” 1\ Ce 27 =0


http://www.cvisiontech.com

95

Ay A g

?I.,H (0) = P” N fﬂ)

| R |
{ - 8 ()-B ‘4)
- | (cu [/s( o) B a)+£ (B, (s ))J)

—

K-y '
=2 B 2(-') C- i N '_1_
-2]{’1-{—}' Aj (i+m,n,):(ku) )} g:'(a; o

('3.’) i
- KA 2 rid . - o iy
K ( l [1,,‘; g ,ﬁz' "s:'rm[c.»gf-«-\)]) JEE ; )q’—i

S ‘
-g ‘_L_, . ‘
* Z(N (-—---—4 5 ) {
) g Sty {i- sfmj.)j
Lo '___"" ) & )
+ 2 - Jrt { Z -1} A [ z
n J" )t). k Ce...g
J m £
(N -!--(.l_, A ‘
- NM) oo ¢ Ce g_-,.,?. ‘ ,,ZH §(1M[l»§(»¢l)]
3 (22 b o
M-t o " {
: E ( A ) Comr (-;;f' 2 ol sM)])
| CL? .-.."'l
poiic SENITIY _
+ [ J'Jw"‘ ("5';,;,"’ e "{‘ 5(.,,\)[4-5(43\3 )J[Z(N” _c_]‘___ |
| f N P

"«t N.
= {4 NX
bo X:l L C'l( '71-0 )Jj



http://www.cvisiontech.com

36

and in the case when 1 = N-1, EMH(T:) is given by
P | A~ ~on :
B (15 = 3 [?N,,,Nm_ Pow o) +2 Eiu) Py, ij (4 3-41)

Pa

where £,.,9%) and PN o) have already been
1)

defined and

{’;;N',’. i) =8 P,Q N(MJ [ f- &(5 {@%*ﬁ,,,}@ )JA_

Nt [
v § C:y Nety 4 N
L) 1 F o) fa nAm 2 }{ )Z
i e e B V] i,
o) £
A g '!’l _ 4 - =)
S Z ( )C‘ ( 2 L& E, 3G 5ty )]4*,.?_;‘.&-— J
g 2 en Si : (1)
Gl seeaiie B, { J
J"*' y A { [ftt CE’—! .
-M\")Z s "L’(—Yﬁ::} Z"""1 3 )+l-«%
fep CE 2&}1 o 3(.‘,““—5(1'\” 2,)&
m i :

Je Sl B \ v
U T Gt R nsen)) -kl 200 )] |

—

The mean end the second moment of the recurrence
time to the state N can be obtained by making use of the
renewal property of the process as in seetions 1 and 2.

As the renswal period T@ can be expressed as a sum of

tne independent randem varlables, namsly, the TSF T, and

the 8DT ¥, , the expectation and the second moment of the

random variable T, are glven by (1,1.35) and (1,1.36)

respectively. We use (1,3,.,44) snd (1,%.47) for E“J(Tu)

and EN_'(TJ') and 7 = jmx S603 Ay 3 v‘)fu‘: fm,ﬁ Sty Ao
L] o

for E£(7,) and F.:.(T;) respectively,
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RELIABILITY CHARACTERISTICS

The reliablility characteristlcs we are in-
terested in are the same as in sections 1 and 2, namely,
the long-run avallabllity of the system, the expected
number of system fallures in a glven interval of time

(0, t) and the interval reliabllity of the system.

The long-run aAvallabllity = 4- b
-y ; ‘N :;“ __L_.: ‘ P - :l-‘
< b, ", + Z 1) Cjoy— X (NE') C{]-&—...:,._JL ¥ Sy
‘ ES Yolse AV )t 3
- (+,3°4%)

wnere $, 1s glven in (1,%.43). In the particular case
when the fallure time distribution of individual unit 1is
negative exponential with mean 11fe‘t[; and the repair

time distribution also is negative exponentlal with mean

repalr time 1/ , the long-run avallability of the system

is given by
The long-run availability = I- p, (1,'3”497
8
- f
4 e
= 4 - = 1 - f’--?-\—
] 3 -
H ) N e il IS
<
TZ T 1P Z-(-%)—- e
=l o 4

which can be essilly tabulated by using Holina's Tables

for Polisson probabilities | Molina (1942) | .
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As we are Interested in studying the effect

of fallure of the units in storage on the rellabvility
characterlstics of the system, this can easily be done,
for example, by comparing the expression for the long-
ran aveallability of the standby redundant system whose
spares do not fall in storage with that of the standby
redundant system whose spares fail in storage, In the
particular case, when the failure rate A: of the unit
in use is equal to the fallure rate 4. of the spares
In storage, thls system as mentioned earlier i1s equiva-
lant to tue N unit parallel system, To this end, we
rewrite (1,3.49) of this section and—(l,l.44) of seection
l, as follows:

Long-run availability of ¢ ' ¢

the standby redundant i

gystem when spares do not

fall in storage as in =
(1,1.44) - ¥ze o (4,3-5¢)

Long~run avallabllity of "
the standby redundant system £
when spares Tall in storage =z | - —
with the same rate as the ;, e P (12 3549
unit in use, which is equi- =

valent to that of H unit .
parallel system as in

{1,3.49)

Yince Tor a given value of N and ¢, ¢ > ERERY

the failure of the units in storage reduces the long-run
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TABLE 1.2

LONG-RUN AVAILABILITY OF STANDBY AND PARALLKL RUEDUNDANT SYSTLMS

FOR VARYING ¢ AND H
Long-run Avallability of Standby Redundant ZSystem
k|
B oy {oa ; Foadrat [N RN € 3 WG [ R
1 833533 714288 +€25046 « 505555 .500000 ,453552
2 . 967742 . 897436 .814815 736842 . 666667 ,L,603174
4 . 998720 . 984472 243820 . 878048 .800000 ,L,720670
8 .990949 . 997538 . 980769 . 933335 .807142 ,768518
8 . 959987 . 999607 . 983211 . 961240 . 888889 792960
10 . 999999 . 998937 . 997572 LOTBBE5 .9092090 ,307321
Long-run Avallabllity of Parallel Redundant System
Ptz F 204 f-oe P:ec B JF tro l =iz
1] 833333 « 714286 . 625046 . 555555 . 500000 L, 453552
2 . 945946 . 8349057 . 755683 669627 . 600000 , 484331
4 . 984704 . 907892 810238 710414 .630770 L 562760
6 . 991160 916734 811229 LTL3023 832090 ,5635487
8 . 292770 » 917821 .311540 713135 «632121 L, 563499
10 . 293168 « 917910 .8118652 « 713137 632121 ,563499
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avallability of the system, AS the case A=Az consi~
dered here corresponds to a pafallel redundant system,
thls leads to the followlng important conclusion about
parallel and standby redundant systems: The long-run
avallability of N-unit parallel system is less than
that of the standty redundant system with (N-1) spares,

Table 1.2 exhibits the long-run availability
of parallel and standby vedundant systems for varying
values of ¢ and N, 1In th; standby system, there 1s no
deterloration of spares in storage. And the parallel
system 1s also equlvalsnt to & standby system in which
the fallure rate of units in storaze is the ssme as the
unit in use. Thus, table 1.2 can also provide & measure
of the effect of deterioration of sgpares in storags,

it can be seen from teble 1.2 that the long-run
avallabllity 1s very high for small ¢ and progressively
decreases with tho increase in ¢ for both parallel and
standby systems. The long-run availasbility of the standby
syétem is higher for given ¢ and ¥ than the corresponding
values for the parallel system - & poilnt whioch was demone
strated analytically earlier.

Furtisr, for these two systems, a comparison of

f E4.,(Ta) has been made In fig.1.5 for various values

of ¢ and N . It is observed that thne inecrease in

P E“J{Tu) is not appreclable for an.increase in the
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HE VALUES OF #E .. (T,) FOR VARIOUS VALUES
OF ¢ AND N OF A STANDBY REDUNDANT
AND PARALLEL REDUNDANT SYSTEMS

0k PARALLEL REDUNDANT SYSTEM .

------ STANDBY REDUNDANT SYSTEM £
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parallel redundant units beyond 6 or 7, Besldes,
higher values of P—E"M(Tu) are obtained by decreas-
ing ¢ , preferably for f <« 0.5, for both the parallsl
and standby redundanﬁ systems. In all the eases,

» E (W) 1s higher for the standby redundant system
than for the corresponding parallel redundant system,

Similar comparisons can also be made with the

expected number of failures of the system in a gilven in.
terval of timé (O, t) and the interval relliability of the
system which involve, a3 may be seen from the expressions
in {1,1.52), (1,1.53) and (1,1.56), only the exvectation
and the second moment of the time to system fallure and
the recurrence time to the state N, the expressions for
which have already been derived,

The case of A, X% X, 1

Though the genersal] problem when the failure
rate >, of the unit in use and the fallure rate XA, of
the unlts in storage are different and the repsir timse
distributlon assumed to be arbitrary 1s qulte difficult
to solve, the particular case when the fallure time dils-
tributlions ;f the units in use and in storsge and the re-
palr time distribution are exponentisl can be 1dentifiled
wlth & birth and death processz. Arvsry elegant treatment
of this lmportant class of processes has been given by

I Karlin and Me Gregor (19857) §| and Kerlin (1966). This

1

13
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has been sxcellerntly summarised by Basriow (1962 3) empha-
sizing its application to repalrman problems | Feller

(1857), Cox and Smith (1961) end Takacs (1862) |. lany
relisblilty problems of systems with Eedundant unlts
have the same stochastle beshaviour as tlese repalrman
problems except for the fact that the characteristics
under study are different, As in the previcus csse, we
are Interested in the expected T3F, the sxpected 3DT,

r.e long~run availabillty of the system, the expected
nuaper of failures of the systew in a given interval of
time (O, t) and tihe interval rellability,

A3 usual, let the randow varisble w(t) rep-
resent the numbsr of falled units in the system., Then
{““""}aﬂ B2, N are the non-absorbing, non~ref-
lecting states of a pure birth-~death process and the
state -1 and N + 1 will be the reflecting states of thls
process, and for tals birth-aesth process let

P.: {4y = Pv{’ﬂ&.-{"} A } !MLQ") = i';l

be trie state vrobsblillities of finding j falled units

at time t given Iinitially there were 1 falled units.

For this process, the one-step transitlcn probabilities
';'P‘.}-{-f‘; = P [ nier:j fnier = J in an infinitesimal

Interval At are glven oy

102
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S At + o(st) ST Y

H

-t

(3]

PopLased g B &4 + o (At) L

1= {stepi) At + o(At) Lo

11

(1,3-529

wnere = o ] '
&y )'*(N_‘"t)}“?«‘)r'\":r' > At)}‘lni‘ Zo ‘?ﬁ"l 0

It is well-known that the transition probabllity mabtrix
Pit) = (l?,:}'({} 1 satisfles the differentlal equations

J
'P'(-(»} : APH)Y and P () ’*\‘EH)A ‘ (*33‘53)
. v ‘.

with the initial condition [P (6)zI , where A is

(N + 1) x (N+ 1) order matrix given by

~
. -
- Ga s 3 L8] = R o
by ..(5" > P ) 6'; &~ - o
o Mz (GEp) G- - -0 o
. A - , ] A s ' ¥
1 »
s , ' . N
O 0 & (A "{Q-n.--“f‘ﬁ-.) 6;"_'
o (o] = 7 © .o Py - M
J

and I is the identlity matrlx,

The Laplace transform of (1,3.,53) can be written as

A f(’ﬂ = 1 (4,3~54)

where A 1s glven by
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f

P
Tt - Py o I Y
-—5"@ QG}"‘FI"}'/&) —?&2_ o,_ - ey A O &
e o ‘6" L62+H1+f37 - &
A = ' ‘ : i:*aw e ‘
& 2 & 7 '(G‘N-t""kﬂ;“t*b) “Pu
o o o o T -G-»»l (Hﬁﬂ'&)

\ J
and ?(5‘) 1a the Laplace transform of the matrix 7P H}
o e

We know that the LST of the distribution of

X -
time-~to-~gystem failure, nanmely, G‘, N{,a.) is given by
~ 7 .
Y Fowlo P. (8
G‘ & (,:.) - ,..__..—f—h‘—-——ﬁ—— 2 -u----}-—.-"i""’—‘

P (2) P (5)
where %‘,gu} and :Pi‘)”(,&') can be obtalned by solving the
matrix equation (1,3.54). Thus, dencting by LA \ the
determinant of A and by},&}.i‘)the comfactor of the
(1,1) th. element of & and 1 standing for tue row
number and j standing for the cc:;lumn number of A , the

values of P. (4) and P, (») are found by applying

Cramer's rule to golve (1,3.54), These are given by

w2 = 1,3.58
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-]

and !

INEL I 2R ‘

P {(3) =
N, N o 1 :
1% | (1, 2.58)
Hence, we obtain the LST of the TbF to be
o ! ANH_,:-H ‘
G, (») = (4, 3.3%)

LR -
2
‘ /\M-ani—!!

As the expectation and the second-moment of TSF are
obtained by differentiating G- {2) with respect to 4

and taking the 1limlt as 2 -» o , We lhave

-

€. (Tuﬁ) ‘ll A;“:;’:\ t. ( MNMMH‘-‘;M*“-‘“‘)} (4,3’58)
n-(T“)zl l.ﬁ;b(‘AMM wn\-(ﬁw+-uld)] J (1J3.Sq)
‘ K"“\,Mi‘ Ao

and

-

(l,B-Lo)
i 4™ '

by a4 - - : ] B
A P T i (M“*nn { _{Am’w |)+ 2 Edu.);{lmm,,ﬂ,ﬂ
‘ i N'H,»H‘ o’

_ We shall now obhtaln thess expressions, for

-3 =0

example, waen N = 4, In this case, there is one unit
in operation anc the other tinree unlts ars in spare
pool. We obtain the expressions for the LST of the
diatribution of TSF feilure, 1ts éxpectation and the
seceond moment with ini£ially no falled units in the

system and with initlelly 3 failed units in the system as
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~ MeCr Y 043, ) x4 2322)

G!’;“‘Ir'&) r

[.l frarb2x, a0y b2 }'|4AL+F)l..(-‘-(_&ﬁl)l)}(&t-%?)\ﬂ'é ("3‘“)

NS WEVIRE PY SIS Wt tq}(.&.a;w,ﬁ‘)
= p (A) i(s 4383, (o1 24220, p)-p (\,*3;1)}

-)'[(Hh-#,\é'}{(.-:..t},-t_g,iL)f,ﬁ,.; 1!4;,\1') +¢HS
' dp O 42433, )0 .\,-!9,\3_')4;}..1—# (m41.43.l2){)‘+2.,11')J
C_“za(b)"‘ :

[(An.u-n)(,:.u XV, ) 4 a0 2 s ad e A ) (s43y)

+ (oar a3,y (o3 22, )(pa 3) 4 (e dd a»ll)(.w,\.u),,)(,-.n-».\z)

o faa), 433, )05 40 ,4024,) 4 P (a4} 4 P‘ J ‘ (1 ,3-62)
- ¢ ‘Fz. ,
12 (T} - .__....,_._,.g 4 4 et + Ty i \) ‘
i Pt fi23fy f,«*sfl( EE1Y (1,3.03)

fr"”’ J 3
S ()
fy4 6y foaaf, (f Mi’)“*%fﬂ

1
B, (7. L LTI {1 + —— .*W“)}J
Dar L {42 1,438,
f\f| —[g" Fg_ | ‘JL (‘3_ éq‘)

and
- N 3 ; i
E&,J{(}“ ) = S [’.A 53)4( iu) { -;- o 3 { 4 ‘- f
FA 4 *'4?1 ?14171 {1"3f2
. 'f|""" 4 ,i
g — +

GO CAR) = 0) (06 (031,)
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i 4

+

(Ft YO g 7030 F 6,0 0 f) (P 136)

1
__.i.q_ { : - e e ‘ 4 - \
€ Foa 0, fﬁzfl {,+31, (mqh){h*BH)

A 2 >
4w = = e — A [ }
(ﬁa:?;)(t.¢3lg} (o 630042 ) Q‘JR)(;HaiL)”ﬁsg)
where " \ (1,265)
By =

These expressions of the expectatlon and the
second moment of time to system fallure can be used in
(1,1.35) and (1,1.36) to obtain the expectation and the
second moment of recurrence time T4 1o the state N,
 which are in turn used in the expressions (1,1.52),
{(1,1.53) and {(1,1.56) for the expected number of failures
of the system in a given interval of time (0, t) and the
interval reliability of the system respectively. However,
to study the long-run avallabillty of the system, which is
equal to '-¥, , we have to evaluate b, ,the steady state
probability of the system belng in state Na.

The steady state probabilities of the varlous
states can be readily evaluated by solving the daifference
equations representing the equilibrium state of the
process. Lot bi be the steady state probabillity that
there are j falled units in the systems Since the process

is independent of time in the equilibrium state, putting
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the derivatlievms with respoct to 1 in the equations

(1,2.03) equal to zero and rearranging the resulting
terms, we hiave

Y, 4+ 8-y dy Oo
s b =

: b (4, 2.¢6)

P .
(1, 2.67)
S ‘771 - G, ;’,,_, w R ( b.,,_,."‘ L-n')
TV ’
; " vox 5o, (1,3.68)
and l?N - -——;:——-— b'p\\«.l sk pv y

Adding the set of eguations (1,3.67) for w = 0 to §
we obtain

6‘)- P)n i 6’; ‘70 = "L( bJ"" - l;f)
- {M ‘);4i il (5} %"c '}\} (.{)‘3""&‘)
we have, therefore,
o
b, o= = b (1,3.¢7)
IR t\ }

from which it follows tnat

Ferr Om.y = v 15
b - . b, (1,3.71)
Define .
9 Sy Gy - - Gpy
% ek » Lro
¢ 2 CRESRT
n !
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Thsn, the sxpression for qu can be wrltten =s

(4,32.92)
b o= T, b,
1Y Lt
Since o b, =4 we have Fa( Z-.ﬁ}f) -1  whence
M Qo i~ B
4
o ,__._—--———-"_'_'—-’—‘— 0
"o - ™ . ((’3'13‘)
LU
"o g

Using (1,3.72), the expression for b\; is obtained as
Rl

e b .
b!\i =y t"’ - "‘z T, (”‘ )?b-mt}')

ooy

Hence, the long-avallability of the system

L2 ]

: A= b, s - — = _W=o 1, 3.3%)
=10 s T
WMo ?121-—59 i

From (1,3.74), using the renewal property of
the process, nsmely, the renewal period consists of a TSF
period followed by e SDT perlod, we can find the expre-

sslon for the expectsd TSF within a renewal period, which

in fact is ENE.(T“} . From Smith's theorem, as 1In
section 1, we have
: A ny _ 1
‘)N * 4 - e 'Pl'="‘ G o ELTRY)

Now equating the wvalue of bw to that given by (1,3.74)

one getas

bt el . e (1,3-70)
)
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- " ¢
gince E{%) s £, 01 + E(TL) and since E(T4} :-= 9

{1,3.76) can be written as o)
L ] - YR Y
%E(T&) = - fo L= 4 T"‘u t-o £

N,

o e, N

whence ) 7 N1
] L]
En..\ (T“ ) s g{: Wﬂ
28 ’I‘TM A=

By thls method, we are able to find only

e

E

ot

?A

(1,‘5.“‘”\)

1 ' E v {70) and
.) . However, to evaluate w1V tu } and higher

moments, we require a knowledge of the dlstribution of

T8F

It 1s also observed that EN,.(iu) can be ex-

pressad In terms of bﬁ and the mean repair time

n .

Using (1,3.77) ir (1,3.74) and simplifying, we have

N (1= by)

£ (T.) » —— [c4 1,3 45] (1, 3.78)

b

An interecstlng informatlon that can be of use

in the design of standby systems and which can be derived

from (1,3.75) 1s the number of standby redundsnt unlts

required to achievs a stated level of system rellability

when the spares deteriorate in storage, To this end,

the number of standby units requlred to achieve 90, 95

end 92 per cent avallability of the system have been

computed using (1,3,75) for various €, and deterloration

intensities f,.> 0,01 f , 0.05 ¢, , 0.1 , and 0.2 f,.


http://www.cvisiontech.com

TABLE 1.3

THE RATIO OF EXPECTED TIME TO SYSTEM FAILURE TO EXPECTED

-." REPAIR TIME OF A STANDBY REDUNDANT SYSTEM WHEN SPARES DE-

TERIORATE IN STORAGE FOR VARIOUS VALUES OF Py o AND N

Expected Tlme to System Fallure

~ Expected Repalr Time e = 3
, "~ |No,.  dete-
SPARES .DETERIORATION IN STORAGE rioration
, ) b= in storage
' Fa = 0r0t Py Po= 05 F4 4 Po 24 0y ' fyz %0 P, fazo0

, 0.2 2.92671.10 2.88095,10 2,77273.10 2,58333.10 3.00000.10

%'0,4 8,68812 8,43239 8.18182 _ 7,70833 8.75000
L, . 0,6 4,41694 4,31216 4,19192 3,08148 4,44445

"7 0.8 2.79703 2,73809 2,67045 2,55208 2.81251 -

« 1.0 1,99009 1,96238 1.90909 1.83333 2,0C000
t1,2 1.52090 1.49471 1.46464  1,41203 1.52755
0.2 7.39741,10° 6,03569,10° 4,86662,10% 3,33756.10° 7.79982,10°

0,4 6.06682.10 5,13857,10 4,27926.10 3.15412,10 6,34378,10
0,8 1.61826.10 1.41297.10 1.21957.10 9.60776 1.67901.10

2 0.8 6499371 6.,27717 5.57282 4,62563 7.20700
'1.0  3.90316 3.57105 - 3,24936 2,80059 4,00000
1.2  2.53710 2,35882 2,18407 1,93551 2.58870
¢ 0.2 1.70638.1¢%4 1.04048.10% 6.12270.10° 2.59371.10° 1,95300.10%

Vi 0,4  3.59867.102 2,29782.102 1,51183.10° 7.69538,10 4,05239,102
. 0.6 4,03831,10 3,29554,10 2,34956,10 1,44809,10 5,10844,10
‘0.8 1.30512.,10 1,02074.10 7.90169 5.64789 1.40736.10
1.0 5.67257 4,70038 3.94315 2,43270 6.,00000

1.2  3.19039 2.77899 2,44430 2,05358 3.32550
02 3.70369,105 1.53854,100 5.95228.10; 1.39072.107 4.89280.103
“ 0.4 2.01797.10° 8.83326,10° 4.12719.10° 1.35489,10° 2,54144,10
0.6 1.20720.10% 8.29828.19 3.57663,10 1.73239.10 1,46341,10°
0.8 2.14688,10 1.25567.10 9.33677 5.903852 2.43015.10
1.0 7.24761 $,37247, 4,27356 3.17704 8,00000
11,2 3.59449 2,95329 2,51636 2.07124 . 3.83720

0.2 4.99999.102 1.99999,10° 4,76189.,10° 5.49441.10% 1.2£2070.107
‘0.4 1,08686.10% 3,03023,10° 9.13411,10° 1.89843.10° 1.58930.10%
'0.6 2.97516.,10° 1,07340.10° 4.61627.10 1.85163.10 4,10942,102
0.8 3.28582.,10 1.64154,10 9.75511 6,06964 4.15654.10

1.0 8.59834 5.72192 4,30504 3,18738 2.00000.10
‘1.2 3.83545 3.01564 2,07314 4.19250

2,53226
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These are exhiblted in fig. 1.6, 1.7 and 1.8. 1In
these figures, the ordinate gives the total number of
units in the system so that the required number of
spares to be kept as standby 1s one less than the
number given by the graphs.

The values of [+ k. ,{Tu) for various values
of P, ¥, &and N are calculated using (1,3.78) and are
given in table 1.3. Given in the last cclumn are the
values of p,ENq(il) when there 1s no deterioration
in storage. Comparison of these values with those in
other columns brings out clearly as to how deterioration
in storage causes an Increase In the initial provisioning
of the number of standbys to achleve a specifled rellability
of the system.

Case of unlimited spares and limited space at the
repalr facility:

In thils case also, we assume that the fallure
time distribution of the unit in use and that of the
spare in storage are exponential with mean failure rates

A; and A, ‘respectively and the repsir time distri-
bution 1s exponentlal with the mesan repslir rate p .
Though the number of spares avallable 1s unlimited, we
assume« that because of the limlted space in the repair
facility, the 1nput of spares 1s cut off as soon as N

units are 1n the falled state at the repeir facility.
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The system failure 1s said tc occur when all the N units
including the one in use are In the falled state and are
elther undergoing repair or waiting for repair,

The differential-difference equations describ-

Ing the general process probabllitles are given by

é}% Va it Tk J 'P(-,n i) = (‘}‘"* A '1‘)‘-»““' () 4 B HP'\a‘\’!Ai{'{)
4 e 0,4, E o

wlth the necessary modificstlons for the end values
n * 0, N and with the Initial condition Tiw{8)= &1
where 5;n~ 1s Kronecker delta.

