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INTRODUGCTION

Thig thesis consigts of nine chaptersa. In the Tirat

m

q

chapter We give thie basic concepts and definitions and also
a broad review of the liteiature related to the problems
congidered in this thesises The second and third chapters
are devoted to a detailed modified comparison or sampling
with and without replacement, Tor the case of equal and

unequal probability sampling respectively. In the Tourth and

.

Tifth chapters we digcuss the criteria of hyper-adnissibility

and linear sufficiency Lor the clhicice of an optimum estimator

for a given sampling design. The succeeding three chapters

have ag their main objective the central problem of choice

1=y

of an optimum sampling strategy subject to some cogt restric-
tionss In™he last chapter we give some results concerning
Horvitz~-Thompson estimator and its variance estimations

Since each chapter has its own summary at the beginning, we
siiall not give a detailed chapter-wise summasy leres Instead

~We shall briefly describe the course of development of the

tiiecry of survey sampling to the present date.
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o TV

time immemoial,

~3idi-

sampling hag deen in vogue

ig only during the thirties Torties

that a move systematic development of the theory sample

surveys hag btaken place with the advent of sampling without

“

replacement, probability'sampling and the theory of gtrati-

But tiie large number of teciniques - sometimes

ingenious - developed and practised during that period were

on empirical and intuitive considerationss. It

late that attention hag been paid to the purely

A clear formmlation of the central problem of the theory

of sampling Trom due to Godambe [14 J.

Tn that paper he proposed a unitied theoretical set-up in which

of gampling Trom Ffinite populatiocns could

be discusseds Since then tremendous progress has been made

towards develoning a unified theory of gampling. Whether o
net the present status of the theory is satisfactory is a
controversial igssue and we proposc not te enter into a

digecugsion about it heirce.
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CHAPTER I

CONCEPTS AND DEFINITIONS

In this chapter we give the necesgsary concepts and

definitiong and algo a bYroad Teview of the literature related

1l The Uniftied Theoiy: We congider a Tinite population

congigting of N units
U= Ty 29 eeay Wa (Lo1o1)

Tt ig understood that the units of the population are distin-
cuishables A& iigt of such unite ag (1¢l.1) is termed as a

sampling Iframe and W ig called the gize of the population.

A finite secquence of unitg from U ig called a gsample

and ig denoted by

r
It
—
e
]
-
[
e
~a
L]
-
-
-
]
o
3
—

5)) (141.2)

where ije'U, =1, 2y00.y »(8)e ©m(g) dis called the 'sample

size' and n(s), the number of Adiastinct units in s, is
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ze's Let

jo2]
]_.I-

called tlhie teffective sample

dencte the totality of samples from U and p a real set

Tunctiocn cn 8 guch that

p(s) > 6, foxr all geS and pla) =1, (Le1.4)

m i}

The pair (S,p) is called a (sampling) design and ig denoted

= da(s, p) = (8, p). (1.1.5)

Sometimes we may dencte a design simply by De

In p“acuﬂce a degign ig not implemented by ligting all

posaible samplqg with the corresponding probabilitieg and
then making o draw with the appropriate p“oo abilities plg).

In thig connection Hanuvav [21 ] defined a 'sampling mechanism
of drawing unitg i Trom the population U in (1.1.1) one

aXlter ancther with varying p?obabilities. Bpecifically

Definition lelel: A pampling mechanism is a FTunction

qld, )10 k) with arguments i, ieU, s 1 the sequences of

the type (Tele2) with k-1 terms and
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a(i, &y 1, k) 2 0 forall i,%k, s, and ﬁgU q(1,my _;,K)=1

for all %k and B 1 Hanurav [21] then proved the follow-

ing Fundamental

Theorem Lelel: There exists a cne to one correspondence

=

between sampiing designg and sampling mechanisms.

£y

The importance of ths above theorem lies in the Tact

-

that, when ore is concerned with a gearch Tor some sort of
optimum sampling method, one can make the search in the uni-
Tied framework of sampling designs rather than the seemingly

diverse Types of sampling methods, all of which cannot be

nandled witi: a single tocl.

1ol Congtruction of designsg

Iy

Given a degi d(S, ),
4
o= mylph = Zople)y 1cigwm M6
and gy o= mgy(0) = _3; Cple), 1<if J<W (1o147)
5_)1

where in (1.2.6) the sum on the Tehese is over all samples
that contain the unit i and in (1,1.7) the sum is over all

samples that contain the unﬂtf i and Js The =x.,'s and
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n..'s are called the firet and second order inclusion proba-
4

w?

important role in the

.,

o’
—
o

]

bilitics respectively and thej

o. aa can be seen Trom

b
-
0]
jo
o
-,
E.
|

ot
|5
a]
]
o}
=
=
[
o
E
<
[0}

a
Chapter VIIIL. Tmmediabely from t
0 <my £, 1¢i<W,
and 0 < m,, < min (Tc_i,nj), 1<i#£3Ln,
where min (a, b) denotes the smeller of a and Db. Let M

be the expected effective sample gize of a design p, defined

by

u=ulp) = = nls)pls) (1.1.8)
oe S

The following relations are well known:

i) nij(P) > ni(p) + nj(P).- 1

|
-
—

[ =

ni(p) = ulp) (Godambe [14 ])

=1

N

113) 3 u () = wlp) (ulp)~ 1) + vp(n(s)') (Hanurav {21 1)
1

g
) Vo (a(e)) 2 (1~ 1) (Hamurav [ 21 1)

where T denotes the fractional part of u(p).

T
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v) TFor a design p Tfox which

se8, pls) > 0 => n(s)

% nij(p) = (u- 1) Ty

i£i

and L LT i (p) = uly - 1. (Yates and Gundy [ 66 P
b
‘Some interestin 1g problems of internal consigtency of given

set of inclugion probabilities of various orders now arige.

We discuss them in detail in Cnapter VIII.

leleZ FEgtimation

We congider a Teal valued varialble ?7 deTined over U

and which takes value ¥y en i, < Ne Tet y dencte

i-_.l
i~
l..l

the vector

:‘)‘T = (}rl’ :,'rr) | R ] 5’1'}]_) L] (1'109)

=

, ’
ml 1 — . T . -~ - - - =)
The y;'s are unknown apriori and in fact our parameber of

interést is y which ig assumed to be a point in Rys the
N-@imensional Buclidian space. In thig thesis we resfriot
ourgelves to the 2 ~oblem of estimating the pa?ticular para-
metric function, conventionally called the population total,

defined by
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by obge

~ving the valueg of

sampiec drawn according to a design (8,Dp).

Tiniticn lale? An egtin
efind

Tunction defiined on S X BN

those y;'s To¥ wiich i€s.

that y; = v{ for'al_ ifso,
From practical ccns

estimate e(s, y) mneed not

which p(g) = 0. However,

definition of an estimator i

that there are estimator

-

wnichh are not special cagesn

But from the gulficiency of

set of distinct units togeth

that we may restrict to Definition (1.1.2) without any logs of

generality in our gearch for
connecticn we may
Jes-Ral and XKha

&=l

s [ 111,

of els, y) in

relfer to the papers of

[39]), Godambe and Joghi

ator els,y) iaa
wnicn depends on ¥
That ig Tor any two

O
els,y) = els,y).

lerationg i

b7
be defined Tfor those

g not most general,

'

':i

elin?
thie effective sample

er with

an optimum egtimator,

[17 ], Murthy [

in ti

their y-values

real valued

only through

¥, ¥' such

samples Tor

it may be menticned that the abeve

[

c gense

g in commen use and in the licrature

ston (1.1.2).

(iies the

) it

In thig

Basu ([ ¢ ]J,[ 6 i
Roy and Chakvabortiy [ 54 ], Pathak

34 ]

follcocws
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and DBasu and Ghoshr [ 5 1. Am estimator is ‘said to be linear

-

P els,y) = = b(s, i)ff'-, : (L.1.11)
igs -

i

[N
=3

where b ig a Function on § X U guch that b(s,i) =0

i f Se

Definition lele3: For a design 4a(S, p), an eshimator

elsy, y) ig said to be unbiaged for a parametric function
C(y i

zels, y) pls) = T (y) (AiTwnny

[

for all ye Rys " We dencte by L(d) (or L(p)) and Lz(a) ~

* . o . . .
(or Lc(p)), thie clags of all linear estimators and the class

-

o¥ all linear unbiaged estimatcirg of the populatipn total Y
in (141,10) respectively. An estimator el(s, y) of [ (v

which ig not unbiased Tor [ (y) is called a biased estimator

In thip thesis we consider the mean square error ag our loss

L 3

Tunction though most of the definitions and conclusions given
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nere apply brroadly to any convex loas
PP=y h

square error (mse, Tor brevity) of an

13

[

o
z e (s,y)n(s) -2
3]

M(e,y) = Ble- T )" =

Wnen c(s,y) dis unbiased for T (¥),
)

(Lelel4) denoctes the variance or

V(e’y)

2
=3 e
= .

¥

(5,7)p(s) = To(y).

Thie mean

of |

Tunctione.

estimator e

T = e(s,y)p(s)+T€(y).
o

(lelel4)
then M(e,y) in

els,7), namely

(Lelol5)

Godambe [14 ], then proved the Following eslebrated

Theoxett 1eleZ: For any design

a unifermly minimum

%
Lo(d).

d(Ss P)

variance (UMV, for shorl) estimator in

tiiere does net exiast

However, later Godambe [16 ], Hége [ 24 ] and Hanurav

[21] pointed out some exceptions to the theorem and gave

some nontrivial designs where best estimators

existe Such

designs were called uni-clugter designg by Hanurav [ 21] e

is equivalent to

ig said to be unicluster

[y
ey
o
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ig0e they contain the same units) or 8, 0l 8a

1
=
I_I
»
)
.

it
|.J-
o
ot
o
=
®
)
®
ot

they do not contain any unit in common) wieie

of all samples s Tor which p(s) > O.

Godambe's [14 ) negative result mentioned in Theoren
(1412) necesgitated the weeding out of 'pad' estimators and

. 7

the crviterion of admissibility was introduced in this connec-

ot

gfi‘ition 1eled: With iespect

tc a given design d, an
eatimater els,y) Dbelonging tc a class Cg of egtimators of

T is said to be admissible in @ if there does not exist

any other estimabtor in 8 which is uniformly better than
e(5,7), iecs given any e'(s,y) (£ e(s,y)) € & , theve
exists at least one polnt y_€ Ry such that
»
M(e, -:yro) < M(Gt, }ro) (1,1-16)

where both tihe mse's in (1l.1.16) are evaluated at y = ¥y,

The ugual definiticn of admissibility used in declgion
thecry (see Wold [65 D which is slightly different from the

above definition is
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10

Definiticn T eke0t With wespect te a given design d, an
;.(:..—_.‘_::.,.:___ — 8t

esgtimators i

=,

estimator els,y) Dbelonging to a class £ ©
said tc be admissible in (§ , if

5
I

LRV | B E

LJ ’ r ) e 6 ’ M 'l:‘r) ..<.. B"i (e ,3’1‘) b fOl’ a:ll }reRI\i'

=> M(e',y) = Mle,y) Tor all FE& Rye - (1.1.17)

Murthy and Singh [ 36 ] maiged as an open probilem some condi-

tiong under which: the above two definitions are equivalente
The well-knewn »egult that when 6 ig convex (iece
e, +eq
ey 3858 6 =D === £ 6 } the above two definitiong are
LU ta '

gquivalent seems to have escaped their notices TFor any design
d

.

d we dencte by A*{d) an@ A(d) the class of all unbiasged

estinators and the clasgs of all estimatorg regpectively Tox
the population tetal. A particula unbiased ectimater sugges

ted by Horvitz and Thempson [26 ] seemg to have »eceived much

gttention from different autiiorgs recently. It ig defined ag

T
els, v) = I —(-—01 (1.2.,18)
> igg i d) L
wilere T (cl) 'a are the Tirst crder inclusion probabilities
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11

I.l-
™

Godambe |16 ] proved that Tor any design 4, &{s,y)
admiggidle in Lz(d). Godambe and Joshi [ 17 ] generalised
thig result o the clags 4%{(d) and deduced as a corollaxry
the non-existence of a UMV esgtimator in A¥(d). An interes
ting observaltion can bve madp in thig connection. A carefiul
sxamination of the proof of admissidility of els,y) in 4*(q)
[See Godambe and Joghi [ 17 1) will show that, nowhere in the
proc? have they made use of the Fact that 4(S,p) is a

desig

I.l-
[ J
@
L]
[t

ke
—
b

L
]
{_JI
»

3 -

We can in Tact generalige the definiticn of a design to include
the cage where theve ig a posdtive prcbability of not/choosing
any unit in the samples To give an example of
congider tho following sampling method: Conduect 1 independent
binomial trisls with probability ¢f success Tor -tk rial

being equal to m.s The 1 * unit is included in the sampl e

iT and only if the i~th trial regults in a gsuccesse The

sing order of i1, Clearly in the above degign there is a
L

pesitivo pirobability, namely | {1 - nﬁ), of nct gelecting
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any unit in the sanples Trom the observation made above it
follows tha’s even Ffor such designs 5(g,y) wemaing admigsible
1n the class of all unbiased ostimators. an alternative
elegant proof of the above statemeont is given in Section (9el)
uging induction cn I, tirs nopulaticn gizes One can note

that the Godambe-Joshi { 171 proof of Admiggibility of als,y
depends heavi

v on thn form ¢f the losd functicn congidered,

mamely the variance. It will be a good problem te see whether

e(s,y) romaing admisgible in A% (d) for any general convex

1.1.3  Bgtimation of T{e,y) Straight-forward calculation
shows that ‘ -
H 1 -1, & N oz - LT
£ s I A 0 i R
v{g,y) = - y; + 22 d 75 5 (Lel419)
i=1 i 143 T - -
Mo unbiased egtimators have been proposed in the literature
for V{(e, y) in (1.1.19), namely
v i = G Tys = W5Ts T3 Ty
G = B —pemW, 4 B ESleglh o= nl
igs 3 iZics "1 g ]

1.1.20)
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— :1 1‘1 ..._E -— :—J- L 191-21
Vg = 22 - (= - =07, ( )
iZjes ij i J

wheie ﬂij'S are ag defined in (1l.1.6) and (1.1.7) respec-

tivelye The estimator v nas

gr been proposed by Horvitz

and Thompson [26 ] and  Vyy Dby Yates and Grundy {ee ] ana

o @

‘they ave cslied HI-variance egtimator and the YG-variance
estimator regpectiveiye While Vi ig applicable in any
degign in wiich V{8, ¥) is eotimable, Vys I8 applicable
oniv in fixed sample size designs in which Vvie, ¥) 1is
eatimable. In Scotion (9.3) we modify the YG-variance
estimator 5o guit non-fixed. sample size fesigns also and

prove the existence of designg where the modified YG-variance

bl

9]

estimateor ip non-negative.

1sle4 Choice of egtimators

i

- o . . * L B
The noneexigbtence of a UMV egtimator in Lo(d) Tor

non-uniclugter designg, and A*x(d) for any design leads to

the problem of chic

]_l

ice of optimum estimaters from tue class
of all admigsible estimators, Many optimality criteria have
been put forward in the Literature for the cnoice of an

gtimator. We “evwew them briefly belows The critexia of
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nyper~adnissibility duc to Hanurav (=1 ] and, linear suffi-

-y

ciency and digtribution - free sufficiency due to Godambe

@

.

[:8 ] are not included here since they ave dealt with in
detail in Chapters IV and V respectively.

Linear invariance:  This concept introduced by Roy and

Chakraborthy [54 1, demands that the egtimator should be
invariant under linear transformaticns ¢f ye DLinear invo-
riance seems reagonable for the case of equal probability

sampiing. Most of the known estimators in varying probability

-

sompling are not linear invariant. Algo, the class of linear
invariant estimators ig very big and hence the criferion

failsg to give an optimum estimabor.

Regularity: This criterion is alse due to Roy and

Chakrabortiy 194 le« An estimator 1t ig regular if and only

if its variance ig propeortional to the population varlance
o
er . wr
o
2
TaCe V(t = K T,
J
s N —
Whet (& " ili (-‘.,. 2 . .
heie 6? = ¥ '21 =) and kX 15 a ccnotant. Designs
q == =

which are balanced in a certain senge are ghown:to possess a

4
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n)

best estimator in the class cof 211 regular estimatorse

Hecesgary besthegs: Thig curious critericn introduced by

Ajguonksr | 2 ] claims to clivose 'a serviceable estimator from

the practical point'e We Tirst give th follewing

Definition Tele7: (Ajgaonkor [ 8 1): Between twe unbiased

estimators T and T' of the population total Y with

L3

I o )
V(T) = T .7, + 2 2% a,. vy, V.
AR ¢4 W RS H

o
<
o
-3
-
H
S e
o'
A
ki

the estimator T ig ‘necessary better! than T' if a
tor all ie. The estimator T (in a class § ) is 'necessary

best in 6 ir if

l_h
;_l-

§ necessary better than every other
estimator in £ .

Ajgaonkear [ 2 1 con sicdered a subelass of *(d) ermed
L tern
A

e

T5-class defdned by

m = - 1 )
Ts = bsy) g by ¥4 y o o{lela22)

l.lo
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on of S0 the gset of distinct

[.I-

where bls ig a funct

units observed in the sample and by, bp,..., bw are pire-

asgigned constants and proved that the HT estimator el a,v)

in (1.1.18) ig the unigue necessary best eatimator in the

Tg-class of eotimators. Hege (85 ] extended this rTesult to
Z(d) and Singh {60 ] claims tc have extended it further to
the clags Hﬁ of all unbiaged estimators els, y) defined
ogr
els,y)eH, if and omiy if e{s,y) =0 if
¥. =0 for all ifs and sES.

It ia easilv secen that all tie above results are incorrect

unless in the Definition (L.1 ?) of necegsary bvestness We
replace a; < byy 1T L1 LW by a; < gy 1 <i < Ne Once

thig change ig made in the definition all the above regults

follow eagily by noting that necessary bestness is equivalent

to begtness in hyper-planes of dimengion one and that the T -

T

estimator ig best in hyper-planes of dimension one in .
Howeve: Singh;q [60] c;aim of its unigqueness remaing incor-
Tect even with txe mcedified definiticn since any estimator
that reduces to the Hl-egtimator in hyper-planes of dimension

one ig a neccgsary best estimator,
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Eézgﬁgggﬁ_: Here We assume that all our pricr knowledge
about the populafion o the vaxiate under study, can be Tozmuz-
tated in scme gort of 2 priox digtveibuticon @ of the vectdd
parameter® ¥. The rola of the prior digtribution 9 1s
olely to choose between different estimators {(and also
depigne) and has nothing to dc with the final inference about
¥ which willi exclugively QQpend on tie cbseived pample ©
and the variate values Y4 1E8e This approachh introduced by
Woctran [ 9 ] has been fruitfully exploited by Gedambe [14 1,
Hajek [ 20 ], Aggarwal [ 1] ané many otherss. Our sole
criterion of judgement in termg of a pricr distribution would

-

ve the expected varisnce of an egtimate os defined in (L1.1.24),

I

to Tollow.

With respect to a given pricy digtribution a2 on R

Lo

We Gefline

= Gy-w)" as - (141.23)

q
]_I-
el
i
Lﬁ
~—~
&
]_I-
H
T
N
—
o
<""‘l
<l
1
=
ot
N
=3
(@3]
-

If as in (141,15), V(e, v) denotes the variance of an unbia-

ot = . : : s -
sed estimater elg, ¥), the éxpected variance of e Werst 3
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7(a) = [ le, ¥) 4 8. (141424)
odambe [14 ] then proved

YieoTem lel.5:  For uny fixed sample size (= n) dceign
#s, p) for which n, >0, 1 <1 (W and for any prior
Patribution a o ﬂﬂ guch that

-

i)  the variates y., 1 {1 L H are uncorrelated WegTets O

[

proportional to 1. ),

P
4
|
4]
-
pad
Pt
-
™

ghe HT estimator é&{s, v) in (1.1.18) is a Bayes' soluticn

. S Y

tn LY (a)

Godambe and Joshi [17 ] extended the above res sult to the class .

* ™ + " ) b
& (d)e Before p?oceeglng to state the results regarding the
» .
enoice of degigns thwrcough Bayes' approachy, we introduce sone

n

more basic concepts which are needed in thig thesise
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lele5  Sampling strotegies anm their Qﬂtwmum choice

kv .

In the thecry of estimation from infinite pepulaticns
the digtribution ig ascumed to be known but for a certain
‘number of perameters and acccrdingly Tor randomy, sampling from
such pepulaticns the probability of getting any particular
sample ig completely determined by the sample size, but Tor

to egtimate gone

]
o3

t
i

noge unknewn poramnetersg and the problem

=

ctions of the parameters on the basis of a samples However,

=

n finite populatisn thecry, the probability With which a sample

2

ig to he selected ig comPletely at the choice of the statistician

7

iJ-

As a reguit, the problenm in suzvey samplin
chogoe =i 'ozfcim.u.rﬂT estimater, as in the cage of clagsical
thecry Tor infdinite populaticngs, but fo chicose an optimuwa come-
bination cf sampling and egtimaticn procedures and thdis makes
tite problem mcle ceomplicated. One point seems worth menticning
heres While there Lg inherent randommess in the process in the
clagsical set-up, there ig only artiricial randomness in tie
survey got-up, injected in by the statistician. Why thig arti-
Ticial randomnegs, ig a legical question to be answered and in
tiig connection Weﬁzefef to the papers of Basu and Ghosh [ 5 ],
Bagu (L 6 I, [ 7 1) and Zacks {67 ]. Myuch need be explored in

thig area and there 1o every chance that a new survey sampling
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theo=y which Anas not involve probability theory may emerge in

the near Tuturc.

Definition 1.148: A design a(s,p) together with an estimator
a4 ig called a ‘sampling strategy' or
pimply & 'strategy' for the estimation cf (. fThus we denocte

-

a gtrategy by

H = H, &) = H(S, p, e) (1.1.25)

Thia definition is due to Majek [19 ] and the importance

of this terminology is sitressed by Hanurav (rexl, [22h. &

1

strategy H(S, p, e) is said to be wnbiaged for [ if e 1
an unbiosed estimator of (s Otherwise it is called 2 "biaged
strategy! and the bias of The gtrategy is delined as

*

B(H) = EBl) - T. (1.,1.26)

The expectation, variance Qr mean gquare error ol a atrategy
o 1 rd - .

are defined as the expectation, variance or mMean Sguare error

he corresponding estimator. Analogous to the Definition

o
(3e1.6) of admissibiliity of an estimator we have
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o(H) of strategies is sald to be admissible In @(H) if
there deces not exiagt another H belonging to 6(1“1) wiiieh

ig unifoxmly superior to HO.

TeCe :'Ile 6(11) . M(H,l ’3,7) S M(H ,}T) ” Tor all :’reR?‘.

where M sgtands for mean square errov. When only unbiased
strategies are considered we replace M by V in (1.1.27) te

denote variance.