Comparing this wlth the process when the
spares do not deterilorate in storage, we observe that
this process 1s the same as that when spares do not
deteriorate in storage where ~ 1s replaced by {Xan)
Therefore, all the results of the reliability charac-
teristics such as long-run availability, the expected
time to system failure, the expected number of failure
of the system in a given interval of time (0, t) and
the interval rellability can be found by changing A

into (.>|4-*z) of the corresponding results of section 1.

Case of Intermittent usage of the system:

The dlscusslons in this sectlon upto now have
been made when the system 1s in contlnuous usage. As we
have seen in section 2, the state probabilities and the

reliablility characteristics of the intermittent usage

[ ¥ I

i13
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gcase can be expressed in terms of the general process
probabilities of the continuous usage cass and the pro-
bability of existance or otherwlse of demand for the use
of the system. Therefore, we obtain the results for the
intermittent usage case when spares deterlorate in
storage by proceeding in exactly the same lines as in
section 2 and using the genseral process probabilities

of the case of continuocus usage of this system.
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CHAPTER 2

RELIABILITY OF A STANDBY REDUNDANT SYSTEM

WITH MULTIPLE REPAIR FACILITY

INTRODUCT ION

While in the previous chapter we consldered
systems having a single repair facility, in this
chapter, we study the rellability characterlstics of
a single unit system with (N - 1) spares and multiple
repalr facilities. Whenever a unit in use falls, it
is replaced by another one from the spares., If one
of the ¢ repair facilitles 13 free at that moment,
the falled unit 1s taken up for repalr; otherwlise 1t
waits for repalr in a queue. The system fallures
occurg when the unlt in use falls and no spare is
available for replacement. On repair completion, the
falled units are returned to the spars pool for use
as standby. Ixamples of such system are many: two
navigation computers on each Polaris submarine, search
radars, power generators in operatlon theatres of
hoapltals etc.

In the types of situations as described
above, the alm 1s to keep the system in the operating

state as long as possible with minimum system down-time —
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the duration of time the system 1s in the falled
state., Atlthe same time, proper reliabllity manage-
ment calls for a malntenance of the system with
minimum costs., A desired level of system rellabllity
can be achieved elther by increasing the number of
redundant units or by increasing the number of repalr
facilities. If we can determine the addlitlional
numbers of units or repair facilitles then depending
on their respective costs, the total costs of maln-
taining the system can be minimised. The important
reliability characteristics useful for making such

management decislions are, as in the last chapter, the

average duration of time the system 1s in the operating

state, the average duration of time the system 1s in
the failed state, the mean number of fallures of the

system in a glven interval of time (O, ), the ex-

pected number of repair completions in a glven interval

of time and sc on.

The distribution of time-to~-system fallure

(TSF) for parallel systems with repalr has been studled

by Barlow (1962 a), Gaver (1963), Mc Gregar (1963) and
Natarajen (1967 b). In a recent paper, Downton (1966)

considers the distribution of TSF of N unit parallel

system with ¢ repair facllities. He derives the results

116
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under exponentlal failure time and repair time distri-
butions through the results of birth and death process,
Welss (1662¢)and Schweltzer (1967) have considered
systems in which fallures occur when the units are in
use as well as when they are in storeage and have
derived some of thelr rellability characteristics,
Further, Srinivasan (1967 b) has investigated the dis-
tribution of TSF of & system with spares and rendem
repairsble components,

In this chapter, we devote our attention to
the standby redurdant system described at the outset
and investigate the process during a TSF period. Then
we describe the genersal process by means of renewal

theoretical arguments using the TSF period probabili-

tles, distributlons of TSF and of system downetime (SDT).

The ergodic (steady-state) probabilities have been

obtalned from the general process probabilities by using
some well-known results of renewal theory. Towards the

end, an analysls of the TSF and the long-run availability

of the system 1s made by a numerlcal 1llustration

where the mean TSF and the long-run avallability of the

system are worked out for various combinations of the
number of repair facilities, the number of redundant

units and traffic intensities, It is pointed out how

117
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the management decisions could be mede based on thils

numerical illustration.

DESCRIPTION OF THE SYSTEM

A formal description of the system 1s glven
now by defining the fallure, repalr and replacement
processes,

1. Fallures: Let x be the time for which a unit
i1s in operation, Then the failure-time distribution

of the unit 1s
axt

18

F(t) = P [xst]=1-¢e¢ . (tzo) (2,91)

ie, the fallure times are exponentially dlstributed.
We further assume that the failure times of iIndividual
units are independently and identieally distributed
according to (2,1.1).

2. Replacement: When a unit falls, it is replaced
jmmediately by a spare, There is no switch-over time
involved.

3, Repalr: A unit on fallure is taken up for repair
by one of the ¢ ( > 1 ) repalr facllitles if any one of
them is free; otherwise the unit waltas for repalr In a
queue. Let{ Burj (1 = 1,2,...c) be the sequence of

repalr time at the 1i-th facility. We assume that the
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% 9; T,} are ldenticslly and independently distributed

random variables with the distribution
-pt
Dt = P. [ B pst]=t-e i:q2,-00

18, the repair time at each of the ¢ facillitles are
exponentially distributed.

4, The units are taken for repalr in the order of
their fallurs.

5, State of the system: Let the random varlable
Yi(t) denote the number of falled units in the system
at time t. Then we deflne the state of the system to

be n if nf{t) = n.

TIME-TO-SYSTEHY FAILURE PROCESS

During the TSF period, the system ls in the
up-state. The TSF perlod may begin with 1 (i & N)
failed units initially. When 1 < N, a new unit from
the spare pool starts operating at t = o , thus ini-
tiating a TSF perlod. When 1 = N, the TSF perlod 1s
initiated by the repalr completion of one of the
falled units at t = o - , The TSF period ends with
failure of the N~th unit leaving the system in the
down~-state, Obviously, during a TSF peridd, n{(t) the

number of falled units in the system 1s never N, The

(2,1.2)
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TSP process has the following assoclated transition
probabilities for transitlon from state 1 at time

t =~ o to state n at time t,

P () Pilmsm mit)sn(oct gt ) /n(o):t j (2,1.3)
(o 57\,£ <N

The set of probabilities (2,1.3) characterises the

1
t,mn

process whose states are mutually exclusive and ex-
haustive., It may be noted in this case that the
process 1s Markovian,

We derive the difference-differential
equations governing the TSP process through continuity
arguments. Connecting the probabilitlies at time t+ra

with those at time t and taking 1limits as A& >0 , we

obtaln
e |
. P(,“{{') -0 a4 W(‘*SO;T\) H]?{,nt*)’ * O Pf,nq[{)
(2,1.4)
+ (I ?;,M‘l’r) ; (0 gmget)
and
d
;.;’P‘.)“LH = (X4ep) P 4) 4+ N P;m_‘l” (2,1.5)

+oep (=8, 4y ) P 1) (e e mgn)

where SC,v» 1s the Kronecker dslta,
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The system failure occurs in the interval
{t, t*&) if the system reaches the state N during
this interval., If Biﬂttf) denotes the density of
the TSF when the system started initially with 1 unité

in the failled state, then

%hwt+) a klpguq

It 13 observed that the repalr rate goes on
changing when the fajled units in the system are less
than the number of repair facilities and it remains
constant when they are greater than or equal to c,‘the
total number of repair facilities available, Accordingly
the solution of the set of equations (2,1.4) and (2,1.5)
mist be dealt with separately.

0f the many methods available for the solution
of these set of equations, we make use of tne method of
compensating function {-Keilson (1g62 a) ] « By this
method, a bounded process may be effectlvely discussed
by imbedding 1t in the unbounded process and providing
fictitious sources or compensations at the boundarles to
satisfy the boundary conditions. This technlque 1s
applicable principally to "gkip-Lree" transitions, e,
transitions over an ordered set of points which are
required to pass through all intermedlate points when

going from one point to anotner,

*

21

) (2,1.6)
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Pt
oo
o)

Now, we are glven a process consisting of a
discrete finite set of states indexed by n = 0, 1, 2,
voolf « To solve thls problem, we Imbed our finite
array into two Infinlte arrays, one over n= 0, 1, 2...
and the other over n = .,,.,=-2, -1, 0, 1, 2,... Now we
consider the set of auxlliary equations, valid for all
n, describing the assoclated ;;bounded process, modified
however by ths presence of unknown compensating funetions.
To this end we define new set of probabliities P, and &,
“with singls suffix such that P, varies over all non-

negative lattlece polnts and @, varles over all integral

lattlce polnts. Then we have

TPt s - O p) Pl 45 (1= 60 ,) P (4)
e ) PPy ) + € (4) ) m oy (2,1.7)
2 Q) = - (3 4ep) Qult) £ 2 By (1) 4 e Q) 4 d L4

M=o, l, 2, .- (2,1.8)

with the appropriate initial conditions

P. (o)

i
o
F-
&
3
y
3
7N
N
!

(2,1-9)

(1)
o

Q.. () L1 o nzC
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Here €,(t) and d,(+) are compensation functions so
chosen that

P.(+r= P

i1

lo]nl’t') £~g1 "'L:O,I-,?.,"‘a“'

and
Q.ltYz P, L6 for Mmze,car, . .. CN=t)

Also, because of the skip-free characterlatic of the

random walk

P.lt) =0 Lo T\.BC,Q“”—‘O for Mg C-L,M 2N

these will be satisfled 1f the compensation functlons

are chosen to obey
Ptyzo : € () 4+ AP _(t):z0o

€. (1) = cp Qelt)

R., (=0 - dcwt{f)*efkac('{’}‘-‘ic} (2:,1-10)
4, (¢) < b Pc_‘(i')- -

Q)0 @ »Q, () +d,l8) -0

with the assumption -ewji):o, d,l¥) =0 for other
values of n.

It may be noted that the cholce of compensa-~
tion functions are similar to those used by Kellson
(1962 b) for the case of M/M/X queuelng process except
for the compensation at state N .

We observe that the set of equatlions (£,1.7)

are differential-difference equatlions with varlsble


http://www.cvisiontech.com

coefficients. We reduce them to an easily aoivab'.i.e
form by introdueing binomlal moments defined by
A, 4) = i:z!(:»)PJ(t) mzo,t, -{C-t) (Z,I'-“}
Jrn
fransforming the set of equations (2,1.7) by means of
(2,1.11) and using conditions (2,1.,10), we have

a A D) e Ay tf‘)

0 = a a0 - (5) ) +(< ‘) €. (1) (=2,112)
A A4 : —d () + € () - (z,1-13)
At , Cut

. The set of equatlons (2,1.8) can be readily solved by
generating functions. Define the generating function

of the probabilities @&.,({t) by
Mo

Qlz.6)= £ z Q.0 (2,1.14)

nm €
which 1s convergent for 121 €1

Then (2,1.8) becomes

L & atzﬂ+rx(t~=3+cr~€'**)3atz f)
c=|
N = N QN|(+)-ch QCLH-a-zd(H (2,1.15)

This on using condition (2,1.10) becomes

£aezt) s G-z)+epC-4) ] Qx,4)

C-

= d,(t) ZN--‘Z 'G (+) + zc 4, (t) (2, l16)

Cul
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We now discuss the solutlons of (£,1.12), (2,1.13)
and (2,1.16) under two cases: (1) when 1 &£ ¢ and
(11) when 1 » ¢ .

Case i: When the system starts initlally with 1
failed units, 1 < ¢, we have P le) =%, .  and

therefore,

e "6 fov Mot
A lo)= 2 (,’;)S;m N : ‘ (2,1.147)
J:in L?‘-) :ﬁcﬂ m st

On taking the Laplace transform of (£2,1.12) and using

the 1nitial condition (2,1,17) we get

(np +,a.>};§“(;,) = A ;n,,(b)-(i)Jefa) +(C7;')E~(a) +(£L),(n-si)

[n2% |

and (2.,1~‘8)

= N o - ) . e +
(“P*AO"A“(’S) = kA-n.-g(b) “(h)at(é)+(c_ﬂf}‘é_ {(5) )('YL ")1)
¥ -}
In order to solve thd difference equations (2,1.18) and

(2,1.19), we define the following products

n S
™ [TrMJ fw M >0
$ () = b (2,1.20)
i foe i - -1§ 2

from wanlch we have

(%V\*‘*/ﬁ) 4:7‘(/5) < X C{‘Jﬂqf&‘:)
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On dividing the left hand side of (2,1.18)
and (2,1.19) by(np +2) &,(4) and the right hand side

by X &, _,(») we obtain

A A, (2 5 € s
Ante) = A1) - A {4) (5\,) ' o T C-z(a_‘_ (c_n_')‘*"n [£2)
$n (4 o (8 A b x
e 1.2 ! (2,1.1&)
+ )

n-4

Now changing nton -~ 1, n -2, n=-3, . «+ « O and noting
that A #) = © Dby definition and adding all these

squations including (2,1.21) we have

= v n € 5 () =
A, (8) 4, (4) ¢ (g )--’-— ML/ | ( 1) Fr.le)
P 5 : *«t{é) A 1:0
&, (4) - ‘
. LT o -
I I O " <t 2 ,1.22
= > ;Z.-o (t )eh'—i(é’ ’ 7 ( : )
and
o - . L c I YR
S TR 7 ¢ 4. 2 i=0 g.44)
*’n{&} i - . 3=
£
- o (2,123
+ ER fz-:.-o( E’) c’:'!-t('b) i g : )

It may be noted that in (2,1.22) and (2,1.23) the maximum

value that 1 can take is only (¢ - 1) and

NP (#) = NA__(8) = 4® (2,1, 24)


http://www.cvisiontech.com

p—
o
=1

Changing n to ¢ - 1 and using (2,1.24) in (2,1.23)

and solving for dc(b} there results

£l

. o (Ch
;c(,s) = [ € (» Z ( ) y ¥ E:o( )eﬁ, ;‘67:} [Ei ) 4,',!{4)]
‘ tzo ;

(2,1.25)
which ws rewrite as
: % S |
at» = €, (8) G (s G; (# (2,1-2¢)
where -1
G%((b) =,[ Z (c-t 4, MJ [Z (f) &, 15 (2,1-27)
and ; 4 _
& 1 ' f
L) e
Gi(b) T {Eo(t ) 4,9"(‘“] {}‘- (l) H,)] (;L’l_'z_g)

Now, from (2,1.16), we have for the Laplace transform

of the generating funetion Q (X -t)
- ~N == €} - - )
ez - €, (872 +d.12) 2

é_(?,,—b) = : (2,1.7-9)

A(1-2)+ep -t )4 n

Substituting the valuse of dt(b') from (2,1.26) in
{(2,1.29) we obtain
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¥ *
| C
&, (A) P eb‘(/f)(z G ) 4 2 Gy ()

alz,8) =

Since Q(Z.5) 13 analytic in =z, the numerator of
{(2,1.30) should vanish at the zeros of the denominator,

Let Zz,6anwd X, be the zeros of the denominator, then

28

X(,,z)4cr~{'v";t7+¢ (2,1-30)

N e el *® *
Z, (8 4z, Eef'a) (2, Gl)-1)+ 2, G () =0 (2,1.34)

T,

from the last egquation in (2,1,10) and the definition
of ?i N(_{-”) s the density function of the TSF at
?

(2,1.8), it 12 clear thet
- A M= 3. )= XP.
duls 315» J
where j i {s) 1s the Laplace transform of j‘-,,‘(i')

Therefore, solving for -~ ;“(“»3 from the two equations

in (2,1.31) and using (2,1.32) we obtain

”»
= 4 & (M)
};,M(‘b) : LY ey E-:M L) ‘ N~C K 2%
(‘Z’ - Ky }-' z-zl(z! - Z, )G(#)

(5) (z,l.s'z)

(2,1.33)
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Case 11: When the system starts with i1 falled
units 1 2 ¢, we have Q.,.0) = Si;n . Ther=fore using
(2,1.17), Anlo)ze forn 2 c¢. Then (£,1.,22) and
(2,1.23) reduce to the single equation
Y = i f = C- ! pa
A LA e 3_(s) 5 (%) i o ~ X( ; ).__.;{ d €c‘.(b)

¢, (5) » St A (AT o .

Setting n = ¢ - 1, using (2,1.,24) and rearranging the

terms, we obtaln

*®

d (s = € (57 6 () (2,1.34)

From (2,1.16), the Laplace transform of the generating

function for this case becomes,

" < ¥ z Y

EIREY 2" 4 €. (= Gley-1) z e 2!

Q(=x,4) = {2.,1.35)
M{t-2Y dop (- Y e s

As in case (1) we make use of the analytleity condition

on & (%,2) to obtain

- 0 c-t * 2 -
a (M zy 42, € B(Z,G0-1)1 2, 20 (2,1.30)
Tz, 2

where Zy{( r =1, 2) are the zeros of the denominator of
(2,1.35).
e obtain 3: &) by solving for - 3“(4) from the two

equations in (2,1,36), %Whence
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[
o
=

o+t S L~ +1

x
~ z (1= 2, G}~ 2 (i- 2, G t»
3. (&= ’ : *) ‘“ ) { 2,1.37)
LN z'w-:-n Cim Z;Q{&ﬂ y c&t(,”_ I;C (“)
Further, the values of 2z, and z, in (2,1.33) and
(2,1.,37) are glven by
[« ;
avcpes) 2l Obcpray. qcap]
Z.,'Z-a_ i ( 2 ) A 2 I“’J (11"38)
' =

4 Particular case: When ¢ = N

This case arises when the total number of
repalr facllities is equal to the total number of units
in the system, the one in use and the (N = 1) unita in
the spare pool. In this situation as scon as & unlt
fails, the repair on the falled one 1s started and the
falled units do not walt in a line to get repalred, Now

putting ¢ = N in (2,1.33) we get
o |

Jinter= = [ ‘E h epp_w] [ ‘,( )4» w] (2,1.%9)

IT the system starts Initially with no falled

units, 1 = 0, Then

_ oW
jo,u“’) = [ lz L (2,1.40)

o L
N’
'e-l_
.

o

ot
Rl
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which is in agreement with Srinivasan's (1967) result.
Denoting by the random variable T, » the time to system
failure of process, the moments of T, can be obtained
from the Laplace transform igJa)by successive diffe-
rentiation with respect to o at A=ze , Let E;(Tu)
denote the expected value of T, when the system initially

starts with 1 falled units, Then

]
sy [ e + £ (i )
e AT s (C-1y_t
tr(Gee ()
c . : '
<5 (s - 2]
E;(T..).—.l: tec
" r o
T [0 £ (1 52 S0
; (._L — e
e F) |
Lt 2cC
\_
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where

If we have only a single repai'r facility, then

¢ = 1 and

i

i : ! i il
E‘(T“) = -—r—:;:—;) {,,ﬂ (N-‘l) s P ( fu eg )J (2,,%43)

As was mentioned in the last chapter, the
expectsd TSF when the system starts Initially with
(N - 1) failed units, le, Eg { Tw) nas a special
signiflcance. This is the average duration of time
the system will be in the up-state gfter it has been
restored through a repair completlion from the down~

state. Thils 1s given by

N=-C
t-F 8
+ Ao————,

e 14 2

C~1

) £

L -}

£ (T.): — c[

) (o1t ] s
cr {

The expression for the variance of T. 1in

the case when 1 7 ¢ 1s given by
a m S s
Var (T} = €,(T) 'itf( g

. & [ER(T“\ (a; (o) + Cti' fc))

- f
- ( a:{ﬂ... ai”ﬁo)):}

{9 1 aR)

3]
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where A&, (a&) and a4 (b) are the numerator and denomi-
nator of (2,1.37), a.f») and (<3 fﬁ) are the first and
the second derivative of ai® and @ (o) = L a (4)

Ao
And

q,'“(n') + a:_(b') = [ [(a-c+n)+(.‘_;+l)):l~f

]

spel-e) L pEe L piee .
w(EO5) —--- )|

and 2
XN {c) - Q‘: {0) = [{lu-c-a.a)(u c')..» (A—C-H)(i-c) ---..E.__

(r1’*e g}
CHH!-F) {’)‘L‘){(n—f)"%

+(~-c¢l’)h—L—- —(I-C'M) e

“-c“' flhc*l-

(e ) o H%)]

-

B X | ’ o5 (M, [ .L_ .
-(cr')‘('-f)"{f"'“" by “"""?:“‘ *'“m)j

. | _ -1\ 5
- ';Fi F’:‘—;" ' e'“”') Z(, .)4:' ]

where i :
s - z -—-p G\ﬂd 3. = 0
L SRl ' ‘

We note that Viy L= (T ) cén be obtained from

(2,1.45) by putting 1 = N - 1.

133
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THE GENERAL PROCESS

In the previous sectlon, we investigated the
TSF process wherein the transitions from any state 1 to
any other state ] are permitted without an intermediate
passage to the state N, when the system reachss the
fulled state. However, in ﬁhe general process TSF
 periods alternate with the system down~time (SDT)
periods during which the system is being restored to
the operable state, As stated in chapter 1, when the
system starts operating after restoration, there will
be (N - 1) falled units in the system elther undergoing
repalr or waiting to get repaired, We shall now proceed
to relate the general procsess to the TSF process, thereby
deriving the distribution of n(t ) in the general process.

In a realisation of the general process, let us
suppose that the new TSF periods begin at the sequence of
random instants of time (°“*.<'tg4"‘” ) where time 1s
measured from an arbitrary initial instant. We call tﬁ
the time of beginning of the k th Tgr period and the
interval ( th,\) t, ) the k th 'renewal period!'. Then
the random variable  (g{R)=t -t = will be the length
of the k tn renewal period.,

In the general process one has

T k) = TolR) e T (k2 2)

(2,1.46)


http://www.cvisiontech.com

s
o
ot

wﬁere Tu(lz) 1s the length of the TSF perlod that
immediately follows the restoration of the system to

the state N = 1 by a repalr completion at -‘l’k‘. and

T,(k) 1s the length of the SDT period that immediately
follows this TSF perlod and preceeds restoratlion of the
system at 1, . Since the length of a SDT perlod 1s

that length of time during which repalr completion takes
place, it follows from the nature of the repalir-time dils-

tribution that
- ept

Dity: P, I Tulw)st] = 1- 2 (2,1.47)

Now, we cobserve that {Tu“"}} ,(h?a'l) i1s a sequerce of
independent posltlive random variables identically distri-
buted with the density function §, ’M(*) . Let GN,UQ“)
be the distribution {;_E‘unction corresponding to G, tt)
Then G,._,)NH') = jn Inr,w(w)ydu . Further, we observe
that {Td(h)j)(k >1) is a sequence of independent positlve
rendom variables each having the distribution specified at
(2,1.47)., So, it follows from (2,1.46) that the sequence
§ Tt} ] )(h > 2) of renewal psriods forms a sequence of

independent 1ldentically distributed positlve random vari-

ables with the distribution function

RN = P LT )¢t ]= G ) * D)

(21 i"“8)
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the 9% denoting the convolution operation. The above
sequence of renewal periods constitute a trenewal pro- .
cess{ C.f Smith (1954), Gaver (1959), Subba Rao (1967)
Jaiswal (1965 b)_] . It may be added that the sequence
{Tg{h)} ,(R'21) constitutes a 'modified renewal pro-
cess! | C.f Cox (1963) ] .

Because of the initial conditions (that at
time t = 0 the process starts with 1 units in the falled
astate) we note that the distributio'n function of
T (1) = ¢, , the time of beginning of the first TSF

period 1s glven by _
R, 1) = Gy ) » D) (L <n)

D (1) : 1L=-N)

t .
where Gi,u (t) = ‘[d im {ih) Au

Now wWe shall obtain the distrlbutlion function

¥, (1 4) of t p » the time of beginning of the R th

TSF period taking into account the 1nltial condition that

the process started with i1 failed units at time t = Q ,

| ek

(2,1-49)

&5

Yty = P Lt <t /I\.(o). = LJ (2,t-50)
. 1) s
s RULDI e R T (4) C(khai,t&N)
k »
where X {+) 1is the k th iterated convolution of

0% , .
R(t) with itself and R {t)is interpreted as the unit
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step function at the origin, We shall call "rh(t,l:')
the renewal distribution.
| Denotlng the general process probabilities by
script lstters, let

P. ) = 'Pi[n('{')zn/n{o): LJ (o £W>£-‘=N)

tLn (2,!-5Y)

These provide us the distribution of n{t) in the general
process, that 1s, the probabilities that there are n .
units In the falled state in the system at time t givan‘
that the process started with i units in the failled astsate
at time t ¥ o. Now in order to obtain the probability
that n{t) = n < N in the general process, given that at
time t = o, n (0 ) = 1, (1 £ XN) 1.e. initially there
are 1 falled units In the system we obsserve that elther
a) n(t)= n < Nand n{t') &N (0<t' €t ) le, that at
time t the number of falled units present in the system
is n and the first TSF period has not terminated, or b)
n(t) = n € ¥ and V{t') = N at least once in foﬁ'{'-‘—t) )
ie, that at time t the number of failed units present 1s
n and at least one TSF period has elapsed, The probability
of the event {a) is P; . {t) and the probability of the

event (b) 1s sasily ssen to be

-]
Z Ta ) v (4,0
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sumning the probabilities of the mutually excluslve

events (&) and (b) we obtaln

Al

=)
@f,n l+) ‘P_Ejn () +Z Pu-q)h({-\ *Tht'{f,"{,) )(0 < 'n,’q_ LN)

ke | | (2,452
N 2 d h .
Oent) = G, )k [1-DHO] + hzﬂ‘;»-.',n(“*[‘-'l’“‘] * ¥ W40

-
z
11

}

and (o £ ¢ <N) (2:1'53)

?N'“ﬂfq =

= ™M

P ) % T LN (o n«n ) (2,1.54)

-1
=4 ’

' ol
P, 4 e 1-DOT+ L G (Wxi-D)]x ¥ (%)
NN Nl M
k=i ) (2’1-55)
After derlving the general process probabl-
litles, we shall now proceed to investigate the ergodlc
properties of n(t) in the general process with the ald
of some results in renewal theory,

ERGODIC FROPERTIRS OF THE GENERAL
PROCESS

oo
The expression “f"(‘?,i) = E-:l%t qu':l)
will be called the 'renewal density! Lc.;‘, Smith (1954),
Gaver (1959) ] . In words, ¥ (t,0)d4t + of{dt) 1s
the probability that the TSF process begins in the interval

] .
( ¢ Lt 4 at ). We observe that ¥ [1,t) exists for all ¢

KN~

since R(t) is & convolution of & ‘ NH‘) with D(t), the
3

latter belng absolutely continuous,
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Under broad conditions, the renewal density
converges to a constant as t 2w , To thls end, we make
use of the following theorem of Smith (1954).

Theorem ( W. L. Smith): If
{1} the reneal periocds {’tg(k)j are non-negative
ana E (T ) < =

(11) %R({) € L|+5 for some 9>

{(1i1) il R{t) tends to zero as t tends to infinity
At

then ‘
- . ‘ .
A v'(f,t) S — (7»,*'571
t —> o0 'E(Tﬁ)

where E(T:) 1s the expected length of any but the
first renewnl perilod.

. Referring to the definlition of renewal periods,
the expressions (£,1,7) - (£,1.8) and the results of TSF
process, it can be seen that the conditions of the émith's
theorem are satisfied, Reforring to the definition of Te
and to the expression for the expected duration of TSF
which starts with (N - 1 failed units in the system,
we have

B c~-i
104 [ - € ! cot ) ohe _
E‘Ta)-;[1+7u-c(ﬁ+?f§o(z %)}

(2,1-5%)
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where &, has been definsd in (2,1.42). It can be seen
that E(T,) 1s always positive and finite.

Usually in reliabillity theory, we define 'de-
pendability ratio! 4 as the reciprocal of ¢ , that 1is
de -:; » In the light of this (2,1,58) can be written

as
N~-C

4 - n-cHt €t N
E('tg)z-;-";{;.q.d(ﬁ')—l—d ELC@)@Q]
ED .

We need the followlng lemma of Smith (1954)
pp 14~15 to dlscuss the limiting form of G’C,n(‘ﬂ
as t - o0 .
Lemma: If K(t) 12 of bounded total variation and

1f b{t) 13 any bounded function which tends to a limit

A as t o , then
ol .
Lit) % K(t) = § blt-2) AK(Z)
—~ o0

1s bounded and tends to the limit A [ K {4o0) — K("”)'J

as t— o,

Now, using the above lemma, (2,1,57) and
(2,1.52) - (2,1,53) by identifying Ty, {t) with
E(t) and 2 ?'ku'}.‘) with b(#) , it can be shown
that the general process probabilities G’;"nm tend

to 1imits independent of initial conditions as t - .

140


http://www.cvisiontech.com

Let {\’“} g B Ay den?“te these steady-state
"

probabilities and P(Z) ¥ 3_0 pu % , their
generatling funetion. Then
=
L e }S Pl ds ., n<c
- P (4) = N (2 ,1-59)

b= t = M
fn& (1 dt |, n 2¢

F(*t,l
and
Lo
bn: t> o (P“;N(+) = ==
cp E(7)
?N—(_‘ c~t! -i
! = c-
z = [ + - Z J
[.‘ e"'C(hf ( )4’9) |

(2,1.60)

where P lt) and Q. (+) are defined by the equations
(2,1.7) and (2,1.8). Now the generating funetion b{(z)

can be written as
€~}

l,(z)ZZPZ-FZ‘L

N0 m =L

(2,1.61)

The first term of (2,1.61) on using (2,1.59) becomes

(] C—t - o0
R T D A B M B (2,1-¢2)

o E(Tn) g o

]
Expreasing ¥ 4 1in terms of A's by means of inverse

transform of {2,1,11), namely

1 M=y 7 :
P.(+): Z("'" (J)An(‘!’) ) J:O)‘)Z'_-"c-‘
3 ney
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A

and changing the order of summetion and simplifying

(2,1.62) reduces to

1 e~ - - oG
bz e b S G-y § oAt at (2,464)
nio E(%R) wep o

We observe that the integrsls in (2,1.64)
are obtained as the limit of KKU) In (2,1.82) as
A-> 0 o+ Uslng the limitlng values and the relation
(2,1.59) we get
2 e (4 ) LY I
-W.o‘“ ﬂ?]“ L?hog d’?
Fh. » % . ey g v
+ £E0 Gz (% fa Eﬂ( e &, )J
Lk ' (2,1-€5)
similarly, the second term of b(%) in (2,1.,861) using
(2,1.60) and (2,1.59) in (2,1.35) and taking limit as

L N » reduces to

N-C 4

" -
iy a (z,0) MN=L o
Z P.“I &, === “"PNZN = "ﬂ Zc(—'-) (92) ._. ;
(2,1.6¢)

Combining (2,1.65) and (2,1.66) and simplifying, we

obtain the generating function p(z) as


http://www.cvisiontech.com

-

L% c Neg 41
5 .1_(1_%)+ _L(_:A_E) (Pz) —
"o mAr ClN =z -1
b(z) = =y (2,1-61)
(s ]
A --i
Z 'na H -
nd ) '( ) ?*‘

SOME RELIABILITY CHARACTHRISTICS

RBesides the expectation of TSF and the ex-
pectation of SDT, other reliabillity characteristics
we are interested in, are the same as in chapter 1,
namely, the long-run availability of the system, the
expected number of system fallures in a glven interval

of time {0, t) and the interval reliabllity of the

system, ‘
The Long-run availabllity = - b,
- | - !
- crE(Tg)
i-¢ Cey .
3 ?ﬂ-c( “"L 2 ( ) | EedTe)
¢c =
{+ ':;.,-c(' L (‘ ')‘L‘) E(%a)
¢t ¥ re: Ci R (2,1-68)

From (2,1.68), 1t is observed that the knowledge of
expected duration of TSF and the expected duration of
SDT slone are sufficlent to study the long-run avell-

ability of the system,
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If, Instead of a standby redundant system,
we conalder a system wilh all the W unlts in parallel
redundancy with multiple repalr facilitles, the long-
run avallability of the system from finlte queuelng

theory {see ¥Wohl (1966)] is glven by

long-run availability = '- b,
where &
e _fi_i, §“‘C t’?]
Py =% / [ NSRS EaetsEs
(2,1-69)

Now, rewriting the value of P” in (2,1.60), we have

c L = o Mool

B W - ¢ & I- '
e
N c! f:0 ¢! -

(2,6.706)

We note that, after cancelling ¥ ! in the numerator

and the denominator of (2,1.§i), each term of the deno-
minator of (£,1.69) 1s less than the correspondlng term
of tne denominator of (£,1.70), thereby leaving PN in
(2,1.69) greater than the b, in (2,1.70). Therefore,

we conclude that for a glven value of traffic intensity

e and a glven number of repalr facllities the long-
run avallability of a single-unit system with (N - 1)

gpares 1s greater than that of a system with N units

in parallel redundancy. The same conclusion applles to
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the standby redundant case whereln Spares deterlorate
in storage, as this model, when ,\i % }\1 corresponds
to the parallel redundant cass as seen in chapter 1,
section 3.

We shall next obtaln the expected number of
system fallures 1n a glven interval of time (o, t) as
{ —— o0 e Thisg 1s obtalned by the use of the exXe
presslons in (1,1.52) snd (1,1.5%), These involve the
knowledge of the mean and the second moment of the re-
qurrence time T, to the state N. E (% ) has already
been obtained in (2,1.58). 4as E (ve)= € (T:)"' Eu-r(T:)L

3 2 , 2
where E (Ta) :G:"F“}g andg E,. (T, )= Vﬂ"u,,(Tu)-i'[En_‘fﬂJ}

we can svaluate E(t:) by applylng the result
(2,1.44) and that obtalned by changing i into (N - 1)
in (2,1.45).

The interval rsliability R{xt) has also
been defined earlier in chapter 1, section 1 and its
1imits nave been obtained in {1,1.56). The upper sand
lower bhounds of R(x4) as bt —> 2 as given 1in (1,1.56)
involve only E“__'(Tu) and E{Tg) which are glven
by (£,1.44) and (2,1.58).

A comparison similar to that mentioned for
long~-run availability of the system, between the standby

predundent system ana the perallel redundant systew cean
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be made using the sxpected number of system fallures
In & given interval of time (0, t) and the interval
rellabllity of the system would lead to simllar con-

¢lusions as srrived at earlier,

A NUMERICAL TLLUSTRATION

To facilituatae computations, the equation
(£2,1.44) giving the expected time-to-system fallure

can be rewritten as

Mot e ¢ -1 . cp ¥
P e (ee) , ¥ e Lef)
. -¢ ¢! Y:o ¥
C’-A E—“-l(‘rt\\ = " - )
-T€ (ep) Neg
Sl el S (2,1.71)

We observe that iIn (2,1.71), the probabilities

are Polsson probabilities, The individual terms and

curmilated terms of Polsson distribution can be readily

read from Mollna's Table (194Z2), From (2,1.69) putting
i

E(tﬂ\='gp‘+ E(TL) we have

cp E,, 070 (z,1.72)
- )

Long~run avallabillty = {“"’N e
taep £, 1)

where M ana(T“) is the retlo of the expected

time-to~-system fallure to the expected system down-time.
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TABLE 2.1

Ratlo of Expected Time-to-System Fallure to EXe

pected System Down-time for various

M

’ M-

mber of repair facilities ¢ and Number of Units N

SN
TS

Ity of

tpalr ; cp B (R = Expected Time-to~System Fallure
fapl I'A " kxpected System Down Time
litles | A .
¢ | - i
N=2 N4 N=6 N:B NESRT N=C
0.z  30.00 779.e8°  1.05.10% 4.88.10° 1.22.107 5.00
0.4 8.75 635,44 405,24 0541.44 1.57.10% 2.3
o1 0.6 4.44 16,79 51,08 146.34 410,94 1.67
0.8 2,81 7.21 14,07 24,80 41,57 1.28
1.0 2,00 4,00 6.00 3,00 20,00 1.00
1.2 1.53 2.59 3.3% 3,34 4,19 0.83
0.2 1.57.10% 3.00.10° 6.69.10% 1.49.10%1 915.03
0.4 1050.76 5.50.10% 3.36.10% 1.80.108 138.75
1.5 0s6 252.22  8335,62 1.58.102 3.96,10° 49,44
i 0.8 96.80 1375.5% 1.93.10% 2,71.10° 24,84
1.0 48,05  445,32_ 4,03.10% 3.63.10%  15.00
1.2 27 .84 182,790 1.15.10  7.20.,10° 10.14
0.2 1.14.10° 7.10.108 4.44.10Y% 4¢,55.10°
0.4 2.19.10° 3.41.107 5.32.10° 1.75.10%
).; 0.6 2.54,10% 1.63.,10° 1,13.108 2.81.102
h 0.8 5.12.10° 1.99.10° 7.77.10° 8.,14.10°
1.0 1.63.10%° 4,08,10% 1.82.10% 3,25.10°
1.2 6.66,10° 1.16.10% 2.01.10° 1.59.10°
0.2 1.60.108L 1.0.108
0.4 1.10.10%0 2.5.,107
0.6 6.44.108 2.5.10°
-8 0.8 5.00.107 5.0.,10°
1.0 7.12,10%  1.1.10°
1.2 1.39.10%  3,1.10%
0.2 5.0,10°
0.4 1.0.108
L 0.6 2 15,07
10 0,8 1.0.107
1.0 2.5,108
1.2 1.0,109
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fumber of repair faeilities

»
Long-run Availlability of the System for varlous + ~

[N
T

¢ sand the number of units N

Z (?(3-

Long-run Availability

CPL E“g,t{‘-‘n“)

LH]

tep B (T

N=2 | B= 4 M= 8 N =8 N= 10 N= ¢
0.2 ,967742 .998720 999949 .999997 ,99999% 0.833333
0.4 .89743%8 .984472 ,.997538 .999807 .999937 0.714286
0.6 .814815 .943820 .980769 .993211 ,987572 0.625046
0.8 .736842 .878048 .933333% ,961240 ,976525 0,555555
1.C  .86B887 L20000C L.857142 .88868¢ .909030 0.500000
1.2 .803174 720670 .783B18 792960 .B07321 0,45355¢
= 3 0.2 .0009826 ,999999 .99Y9Y9 L,999999 . 990708
' 0.4 L9690049 L, 999983 ,9909999 ,599989 . 992841
0.6 ,998050 L999936 .999999% 999999 . 980174
0.8 L989775  ,909272  ,965948 .999999 . 961240
1.0 L979591  .997759 L999751 .99997e « 937500
1.2 .965277 .99455€ ,98€132 ,999861 910217
1 0.2 .069999  ,999999 .999999 999997
0.4 LOU9095 ,99909¢ .999999 . 996943
0.6 L099957 .999999 ,998999 .999644
0.8 LH98808 .595995  .uRY99Y .998773
1.0 .599387 999975 L,999969 . 996932
1.2 L.988501 ,999913 L,9999Yb . 993742
* 8 0.2 ~880989 . 999899
D4 . 989999 . 996999
0.6 L989399 5999029
0.8 .99999¢ . 599908
1.0 . £99999 ., 999991
1.2 . 999999 . 999968
k10 0.2 . 999999
0.4 . 299899
0% 6 . 999999
0.8 . 989999
) . 998999
il o2 . 998990

D
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The values of <} Ev{Tu) and long-run
availability of the system are tabulated for thne values
of %: varying from 0.2 to 1,2, the number of
channels ¢ varylng from 1 to 10 and the number of units
N varying from 1 to 10 (ie, the number of spare units
vary from O to 9) in tables 2.1 and 2.2 reépectively.

An inspection of the tables reveals that the ratio

cp €, (7)) and the long-run avallabillty of the
system increase with the reduction of -%: , with the
inerease of the number of spare units and with the in-
erease in the number of revair facilitles,

As mentioned eariier, 1t is of interest to
¥now the number of spares and the number of repalr faci-
11tles required to achleve a pre~assigned long-run avail-
ability for a given %alue of ‘%T . For example, from
taple 2.2 1t 12 seen that for i-:o.s, to achieve a long-
run availability of 0,98, we require 6 units {(1es, B
speres) and a single repalr facllity or 3 units (le., 2
spares) and 3 repalr facllitles, Naturally, the chelees
between the number of spares and the additional repalr
facilities will depend upon their relative costs. 1In the
above example, 1f the cost of providing additional repalr
facilitles 1s higher than the cost of orocuring three
sdditional spares, then the obviocus cholece willl be to pro-

vide more rnumber of spares rather than repalr faclilitiles.
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CHAPTER 3

RELTABILITY OF A STANDBY REDUNDANT SYSTEM

WITH PRIORITY REPAIR POLICIES

A SEMI-MARKOV PROCESS APPROACH
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CHAPTER 3

RELIABILITY OF A STANDBY REDUNDANT SYSTEM UNDRR
PRIORITY R&PAIR POLICY-
A SEMI-MARROV PROCHSS (SMP) APPROACH

INTRODUCT ION

Until now we have considered a system with
only one type of units (units being components of an
equipment, sub-systems or equipments themselves) with
standby redundancy or parallel redundancy. In this
and the next chapter will be dalscussed the rellability
characteristics of a system with two types of units,
each type having units either 1n standby redundancy or
parallel redundancy with a single repair facllity to
repair the fallea units. This chapter will be confined
to the study of standby redundant system while the
next will be devoted to the study of varallel redundant
systems, There are a number of systems having more
than one type of units. For example in a surviellance
system, a radar may constitute a type 1 unit and e
computer working 1in conjunction with the radar may con-
stitute the type 2 unit. There arises a necessity for
imposition of some priority repair policy for repair of
tne failed units when there are more than one type of
units in the system and havling different degrees of

criticaliyy. The unlts on fallure are repalired by &

¢t
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single repailr facilit& and after repalr completion,
they are elther kept as standby in the case of standby
redundant systems er put into operation in the case of
parallel redundant systems. A unlt not having any
additional supvorting units 1s always put into opera-
tion after repalr completion. The question arises as
to which type of units should be assigned pricrity and
wnlch prlority repair policy 1s to be followed. This
will naturally depend upon how these policies affect
the reliabllity characteristics of the system such as
time to system fallure, long-run avallablility and so on,
So far tne concept of priority allocation for
repalr has been confined only to the study of Queues, on
which a large literature is available. Jalswal (1868)
among others has made an elaborate study on Priority
gueues and has discussed varlous queuelng models under
different priority disciplines. In this and the next
chapter, an attempt has been made to study the reliability
characterlstics of some of the systems apvlying two types
of prilcrity repair pollicies, namely, the pre-smptive
resume and the head-of-the-line priority repalr policies.
Under the presemptlve resume priority repalr policy as socon
as a unit with higher priority for repair fails, 1t pre-

empts the lower priority unit being repalred and 1s taken
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for reﬁair at once. The preempted unit is taken back
for repair only when there afe no higher priority units
awalting repalr and its repair is resumed from the
point where it was preempted. On the other hand, under
the head-of-the-line priority repalr policy, once the
lower priority unit is taken for repair, the repair on
it is completed before taking up for repalr the higher
priority units failed during thils time. That is the
higher priority units walt ti1ll the repair completion
of the lower priority unit, As there are oniy two
types of unlts in the system, we call the higher prio-
rity units "priority units" and the lower priority units
"ordinary units",

Discussing the allocati&n of prioritiss for
repair, Morse (1958) has pointed out that the imposi-
tion of priorities increases the average number 6f
falled ordinary units present and makes thelr average
walting time longer before getting repéired, whereas
it usually reducss thé number of falled units in the
gystem and delay for repair of the priority unit. If
the  over-riding requirement 13 to reduce the delay for
repalr of onse particular class of units, then this
class should be assigned priority. This 1s particularly
profitable i1f the non-urgent units take longer to be

repalred on the average. Throughout this and the next

1

o

2
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chapter, the dlscussions are carrled out by assligning
priorit% for revalr of the type 1 unit and the type 2
units are assumed to be non-priority units. Our alm
in these two chapters 1s to study the effect of allo-
cation of the two types of priority repair policles
mentioned earlier on the reliabllity characteristics
of the system such as time to first fallure of the
system, long-run availablility of the system ete. and
this chapter 1s devoted to the study of these charac-
teristics in a standby redundant systemo.
This chapter comorises of the followlng
sections.
SECTION 1 a: SeRIES CONNRCTED STANDBY REDUNDANT
SYSTEM WITH PREEMPTIVE RESUME PRIO-
RITY REPAIR POLICY;
SECTION 1 b: PARALLEL CONNECTED STANDBY REDUNDANT
SYSTEM WITH PREEMPTIVE RESUME PRIO-
RITY REFPAIR POLICY;
SECTION 2 a: SERIES CONN&CTED STANDBY RLDUNDANT
SYSTEM WITH HiAD-OF-~-THE-LINE PRIO-
RITY RaPAIR POLICYS
SECTION € b: PARALLEL CONNuCTED STANDBY REDUNDAKT
SYSTEWM WITH HEAD-OF-THE-LINE PRIO-
RITY REPAIR POLICY.
In these four sections, we lnvestlgate the re-

11ability characterlstics of & system with two types of

units, the first type having only one unit and the second
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type having two units - one unit operating and other
a standby. These two types are connected together
elther in series or 1in parallel, When they are
connected in serles, the system 1s called "Serles
Connected Standby Redundant System” (fig.3.0 a) and
when they are connected in parallel, 1t is called

"parallel connected Standby Redundant System'

(fig 3.0 b}.

, TYPE | TYPE 2
UNIT UNIT

- it
el

f

i
!

{
STANDBY i |

!

REPAIRp--======mmmmlmlna e 102

Fig.3.0 a

Series Connected Standby Redundant System

[T

A 8
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i

ITYPE JUNIT TYPE 2 UNJTl
b oob g STANDBY

1 L RepaR - dTYPE |
2

Fig., 3.0 b
Parallel Connected Standby Redundant System

The operations of repalr and replacement of the falled

units are shown by dotted lines in the figures. We assume
that the failure tims distribution of the individual unit

as well as the repair time distributions are exponential.,

In sections 1l(a) and 1(b), we have derived the reliability
characteristics such as the expected time-to-gyster fallure,

long-run availability of the system, the expected number of

|

o
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fallures of the system in a given interval of time

(0, t ) and interval reliabllity under the assumption
that the type 1 unit having no standby has a presmptive
resume priority for repair over the type 2 unlt having
one standby. The analysls covers the two different cases
one when the type 1 unit and the type 2 unilt are connected
in serles and the other when they are connected 1n para-
11el. & similar treatment 1s glven 1n sectlons 2(a) and
2(b) for the case when the type 1 unit 1s asslgned
head-of-the-1line priority for repalr. The analysls of
these four sections 1s based on the seml-Markov process

(SMP) tecnnique.

SKCTION 1 {(a)

SERIES CONNECTED STANDBY REDUNDANT SYSTEM
WITH PRE~-EMPTIVE RESUME PRIORITY REPATIR

The two types of unlts being connected in
series 1n this case, the system failure occurs whenever
the failure of the type 1 unit or of both the type 2
units ocecur . As the type 1 unit has been assigned
preemptive resume priority for repalr, 1t 1s taken for
repair as soon as it fails. If at this time, 2 type 2
unit {(non-priority unit) is already under repair, lts

repair is interrupted and the type 1 unit 1s taken up
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for repair. The repair on the type 2 unit 1s resumed
from the point where it has been interrupted when the
type 1 unit leaves the repair facility. The stochastic
model of this sytem 1s based on the following assump-
tions and definitions,

1. Failure of Individusl Units: Let Fl(t) and Fg(tj

be the distribution ef functions of failure times of

type 1 and type 2 unit respectively. It is assumed

that they are negative expone?ﬁ}al with mean rates i
and *, so that Fl(t) =1 - e ' and Fz(t) 2] - e-Azt

t * 0 and *i, 22 20

2., Replacement Process: Replacement arises only in

the case of type 2 unit, As soon as the operating type 2
unit fails, the standby unit is put into operation imme-
diately. It is assumed that the replacement is instan-
taneous so that the system 1s operative immediately
without any replacement time or switchover time.