For a comparison bebween two designs dq and do (in

[

estimable) we ghould firgt compare Hhelr

fe
[
<
=
=5
(@]
=y
f‘:
—
[
|

9]
e
e
1+
K

cogts in termg of a reasonable coat function. We asgume a

T the

(J

linear cogt Function whiich seemg appropiiate in meat
cages of unigtage samplinge Under this, the cost of a sample

.

ig agsouned te be given by

els) = An(s) + B {1.1.28)

wiere A and B are corgtants independent of

2

and n(s)

J=

s the effective sample size of s. The expected cost of a
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strategy FH(S,n,e) o equivalently the design a(8,p) is then

defined as

¢ =¢(a) = 2 e(s)pla) = au(ad) + B : (1.1.29)

£

|_ln
&)

wiere wp{(d) 3 the expected effective sample size defined in
(lele8)¢ Hence under our cost function, two designs (ow
strategios) are equally cogtly if and cnly if they have the

sae expected sample size

i Sy, oS —

lels6 Cheice of degigng

If 'beot' cstimators e, and e, cxist for twe equicost

=
G

designs then we can say & 1is better than 4, if and only irf
215 . o

VI(Hq »y) < M(H,,y), TFor all ye R (1.1.30)

where H = (dl’el) ang T, = (dﬁ’eﬂ) and the strict inequality

in {lels30) Tor at least one yeRN. UnTortunately, as seen

before, there are nct many designs in which 'best' estimators

-y

[0

xist even in the class of homogeneous lincar estimatorse 4 S

natural definition Tor @ tc be better than d, is then

[

et

Jefinition 1.1,1 better than d, 1if and only if given

Fur

i
.
2

WMy e~ dofined over . Aoy there exists and ey delined over
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d, (which may dopond upénh e,) such that 8

with

Lo

M(Hi,y) & M(Hﬁ,y) Tor all y& By

the strict inequality cccurring for at leagt one ¥

pampling witnh and without replacement: For estimating

a population parvametric funecticn (guelr apn the popolavion total

or mean) two procedures of selecting o sample moy be digtin-

. 1
guisned:

(a)

(o)

Sampling with replacements, & fixed number n of units
ig selected with replacement,

A Tizxed number n of units iz sclected without revlace-
ent or sclection with replacement is continued $111 the

degiired nunber n

[w)

i digtinet unite is obtained. Though
;sa¢3ling itacut replacement' ig usually referred to
units without veplacemant, so that all the
units in the sample are digtinet, the two schemes of
gelection of n  digtinct units menticned in (b) above
are cquivalent in the sonse that the »obability of
arawing a specificd sot of n  Adigtinet units is same

-

0™ Dotlle
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Tt was a common belief among survey practitioners- that
mpling without replacement was batter than gampling with

replacement; eu [ 4 ) anL,Des Roj and Khamig [11 ] proved
that the usual estimator ( overall Uample mean) in simple
random sampling with replacement ig inadmiss ible and hence it
ig unfuir to compare the sample means in simple randeom sampling
with and without replﬁcement. Basu [ 4 ] moreover mentioned
the importance of cost consideration in making efficiency com-
ﬁarisons between gsanpling stirategieg. ~ e

It hag not been pogsible so far to prove that sampling
without Teplacement is better (Definition 1.1.10) than sampling
with replacement even for simple classeg of designs.like those
generated by simplé random sampling. Ag a Tegult various
authors have atbempted to study the relative efficiencies of
sampling witi: and without replacement for the same expected

cogt on tihie basls of admiggivle estimators among bothe Suci
an attempt 1s both logical and natural and sheuld not be
criticiged thicugh there has been a tendency on tie part of
certain utho:é to look dowm upen such resultss But in all the
comparigens, so Iar made, Jt is agsumed that the rumber of
units to be sclected in sampling without replacement in ordev

to eqpalise the expected ccot is an integer. It can be easily s

Seen
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that this assumntion will not be true in,generals In the next

~

napter wWe suggest a modiftication to cover the oituations when

|_I-

the aggumpticn ig not gatiafied and make modified efTiciency
comparigons Tor Moy equal probability gampling schemegs In
Chapter II we ecxteond this modified efficiency comparilson fow

some intaresting unequal probability sampling gchemes

1.3 Choice oI Strategies: We give the following

Definition LaSel: In 2 class, é(g) , of ctyuicost unbiased

gid to be '9- 0pt1mum‘ in é(H),

&

strategios, an I{Oe @(H) s 1w

17 1t ninimises

I V(H9 y)d a,

or H varying dver é (H), uniformly with reppect to all

1=

the parameters of the i gtribution 8. An H whieh 1g
g=optimum in (M for every d€ &x , & class of apriori

digtributions, is said to be ' O ~optimm! in 5 (H) »

1) ol = A X, 1¢<41i<0,
o o
11) & = & £ 1<i <N,


http://www.cvisiontech.com

26

oy
where Wy, 03 and Gs 4. B8 S8 defined by (1.1.23) and
X3 Hageesy Xy are the ¥mowan-values of an auxiliary variate I
1 fr -
o

highly »elated %o the study-variate 27 and_ a, ¢ and g
re unknewn constants. Thig N _~class of prior dlstributicns
‘s been widely used in survey sampling. Empirlcal investiga-

tiong conducted by Mahalunchis [32 ], Smith {62 ] and Jessen

Lew 1 have shewn that g lies dhetween 1 and £ in many
practical situctions. Godambe {14 ] then proved the following

Y any strategy

3,1; If is an integer (puh< =
Theozetd 1a341: If w© ig an integer (i< max X,

1

H (@, 8) where &  1is a design of Tixed sample size pu with

¢
1.(a ) =uzx, /X 1<i<W, ig HD,-optimum in the clags

L, (H, g) of 211 fized sample size (= u), linear, unbiased

)
¥

agtrategien of the pomulation total.

Hanuzav [S1 ] showed that the above strategy is
'Ag—optimﬁm in tie class L(H, u) of 311 linear unbiased
strategﬁes with oxpected sample size upe. ATterwards Godambe
and Joghi t17] generalised the abeve tvenrem vy dropping the

adjective 'linear' from itse Vijayan [64 ] showed that the
Tesult remaing tirue cven if we extond the Godambe-Joshi class

to embrace all sampling designs with given expected sample sige.
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One should not be too muech dogmatic about the above
regults ag they are tirue only Iovr £ -clagss lees '£>g with
g =04 Even if g ig slightly different from £ the
véliditv c¥ the abeve Tegults ceases to nold. The above
results of Godambe [ 14 ] and, Godambe and Joghi {17 ] for
g an integer, prompted the author to see wiether they remain
true witi: corresponding changes even when g is not an

7

integers Thig questicn is angwered in the negative in

I

e

Section (9.2). ' ~ -
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CHAPTER II

COMPARISCON OF SAMPLIHG WITH AND WITHOUT
REPLACENMENT: BQUAL PROBABILITY SAMPLING

240 Sumary

..
O
i

In thig chapter, aftor a brief introduction, we ngke
nodificd efficiency comparigons = comparisons that take into
congideration thwe Ffact that tiie cxpeeted nunmber of units in a
with~-replacenent sanple nced not be an integer ~ anong gone
adiissible unbiascd catinmators in simple vandom sampling with
replacenent (srowr, for short) and sinple random sampling
withoﬁt replacenent (srswor, Ffor short), for the sane cxpected
cogte These results are extended to twowstage sampling and

interpenetrating subsarmmplings Some anumerical resulto are

also provided.
hssuiing o guessed value for the pepulation mean Y,
: - 2 2
satisTying 8% > ¥ (Y - )7, where §° ig the population
¥ 5 - . . . y .
flean squarc crror fox the chavacteristic, the usual estimator

n srewor 1g inmproved.e This improved cstinator is shown o

better than thal proposed by Pathak [ 41 ] For srewr whiosh

l‘b

3
éﬂ.o uscs the sane prior infornmation and the percent gain in
g icicncy has becn tabulated,.


http://www.cvisiontech.com

29

a

Recently, CI&M@IUTZ [ 8 ] has madc sone comp I sons
between srewr and srgwore Ho has propesed an cetingtor for

a with-replacenent sampling schene and hag claimed that it is

better than the usual samplic nmean for srswors We show that

q

hig claim ig Talse and that mogt of ks comparisons are

i w)

.
[
-1

either speeial cascs of a theoorer duce to Scth and Rao [ 59 ]

{(and Rao [ 48 ]) e incorroet,

2¢l Introduction

In grewr of rixed size n Tron a populaticn of N

ginits, tic usual estinator of the pupulation mean Y, based

gon all the units in the sample ig

Basu [ 4 I wnd, Des Raj and Knanmis [ 11 ] have shown that 7
g inadnigsidvle by proving that the estinator
il
1r == }:’1—.1 L "\'T_ ( a
Y1 ; i ~elo
i=d T

* 4 Y - - k]
baged on the m digtinet units in the sample ig uniformly

gore officient than 7.
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Y

-

Consider the Tollowing clasg of estinmators based only

g the digtinct units in the sample:

= T (x) .. (3
ey " 3rm) o

wiiere T{(n) is a functicn of m. Assuming that the cost of
a with-replacenent sample is proportional to the number of
digtinct unity in it, the cxpected cost of a sample of n
wnits drawn with srews ig ecquivalent to that of a sample
of sige E(n) drawn with srswor.. Scth and Rao [ 59 ] have

el

shown thiat the sanple mean T in grswor ig norc off
E(m)

J.Jl

Y
ciont than ¥rp(yy 7 iT ST/YT (At

Hewever, this comparigon ia not very satisfactory
because E(m) is not nccessarily an integer. Tn Scetion 2,
we develop a nethod which takes the above fact into account
by uging a randomiscd cstinator. We prove that the randoniscd

cstinator ig more efficicnt that ?ﬂ. In Scction 3, we coxtend
1.

the results to two-stoge sampling and interpenetrating sub-

Saimiinge

Pathak [ 4% ] considered a situation in which an apriowd

value C 2g available, such that
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3l

4

Un@ » this assunption he has ‘shown that the esti nator

Ve =mm Ty = O + C | (Zelo4)

. in srswor. He
JE(H) Lo 3 [ ]

tites thio ag an instance in whiech sampling with replacement
is better than sampling without replacemont .

-~

Thig comparigon is not justifiable because the apriori-

information € dig not utiiiged in ¥ In Scetion 4 we
B(n)"*

get an estinabtor better than I8 (n) by using the prior infor-

mation Cs  This estinator is better than 7., in almost all

o

the situations encouwntered in®practicc.

Re& Modificd comparison For ginple »andon sampling

In srswor we take the sample size as [B(n)] or [B(n) J+1

with probabiliticg Py and p, wespectively where Py and

b

P are choscn so that the czpected sample sige is E(n)  and

[x] denotes the intesral Dot @F &
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The above modification ig well~defined as it ig casily

seen that there exists only one sucn chelce of Iy and  Poy
agnacly
p, = le Em+ [(E@] and p, = B(m) - (B(n)] (241
The unbiascd randoriscd cstinator in  srswor, We propoBe, 1S
T oy —
:f y[E('m)] with probability 2
- ;
% ==
7:; E(f‘l) = < = 2.2.2
!k E’T[E(m) il with probability Do o
It ig clear bhat 5;*13(1?1) roeduces to EE (52) when Eln) is an
intcgere We now prove
Theoren 2.243:  The variance of 5;*?‘.(171) is groater than o
equal to the variance of ¥ :
E(n)
Proors We have
& ) (1-—3(11) +[B(n) ] =B - [E)] O
= - =] = noo oz
7B () B! N (B(n) ] +1 N)S (2423)

ané
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V(J""( 1)) (B(;) = %I') SB (2 02 04_)

viere V  denctes thoe variances

It ig capily verificd that

L 1iEm+ BE) D) - (3] _
By S (B ] E Bl l+1 e

q.o.ﬂt
Renask Deledd Tron the above theoicn it ig clcar that,

waern E(m) is net an integer we ave overcstinating the gain

in ef i

Ticicney by toking the cstimator ?E(ﬂ) in  9rSWOT .

Te2el ~Cotparison of ¥ with V5 (=)
—4 N l.e

Wc now prove

a N oy = 1 LI = s + - - . LR S
Theercn 2.242: The egtinator T8 (m) in srgwor ig uniformly

more efficient than y. in  sigw

== ) 1y 2
‘ v(F,) = (B2 - 58 (Ze2.6)

’

it ig cnougn: te show
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1+ [B(m) ]~ E(n) B(r) - [B(n)] .
E@&) > + : {Bie2eT)
n = (% () ] (E(m) J+1

Now the function Llxz) defined by

14 [:{'] - x e [x]

+ ’
N (xl+ 1

T (x) % Y

i

ig-convex beeause it is pilecewise linear with increasing s1lopC,
Hence, applying Jengen's inequality Ffor the convex function L
we Lave ' o 4

BT (m) > LB (n) . (242.8)

-

Since m(> 1) is an integer-valuecd randonm varigbic inequality
[ ] - [ IS
(w;m.S) J.OdU.COS 'tO (w.w.?)u

qu.do

. 1 » . o + - o ¥
Table 1 gives the pevcent gain in effieicncy of yp(y oOver
W

=)

¥y ToT scleeted valucsg of n and W
L.
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Table 1. Poreent gain in efficicncy or
3;(m>' Over ¥y
N
n 4 7 10 13 15 e 23 2 £
3§ W0.E @b Hd 07— OrE 0.3 G2l P8 Ol
6 _8.1 Lodk 4ol S46 19 led Te2 1.0
8 Bol 4,3 B4 2y2 26l 262 240
10 ' L o6 3 el Sel el 1.8 1.6
32 5¢3 346 24 22 240  1e9
15 2.8 5 2L 2.

-

It can be secn Tronm thie table that the gaing azre s%@ghtly
snaller than those given in Rao([ 48] -Table 1). Algo we sce
-
’ e Y . . *
thiat YR () leads to noderate gaing in ef

i

ric

ot

cney Tfor snall

size populaticnss Morcover it ig clear

I~
I_)

"ol tiie table thaat
ag N inecrcascs the gains becone snall oven when the sampling

Traction n/N  is not small. An analytical proof of thig

1~

act

follows from Rao [ 48 ] and Theoren(2.2.1).
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g ' — T bl _.*
Dolal Comparison of Y(yy "ith ¥p(y)

Patnak [ 37 ] nias considered the estinator

SN, (2e249)

!

Sincce

- 1 - Vin) (=R g~

V(TT - ) o= (.,:‘ B NI e S B _—— (Y Lol T, ) (2.2-10)

7 (2) B(m) T B (1) I

it ig clear Tron (2.2.3) mnd (2.2.10) that
f

if and only if (iff, For short)
2 oo ¥ B(m) @0 - B -2+ B
8%/ Y* <0 [1+ - ] '

V() [B(n) JEM) ] + 1)

(tu o -l_i )

Table 2 gives the valucs of the r»ight hand side of the above

incquality (Ze2413) for scloeted values of n  and W
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Table 2: Values of the 1
incquality. (Zaa

kA e T L n n
n ¥ s (vounded) —pg(rounded) 55 [y5iFownded) 735 o5
3 1495 1.96 196 1497 1498 1499
4 3e3% 3423 3el? 3al2 3407 3403
5 5430 4eSL 4466 4446 4408 4413
6 8.12 7.25 6|56 &6.04 5.62 5.2
7 13942 10465 9405 7498 7612 6 046
8 25475 16423 12.50  10.32 8482 7477
9 19455 26495 17457 13424 10475 9.11
i 2

The table shows that the incquality may not be satisficd for
snall sampling fractionge TFor exanple $f n = 3, the incgqua-

o — : .
sfied if §° / ¥° ig greater than 2. But in

[~

lity is not sat
such cascs (i.Ce where tho incquality is not satisficd),
there ig no point in using simple randon sampling, with o
without replaccrient ag the panpling crior cxpregscd as a
pcgcontagc of the nean will be very high moaking the estinates

altogether unusablice
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2 el 70 extengiong
S45el  Two~stage sampling with cgual probabilitics as botn
tage

Let M denote the number of primarics and N the
nupber of scecondarics in cach prinary. Lot a samplic of n
pringrics be drawn with srgwr and Iron cach of thc n

digtinet primorice in the sample, n  sccondarics be drawn

with srewzs Let w, denote the number of distinetd scconda-
. o 5™ o - . :

vics in the 1" digtinct primary. Under a lincar cost

2

unction the cxpeeted cost of a with-replacencnt sample is

J =

Clm, n) = GB(n) + Gnh(n) (w).
q

Ghosh [ 13 ] has proposcd the cstinator

-

- W

- 17 4 3 i 2=

¥ 5 = =% o) S V. (moO.l)

Mininiging V(}’,n o ) with rcspeet to wm and n  subjeet to a
Py

and V.. ("" ) ‘o

Tix gt C We can Fin ;
xed cos gt W an d QOpt’ nopt min

L
Wow tie cxpected cost of o with-replacenent samplo ig
-

e > . . ) T
cquivadent to the cogt of sampling B(n) = U {1- H } op¥

peinarics with s@rswor and fronm cach selected primary
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RB(w) = N {1 (IJ \} Popt secondaries with srswor, so that

the egtimator in sanpling without replacement is

= : E(n) E(w)
%7 % ®Gy S 7 (245.2)
YE(n),Elw) T E(n) 7 E(w) 7 Jij°®
Rac [48] hag shown that
: -
V(JE(n)’E(W)) < VMin(dﬂaW¢>L (2e343)

Thig comparison ig, however, not Ve:y satigfactory since

B

A(n) and EBE(w) are not neceggarily integers As in Section £,

we therefsore make the following modification:

]
r

Setect [EB{n)] or [B(n)J+1 rimagies with probabilities
1-Bln)+ (B(n)] and E(n)- [E(n)] regpectively with srawor
and from each selected primary select [B(w)] or [E(w)]+ 1
secondarien with srow with probabilities 1- Elw)+ [B(w)]

and E(w)- (B(w)] wrespectively. We have

I~

T -
as I0Lii0Wwse

Case:
([Bn) T, [EGH) D ([B(n) ], [F(W)J+1)([W(w)3+l,Lu(w)])([w(ﬂ)]+ (B(w) J+1)
P“ob'

(1-2,) (1-fg) £ llen 2 Y

[
S
-4

I,_l'
o
1_.I

|
I~y
o]
o
)
Hy
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where fq = B(n) - {2(n 1, :fp = B{w) - [E(W)]~

~

, 0 I 4 . . a & .!‘_\-:l -boj_- b-w ar A

T,ot ug denote the modified cstlia T Y5, E(ﬁ@'
. SN S . ig smaller Thenm
fhoorem Sevels TRC VATLANCE O Jn(p) B(w) -~

. of ¥
Jrm_n 3

proof:  Congidering the Tour cascs ligted in (2e544) we get

. o= 1 1 2
¥ = & o N 3
TGE (@ ,26m) = ¢ o Tl i
+ ( T # = 43)( I, X no+1" T g™l
(2 o5

whoTo '1"'_| and fﬁ are ag defincd above l'll = [E(‘T)) ]1

15 the pepulation mean square ol the prinary
f\J
- N | )
means ¥, and S: ig the i-th prinary population mecan sqUalCe
Also the varisnce o ¥ - ig P
: Ny,

It

b=, 5 e S N T 93
@)~ @8] + 3G E(E) - =)z Z 57 ¢ (24546)

<
~
S

R

'ﬂ yw

Since 7 and w arc non-ncgative integer-valucd randoii
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variables, The theorem follows Tfron (2.3.5) and (T.3.6) by

noking use of {(2e247)

q_.O.’flu
=
Dedel  Interponctrating subsampling

TLet k subsanples cach ¢f size n e drawn with
srgwor Trom a population of sizc I, independently of cacl
othoer, Patnok [39] has shown that J.» the pean of the n

distinet units in the combined samplc of nk units, is

[
-

o]

wmiformily more efficicnt than any lincar Tunctio:

t~ P

C.¥y9 Zc, =1, of the sub-sanplec neanse
1wl < .
Since

V(fy”m) = (B (E) - -ﬁ)S

= l 2 sret ) * - D g g 3 Ty 3 g
it follows immediately from inequality (2.2,7) that }i(m) in

grgwor 1g more cirlicicnt tha Viq® Thougit the idca of using
v :

interpenetrating subsanples ig.net to reduece sampling crror,

\"

the author meokes this comparigon in vicw of Pathak's {59]

rogulte 3
244 Ubiligation o¥ a gucssed voluc orf ¥

Woenh o zucssed value C of Y g available guenr that

s” s Yy - o) (2.4.1)
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we proposc the cstingtor

R ¢ Ry e 24442

L
-

Tor srgwore It is clcar that Yo ig o biased cstimator ol

]

B(§c) (%—11 - 1) ({f - 0)e : (2e4e3)

B
The biag decreases as the sample size inereages or the guessced
value € gets cloger to ¥ and it is zero when the guess is

pericct, ieCe, Y = Ce We now prove

*
Thooren Sedel: Under the condition (2e4.1) ¥y 1is more OF T =

cient than yp(ﬂ) in tne sensc oI having smalleil nean ggquare
LAY LY

error (msc, Tor short).

o . . ;
5 5~ (i A B{n) 2,5 2
e Gy« Efildy s 4 - G
(2 o L7800
and using (2+2.4) we got ‘
£
(1= 1 )°

- - i Ll — 2
Vi) - me o) > —=2—E~0)" > 0

=
?horo L =)

0

._.O = Iq' . *

C_}'_rnﬁ',q(
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Now we comparc j}c with the estinmator y, 1n sTows wilch
[

algo ugses the prior information (R.4.1). We prove

Thoorem Se448:  The estimator ¥, 1in srswor ig more offi-
cicnt than the esiimator F_ in  grewr il B () < W{W=-2).

Progf: Since
h

{-J
= S
V (}rﬂ
13

—
l'_l
Yo
S
]
)
-
o=
£
i,

. = 2eled
T () i : (Y C) } (2e445)

Tron (e4es) and (2.4.5) we get

2 = 2
V(Era) - TS0 (}’C) = aS‘U ~+ .'O(Y '5 C) ("v. 6)

where

1 ] 1 3 i iw I
a8 = FT - F Y§i) = ‘(ﬁ) () (2ot e?)
b= - HE™ () - T
and
. “ .
. Vi Sr{nm B~ (o
g = :;;(vl) 4 T( = (g-}) - 1 ru. 08)
for N- TS
B (n) )
. ‘

f a> 0, using (2e4.1) we got ~

V(EES) - 1se (:'«;C)‘ > (all + B)(Y - 0)”

]

(5= B(m)) /MR () (T - )"
0.

1w
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Henee to prove the theowren, it suffices to show that a > 0
2 = P .
37 BY¥(m) < (¥~ 1 Using
E\"\

Mh ) in (2e44.7) we have

L Eln)  BY(n
= SR o = ] 3
S ¥~ i il

Thorefore, a > 0 1if
B (n) < W(H-1). = .
q.c.d.
Table 3 gives the percont gaim in efficiency of ¥
gver . Tor seleeted values of M, n  and §°/(T - 0)°(>m.
The table shows thabt, ordinarily, gaing inerease ag N, n

and

S:.'.;/ (%_ G) o

increagc,

Morecover, the galng arc
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Mable 3: Percont gain in efficicency of F OVOX ¥y

[

—— s . L a7 i R TR T AR I i o e . ek hm Aok e

. n n
i :%g(zoundcd) 50 0
Sr\;
o
(Y—C)u 1.,5M 20 2.,5N 31 1,511 2N 2.0N 3N 1.BN 2N 2.80 31
L - ,
3 484 605 706 790 633 798 941 1064 1379 1785 2156 2497
4 491 614 716 80T 639 808 953 1077 1385 1793 2167 2510
D 495 6L9 723 810 643 813 958 1084 1389 1798 2173 2518
5 AQ7 6R3 Q7 815 646 816 963 1089 1392 1802 2177 £523
0 £99 625 730 818 647 819 966 1093 1394 1804 2180 252
&
8 501 8= 732 821 649 821 968 1095 1395 1808 2183 2529
g 208 6GRG 734 83 650 822 968G 1093 1396 1808 2185 2531

Woen o < 0, using (Ze4%1) onc can cagily show b > 0. There-

q(?s) - 1sc fc 200 g
2PN 2 o
5%/ (Y= 0)% < Ut (T~ B(n)~/(-2) . 0. B (), (2e449)

#

Noting that the scoond texnm in (2e449) ig greater than ox

¢qual to T, it follows that y, will be morc efficiont tha

il s

<3

3
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s* /(T - 0)° ¢ an .,

Tor a < C and 52/(§ - 0)" > W + (- B(n))"/(~a) WB(n)

i - - R o
Pathak's cgtinator ¥, d1s better than e
In tic above comparison we have ignored tine fact that

E(n) ig not necessarily an integere. However, as in Secction

£y thc comparicen can e nodlfied,.

Retinck Sefel: Since E(m) < n it is clear that Tncoren

<

(Za4eZ) ig true if the sampling fraction n/¥ < 1, which will
be usually gatigiicd in practicce.