3. Repailr Process: The falled units are repalred by a
single repair facllity, the repair policy belng preemptive
resume priority for type 1 unit and 'repair in the order
of failure! for the type 2 units. The distribution
functions of the revair time Gl(t) and Gg(t) of type 1
and type 2 unit respectively are assumed to be negative

..H-l't

exponentiasl with paiameters 4+ and P2 i,e, Gl(t)= l -8
- Ma
and Gg(t) 1 -6 , t20,p,m:%0, It is also assumed
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that the repalr process is independent of all other
processes,

The definltions of time to system fallure
(TSF) and the system down time (SDT) are the same as
in chapter 1, section 1., During the TSF period, the
system 1s in 'up' state and durling the SDT, the system
I8 restored to 'upt state by the repalr completlon of
the falled units. Whenever the system failure occurs
by the failure of type 1 unit, the system 1s restored
to 'up' state by the repair completion of that unit
and whenever the system fallure 1s caused by the failure
of type 2 unit when slready & unit of the same type 1s in
the falled state, it 1= restored to operation by complet-
ing the repalr on this tyve of unit. Now we define the
followlng random varilables,

N(l) (t) : Kumber of type 1 units (priority units)
In the falled state at time t being
repalred or waiting for repailr;

N(E) (t) : Number of type 2 units (non-priority
units) in the falled state at time t
being repaired or walting for repair;

Then the stat; of the system at any time t 1s defined

by the ordered palr of numbers (nl » Dy } denoting the

value of N(l)(t) and N(i) (t) at time t. TFor various

15

8
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values of n; and ny, , these states are redesignated
by a state number i withlin square brackets, i.e. [1]
varying over the sequence of non-negative integers
Oy 1, 85, 35 «ue

The definitions of distribution of first
passage time, time to system fallure, recurrence time
to any state [i ] foilow the same lines as 1in chapter
_ 1, section 1. Hence, Gl’} (t) represents the distri-
bution function of time to first passage from the gtate
[i] to state [ 3 ] at time t, Gi,i (t) represents the
distribution function of recurrence time to the state
l1] and if the state [ d } denotes the failed state

of the system, then G d (t) denotes the distribution
»

1
function of the time to system faillure starting initially

in the state [ 1] .

We now proceed to investigate the general pro-
cess probabilities,distributiqn function of the time to
gystem fallure and recurrence time to state [ 1] by
evaluating the Laplace Stleltjes transform of the state
probabilities viewing the whole process as a Semi-Markov

Process (SKP).

GENERAL PROCESS PROBABILITIES

It may be seen that the process under considera-

tlon which i3 a continuous time Markov Process and which

139
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can be viewed as a Seml-lMarkov Process in which the
distribution functlon of walt-time between successive
transition 1s negative exponentlal [Pyke (196la, 1961b)
and Barlow (1962bﬂ. In order to have a complete des-
cription of the process, it 1s necessary to enumerate
all the possible states of the process. As the two
types of units are connected 1n serles to each other,
the fallure of the type < unit cannot occur, when once
the fallure of the type 1 unit has caused the system
fallure., Similarly, when the system fallure 1s caused
by the failure of both the type 2 units, the type 1
unilt cannot fall, Therefore, the ordered palr (n1 ’ n2)
representing the state of the system at any tims t can
only be any of (0, 0), (0,1), (0,2), (1,0) and (1,1).

These states are glven the state designations as follows.

Serial State of State
Process at deslgna-
o time t tion
1 (0, O) [ o]
2 (0, 1) [1]
3 (0, 2) 12}
4 (1, 0) [3]
5 (1, 1) [4]
Reen

From thls, 1t can be/ that the system willl be in the

failed state when it 1s at time t in any of the states

12}, (3] , snd [4] .
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In order to-identify this process with the
SMP, we start with the definition of the transition of
the process. A transition 1s sald to take place at an
instant of occurance of a fallure of a unit or repair
completion of the falled one. Let us denote the
successive transitions by the sequence of non-negative
integers { n, n =0, 1, 2, } Following Pyke (196la)
we note by J, , the state deslgnation of the system
at the time of the n'®  transition. Let Xn denote the
time between (n - 1)th and nth transition and let
S, = .21 X . It can be verifisa that the two-
dimensi;;él stochastlic process (J,S8) 1s a Markov Process
and the J-process is a Markov-Chain. Moreover, Pyke
defines another process th JN(t) which represents the
state of the system at any instant of time t, where
N(t) = Sup{ n 2z 0; Sn's T } . The process ZT has
transitions only at the instants of fallure or repair
completions, Betwsen transitions, the value of Zt is
its value at tne last transition [ Fabens {(1959) J 3
The process Zt 13 a Seml-WMarkov Process and the Markov-
Chain underlylng the SWMP 1s ergodle since all states
communlcate with each other.

Before proceeding to obtain the expressions

for Laplace Stieltjes transform (LST) of the general

process probabilities, we require the definlition of some


http://www.cvisiontech.com

o 162

baslec guantities, Let the matrix g(t) = (Qij(t))denote
the matrix of transition distributions, whose slements
Qij(t) represent the probability of occurance of a
transition from the state 1 }at t =0, to a state

[J ) before time t 1.e. 1n time £ t. The transition
probability matrix p =—(pij) is obtained from @(t) as

{ oo = heare represent the probabilit
Qij ( ) Pyg ¥ Pyq TOP p y
of occurance of a transition from the state {11 to
state {j | . If there are m states in the process,
- M .
then (1) Qq(t) =0 fort £ 0 and (11) Z Qejlre0) 1,50 em)
it

For each 1 and every real t set Hi (t) = ‘f; Qfglf)
3 A

which by (11) 1s a distribution function representing

the probability that the process will leave the state {1 ]
In time ¢t . In the particular case of the model of

thls section, totokl number of states is five and 1 and }j
vary from O to 4., Moreover, Qij(t) = pij Fij (t)

where Fij(t) 1s the conditional probabillity that the
transition will occur in time ¢t given that the transi-
tion is into the state {j J. Fij(t) i1s a conditional wait
time distribution., Naturally, the d.f. Fij(t) depends on
the two states W Jand [j }Jbetween which the transition is
being made. Further, 1f Pij >0, Fijtt): Q M0/ bi; while 1f b,:-o
set Foilt) =U,lt) ;a8 d.f, having unilt step at t = O,

In fact, when P..

(0 ee

5 Feitt) may be chosen arbitrarily.
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Since the process 1s a continuous time parameter
Markov-Process, the wait time d.f. F‘-j- () is ekponen—
tial, that is F.; ¥} = 1-;)‘” st =20 for constants
. > o for every 1.

The non-zero elements of the matrix of tran-

gition distributions Qij (t) associated with the SMP

Z; in thils case are given by

t e ay t -~ (Ad) &
- t -2
Q, ) - § e . x,e At = 2 [1—-e 1
' o 4 ok,
L N | ond N NEWST.
Q03L+,“ S € }ue C"f = ["e' ]
: o >‘|4"1
J't - o)t ~ pat o [ (A )t
Q L*ﬂ’ = € M At = — - 1-8 ;
ho e 7 PL.& U At py ' ]
‘ - Lxpargp)t
Q S+ -(h-‘-fﬂ‘)t -2 ¥ b Y [‘ e il ]
y = e ] 2 : Tid
‘;2— l{) & 5 Aze Ci{ A“an"—r‘."
{ ‘ ) &
- Oqepdt Nt 3 S TS WY
Qo 404): ) e % 70 T O L P
e ; ,Nl-'-)z_-&-r],
% "-."‘7.'('- - pat
0, , 4 =JD Hae . dt s te @
t
7 f"'{ ' -"Pl't'
Qe,,o“)=J proe At x 1a &
(]
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~and finally
1 -t -t

Qu ) =) pie dt-a-e

For example, Ql,O (t) represents the proba-
bility of occurence of a transition from state [1]
at t = 0 to state [0 1in time £ t. This is nothing
but the probability that in duration of time £ t, the
repalr of the non-priority unit 1s completed and none of
the operating units falls during that period. Similarly
other Qi,j (t)'s are obtained.

The LST's of these Q J(t)'s are given by
¥

A ( A,y A >‘-|
Q A 2 ——— - LA, (B N 2 & T
0,1 >|+A24—f5 1 ?)’ Qa,stﬁ) b,“+xl+£’ e
& Mo s \
(1) = ———— s a |
- 3 (s : —— = -
tie Mt Xt pt s g Q"z ) TR FAR o
” )tq ~
M2
R, (») z: —— = -y {r) = PR
"4 r\‘+)|2"|".lzu+6 2! le,i ) ”‘L'*'& e
A Mo A
and R s 2 s~ = R (3)
- 3 b+ 8 A

It may be observed that the transition pro-

bability P, is obtalned by letting 4-3 o in Q. (5
N -~
as }» 2 Qi {+ ) - e R..(s)+ Therefore, the non-zero
t) tj Asp J
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elements of the transition probability matrix P =(p¢j)
~
are obtained by letting A -—>o 1n the matrix Q{ A ).

Denote by a's the corresvonding values of «'s at 4s=o

Then,
X Ay be
hop mooeelie 2805 G, & mmiaety ), s oemes o =g
Mk X v da Aod St e
i
Bl N Xg a
kl"l 3 R :-‘a“, PI:4 b ——-_‘_:—h o -‘aS'}bﬂ;i*‘-'— 6
' Yyt A+ pe L T

and
P3o:’:Pa7:!’4}l

In the general process, the transition from
any state {17 to any other state [ ] ] 1s possible and
let Pi,j(t) glve the probsbllity that the process ig 1in
state [ 3] at an lnstant of time t, starting in the

state {1] at t = O. That is
) = Pl 2lid 2, =107 ]

‘P,-}
The relationship between the general process probablli-
ties Pi’j(t) and the transition distribution Qi,j(t) can
be obtalned | Pyke (1961b) | by simple probabilistic
arguments, Bonsldering the state of the process at
time t after the nth transition snd summlng the proba-
bilities over all n, n =1 to = , Pyke obtalns the

matrix eguation giving the relationship between
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)
P (t) and @ {t). From this relationship ?(i("")
1,3 T
can be solved when Qi j( A ) is known. This matrix

»
equation 1s given by Theorem 1.
Theorem 1: (Pyke). Let @2} =1 Q;;{"’)) be matrix

A

of LST of transition distributions and let W (29
:-"(‘S(jHi(’b)) Then, 4

%(A):(?i,s(f&‘)):(‘l—a(/)))(1-—{"!(&)’) (3,101)

P (5 being defined over (0, *© ) and 8{1' is the
Kronecker delta and the matrlx I 1s the unlt matrix.
From (3,1a.1), the expression for Pa’,g(’f’)

becomes =

A

~ A
P sy (a—- Qm)i,; (1= H;00) (3,1a.2)
where (I_" &(ﬁ))t,j represents (1, jJ) th: element of
matrix (3 ~aln ).1 , that is, the element of the row
corresponding to the state (i] and ?olumn correspond-

ing to the state |J ] in (- E?‘A?).

A siwilar relationship exists between P (t)

1,7
and the distribution of the first passage times Gi {(t)

¥
This is also obtained | Pyke (1961b)]through simple
probabllistic arguments by enumeratlng ways by which
the process can reach state [j ] at time t, starting

in state {1 ] initially. These relationships are

given by Theorem 2.
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Theorem 2: (Pyke). For £+ 2o, A >0

P = Gl ® PO bog e W) C (3,1e.3)

?t.i(,s); c,‘.,.(,;) ?;;(ﬂ, ,'HH'
p 4-—!35(2*)‘ - (8,1a.4)
?33{/5) = ~ . 3 L:'.l

oGy 4

where % denote the convolution operation.

From theorem 1 and theorem 2, it is clear
(» ) and G, A
g,38 %) 1,3 ¢*)
are in terms of the (i,]) th: element of the inverse

fa
that expliclt expressions for P

A A
of the matrix (1 - Q(,s’a). Hence (1~ Q(b)) is the

basic matrix of the process and 1s given by

o < 3 4
-~ =y
o {1 o, 0 A* 0
1 Az X4 O As
(1-@tw)= 20 <% 1 o o0 (3,1a.5)
3 oy 0 0 1l 0
410 4, 0 0 1

.
where the numbers given along the border of the matrix

denote the state numbers. Just as the fundamental
-4 '
matrix (T. -9) plays an important role in Markov-
-4
Chain theory, (1 - Q(b)) plays an iImportant role in SMP

thsory.
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DISTRIBUTION OF TIME TQO SYSTLM FAILURE

The relationship between ‘3 {t) and the
filrst passage time distribution Gi,j(t) has been ob-
talned in the equation (3,1a.4). If the state |J ]
i1s the 'down' state of the system, then Gi,j(t) 1s
nothing but the distribution of time to system failure.
Thls distribution can be found by consldering the
system fallure states as absorblng states {;Barlow and
Proschan (1965} p.135 ] and thus making the SMP under
study an absorbing one since the Marko-Chain underlying
the process becomes an absorblng Markov-Chain. As we
are interested in obtaining the distribution of T&F
through any one of the three states |2} , (3 ) and

14 ] .+ we make these states as absorbing states,
This 1s done by making
bop o= A Y
s o | 1. 71, (22,545 0:0,,2,3,4
in the transition probability matrix P. Also when the

state [j ] is an absorbing one, we define

Foolt) 0 , o ct<w
34

= 1 5 + = ad

which leads to the d=finition

3l
c
s}
i
A
N
&

Hj({)
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Because of this definition, the transition distribu-
tianjjUJ corresponding Eo the absorbing state [ j]
becomes zero and 1ts LST Q;;(3) vanlshes.

When the states { 2} s [_5] and [:4]
are made absorbing states, the baslie matrix 1-%(4)

~

of the SMP is denoted by I ~-Q[%) and is given by

0 1 2 " & 4
¢ #l aly 0 ol ]
1 (e, 1l A 5 0 A5
1-2;;,,),_ 2h P 0 1 0 (3,4a.¢)
3 0 0 0 il 0
4 0 0 0 0 i

Aé we are Interested in the LST of the combined
distributlon of TSF through any one of the states [ 2] ’
{31 and {471 , we can obtaln this by lumping these
three states as a gsingle asbsorbing state denoted by[,d]

{ Kemeny and Snell (1960) p.45] . XNow denoting the

A Fal
new basic matrix as 1 - QJA) , we obtaln from 1*(;éb)
(o, 4 &
» 4 1 oy o,
- & e
T-Qn = 1% 1 e (3,%a.7)

d o & 4

This 1s obtained from 1I- Qotﬂ by lumplng elements of

the rows and the columns corresponding to the absorbing

169
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Fal
states when T - Q_f35) 1is in the canonicel form. TIf 1t

i3 not in the canonical form, It can always be brought

into the following form
k m-R - )

[1 . o 1a w A N
. 7 E o 3 0‘1’“ n P 1 E .
] Q J we, L LO 1 "?

by suitsble renumbering of the states. Ti111 now, this
technicue has been used } Kemeny and Snell (1960) and
Barlow and Proschan (1265} } to find the expected number
of visits to state {j} starting in the state [1] berore
reaching the state [ £} and the mean first passage time
only from the transition probsbllity matrix P. In thils
sectlon, the same technlgue has been applied to the basic
matrix of the 3MP, ViZ,I'“é(A) to obtein the LST of the
filrst passage time distributions and distributions of TSF.
When the state [j] becomes ar absorbing one,

it 1s seen from the relationships (3,1a.4) & (3,la.2) that

~ . i
G..{2) :(1*&0{,’5)). (3,ff.1-8)
L) i,
. .
where 1'“QJ)) i1s the basle matrix of abscorbling SHP.

A
From this we obtein Gc;’-ﬂ » the LST of the distribution

functlion of TSF, as the elements of the column correspond.
iIng to state [j ] in the matrix ( I- Qo!ﬁ)) for all

~
the non-absorblng stautes {11 . Thersfore, Gt}d{’é)
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A

and & (%) , the LSTs of the TSF are obtalned as the
slements of column corresponding to the state [d]

and the row states [0] and {1] in the matrix

A ~1
(1— th;s)) which 1s gilven by

o ] a
i y
(T " ( ) 1 4 - oy, X, (ﬂ(4+ﬁf5)—d2 4]
- & S —
= A = —y i Ay Ky — (A ko i
l1- a, (9]} R a+s) (3,“-?)
© - "’*’|°(3 a4
S
where | il = &f!(a)l 2 1—«'.«'3 denotes the determinint

of the matrix ( I~ er.s)) . Thus we have

~

Ny Ayt 0ls) -
O PO S A~ 5 (3,10 .1p)
i -
and
N Ay Ay =~ (A, 4 of
Gid(,s) A - 5) (3,10.”_)
o 1o, oA,

The moments of these dlstributions can be

"

derived by differentiating Ca‘. d(,f:.) with respect to A

>

at A = p . WNow, let the random variable T, d'enote
. -2
the time to system fallure and let E; A(T“] and Ei,\( T )
denote the mean and the second moment of ¢ (1) ,the
A

1!
distribution of TSF, Then
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)
4 [Deown
EialT) =] =2 [ =

and

2 BE; (T, (D)+-— My - Dy
E{A(Tj) = i ) dé i ( ) {J
y D
Hed
(3,!&.13)

where N~ &and Dy stand for the numerator and deno-

minator in the sexpression for G,d(,s) » Thus we obtain

. (0 i)
Mok Ny MoaXaspa
= o~ | (3,%a.14}
)'*‘Az ' lg‘*"l"’ rﬂ_

EﬁﬂlfTu) =

{ -~

'- (1 F P a )
)'4.}?7-'—'63_ . : }|+"?. (3.);&.’5)
£, (7)) =

" XQ_ Ma
{

LR P e S S
b

and defining 7. = jof A M)
]

(2 Soo N
. = ! Wt
and «L 1d J( )
the second moments_ can be written as
e L 28,40 C0 + Cpp
E (T,) ,(5,1&.15)
1 - &, az .

i,
where a's stand for the values of & a

at A-o and

1
3(» + g },4)2-!’!2_)

2

2 .
o2 Z[Aqo_a‘q'_"’,o‘?}‘ai]

.‘0
W

O
1
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. 8imllarly

o 28,00 €+ ¢y

(3,1a.11)
1= 8, &, :

. i y
where |
C'i ke [lq,-ﬂs1%,-a3nen‘]
3 [ ' _r
: A £ — S T PRRE
s ;,4)\2"'1. Tk rat b N - and 1, o Na (310 )

However, the expression for tnafT“) can alternatively
be obtained from a knowledge of the transitlon proba-
bility matrix P and ‘};’ the expectatlon of the uncon-
ditional walt time in the state [J] , J varying over
non-absorbing statea. This methbd does not assume a
¥nowledge of the distribution of TSF. When ([d] 1s an

absorbing state P c¢an be written in the form

o 1 d
o Q.. B
Pl let RS e s
al O ¢ 1

Using a result due to Barlow, ['Barlow'and Proschan
(1965) Theorem 2.5 p.135) ] we obtain the mean time to

system fallure starting in the state [1] to be

1 .
E{,d ‘_T“) N ":Zo " 1]J St o ;.i‘c?,i‘ (‘3',‘¢,‘t€))'
ik e ™™

where < BT
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DISTRIBUTION OF RECURRENCE-TIME TO STATE ij-'

P
From the relationship (3,la.4) between 'P;j(b)
snd G, ;(#) and the relationship (3,18.1) between ? )

and (1 = Q(,s)) we obtain
» ‘
~ V- Hi(8) ‘ \

1~ G,.(8) =

ii

n

ey % —_ ¢+ (3,1a.20

(T-@t) (1= H2)  (1-a) )
i) 15

~

where Gi;;(5) is the LST of distribution of recurrence
time to state [ j ] . Now this is in terms of the ( 31,))
| element of (1 - Qs )'1 where J stands for the state de-
signation {31 . Denote by A.., the cofactor of ( 1.3)

th: element in (3- Q*r-’-?) and by DJ, s the value of

Djj at 2:0 . Then (3,la,14) reduces to
i I 1- &(,4)
= G, (8) = - N (35“1.9{)
33 A
)]

and hence the LST of recurrence time distribution to the

states [23 , {31 anda [ 4 ] are obtained from

1 - C|21((5) = l' Q(é)'
' Asa
. A '
" 11 - ate) |

1 - GSS(/.&) =
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and

A ~

11~ &¢s) {

i-C:44{'r5): -
‘!!».44

where the determinant |1- @ (s} =(t-%aq) (ol & -y} ot ory

&, = (- dpolg ) (1 ogaty) = of,oly

A yg F (!‘-0(46(&-“'5“"7) — o, Ny

and

By (1) (1= ty) - Hyxy

The moments of the recurrence time distribu-
tion can be obtained by successive differentiation of

{3,12.21) with respect to .4 and letting 220 . Let

the random varisble T, denote the reccurence time and

2
let Ejj(tﬁ) and Ejj('l'g )] denote respectively the ex-
pectation and the second moment of the recurrence time

to the state [ j] , then

175

411~ Qea)
€0t = | el 4 ] | (3,10, 22)
&g Az O
" 4 d'.l, A
. 2 2 E..f'{"n)—-é Aij+.__ I-ﬂ(,a),
E (T = N oA T as (3,1a.23)
‘ ﬁjj | Ao -

Observing that at »:e¢ , the sum of the row elements in

the matrix I - Q(4) 1s zero. And noting that Doz-a—g.‘,})':-a,

D= 4,4, D,:a,dq,and D,= a,a; we obtain
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£ (% )e 22fau (2,1a.24)
22 5

™ _ ) k kR (3,'&-25)
E,4(Te) = sl

k
£, (T e 222 = (3,1a,24)

and the second moments

2 EZE(TR) 022 + Cil

>
E22('fg) s = (3,m_27)
i 2 Eas{TR)C + €
£, (%) = e (3 .1a .28)
A . 133
and
= - 2 Ea, YO, 4+ C
B, (T s, B RN M O (3,1a.29)
Dy
where

i

22 qo(D°+q2q4)+Wf(D-”Dz)4'73(D34(5q4y*75D4

1

23 T QA3+l i-da3).n a, -9 a,

0

24 % Mo (20t a3) 4 (D asa5) 49, D,4 9, a,a,
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4 {21

a1 2 N D42, [n (D 0yam (Deay)
k=0

M Ps 4, (Dyrag)] e 2, [0 D+ (050404, ]

t2om, (Dy4a, )4 2737, (Dyt ag)

v ef
Ce) z C23 2 {21 B (2 g (1)
o ) = e 2| T 2 —
()‘n‘ )3)" -’1! (>1" )‘1'4"‘“-}2 ? T’]z f‘!:‘. 3 -‘]5 ": }ll

So far we have discussed the reliabllity characteristics
vilz., mean time to system fallure and the mean rscurrence
time. Now, we shall obtaln an expression for the long-

run avallability of the system.

r

LONG-RUN AVAILABILITY OF THE SYSTEM

Since the general process 1s ergodic, let Pj

denote the steady state probability of the state [J] .

-
W,

Then Pj: P;;(t) 1s independent of the initial

1>t
state [1] . The system 13 'down' when 1t reaches the
state [2] , [3] » or [ 4]. Therefore, when system

contlnues to operate over fairly a long time, the pro-

portion of time the system will bs in the 'down' state
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1s given by p1+ E3+ bq « Let the random wvarilsasble
T4 denote duration of down-time of the gystem and let
E{T4,7T) denote its expectation in an interval (o, T).

when T 1s large

.30
E(TH,T) SO N b4 ). T (3’16 )
From Smitht's thecrems
'L\:wv ’y’j' -
h,. o B Pfj('t) = e
E;:(T,)
J
D.-; .
P s (3}1«.31)
4
& Dh)’]h
kro

Thersfore, by (3,1la.24) an explicit expression for the
expected duration of svstem down-time in a large interval

(0,T) is given by

178

E (Tg,-t ',T) | ( D2V3+D37)3+D4?’1f )T (3"&‘32)

&
2D
ko

Since the long-run availability of the system is the

ke

probability that the system is in the up-state when it
operates over a long perlod of time, it 1is given by

Therefore,

t = {p,4bytb,).

Lon?» ¥ A\F*’ldd(’:&{# 2 1~ (Pz"' PJ"’ "&)
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I

( 3,1a.33)

|

Z 2.,

b.:.o

EXPECTED NUMBER OF SYSTEM FAILURES IN THE INTERVAL (0, t)

Another quantity of interest from the theory of
Renewal process (R P) and Markov Renewal Process {MRP) 1is
the expected number of tlmes the process visits a given
state in {0, t). This has an lmportant application in
reliability studles, when the glven state 13 & system
tdown! state, Then this gives the expected number of
system fallures due to that state in time (0, t)e Let the
state [ J ] denote the system down state and let Nai(*’
denote the number of fallures of the system in (0, t)
starting initlally in the state [1] ., Define for t 2o

and 5 >0

M"j[‘f} = E[N;,-{-t)/'l’o: L ] (3,16 .34)
A ko - ot
M (s) = jne A M) (2,1a.3%)

A »
Also set MUY= (M) ana MUs =( M i) . This is

called the Renewal function of the process. 'ﬂfj{*)

179
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glves the expected number of system failures due to
the state {j] in (0,t) given that initlally the pro-
cess 1s In state (1] . From theorem 5.2 of Pyke
{(1961b) it follows
R (2) :(1"3(&?)—-1 on (0,00) (3,1a-3¢0)

-4
where ( I"a(b)) 1s already known explicitly.
Next, we shall conslder the asymptotiec value
of the renewal functlon. Using the theorem of Smith
| see smith (1954), Cox (1962), Barlow (1962?? } the
expected number of system failures dus to the state [ j]

in the interval (0,t) as t 2 is obtained as

L 4 E 'Z'l E;"(Ta
M;jl‘f.‘) e = + JJ.( R ) , = .__.__’_—-—l- + 0(1)
€5il%) g fEj ] E ;50T
. (3,ia.37)
and
A 2.
t E.. (T,
M) = + ji {%e ) .= 1+ o(4)
€5i(%) 2 | Ejj(Tf)] (3,1a :38)

Corresponding to the 'modified! and 'ordinary' renewal
process respectively. Since the states [2]1 , [3] and

[ 4] constitute the system failure states, expected
number of total failures in the interval (0,t) as t —» =

is given by the sum of ™ __{t) ™ __(+) ana &, (1),

186
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INTERVAL RELIABILITY

In chepter 1, section 1, an expresaion for
the interval rellability has been obtaiﬁed when there
was only one 'down' state of the system. In this
saction, a more general expression for the intervsl
reliability has been obtained when thers are a number
of states constituting the gystem 'down'! state, Let
there be m states in the system and let the state [ {7
(lx Rer, Rez,..om) pepresent the (m-R ) tdown' stateas.
Then as explained earlier, all the (m-= ) tdown' states
can be lumpdd into a single 'down' state{d]. Let

Py 0,8 genote the probability that at time t the
system is in the state [rj] » starting in the state [1]
initially and the‘elapsed time since last transition
into thils state (] 1s y . Then the interval relis-
billty 'R‘(X,t) i1s given by

, Kk + ‘

Rix,t) = Z ) ?t‘j (9'1'3)“'—@} &(‘J-FJ'L)JAj (3,4a.39)
$1z1 © )
tince the process enters one of the 'up! states [31] at
an irnstant t - y and continues to be 'up' during an
interval of length y+ x . This can also be written
alternatively

k
Rixd) = Z {1=6; 4]

_.):1
k1
i 5 ) [lme)dH—g-rzz)Jd&M.'j(‘i)
o

¥t (3.-1&-40)
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where M;ty) denote the probability of occurence
of the state {J31 in time ( 49, 4+dy)
The 1imit of this quantity as t approaches

1q:}inity follows from Smith's theorem and 1s given by

R fi-60
- =Gy 090 dy
f”’ Rixt) = Z: = : (3,14.41)
e e €.(2,)

1

where the summation extends over all the 'up' states
of the system and the Renewal function is assumed to be
non-lattice.

It can easlly be scen that the upper and the

lower bounds of the 1limiting interval reliability are

obtained as

k

% ‘ —

E. (T.)- : €47,

salm) e IR ¢ 7 e k) )

| St = 4 -

s E(T) 520 Ei{T)
(3,1a.42)

SECTION 1 (b)

PARALLEL CONNHECTED STANDBY REDUNDANT SYSTEM WITH
PREEMPTIVE R:SUME PRIORITY REPAIR

In this system, type 1 and type 2 units are
connected in parallel acting as parallel redundant units,

Type 1 and type 2 units can accomplish the assigned task

82
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Independently and the use of such systems are not un-
common in the sophlsticated equipments used in modern
wariare, communlcation systems and spare research. For
example, type 1 and type 2 units may constitute two
types of computers capable of carrying out the same
task connected 1n parallel or two types of sub-assemblies
connected in parallel forming part of a major equipment
or weapon system,

In this section, we consider the case whers
the type 2 unit has a standby, The system will continue
to function sven when the type 1 unit falls or all the
type 2 units féil and the fallure of the system occurs
only when all tﬁe typre 1 and type 2 units are in the
failed state simultansously. As in the previous case,
when the units fail, type 1 unit 1is assigned preemptive
resume prilority for rspair.

The assumntions regarding the failure process
of the 1ndivlidual unit, replacement process, repalr
process and Gefinitions of the TSF, SDT, state of the
process, dlstributions of TSF and recurrence times are
the same as in section 1 (a). As the descrintion and
analysis of the process also 1s almost the same as in
the previous case, only differences wherever they occur

will be mentioned and the final results given,
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GENERAL PROCESS PROBABILITIES

As the system failure occurs when all the
units of both the types have falled, the process passes
through the state (1, 2) and this constitutes the system
*down' state. Thoe different states and thelr state

deslignations are:

State of the

Serial : State
_No., przigsstat degslgnation

1 (0, 0) {01

2 (0, 1) (13

3 (0, 2) (23

4 (1, 0) [31

5 (1, 1) (41

6 {1, 2} {51

Treating the process as a SMP, the non-zero

elements of Q(t), the matrix of transition distributions

are
~( 243t
@ (4):-22 [1-¢ o8 Bt
bk LR D 9 } 5 QOJB({)=A‘+)Z[ 1-p J
v G I Y
Quolt):—2 _ [1-¢ "'3’ B, (1), Au_ 1 Mhret
M4k ' =z o
X4 M2 5 1,2 T & J
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A| = ()nﬁ ‘\‘,,-lv "‘\;.')f n _(}1*!‘1}*
8, ,1) [i-e it ten s i@
b A4 pa 1, 8, 1 X,*rz[ )
_.(,},4—}\2}[‘ ‘{ru-ﬂg)f
Ay [l
Q, () [1-¢ ty-——1[i-e
2,5 s i, Qﬁ,o{ R 2[ ]
| 1 (At r2)E Ny Lpetapyt
Qam‘“’ - [‘“"e ] 3Q4'(‘”- fr-e J
RS v 2 }1‘.;.\2
- -(/\z""lu)"‘ F'{
Qa2 [1-e J,8. ) 1-e
Ay Z
As in the prevlous case denoting the LST's
of the Q’i J(1:)'3 by ' 4 we have
A )\ ~ }
Qs - ——— - -« Qo 0l) s mmte o
P PRy Lo n> ) PP .
o Ha oA
o (.-b).‘: ' : - }‘—-1
1,0 Mad 4 pe s 3 ’Qq’zl'&)? _ :-0{4
kp" xz""’l;*’.&
A
A N
d, (8- ' ; ,.
4 Foe— 2 - ¥z B - .
& A4 ‘\1’*"‘1"’,& T Qn,i(b” 3 c W"

X, 4-@4;_4-4’:
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Q () 2 2 oLy . Q ful o & (%)
=3 an] Ty e /5 T re—— = - = ‘5
2,5 )14‘"14”5 T 3:0( ) F'+\2+5 . an
. Az 2 p M
———— 2 . - (’5 T mem——— = e (x
QS,A”’ ) =N Q4,5 4 > Qs, 2 - 19

Since all the states communicate with each
other, the SMP 13 ergodic and the basic matrix

1s obtained as

o [ o , o] oy o
4 Ay 1 A 5 o hafl 2
" 2 o N 1 o o % 4
I-Qts=
) 3 14, o & 1 %Aq O
4 & ALg O o 1 A 9
5 & e o O o t j

As we have ssen in section 1(a), the first
pessage time distribution, recurrence time distribution
and the Renewal function depend on the inverse of the
matrix I-@(3) . This can be easlly obtained by
partitioning T - a(fb) and obtaining the inverse oi‘ the
partitioned matrix. Denoting the partitions of 1- a('”
as o, f3,Y and § and the corresponding partitions of

-1
~

( I"Q(/”) as A, B, C and D we have, if


http://www.cvisiontech.com

187

( 10 Ry e A @ o]
“'3 4 W’h " o we @ .
) | & o 1 ' e o o~y A {3
I-asy=4 ~ i Pt AR O |
“ o e 1 v, o 5 8
o e o : & ¢ ar.?
& o d,le s 1 §

then | Hadley (1961) |

(1-a0Y - ('& e’)

-3
(¢-p5"¢) , B=-ags

where
A

H

¢

111

-9 v A 3 B Bob b

The state [5} represents the system 'down?
state and, therefore, the distributions of TSF are given
by Gi,s(t) for 1. Q, 1, 2, 3, 4 end the distribution of
recurrence time to the state {67 1s given by Gs’ﬁtt). i
we are interested only in the distributions of T&F, they
can be obtalned as in the last case by making the
state {5 ] as an absorbing state, However, as we are
Interested in other system characteristics elso, we will
carry out the analysls considering the process as a

general process in which all the states are ergodic, We
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may point out here that the LST of the general process

prcbabilities Pij (t) are given by (3,1a.2),

DISTRIBUTION OF TSF AND RECURRENCE TIME

Using the relations (3,1a.1) in (3,1a.4) we

obtain the LST of the distribution of TsF as

-~
A (1~ a0}, ., .
GI'S(A) = ~ _:’b y + z044,2,3:4
! - &4
(1-& })5.5 (3,1b.4)

and the L8T of the distribution of recurrence time to

the state [ 5] 1s given by

P 4
- Gg,sfb) =

"4 (3,4b.2
(*-amy_ T
3

It 1s clear from (3,1b,1) and (3,1b.2) that
L3T's of the distribution of TSF and the recurrence
time to the 'down' state are expressed in terms of
elements of the eolumn corresponding to the tdownt
state in the matrix ("I - a,(&}i1 » Therefore, using
- the cofactors ISSJ of elements in the row correspond-
ing to the state { 5] and column corresponding to
the state [ 11 of I-’(‘;u,s), (n;;’s(s) and ag)s(.a) can
be written as

o .
G.‘(A):-—-ﬁ-—mv—"‘ g, A= 1,2,3)4‘
L .} A

5
’ 5,5 (3,15.3)

~

188
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and

A [1-aQ@) |
1 - C.s’gu): :

(3,1.4)

253,5

where
( 1- & () | & (1~ o Xz ) {("" “ﬁ“’g\{?- Hoolyy ) ~ a(b(ﬁe'q-lﬁlsq‘oq/ﬁ)}

] _ Y
- oy }l (-”’. + Ay olg ol )(.'-"*"}?"m) A o, A "fio}

i
Ao o™ - [ o og (4= g - A, ) 4 (o4 %D’g“ﬁ)(oahm,—tdsoaﬁ):i
Bg gz ~(Vedgaty Y] o (1~ Aoy ) ko, g o(c)J
: L
”*”/?a[dv(“:“’dz?l‘lcw"(s)“"?t.dl"'ﬁ J
o(" ( o, o '
Bg g = e [N~ ety - 3)*’“"“5‘”@]4“’«%“’&(“‘%*”;)
P ..dﬁ‘(1-—‘*’;«&,4““-”‘“.-’*3)(*-“,_»@)—-“.“5]

Dg g 2 (1~ ogetg) (4. oy, - Aol ) -, (o(“»{c(qa{ldg)

The mean and the second moment of the distri-

butlion of TSF and recurrence time to state [5 ] are

obtained by applying with necessary modifications (3,1a,12),
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Fal
(3,1a.19), (3,1a,13) to Gr1 5(;; ) glven in (3,1b.3) and
4
(3,18.22), (3,18.23) to 1 - ’és 504 ) glven in (3,1b.4)
< §

respectlively., For instance
£o,t>‘ (74) = _3%; {T‘*o{ te bgay "‘bqh"*u“ A )(as q"'%%‘j}
4 M, {., a, (a,+aqag¢9; ) }
47, {"“bqh (a,+ aw,qgal)}
M, {aga, ~a,aqag + (1= G,a,) a4,

i R
= aqu(q.h Q.87 ~ 2 Gy a, Ag qz} }

and the mean recurrence time to state {5 j is given by
3
Eo o ()= 2 DM, /-Ds (3315-5)
ke
where atg and Di,s stand for the values of ' x and Ah- '
at 5 - ¢ . Making use of the fact that the sum of the

row elements of the matrix (I-&{gj) 1s zero, we have

%0
Do 8 ®,
Dy —ay, (- aga, )
D, = (14— Gga, Y{ 4= Tgas) ~as( @y 4 aqga,)
%

HF T GeRs ay
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D4 . .,QL{_(i—aSal‘)as-;-aaa,_+q5,q2a8}
Dy = ("a%al)(“as‘:‘f‘a;“4)*aa(q‘-@-aqqgaz)
and qoz.;__‘__ _)'7“:___*______ ,n, - i
Rt P S 2 N py
7‘3’7}4"%1)‘2 B “15:*;:—;

are the means of the unconditional wait time distri-
butions in thé different states.

The expressions for the second moments become
very lengthy and so we will restrict ourselves to that
of the distribution of'recurrence time to state [5]
g this will be required in the evaluation of the ex-
pected number of system fallures in an interval of time

(0, t) as t ~>« , We have for the second moment

2 Ess(’rﬂ)-c1 +C,

I8
B, (%) - (2,15.6)

Dg
where

C,* M [ ¢1- Agag - QA 8, ) Qga, +a,(2, +'q"1a1qs>]

+ L C-aga, ) (agag 4 “:,“4)+¢3(ﬂ.4“qqz“3u
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+ N, (1~ ag aya,a,

+ 7y [ (a- aga, ) Agag + (t—agag -rq{_a,‘)ang.y 2 Ggﬂgqéqa]

2 {2y : '
C1= hz Dta?\h W 2"].*]1 [De4q6q3az]
. .. .

+ Zqofv\x[Dé+Dz_"“"I‘*sqs)J ‘
+ 2707, [ Dy+ D, 4 a,a 5 azag g @y |
+ 2 s LD+ (1-04a,)q, tA a9,
+ 27, [D, + (‘*quz)ai]
+ 2741, [ D+ D+ Qaaeaz]
+ 27,1, [Dg“’qv("asqc)]
+ 27,9, {D:ﬁb4 - (- agaz )agqs
= (1= agas) aga, - 2 @399 g a, |
+27,75 Dy t 20 { Dy Dy -(1- aga, )agag

- (4-0agq "qr-qa) Asa, - 2 qsqqqsqz:}

+ 2757, | Py A as + Az a, Qg ag @, J

T T———
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OTHER RELIABILITY CHARACTHRISTICS

Followlng the analysis of section 1l(a), the
expected duration of the system down-time in a large

Interval (0, T) 1s given by

D5 s
= . b N -
E(‘A.)‘) A ,__.-;}......,_...____,,_......_» .
5
= Dhmhz
Leo
the long-run availability - - bs
.
2 Dyl
koo

and the sxpected number of system fallures 1n an interval

(0O, t) as t —= ¢ 18 gilven by

2
-t E "(T:sd) E' (Tu}
P1i’5{1—) - o+ _miiﬂw_—d——i N __::Lnﬂmm_ 4 O (1 )
£ s T) ‘) tfg,;('t;z-)] Esc(Ta)
and
& E. (T,)
A, Gilg =l BalAE AR ALY
v 2
Eoslla) 2 | Eig(tﬁ)]

for tne modifled and ordilnary Renewal processes res-
pectively.

The evaluation of the expression for interval
reliability follows that of chapter 1, section 1, as in
thls case, there 1s only one system down-state and the

process can be ldentifled with a Renewal process. For,
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Uiy {53 {23 5] {21
&mmmm DL r P G e e = d e em ) e
hb tibuﬁ'ﬂ ikp c{cuﬁﬂ {,Li, g

Flg.3.0¢c Renewal Perlods

as in fig (3.0c) we observe that the TSF periods alter-
nating with SDT periods form a Renewal process and when-

ever & TSF period starts after an SDT perlod through re-

pelr completion, it always starts with the state [2'} .
Therefore, the interval reliability R(xt) is glven by

Rewa) = L4- G“.’S(-Hx)] + S':r - GLSH—MN)]AV{-&,;} (3,1b.7)

where <V(y4,1) denotes the probability of a recurrence
of restoration from 'down! state to fup'! state, il.e. to
state L2} , at y . The 1limiting interval rellability

is then given as
o

JoE1=G, ;(y)]dy

Lom

t —> o .R{]hf) =

Ess(tﬁ)
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and 1ts upper and lower bounds are given by

EQ,S(TH)‘"X. < s Rix4) € —=
E‘S g( 'Z&) t —> o0 ES‘; (T‘R)

SECTION 2 (a)

SERIES CONNECTED STANDBY REDUNDANT SYSTEM WITH
HEAD-OF~-THE-LINE PRIORITY FOR REPAIR

Thls system 1s exactly the same as in section
1(a) except for the fact that when the type 1 unit fails
1t 1s asslgned head-of-the-line priority for repair,
Also, there is a slight difference in the description of
the state of the process. When the process is in the
state (1, 1), we know that a type 1 unit and a type 2
unit are in the falled state; but we do not know which
type of unit is undergoing repair as in this case the type
1l unit is not teken up for repair preempting the type 2
unit, The type 1 unit, when fails, has to wailt ti1ll the
repalr completion of the type 2 unit if 1t is already
undergoing repair at that instant, In order to distine
guish this, denote by (1, i) the state of the system
when type 1 unit is undergoing repailr and the type 2
unit is walting for repailr and similarly (i, 1) denoting
the state when the type 2 unit 1s undergoing repalr and

the type 1 unit is walting for repair, WwWith this defini-
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tion, the states of the process and their state

deslignations are:

State of the

S;gfal afrgigzs & des?éig:ion
1 (0, 0) Lol
2 (0, 1) 111
3 (0, 2) {2]
4 (1, 0) {3}
5 (1, 1) {41

It may be observed that in the series connected system

the state (1, I) does not appear in the general process,

GENERAL PROCESS PROBABILITIES

The process is a SKP in which all the states
communicate with each other. The non-zero elements of

the matrlx of transition distribution Q(t) are given by

3 NERIINT: \ L)1
] (e -2 [t-e 1 g, ,H)="2{t-e ]
el Aot Ay L,—"A)
‘-(}:*'\e.”"l}f (t_ + 4,1 oot
) - At A rL
@, (4)e =Ll [1- Joe w22 Ti-e ]

Artd4 NI
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A = U204 g0t
Q14(’t) I — [ 1€
X+ }2_“’.1

! = Mot
3 3 QZ,Q(*}: 1—- € 2

"‘""* —Hg‘t‘
Qs’ot'f).: 1~ ¢ " Qq.?,(-(-) S -

As before denoting by £ .5 the LST's of the transition
distributions Qllj(-t)',s we have

A

}\1 L ;\*
QD‘(A): -:-—c{‘ " QG,S(A):_——" :-*0(1
' A“"}g"’é A‘**Z"’é
re H'l ~ )\'2.
Q {,0 {/b‘): '——_———"":""MB 5 Q{2(5)= _— :.—-0(4
Pad A b pgdd v 2 le\,,*'rﬁz&
~ A " ”~
' K2
Qo 0l8) et . . 4 Q. ( s Q15
rA 5 !&) = =
M4k Pt s » Ry NP BT
3 3
Py
and ' QSO(‘Z’} s :"“d"]
) ;A,+/f>

[a

Hence, the basic metrix 1- Q(3) of the Process 1s given

by

D ’1 of , o o, o\
1 oy 1 d 4 o oA g
]—&U) 3 2 o) ol 1 & o
3 A 4 o ) 1 o
4 \o (o] o £ t‘d
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Now, LSTfs of the general process probabilities
P:; () can be easily obtained by inverting 1-&‘6) and
using (3, la.2) and the f%ii(b} thus obtained can be
used 1n {3,la.4) to obtain the LST's of the first
passage tilme distributions G.Q(*) and the recurrence

tims distributions Gij{*) p

DISTRIBUTION OF TSF AND RECURRENCE TIMES TQO FAILURE STATES

We observe that the system failure oceurs when
the process reaches the state (2] , [37 or [ 4] and
hence as in section 1(a), the LST of the distribution of
TSF can be obtained by making these three states absorbing
ones and lumping them together into a new state [d}, the

matrix of this absorbing SWP is given by

& 1 d
- O { ¢ °<| 0(2
T ks 3.2a.1
d - Qd(é)- 1 o, 1 A bl ( L )
o o o 1

As the matrix of (3,2a.1) 1s in structure identical with
that of (3,1a.7), the entire analysis of the matrix of
{3,2a.1) follows themalysis of the matrix of (3,1a,7)
verbatim, The LST of the dilstributions of TSF, namely
of {;oa(+) and G,d(i') have been obtained in (3,1a,10)
and (3,la.l1l). And their expectations‘E;J(Tu}and

L L]
the second moments EEA‘T") for {:o0,4 are given by
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Table 3.1

The Values of f; E .(Tn) for Series connected Stand-
by Redundant System under Premeptive Resume and
Head-of=-the-line Priority Repair Policles

L] . - -

Ay - - b Ay Rz .
R U ) D PR PR YES
0.05 19.166 1.0 0,05 0.999
0.1 17,242 | oa 0,995
0.2 12,339 0.2 0.984
0.5 5,815 0.5 0,983
1.0 2,646 1.0 0.800
2,0 1.188 2.0 0.600
5.0 0.432 5.0 0.324
0.05 9.796 2.0 0.05 0.4997
0.1 9.285 0.1 0.4992
0.2 7,894 0.2 0.4970
0.5 4,565 0.5 0.4848
1.0 2,366 1.0 0.4545
2.0 1,131 2.0 0.3888
5.0 0.425 5.0 0.2540
0.05 4,952 5.0 0.05 0.1999
0.1 4,827 0.1 0.1999
0.2 4,444 0.2 0.198%7
0.5 %,188 0.5 0.1985
1.0 1.951 1.0 0.1931
2.0 1,032 2.0 0.1851
5.0 0,411 5.0 0.1523
0.05 1,994
0.1 1,977
0.2 1,919
0.5 1.66%7
1.0 1.273
2.0 0.815
5.0 04374
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(3,1a.14), (3,18.15) and (3,1a.16), (3,1a.17) respec-
tively.

For the ease of computation, the expected TSF
ﬁadhh) given by (3,1la.14), which is the same for both
head-of-the-1line and preemptive resume priority repair

policies is rewritten as

3 F B
el B T . S
£, (T.) B o Tt 4
4 Tw = '
ftr Eo .4 " by A
P AT Y 8
-
'y ’
X 1
where f, = -j; and ¢, = “;: +« The vslues of Fatw,d(?u)

*
are glven in table 3.1 for f,,f, = 0.05, 0.1, 0.2, 0.5,

1.0, 2.0 and 5,0, It can be seen from this table that
“1E¢afﬂ) has higher values when ff>cl are small and
they sharply decrease for an increase in these two
parameters,

The L3T's of the distribution of recurrence
time to the system 'down' states (2}, (3] ana [4]}
are obtalned with necessary modifications using (3,la,.,21)

M
Since +'» in the baslc matrix T-8&1») are different 1n

thils case, we have
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where
Agg =
AT
A44 =
end
s
Pi-Q(m]

The expresslions

three states are

201

“"'9‘2""’7) - X 4 (0{3*'“'!“5’(5)
|

( 1- "(5,‘3‘4) - oy CJ(3

(1 oy oy ) (A ) o gty

2 (m g Y (4ot g ) - oty (% A A A

for the mean recurrence time to these

4
fzz(t}_) B Z Dkq‘h/Dz
k-o
4
. 1, ™
Eo,( Tr) Eo B 1y D.s
4
€ 24(%e) = 2 D’Zq}k/Dét
h-o
where
i . = 1 4 a_4
Dy = - ay


http://www.cvisiontech.com

202

The second moments of the recurrence time
distribution to the states [2] , [371 and {41 nave

the same form as those in section l(a) and are glven by

oy 2 Eu(t’g) I C.“
Ezz(?:& ) P
D,
2 E?’,}(tg) 033 + C31
£ 2
3 La B -
3
2 2 B4, (T) Cu,# Cay
E‘ll}(tﬂ ) . :
DA
where
C Y

32 T L1 P2) 4, (DD 4,0, 4 b,
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C'3'3»= "']a ﬂ‘t’fts + "]I(f\'as"ﬁq)“‘ngadl
!
Cyia =M (V- Da )+ ’10(D‘"D-q)”‘lplﬂb(})"*'bed)

4 . {2y
22 w]k I)h

L-p

R
H

+ 27, i« D'+D°—t)4‘]1(1}04911“7)4-1)4”‘3'})3]
+ o2, {7, ( Do+ D,) +7, (D3+az”)]

& 2 g W, By ba + D= 1)

OTHER RELIABILITY CHARACTERISTICS

Other reliability characteristics such as
expected duration of system down-time 1In a large in=-
terval of time (0, T), Long-run avallability of the
system, expected number of system failures in a given
interval of time (0, t) &8 t —» ¢ and finally the
interval reliability are obtained by using the same
relations as in section 1l(a) with only substituting

the relevent system parameters of this process.
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The long-run avallabllity of thls sydem for
the head-of-the-line priority repalr policy can be ex-

pressed as *-

-

F\ * f}.'!. )
Long-run Avallability = ?/( i+ €44 ”*
N

b
I
>
~

j\

g g w e > o= for the

whers f,‘ o .