®
Rennrk Delens Tt i clear Twon the theoren of Seth and Rao

£ 59] that their conclusions werc baged only on a sub-ciass

of cstinators in srewr defined by (2.1.3). We can considor

a wider claso of unbiased estinators in grswr than that
congidered in (241.3), nancly,
D le T, A
Sr o = =
J = ' v
Ll T e () B
4 \I)
/
where Ty foyean, fﬁ are pro- igned functions of me It

will be worthwnile %o sce wnether thie theeren of Seth and

Rao [59 ] dig truec Tor this class of estinators.
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&

245 0On a paper [ 8 ] of Chaudnuri

In this scetion we discusg Chaudhuri's [ 8 ] paper in
wiich e hag nmade sonc comparigons between srswr  and grsWor.
- We showAthai el t of hig comparigons arc cither special cascs
of a theoren duo to Scth and Rao [ %9 ] (and Rao [ 48 1) or

incorrecte

£
To avoid confugion, we Iollow Chaudhuri's notaticns

clogsely and congider the following schemes of sampling fron

a finite population of W wunits w(l), u(@),ee., ull):

R: A fixed number of unite is sclceted with grgwre,
: ! iy
Re ¢ A Tixed nunber of units ig seclceected with sigwor.

R Seleetion with raws  is continucd Gi

l_l

1

1 ¥

the degired

=

(fixod) number of digtinet units is sbtained.

Chaundhuri usced the notation R Tfor both R and Rk*, but

we adopt different notations to avoid confusion

»

—
d'
g

s well-
kmown that B and R¥* are cquivalont in the scmsc of having

the same probabllity of scleeting @ sample of distinet units.

Supposc RW¢*  dg bascd on 1 o draws (randon variable)

.

such that cxactly n(fixed) digtinet units are realiged
(r > n)s Chaudhuri proposcd the Follows g cstinator of the

i)
bopulation mean u = N » x(4) Por TRk
1
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whore the suwmation is over the distinet units in tie sample
%
s and x(i) i the valuc of a charactor Tfpr the population
unit uli)e He claimed that, for a given r(> n), RB* ig
identical to R based on i diraws and, hence that t%* ig
¢ since the proba-
bility of inclusion of u(X) for a given =, say =n(r i),
would then be cqual to 1- (1-1 /W) i However, this is
cbvicusly wrong becauge the number of dightinet unitg for R
i o Tandon vazriablie )/ (5 i whereag the number of Aistinet
ity For R+ (for o given ) dg a Tixed number ne Conse
quently, the egtinator t** 4ig .not the H-T estinator of pu
(it is in fact biased for 4) and his conclusion ¥hat tho

variance of  t¥FF  dig gmaller than that of thoe samplc nmean

¥ (n, ®) bascd on n unitg Yor R* is incorrect.

It may be of intercst now to derive the H-T cstinator

bl ] -y ale bl - L k
ol @ TIox E¥* Tor a given »( > n) ~ note it would bo

conditiona’ly unbiascd, The probability of drawing o sot v

oF n distinet units in r dvraws Tor REE ig given by


http://www.cvisiontech.com

49

: -] e ] _
= -"':1%' An -0 (2‘.5 u;})
T

where %' denctes swmation over all intcgors tW""’tn—W

P K]

such that b, >0, T t, =2-1 and A 0% = [n s

for pogsitive integers p» and k. Further, the probabllity

|.J
J

i

-t

Y
igtribution

gedy Bk “1 el :
P(x) = O79) —= B8y @0 R (245.3)
1 =

o that the conditionad probablility of s, &lven = is
3 hY
Pls., ™ .
n ] ‘
e 1 T = i b -
I (Snl_) — —-ﬂ? o H.) = P(Sn) (2 -5.4:
n
which is independent of e Sindilarly

g5 ) = Ple) (245.5)

which ig indepondent of g« Iow

n{xfr) = 5 P(s

) = oz T Pslx

- 1 4
‘Lq) = 57 l = :]...,ll- ¥ lI (2'5'6)
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whoere T donotos surmation over all gamples s of size
s N

» containing u(A). Ceonscquently, the H-T cstimator of

y Tor R¥* (for o given =) is in fact cqual to the sample
N

x (n, v, RE*¥) = o ox(x) (245e7)

AE B

il Lo

which ig independent of re Also the joint probability of

inclusion of units u(ix) and u(r') in the sample, for a

\
- . -1
(A2 = _ 2 . Plelz) = T Ps |r) = L&
sSR! et SR S

A EN = 1,ee., I (2.5.8)

so that the variance of X(n, », R**) 1is identical to that

bt

of the gsanple rean for R*  based on n drawse.
' )

One could construct a class of unbiased (but not condi-

tionally unbiascd) estinators of k%  which depend on = and

»  x(X) as Follows: -
ALs

I.J
VS
=]
H
-
*
~—
it

X (ns Ty REX) (Se5e9)


http://www.cvisiontech.com

o1

whore T(r) ig a function of . However, by using (24545),

we get

SnJ = }”{ (n, iy R**) (2.5010)

so that Z(n, =, BF*) is uniformly better than f(n, v, REX)

Ry

We now tuin to Chaudhuxi's comparison of the H-T
estinators for R and ®*, both based on n drawse First,
it must be pointed out that his statement 'with no loss of
gonerality wo shall toke @ll x(A)'s * to be positive beeausc
if gome x(A\)'s wore positive and scome negative then before
wndertaking the survey we might add a high positive value H
to cach value of the variate so that aii the valucg becone
positive and then our problem will be to cstimate u + M of
1w comprnent I is kmown to ust! 1is incorreet because
the H-T estinator for R ig not origin-invariant, There-
fore, hig results are valid onmly when all  =x(}) > 0. e
proved that the variance of the H-T estinator foxr R¥ 1eCoy
vorianee- of the sanple nean X(n, B)) is smaller than that

of the H-T  estimator For Rlnamely, £ =x(A)/ E(») where
€

5

i

B() = N[t~ (1L~ 1/N)nJ and L' = nunber of digtinet units in

i o
the Resample) if n > 3 and ¥ @0 large that o(N™") terns
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P

He However,

immediately follews as o

a ©morc genex

more general result (din the

can be neglceteds However, o
goensc of being valid for all I) Iollows as & speeial case of
L) . " r
the Following genoral thooren of Scth and Ras { 591 (and
. g
Rac § 481 noting that a1l x(A) > 0 => (C. V. x) and
v[ 2(®)Y), B)] < vl %(n, B*)], where C.V.x = cocfficicnt
of varialion of x:
Theozenn tSeth an c [ 591]1: Variance of T [B(x),Rx] for
R*  bascd on E(U) draws is snaller than the variance of
any cstinator belonging to the class
N T(y . o
I(’j! Il, R) = -E-i" )/ 'I(IJ, n, R) (:;;osnll)
kad 1 S 1‘ . L] 3
for R Dbascd cn n draws (which includes the H- estimator
o
for B ' LGs Ve ) ¢ N
Woxt, Chaudhwri comparcd X[B&/), R*] for R* and
£ x=(\)/E(Y) Tfor R so that the cxpected costs Tor R and
ACs
B are cgual.e He proved that the variance of X[E(Y), B¢]
ig snailer than that of T x(A)/B(p) for R te tornms
. 7\68
5] e I . .
_O(N ) provided a3 x(A) > O and n  is very snall conpared

al result (valid fTor all n and

special casc of the above theoren
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of Beth and Raoe It ig indecd strange that Chaudiuri states
that the roaults of Rao [ 48] arc 'asymptotic! and 'isolated!
when in fact his own roesults arc asymptotic (unkike Rao's)

len)
T

and gpeeial cascs 0 Rao'de
Finaliy, we turn to Chaudhuzi's comparison of R and

digtinet

forh
‘_l.

B+, both bascd on the sanme number n  (fixed) o

ble nee the nunber

)3
|_I-
0

)

unitge Clcarly thig comparigen is inpess
of digtinet units for R(a randen varigbie) cannot be Lixed.

-

It appecars that Tis mixing up of R and FR** has

(=]

ed te
thig impossible comparigsen -« R wag based on 11 = E(x) draws
whoré () 1 the cxpected number of draws to get n dis-
tinet units in the sample for 'R**. It may be noted, however
that one could nake the expected number of distinet units in
the sample equal to n for R by scleeting d units with

“
srewr where A ig given by

M- - 5% on

or d=0/n Q«a/®mD]/{fan (1 - 1/ w) ],

For this casc also the comparison of H-T cgtimators for R
snd RF follows asg o spceial case of the above theoren of
Sethh and Rao with R* and R baged on n and & draws

regpectively.
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CHAPTER TJ1T -

COMPARTSOH OF SAMPLING WITH AND WITHOUT REPLACEMEHT :
UNEQUAL PROBABILITY SAMPLING

In this chapter, we have cxtended the modified

-

officiency comparison considercd in the previous chapter

1N

i

to the case of uncqual probability sampling. For unequal
probability sampling, in the special casc where the units
arc, or, can be grouped with respect to the scleetion

probabilitics p; such that units in a group have the
same p-valuc, Stevens! {83 ] estimator is shown to be botter

than thab pﬂ0posod by Pathak { 38 J. Tor the casc of two-

rd

gtage sampling with uncqual prebabilitics we have derived
withcut-replacenent strategies that are wniformiy nore effi-
cicnt than the with-replacement strategics congsidercd by
Patnak [ 39], for the same cxpected coste
The usual nodificabtion of srgwir which nakes the

custonary ratic c

]
c+'

tinateor unbiascd for the population ratio

.ig to cheomo the

141

gt unit in the sample with probability
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L5

proporticnal to Size x {ppx, Tor brevity) and tic remaining
units with s¥swr Iron the whole popﬁlation. Pathak [401‘

has shown that the ratio of the meang for tho digtinet units
in the sanple has unifornly snaller variance than the ratic

of the overall meanse In the last sceticn of this chapter,

Toxr the same cxpected cost, we get a more efficicnt estina~

tor by using Midzuno~Scn schiene, under a super=population

S50T~UDe
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31 Introduction

Tt ig woll-known tiat, under certain circungtances,

sclootion of units with uncqual probabilitics provides moxe

officicnt catinators than cqual probability ganpling and this

0

type of sampling is known as uncqual or varying probabllity

somplinge. In the nost cormonly uscd varying probability
saroling scheme, the units arc scleeted with probability
proportional to a given measurc of size X (ppx) where the
sige ncasure x is He vaiuo of an auxiliary vq:wqwhaéKl
related to the study characterigtic %j and this typec of

\ = I3
sampling is teimed 'probability proportional to gige! sampling.

It ig generally observed that sampling without
replacenent- provides more cfficicent cstimators than sampling
with replacenent, since the cffcetive sample sizge ig mowe in
the former than in the latters Therc has been trenendous
dovelopment in the ficld of sampling with varying probabi-
iitics without replacerient since 1960 But most of the
suggeated proccdurcs, catimators and variance cstimators are
rather complicated and so they are not commonly used in
practice, cspeeially in large scale sample surveys with a

-

small sampling fraction, sinee in such cascs the cfficicnelces
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of sampling with and without replaccment arc not likely to
differ muechie Uncqual probabilify sampling with replacement
together with cstinators bascd on all the units in the sample
has been widely uscd in practice, mainly duc to the simplicity
of the cstinators and their unbiaged variance cstinmatorse

But it is worthwhile to cpmparc varying probability sampling
'with and without replacement, for the same cxpected cogt. As
in the previous chaptor we assume a lincar cost function; It
would be intercsting, however, to make cfiicicncey conpairisong

under reasonablc hon=linear coaot Tuncticng.

Por the special case of uncqual probability sampling
where the unitsg are, or, can be groupcd with respeet to the
solcoti§n prgbabilitiés Py guch that uvnits in a group have
the same p-valuc, Rac {48 ] has ghown that, Stevens' [63 ]

=

gtinator ig meore efficient than that suggcsted by Pathnk

[ 38 J& However this comparison ignores the fact that the

o]

number of units scleeted from a group in the case of Stevens!
cotinator need not be an integer. As in the carlier chapter

we introduce a randeniged cgtinator, and make nodificed effi-

cicney comparigon in the next sccetion,
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Foir thiec general casc of uncgual probability sampling,

»
- -

it nag not bcon poss8ibic to make crfiiciecncy comparisons
between estinmators in sémpling with and without replacenent
(based on the distinet units) since the comparisons depend
on the y-vaiues {(and pevalues too)s. Rao { 48 ] has considered
criteria other than Saﬁpi&ng efficicney for the choice of
cstimators in sampling with and without replacenent such as
(a) the easc with which a sample can be drawm, (b) the
simplicity of the cstimator and (c) the availability of a

non=ncgative variance ecstinator. B

Sex  Uncqual probabiliticg: Speelal casc

suppose the population ig divided into X non-overlap-
ping groups such that in tihe t-th group there arc Nt units
having the gane p-value, (¥ N, = II)e Lot n. denote the

number of units Talling in the t-th group in o sample dram

=

with probabilitics Py and with replacement. For the groups
with ng 2 1, lct n, denocte the number of distinet unifs
anong the n,. unitse Pathak [ 38 ] propescd the Following

unbiascd cgtingtor of Ve
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s (Ze2el)

where k' is the number of groups with' n%’>’1 and ¥y
ig the mean of the my digtincet units belonsing $o

Ty ‘ . B} \ )
2 sroupe It can bé~shown that the cstimator ¥

Vthe ot
in (3e¢2¢l) ig more efficicnt than the conventional unbiased

‘ecatinator in uncqual probability sampling with replacement

L

o)
|-d=

it gnd oniy if n > 3 and at lcast three population units

~have the same p-value (i.c., N, > 3 for at lcast tne group).

In the above sect up, Stevens [63 ] has given a simplce

D

netied of uncqual probability sampling witheut replacement
Tor wnicnt thie cgtimator of Y is mere cificicent than §P .
Stevens'! technigue consiste in scleeting n  groupsg with
probabilitics N, p., with replacenment and if the R group
ig sclceted nf times, sclceting n¥ units from 1t with
ginple randon sampling without replaccerients. To avoid the

possibility of the non-applicability of Stovens' teehnique we
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aspunc that T, 2 n, for all t. The unbiascd cstimator of

Y congidered ig

3
t

= L

(Rl
b
+
-

It is casily scen that the joint distribution of
(z T * * »e identical, nanel
Dy Nepyoeeny ) and (*, NEgeney ,_) are L L1COLy anely,
RRLS s S0 Mg g Py

multinemial with pirovabilitics Nf Py Undex the asgunmed

1

|_Io

near cost Tunction, it ig cvident that the cxpected cost in ™

Stevens' procedure ig greater than that in Pathak's procedurce
Henece, in owrder to nake efficicncy comparigons Rao [ 48 ]
moditicd Stevens' proecedure as Tfollows: IT the t-thh group

ig scleeted nf  fimes scleet

Ht—l n%
Bl ] o) =0y 1= (=) T}

B
=i
&)
(S

om 1% with srswore The osgtinator congidered is

N Ik gy
Y4 = % e "%T ﬁr( [ * )
| = 1 + _Jﬂl,*tn_t
LY . .\ \ :

wihere k*  dig tiic number of groups with nz >1s Rnao [48 ]

~

has shown that the vazianee of Y ig always snaller thaop
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~ ’ . . )
the varianee of Y, assuming that B(u | n} ) is an integer.

However, 1t can be casily scen that Elmf | ni) need

caeascs te Linve

31

not be an integer and in guon cascs

et

| Bl | )
any neanings  Ag in the previous chapter we modify thie schene
oy taking the sample sizes to be My and_pi+1 with probabilities

: ~
1 -7, ad I, respeetively

wnere

* * * *
= Bz i = Br -

-
and [x] denctes the integral part of xe Denoting the
unbiaged randomised cstimator corresponding to the above modi-

oy = AT
Ticd schene by Y, 4 WC prOVe

-Ila

hooren 3e2el: . The variance of Y, ig uniformly sualler

, , . o B3 M
than the variance of Y, in  (3.2,1).

Proof:  The variagnec of ?z ig
LY ~ o ) -~ =
B L. R |k S E %
(Yé_—) -— n* V( Yé_]; nl,.C! ’nk) + n::[ E( Y4|n—' [ L] l,l’]«lc)
+ +
Kk n¥c T g £ : *
1 t L Ty = It
= 'E e Z ( + 'b 1) Sfu l 't
* Pt 8 T + V (_ Z: = B Y )
ny n 1 Py Mg ”t+1 ﬁ? b nz 1 Pt e
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- £
mhore Y, ond S; are respeetively the population noan and
nean #quarc for the t-th. group. Wow uging incquality (Zele?)

woe get

‘ 1-1 £
l * "—t -t o
B( l n‘b) .2. 7 + "Lt+_1 . (30@.3)%
-
Using (3.23) in (3¢2e2) we have
A I o
V(T < B L& oz — @& ) - 8
n% n” 1 Tt ‘ﬁ
L kx
'i -
sV T =2 Y . (34244)
ny 1 t
Al.so
kl nz -
= T 3 t 1 2
VI =E % z:---l.-r (B(== |nt) o Jﬁ“)st
ny n L py t %
k't n
1 —
£V (22 =F 1), (34245)
ny 1 t

‘AS (n13 Toyes ey nk) and (n?, N¥yaney ﬁ;) have the sane dig-

- (e

.i.,.T's o * 3 = k)
tribution, o and ry have the sane distribution as also

»1 F - - - o
k' and k*e Hence comparing (3.2.4) and (3.2.5) we sce that
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' A
the right hond side of (3e2.4) in cqual to VO ¥4) -«
q.C.d-
3¢5 Two-stngec sanpling Wﬂth unoqua_ p"obgolllzjgml
‘4
Lot U?, Ug""’ UN be the N Tirgt-stage units (Iﬂu)fﬁ
of a populaticne Supposc that Uj ccngists of Mj sccond -
\ .. thn -
stoge units  (ssu) and Uiy stands For the h gsu of
U.e Consider a two-stage design in which the Teou's are
J
sclceted with probabilitics Pj and with replaccnent oand it
U. ig scleeted hj tincs, hj subsamples of mj units
J
cachh are drawn there-from independently of cach othex by
srewors Donote Zyn (Y., /P )(M /2 Mj) ag the Z-valuc of
Ujh' Lot U1y (o) reenr U(Q) be the d(< n) digtinet

Teu's in th kanplo ariranged in

unit indiccs. Lot A(i) be the

selccted in the sample ( T M)

U.(i-i), u(_'r“),'l-, u( d.( )) t.[lo
smﬂsof1ﬂi)zﬂrm@din
indicese  Pathak [39 ] nas

»

0T Y:

incircasing

proposcd the

the incrcasing order of

nunber of tines

= h)., Also, lect

) digtinet
1)

theixr

sy (2
order unit

following cstinater


http://www.cvisiontech.com

Wil

the cstinatorm

64

T o-nT
Za (1) d(1)
7 ]'1 the Zevaluc of
o = = d;. i 7. A . OC"I’}.':" fale: -V
w0 I, = Byl T Ean)r Faw)
i) g
We now give an estinater moxrc efficicent than Zy Lo #
the same expected cost, by using th following sanmpling
schemC. Choose N Isu's as before. L u(ﬁ) ig sclected
h(ﬁ) times scleet n, OF n5+-l gou's from it by sIrswor,
with probabilitics, 1 - fS and fS regpectively wiere
T(a A 1, F. = E(d(;\|re5y) = Do '
B LELS (it 5 = Bldggy M y) - 1 ‘
Then the estinato:
B = D Ny 12
ig an unbiascd estinator» of ¥, where Z¥ (6( ) denotes ti
mean of tho Z-valucg of the units scleeted fron Uy We
now pirove
Thcoren Se3e3: The estinmator 7, 1is more efficicent than
= da
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Proof: Now

V(z;) =n B {= A%i) V(Eg(d(ﬁ))il(i)) }

+ V {I’l b ?\,(_I) E(.) } (3-0-1)
*
M
(1)
b -l_; v
- = , L e ig thec nunber of
wiere Z(l) M(l) hz_l Z(lﬂ) and M(l) 8 Tinc

V(Ez) < n™® R {2 l%i) V(éd(ﬁ) Il(i)) }

5 _'I - L
+V {07 B Ay gy b (343.2)
Conparing (343.1) and (3+3.2) it sufficos to show that

V(gﬁz(a(i)) May) S V(Ed(i)"‘(iﬂ

whlch follows by an application of incquality (2.2.7).

qaCade.

Pathak [ 39] has suggested another estinmator for ¥

N LI el ') o e I 3 » L] ”*
winichh ig nore cfTicient than 7 q but computationally more

cunibergone:
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o

Criy Z
IR

—— -

s

B3l
i
™A

e

wilerce | w

C(yy = E[(l(i)/ n)|?] and T is the

e

=

quf ficicent statistic defined Yy

L {u(i); u(il)""’ u(id(i)) } 1 =1,25eee al.

+

mhooren (3e3.2) follows irmediately from Thooren (BeBsl)e

=
o]

3t

Tﬁoorom Ted gt An cstinator more efficicnt thinn

given oy

.

|
¥*

d
= G,
% i? (1)

=

(A

dek Comparigen for mﬂmm@%m1qmm

Let yl,...; Iy denote the values of o cna_acto:istic

v Tox

the units in a finite population U and Xy geeesXy
be the corrcsponding values of an auxiliary characteristic
x which arc assumed to bc known., Pathak [ 40] has consgi-

dered the following sampling schene:
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b7

i

Schiene A Traw onc unit from the population with pro-
S \ . . . e @ o
babiiity proportional te X. Draw (n-1) units from the wiole

population uging a SIgWE  BSCLCMC,

Lot 1 denotc the number of distincet units in the

sarplce Lot ¥ and X  denote the sample means of  y  and

& End §ﬂ and ¥ denote the corresponding sanple ncans
. Aol .

of the 1 distinet unitse Pathiak [ 20 ] has shown that the

catimator ﬁﬂ 4 %, is uniformly move efficient than tiwe

cotinator ¥ / X Tor estinmating the population #atien

o)

( zy.)/( £x,)¢ Let B(m) stand for the expected number
of digtinct units when the sanple is scleeted according to,
schome Ae HNow congider the Midzuno-Sen Schenme wnicn we
onnall denote by schene B, ‘

cheme B:  Draw onc unit with ppx. Draw n, -1 or
1, unitg with probabilitics 1~ T and fl regpectively
with simple »andon sampling without replacenment from th
renaining (M-1) units where n, = [B(a)] ana 7, = E () -n,
and {x} denotecs thie integral part of X

»
Aspuning, as before, that the cost of a sanple is pro-

portional to the numocr of distinet units in it, it can be

casily chwecked tiat the expected costs for sclhiemes A and 3B
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.

arc cquale It ip known that (¥ / X) is unbiased for tip

population ratio for sehime Bey In the Tollowing wec show

that under a superpopulation.model ¥ / ¥ for scheme B

ig on the average more efficient than ¥. / x., for scheme
= A;. uhder certain conditions on the distribution-of X

To show that

it is cnough we show : d
- - - = L2
Exly / ®) <E, (}’m/xm), -

ul
ieCe
I¥ H
() 2 S Wy
Fei, 1§ R N Syl e ()" =m0
Ty S T T AR R o)
n, s=l X nmﬂ) g=l X, m ( Sl £,
Iy (3ede?)
where % denotes surmation over all sanplces of gige o

Sl

=
=

drawn with srswor fron the unitse.
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Now ceongpider the functicon

(1) =2 (3 =n
l-z+ [2] 2 I1z] " - (2] “lzla y'[dz]+1
f(z) S 2 r A i N N ’ <
(EZ]) - *(z] ([z]+ LA {z1+2

5 2 ¢z £ Ha -

77 ©(z) is a convex function (B.4.2) will follow from an

applicaticn of Jenscn's incquality. .

ow botweon two integers =+ and r+1 the graph of

7(z) is a straight linc with slope
i1

@ g2 5 o

T £ - = - J 9
n,=~-§ E ==+ R 5 ===
(1,) g=1 = (1‘4_1) 8=l Xr+l

= 1,2,---, I‘I"l-
Hence will be convex if

1" = 1,2,.--, I‘&""l. (3'4.3)

Since 1, involved y,ee., Xy and also the unknown y.'s

(Zeled) may net be truc in gencrale We shall now nake the

assunptions ag in Rao and Webstor { 50] and P. Se Roo [52 1
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=

and we Inrther need the Tollowing

Lonma (Rno and Webster [ 50 ¢ Let Zys Bgree-y 2, o inde-

T o i~ ——rL .t

pondont gamla variagtes with parameter hs  Then, for 1 #

T b - \ — (0

. 23 7 - l (a+:1)n-. [ (oai) . L
C ¥t C .

(2 Z‘t) (n) 'I—T (r+a+b-1)
t=1

-

Wnere m o= nh, ¢ 1is an integer greater than zero and a
)

-

and o are integers greoater than or cqual to zero.
Tt can be cagily seen that the lerma is true even when
a and b arec not integers,

Weo now nhove

Thoorer Jelel: der the assunptions that

itoelf a random sample Tronm an

|

i} The population U ig

infinite super-population with the model
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) o ] : )
Ywnere ﬁ[x ) = 0, E(e; x,) =0 %f Loy % 1%y

i) Kis Fngeses Xy ol independently digtributed as gama

with same pavameter h, the cstimator ¥ / X corrcesponding
to schere B ig, on the average, nmore cffieicnt than the
estinator ¥

X for gcheme As -

¥

Proof: To prove the theoren M suffices to show that Elm,)

ig inereasing 1eCe

+
E(lnl_‘+1) 2 (wl), o =1,¢3,..., N- 1-
How
0 2 o= \2
}T-:s i ot B'XI‘ + Ol-u)
— P B -
'-].. Xr

Teking cxpectation over the- super-population for given

}:-I ,%’.oa, XN’ wWe gO‘t

0 N
(L) S ehy
2 3 -l 1 T+
B(l‘.lrlxl,...,xy) = {-— -—ﬁ_—— PN ::.. o — 2 -

b g
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Agnin tdking oxpectation

"} alehale
N '
R
wl o= ol- —- E 208 + = N
- w() 8=l B =, (e41) (1)
il 0 1 gL
166
N
& .
» denotcs surmation over all samples of si
e
with srgwor Irom tice I unitg.
over the digtiributicon of
we get,
( I . -y :
I ] = a’-« {—- = .‘"L = — } w11
AT __) e L + (1"4-1) Be 1 + .Clr
O |-_ (g+h) .
whore n!' = E(n!) = (~1)

Hys Xoyeeey Xy and uging thic lcomma
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CHAPTER IV

HYPER-ATMISSIBILITY

440 __Sulmary

For any non-unicluster design, Hanurgv {21 ]

catablisnod the unigue nyper-adnissivility of the Horvitz-

Thompeen estd » (HT-cstinator, Toxm short) in the class of”
all general polynomial unbiascd estimators of the population
total Y. In tlif cnapter we coxtend the above result to the
clagg of all unbiased cstinmators of Yo Similayr regult is
egtablighed for the variance cstinmator of it suggested by
Horvitz and Thompson [ 26 ], Furthor we show that the

Hi-cstinator »¢naing as the unique choice cven if¥ principal

nyper-gsuriacces of lower dgficnsions arc ignorced. The new

"

criterion has beoen termed as 'k-hyperadmissibility!,

e A
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4 | 3

i’ir_T Introduction

We nave already nenticned carlicr that o UMV cgtinator
docs net exigs in the clasgibg(p) 0" any noxe- Tustoeor
designe pe  Godambe and Joghi [17] seneraliged this mesult
to The elass  A*(p), of all unbiascd estifintors of 7.
fowevez, it nmay be nentioned that their rosult Tegarding the
non~cxigtence of a UHV‘OstimatOP in® A*(p) ig truc even Ffor

5

ueiclugter designs An olegant and short alteraative procT

of tho abeve result can be scen in Boou 12 s

Let ug reeall the definition oF adiniggibility, We have
. N
Definition £,1,1: TIn g ass, g, of unblascd cstinators

0f ¥, an egiimator +t belonging to é: is said to be

adnisgible in § 4f Fow overy other estimator t din (§
V(tq) < V(%) Tor at least one vE RN' The usual definition

or adnissibdiiity uscd in deeigion theory (see Wald [ 65 ])

wolelr 1s glightly different from the above definition 1g

e

Pt n e e 1T O a 0 E
Dofinition 4§l.2: In a class, {5 , of unbigscd cstinmators of

. i ™y , i P S
1 Belonging to (5 18 said to be admisagible
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-+

7(5) ¢ V(t), for all ye By => V) = V%),

S |

Ve navo alao atated in Chapter I that when Eﬁ is convex the
nbove Ywo definitionsg of admignibility are cquivalent. So
witlle stating any reosult on adnissibility pertaining to convex

cilass of cgitinatorg we will not digtinguish between the above

Two deriniticonge

Godanbe [15 ] and, Roy and Chakravarthy (54 ] proved

that the HP-cgtinmator o(u, ) defined in (1.1.18)3s admissible

l_lo

>0 forpll 1 <1 ¢H.

rr)

Godonbe regult to the clags,

\

A% (1)!

and Tuzther they
renarked thet cls,y) renaing admissivle cven when the para-
neter space i restricted to any sphere containing the oxigin

oi Rﬁ' Phey have alse shown that a variance castin 1ot or,

2

prencsed by Torvitz and Th mpson 126 ] ig adnissible in the

r

class of oll unbiascd cstinators of the variance of &(s,y).

: The critericn of admisgibility has, however, not been
conclusives In view of “thig and the non-cxistence of o UMVU

csvinator, the reecent literatuzs hing beon Flooded with now
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critoxioa which g ive.;;se 0 a unique choicec © cstinators

We have broadly reviewed the weidfed 1litce raturceen Chapter I.

T+ is worth noting here that, however, all of them have not

1ed to The saac cnoiece In this chapter we congider onc such

widlonton

namely fhyper-adnissibility! ‘duc to Honurav (21 ]

-which is stoonger than admi ggibility.and weakor than unifornm

inimun varlianiCc.

A princinal hyper-surTace (phe, Tor suoxrt) of R, 1is
f I T =*

defined as a lincar subspace of all points § = (3,?1, Voreees ¥y

where 0 (kX < ¥ and (i.l AL JR ik) is a subsct of
(1, 2y50e:5 H)e Cleoarly the whole space R, corresponds to

the cage k = 0, and thnere ave, in all 27«1 ophns's of R..
) s ’ I N

il

=

Let ﬁ be o clagss of unbiascd catinatorg of Y.

]

in g , if it is adnissibdle (Definition 4.1.%) i

&

£ Ry

@)

whon wo westyict y  to any of the £27-1 phs's

Lal.3: (Hanuray [ Bl 1)s € 6 y ig hyper-admiseib

N
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Por any non-uniclugter dcsign, Wim\w\_-ﬁ onvoeyh aned
the unique hyper adﬂ1~81b’ll : of the HT-co@®nator cis,y)

in the class, ¥Wx{(p), of all unbiascd polynonial cstinators

of Y. Rao and Singh {51 folleowing an approach which

~

denonstrates the vital role played by the N phs's of dinmen-

[44]
[
O
fani
o
o
@]
-
[
v

ave proved that cls,y) , is uniquely hyper-adnis-

gible in the wider clags of unbianged estinators

g = ? G (n) 2 Lt

n=1 :
whore  G{n) is defigh® oy
L3
G(Il)i 't(S,J— = T:L - Tg et Tn (4_‘.1!2)

mere T, o= X cﬁ(s,yﬁ), T, =% c,.(s,y
—_— e — LS

such that % Brs g (s, ¥, Tyreees yo) = 0 if ye-valuc is

zero Tor at least one unit in it. Purthe- they nave shown
that this criterion of optimun chioice lends to the Horvitgz-

Phompson estimator vy in (£.2.6) of vavisnee of als, ¥y)
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(RS

of unbiasad csbinmators.

cding Turther let ug point cut an crror

=1

cormitted initially by Honurav 121 423 17 ena Followecd subse

mently by Rao and Singh { 51 1. In the De inition (441.3)

of hyper-admissibility, adnmigsibilify isg understood in the

LIS LA g

441.2). Onc can casily congtruct lincar

(
unbinsed cebinators (£ a{s,y)) which reduce to cols, y) in

gome phs's of dimensicn once So in sueh phs's  olS, ¥

ig not ng to Definition (441.3) and as a

. ) . o N ppe e oy

reqult hyper-admnissible according to o,
3

Definiticn (4ele3)s However, the results of Hanwrav [21 ]
and, Rao @nd Singh (91 ] remain truc if in Definition (4¢1.3)
of hypcr-adnigsibility, adnissibility is understood in the
seasc of Tofinition (4,1.2) and hercafter hyper-adnissibility
will be undersitood in this soengcs The absve-nentioned crrod
pointed out vo Hanurav in an oral discussiony has later

been noted by Basu L 7 ) alsoe

In the next scetion we prove the unique hyper-ndnisgi-
0ility of cofs, ¥) in the class, #*(p), Tor any non-uniclus-
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v

Unique hyper-admisgibility o

BN

, N

~
o]
.

1

4 o
W

1

In oxder Yo prove the unique hypor-gdniss

4
1

5(s, v) in A*(p), for any non-uniclustex design p, We

wtond the rosult of Rao and Sineh [ 51 ] to the class

-y
f..l-
S
jod]
d.
o

¢t{ ) &) defincd by

1

G o t‘(s,'y) = t(s, ¥) + k(2) (4e241)

whore t(s, ¥)e ¢ and k(s)'s are constants indcpondent of
y auch that ¥ k(s)p(s) s for any non-unicluster design

pe This resuit wag obtained by the auther in collaboration

the8inghh 1 60 )¢ We prove

\.

Theozer 4ecel: For any non-unicluster» design fox which
7y >0 for alt 1,1 <1 <N, &(s, y) is the unique hypor=

aénissible cotinator in the class G' in (2.2.1) of unbiascd

Proof: Congider tY'(s, v)eG' and the i-th e  of dinension
s ey y J

oric -_;..Cl ‘C: ¥ 0,0o LEE ] O, ;(,'1-1 ] O ® oo O) . Insiﬁ(‘ tl}.is pilS

»

&L
1 (a,y) = : - (4e242)
(s}, if  @eS

o, (Q,y1)+-k(s), 38 | Bes.
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r
hyper-admigsibvle, it should be admigaiblé inside the i-th phs

gion one (see Hanurav [ 231). Noting that inside this phs

=

aid 8. congist of effectively equivalent samnles, we

[*'W
—
-
——
[
)
for]
[€0]
tn

v
8)
—

[N

S
I_]-

-

)
&

I
-

Since i- ig arbitrary, (442.2) and (4.2.3) hold Lo all

[

|.A
N
].I
N
5
5
e
[
(e
=
la
[
4]

1((5‘) B
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81

Makine use of this and (4.82.3) with 1 = 1 .and (4.244)

kl(jo) = kg(jo)' That isg

B
C‘T)
(IS }
I
.1
E-.lc
a
I,
o
]_l
|_J
Q
0}
C'-
<
5
v
ct

o
x{s) =k, a constent Tor all s€S, Now Trom the condition

of unbiasednens of %'(s, ¥v), we have Z.k(s)p(s) = 0 which

a

Thin nroves that any possible hyper-admiaggible egtimatosr
g to CG. The g#ct of our theorem ig com-

¢h [ 51 ] stated

1
plete by invoking the result etr rao and Jing
Qeceds
Rao andé Singh [ 81 Jhave concidered the following class.
- o]
of unbiaged estimators of V(&8(s,y)) given by G = UG (),
wirere an egtimator in Gv(m) is expressibvle as

v(8,¥) :_Z vﬁ(s,yi) + XX vij(s,yﬁ,yj) +
ics - b ifjes ¢ ¥

.i.;.kz vijk (S,:;'ri ’:\‘Tj ’3’1;) '|" 8 e (4..2.5)
1£j#kes

L (S’yi’yj"“"ya) vaniash when at least one
ye-value of the units in it is zero. They have shown that the
MMeegsimator of V(E(s,y)) given by
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1=1 . Me o= TLT
= 1 ~t 1 nh A
V_] =3 )y .__:-1..,,:‘. }r; o » 2 .;,... .:} .....ﬁ. ,,' 'tr_l'yj (40:006)
T 1GE T4 B i4jes i C Ly

were gy ) p(a), 39 the unique hyper-admigsible

s )i, d

egtinator in (e Now we consider a wider clasg of unbiagsed

.
egtimator G% given by N
Goe t v' (8, 3) = (o, ) + k(o) (442.7)

L3
whnere -(u,~)€ G and k(s)ts are ccngtants independent of

-

it = k(s)p(s) = 0. 4Along the lines of Theorem

L.2e1), thie following theorem can be established,

Theorell Lef el 7y is uniquely hyper-admigslble in the class

4! of unbiased estimators of V(e(s,y)).

We are now in @ positicn to prove our main resuli con-

tained in the Tollowing

ThecrTem 4e2+3:5 For any non-unicluster degsign b, els,y)

ig Toe uniaue hyper-admissible estimator in t

-

o all unbiagszd estimatorg of Y.


http://www.cvisiontech.com

33

oy

Brooi: Ti~gt we shall prove that any possible hyper-admis-

S

gibtlie estimator in a*(p), belongs to- G's Congider
e{s,y)e a*(p) and the i-th hyper-surface cf dimension one

is¢a K ) == (O,oo-, OJEJ’T.{’ O wes O)- Since S'i and Si

conaist of elflect ela,y) to be

(i)

I
<
@
|J
e
®
3,
o
l_l-
-~
H
v
D
3
ot
3
8
B
i
®
cJ
1
O
ir

Iyper-admiag the v

iy

plane

i . ; - s . 1.
and ugins the necegsary condition Feor tnig, we nave,

[k(y.), a constant fer peS,
1 ” LR

Wirgret kj ig gome constant independent of ..

Q

How, uging the condition of unbiasedness

which gives k(yﬁ) =

(1)

« » In the ¥ plane

: = e 1T s,

e(s,7) = els,?)+ k(s) where k(g)=
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Since 1 g arbitrazy (L.
Wow ccugider a typical
say

Botidnng Wkat, in
§411Sj congist
to be admisgible
-
.
!
els,y) = <
\
wilere R,(1), X,
s [
el - oy
values ¥y and
ok }Tj and
els,y) = elo,y)
etCe)s It can ©
by putting Yy =

thig phs,
of effecti

}r(l’]) = (05--'!09;‘)’?1!0 "‘O’

woer-nlane oI

xT

J

j’ Olawo)t

/

] N
Sillsj, Si“'- Sj

k(yi,yj), a congtant iT sesiﬁ
Ble,y)+ k. (1), i7 sesiﬂ
els,y)+ ig(j), if sed; 0
k 3 iZ 8 E’,',_i ¢

(3) and
¥ oas (FOI‘

(3]

x

and

dimengion two,

el(a,¥y)

are congtants independent of the
es, & 8., e(s,y) is independent

e already Ymow Tl

J
1at

A

in the y(i) plane

(1) where k~(i) d4g independent of ¥,
e easlly seen that k.(i) = kp(]) = k., Tor

[

O! (S-iﬂ -S‘:_])

tively equivalent samples and

7 (?iﬂ.gj) congigts of
nence k. (i) = k.
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and similuzly k,(3) = Ko
" L
Uging the condition of unbiasedness, we get

]~te
Llo
j-J

g ¥ l-—‘h‘.j. g
k(-y-i ,z‘r_)  — . _1 X, -_-.?.:_J. k'_'.
Rl Ty T iy 0
L)
. (i,3) 1
oy din the 3¢ plane els,y) reduces to
efs,y) = els,7) + k(a)
I -1
: 1 < ek, 47 eS8, 09
T]:_?. G —
where k(s) = < " (4.249)
i - if seS;U S, ,

Since 1 and J are arbitrary (£.2.9)

1 Ci 4§ < TWe Similarly for hyper-plane of hishe order also


http://www.cvisiontech.com

1 4]
yheﬁe k(s)'s are constents independent of y,;'s such that

Hence any poosible hyper-admisgsibl

tie Form
e EQ..
e(s,7) = els,y) + k(s) where T k(a)p(s)
T8Cas @QS,:Y)&; c *
Thet in fact, els,y is the unigue hyper-admigsible estimator

Do Tact that &(s,y) i3 hyper-admigsible in 4% (p) which

o

Qﬂ_ong the linepn oF the proef of the abeve theorem, wWe can
estubiish the Following thecrem regarding the Hil-variance

eatidator vy, in  (4£.2.8).

72
[t
i
]
o
-
-]
| o
4]
ot
e
(6]

Theovem 4e.ce4  For any non-uniclugster de

212 unbiased

i o
©
0
7
o)

unique hyper-admissible eatimator in the <

eatinators of Viel(s,y))

v

2
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rd

admigaibility! ag

mnique choice of an esiimator, namely &(s,y)7 in the class
of all unbiagsed estimators of Y, ?ﬁr any non-~iyniclugter
degign pe  For & unicluglter desizn Hanuray [A¢,J hag shown
that an unbiaged estimator els,y) Tor ¥ ig hyper-admis-
gible if and only i7 els,y) = els,y) + k(s) where

s k{e)p(s) = 0 ana Xx(s,) =1:(s2) if 8, and 8, contain
the same unitse 45 a justificaticn for the criterion of
Shyper-admissidility! Hanurav [ 23 ] has stated that, in
mactice, often one ig interested in epgtimating not only Y
Put aigo the totalg and means of sub-populatiorns or 'demaing'
totale or means would all be afmigsidly esti-
o, 1T we gtarxt with a hyper:
adnigsible estimator., 3But this justification has been criti-
ciged on the ground that, it is unvrealistic to consider all

tiie £7-1  pos e tdomaing' (or phs's) because the number

cf domaing of practical interest will be much smalle:r tha

27=1 and ey gizes of gsuch domains wiil be faivly large,

althougn She actual numder o unita in a domain may not be

Inovns. Puritiler, we can ncte tiie vital role played by tie
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?bmains of nize one (iecs the npha's of dimension one) in the

. \
ibove proofs in aryiving at a uniqugﬁﬁggﬁw-admi331ole egtima-
tor (see Rao and Singh [ 511 and Basu [ 7 1)e On
Profesnor Je ITe Ko Rac's sugzestion \ﬁp@ author made gome

investigationg regarding the consequences oY dropping phs!
T lower dimensionse The Tollowing regults are thie outcomes
of these invaestigaticnss. The proof of Theorem (443.1) im due

¢ Hanuwrav. We make the Tollowing deflnitich.

Definition 443.1: For any positive integer k < N, an eatima.-
%or + Tbelonsing to a class of unbiaged estimatorg of Y ig
said to be lk-hyper ddmiggible (k~HA, for short) in that class

it it ig admisgible (Definiticn 4.1.2) in every phwe of

dimension greater than c¥ equal to K.

It foiiows from 5

L =HA then i1

T iy

k-Ha for any k 2 ko. Note also that
ty

1-hyper admigsibilil

For any design a(S,p) let

LJ—i ’ugbw ~ e it

a7
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fL
.

\
k., = Min {N>n(s y-nls)+ 2nls; 0 86) % (44342
2 = 1 oA 1. H
: 898,65 -‘i = |

where nlg) denotes the number of distinet units in s and

§ ig the set of all samples s Tor wiieh p(s) > 0. earty

k=>% . In practice, Xk and k, will be moderately large

e

A

gince nlg) will be small compared to Ne We now prove

Theorem 44341t  For -any design p, c(s,7) is the unique
k -Hi estimator in Lg(p), where %, is as defined in
(44341) e

proof: Congider t = X vls,i)y.€ L
€

T

If t is X, -H4 then we shall show that b{s,i) is indepen-

dent of 8, lee. 180 84 = bs,,i) = b(sp,i). Congider
the phs Tfox which yj = 0, for all J £ ies U 55 Clearly
the dimengion of this phs is greater than o egual to Xk,

It t ig ky-HA, then it should be admissible in the above
phse Sinc. s, and s, are effectively equivalent in this
Sersl)e
Therefore b{s,i) 1g independent of s, say b(i). Using the

condition of unbiasedness of 1t we see b{i) = ;Lw Hence
) .
4
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15 given by

14

rom Xtg yper-

q.e.d.
Congidering the phs for which

jgs, U 85 - &4 [l 8,y ONC Can Prove

Theorem 4e342: For any degign p, els,y) is the unique

k,-H4 ,estimator in Lx(p), where k, 3is ap defined in (4e3e2)0
Romark 4e3e3:  One can congider the following clags ol cotima-
tors

Lg‘(p) : t'{(s,y7) = t{a,7) + k(o)

where t(s,y)c Lg(p) and k(a)'s arc constants independent

of the yi's such that £ k(g)pls) = 0s Thoorem (£2.3.1) and

(44342) can be ghown to be trus For ILx'(p), if p ig a non-

unicluster decaign.

Remark 445,72 Mo a unicluster degign it is easy to show that
timator b {s,v)e Lg'(p) is ky-HA or k,-HA if and
—— fe)

only if it is of the form
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ot

i( S v) = 'éki‘:,‘ﬂ + %lg) Whe“ﬁ‘f ®{a)'s =are consbtants not
depending on y.'s such that I k(s)p(g) = O and

KLH) = kis,) if s and 8, contain the same units.

the design p 1s such that no two samples with positive pro-
babilitien are digjoint-thien one can eagily See thiat Theorem

(4¢3e2) is a stronger version of Theorem (4e3.1).

low we generalige the vesults contained in Theorems

(4e341) and (4.3.2) to the class ~¢ in (4.1.1) considered by
Rao and Singh [B1]. We prove
Theonem £4343: PFor any design p, els,y) is the unique

Proofs Let t(s,y) as given by (4,1.2) be a typical element

of G and s4,8, be two gamples containing the unit .
ol 2

the phs Yor which 7y & 0 Tor all J # 1€8y 1S5

Clearly Tne dimengion of this phs 18 greater than or equal

Congider

—
1~
t
-1
rn

kl—HA, then 1t shaald be admigsidle in the

above phs and hence Tor any ¥ Dbelonging to thilsg phs
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that o, s,yﬁ) ig independent of s, @ ei(yi). Now

mging the condition of unbiasedness of t we get

i

Similarly considexing the phs Tor Wi

=
i
(@]
et
o)
A
]
n
O
I,
O
R

2

all k #£ i, jes; U 8, and qung the necessary condition for
L o
b

[
l_l
i
o+

4

o)
(=
ok
=

n thig \phs we can see that

ij(s;yi,y.) ig independent of s, say e, (5. 97,)

gondition of unbiasedness of

can similarly show that

eiaannq (S,Ji,Jj,lno,y ) = 0, fo'..;:' all SeS-

Trus we have shown that any k -HA  cs

z
o
i -
=
iy
c.'_
O
3
(o
)
&2
[
©
i
o
e
o)
&

parily of the form

J 0
t(S,}") = = _“]'_'E‘}“
* ics 1

=
[
=
wds
[¢]
[
=
[
o}

othing but &ls,y). That, in Fact, it is k. -HA in

G, Toilows from its hyper-admigsibility in G,

qleodl
Ag before We can prove a stronger rosult contained in

A
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L

e uwllique Eﬁghﬂ. egtimator in

)

Mheorem Lede4t el(8,y). ig ti

G Toir any design  De
o
For any non-uniclustcr design we can extend the regults
contained in Theovems (4e343) and (4.3.4) to the class C
defined by (4e2.1). For a unicluster design it is possible
to show that an estimator t'(s,y)eG' is Xk -HA or k,-fA

s of the Torw t'(s,y) = els,y) + k(s)

[ute

17 2nd only if it
where k(g)'s are constants not depending on y.'s such
that ka(s)p(s) = 0 and k(sj) = k(s,) 1is B+ and 8,

A1 fr A

contain the same units.

Proofs of the above statcments are omitted as they are

straight-rforward end follow a routine pattern.

e
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CHAPTER V

LINEAR SUFFICIRNCY

£e0  Summazy
Godambe [18 ] defined 'linear gufficiency' Ior suivey
%amp ing and hag shown that for any design P with Tixed

N
gample size n for wiich p(s) > 0 Zfor gil the (n)

cient estimator

|.:.