-

ease of computation., The values of long-run avallabllity
have been plotted agalnst 7% for different values of i
and fixing the value of f; at 0,2 in fig 3,1 and 0,8

in fig 3.2. It willl be observed that the curves for the

long-run avallability increase sharply 1In the beginning

1

stages and tend to flatten out as £l Increases., The
sharp increase is marked for values iﬁ_"G‘O and beyond
this value of %; , the curves flatten out, These
values also 1ncrease for smaller values of ﬁ fixing
the other two parameters,

The long-run avallability of this system for

preamptive resume priority repalr policy glven by expre-

ssion (3,la.3%) can be rewritten as

Long-run Availabllity

Po 1
;4/(f+c>,~c )



http://www.cvisiontech.com

ONG-RUN AVAILABILITY OF SERIES CONNECTED STANDBY
EDUNDANT SYSTEM UNDER HEAD-OF - THE-LINE PRIORITY
REPAIR POLICY FOR VARIOUS ©,©, AND ¢,=0.2

10 -

@8

06+ Q0.5

LONG-"RUN AVAIL ABILITY

R,25.0

O 5.0 10.0 15.0 20.0 25.0
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LINE PRIORITY
REPAIR POLICY FOR VARIOUSP f, AND ¢ = 0.8

.0

0.8 ot =M

€ =0.05

_=0.1
R=0.2

®:=0.5

o) 3.0 10.0 5.0 20.0 25.0

N‘ol—

Fic. 3.2
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ONG-RUN AVAILABILITY OF SERIES-CONNECTED STANDBY
DUNDANT SYSTEM UNDER PRE-EMP TIVE RESUME PRIORITY

REPAIR POLICY FOR VARIOUS P AND ?z
- M
7 P = 0 = 0.05
¢.-0.1
R=0.2
0.8
N R:=05 .
0.6/
b | %210
/
/ R,22.0
R,25.0
5.0 IOl.O 5.0 20.0 250
-"-’- —
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iy i

where f,* Y and ©: o « These values are plotted
¥ r
sgainrst — for various values of f, 1in filg.3.3. It

Py
will be observed that the curve has a sharp increase
when the values of %: are small (say & 0.5) and beyond
which they tend to flatten out. These values also show
an increase when the values of f are smaller.

Another 1mportant polnt emerging out of this
discussion 1s that the adoption of preemptive resume
priorlty repair policy yields higher long-run availability
than when head-of-the-line priority repalr policy is
adopted. Thls fact can easily be mathematically verified

by comparing the corresponding expressions.

SECTION 2 (b)

PARALLEL CONNECTED STANDBY REDUNDANT SYSTEM WITH
HEAD=-QOF-THE=-LINE PRICRITY FCR REPAIR

The same system as in sectiocn 1(b) has been
considerea 1n this sub~scctlon with the difference that
the type 1 unit on failure 13 given head-of-the-line
priority for repalr, The definition of the states is
the =ame és In section 2(a) which specifies which type
of unit is undergoing repair when both types of units
are in the failed state, i1.e. the state (1l,1). With

thls modificetion, the states of the process and their
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state designations are:

Serial
No,

~N ;o N e

8

State of the

aﬁrgiiis t des:gzziion
(0, 0) 103
(0, 1) 10
(0, 2) 12]
(1, 0) (3]
(1, 1) (4}
(i, 1) [5]
(1, 2) 163
(1, 2) 173

Compare these 8 states with 6 of section 1(bv) and note

that the imposition of the head-of-the-line priority

increases the number of states reguired for description

of the process,

As 1n the previous case, the process 1s

& SMP in which all the states communicate with each other,

The non-zero elements of the matrix of transition distri-

butions 4(t) are givea by

SUETPRI, : Gl
e ) PO o PR
= A4y
(;1.4}‘_-4- ggz)f ) (LHLJ f-tz)l'
[1- ¢ bl B, ) emass - =
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R CYRRYS R |
R, e M)zttt fy-e

padydpy J ’ H)"luiz['*;(}‘ﬂjﬂt
QQ":’H) i ,:';‘ L e’(}‘”u ’; 3cH? - ;:'; [1~é(}“h\j—.‘”
e ITR["“”.(MWJ* , Qs == m[.,_ e 1y
QS,*;("") : = {t- ﬁull“?% ] Qe,z“’f i Mot
@, 02) = b i

and denoting by « » , the LST's of the corresponding

transition distributions, ws have

A i A
o (/3) 4 '2__ b d‘ 5 Q (,‘3) - —-—---—1-4--— R 0(2
o PYTED Y 3 4 0,7 1,480,448
~
My ~ 3
8. () 5 —iiss L sl DAL
‘1,0 ) s A.‘_’_’*f‘}_"é 3 ¥ Q 1'2.(-57 o e T = d

;‘iJ>£+"l"/3 4
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& [ 5) A, . -
A) = e— =z - 3
1,5 5 @ ()= £ o
LA, 4 pats ? 2,1 ! N4 Pat b ¢
A
> 2 :
Q (5) = """-——'—-.--..- z - of Q (5) < Ph = - of
2,6 Ty zo 8
' Mok ks ’ Pt Agt 2
A A
b fs
Q‘s(x&) = = __,q‘q ) Q,,‘{(”g' b = 1%
24 Path+ s YRR PR
» X?. ) M'J.
Q = b — o Q_ (45) = ; ‘q't
"'L('ﬂ Mt A b g 2R 5.2 PRI Y 0
~ f\) a} ,\_l| =z
Qs4(5) = T ngfb): bl
2 T ’ Mot 2
W Me
Q-]"'(N: g :“'Mss
Mot A

GENERAL PROCESS PROBABILITIES

The basic matrix I1-4Q1s) of the genereal process

g then

SRS
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0 v R 3 4 5 & 7

0 i “y 6 oy, © o0 o o )
1 Y 1 , & o X © [
2 10 4 e o 6 o «,
I-E\-}b&): 3 1% o o 1 g 6 o o
4 0 Xg O e} t 6 Aq ©

5 o Lol & Ko © 1 & oy
£ . o A2 © o 3] 1 O
7 | o o o © &g © o !

Pijlt)

The LST's of the general process probabilities
are readily obtained by inverEing 1-—&‘5) and using

(3,18.2) and these values of "j{4) can then be used
in (3,1a.4) to obtain the LST's of the first passage

time distributions G. () and the recurrence time

distributionsg ij(t) s

DISTRIBUTION QF TSF AKND RECURRENCE TIME TO FAILURE STATES

The system fallure occurs when the process
reaches either the state [6 ] or the state (7] and
hence as In sectlion la}, the LST of the distribution of
TSF can be obtained by maklng these two states absorbing
ones and lumping them together into one state [d ] ,

The basic matrix of this absorbing SMP is given by
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p) [ { oA, O o, © ¢ O d

v %, ot d, o wg ©

Z o “, 1 o e o 4«

A 3 e 6 0 4+ Aq © O
1- Qd(b) - 4 fa] ds & o 1 o Wq
‘5 o) o & o, © LI
4 ! ) o .3 & o o 1 !

The LST's of the distributions of TSF G,;4(t) are obtained
by (3,1a.8) in terms of the elements in the column
corresponding to state [d 7] in ‘1 - adf,s) i‘ . As
before, denoting the cofactor of ( 4, ¢ ): th  element

of (1 - ad(g,)) by A . and since ! 1 -54{a)l : A we have

Ay al,t‘

14} -

1 ﬁd' ; (
G, (8 = — =5, e 0,0,2,3, 4,5 (4, )
(,C‘ A
ek, A
whers
A
VBB By s [ ol - o) = Ay g (1 4y)

—~ oy oAy Kgofy, = (Agolagdyg 4 “‘dS‘“S)“to]

3
1o, o, Y4 of g o Ky (at, 4 0f,05%g)
ad‘o:_[dq{dz( Gh) lslc}+ yRyla, 2%87 9

+ Ay g «,4.,«(,‘]

b3
Ad,l = X g (aﬁng"’42“3)"'(0“*“‘1*“‘5“‘;,)(1~da“g)
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da == [ q « Xg (“5“15*”’1“3)-} at’-,(!»at',ara,~a(,,43)
+ A Ay (e oty e ) - N g A ¥y (At A Kg ) — oy o A afgar?]
Aya = l[a(q(I-»D(Lc(g—o(‘a(s).}}_a(s,(d“a(ralolqa(j)]
Ay, = =1 %al- dtdh»;a(.a{s)—l s A (K4 = Hyotg — ot 00
3 ol gy (1~ oA xg) .. dzdgdq-(1~«14“)]
A, =

~ aly f(i - q = -“1“3)—“;«'8 (1"'-’(‘_‘(1_' ';-qu-\/B}]
49(.,,[»(.5,(4-«,.“-«%)49(",:(5‘ ~P

A Y

+ o4 “vds“"'l..]

On the other hand, the LST's of the digstri-

butions of recurrence time to the fallure states [6]

and [7 ] can be obtalned from the basic mastrix
of the general process,

As such
~ 11 - &t | !
f- Go.(s) = > 3z 6,7  (3,26.2)
JJ A.o
3)
whers
A
|1~ -
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T A, Ay Mo g (&, +uq)

2
— Xq Ay Ay (XK 4 Ag Xy

= “0(4’3 "‘l‘?’('r jSz ("‘ “nﬁz“"(z“{g = 9(3"’(,"(5"(,9)

=

Hyg Ag ("‘“h“s)(“s“u*‘“gXW)

AG’;G - ( LS °{" “f{ “M'dB‘)—di_‘(S (1—"(4,4’\'“).. 0(99(14’30(8
and '
TANE [1..:@»@-:(.&(3)*?(10(3(;.—

Aoy ) - dqddydy Ky
2
— dsolip Ag (“u‘*‘“q) ~ g Ag Xig (Ayo0 g Hip)

As before the mean and the second moments of
TSF and reeurrsnce times can easily be obtained from

(3,2b.1) and (3,2b,.2) by differentiation,

7
Ej'(rcp\) = E sz’qh /:DJ. 5 3
8

For instance

"697

where the means of the unconditional wait time distri-
butions are given by

-r'b-

-
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and
D, = (t-a.a,)- :
& 64 ) C‘lgamaqag_aq Qg @, Ag 9y
X B Gy By Gy BB (H A
3y 9 12 S s "n"“q«uq"l)
D, = {‘1“’a’},q8‘)("‘“qf‘§qqﬂ'¥qfl)
D, < (1- a,ay) - G ~ G
) ' 3) Gl 48\ qq2q3a8 -agﬂloﬂg(q.+aq)
- d,aag, (s—q:ag) g
D3 = ( i - a(,ah"a'q?})'al% qqqﬂatz (“‘ qu'})
- Q4 ag (05(2"+ﬂufi..‘)
Dy = 01-6,a,-a/a3)- “19g(1-a,ay) - aca, a, ag
az
— 61 -
9 AL A Ay - a,, Ggq A, (4= a,aa-azas)
= Gy Ag (11— a; ag) @, aq
s 1l s -
D, = U1 a, - aag) - M ag(1-a,q

by ) - dqa, andg

IS Cﬁ’a qE: q 4 €] . . s
( ' "-‘} al’;(‘s("azas)(ﬂqﬂu-%(t&ﬁ.,)
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5 :D" - (ia aéah Wa'a-s)“azqg(" q‘bq"—})
. aq qﬁ-QBQS “asqloqera‘+aq)

%
I Ciq aéqlz (azﬁg’""qu]o)

RELIABILITY CHARACTERISTICS

The derivation of other rellabllity charac-

teristics follow exactly the same pattern as 1ln sectlon

1(b) and the correspohding results can be obtalned by
appropriate substitution of the system parameters,
Before we close this section, we shall make
two remarks.
Remark 1l: In thls study, we have assumed negatlve
exponential dlstribution for the rgpair time of the
indlvidual unlts, The snalysls can, however, be mede
even 1f the repalr time distribution 1s arbltrary.
Since the process wlll be & SMP In thié.case also, the
same type of analysis can be carriad-out.
Remark 2: As in section 3, chapter 1, we can also
evaluate the system characteristles when 1t 1s used

Intermittently by making use of the general process
probabllities,

214
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CHAPTER 4

RELIABILITY OF A PARALLEL REDUNDANT SYSTEM
URDER PRIORITY REPAIR POLICIES

INTRODUCT TON

Last chapter was devoted to the study of
some of the reliability characteristics of a standby
redundant system. In many situations there 1s a ne-
ceasity for the use of parallel redundant systems, for
example, electronic equipments in a commnication net-
work, surviellance radars, power generators in an opera-
tion theatre of a hospital and so on. 1In this chapter,
a study has been made of some wf reliability characteris.
tiecs such as time to system fallure and long-run avail-
ablility of a parallel redundant system. A parallel
redundant systems in 1ts most general form may be con-
celved of having in seriess k types of units, the type
i consisting of N{ units in parallel, We designate such
a system as "A serles connected (Nl » NQ N "Nk } -
Parallel Redundant System" or simply “(Nl » Ny oo By } -
Parallel Syatem" for shortness. This system contlnues

to funetion 3¢ long as at least one unit from sach type

18 active. The system fallure happens when all the units
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of any one type are in the falled state. The unlts on
fallure are repalred by a slngle repalr facility follow-
ing & eertain repalr polley and put baek into operation
after repair completion. As there are more than one type
of units, the repair 1s carrlied out following one of the
two types of priority repalr policles outlined in the
lagst chapter, namely, preemptive resume priority repalr
pollcy and head-of-the-line priorlty repalr policy.
Normally, we come &cross only systems with two types of
units and sach type having not more than two or three
units in parallel redundancy.

In this chapter, the Investigations of the
rellabllity characterlistics have been divided into the
following two sections.

SECTION 1: TIME TO SYSTEM FAILURE OF A
PARALELL REDUNDANT SYSTEM UNDER
PRIORITY REPAIR POLICIES.

SECTION 2: LONG-RUN AVAILABILITY OF A PARALLEL
REDUNDANT SYSTEM UNDER PRIORITY
REPAIR POLICIES.

Section 1 deals with a "(2,2) -~ parallel
system' in which two paralleled unlts of type 1 and two
parallefied units of type 2 are connected in series. This
system 1s 1llustrated in fig.4.0. The distribution of
the time to system fallure has been studled by deriving

its Laplace transform when the fallure times of the
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individuel unit sare exponentially distributed and their

repalr times follow an arbitrary distribution.

TYPE § TYPE 2
UNIT UNIT
i i i E
i [ i
< ik
I ! ! |
[ : 1 : ¥
Es RN
| o !
P REPAIR D

Fig.4.0. A Series Connected (2,2} -
parallel System,

fhe repalr of the failed units are carried out by assign-
ing the two priority repalr pollelies, namely, preemptive
resume and the head-of-the~line, to the type 1 units.
The type 2 units are treated as non-priority units. The
dlscusslons are carried out separately for these two cases
of priority repair policies and at the end, the effect of
interchange of priorities for repair on the time to system
fallure has been studlied when the fallure time distributions

a3 well as the repalr time distributions are exponsntilal,
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The results presented in this seectlon are based on a
paper (Natarajlan, 1967b) published in IEEE Transactions
on Rellability,

In section 2, an analysis is made of an (N ,
Ny ) - parallel system in which Nl paralleled units of
type 1 and H2 paralleled units of type 2 are connected in
series. The main alm of this sectiom is to evaluate the
long~run availability of this sytem. This system fails
when all the units of any one typs fail*. To derive the
long run availebility of the gystem, the busy perlod
process of the repalr facllity is investigated first using
the supplementary varilable technicue under the twoe priocrity
repair policies, Then extending the method of Gaver {1959)
the general tlme-dependent process in which the busy periods
of the repalr facility alternate with its idle periods has
been studied in terms of the busy periocd probabilities and
the probabllity of finding the repalr faeility idle at time
t, using renewal theoretic arguments. Filnelly, the long~
run availabllity of the system in terms of the steady state
probabllities for the two cases of priority repalir nolicies
has been obtained., Thils section is based on a paper

(Natarajan, 1966) to be published in Metrika.
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SECTION 1

TIME TO SYSTEM FAILURE OF A PARALLEL REDUNDANT
SYSTEM UNDSR PRIORITY REPAIR POLIGIES

In this sectlion we study the TSF of a (2,2) -
parallel system. The type 1 unlts may constitute two
radars and the type 2 units may eonstitute two computers.

Earlier, Me Gregar (1963) and Halperin (1964)
have studled the time to system fallure of a N component
parallel system of the same type of units under the
sssumption that the distributlions of failure time and
repair time of individual components are negative exponen~
tial., Gaver (196%) has considered & two component parsllsl
redundant system with arbitrary distribution of repalr time.
It 13 evident that the problem considered here 1s a genera-
lisation of Gavert!s problem as we are having two types of
units which enables us to allocate some priority dlsciplines
in repairing the units.

In the (2,2) - parallel system consldered here,
it is assumed that the fallurse times of indlvidual units
of type 1 are independently and i1dentlesally diatr;buted
having the distribution funetion A (%) = 1= éﬁh‘j Aig>o0
And the repair times are distributed according to an arplt-

rary distribution having the density O (1) glven by
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x
5{(1) z V00 -I:x_’;l-— So NPRELY a{u] ] o= 1,2 {4,1.1)
As before, the state of the system ls characterised by

the number of fajled units in the system.

PREEMPTIVE RESUME PRIORITY DISCIPLINE

Ag a f{irst step towards analysing the system
under this priority discipline, we shall define the
following state probsbilities assoclated with the timse
to aystem fallure process of this aystem.

1. P, (x%3,4)dxdx, - the probablility that at time ¢,
there 1s one priority (type 1) unit under repalr with
elapsed repalr time lying betwesn =¥, and %, +dx, » and
thera 1s one ordinary (type 2) unit which was preempted

garlier when its elapsed repalr time was between X, and

z
A, +A A,

2. Q(nlixiﬁ)dx'(u;gﬁ)“ the probability that at tlme t,

there 18 one priority unit and n ordinary units are in

the falled state and the priority unit 1s under repalr

with elapsed repair tlime lylng between X, and X;4 dx,

while none of the ordinary unlts has been preempted earllier,
Obviously, the ordinaryunlts have failed during the repair

of the priority unilt.

3. U, (2, +) dx, - the probability that at time t, there
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is one ordinary unit and no priority units in the

falled state and the ordinary unit is undergolng repair
with an elapsed repalr time lying between %, and X,+dx,
4. e(t) - the empty atate probability, i.e. the proba-
bility that at time t, the system is in the fup! state
with no failed units,

The states of thiz process over which thess
probabllities have been defined are mutually exelusive
and totally exhaustive and provide a Markovian charac-
terisation of the process under discussion. Conaidering
the process at the epochs when the prilority units and
the ordinery units are taken for repair and the fallure
and repalr process of the individual units during time
Xy and x5 of the elapsed repair times, we obtain by
direct probabilistie’aggumenta 0,

P O t) = P (;a,s.z Jox ) exp - (Onrre) x - jo*x.‘***«fu})(-ﬂ-,i-z)
For, at t - x, when the ordiﬁary unit has undeligone &
repalr upto X, , a priority unit failed and in the in-
terval (t - x,.%) none of the type 1 and type 2 units
working falled and the repalr on the type 1 unit is not
completed. The combined probabllity of these avents 1is
given by the right handfmumbers of (4,1.2). By aimilar

arguments we can obtain
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L :
Qa,g(mﬂ'}zQMD(o,-{—x.) exp {—()\ﬁ 2xz)x.wfoa1'((l)4u} C(4,1:3)
N

]
Q\,‘ ('lh\‘l'): Q"O{O,{'—X;)(% ) [ j - {’LP(- }‘2 7{1}] QIP {- (}«,4‘12) X‘“ ’Q‘yh‘u’c‘u)

1y
=1 2 Qho(o,{-x._)(p exp (- ),_‘x,)) ex.Pi-(A,H;)x,—- jo Ntwda
(4,1-4)
Because of the preemptive nature of the priority disciw

pline, the repair process of the ordinary unit is slightly
complicated. while the ordinary unit is under repair, it
may be preempted & number of times by the pricrity units
falling during this repair time, Since the numbser of in-
terruptions oceuring in a gilven interval of time is a
Polsson process with parameter 2,5 ¥We have

U, (xst) = U, (0,4-7) . P [ e yepain of the orinavy unit
:I s not C.amp{e-fec{ an time Ny

and there ave iw}ewulyh'ons T

pviovidy unaks caiuon mat "hws&
/‘*"ﬂ-‘fe"‘fl&["ﬁ\ms ave cleaved A

Aurahon of fme t- T- x,,] 4t

) mindy 2 -2n o w D
:Ulfo,f)*[e B 8_22‘ _M
no w3 n %
F-n Y
{ I n.e.—(hlékg,)(ﬂ* 1)5’.,(“) duj J
o

" ¥
where 1 denotes the n-th iterated convolution of a

function 4 with 1tself. Also, we have the relations
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?11“0;)‘271) = 2)‘[‘)4(7(.1.,'{) (‘4)"’$j

Qo o,4) = 2 X, e {t) (4,1.7)

o
Urleot) = §7a, O ,d) gy dog + 23, eld) (4,1.8)
(2]

Further, by conneecting the eampty state probabllity at
time ¢ with that at time *+ 4 and taking the 1imit as o

tends to zero, we have

D oet4) + 2 (x+2,) e (4)
e 5] 259
= 5 R0 Oy, 1) N, (e, + § U, (o ) 1,06 dx,

e &
(4‘:1"9)

Taking the Laplace transform with the initial conditien
that at time t = 0, the system starts operation with no

falled units in the system, the eguations (4,1.2) to

{4,1.9) beeome o,

fl {

P (X0 8) = Py Coums s exp 1= (Mgt ) -0 L twdu |
N 5 (a4, t.10D

Ry l0,5) ©xp {—— (M42n,45) % - S-Dmmciu}

ém(f’t.oz&)
(4' y Fotd )

t

Q&,q(?‘.rﬁ) = 2 éf,ofogé') -(l- JELP(-—M x.))
cexp {02 4ras) - I:'Ts.:uaéu} {a,1.12)
D‘(x“b) = 51 (&, 2) kmpi-{zh(l-— An{é))-‘—>~2+,&j3(1_
._._5:;1 11,1(;3)(."'3'} (4,¢,|3)

here 3 and
w SRR I | PYERLPIETY

P (o,%5,8) = 22,0 (x,8) (4,1.14)

&
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Q00,5 = 2 A, E(2) (4 ,1.15)

ob , & -
U, (o, = fo Ao (%0, 5) 400 Ax, + 2 Xy € (8) la ;1. 16)

On substitution of the value of @,, (*:2) from (4,1.12)
in (4,1.16) and simplifying we obtain U, (0,») as

Uile,2) = 2 e () [22 (A1) - Aal8)) + 5] (4,1.17)

and from (4,1.9)

(23 +2n48)em-1: 23 B(5)A,08) 1), (0,5) BIS
(4,1.18)

L B(A) = Sifﬂh(4vAu(xs))4,\l+;sj

selving fer € () from (4,1,17) and (4,1/18) we obtain
é () k -1

= L [ 2 (A ) 43,0 B) - 23 (A, 153 A, () BIS) + A
(4 A9 )
Laet F{t) denote the survivel function of the system and

G(t) be the distribution function of TSF. That 1is,
F{t) = P« Tu>t] , where T. 1s the time to fallure
of the system and

G{4) = P. | 7. S'tj = 4~ F(t) (4,,|.ao)

bifferentlating both sides, we have

4 G e - 2 Fe) (42121)
At
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For any system of the type dlscussed in this section
F(t) is ﬁho sum of all the probabilities contributing
to keep the systex in the tup' or operating state, that
is, the probabllity that at least one unit of eaech type

is in the ‘up' state. Hence

, a0 e
FGY = e+ 8 5 P 0,00 4 doday, 4 § &y (1) dx,
P o
o o
- S &,"o(-xl)'(") c“?(. + S U, ()(1;—{-) C“?(;_
o &

{4) $.22)
Denoting by g(t), the density of the distribution func-
tion G(t), we have from (4,1.282)

GRS {PCH t T fﬁﬁ’ (2,0 ) A, b, +?62 U, 0,
% BN T 3 AR " + B2 PN
o0 2
4+ § @;,p(x.,ﬂ.lx,ap-ja U‘(xz,%)ctx?_}
(4,1.23)

Alternstively, g(t) can also be written as

> od o4
3{‘:) = ("!'4)2) [ Jo J r‘,q("c‘y-’(a :4? Aﬂ.ﬁ‘ﬂ&-}-jautxt,’{')dqjj
o =)

o %

42 Qﬁofxn%)dn,4.xzf U, (X247 A%,

_ ° i (4 ,1.24)
for failure of either the type 1 or type 2 unit will
lead to sysﬁem.failure from tke gystem states oconsidered

in the definition of the probabllities,.
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Taking the Laplace transform of(4,1.23) and noting that
the initial condition is, (27 =1, there results

sy = LT of £ GUO = LT of |- ] ( 4,1-25)
od oD

1- A [é(b)-i- § 5 (R %1 2) Aw dx,y
o o

i

‘:ﬁi!
o QO__ m-—-—

£ A, (%, mAx + ] Q,,o(-x.,é),&x,+SOU,(x,,,s)dx,l
o o o

(4,4.2¢)
From (4,1.24) we have for

= =0 e
23("5) = (AF*-)\J—) [ 5 J isn‘x‘)wﬁ;/ﬁ)dx'd‘x"!"k5:)@‘!(""5)“‘1'
- o o o
. A{ j é})e(anfs)(‘z, ""}3_5 Ul(xnj'&)@‘dl

(4,4.777)
when *=o0 , (4,1.26) reduces to unity showing thereby

G(%t) 1s the honest probability distribution of the TSF.
Now, the value of ﬁfﬁl can be obtained by substituting
the values of 5,,“(-,3‘;“5) LR (%, 3) ého(x.,fs) and

U, (%:,%) in sither {(4,1.26) or (4,1.27) and simplifying,
thus

23 {2420 (1= A, (58)) )

QAisy = 2 LA Yy o
‘}(&-) ‘( 2 e

Anls) - -
. ( Mo 220 ( b.’.-,A-'z'M}) ) (1- BM))
25 (4~ A..Us})-{-,k.,_

2 a0 X R ) 4~ A.;‘(&‘))

)14%1‘4‘A

,.f.