A
gamples, tle unique unbiased, linear sufl

-

afies thie principle

=

Ffor the populaticn total which also sat

of cengoring ig given by

(L pe) 17

=1

)

M
v
-
L]

I

In thig chapter, we show that Godambe's definitien of linear

-

sufficiency ig different from tile original definition of

linear» sufficiency due to Barnard [ 3 1 which is also appli-
cable to s yvey samplings It ig shown that the HT-estimator
iz an unbiased linear sufficient estimator in the clags,

L(p), of all linear estimators of the population totals
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4

@hat 1t need not be unigue is illustrated with an examples
Under an alternative definition, non-exdstence of a linea™
qufficient egtimator in TL(p) is establisheé. Consequently
it ig noted that there does not exist a uniformly minimum
mean gquare ervor estimator in L(p). After comparing the
two -definitions of linear sufficiency in the Gausg-Markov
éet~up we congider extensgiongs %o wider clagses of estima-

toirte
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¥ -

5¢1 Introductiocn
In the previous chapter we considered the criterion

hyper-admigsipility due to Hanurav r21 ] for the choice

IR

O
s

of an optimum estimatore In this chapter we consider two
other eriteria, namely, linear sufficiency and digtrivution-
free sufTiciency introduced by Godambe [78 1 in survey

samplings We have delined a sample, s, as a Tinite

from the population U and a design

[

sequence of units
ag a probability measure on the set of all samples from U .
Following the arguments of Basu [ 4 ] and Hajek { 20 ],
Godambe and Joshi [ 17 ] have pointed out that, so far as the
problem of estimation is concerned, without any leoss of
generality, we can restrict our attewmtion to estimators

o+
which depend on s only thirough the set of distinet units

[

n se Hence without any logs of generality we can definc

-4

o]

4]
6]

a sample ag a nonempty su t of un. 3 drawn f-om the popula-

ticn and a design as a probability measure on the set of all
nonempty subsets of U and in thig chapter a sample and a

design will be understood in this sense. We now give

DeTinition S5el.1: IT n(s) denotes the total number of

units i such that di€s, then p i said to be a fixed

sample size (=n) design if for every s
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R N

o

2

n(s) #n =e=> p(s)

As shown by Godambe [ 18], the concept of a linear estima-~
- tor ig more general in gurvey sampling than in the general
statistical theory and hig celebrated negative result
mentioned in Theorem (lels 2 ) clearly points out the
irapplicability of the Gauss-Markov set-up for the problem
of estimation in sampling Tfrom finite populations. This
made Godambe [ 18] redefine the concept of linear guffi-
ciency - oviginally introduced by Barnard [ 3 ] in connec-
tion with the Gauss-Markov set-up of estimation - to suit

theproblem of estimation in suz#ey sampling.

For thne sake of ready reference let ug Tecall some

.definitionse Any real-valued famction e (s, y) on 8 X R,
hY

which depends on y through only those y, Tor which

igs, ig called an estimator. It ig said to be linear if
it ig of the Torm
i)
e, (8, ¥v) = ¥ Dbls, 1) . (Gl o )
b 41 il

3,

where bls, 1) = 0 if i ¢ s. A4S before for any given
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design py Lot L(p) and A(p) dencte the class of all

2ll egstimators TrespeC-

=y

1inear estimators and the class ol
tively and let L*(p) and a*{p) denote the corresponding
classes of unbiased estimators for the pepulation total Yo

i design p is said to be unicluster if and only if

81 9 82'8 S, p(sl) AL, p(sg) >0 ==>8, p 8, = By iece

—_ (2]

s, and . 8, do nct contain any unit in commons

Befoﬁ% nrocecding to give the various definitions
&
aue td Godambe [ 18 ], we wish to make a remark about the

?o??oW“ﬂg fundemental agsumption made by him.

sssumption (Codambe [181): rhe veetor 'y = (¥y» Fgreers Vir)

ot ek SRk B n = TR b Al e i i s

of the variaste valucs agsociated with different units of
the population ig such that whatever may be our knowledge
about some of the co~ordinates of vy, it cannot impart any
knowledge about any of the remaining co-ordinates ol ¥
It ig not clear winat exactly is meant by this assumpticne.

If it m

loAn s that there is no mathematical relaticn amcong
fd

rol our basic

[t
&2
o
|-
®
&
Fl
-y
'u

the various co-ordinates of vy, it
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w3

i Fa¥ey i T oper tew gpace - that
agounnticon - NAMELY RN ia our Teramete pe .

above assumption ig redundant, fowr, ir gl

. 5 o q
pgl relaticn among the varisug co-crdinates CI Y

R, but cnly &

parameter space will nct be the whole o 1 .

haat of ite Hence we will net bother about the above

ascqumpticn of Godambe L 181. We now give the var

=0

-

~ug defin

| ~te

Definition Defel: Any two linear functiong of the co-oxdi-

naven ¢ ¥y = (Tf LY B Say,
o 2 I

are pald te be independent of each octher whenever the vectors

LY
g and ﬁ' are crtinogenal, i.e. whenever gg' = 0 which
: i
meaks X g.8; = O,
i=1 G =3

We can wirite the linear cotimator ey in (B.l,1) in =

Torm of scalar product ¢f two vectors as

9]

y (SGS b :)‘Te RE‘I)’

where b(s) denctes the vector witin itn i-th co-ordinate
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(s, 1) as in (5.1.1)s Godambe (18 1 tunen gave
efinition Ba2.0:  For a given sampling deslfn D, two
Eﬁtimators ey, and ey, are said to be indevendent of each

vecters bls) and b'(s) ara orthogonal.

Definiticn Deweds Fow a given sampling design »p, & linear
egiimator ey is a3ii to be lineerly sufficisnt Tor the line

Tuncticn 2F e
. Godambe [ 18 ] hap stated that the abeve definition of

Tinear sufficisney includes Barnards [ 3 ] definition of

linear sufficiency. 3Defore proceeding further we give

Definition Dak e The {vector) available observable T is
11pea;1y¢%L “ipient for the unknown (vector) & 17 the true

vailue of any available observable U whieh is orthogonal to

T dig orthoronal to O
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[Tn +h~ above definition an “vailable obgervable means

5 linear estimator of the feorm 2 A ¥is true value means

lnqmcted velue, orthogonality between two available obsexvables
means that they are uncerrelated and two vectora cf unknowns
are crbhogonal means that ne linear compound of cne ig

sxnreagible ag a linear compound of the otier

i~y

Tt can be easily checked that Definition (5e2.2) o
J

indenendence ig equivalent to u;%prrelation, in the Gausg-

Marzkov sez\ﬁy. But that they are not equivalent in general

b ! /. ] ) 1
can be eagily seen by considering the medel F = A6 + €

¢

mergion matrix

4

where” € ig distributed witii mean gzero.and di

7

¥ which ig not diagonale It Tollows that two correlated
eatimaters can be indenendent acccxding to Definition (Ba.2)
due to Fodumbe [18 ]. To give a simple example in survey

sampling, ccngider a population of gize N = 3 and the Tol-

£

samnle probability
L. __DB{s)
7 1 2 o5
% 5 o0
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Tt can be easily checked that the eptimators
LY

T, (1, 8) =y, + 72 To (1, 8) =95 -1
- and o .
T_] Ty e = T T Y= Tg 2, 3) = v M

are independent (DeTinition 5eC42)e But they are not uncoir-

ke

related oince

Q
(@]
<4
o~
-
—1
=3
D
S
i
’ 3
=
—
+
=
1
e
~—
[

Mlsaxly Godambe's definition of independence of estimators

Tooks artificisl. The same artificiality ig present in nis
Definition (5e4243) of linear sufiidiency alsCe Before stating
Godambe's [18 ] main result we give

S T L R e K 4 e e mam o =

Nefinition H5.2eD: The Dig%?ipl of cencoring: Fer a given
fixed sample sigze degign 7p any inference about tiie popula-
tion parameber y should be exclusively in terms of the
obgervation (s} ;ﬁ, igs) and itgs probability pl). That is,

the inference should not depend cn the probabilities of The

" b 1 h
undraﬁn gsamples Se Godambe {18 ] hag proved

"heorel Selels  For any Tixed sample sigze (z=n} design p

-
having bpls) > 0 Tor all the (h) samples, the only unbiased
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s
[
3
ot
—
J
[¢¢]
=ty
1 e
=
[te
ot
frte
v}
o

m
-
v
L]
(]
~—
h
Coad
=
'.;J
i
OJ
H
e}
Y
ot
1 e
&)
Il
i e
D
&)
4+ B
P .
®
s
i
=
Q
|.l
i...J
0]
o
I_l

< S ¥, . (54241)
€

He recommended the use of e- Tor every fixed sample size
e
(= n) degigne TIn particular, when pls) is proportional to

5 e ’ < i ] ; 1 0T wis
g gy FheTe Xqyee.,Xy; arve the known values o an aux

liarly variable Cl; ndghly correlated with.?j y ©w- 18
|

nothing but the Lahiri's estimator ’

Fd

~ )
YL:( oo s PN X)( PR B )c
£ € =

Rao [ 49] hag shown that under the usual model

). B 45 gm

Where %%eilxgﬁ = 0, E(e;lxi) = ax%, E(eiejlxi,xj)‘z 0
a >0, g20

AN :
BV (Y, y) 2BV (& ¥
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& ig the HT-estimato T™hig result of Rac [49]
ahows that the suggestion of e_ ILor every Iixed sample Size

[0

Below, we give yet ancther definition T linear suXIii-
ciency and compars it with Barnard's Definition (

Secticn {(Seb)e The motivation for thisg definition stems Irom

-]

an exercise in Rao [ 46, page 25C] which gives a logical
justification of least squarc estimation in Gaugs-Markov set-
up without appealing to unbiasedness, linearity of the esti-

mator or minimum variance.

DeTinition BDec el A linear cstimator T is said to be
linearly sufficiont for a (veeter) parameter ©, if for overy

linear estimator U,

B(U) =0 ==> Jov (7, U)

]
(&
»

Ded _Barnaxd's definiticn and aliied regults N

7

In survey sampding, the parametric function of interest
il

5§ a scalar, namely, the population total Y and the

o

erinition (5efe4) of linear gufficiency becomes

L3
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Mefinition Hedel:  For a given sampling design p, a lincar
estimator ey © L{p) is said to be linearly gufficient Tor

the population total ir
ebleL(p)s Cov (C-b, O-b|) = O == E(eb,) = 0.

Pirat we establisgh the following
Lémma Sedel: For any design p, given any estinator ebeL(p)
there cexistg another eb,( £ 0) ¢ L(p) such that

Cov (e, ept) = 0 AT

5 n(s) > __I;T(E_)i-t-_l_)_ (54341)
e L]

where n(s) is the number of units 1 such that 1i€s and

oW

ig the sot of all sampics s For which pls) > O.

i
o

’f Cov (eb, e ) =ty

i

=

T bls,i)o'(s,i)pls) ~a, = D'(s,i)pls) = 0,
BES, T sES;

1<i<nm
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B b(s,i)b} g,3)ple) + T b(ﬁ,j)b'(u,-)P(u)
: ' . - B ns.
ﬂeﬁnﬂsj GSi 3

-a, £ b'lsipls) -a; Z b (s,1)p(s)

where &, = & bls,i)pls), 1 <1 < ¥ and S; is the set
' F3 SeS,
I3 L] -~
of all samples contaﬂnﬂng the iti unite The above Iorms a

i—lc

set of lincar cquations in { pr(s,i): ies, uGS} Note that

the number of unkncwns ig equal to Z nl(s) and the number
8ed
of independent equations, say m, ig less than o> equal to
H(E + 1)/2.
, q.e.d-

Romaxk Hedel: It may be noted that for fixed samplce size

[

(=n) designg, for which pls) > 0 for all the (i) samples,
(5e3el) is satisfied if N > 4. For the deslign corresponding
srewor of sige £ from & population of size 3, one can
easikf check that tée?e are linear cotimators for which there

do not exist any otier non-zero linear estimator which 1s

identically uncorrelated with it.
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Wote: It is clear from the lemra that 5. n(s) should be
T

| R
greater than m for the applicability of DeFfinition (5s34¢l)e

2

S (a)
Torr the gake of convenienge we agsuie that 2 n(s) > N(N+1)/~

sc%
for the Test of this section.
We now »3ove
Theorcll Oelslt For any design p TFor which © < my <1,
1 < i < W, any estimator of the form
Ll8s7) = 8 (1) v,
igs -

L]

where b(i) £ 0, 1 < i < W, ig linearly sufficient according

to Definiticn (505.]_).

Proof: Let ey,€ L(p) %be such that Cov (eb, eb,) = 0.
ow the coefTicient of ¥, in Cov (e, eyr) is equal to

0(1) (1 - n,) g ¥ (s,2)p(s)s Since Db(i) #0 and

joa}

i
0 < ?ﬁ <3, 1 <1i<W, we goet

Cov (ebg epy) 20 => = b'(s,i)p(s) i <
'+ BES,

1
()
|_.!
in
|
N
=


http://www.cvisiontech.com

| 103

.

|_:
]
a3
-t
<
[®]
oje!
[§]
+

Impesing unbiasedncss criterd

23 For any design p, the HP-egtimator els,y)

TL’eC-"Cm 5 .S

ig an unbiassed lincar sufficient (Delfinition
tcr For the populavion total in the class, T (py, of all
linear» estimators.

oy

That it need not be the unigque unbiased linearly suffi-
cient estimator inm L(p), can be illustrated with an examploc .
Congider the following design and estimator For a population

two unitos.

Sample Probablility Fstimator
& pls - T(s)

]_i
1=

/7 -
e 1/3 % .5

+
N

One can carily check that the above estimater T (whiech ig
nct identically equal to cls,y)) is unbiased and lincarly

sufficient (Definition 5.3.1) for the population total.

'
f;?
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544 Alternative definiticn and alilied results
Sec_ ALUCTIabiNG Selay : Z21pE

Tn the case of survey sampling the alternative
J P 5

TDefinition. (Def+6) of linear sufficiency becomes

-

Tiniticn Se4ek:  For a given sampling design p, a linear

estimator e,€ L(p) ig said to be linearly sufiicient for

the populaticn total i

Taroughout thig section 'linearly sufficient' will be under-
stcod in the semse of Tefinition (B5.4.1). We ncw prove

- )
Theorem Dedel: For any degign p, a nNecessary condition Tfor

tie satimator ebGL(p), to be linearly sufficient Tor the

populaticn total is that

Toim
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e oty 3 nit
Proof: Suppose there existg samples 8y, Sg £ 3 and au

eyt € L(p), shutisfying

m
O

E(eb,) and  Cov (eb, eb,) # O.

DeTine a new set of coefficients { ©'(s,i); ies, s€§ } as

Pt (g,i) = 0 Tor all (s,i) except (81, io) and (Sgs io)-

L]

0'(51,1 ) and b‘(sq,io) are respectively chosen ag the

solufdons ¥, and Z of the 1linear equations

yp(sl) + zp(sg) =10

o(sq,io) yp(s§) + b(sﬁ,io)zp(sn) = K
L A Fa i ~ oy

witere K  ig an arbitrary non-gzero real number. (Note that
the abd®c cquaticns arc congistent due to the assumption
bloys 1)) # blsgy 3.)). It is casy to check that the estima-

tor defined by
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' 11t

‘) = 0. aznd Cov (O-bs eb') i 0,‘
q-e-d.

For a uniclugter design onc can easglly s
of the form Z b(l)};1 isg 1in§arly gufficient. Imposing
igs -
the condit of unbiasedness we got
.
Theoren Oelent For a unicluster design, p, the HP-estimater

e(s,y) is the unique unbiased lincarly sufrficient estimator

-

for’ghe population total in the elass, L(p), of all linear

I

eatimatora.

' For a non-unicluster design we prove the Teollcewing

interegting neogative resulte.

-l

Theorem Se4ed: IT p ig a non-unicluster design,fhere doe

not ex#st a linearly gufficient estimstor e, (s, v), in the

B

class L{p), which depunds on ¥ thqgugh every ¥, IO

clear wnat ig meant

-
ot
1=
L)

h] =
[Though

see thiat any estimator

vy the underlined part
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of the above ftheoroll, Tor the sake of exactness, let us

s said to be independent

b

14, An ecstimator els, ¥)

[

axpla

LY io 1T there exigbe a sample €5 such that
' \

)

of a uni

i gs and els, y) is unaltered by changing ¥, alpre

wy

©
-
(@]

does not exist ony unit i for which els, y) is indepen-
dent of i, we say that e(s, y) depends on ¥y through

every ¥ for which i€se. Clearly a linear estimator

ig dependent on y ‘through every y; Tor yviiceh ies, iz
and omly if Db(i) £0, 1 <3 < W]
4
Piroois Pirat we shall show that for a non-unicluster degign

me e -

p, eny cstimator of ths form

epls, y) = = oDy, () £0,1 1 H
E 8 =

ig net Mfnearly sufficient. As in Theorem (5.4.1) The proof

=

nere is again accomplished by cxhibiting an e, ,€ L(p) such

that

E(eb,‘) E0 and Cov (eb’ eb') £ O.
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?nce the design is non-uniclugter btherc exist - samples

19 sge and unite io, jo guch that
v \
S-€ S, 0 S. » 8,8 5, 0 Sj .
S Jo ~ —c o)
\
Define

b'(s,i) = 0, Tor all (s,i) other than (Sl’jo) and

F (859 JO)'

far

A3

b'(sl, jo) and b'(sp, jo) are regpectively chosen ag the

gsoluticns ¥ and 2 of the cquationg
] ‘ vols 1) + zp(gn 2 0
b(1o) v p(sl) = K

where K i gn arbitrary ncn-zero real number. As before One

can easily check that the cstimator

I
L
A

c“l

ebl(S,:‘y’ o= Z b'(S,
e

BN

3]

ia guch tThat @(e-.)

i

0 and Cov (e, ey) Z 0. The
proof o f Thcorem (Dele3) is complete by invoking

Theorell {(Belel) «

q.e.d.


http://www.cvisiontech.com

114

tors the concepts of 'linear suificlency' and 'minimungFari-

; . :
ance! are equivalante So from Theorem (5+£.3) it fg

not exist

that for wuny non~unicluster design ©p, there does
eptimators of the population tctal, Godambe [ 14 ] has alzeady
proved this result using a different approach and we have

Lele2 )e But our apprcach, in Tact,

ct
o
<t
O]
Iy
(.
-+
|
it
I =
5
O
-t
)
]
=
—

estabvlighes the more general Tegult contained in

Theorem (Be4ed): TFor a non-unicluster design p, there does

not exist a uniformly minimum mean square error estimator in
2 o
In order to prove the theorem we require tne Following

lerma.

Lemma 5, oLel:s® A necessary condition Tor T, %o be a minimum

mean square error estimator of a parameter € , ig that it is

linearly suiricient.

ProqgﬁggLet mo be a minimum mean square error egstimator Tor

8 and Z Dbe a zero-function


http://www.cvisiontech.com

and 7 4 are uncorreiated. Sigee T

We sholl show tnatb “5 o
ig a minimum m aogtimator We have

M(e,) < M(T ) + 632) Voor all g

[ o |
tece V(T )+ B(T,) < V(T + €2) + B (?_+ %), for all ¢
where V. and B stand for variance and biag respectively.
As B(TO) = B(TO + £7%) since 7 ig a gero-function, (5edel)

reduces o

which can be true only if Cov (T _, Z) = O.

q.e.d.

of TheBrem (5.444): TImmediately follcws from Lemma
(50‘5—'31) and T o em (5. P.O)

qoe-d.

Fgr = unicluster design p, Hege [ %4 ] and Hanurav
[ 21] have shown that the HT-estimator &(s,y) is the UMV
epgtimator in Lg(p). It may be noted that thig result also

follows Trom Theorem {(Dedef)s
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™
’

the two definiticong

545

A

Comparlnon 01

In thig

Definition (De2e4) and the alternative

qurfy v oin -Markov

g the Gausg

11
[EN
[EN

clien

[®]

lineax

Wiere A order

set upe

n X '

116

gection we propose to comparc Barnard's
o

Dofinition (Del.6) of

Let

with Tull

rank (k < n), © ig the ( ¥ X 1) vector parvameter and €,
the errcr wector of order k X 1, digtributed with mean O
©

and digpersicn ma®rix ¢ I, Barnard [

thie conventiocnal 1east-square cotimate of

{ T,o= (ata)"t Ay

8, namely

(54541)

ig lineaxly sufficient (Definition 5¢2+4) Tor ©. Moreover,
since, when variables are jointly normal orthogonality is
equivalent to statisgtical independence, it is evident that,

,
with the normality agsumption,
clency beccmes
encye #Peec Barnara [ 3 1),
on (5e206}

-the alternate Definiti

of

Theorem S5e5¢%: In the Gausg-Markov set-up

equivalent to the ordinary noticn of

LOW &g

-~ .

the noticn of linear suffi-

gufiei-

not the case with

a consequence

¥ = AG + 6.
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- v

Proof: Let T be any linearly gufficient statistic accor-

ding to tho alternate Definition (5.0.6). We shall show that
or @ in the conventional

gense, which will prove the above thecich.

Now any statistic U which ig independent of T, hao
expection zero, since T, i1g linecaxly sufficient {(Definition
5.2.4). Hence sucn & U ig independent of T gince T 1%
linearly sufficient (Definition 5.2.6) by our assumption.

Let »‘Tn and T Tbe written in the form

o - J il i
Qo es ! LI N ol
It i
i Kl ' s m' i o
2 M f‘ i

are n X 1 vectors,

54-,.5
(o0}
[N

H
o

wiere A. and my, 1 <4 Lk,
and n' denotes the transpose of 7. Algo let ‘L} be the
veetor space genorated by the column veetors Ags Ao se. A

If for some ] (= 1,2,44., 7), mj 1Y write


http://www.cvisiontech.com

S B

T i"‘.‘-’ - a <} nn .4“"‘ -1- £ ] I3 f - 11
Where M5 € 7 and m.o € \J.i y where T stands Ior the

o . e o
rthogonal complement of s o Clearly Mo ¥ and T, are

L] (2

indopendent but méﬁ v and T are not independent-a contra-
i, = b~

dicticne Hence m.B‘I?’, L £ £ s EThat is components of
T are lincar Functions of components of Tn. Thererore it
! iy sufficiont then T = T, since T, is knowm to bo
minimal sufficient.

q_oOo'd-

fricicnt (Definition 5.2.6)

|—{ )

Bomark Se5el:t A lincarly s
estimator need not be sifficiont in the ordinary sSenses. For

eﬁamplo, take T =A, ¥y, any component of Toe Clearly

=
—
[
g
il
@
It

li
'

Cov ( , U)

Therefore T ig linearly sufficiont (Definition 5.2.6) but

ig ¢learly not sufficient for 6.
/
Romark Debef: A sufficient statistic for © necd not be

lineariy suriicient according to the alternate Tefinition
(5.2.@?. For example let T be any statistic bigger than
Tos

[

1
3

3
I
~
13
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-

w7

#
\
where Comn-~nemts of P, -beleng to " +. It is easy to check
a

that T dig gufficient oat not linearly sufficient
(DeTinition S5«2s6) TLoir S
546 Extensicns

In part II of hig paper, Godambe [18 ] has extended hi
definition of linear sufficiency - which he termed digtribu-
tion~Tiree gullici ency to nen-linear egtimateors. Thig exten-

K)

oT

xr
o
» digtrivuticnge

il

aggumption

Definit#®n (5.42.2) ©

not applicable to the

Godambe {18 ] hag

Tr

independence o

case of

outi

cn the assumption that ocur pricr knowledge

could be Tormulated am a class

extengion becawvpe nisg

non-lines> egtimators.