)‘1('\1"”2}2,’) {4~ A:zf&))

(4,4.28)
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-

where e (A) 1s given by (4,1.19).
The expested time to system fallure, E (7.}
1a gliven by

C—ii - e -3
E(Tu) = — X, F {S!b: SGFH) = £ () (4,:.:19)

Differentiating i(,g,) and after nesessary simplifica-
ti%-ﬂ we have

3 o
E(T) = [ —— +
L Y Ayt 2 M {1 Aulo} )

: o - Aste))
.(i’)n( 2(e) )+ 1)( 9(01) 1‘*~|+2>«':..]
[-\c(“"‘n(‘”))* Xy {1- B(o))
- (AL () - Alo) ) Blo J
2 >, ( A 12(0)) ) L

HEAD~QF~THE-LINE PRIORITY DISCIPLINE

Under the head of tha line priority diselpline
the following are the state probabilities associated with

the processt
at

(x.;) dx, (n:o,1) = the probabllity that tlme ¢

there are one priority unit and n ordinary units in the

b ?4,?\
railed state and the prilority unit is under repair with
elapsed repair time lying between =x, and X, + AX,

Be Qan,q (i) dn, (m=o0,1) -~ the probshility that at
time t there are m prierity units end one ordinary unlt

in the failed state and the ordinary unit is undergoing
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repalr with an elapsed repalr time lying between X,
and X, +dn,
3. e{t) = the probebllity that at time t, the aystem
18 In the tup! state with no failed units,
As we have seen earlier the atates of this
ave

Lmutually

exslusive and totally exbaustive and provide s Markovian

process over which the probabilities are defined

characterisation of the process under discussion. Con-

slderlng the process at the epochs when the priority

units and the ordinary units are taken for repalr and

the fellure and repair‘proceas of the lndividusal units

during time X and Xg of the elapsed repalr time, we

obtain by direet probabllistic arguments, as in the pre-

suptive scase ' -

CARE P 3 BF 'i”,)o {o,t-x,) [(3}[{- exp(- h":)) exp(=-Da2) enp i— Py~ Sﬂ’h“'?ﬂ‘“}
(4,1.2)

Note the second Tacter on the right hand sids of (4,1.31)

within the square bracket glves the binomlal probability

of #ecurrance of a fallure of an ordinary unif, out o£

twe ordinary units functioning in the system in the in-

terval (t - x, , t ) and the third factor gives the pro-

1
babllity that in the ssme interval the remaining priority
unit does not fail and the repair of the priority unit

is not completed. Similar arguments lead to

Xy
P, (x,4) = "Pi.c (o, t-2,) ¢xp {-—(’u*’" Zhy) %, - (ﬂf[,(n,)dnj

f}u

(4 ,1-32)
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Q nt) = Q  (0,4-2,) Uz)( b= eoxpl-2x,)) e::mp(*h"t{))

ﬁm .
g “"%’%“ I «ht-})c%:,j (4,1.33)
Ay
_Q‘-‘w*"”w'f\f Q..o 4-1) exp %-f2>¢"’>)\7‘2‘ So "h"‘i)é‘a.!l
(4\‘#34)

the relations
%
(4 .1,.29)

Al=so wa have
2r,elt) + gb ARSI 7'1{*1)‘{"7‘?,

Pl,o {o4) =
N -
QD," (D,‘{') = 2 )\2“ e(-f-') + s ?‘,“ (X“"{’)'Yhfﬂ(,,]d’l' (4)'03‘3‘
o

By ccntinuity arguments as in {(4,1.9) we obtain

. e{t) 4+ 2. 2, 4+2.) e(t)

—

At

20 =3
] Pletxtd o dn 4 [ @, oA gy
o o

Teking Laplase transforms above squations become
— - xi LT =
Pl s) = 2P fo,8)( 1 expi- M) ) exp - >.4>;_+;>)£~501}‘1.u4.,j

B (4,1, 3%)
= — ]
P. N (%,,») = ?1,0{0123) €xnp {"‘( f\!+2);_-f /5)}(1"—’ Nt ed oy
z i L4}
(a,1.39)
- . Ay
G ',‘('12,,:5) = A Ropq (o,/s)(.g., Mp(—).xi)) exb f-( >,+>2+,g)x,.~jomm)djj
= - k]
Bo,y i) = &, ,(0,5) exp {-(2>.+>2+/s)11'fo*le“:!)da}
(4 ,1.41)
and
— - OA"‘
P les)= 25,84 ED Ry, (%2, 8)9, 600 iy, (4, 1.42)
o

éaﬂ(o,fs) = 2k, e(3)+ | :FSM(XW&)?].W.) chx,
[>)
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Substituting the valves of T, («,,s) and émf—agz,,g)
from (4,1.38) and (4,1.40) in (4,1.42) and (4,1.43)

respectively we get

-——

Poole ) s 20 2(m) +2 Qg 400,83 [ B,y (8)-BalS] ((1an)

Zgo)‘ f0,8) = 22y €08) 42 1‘5*’0(6,}3) [ A,(s) - A!:-_“')J

(a,4-45)
where
A_E,{éf‘\.: gi(’{*;’*m)l.i'/ﬁ) (4}*_4&)
6‘{:’;’5): —S—;(fk,+mll+/.’s) (4,1-41)
Solving for 7, ,f0:5) and &,y to,3) from these

two equations

2 -
Potle ) = = [ M+ 25 (B, (- 321{3,.3)]@(,5),(4.,1.43)
éo,‘\ {0, 4) = —i- [ >*2‘+ 25 CALls) - H|7_(/S})]-éf)a°)‘(4,1.49)
-where
A= - 4] A - A.zf«’&}j [Bals)- 51“’/5)] (4,1.50)

Using the initisl condition that e(o):14 3(4,1.5?)

becomes after taking the Laplace tranaform

{2t SLRERE N N O
ob [

= S éo,1(1’~”&)’]z{"2~7‘h(2 o} 5 ;;;’,,o{x.,;b) "hfxt)dl, (4
= ]

o 1. 54)
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(e
gl

The equation (4,1.51) on substitution of the values of

Pio(%8) and Q,,(%;,3) end simplification reduces

‘o

€ (3 [A!.b) Au(,é') + BB

(2342234 8)e(5)-1 = J'M)j {4.1.52)

where

ACSY = 2 [ )\‘42)\9_(6“(5'\—51,(!53)‘] (4.|.53)

B(s) = 2 { }‘1‘1’2 >*i(-Au('§"“‘A|a(’5-))J (4:1,5&)

Solving for € (3) ws get
)

ers = [(22423,48)48 — AL AL - B(2) 67,(5)] A (4,1.55)

Following the argumenta given for deriving ?3“(,5‘) for the
preemptive case, the Laplace transform of the density

g{t) of the TSF 1s given by

L . o
gr”} = N, J '?ho{“‘”” A“Ufkij‘aoq(“zsﬁ)d*z
o o 4
w Wondur e
4—(\\"':\‘;_&, [ L ”P,’,}(T’(.s,b)cﬂx,-l- f:)a‘,i(xl"b‘ldjl]

(4 .1.5¢8)
On substitution of the values of P,  (x,.3) R NN

& ,,(%,2) and &, (#,,3) and simplification (4,1.56)

becomes
ot = = - A
905y - I8 [z‘(;,.*,\.,_) JAWEE Seay o2 (deyy BB wis)
- C oMkt A | B NS Y
_ ey R Als) ,(2 M) ( ”B”‘.(&_’_}_) Bl;b)]
}tr4132_""'£5 2}’_,‘}‘14,&

(4 4. 57)
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E(Tu) , the expected TSF i3 obtalned as
E(Tu) = —j% %(‘b) | y 1 [ {‘“ =5 (A“(e“A‘i{Q)) (&”(p)-—'BgJO))

= {
szo Lle) + 2 { Gl Ayle)) Aoy
M hy

+(1- Bulo)) Bls) §
(1~ A, ())Al)

. M¥zhy
where a2 LY { 1- By o)} B(2) J

23,40

1

rveteny

L(o) = 2 {%43:) - 4 (A, 00 - Ara())(B(0)= B3y i0) ]

== Asn(b) Ale) — le(n) Bto) (4,'*58)

So far we have considered the derivation of
the Laplace transform of the distribution of time to
system fallure and its expectation under the presmptive
resume and heed-of~the-line priority discipiines for
repalr of the failed'units. ~Naxt, we conslder the cass
when there 13 no repsair, 1ﬁ order to hafe a ceomparison
of the expected time to system fallure in both the situa-
‘tions., For this case, putting g‘(A):-glfé)::o s We
have from (4,1.58)
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2
(%)
W

203 (250422)

2
' 14“,-&-,\1) 2a, 0 X 4 232)

_{'A) = —— .
g 2%+ 2248 L - ,\."_‘,,2’\24_/6 22, 4Ryt D
(4,1.59)
and
iy L ZAg 2"‘2_
E( iu ) = [ 5 et Dt W ( i Q
2 (Otda) A2z 2% ¢+ A4 ,1.68)

DISCUSSION OF RESULTS

The main problem gonfronted in practical
situations 13(1) whleh priority should be assigned
and (2) which type of unit should be assigned priority.
This can be done on the bazis of mean time to system
failure, E(T, }. We have consldered this when
S¢n) = g ém,xp; >9[Natarajan {196’719)] . To compare
the variations exhibited by the mean time to system
fallure with the two types of repair policies, it 1s
desirable to examine the system with units having

1) longer mean time to failure with longer
mean repair times}

1i) longer mean timeé to fallure and shorter
mean repair times;

Keeping this in view we have distinguished the

following four cases under the preemptive resume and
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head-of-the~1line priority repair policles.
Longer mean repair times:
Gase (1): X, = 0.10, A, = ,04, and
Foe = 0.1 for various values
of I
Case (11): 2= 0.04, », = 0.1, and
y % 0.1 for various values
of M
Shorter mean repsalr times:
Case {(iii) Ay= 0.1, A, - 0.04, and
g, = 1.0 for various values
of P4
Case (iv): > = 0.04, >, = 0.1 and
py= 1.0 for various values
of Pa
Gfaphs have been drawn (fig.4.l) glving mean
T3F for the different cases. To iliustrate the use of
these graphs, consider the following examples,
Example 1:

When Ay= 0.1, g = 0.04, Ps = 1.0, and P2 = 0.1,
the type 1 unit fails wmore often than type 2 unit and
the repair time of type 1 unit is less thanLZ% the type
<. When the priorities for repairing the different types
of units are interchanged, the following velues of the

parameters are obtained, il.e,, A;= 0,04, }, = 0.1,
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EXPECTED TIME TO FAILURE FOR DIFFERENT

_. PRIORITY REPAIR POLICIES
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%= 0.1, and fo = 1,0. From fig 4.1 we obtain the
values given in table 4.1 for the mean time to system

fallure under various priority disciplines,

N

TABLE 4. 1

MEAN TIME TO SYSTEM FATLURE FOR
CASES (1) & (ii)s .

After
Priority nglgigen interchanging
Discipline Case (1) Values
Case (11)

Preemptive
resume 16,6 7.9
Head-of«the-
1ine 26,8 26,8

# Case (1) %)= 0.1,%, = 0,04, M2 = 0.1 with
My 2 1.0, and
Case (11) X1 = 0.04,%2 = 0.1, l.> 0.1 with

P:_ =) 10%

Table 4.1 reveals that: (1) The interchange of
priorities has no effect under the head-of-the~line dis-
¢lpline whether the mean time to failurs of the individual
unit 1s short or long. The contrary is found for the pre-
emptive resume discipline, (2) The mean TSF is longer when
the head-of-the-line discipline is adopted for repairing

the units than when preemptive resume diseipline is used,
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Example 2;

When Az 0,1, = 0.04,p+ = 0.1, @nd pz = 1, a
type 1 unit falls more often than a type 2 unit and the
repalr time of the type 2 unit 1s shorter than that of
type 1. That 1s, the units having longer mean time to
fallure have shorter mean repair time. The mean time
to system fallure for different priority disciplines

before and efter interchaning the priorities is given
in Tabls 4.2,

TABLE 4.2

MEAN TIME TO SYSTEM FAILURE FOR
CASES (111) & (iv)=

After
Priority Bor Evon Interchanging
Discipll Yo pos Val
S¢ipline  gage (111) Cagéu?iv)

Preemptive
resume 12.77 10,59
Head-of=-the~
e 18 18

# Case (iii): xp *= 0e¢l,y 4, = 0004’ | 1.00 with
pi = 0.13 and |
Case (iv): X, = 0.04, > = 0.1, #: = 1.00 with

tt“" = 0.1,

From Table 4.2, 1t 1s apparent that the head-of-

the~line discipline does not affect the mean TSF whereas
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there 1s differsnce in the case of preemptive resume
in repalring the two types of units. It may be noted
that the difference 1s not as marked as in the previous

example.,

CONCLUSIONS

From the atudy of thsese two groups, thse follow-
ing pointe can be observed:

(1) Head~of-the-line policy for repair of priority
units is more effectlve whensver the mean time to fallure
of the unit 1s longer and 1ts mean repalr times are
shorter, as 1s evlident from the higher values of the -
mean TSP in fig.4.1.

(2) Even when the longer mean time to fellure of the
unlt 1s sssoclated with longer repair time, the head-of-
the-line dlscipline for repalr of the units is still
better than the corresponding preemptive resume case,

Hence, 1t 1s desirable to repalr the units as
and when they fall adopting ths head-of-the~line dlsci-
pline for the priority units rathser than using preemptive
resume discipline, Prcemptlve resume dlscipline must bs
used only under speclal clrcumstances governed by emer-
geney or risk considerations,

{3) Comparison of the mean TSF in rig.4.l when pre-

emptive resume policy is imposed shows that better values
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are obtalned when longer time to failurs 1s assoclated
wlth shorter time for repair,
SECTION 2

LONG~-RUN AVAILABILITY OF A& PARALLEL REDUNDANT
SYSTEM UNDER PRIORITY RESPAIR POLICGTES

In the last section was studied the ef'fect of
prierity repair policles in inereasing the expeeted TSF
of a (2,2) - parsllel system. Now, in this section, we
shall study the long-run avallabllity of a more general
system, namely, the (El ’ Né ) - parallsl system, The
description of the failure process of the individusl
units, the repalr process and the assignment of priority
repair policies are the same as in section 1,

The problem dlscussed in this section 1s a
generalisation of the problem considered by Gaver (1963)
as ;e have intrcduced priority repsair policies for re-
palring the failed units. The method adopted here is the
same &8s that of the solution of machine interference prob-
lems studled by Takdes (1962) and Thiruvengadam (1965),

Now we shall deflne the following random variables

in order to describe the pProcess. Let at time t measured

from the start of the system
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m{t)t the number of priority units Iin the
falled state in the system;

n{t): the nmumber of ordinary units in the
Talled steate in the gystem;

Alt)s the elapsed repair time of the priority

! unit under repair;

Y{t): the elapsed repalr time of the ordinary
unit under repair;

7, W the elapssd repair time of the ordinary
unit undergoing repair when it was pre-
empted by the priority unit,

Farther, it may be noted that the term "unit®
is used in & more generalised sense to denobe components

of an equipment, sub~systems or eguipments themselves,

THE BUSY PERIOD PROCESS

Head-ofwtha-linﬁ Case

The busy period of the repair faecility is that
length of time the facility is busy repairing the ordinary
units or priority units. The busy period is initiated by
the fallure of an ordinary unit, a priority unit, and ends
with the departure of an ordinary unit or a priority unit
thet leaves the repair faeility 1dle for the first time.
Obviously, in such & process transitions from eany state

to any other state are permissible without the interven-
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s

tion of the empty state, A ’eomplate Markovian charsc-
terisation of the busy period process is provided by the
set of mutually execlusive and totally exhaustive states
of the process over which the following probesbilities
are defined
P OGP ot 2 Po [mb) =m  mt) = n | e, F MY >0 (0 ct'et),
W—$X(f)51+dx/nwo%rnw)=1j

(1smsN,, 08m &Ny )

Ran (1Y = Pol mtty =m mih) = n ; mithy g n(+')>a(oé+‘:’:’r),
§ YIS Yyhdy [ mia) o) = ]

(0 ¢m SNy, 1€ ngNy)

It is elsar that ?hhn(x;fhiu represents the
ﬁrobability at time t during the busy period process
there are m priority failled units of which one 1s under-
going repair with elapaed repalr time lying between x
and x+dx and n ordinary failed units walting to get
repalred, Similarly, it may be understood that Qwﬁﬂqﬂﬂ,+)&3
represents the probabllity that at time t there are m
priority failed units waiting for repalr while there are
n ordlnary falled units in the system of which one is
undergoing repair with elapsad repalr time lying between

Yy and g4—d3
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Now, it 1s easy to construect the differential
difference equations for the process by connecting the
various state probabilities at time t sand t+4  and
using the continuity argument as in Keilson and
Kookharian (1960). Thus we have

3 3 .
{;; 5 AN m)Y A (N =) dg + 7,00 :}] "Pm,“(‘x,»{v]

= { M-t} Xy ‘Pw‘ui'n(n,{}.g-qim,}_—‘ﬂ»&‘\) il‘f’m,.ﬁ_‘(’xﬁ)
(4)‘1'1)

2 2 . t :
i.g; + ;:1 (M- mY A d(Ng-m) }‘2*",}!1{5}_} @ i Lyt

= ( Neemet ) Mg B ey, (ypt) #l- maet) Xy R et (y,t)
(4;2‘2)
Let Y(t) denote the density of the busy perlod
initiated by the fallure of an ordinary unit or a priority

unit at time t = O, Then

oa N
Jit) = SO Pro Ot) M, dot + 50 &, (49,4),14) dy (4,2 3)
The equations hold with appropriate modiflecatlons
for the range of values of m and n glven at the definlitions
of ths various probabilities, Consideration of repalr
completions of prlority and ordinary unlits and the fallure

of a priorlty unit when an ordinary unit is under repair

lead to the boundary condltions

o0 o4

?W‘-“ (0,4) = S ?m-u " {w,*t_} Nl x4 g & s (951) ’h‘“})‘*é
e

O

(15"'\1;5"‘“30&“&”1)

(4,2.4)
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?m,'n (0;{)550 —‘fof afl 1 and o2 1 (412“%)

=< -0
Qon lot) = jo & 5,mer (4% ) 7, 09) dy + J;'Pg‘,,,hsﬂ-)q,tmdx

(14?15?{1) (“!‘)g"c’)

As for initlal conditions, we shall have

Prom (%,0) = 81 ¢ Smio SO [ NN+ ND] (0, 4

Gm,“fﬁj,o) = 8m.o é’nm %{‘d} [Ni}‘ll(""':""" N2 X’)J (4,2.8)

Where 8;5 1s the Eronecker delta and 81%),3(3) are
the Dirac deltas functions. We choose the initisl con-
ditions in this form as they facilitate the simultaneous
study of busy period processes initiated by the ordinary
unit alone or by the priority unit elone by choosing
NidiT0 67 Nydyzo respectively.

We observe that the equations (4,2.1) and
{4,2.2) ere linesr differentisl-differznce equations in
the varlables x, y and ¢, A4is a {ivst step towards the
solution, we teke Laplace transform of these equations,
Making use of the initial~§onditians given at (4,2.7) and
(4,2.8) the Laplacs transforms of {4,2¢1) and (4.2.8)
becoms

? ——— , - =
AR LT P YR LS b WAV N fe, (%)

:.(N." ™ o+ ))\{Pmn‘s,h. (Df-,,s) +(N1‘“+‘) )\2- :5 ‘

™y,

(x,A)

+‘S'rh,18'n,0 Stx)(Nl)‘!/[Nl)‘i""ng_}";}) (4’2_9)
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T2
Wy

{'a?; an-md sy +(Ra=-mY 2 4 8 4 ’h"”} Q wn{(914)

, (N(’ g )Ai a_m»i,n (szré) +£N7_' ’n*').)a -ém'n—l !ji’é)

+ Swo S Oly) [ Ny, Kﬂ:%"*ﬂnxﬂl (4,2 .10)

The density of the busy perlod duration at

(4,2,3) 18 transformed to
o W_
Fisy = b Puo GG nadn 4§ By (9,0)andy (4,2,0)
’ o o

The boundary conditlons given by the equations

(4,2,4) - (4,2.8) on taking Laplace transform beconme

o

o

o
R vy I 3
?731_.11 (b'}’} = JO ’Pw\-n"n { “J’{’) "_i,f?()c"'.ll e JOQ“"" )7‘4,(3;15) 'Y;z(‘!fdtj
&N

(1 «menN,, 0 LTI {(4,2.32)
Qo (0,8) = & dov alt »u and w 34 (4,2.13)
90__ oy
é oy (‘""’5) % '{) Qﬂ,ww‘(‘)”‘a) "f;{'f)fij i jp P-!,h(w”’} ‘?_},M}th{
(1 sn € 8) {4,2.14)

As the set of equations (4,2.9) and (4,2.10)
are differential~difference squations with v&riﬁble cO=-
efficients in m and n, the usuwal generating function
teehnique leads to partial differential equations which
are very difficult to solve. To facilitate sclution of

such typés of equatlions the following discrete transforms
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R&%

| see Thiruvengadaw and Jaiswad (19642)| whieh trans-
forms P and Q into & new set of gquantities A and B sare
introduced, If A and B denote the Laplace transform

of A and B, than we define

Noms . "
;m,h (ny5) = Z ( ) Z— (n ol Rye ) (x,»)
1z n
,(9 £ m &_M,wi).ngns_ul) (4)7_.|5)
Ne N5t & 1 e
Bwa h(’;,,&) & Z (i"‘) Z (i") QN‘v.i-)ﬂi*.} (9?A)
] tzm 2z
/ o &¢meN,, 0&mn & Navt ) (4,2-1¢)

and we can obtain the busy periocd probsbilities P's and

Qts by means of the following inverse transforms,

»

Ny} ;"m'h’.. g Mo VE & ¥ P J' d
= f = .
?'m.’n n,4) = Z = ‘) (t'f‘m-m ) _z*(“’) ( J+n. N:) Aa’.i“"é)

‘ "& -m J:‘ Nt“’"\/
(4,2.47)
By hm.u, o Mgt jen-N,

. . > 5
Qm'n(y’/é) - Z ('- ‘J ‘4)‘” N, Z ( ‘) E ( J_ ‘nan‘) B‘..jla,b)

= Nm-m J - Nl

(4,2 .1¢)

Using the diserete transforms, the equations
(4,2.9) - (4,2.11) reduce to
3 n B 1 . &
{.;;; o I ’n)‘:. “+ A4 Yh{x}j Am,hf’l,,é)

) (N;:' ( :iu) 5 () (M,x,/[n,x—wulx,])

(4,2-19)
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24
5-39 + ™ ,\.-pn)u,,-l-fsa-nzug)}gmmwm)
= (:')[N:") 6(‘3)(N1A1/[N;.\.+N,__Xg) (4_’2‘20)
m-‘
$(8) = JaAN,..,M(x,,s)m;xadag_
o
+ jo E’n,}ma-‘ (‘J;A)qim)z‘j (4,2 2v)

and the boundary conditions {4,2,12) - (4,2,14) become

in terms of transforms

L= ]
Aam (004) = Ja [ A O04) + AL = T &)

N, Y E |
e (m) Aﬂt,,’m("ré)'] 7,0 da

od

iy L L gmmfy"‘) - (,::) éﬁ.,n_w”“') (4,2.22)

-+ 57,"‘”_’ ( ';‘)/-‘) - (%_:' ) A N.'!' M (A“};,&)J 7‘,1(!’)6‘3

évn,h{o)/s),“(::)é”“ﬁ {0,.,5):0 Pf?f alt m (4.,2.23)

——
o
-
[-Y
et
i
i,
-]
T
&y

j;”‘h (9"5')*5&,,“*! {';\'HJ)J N,04) dj

ot | :
+{A~Pﬂhf%~uqu)Au- (2x) Tts)

(4,2-24)
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The equations (4,2.19) end (4,2.20) obtained
through the dlscrete transforms ere in & form in which
they can be easlly solved, The solution of these

linear differential equations are given by

= - n o=

Amn (0,57 = A 1o,5) enp [~ (mAi4 ﬂA;—!r/S\ﬂwjo‘q‘lu"}mluJ
(4,2-25)

= ! " Y

B'm,h (‘j,z‘fn) = Em,ﬂ(o,a) fx,PL- (’)’V\ Ay + ’!’1/‘-3“*/.5)‘3* jo'fiz(u)rhlj
(412‘?"{’)

where

Al (00) = Aoy e("5') () (3 fonidnrd)
é‘mm (0:Ay = émm“’n&) " (f:”(f\ii.:l) ( mx,,}ﬁ‘h’n*”z*%)

Using (4,2.25) and (4,2.,26) 1n (4,2.24) and integrating

we obtain
7

-

B { B
Lf08) = B L, (0,3) 9».

Nl! N'H

!
n(é) 4 By i (008) enuﬂ_‘(&)

;9

i
u A“l",ﬂ(o" i g

{4) «-(:;2) ¥ (.8)

+(N:1 ) { NZAQ_KNJ\!*“;X%)

MNe-Fam

where (4,2‘27)
773,7‘!( 15‘} S Sz(')"ﬂ }"I“'L » )2 +/3)
§7ﬂ’” (?5} = 5' ( h" A! +hA2 "?"(3)

Similarly, from (4,2.22) using the relation (4,2.23) and

solving
-t '

A amtas) [1- S (M) A, (24) E M1

LRI
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24T

(m ""‘7j ;»)g _‘“(6)+ & rm;ﬁfj {m 3 uﬂ

- ‘ ‘ ) )

+ By o) fe, L8 -8, L9

*(N:«'\( :,u,t‘('“lh ’[Mihl"""l)‘?-}) | (4}1.28)

Defining the products

a - B ® ]
2

Teo = E?mu)
& mish 54 :
{'h,)b) - i —— _—
Y ‘ 1- ; (A) 3
o,n
' ! , Tz
and
(4.2.29)
= v ()
i - = m 3
Y:o 20
L g‘!‘,‘nl/s) >
431”1(’1”5) =
] ; m:—‘
"

(4,2-50)
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We note 7
¢ (mAL,P- m“(&J¢ lmﬂ._gm.ﬁé)tmjﬂﬁ)
(a,2-31)
PiviMng (4,2.28) througheut by dbm_,rn,,a.) and using
{4.2.31} we have _
-» 4 |
A A,m'_ ‘3315) —l LY
-m,'n‘C?). ) , L) 2 Anl-l,‘ﬂ(o"a’ %nb' ‘b)( l) h\ g)
‘#‘:ﬂ{“w&) d’wl-l {ﬂ'b) ‘ m
; t Ny e "B“ {ﬂ?“)
- () Brint) =8, o2 3 (o) (2 \ “‘“'
+ BN;)”?(O'/), " - . + Ny Rt &’_’
4"»-1—1 (n.s) ’“"(ﬂwh)

F () 8) Oun o)

"

(4 )7'32‘)

The equation (4,2.32) holds good for the values of m
from O to Kl as Ahhnfo,:):= OQform = -1 and Hl by
definition, Adding the equations {4,2.32) for the value

of m from Q to Ny s We obtain

- iF

Au,_. n (6.4) §~l|n (3)

N, ‘
= [ 2. (:' {m, b)} [ Ny (018) 7_ (N') BT"PLSN‘”"M
1*| i
¥:-p

Tee ¢T~'| (m.5)

‘4

Ny O e () nt {3
(D;A) Z (—-,\) p 8“" i

Y:p 4>¢_"(--n.,¢)

+ B

Ny Nt

. ‘ ' g AP AL f
F o) F P
B : +:o A

(4,2.33)
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Substituting (4, .55) in {4,2,87) and simplifying we get
!
» ("'/5){ - U{n.\,-c—,a)} z Dﬂ'm_,(m.«s) K, (5

+ O [+ M) ) Gtmywm) = (M) Fes)

- (Nada i h 4 8, A9) (Ma0t) (4,2°34)
where _ ' ‘
o N {s)
— 2 ' ¥,n N
U(n}\,,-k,a) = [ Z (w) Z( Jdb (n.s)]
- +,. {0, 8)
YD )
(.4,2 35)
1"140(’“ N' '
Z tn.A/Z{ + ”5)] N >0
Kals) =
1 M=o
(4,2.3¢0)
and ,

My-t
G y "' |
I Xp+.AD) | [ Z ( 4& {"1:&)/2 % f”b}

Now we define the product L (4,2 37)

N
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i Kv(’s}
L [”,—.. {,‘)mz*s}_] , MO

~: O

p"”ﬂ(’é) = (4,Q,33)

and note

Ve () [1 = D02t 5)] o Klad . (4)
Ay (5) 1 1= (4348}
throughout and using (4,2.39), the equation (4,8,34)

(4,2-39)

Changing n to. r, dividing Y

becomes
- ! s ? 2
3‘4”*(0,,5) ) BN.,v-i(O”S) P Ny Xy (Nz) G (¥ 2 ,4.5)
‘ . ' ‘ N
Vo (2) Voo (8) Ny 4 Ny 2 K (3} fy (4}
- Ny Ay MNy-g 1
Y G i L Sy L L) W
TR g, 18 mang, N T s I8
(4.2-40)

Thls difference equation (4,2,40) holds for » from O

——

to Ny as BN““(O,;,) =0 forn z =1 and Ny by defini-

tion, This equation cen be recurslively solved to obtain

4

EN”W\(O”{’) Ny i ( N") G (T}1+/S)
I 3 r— h o
v, (a) Nydsk Ny dy veoo Ky [2) W’V—r(’b)
byt n
PR - N ) (M) — - Vi) ¥ (3)
N+ Ny e yep N K, s} ﬂfﬂptd) Y=o K'r‘j)"tl-‘,é)

(4:2.41)
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Changing n to No 1m (4,2,41) and noting that
- f -
BN.JNQ(OH&):B,W& get (3) ag

g . L P |
,._._,'.‘"}'“ Z (H,,) Gl) +s) +Nare HZAL ¥ (u,vn)
- N+ Naky tro | Kinbe 0s) ﬂ-«\ﬂ*"z’*ﬂ ® Kels) b ds) §
1(,‘5) = . Nz,
R
*
g Kyis)ap, [5)

(432'4 2—)

We have now the Laplace transfora of the pro=-
babllity density Y'(t} of the busy periodr duration given
by the equation (4,2.42).

The mean duration of busy period of the repalr

facility 1is obtained by differentiating ‘(*) at s = o,

Hence "
~~4{o)=—-f;~su")f = |t ¥ty At
o
M!A} E'{ ) (t U ) E‘.‘ ( Nﬁ) i—.é‘(‘f)\l)
- - D ) "
- MM Ny ( ) ( ge {N Y +N;)~3_ +31 "i‘ Ky ""’-{.;
R,- 4
My Ao E‘_ ( Ny-§ {
Ny Nyt Ng Ay + @ : )"ne‘ﬂ
where (4,2.43)
— Myt
SBy -2 L) Ly [ )i
35 i .Y}a ¥ $
Az o “z0 T

(4.2.44)
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2

N, =
' - ‘ — f By ST A
«Uloy= -2 Desd o= 2 (A= 22t 12-*"’-'1,
25 AFO ~: ¢ 4>-¢..‘ 2
{4,2-45)
end "] and "}, are the mean repair times of the prio-
rity and the ordinary units respestlvely, That 1s
o F
s § S0 dx = xS, 00 A (4,2 4)
’ [»]
and
A o
Ky = Kv(o),ng‘: i ﬁ K*“ﬂlﬁ B 11} 3 (4.2.41)
=1

Il

b TS, Off- 50 (4
¥ri V4 ,D +

We may observe here that « G'(0) 1s nothing
but the mean duration of the busy perlod of the repair
Tacility engaged in repairing the priority units alone
and - D‘(O) 1s the average sompletion time of the ordinary
units [ See Thiruvengadam and Jalswal (1964&)} s the
completlion time of the ordinary unit being defined as the
length of time from the time at which an ordinary unit
i1s teken E;;; repalr to the time at which the repailr
facllity 1s free to start repair on the next ordinary

unit.

por

2
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Pre-emptlive Resume (Case

As in the head-of-the-llne case, the following
probabllitliss are defined over a set of mutually exclusive
and totally exhaustive states whieh provide a complete

Markovian charaeterlsation of the busy periocd process

?m’“( 31;13;1 ) r":(elgt ) Pﬂ' [Tn("l"} - ML 1‘1’{[{-1:")’1 , m(_{,i)_'.yl(.l\] >0
(o 24'¢t), »x & X{t) < ntdx

4 < vptf)s 94d3 [wuo)+nh}:1j

{ 1 £ 9 g N.;‘lé""l-ﬁum)

QW’E;’T\ ( j{){’) Ci'& z P‘\A [ mi{+t}z m }')’IL'f’)z'}‘ll 1“{'{-'),{, -'ﬂ{{-" >0
lOEyéf))q;st)sm4dx/

««ncaunm:#]

(4t ¢« men,, 0 NNy )

R, ty,t) Ay = P. [m(““ =oonltl:n mtthin(t') s, (os+’£.+)’
=20 Al '3*5"3/‘&‘!.(0)4-7\(0) :1]
(1 5 n < N2y

Naturally, with these definitions, P, 0%,y 4)dx dy Tepre=
gents the probabllity that at time t, there sre m priority
units and n non-priority units in the failed atate and a
priority unit is being repaired having an elspsed repair
time lylng between x and x + dx after preempting en ordinary
unlt and at the time of preemption, the ordinary unit had an

elapsed repalr tlme lylng between y and y + dy. Similar
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L av)
It
S 9)]

s

meanings could be understood for the preobablilities
Ruen 04> dx ang Raly,by dy

The differential-difference equations des-
eribing the process are obtalned by conneecting the
various state probabilities at time t and & + 2 and
using the ecentinuity argument as in the head-of~the-1ine

case, These are

[-51 -‘k?‘%‘: +(N,-m) X, 4(“‘1.'“'))‘2_4“ "1, 64 } Pm,n!:h‘jd)

= (Ny=man) Al?m—s,n [xrfjvff.) LN 41} ), ?m,“... Co,y,1)
(432’4‘)]

d

2 ?
{ 2% o s—x+(N,‘M) )“ +{~’--_h)}‘2 4_')"’()()} le’“(x#)

= (Ni- m""} )‘g Qm.‘,“ (7‘)1’} +(N1-“*‘) A:‘ Qm’-n.‘ 12(#)
(4,2:-50)

p) 2 '
L3+ 35+ S )bt ) ] Rty )

. of
= [—N'z‘“+'\ )1‘271,,“1"*)4' So ?q,n("’(:‘jf“) M (Ot (4,2.51)

Obviously, the busy period denaity ¥(%) 44
o0 o0
1[+) = j; -Rt"jj{.)”izfj)dnaﬂ" jaa,"o (X}+’ Th{x’ d:at (4—,2'52.)

The boundary conditions are
o6

-Pm.'f\ {D’Lj)'.f ) = S;} Tm-ﬂ,n (x)"]ff) T‘l"“ ctx

* 8im N RLyA)  (4,2-53)
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R
*
e

3

?Nuh(arjp‘t} = o) ’i“" atl n .(4"2‘51‘)
N

Qumm Lot) =8 " Banat o 04437, 00 doe (4,2:55)

& ny,m Lot) - o fov all 4 (4,2-5¢)

o b )
Roale,t) = Sa'ﬁ““(‘arﬂ 1,94y 4 &y m ) ) (4,2:57)
o

with initial eonditions

Qi,o(n’O) = SM,I%"H‘G BLX’) (?'é;)ﬂ {[Ng)«i"’“:_l}) (4 "1'58‘)

R (90) = 5, 809) Oy ny [Midiaudal) {(a,2-59)

We observe that the set of equations (4,2,49) =
{4,2.51) are differential difference equations with varie
able coefficients as in the headeof~the~line priority case.
The method of solution of these equetions aleng with the
boundary sonditions (4,2.55) {4,2.57) procaads on the
same lines &8 in that case, namely, through Laplace
transforms and disgrete transforms. The discrete trange

forme thet are used in this cese are defined as

IO | o,-4

EW\,"F\ (x"‘)w&) = Z [v:\) Z (:P)‘%N-' " 3(?‘9‘};5)
. Une 2"
Iz

X
‘ >

L

4z m
(o0 &¢wm &N.-’i,O.’;}“}‘léNg‘i)

(4;2»&0)
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Nye-f . '
BWI (x, A) = Z Lm Z(‘ﬂ-) Ml . 3“;*3(1"5)
.ot m
(oé'm.‘ clyo0¢ngn,) (4,2.¢1)
— ’.L j ‘
C {y,5) = Z-?}“) .- (y,5) s 2t

(0 £ YL -‘.M}"")
The inverse transforms expressing P, Q, R in terms of

A, B and ¢ are

—

P'tn,"ﬂ r’J(’L},,.é}

""E ‘i+vnoﬂ,( J4meNg !
= Z = Chm - M) Z( ) oF (i&»n-ﬂz A‘-i(d,ij,/s)
L= Ny j»N,,
n 2.k3
Qm1w[’l A) b )
Ny 5 - Ngy .
CE - N """"*N
Z -9 ' ) -1 2 ) =
M ((-rrnk! Z_L) (_:14.7].”1 %l'j('ﬂ;z‘))
J My~
= Mt JEn-N " (4,2.¢4)
- Ngy
th‘i;b) = Z (-1)

J =
j-&n-u,_) C j'('jpb) (4)2.@5)

Usling the above transforms (4,2,60) - (4,2,62) to trans

j = N—)_-‘YL

form (4,2.49) -~ (4,8.57) and solving the equetions so

transformed, we obtain

"Vﬂ.ﬂ'(n}(it},,},‘) = Am,“(oij'/b) ex;’ [_,{Yni‘-i—n)\l*i',é))(

x
= s "/Llu)du]
o -

N (4,2.¢¢)

-
Bmm(q("s) = Bmm(o”a) €xh [-:{-"‘1*14'“)‘-14/5)3(

x
= i Toludd uJ

(432"é7)
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= _ _
Col8) = C_toys oxp {*%Ngk,(iv-ﬁw(‘ﬂlg'!—/s})-k niy b }\3

l‘ )
e 5 "]iiu)r:iu 1 (.4)2.-5'6)
e

where
_m,'. (oi'j;ﬁv) . bl M, -1
* - M.X,Cﬂ{j,,ﬂ[z ‘ + )-;1—‘—‘- )“' Gu(m\,.h%) Z( )c# (“ﬁ]
¢ 1,8) Yo vor A
(4 )Q‘t-"q)
i
n{o,b)_ Ny &y (Nm) - 2 (N1_‘) "
' e VR 'l : v 7 (a,2.70)
b (npy NMdhie Y0 b, [ ,&)

= &(Mﬁb) Z ( ) emb)]

-
L i

¢, f{e:n) ‘\ N3y 5 ( Ny

L

1 A N {
Lo fh("}) Nydod Ny Ay Yoo to, (5} N+ Nadky T Wy i
.‘
—~ X(») Z( ) s l4,2.m)

And the Laplace transform of the busy period distribu-
tion is given by

Ny - N, -t
N, y (”1 G {73+ 2) LT Ny-ty 4
g + , 4 ( )____,..
= Nl NyAy 4oy {,\).,._,IA'} LTRSS VY Yoo W, 18)
¥ () = : N
My
I ()=
L.
Yoo ""[,ﬂ

(4,2.-739)
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wheare
w
— Y i¥An
w  {a) = | —_— tx)__,l(xb) = 4 (4,2.13)
w Joo V=V I¥Xts)
mw e
Y -1 M43 ¥ {
LO| {(» = T -———(-1-——3—'2" 5 W, (»} = 31.0_.',‘f,b3:1
™ 3 - VIA)
Yo 1= V{v)42) 74)
and (4.2

V{¥X348) = §.,_Uuh( oG (1224 2)) # ¥ Ap+57 ] (a,2-75)
The expressions for 4"(“!1,-5‘) and < {n») have already
been defined by the e;:;taticns {4,2.29) and (4,2.30).
A2 before, the mean duration of busy perilod
of the repair faellity 1s obtained by differentiating

'i(,s') at & = Q. Therefore,

= "’! "3!"
- 3 -
R [ B R TP RN P A (0
A A o "i;a -
Wy-1 Ny = 7 Ny A
- -G (Th,) ny -1y A
+ [N 3 (N" e R ) ! z A b .
le(‘-k t 1T|’ E__O o )fp-r ) (N‘Ati._'m(o’h‘_' + Ny 1\[2’0( 5 )w“r)
where (4’2_.”:)
haat
T} V{¥)
Y, w ! y Wt (4 €m g Nyt

Yot o de V(TN (.3 71)

THE GENERAL PROCE3S

In chapters 1 and 2, ws considered the genersal
process as generated by a secuencs of Renewal perilods,
each perlod comprising of a TSF perlod and SDT period

that followed 1t., Here, we shall view the general process
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from a different angle, in which busy periods alternate

with 1dle periods of the repalr faellity. A4s such, the

gan;ral process 1s again a sequence of Renewal periods,

the Renswal periods comprising of a busy peried and the

1dle period that follows 1t, Naturally, when the repair
facility 1s idle, there 1s no falled unit in the system.
Let us denote by e{t), the probabllity of the empty

state. That is

et) : Pr [ mthrzo ,mit) =0 [ mite) zo,m (V=0 ] (4.2.18)
L.

where m(t) and n(t) are the rsndom varisbles denoting
the number of failed units of priority and the ordinsry
type at time t.

By a direct probabillstic argument we Obtein

Aoty c(nat ) @8 (N4 8,3,) e (1) % Y i)

n €4,2.13)
where X deﬁotes convolution. On taking Laplacs transform
of (4,2.79) we have

el(x) = / L .5+ (xn>\4nﬁ3)(}-§fb)\] Ca,2.9p)
under the assumption that the system starts initially
with the fepair facility empty.

: By Tauberian srguments, we can show that
fn €tld)ze, oxhsts and 1s independent of the 1n1tia1‘

1 -y ad
econdltionay for

) » £ =
é. = tvm et) : Lo Aefls): 1/[1-(u\>\.+»1>1)1m]
t = o A=%D

(4,2 81)
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provided - Y '(o) , the mean busy perloed is finite.

We shall now proceed to cobtain the general
process probabilities in terms of the busy peried process
probabilities and e(t). Let P, , (7 .yd)dxdy A, Led)dsx
and ® . tyi) Ay denote tne general process probabilities

at any time t for the preemptive resume case., Then

GJMM (o, ,1) ,,{}(({3 N P1 [wuH) =M n{tl=n y ER(t) ¢ )‘4A%,

Y& V) € qady [mite =0m(fﬂ"-°}

22 (0t YAy = Po it nt o, ye Y e ‘H“;}/

™, 1

~f{o}:=p , n{eo) =0 :!

R CgA) Ay = Py [ mtt) o, mtdem e v ¢ yady

M o)=0 yM(e) = 0 ]

where X(t), Y(t) and y; (t) have already been defined at
the outset.and the range of m and n being the same as for
the corresponding busy period probabilities defined earlier.
During a renewal cyecle of the general process, again by

simple probabllistic arguments we have

g, s (e ) e o) x P y,1)
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Q -n{‘“”{.) ;(MPA\""MZAE\ €(+)* Qm'ﬂ (X,'{')

R Gty =N a2 ) e () % Ralyid)

Row making use of the lamma of Smith {(1854)
PP 14-15 and the result _tlimws(t) = €, obtalned earlier
in thlas seotion, we show that the llmiting forms of
Pt t) Ry n4) s0d Ry as 1>
exist and are glven by

Poama) = 5 oyt

1 - 00
o]

( M\kl""nzk.l) eo S S ?M,n {"f,‘-j,’f) C{'f
§ (4)2'82)

Tuul®) = ™D

L hM('xrf')
. ,

(e8]

( Nohi + N YL ) eo- ) Qm,ﬂ(ﬂff)cl'f" \
0 (A,2:583)

1t

e

Tn('j:) jd:;tw 0234“);"“)
oQ

(N',‘i*ml)l)eo‘ J\(R”(‘—j;"')("{' (4)2$Q)

o

1N

o
Koting that ja ‘Pmmu,l,,“ o 4 pmﬂ (""’3’0) and so on

tue sleadye~state probabllities L RS | LY and
Tn £9) for the preemptive resume case oan be easlly

evaluated from the transforms (4,2.63) to (4,%.65) since
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?w\,ﬂ tn,u)y = ("1!"‘4 NiA2 ) € Pm,;1 ('17‘5? e)

fvm.n { %) - (Mtf\‘+NIP‘2') eb‘ QW\.?\(%JO)
—"n(‘i) = (MIA\*NleF) eo' E—M{"‘)D)
Similarly, we can obtalin the steady-state probabllities

corresponding to the head-of-the-line case.

LONG-RUN AVAILABILITY OF THE SYSTEM

Ws have dlscussed above a system with Hl units
(unit s may be components of an eguipment, subsystems or
equipnents themselves) of type 1 and N2 units of type 2.
essigning priority to the type 1 unilts for repair. Wwe
are Interssted in the limiting probabllity as 1 0
that the system wlll be in the operative condition. And
the probability is the average fraction of time, over a
long peried, during which the system is avalleble, If we
stipulate that the system fails when Y, of the type 1
units and v, of type 2 units fail, then the long-run
avallability of the system in the preemptlve resume casa

1s given by

1)

A,

ATy T [ Sysbem @ "up' alb bane } &
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toor -t o2 220 BER A B

o

seg+ T2 I bnabeg)anag s TOL Sy, O0da
Mt mMrze ° e : witd pep © ¥

tyet

of)
P j@‘%-(w)d‘j (4,2 9{1)

no\

and for the nssd-nf-the~line case 1s given by

Lo P, [ ngal»cm v \L\P : at fume 4 ]

{ =5 2
t,-t T =0 LT I PO

- e, + 2 Z 5 P o )_Aac o 2 P Sb ﬂmmfxldﬂ
Wit w0 B wiro M= (4)2‘“’)

whare the stsedy.ctate probabllitles haws sArecdy been
avaluated,

1 end ﬁz to
be mors than 2 or 3, If the diztributiorsof fallure time

Ir nractice, we may not require N

gend repalr time of the individual component are assumed
to be negetive exyronsntial with paremeters k;and o
(1 = 1,2) respectively, the rasults for the (2,2) -
parallel syatem of the previous section cen be cobtalned

from (4,2,85) and (4,2,86) noting that 5. (s): P f(r+3)

Remark 1: This syster ls basically equivalent to &
priority ailocatian problen of a machine Interfearence
model eonsliersd by Thiruvengadam (1965} in which the
anelysis 1s carried out on simller lines, The analysls
of tinis sectlon differs from Thiruvengadam's 1n that,
the general process probabilities sre evaluated in terms

of ths busy period probabilities and ths empty state
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probability by ths uase of renewal property of the pro-

cess.

Remark 2: Later the same model has been studled by
Jalswal and Thiruvengadam (1967) and Jalswal (1968)
making use of the concept of "completlon times" intro=-
duced by Gaver (1962) whieh was termed the "basle server
so journ process" by Kellson (1962¢).

The basit methodology of the completion times
method of Jalswal and Thiruvengadam to study finlte source
priority queueing process is outlined below.

(1) Defining completion times - The completion
time is defined &s the length of tlme from the time at
wnich an ordinary unit is taken for repalr to the tlme
at which the repuir facility 1s free to start repalr on
the next ordinary uvnit;

(i1} The time points at which repsir starts on
the non-priorlty units are identifled with the repair
beglnning points of units in a basle finite-source pro-
cess, namely, K/G/1/8 in the usual queueing theory
terminology.

{(111) 7Then the densitlies assoclated wlith the
coxpletion tims process of the non-priority units are
combined with the resultas of basie finite-gocurce process
to generate the probabllity densitles of the busy period

Procoss.


http://www.cvisiontech.com

(1v, From this the genwral process probabiiitlss
are obtained by renewal arguments,
Remark 3: The characteristlcs studled in this section
eve

M different from those considerad in the finite~source

qusueling model putlined in Remarks (1) and (2) above.
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