£y ot

-

sheown that tiie 1inear» zootin

o

ch-Tree

for shert) fox the population totel . He has claimed
DF-pufficient estimator must necessarily be ¢f the form

a{s)

w2

i

)
€

¥. + b(s)

134

of

© two linesr estimé&lo:

-

One can easily obgerve that the absove

134

e—-

sufficient (DF-sufficient,

o)

i

5

that every
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siore als) ond b(s) are constants independent of ¥«

Joshi (30 ] has shown that the abeve claim is false by showing

shows the limitations of this concept. Joshi [ 30 ] has shown
thet Godambe's claim remaing velid with an alternative defi-
nition of DF-gufficiencye However, as hage been pointed out in
Section (542) TFor the case of linear sufficiency, the authox

feelg that, both Godambe's and Josghi's definitions of DF-

2]

uriiciency contain some artificiality due to the fact that
twe correlated estimaters ean be K-independent according to
their definitions (See Godambe [ 18] and Joghi [ 30 ] for the

varisug definitions) .

Tie Deiinitions (5.5.1) znd (544.1) of linear sufficiency

of N
Ly

can Teadi be applied tc ncn-linear estim&btors and in what

Tollows we ilnvestigate The consequences of it. TFor any design
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me Al

B

G? 3
Thociom

‘1(5, )

O T Ne now
BaB.1:

A CR Ty
the eatimoccr

In ot:

egtimator ig

Hely ‘.;”C__L.x ’

ey
i

1=y

).)

121

are conatants independent

», & necessary condition Yor
to be linearly sufficient (Definit
total ig thet

#
Tor all ses{, 1 <1ig M,
Tor all se3.
sufficiont (Definiticn: B.4.1)

Proof:  Swhpose there exists samples s, 5,65 and o unit
. b
ioe Slflsg guch that
b(Sl’ :f..(_\) % b(un, -j..o)'

Ve shall show that e% ig net linearly sufficient by exhi
ting o o& ¢ L'(p)s satisfying

= t — o 5] - L

Ble!) = 0 and  Cov (e%, o) #£/ 0.
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pectively

linenx epuatio

TeFine & mew a~t ci coefficients
follows:
(s, i} = 0 fox a1l (s
a(sl, io) and a(s?,iO) are resy
ticns ¥ and Z, T the
yp(sl) + zp(8s) = O
and v ( 1,i0)p(sl) 0 zb(sg,io

wWile'e

the abcve ecuat

e -
eas,_/' "

wnere

that E(e ) = 0. Also it is

C

) N
1 on arbitiraxy

cneclk

als,i)'s

)

it

congl

lad

trat the esiimotor
e%(u, ¥ - ) U«(
- i€s

(O,.O-O,}ri QOOC-O)

ecual to gero if

noen-zero

ant

}T

O

due to (5.6.1)]1. It

Q

#0.

s
|t
@™
o)

-

kdBsl

Ll

bl number,.

[Hote that

(p)
Tollow

)
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Lorm
O-;O (S, 17) = h -b(i)y'f i lx(S) .
ics -
Mow we shall shew that k(s) = 0, for all s€S. Suppose

¥(s,) £ Cs Define congtants { T{s); se; } as Tollows:

(5e6e2)

o]
&2
g
i
O

L{sdplsy) =+ L{s.)p(

il
Q

and 'L(Sj)k(sj)p(sl) (56l 55

where € ig on arbitrayy nen-zero real number.

R

[Hote thal tho above o

H
&
l_'
o
®
|4
2

3
S
o
%)
II
Iox
! J
o
o
l_'
N
&
D
"'2

Clecrly tiec estimator
(L)’ ) B L(u)

velongs to L'(p) and moreover from (5.6.2) we nave B{(t) = 0.
\

M so

(el ) = (5;)T.(s9)p(5y)
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Tzom Thego

R Lo
new eXLS

e%, in the cia

¥. Tor wnici

result tegetine

.}\Om....,_. l\_ 5_:.6‘.:_]__ :

For cny

romg (5e6.i) ond (Be2.8) we

Por ony non-uniclugter des

a lincarlv gufficient (Definition

i depends on

Theoren (5.6.1) one can easily

q.e

.
heve, imm

124

o

efiately

S.4.1) estimator,
thirough every

ig bt=ue even Tor unicluster degighns.

> with Demmn (Be4.1) vislds imme@iately

dismd g g et Go(p) dencte

)

»mly minioum mean sovare error estimator in L' (p).

tho clago

A
M
e}

.

Thig
t a uni-
o all
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e oo

P o oiven k (0 <k < N) let ‘N(k) be the subset

o R, defined by

-

RN(k) = { yeRy ¢ ¥y # 0 for exactly 1 co-ordinates }
(54644)

H
It ig ¢clear tnatb U Rw(k) = R.« For a given JFER (L) let

Il

sampleg defined by

s. (7) =={se§ : y, £ 0 for exzetly 1 units in s}
\

(54645)

Cleazly U 8,(y) =3, Ve now prove

Theorem He6.3: 4 necesscry conditicn for an estimator
e(s, y)e Go(p) to be linearly sufficient (Definition Sed.l)

ig that for omy k (0 L k < W) and aky yeRy(k)

O Ty 3
Tor every £,y 8,6 Sk(y),

Voo
&
—I
-
et
—
i
&
~
2
v}
-
N
—
.

wheie Rw(k) and Sk(y) are an dotined in (5.6.4) and (5.6.5)

regpectively

Proof:  Suppose there exist & k¥ (0 <k (W), a
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1 A . - "
e (yj', Teseens Fiseees yz‘q’ 6 R, (k) and pamples ~- -

S,9 556 By (vt} such that

cls,y ¥') #elsg, ¥

B{t) = 0 and Cov (e, t) Z O.

Define t(s,y) = 0, Tor dll 8 # 8,85, and Tor all yehy.
For any yeRy such that y. = yi for all the Xk non-zero

co-ordinates of y', define

t(sl’Y) = - ¢/(elss,5') - (5 AR P(Sl)

and tle,,7) = of(elsg,y! elsy,5"))plsy)
wneire C is bl : ;

: an arbitrary non-zero Tixed real number. For

remaining yBRN s Geline

since t(s,y) depends on y only 4t
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=
[.a'.

Tor which 1E8,

sver @irectly from the definition of t, we nhave

E(t) = 0, for all ye€ Ry

-

and at any point ¥y ToTr wnichh ¥, =¥

-

ca-cGinates of ¥ We nave

Cov (e, t)| =C £ 0~

J

t ig clear that t is an estimator.

121

More-

o

k non«zer™o

q.e.d.

§s now extend the result contained in Theowen (5.4.3) to the

clags Go(p), in the following

Theorem Se6e4:  For any non-uniclugter design D

not cxist a linearly sufficicnt (Definition Sedsl

in Go(p), woich depends on ¥y through overy ¥y

theie does

sgtimator
Tor which

Se

[N
lap)

|

+woof:  From Theovem (5.6.3), it suffices to show

——; -

o

stimater ols, y)6 Go(y) such that e(s, ¥v) is

=]

o any TE RH(k) and  s€Sy (v) is not linearly

in G _(p)s Wow since the design is ncn-uniciuste

L3 o) 3 q 1 bl
units 1s JO and sample So’ 54 asuecnr that

that sny

a congtant

PS
sulr

=y

icient

here exist
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8 €68, q S;» 8,68, n 8,
© o g 1 o do 3 -

whnere D 45 Ythe set of samplesn 4n 8  containing unit i

4
stands for the complement of 8, with respect to S.

and 9.
3

Detine an ecstimator t  asg follows:

T = T 4
J Iy o ¢
= O'TE A Yj if € Si n Sj
i3 Y0 's) o]
oJo
't(S,}") = < . .
N if g€ S_1 as.
Jo 15 Jo
0 otlierTwWiss e

It ig clear that BE(t) = 0, for all ¥E& Ry Congidering the

o
hyperplanc 3,'(“) = (O,....,O,j,'_1 ,O,....,O,j;j 20y « gy and
"o o

using the asgumption that o(s,y) 1is a congtant Tor any

yeRy (k) ond 568 (y) » wo can write

© 4 e
e(S,.‘f( )) e(:,f1 ,yj ) if sed, 0 Sj
e] 0O ~0 o]
ely, ) if s€S, 08
< JO -0 _30
ely; ) it @esS; 0 8§,
= 0 o do
0 if peS, 08 .
2 0 Iq
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Tra

yiclds

Dircct calculatinn

Cov (e,t)
v (2)

Noting that =, > =

do

@.

One can ez

A

“n
o8

N Da ,.-l) csti *na‘to

on

m?

Retick 5¢6+3: From Lemma (5.4.1) and T

-

diately Tfollews the non-oxistence of a u

gsquare error estimater for Y din the cl

ot

1t 317 there exists a unifoxn minimuan

[ER

1y

(2]

C‘i
x)

timato:r in it &
-

o

A(p), then

tiie non-exigtence of 2 uniformliy minimum

estimator in A(p).

e underlined conditicn

ﬁ-i'|}r

wuld belong to

123

(54646)

ascumption that

4

wnio

]

1L

f~ta

Shilc 4

-
]

ics

q.e.d.
in Thecrem (5.644) is
construct linearly

wnich de nct depend

coren {(5e.6.4) imme-
niformly minimum mean
8o

Go(p). Hoting

mean square errod
GO (P) ’

square

woe get

mearn err or
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.

inalogous to Theorem (546.2) wWe,can prove . e

For» any nen-unicluster design there does

(Y]

Theorcl Deb oD

net exist o lincarly sufficient (Definition Be4sl) estimator

p} Adefined by

Gé(p): e'(s,7) = elo,y) + k(u) where ecls,y)e Go(p)
and k(s)'s are constants indepcndent of ¥

Theorem (De6eD) can be shown to be true even for
wnicluster designs. We omit the proofs. So far we considered
extensions for the case of alternative Telfinition (Bedel) ofF
lingar sufficiencys. Now we shall try to extend Barnard's
Definiticn (5e3e¢1) for the cage of.non—linear gatimators. For
the linear cage, We have sicwn that, for any design p fow
which O < gn, <1, 1 i< W, any estimator of the Torm

eb(s,, ) = by, (i) £0, 1<1 <M dg linearly

iEsg =
gufTicient (Tefinition 5.341). Cleaxrly the corresponding

generalisation of this result to the class Go(p) ig as
follows: Is en estimater ofs,y)e ( p) satisiying
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13 1

linearly suficient (Def nition B.3.1) in Go(p), for any P
-

o

generali-

18
I
2
4]
|_l.
g
&g
o]
s
ot
=
I
4]

Bouwnter-example to illustrate the

gatione

Counter-example: Congider a pepulation of size N=2 with

T

the design p» and estimators T and U as Tollows:

Semple Provability ___  Bestimafor
3] n{s) e = _ T
1 a7
l = J 31r
5 T‘:"':' _J_
A ]
[
oy
o 1_- S‘JTP Syé’
3 3]
R = (Tr 4 ) =z <
il — JA ODf i rlv r:., f— . .
to® 3 —3 A 7(3y1¥g-y1-v2) 1T yy#yp# O
and O ) 1f y9+¥e= 0
Ong can eapily check that
B(e) = Y1 *+ ¥y
5 ta T L
E(t) = ! ﬁ }1 }2 ir yl + y? % 0
<
1 ( 2 i n
S\F *+ Vo 1T §q +Fa = 0
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(learly e and b+  belong to GO(U)

e

conditicna (1) and (ii) menticned abov

linearly sufficiecnt (Definiticn 5.3.1}


http://www.cvisiontech.com

CHAPTER VI

CHOICE OF AN OPTIMUM STRATHGY

6o0 Sumimasy

Tn thig chapter we discuss the problem of an optimum
ganpling stfategy from the class L{H,u) of all equi-cost
linear unbiaged strategiese. It is shown that any Horvitz-
Thompson strategy (Fl-strategy, for short) (4, els,y))
velenging to  L(H, io admigsible in TL{H, u) and that the
clasg L(HT, w), of all such strategies, is not cemplete in

) in situations of practical intereste. The lagt Tepult
shews that we cannct exclude strategies other than the HT -
strategies Trom the point of view of minimum variance crite-
rion alone. ATter noting that there does nct exist a hyper-

admisgivle strategy in T(H, u), We have introduced a aew

SRS

n

criterion called ‘strong admissibility! which is streonger
than admisgs ibility andé wesker than Iyper-admis gibility. It ig
shown that TL(UT, p) is compiete in L{H, w) with respect
to strong admigsibiliity Extensiong to very wifle clasgses oXf

unbiaged strategiec are algo given.
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641 Inteoduction

i 8o Tar we were mostly concerned with the choice of an
toptimum! estimator Tor a given degigne But the central
problem of survey sampling, ag hag been peinted out in
Chapter I, ig not mexrcly to ciwose an optimum estimator fo a
given design obut to chiooge an opbtimum combinaticon ¢ a design

ané an estimator (f.es & strategy) subject to a Tixed budget.

As before we asgsume a linear cost functiion and this implies

S
that two strategies are equally costly if and only iI they
havs the same expected effective sample
ehaptar we propose tc study the central problem of tiie choice
of an optimum straltegy systematically.

3

Analogous to the definition of admigsibility of an est
mator, admissibility of a strategy hag alrcady been defined in

Chapter I. @imilarly corresponding tc The definition of

nyper-admisaibiiity of an egtimator we nave
o N - 8 .
DarTinition G.l.1: In a clasg, Gg(lﬁ, of unbilased strategles

)
Pov the estimation of Y, an H € & (1) is seid tc be hyper-
.t

admissible in (- (i), if it ig admissible in & (H), when

n

ig restricted tc eny of the
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s - 1 o ERs = 2 . e
Definition €e1.%: A subelagn (> {H) of £ (H) 1is sald
o e cemplete in éﬁ(ﬁ 17 and cnly i fox any given

i é%AED, the set-theoretic complement of égl(ﬁ) in é;(ED,

there exists »n  HE é;,(H) such that

complete subclasses of strategics in

é;(fﬁ, iv it evigba, ig callcd the minimal complete class

e for an optimum sampling

(#) one need restrict one's

attention cnly tc any compicete subclaco of ég (H)s» We will
replace M by V 1 éi (H) counsists of cnly unbiased

strateglies.

el ILinear strategics

3| 4
[TE

(8, p, ¥) is said ¢ linear unbiased

el
Q
o

A gtrategy 7

if teLZ(p). The expected effective samplc size of a strategy
ig de¥ined as

g(m) = § n(s)pls) (Be2el)
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S

where n{s) i the number of digtinet units in s, ILet

]

L H d, S ] ’-"t -‘I‘L. T e = - . .

m( ’ LL) encte the class of all Yineax unblilased strategiesn

H T2 wanichn u(ﬁ) = My & given number. Under ocur cogst func-
.

tion L(H, u) consigtsol equi-~ost strategics. Defining a

gtrategy to be uniclugter if and only if the correspcnding

design is unicluster (Definition 1,1.4 ) 1t is clear that

n{d, p = LygolHsl) U Iy (H, ) (6e2e2)

Where Dy (H, &) g the class of all non-uniclugter

H

strategies contained in TL(H, p) and Ly (H, @) consists o

all unicluster strategics contained in T(H, u)s With this

background we prove

y complete in EHEGT

L(d, #) U H(B) whewe H(B) ig the set of all biased strate-

Thegrem Oeels The class L(H, uw) i

re

e

gics, 1T and omlyq p = W,

Prools Tet L(H, ) be complete in T{H, u) U H (B).

Conegider H, (d,,5-)e H(B) where
T —

t, # 3, a congtant not equal to zeroc.

From hypothesis, there exists an HbGL(Ha #) such that
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v(H, 7) SM(HE, 5) = (8 - o i -}E-2-53
o = 1

P ], L&’SRN' IT 'Ho = (do, to) where do =] (S, p) and

€3

t = ¢ bls,i)y, then
ifg e

£l £ I )6l 170l -2 0T e el

st the point y(l) = (0,0ee.93y000450) where y. =9
o (6.243) we have V(HO »7) = Os Hence from the

v (1)
amanedan for V(Ho,y) in (6e2e64) it Ffollows that

(G ol ab)

Joa
O.n
Pt
4]
-
|_I- -
S
3
——
2
R
i
]—.-l
-

j L

[&n
|
~

But Toom thie condition of unbiagedness of 0t it can be

seen
&}

that

v 0 (s,i)pls) > o (6e246)
i o
)1

which togethier with (6e245) gives =, (do) = la Since 1 1s

t
— x
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SS—

» F
- s, . W o
arpitrary ‘We nave nf(dh) =1, 1 <1 £ Ne IHence .
’ I . ) .
g = ﬂﬂ(do) = T, which proves the tonly if! parte I u= N,
Rl

clearly L(H, p) hag a momber H_ with

VQBb,y) = O, For all FERy.

C_l_oGodo

Romask Galels From Thecrem (64241) wo see that T{(H,u) will

not be complete in ’L(H,g) ‘{T H(B) except in the terivial casc
= 17 {L.0. a complete cons ). In practice u < § and so
one oannot exclude biased strategies from the point of view of

mgan sgquare criterion alonce

63 Horvitz-Thompge 28 strategies

iny strategy H(d, ¢) where e 1ig the HT-estimator of

the populaticn total Y ig called a Horvitz-Thompson strategy
(HT-strategy for short) for the estimation of Ye Clearly an

Hl-gtrategy ig unbiaged for Y and iis veriance igs given oy

T Jem.(d) o H . B (@>

7)) —_— T 'U' a Y |
Wiy) = 2 StEy e fié?(r (C"Q'n tay ~H s oTl)

Fe now prove
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Fibeorpm 6.3s1: Any strategy H (&G,é')eL(H§‘I-i) ig admissible

in L(H,,U.)c

Proor: Lot H#(dq t Ye L{H,u) where d; = (s,p) and

r——————ttn

= % b(s,i)y.s We shell show that elther there exist
e

points ¥ such that V(H 27 XS V(-I_F v) o elgo

Vﬂ%,y) = V(H ,¥), Tor all yERge 4t points

y(l) = (030'-! }fi,--'.,(}) ¥4 74 O

vy =2 e, 0 ey
s )i '

How if there exists an io such that m. (do) # s (d_l) cne
il I |

rcan casily chneck that ere exigts a2 J such that
V(iiﬁ "’JT(J)) < V(TE:_H ’ TT(J)
o —_

gince

(603a42)

z'.
o~
"’]
l -dy
——
e’
—_
ja}
—
I
1

)
i

F'Z'

(@

and
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I N
. (d,\) =P (C'L;) ( = 1) ] {(6e3e3)
dem o r - -

Incase w;{d)) = mi(d), 1 <1 <N and stwict ingquality in

$6.3.2) Tor some J, then alsc

for.1 (i < N, then in the hyper plane

S 09)
':),T(M,J} = (O,..o,G,J O"'O SO..' )’

273

we have From (6.2e4) and (BeSel)

v 20y - v,y )

L

(d )
(u )ﬂ (d )

V¥ 175

2 2 b(u,_)o(€,J)D(u)-
Sji,j
(Ge3e4d)
If there exist units 1 and J ouch that the quantity inside
thic brackets in (643+44) ig not zero, then it is c¢lear that
plane guch that

there exist points y in ¥y

V(H}. Al b (g y\. i
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: n*ﬁ(dc)

]

(6.0. )
then clearly

V(H »y) = V(& ,¥), for ell yE€ Ry

q.e.d-
]

Remaik ©edelt Tircem Thoorem (Gedel) it Tollows that there

doesn not oxist a begt strategy (in the sonse of uniformly
minimum vesiance) in  L(H,u), The class of all cqui-ccst lineax
unbiaged e#tirategiesn, for there are at least two - in fact

infinitoly many (video Section 842) - Hf-gtrategica belcnging

Tet L(HT,u) dencte the clags of all HT-ptirategies con-

tained in TL{H,u)e. Thne following thesrem shows that in gitua-

-

s}

tions of practical intersst we cannet ecxclude strategies ctier

r

than the HT-strategies using criterion of minimum voiyiance

alcnce

~

g complete inm L(H,u) if

J_J-

Theol'ell 6.3e2: Tiie clagg L(HT,H)

cnd endy iF, e L SP N

Before proving thie theorem we digress a little to prove

a generaligation of Joshi's [ 29] resulte Removing the
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oonditicn oF
cur logs Tunction, we establish the adm:‘":;;?-;lbili’bj,f B o PRt
eular Strategy in the class o(H,1), of 221 strategles with
expected sample size less than or cqual to ue dogni 129 ]

bas proved the Ioilowing tip L8005

Theorem Gs3.3: The estimate of (g,y) given by

Q
*
o~
z
h—
{
+
1
o™
!
P
(@
L]
O
L)
D
—

jote
jor)

units deg ig admigsible Tor X

=4

where n(g) ig the number ¢

in a(p), Tor any sampling design D.

Theorem G.3e4: IT p is an integer, ratrategy (4% ,0%)

ghore a¥ ig a fixed semple size (=p) qign ig admigsiblc in

C{H u) »

We now generalise Joshii's (29 ] vesult conteined in
Theorom (G.3e4) to cover the cages whoen o 1s net an integeT.
Let u = m+T wnere m denotes tie greatest integer not
cxceeding u and © denotes the fractienal part of W, namely.

(U= De We oW pIrovVe

Theorem Ge34D: Any strategy me (a* ,ox ) eC(H,u1) , where dF 18

gucenh that
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pl@s) = @ o
and

Vdd,;‘(ﬂ(ﬂ));: f(l - I)
ig admiggivle in  C{H,u).

=

sreve The theorem we require the followling

-J

Temma duc to Joshi [28 ]

Lemiz Ga3s1 (Josni [281): If

(a) 3;1,:;_“,,...,3,71I are indepondently and identically digtzibu-

ted real random voriablos,

() Tor evory 1 = 1,0 eea,l, ﬂﬂ(y) ig a real functicn of

(¢) fo¥ every W= g e Ol

g

(a) for every common Tinite digercte froquency function W

of :‘;rr-i’ :‘T‘{z,.an, "‘_}"I\T,
M o = Iy pis =
§ o~ — - . = P _:.;_ - I P
L By (g, ) - 8™ < T Ay B (7 - 00",

B denoting tho expectavion, 8{w) the ccmmon mecn oX

J
]

i

r S mm s P TF % - =g vy an oy
T Josee-sdy end hAyy mo= 1yThes., Ly boINg arbitrary re
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.
i
ct
Fnt
v
82
ot

SUCT

ML, ¥) & M(B, ¥

A A

=1
noa G

where strict inequality

i1 (GeBeB) e

leagt one yERy

and
pl(s) > o and iet p*(s), n*(s)
. ponding terms To¥ tie sampling design

7 1m

Vo % (8)) = £Q2-7) <=2 nt(s) =

m4

- LI ) — - ) : 7 ) - +
of Thgorem Ge0eb: Suppogc tihe Tagozem 1g

For the szimpling

co S

144

cyees Tyl € By /@n () = 5}1

A, # O

(G o3d%)

(Ge348)

cither in (Ga3.7) or Tfcr at

degign dl let

e ]
gsample ©

Tor widch
g*, donote thie corres-
A% o

Bvidently

with provabiiity 1L

with probability

(6 e3e9)
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[
LI,
[Py

o nj(s)pl(s) < = nr{s)px{s) = m+f (643410)
-1 —
865 SED

and W

W [a]
2_ 1y (o) leg(oyy) - YI" < * (1) [e* (e,y) - Y]

5
asgs] seS*

(6e3el11)

fere St?iét inequality holda eitiier in (GeB3+10) o Tor at
least one FERy in (Be3411). Taking expectations on both
1ides of (B.3411) with Tespect to a prior digtribution on RN’
mder wnich yi(i = 1,2,ee+, H) are digtributed independently

4

o
nd identically witi common mean & and vairiance o , We get

(5] [}
) pj(s)E[el(s,y)—'Y]“ < 2 pF(8)Ele*(g,y)-Y]".

— N *
L 5E5 (6.45412)

S |
efining gl(s,y) = [¥- nl(s)J [ej(s,y)- 2. yi] (G eBe13)

igs

nd making uge of the Tact that y.'s are independently

igtzibuted we get

E[:el(s,;r)—Y];2 = (Hﬁ-nl(s))EE[gl(s,y)— Gﬂg+ (H-nl(s))dﬁ

(Ge3eld)
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ELQ*KS’:J) ".Y. “(u"ﬂ*(u))w?(r s Q)N-P-(‘T-l’l*(u))d (6!5'15\)

wiere 7. = lnx(s) i Yie

How substituting (Ge3.14) ond (643.15) in (643.,12) and using

the elaticn

and canceliing out the commen term, (6.3.12) beccnes

o
I

5 pl(s)(h-nl(m))gE[gl(s,y)— 63" ~c" = plis)nl(s)

BeS, sE8.,

X 2 e h 5 s
<z pris) (T-n* () B(y - 8)7-0" 2 P (8)n* (o). (Ge3e18)
oS ﬁeg*

I
ot

[n]
) = e = e B = “M-J%-
Puttln% gl(t) " ) — :.’r l’l(s ,31') a,ﬂd. l’lgt*_ﬂ.g JGI“.ELJG E(} E;_ 9) — 11 S) ]

we have Trom (Ga3e416), after cancelling out the common term

o o
- (».)) (‘T—_ﬂq (u) E(Ilrz( S, ,))";-2 - P—g_(S) (I:—l’ll (S)
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Now we will aghow tin

> EEL e . (€43418)

Let

where m' ia the greatest integer not exceeding ' and I

ig the fracticnal part of wp', namely, p'-m'. Clearly

P
—— - I a2 (6.5,20\

where P = T Iy (8) where the summation is token over all

thoge samples ¢ wideh contain exactiy 1 unitoe. Uging

T p
5 T Tt Tt
s ok e AL ~ o0
‘1.35 T 2T mtel ° (645422)

m! ntel = o ML
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1438

-~
1ece
nllest 5 Dalel (6+5¢22)
al (miel) < mlmel)
Sinee m'4T' g mef  due To (6+3410) We get m'<me If m'=m
(6.3.82) is obvious since ft' ¢ f. When 1 < m' £ m-i, it can

be chrecked that

mlal-f' _med-f _ mdmel) Qo) ent o ) (o m'”)%ﬁlf._(ﬂ‘-_fﬁrl.)_f_
mi (vl )~ mmal) ! (m e 1) (o 1
>0
e gign of equality hoelds i¥ and enly if mt=m  end e,
Coubining (643.17) and (643418), we have
r
s i
E p1(u)(1“H (m)) E[ = =,y)3
L;E}Sl
; = - i
+2 I P () {(H-n, ()™ Blh, (8,7) (yq-— a)] < o.
SES . = e
- (643423)

The inequality (6e3+23) is cquivelent To the inequel

ned in clause (d), in Temno-(6e3sl) and hence using the I

ity contal

1emma,
it follows that fox &ll 865,
h1(5, y)-z 0 (GQSInL)
so thot gl(s, v) = 7. =and by [(64346) and (643413)
v
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Hence the strict inequelily conne® held in (GaBe?) s We shall

Cle arly . and Tk con be vritton 2s
hd a
3 . 14 :{31 and :i 14 ; s

wThaera
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1=
2
i
N
ol

b

SIS oiﬁﬁ Hl

given Oy

One can

Since

& btyplcel somple
e* being a lineca:

are gué

i

|_|
[ 72N

=

-—
=

g

H

150

tnat

gquare

yl’. L ) ,:vrlq-

(Ge3e26)

(GeBeR7)
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i - - =l e S S
it follown Trom (C.3428) that
o : i) -
B T lag; - a};) =0
i=l i -
which together with, (643.87) gives
a.. = ar, , I A (Be3e29)
i 45 ST :

QO
1f
l—'m"r{'
‘_l
i~
IJ
“H
c_l
I~
-
2
o
o
-

Hence M(HI’Y) = (i, y), for a1l ye& By and tims the strict

inequality in (Ge3e3) cannot holds

qecele

Remark Ge3.0: We get Joshi's Theorem (Be3e4) by putting =20

in Theorem (6e3e5) e

-,
S

6.5.1 Wecessity of the condition Vg (a(s)) = 7Q-

If the strategy H*(a*,e*) of Theowvem (6.345) ia such
tiat

p(a*) = u and Vg e)) > £(- 1)

then the strategy ¥ (d%,e*) may become inadmimsibles. We
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/

[Eustrate This with an exelples

Bxamplet Consider SI'SWT with size n > 3 and leb the set
i el

Sfsdigtinet unitg in the sample® form a sample for 4%
- P T

ST 3 .
with the same probability, namely, =5+ From Section (2,5)
N

we knhow that

N-— 11 "
plax) = po=T- (“‘f\fj‘-) 1 = m+T, say.
1 tc n with positive prc-

gince n(g) takes all valueg from

bability, it is clear that
Ve (ns)) > Pl

¥
Wow we show that the strategy e (dx ,e*), where % . ig as
defined above, and e* 1g given by (GeBe6) is inadmigsible in

O(H!H) .

o0fs Consider the strategy I (dﬂ‘ se*) where d, Is the

design obtained by Srawer with size m or m+l with proba-
Y ¥

bilities 1-7 and T respectively. This ig the same stra-

Taom

I_J
ot
-
O
=
=
@]

tegy described in Secticn ( 2.2 ) and
Theorem (2+2¢1 ) proved Therein that H (CLI ,e%) is uniformly
vetter than I (d*,e*). It appears that condition,

‘Vd* (n(g)) = £(1 - 1) 1is also necessary Ifor the validity of
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Thﬁerﬂ (6 el 05) .

Por the sske of future use We

= 5
%ﬁdl,e*), above, by

—y

H]_(dl! fo—ra Hy iy

wiere d

f

1

i, the oize

dencte ©

153

N
i

b
i

D

prove Theorem (6e3a2).

Progf of Theolem Gedaict If u =1 ox H, for any strategy
H(d, t)€ L{H,u), the design d will be unicluster and hence
the HT-estimator &(s,y) ig the UMV estimator in Lg(d). In

sither case it i seen that L{IM,u) is complsge in L(H,u)e
Thig proves the 'if' part ¢l the Theorel.

In case L < L <0 and wu is not an integer it fecllows
ags a consequenc: o Theorem (Ge3e5) that the strategy
Hlidl, H T, ty §) in (643430) ig admissidle in L(F,u). Since
the above strategy dces not belong te L(HT, p), it follows
that ©L(HT, p) is nct compiete in T(H, W)

The only case left cut is: p an integer, © S 4 X -1 and
7> 3. Cneoose and fix 8 such that 0 <3 <1l oo that
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vom the strategy _ﬂ hll,(N%W)y [t corregponding to
population congigting ¢f the Tirst {(N-1) units, we construct

& stratezy H'(a',t!) where a' = (8, p') corresponding to
the populaticn of ¥ units as Tel
Ay sample s Tor d,, gocs inte twe samples (s, W) and

g Tecr @' with probal

espectivelye Alsc define

51 ((8,1) ,5) = (H-1) F_ + =
i %] a
and t' (s, ¥) = (H=1) F_o
Hel
Since ﬂw(d Y = 3 and (H-1) §S ig unbiaged Tor _Z1 ¥; Tor
aesy: &
4, it is clear that t!' ig an unbiased estimator for
N - _
v T 35) under a'e Alsmo since t' Z e
l ——

HE(af,4") el (Hy ) - L(HT, ).

Text wo show thaelt given any H(d,e)e L(HT,u), there exists a

point ¥, (which may depend cn H eand H')e Ry such that

v(H, ) < v (i, Zf,\) ’

C

which will show that TL(HT, u) is not complete & L{¥W,u).
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3 nN(d) < 9, one can easily chieck that
= N i)
v(at, }r( )) v(H, y (IJ))

> ()

Whawe (Cywany O,yN) and y, <1s any non-zero real

o]

numbers If my{d) > @ and d gives positive probability to

the sample congisting of unit I alono, then algo it 1s easy

to check tihat
0 = V{H', yo) < V(H, yo)

Wheie T = (Kyyemesks0) and k g any non-zsro Teal numbere

I my(d) >3 and d gives zero probability to the sample

congisting of unit ¥ @lens, then ccnstruct the stiategy
¥

"

0, (d,, e) corresponding to the population of the firgb
o [ i

units where dg 18 obtained from d by Temoving unit I
[

s ]

from all those samploeg Io¥ aq, containing it, the probabiliity

structure rTcumaining unchangeds Since ﬂN(d) > 3 and
N .
-l —_—

H-1 el

T, (d,)= z n, (d) < b= 8 = K e
e :

Hence by Theorem (6e5e5), there exists a point

"tjré =] (;‘!Tél, ey T )8 R—T:l- -} Suoll -th.at
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V(H, 9y < V(Hyy 7L - (6e332)
@ince
| i r. = AT 6.” 33)
T, 7 =7 (B, 7, (6434
and V(H,, 1) =V (8, ¥.) (643 034)

Wicre ¥, = (yél,..., ISR 0), we have, on comparing (6.3+32),

(6e3433) and (6e3e34)

v(it, yo) <V (H, v )

Yo
q.C.do
Bhfore stating a more general theorem, let us define
L(HD) = U L{Hm, W ) (6e3435)
1<
and L) = g L(H, ) (6e3e36)
' LSy LK

where W ig some given number such that 1 < ¢ < Ne Under a
linear cost Tuncticn, it ig clear that, T{(H) congigts of 211

linear unbiaged strategics whose expected costs are less than
or egual to a Iixed tudget C_, and L{HT) is the set of all

HM-gtrategics contained in L(H)s Using Theorem (6e3e2) We get

Thecreom Sa3.8¢ L{HT) is complete in L(H) if and only if

g sl o e
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E:aﬂ.i §trng admisgibility

AfTter having proved the nonec cxiatonce of a best strategy
{in the sense of uniformiy minimua va ariance) in L(H, u) and
that the complete class of admisgibie strategics io wider than
L{HT, w) in most of thé situstions, ouf next step ls to imposc
further critefin_whicb 7111 give a narrow cnough Clads ol
gtrategies, One ean casily check there dees not exist a yper-
sdmisgiie strategy in L{H, M)e In the followling we weaken

this critemion and characterisc the class of all gtrategies in

L(H, L) that satiofy the new criteriocn.

Definition Gedal: Tn a claos C{(H) of unbiased strategies

fer Y, a strategy HE C(H) ig said to be tatrongly admissible

in C(H if it ig admigsible in Frseesy B gsoparatcely
] o o N 1

[
\ ‘:‘i)
_-" i i k] + o) b
whore EB.. = U R, and R: ‘g thioieth phis o1 mengion .
_T :‘I — —

The definiticn of a strongly admigsivlce estimator is straigut-
fovmarde Tor the cago of a single design, it can be neted tnat
the criteria of strong admissibility and nyper-adnisgibility
are effectively equivalent in avrriving at an optimum cstimator.
while there exigts no hyper-admissible strategy, tiere exist
strongly admigsible :t’é tegico in L, u) and we characterige

the sot of all strongly admiggible strategies in L(Hd, f) in
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Thoorem Gedsl: L{HT, p) is precigely the set of all strongly

tegice in L(H, u)e In other words L{H?, W)

ig complete in L{H, u) with respect toc strong adnigsibility

Proof: TFor any design 4, the unigue strongly admignible esti-
mator in Lg(d) ig given by els, ¥), which shows that the
set of all strongly sdmisgibie strategies in L(H, u) is con-
tained in L(HT, u)e TFurther, it can be easily noted that,
from thie prool oL Theorem (Ga3el), in Tact follows tho strong
admipsibility of any strategy HeL(UT, w) in L(H, W)

¥ q_tO'dc
The criterion of strong admissibility has some practical impli-

=

cationgs For examplc, in case of estimation of a domain total

(o mean) whore the domain size is known (say ) but the domain

“Prame is not available (a2 unit can be clagsified intec that

-l

domsin only after surveying it) it ig eapily secen that the
paremcter (¥ =(yysess, Yy) Where exactly H-» co-ordinates
have Tixed zero valucs) space is given by Er‘ So iY we staxt
with a strongly admigsible estimator, such domain totals (oo

0 b

meang) can be admiggibly estimated with the same cotimatore
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g )
645 Bxtonsicng

" For a given design & ot Go(d) be the class of all

unbdpsed estimators of the population tetal Y, satislfying
g

t(s,7)e Go(d) => t(s,y) =0 if vy, = 0, for all igcsg.

Let
G(H,n) :{fﬁ(dfﬂ: w(@d) = o, te Go(d)} . (64542)

Clearly L(H, p) C G(H, g)e In this section we extend some
results of the earlier sectiong to the class G(H, u)e We

pirkve

Theorem Be8el: Any strategy Hb(do’ e)e L(HT, u) is admissible

Prcof: Let H = (d, t)e G(H, u) whoere & = (8, p) be such

V(H, ) < V(H, ¥), Tor all ye Ry "64543)

We shall show thdt strict inequality cannot hold in (6.5.3) at

any point y€ Rye OConglder the hyperplanc

Y(l) = (Oyesey Cy T35 Ogneey O)o

i
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Condition of unbiasedness ¢f T gives
(1)

zg t (g, ¥ + 3 () = y.» Tor ail y'ilg Bye (6a544)
s 5eS. = -

3

¥

Using (GeBe4) onc can casily check that in the Yy (i)—")lanc
i s b (el (1 i\ 2
V(H,y(. )) - \J(rlo,y )) = c*gS (t(s,y ))— m) p(s) +

[}

s 1 1
! : + _,( ( ) - Tlil(do)) (6.0.5)

where 8. O 3, is the set of samples containing the i-th unit.

Hil
From (6eDe3) and (GeHed) we have

_V(H,y(i)) - V(H, ( )) £ 0, fo all y(l)e Ryre

(G+546)
Since T m, () = % =, (do) (=x) and (GeDed) is truc Tor 1< i N,
we have from (6e545) and (645486)
nﬂ(é) = 7m.(d_), 4 & <l (Be5e7)

and
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=

rrom (6.5.8). (6e5a7) and (6ele8) We 8£¢ +hat - tls,y) Teduces

tn the HT-estimator &(s,y) in hayper-planes of dimension oxe

and
v(E, 1)) = V(I{O,y(i)).

Yow congider a bypical lyper-plane of dimension two, BaY,

37(1,3) = (O’...’O’}ri’o’..u,O’yj,o,.ou,O)q

gince t ig unbiased, we have
e e )ple) = g (0 e+ ). (64549)
=R pA8) = My A Td) T omg )T "o

Uging (6e5e9), after a 1ittle algebra, cnc cen sec

i,

(4,7 PRG£S i,y T4 i 4R
V(T.{"}r(_d)) B v(’10’3"( ) - agg 0s [t(s'y( ')- Mo \q) “J%CD]
n iJ- j —
= " -:)'?i ;‘)’Tj
o+ r“(‘nij(d‘) "ﬁls(do)) ni(d) TEJ(C-I-)
(6e510)

From (Ge5e3) and (Ge5e10), we gel

v(H,y(l’j)) - V(Ho,y(l’j)) <0, for all y(l’J)eRN .
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\

tomparing (845.10) and (645411) we sce that (6. S5e11) can be

PN
%rue only if
- k-

TEiJ (d-) = ‘ﬂ:ia(do) (605.12)
and
}". :_‘,". i
t (s, ("’3)) I (6e5el3)
Ty (&) nj(d) =

Since 1 and J are arbitrary, (6s5.12) and (GeBel3) are
true For 1 < i £ J < Wa From (645.11), (6.5.12) and (Ge5el3)
we sce that in hyper-planes of dimensicon two t(g,y) veduces

to the HT-estimatoz and

v(a,y )y V(Hb,y(i’j)>, 14143 <N

S§imilaxrly it can be ghown that +t(s,y) reduces To the
HT-egtimator els,y) in any hyper-plane of nigher order and
V(H,y) = V(H,»y) fov every y belonging to thiat hyper-plane.

The preofl our theorem ig complete since the W-dimensicnal

hyper-plane is the whole of  Rye

i}
q_o oCle
Remaik 6.0a1: For any design 4 let
INGE! -:..[H(dt): pu(d) = ¢, te ax(d) } (65 eld)
where 4*(d) donotos the class of all unbiagsed estimators of
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the population totale Clearly 6(H,u)- (L A(H,u)s Since Tor any

He Ay pu) - @(H, ), V(i,0)>0,Phcorem (€Ee5.1), in Fact, establi-
ghes the admisgipility of any o EL(M o) din A(H,u) .

anzlogeus to Theorem (6e4e1), We have

Thoorem Gebel:  L(HT,u) is minimal complete in G (H,u) with
Lunp 51 mignibliliity.
respect to strong adm ty

o
O
O

Tz It ig not dirficuit to establigh that Tor any given

L

design, the unique strongly admigsivic estimator in Go(d) e
given by the Hl-estimator e(s,y). [We only outline the ProoT
heres 4g im thie cage of hyperadmissivility in Chapter IV we
cant TirnT gshow that the omly powselivie sbtrongly sdmiaaibvle
estimator in Go(d) is o{g,y)e That it ig strongly admig-
sitle Follows fzom its hyperadmiseibility]e. Hence it Follows
that the set of all strongly admissivie straltegies i contained
in L(H@,g). Horeover, it is easgy 1o sce that from the procid of
Theorem (6e5el), in Tact, Tollows thc strong admigaibility of

0]
any strategy HbeL(HT,g) in G(H,u) .

-

JeCe e
RenetE O 4D et Trogn Toecten (GdB ) and uoiag the feot tThat
Tor any non-unicluster design d, the unigue strongly admigslble

a¥(d), is given by the Hhweegtimator efs,y), it

stimagtor in
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tollows that L_?-mc(HTsﬁi) is minimal complete in A?'JUC(H9U)
with respect to strong admissibility where ILyyq(HT,u) and

."I\TUG(H yH4) denote the classes of none-unicluster strategies con-

tained in L(HT,p) and A(H,u) respectivelys
Rema.k CaDed: For a uniclugter design, ¢, Hanurav (22 ] has

e eghtimators in

shown that the complete class of hyperadmigsib

i(a) in given by

L1(3,d): els,y) = &als,7) + k(s) (6 o5eld)

where k{g)'s are congtants indersndent of ¥ and
k(s.) = k(s.) if s, andi s, are eguivalent. BSince, Tor tie
L g L

bility and strong admis-

o
Y
ra
o
O
-,
Y
™
|_|
st

&,
o)
'_Q
I
M
I..J
J2
&

e

%

1
o
oy
2
1=
[49]
ot
o

v are equivalent, L'(e,d) ig the set of all strongly

7
1
o
1<
_.I
_.|
r|-
A
=)

admlissible estimatars In A*(d), Tor any unicluster degign de
Henee Fom Thecoomn (Cedal) and Remark (Gedel) it Iollows that,
the minimal complete class of strongly ad igsible strategies

in A{H,u) is given by L}HIC(HT’M) U Lfq (HT,u) where
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We have proved in Secticn (643) that L{¥T,u) is complete in

t(H, &) if and only if H =1 o N, We now prove

-
1

P g,.,w
=
@
O
%
o
[07]
L

|
L]
[
t
—
s
=l

T
—
i

I, ig compicte in  4(H,n) if and only
i M= N ‘
roof: If u =N, it ig obvious that L{#r, W) is complete

in aA(H,u) . IT 1 ¢y <M, from Theorem (6.43.8) it fol%ws

that L(EP, u) is not complote in A(H,u). To complete the
g:_-"ocf of our theorem it ig enough we SHow. T(HL,l) ig not

.t
compiete in A(H,1)s Tet &  Dbec any design such that

n;(a) >0, 1 £3i<W and I my(a)) =1
and let
) t,(syy) = a(a,y) - els,y,) + ¥,

Wher = T a0 Bie ig an arbitrary Tixed point
wnere y, = (ylﬂ"":;o"" ’ JI.,O) 15 an p ¢

in RH’ otiier than the origin and Y = 2 Tig® Cleaxrly the

[

strategy

Ho(do,to) e al®E, 1) - n{HT, 1)
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and

Now

H(a, o)e LT, 1)

From {(GeBel6), (6eDel?)

0o<m, (@) <1, 3 <31 <H,
0 = V(Hb, 7)< v(H,

166

and noting thet
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CHAPTER VII

CHOICE OF AN OPTIMUM STRATEGY -CONTD,

7«0 Summary

.

- n

We derive gome optimum properties of the sample mean

=

in srgwor under a super=poepuiation model generated by
permutaticns of values attaciied to the digtinct unitge.
Recently Royal {55 ] hasg suggested the use of a purposiv
sampling plan together with & ratic estimator For the
estimation of thc population Total Ye In this chapter we
arrive at the same strategy suggested by Royal [ 55 ], using
an alternative approach based on Tinite parametrization of

the population vector ¥ = (yl,...,yﬂ), similar to thcse used
by Kempthorne [ 3% ] and Rac [ 47 )]s The optimum strategy
corrgeponding to a more general model than that considered

by Royal [ 55] is algo deriveds It is interesting to note
that the new strategy is algo purposive and uges a regresgsion-

type estimator.
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Tel Intrcduction

Afteoz the non-existonce of a UMV egtimater in the
class of all 1linca:r unbiased cstimators was cstablisned by
Godambe [ 14 ], To mogt of the deosigns, diriToerent opdimalily
eriteria have been put exward fozlthe cheoice of an optimum

ivon o broad roview of thie rmelated

|_J

eotimator and We have g
1iteraturo in Chapter Te It hasg been pointed out therc that
the criterion of admissibility is used te weed cut bad cs
matora. Kempthorme {31 ], whileo pasging gome critical
romarks on statistical inforcnce in finito sampling suggested
a merc reagonablc criterion of optimglity, for tlie casc ol
srowors Undor this criterion, We SuUpposo that tiere cxigts
an undérlying unkncwn sct of I numbers, say 4 ZE""’ Znp

and that those are aggociated with Tie Tabelg of the units in

an unknown way and we try to minimise the average variance

Iy

of an unbiased estimator, Tor permutations of the values

attacihicd to the units.

Kempthcrne [ 311, then gave a justification for the ¥
sample mean in  grswor by proving d
Thegzem 7elel: The samplc mean in  sI'swer nag aveTrage

minimum variance, Tor permutations of valucs attached to the

units, in tihe generel clags of lincar unbiased and tranglation
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-

invearisnt cotimators cf the population mcan Ye

Although tho above approach can bé viewed ag a supeT-
population approaci, it differs from the conventional method
in that the super-~pepulation congidércd here is not infinite.
Ainy way, The above formulation seems gquito reagonable and
appealing sincc simplc random sampling is te ve resorted to,

tneoretically at lecast, only wien tiere ig complcte abscnce

of eny informaticn aboub the population.

s -

Recontly Royal [ 55 ] suggeated the use ci a purpesive
gampling pldn together with a ratio eatimator Teor the cestima-
tion of the populaticn total Ye The above suggestion was
.made under the Tollcowing modcl: Tie aumbaers ¥ FB""’yN
arc reslised valueas of independent randen varlablos

Yl’ Yaseeey YW wne>e Y hag mean px, and variance
2 3 i

i
2

o“v(x,)« The Yunction v 1is asgumed to e known, with
[l

Y

v(x) > ¢ for x > 03 the congtants § and o arc unknowils
Denoting the joint probability law of T Yp,..., YN oy £

Royel L 551 defined g ~unbiascdncss of an estimater as

Tollows:
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F
o
i,
j
o
Y
ot
-1
o}
(i
-Q
L
|_.J
[
E_J

An estimator +  is sald to be ¥ ~unbia-

&
(0]
=
-,
@]
1=
<
|-
i

Eiz(tﬁ -Y) =0, Tor every s€d

e

where I denotes the exooctoa value with respect to the

robability law ¥ » He proved that for any sampling design,

+
™>
i
b4
~
-Q
r )
IJ
»
IJ
o

N

where

™)
Ii
W N
<
d
1
it
3

eand ¥ and ¥ dencto summation of units in the sample and
9 g

not in the sample rospoctively. Assuming v(x) ig nen-
Il

decreoaging, and v(x)/x" ig non-incrcasing he hag shown that

r

the optimum Tixed samplc-size {=n) design corrcaponding to

t* is p* which cnbtails the selection ¢f s which maximiscs
o . - 3 ,.';‘

T ¥;» With cortaintye Under the particuiar cage vix) = x,

3

t*  reduces 1o

-
W o=y, » ( 3x)s T Vil %4 (7ele3)
. 3] — S = 3] - s


http://www.cvisiontech.com

171

7e2 An Optimal nroporty of gample mean in  srgwor

ISR, g _.___ o e . B e . AR L ol i ki, 1L

+

the condition of t“an37atvo“
inveriance is redundant for the validity of Theorom (7.141),
ow taking avorage mean square ¢rwor, oo permutationé ot
velucs attached to the unitg,ag our criterion we show that
the condition of unbizsecdness is redundant in Theorem (7el.3)

in the Tollowing

Theovem TeSel: The usual cstimator (namely W y)
hag average minimum mean squave error, for permutations o
valueps attached to the units, in the geoneral clasg of linear

tregnaglation invariant estimaters of Ye

"'\
Progf: Let
t = % ols, 1)y.. (7a21)
igs al
The condition of tranglation invariance of t ig clearly
given by
T blas, £) = ¥ for all sES (7e2e2)

N . N o mo "
(Note that here 8 consists of all the (n) sampleg without

roplacemente] Also
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L 3
mse(t) = B(+-¥)" = BL T b(s,i)-1) y,~- % 3"7']‘;
igs I dig§
g0 that
8; moe(t) = g:a[ % (b(s,l)-l)yj~ X_7F; =
ics T, EEs <

= Eg [iz (b(s,1) -y, - g 3";} (7e2e3).

wiere g denotes averaging over all permutations of

(yl,}"n,... ’I’TN)' EBxpanding tho square term in the Tehes oF
o Y

(7e243) and averaging over the permutations

8 mso(t) = Bl £ (b(s,1)-1)%8,+ = (bla,1)-1) (b(a,3)-1)8,
g o

S = ifjes

-2 % (olg,1)=1)8,4 + Ky (Teled)
igs ~=3
Jjes
s ) h
where Ky = E.‘é( z_ 3‘_;)“ ig o term indepondent of bls,i)'s
ie .
and
I ' i)
L % g r o ( o J"‘)
S ] T Z y‘? and S ] - == ] Z Z 3 s & ® ?'w.:}
1 *Iizl* 131 1 N,_‘ T4 Ay

Uging the condition for transiation invaeriance given in (7e242),

We 80C Trom L 7eled) that the oniy terms in g nsc (1) which
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depend on bls,i)'s axe

BIS, .0 (s,1) + 8, S
ligs 511 i3

(S, =S44) 0-
= ——1—Eﬁ"-'—-l- T % 0°(s,3) + K, (74246)
A

Four

[

S

where K. 38 algo independent of Db(s,i)'s. In order to
minimise E; msel{t) in the clase of all linear translation

invariant estimator's, it is clear from {7eR.6) that we have

to minimise @ =% £ b (g;i) subject to condition (7e2e2)s
8 ifs
. - ; . s ; . N
It ig cagily secn that @ is minimised when bls,i) = o
q.Ode

In the following we drop the condition of tranglation inva-

Tiance algsos We prove

Theoreonl 7yc.08 For srswor, The estimator which minimises

the average mean square crier, for permutations of wvalucs

=

attaclhicd to the units, in tic clags of all linear estimators

ig given by

T -
+ 0) o


http://www.cvisiontech.com

174

- l‘"‘?‘
. H=nn~ G~
wiere 9 = FoT

o . -~

- . and C is UOPUlatiQ%'COOf1101ont of

=<

4

variation, which ig assumed to be knowns

roolt L

ety

J

©

t t Do as givon in (7.2.1). Prom (7e244) we sce

ot

" - 1] +
hot in order to minimisc g; mso(t), we nave to minimige

o o
- 8 dcs B LEs
L™
- 2(H-n)g, & = (bls,i)-1). (7eZe7)
L

Difforentia%ing F weTeToe ble,i) and cquating to zero we
nave

]
Y _
oy = 28 81) (ble,1)-2) + 28, & (bls,3)-1)

ies

j-2
[ap]
&}

Surming (7.2.8) over
(8,-817) % (bls,i}-1) + n8yy ﬁg (0(s,1)~1) -n(U-n)8y4 = O
168 164

wiich gives P
(N—n)nsll

- Y '? 2‘9
- S"l-t~(:r1--l)sl1 (74249)

% (vls,1)-1)
e

o
[l
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Subgtituting (7«2e9) in {7.248) and simplifying We get

. ] i
‘ D(m,¢) =37 e I:fg
o
-n O M - Py "
where 8 =§2§ @ and C igs the population coefficient oz

q.e.d.
Romark 7e2s1: Wihen O ig known Seuris [ 57 ] suggested the

i .
oegtimat-

¥ T]- N

Tt = = 2 Wi

e ¢ n(l+23") 47471
)

for grgwr, wiaere 08' = and showed that it hag uniformly

qroller mean-sguare errcer than the conventional unblased

T

estimator Ny, It can be eaglly verificd that Searls' method
of J

-

of imprcving thz usual estimator - whon C  is known - leals to

@

the cetimator t. in Theorom (7eR.2),for  srswore Theoron
(7.2.2) gives ancther justification for the use of ty in

srewors In practice, ¢ will nct be known exactly and a gu-

”~

esged value C of (¢ may be avalioble {from previcus con-
quses O SUTOFG, Wilriz:” ce@s” A e Zzatan’ 2l L. e/

Singn and Roz,f {61 ] we sec the t@ mey Iead To sUdSCaTeras’

gain in efficiency over tie conventional unbiagced cgtimatorl
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Remaik 7e2e2: Cleoaxly ¢ ig bp¥ascd For Y and the bias

in tC ig given by

so tnat

As n inecreases 1/ incrcascs and consequently the absolute
bias in bty &ecreasco. Whon n = d, 8 = 0 and hence 1t =1,

ao that tC ia a congistont egtimator of Y.

20 N o o W ok
743 4n opbtimum property of the strategy (p¥,t])

Rac [é?], whilco proving an optimum property o the
Hhrvitz-Thomngon cgtimator congidéred the set of parameter
valucg (ﬁ1 Zs sawegiiy Z. ) ovbained by permutations of

I 1 N v
fys Dossecy Dy keeping My, Toseersy Ty Tixed, where
2, = y,/ my; and w.'#y arve the firet order inclusicn proba-
bilities for Tho desighs Tie above pavametgrizaticn seems
to be natural becauge in the case of unequal probability

sampling, presumably lairge valuos cf Yy, are given largo
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g Drchbabilit ics X" incl lua gicn
gampling, all the m; ¥
trization Teducoes

scetiong.

to tnat ecngi

177

Th the case of gimple :mndam

g arc the same, and the above pavame-

dered inh thoe previeous. Two

Tie above paremedzizaticn ig dcpondent en the desighe

In ceder 0 aveid tig difficul¥ics ari

gelection 0:91‘ an optismn d
in our method, wo nedify the
indepondent of the dcsign as

Wo zasume thot values
wariable corrclated withh ¥
in the popwdoticne

txl Zilfoot ,}:H Zil?‘

Fpr Fotoe. s Xp ol

sing at the stage of

coign, correopending to en estimatcxr

above poromotivizabtion ko moke 16
Io __l f:

an ouxilid-y

ame aveiloble for oll the units

We congider $ho set of parametcr values

Y obtained by perrubeticns of Z4 ,\ZS;‘.,..gZHx

kooping Xy s Fpreeesfy Fixed wheve Zy = ¥i/%y 1 1K He
Tt Iy,  be kie clasg of atl linear estimaters
t= % b{s,1) 7, (79342)
igo &
i)
such thef t, roduces Yo X = T %, 3% Bhoe poink
4 - <15 A
Xs e'x:l’ :\'-':,?‘,,'io-i,i }&"N})
i-cn
‘tq(X) = N "D(S,i)x.; = X, Joy 223 068. {7e3R1
3 iGS -
v
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Now the mean square cxzox of 1 1g given by

i
. 2
mao(t M= v(5) + B (%)
where V  and B stand for veriance and biag Tespectivelye

—~ 1

Denoting by 6 , avereging over all permutations of

Zy s ZS’;{‘"ZH’ one can check that for any te Log
i

ot y

(%]
L mgel(t) = (¢-p) & (b-r" Ra,+ 1)x; (743 63)
2 ; iel T - B
wneire
' o . T Ts ¥y
@ o= L e L Sga—me 3 O eaSeRs
W 151 oE s P = TOCD N

a, = 2 bls,i)pls) and b, =

We now prove

Theoren 7eBel: For ony design A(8,p), the bvest estimator

“l ] » o
{(in the sonsc of having mininum 6 mse) in Lox ig given by
£ =Ty, + ( Tx) 2t~ TTSE (7+344)
ol T PR el in(g) =hiegl o
x} x> w}
Proofs  From (74343) and noting that {(a=p) 2 O, to ovtain the

n
best cstimator in T, , We have fo minimige Z (b -Ray x5
=1

LS
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, _ {
%ubject to conditicn (7e3.82) with respeet to the cocfficicnts

I‘]— [x}
g = 5 (v,-2a0x; - T Ae) (2 blo,i)x;-X)  (7a345)
U= . N sc 8 igs B

where M), 868 are Lagrongion multipliers.

a R idatel
a-b o ,1 = O gl (&3]
f} I
b(s,l)xib(s) - () = A(s). (7e346)

Sumning (7.3.5) over ies and using (7e348), we get

Jubgtituting thig valuc o (8) in (7e346), it Tfollows that

the optimum values of bls,i)'s are given by

. (Z x;)

bts,i) = 1 ¢ 3T —757 °
EL) B *
A
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B3 - = (e oy --_--'n} 3
Having decided to use t, IoT ony dosign, our probleom is to
5 .
— o0 #* . il
chocse thot design fox which &5 mse (t7) dis a minimume Wo

will restrict our attention to fixed sample sige(=n) designs.

We prove
Thoorell 7eleit The opbimum Tixed sample sizc (=n) design Tor

tho use of tf, ig to

g which meximises X 3.,
{3

)

with probability once

Proof:  From (7+343) 15 cloar that we hieve to choose pls)

) . LG
1 the (0) samples of gige n  which minimiscs
= n

)
O
"
=

1=y
il
[t
[ e
(@]
I3
——
ro
2
I-.l-
g
=]
—
%
—
H
T3

o
o g b'(s,i)pla)lx]
s )i 3 i
W
(1)
subject to plg) > 0 and Z pls) = L. It ig ecasy to check

= g=1
that -
) B ]
f = v @(g)pla)rs ————: x (7eBa7)
g==7
whareo
C(S) = = PN X-’r - Yl(X - ):".)N. ()70000)

To minimise T, clearly we have to sclect that s o vl cil

o(g) is a minizum wibth probability onee From (7e3e8), this is
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equivalent to choosing that s

probabiiity onee

wnich maximnises

I§1

d z ¥, with
gy =
q.e.d.

. , * o .
Thug we have ar—ived at the strategy (p*, tl) (vide Section

741) obtained by Royal [ 55] using a different approasi.

_E_@_mal“k 7 IS_._l__Eﬁ

=

wnich

Tnig

we wign to egtimate ¥

N

7+4  Unbiapednegs

hl
For any fixed ¢

of unbiagedness of tf

—— -

(Xi + n

o]
{4

03
-

AL D0 We have

¥

We congidered only those

have zero Mezn Sguare erTor at the point (x:,

asgwnption seerms reasonable, since We agsume

Y
Xq,noo,}xf;"
R I i}

and X

}1‘

nerfect correlation

sample size (=n) design

p(s) 2 0 and z ple)
]

zel'0 Dlean Sguaie ei'T0l'e

p, the condition

= 1. (7elal)

o

Considering only iixed sample size designs for which t#
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is unbiased for Y, the optimum des 1gn coriregponding to tz
ig obtained by minimiging

z C(s)p(a)

3
with megspect to pla)'s subject to the linear (in p(s))
restrictions (7e4el) and (7e4e2)s Thisg 18 a typical linear
programming problem and can be theorectically solved by simplex
methods But it may be remarked that the available algorithmg
in linear programming are of 1ittle practical usge in solving

the above survey problem even Iox moderately large N and n.

7eS An optimum strategy Hor Regression estimation

Royal | 5 551 congidered a super-population in which the
regression of ¥ on x was assumed to be a straight line
pagssing through the origine In thig section we congider a more
general model whicii seemg approprliate for regregsion esgtima-
tion. We assume the following super~population model: The
nunbers Fpreees Ty aire realiged valueg of independent random
variables Yl’ YS"“’YN wnere Yi nas Mmean ax, + b, and

o
variance o v(x;)e The function v <4g known and v(x) > 0
- oy

b

for x > 0, and the conbtants a, b and ¢ are unknowns We
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denote the joint probability law of YW,..e,Yﬁ"by ye Wo now

TOVE .

Theorem 7eDel: For any design a(s,p) the best g—unbiased

(Definition 7elal) linear estimator ig given by

= Sy, o+ prls) T ox, (7e5e1)
“Tht- H

where p*(s) is obtained Tfrom The equation

X_' -y- 2 ¥
2px (9) (2 Xi)P(S) = at(s) Z —(—‘)—‘ + ,u, () Z %,
and h (7.542)
2(f-n(g ))n( ) Z "T“—T - w(Z X, )P( )Z “T%TT
h( S) p=t X. ‘:"-'- —""-"""‘ “}{"";r _I

B (7e5e3)

.
2(Tn(e))pis) - [ & = ,1. Int(s)
pt (o) = AT : (7.508)

= -li
S en)

Proof: 4 typical line«r estimator

T =

z
168

can be written in the Torm
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-
% = F Ly F gls) I x, '
s § -
> (blogl) - L)ys
where B(s) = Fmmum oy e

% X
R N

Now t is ¥ -unbiagsed for Y if and only if

E L[{xY, -g(s) 3 %3] = 0, Zfor every st8e
8 ¢ g

lece I (ax,+ D) - % (b(s,2)~1) (ax,+b) = 0, for every sed
8 = & <

'y

1.ee alX- = b(s,i)x;)+ (¥~ T bls,i)) = 0, for every scS.
5 & 3

(745e5)
Since a and b are unknown constants, from (7e5aB), the ‘

condition for ¢ ~unbiasedness of t Dbecomes

Y Tor every 568 (7e5e8)
% bis 1) =N
8 J
}Jovv
o o
mge(t) = B(t-Y)" = B[S (b(s,1)-)y;- Z¥31" (74547)
3 = a4

Taking expectation over ¢ on both sides of (7ebe?) and uging

the condition (7+548) for g -unbiasedness, we have
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B, mse(t) = £ = (bls,i)-1)"v(x,)a(s)
3 s€-8 i€s -

+ termg not. contaigping b(s,i)'s. (74548)
rom (7e5e8), to minimise the cxpected mean square error of 1
We have to minimige

Z T (blsyi)-1)" vix,)pls) (7e549)
s€S ies = '

subject to (7«5e8).

Introducing Lagrangian miltipliers A(s), u(s), se8, let

=+ = (blaii)-1) v(x Yyp(s)= £ A(s) ( = bls,yi)xy -%)
g8 ies S€es i€s

-z uls)( = p(s,1) - N). (7e510)
sed ies

Differentiating ¢ WetaTe b(s,i) and equating to gero

2(b(s,1)-1)v(x)pls) = Ale)x; - plsd =0

Tece
‘v( ( - ~1 P( ‘ = ( i ( ) ( )
= 2 b 3 i) ) S) = 7\ a3 ,.H - “' 3] 3 t 5 ll
W= ) V()&-; V(K.j > =

Sunming (7«5e11) over ies and using (7e5.6)

K l = ©
£(W-n(s)) pls) = A(u) . '“TQfT + u(u)i'é:S ek (7eDell)
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Multiplying (7eDall) by .xﬁ and sunning over i1es and using

(7s546), Wwe get

(%3
() = o
o F B BoAE T e A+ HAS PN e ol
s ige ¥ liT igg '

(PGl

Solving (7e5.12) and (7.5413) for Als) and t(s), one can

asily check that the solution is given by at(g) and u'(s) as

l_l.

[+3)

iven in (7eB5e3) and (7eDed) ivelye Substituting these

6
-3
[4)
(s}

3
D
Q
part

n (7+5.11) we get the optimum

[

values of At(g) anda u' (s)
values of the b(s,i)fs, which gives the optimum value oI
gla) as p¥{a) in (et e

qeCsde

Remark 7s5el: In the particular case Tlloet = Lp il Q@ W

iecs tho variables Y., 1 <1 (I are distributed indepen-
= [»]
I N 3 5 * - =
dently with same variance o , it can e seen tnat tp reduces

to the ordinary reogression estimator, namely

R |

(23 i "
A — = r x - -
Y. =H[ 7 +-% (X ~-XJo (Here y and
S
x
are the means of the distinet units in the sample).
Having decided to use tﬁ, the best E -unbiaged linear
[ ]

cstimator, cur next legical step is to choose the corregponding
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optimum designe Ag in the earlier section we will restrict

our attention to fixed sam le gize designse We prove

Theorem 7e5eR: A r-optimum Tixed sample size (=n) design

L] * [ * -1 = L]
corregponding to tg ig  Poy wWilere pﬁ gives pichability

-

one to the sample which minimiscs

((N—n)?ug/?\l + 3 x.-X)" (N;ﬁ)z
K(s) = —73 - + Z_vix)
A A ses &
B
37 %
: (7a5eld)
- LD 5 X
W i = = —'(-‘— = - =
i ll ies i Xl ¥ Rg igs V: XQT = KS 155 vixi).
(745415)

Proof: -~ Now the expected mean square errox of ti ig given
[

I mse(tg)

. B, I plo)(th - )7

3 scS :

= X p(s) B (tg-Y)'?'. (7e5416)

sc s g

After tedious calculations one can show that
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wmere K(s)
g‘that {7eDelt ) Wi

wpich (7eDal7)

% o -
g, (o =" F)" = K(5)
;‘ £
2

ap given Ln (7eSeld)s It rfollows
o] ] " 1 -
11 be a minimum if we chcoose tha
ig minimum, witih probability once

185

(7aDal)

imnediately

aample for 4
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OHAPTER VIII

CHOICE OF AN QPTIMUM STRATEGY - CONTD,

8.0 Summszly

Congtructicn of =PS (or 1L.PeP.S.Y designg has received

157

much attention recentlye. We characterise the clasg of all
PSS degigns and sicw that the cardinality of it 1s c, where

ig the cardinality of the continuume Also we characterige

g [
% e clags of all =wPS designs which have specifled second
rder inclusion probabilities m..:'se It is noted that

Ld
L(HT,u) contains uncountably infinitely many strategies by

neting tihat there exigt ¢ many strategies in any equivalence
class of L(HT,u), the ejuivalence relation being that

oy Hoe LOHT,u) ave equivalent if mn,(H) = my (Hp)y 13 K N

We disprove a conjecture due to Hanurav [22 ] which is
claimed to have been proved by Te Je Rao [ 53 ] after pointing
out the error in the latter's proof. We study itg consequences

in the existence of optimal strateglies in the equivalence

classes of L (HT, u).
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: €1

8ol _ Introduction .
We nave already proved the nen-existence of a best (in

=

the senge -of uniformiy minimum variance) strategy in the class,
L(H,u), of all equi-cost lineax unbiased strategies (vide

Remask Ge3el)e Conseguentiy variou

Ol

optimality criteria hav

=

been put forward for tne cholce

O
s

a sanpling strategy. We

E

1wave briefly mentioned th guper-population approach: to the

et

'3

selection of an optimum strategy in the class L{H,u), in

Chapter I. The criterion of gtrong admisg

m
I+
o'
|J-
|~
B
g

wag intrdw
duced in Chapter VI and it was proved there that tihe class,
L{ET, w), of ail HT-strategics contalned in L(H,u), is com-
plete in L(H,u) with respect to strong admigssibilitys But
the class L(HT, p), is iteeld two wide and in Fact we have
“tated in Remark (6e3el) that there exists uncountably infinite
number of strategies in L{HL, w)s We prove this claim in
Section (8e2) by schowing that thore-exists infinitely many
strategies in any equivalence class of L(HT, u), the equiva-
lence Telation being that s Ho€ L L{H",u) are said to e
squivalent if Ei(dl) = ni(dﬁ)’ 14N, where H = (dl;é)
and Hy = (d,,8)s Hence our final problem of pinpointing &

strategy Temaing unsolvede
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+

&
One can eagiliy veriry that any twc strategies belonging
to two different cquivalence classes of TL{HT,u), are not
corparable (with regpect to variance)s 45 a congequence an

interesting problem is to sce wicther there exists a vest °

ptrategy in an eguivalence clags at leashs

Now H,, I, € an equivalence class =2
T 1 i = i i s
V(Ey) - VEy) = B E ey oy EUE

17 we restrict ¥ > 0 - often ~ealistically - it ig immediate

foom (Belel) that a set of necessaly and sufficient conditions

for Hy to be supericr to I ig that
| mglds) X omigla), 11 ATC N, (8e2eR)

Gith strict inequality holding for, at ieast, Onc i £ Je
Given a degign dy, tiwe problem reduces to that of construc-
ting a design do witih the same w,'s and with uniformly

smalier (or egual) nij's. Hereafter, owing to the repeated

uge or Tazls, wo derote hize propesidr S é‘
£ F &

semma Selsl (H_a_,_gyrav {22 1): For any des gn aS,p)
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-

3

2%; my3(d) = plu-1) + Vin(d)) 2 wlu-1)+8(L-3)
1£)

(8e1a3)
wiere ( 1g the expected effective sample sigze, namely,

o

ractional part of We It immediage

Hy

S 1.(d) and 7 g the

tely follows from the above lemma that it is not possible to
construct a degign d, with the required property CB s When
[ )
% ¥ w,{d,) attaing its Lower bound given in (8e¢le3), vize
1 = ’ )

e ]
igy T
plu=1) + 7(1-7F)s Hanurav [ 22 ] conjectured +that 1t would

be posgible to constiuet a design 4,y satisfylng Cﬁ ix
[

3

2wy (d) > plu-1) + 20~ 1), (Beled)
dety Y

Ts Jo Rao [ B3] claimed to have proved Hanurav's conjecturs

by giving a constructive proofe In Section (8:3) we show that
Te Js Rao's claim ig wrong and in Section (8:4) we disprove

Hanurav'sg conjecture by supplying a simpic. counter-cxamples

B8et Construction of 7PS degiens

.

Given a sct of numbers m,y 1 £ i < N, such that

FE n, &L and I my 21 (BeZal)

|

-
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|

e
o

T

it possible to congtruct a design witi the given =

itg inclusion probabilitieg for the units?

The answer ig known tc be 'yes'! and there s a hwuge
literaturc avallable on constructions of such designsg and They
are known as %P8 designs (in analogy to pps degigns) ox
1PePsS. designs (inclusion probability proportional to sige

designsg) in the literatures

Let ug recall the définition o7 a designe A probability

function P on 8, the gset of all finite ordercd scquences
of unitgs Trom a Tinite population U of N unitg, is called

a designe. Bgquivalently we can define a design as Tollows!:
Lot i be the c-algebra of all subsets of Se 4 probability

meagure P on (S, M ) is called a degsigne Lot

Al G e (8eZe2)

42}
il
ey
o0
e
j-
m
4]
Pa—
-
L_.J
N

Clecarly §&; is the sot of sampies conbaining the i-th unit
iy -

and U 3
i=]

= 8. Given a sot of n,'s satisfying (
problem reduces to the construction of a probability P on

)

(8, t#{ ) such that

P(s,)

1§
A
I—l
i~
l_l
[N
f=
=
[ ]
~~
[ea)
-
3]
»
3
S
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Lot CB be tho

S:]_’ Sgyion, S?I.

N
B= g DI,
i=l *
arc precisely tn
i) i i)
B =:| gl S = (US.)
A L P R

wile

It can bo cani

e

atoms of (E

LN S
2" =1 mnoncmpty atonms of

probability Q on (8, (H) i

on tihe atoms B

Theorem Selel:

cxigtence

0f a probabil

3]

ity

1

e

Q

5

and that UB =

A necessary and

1y

1

rhiown that

8

il

O

smallest o-algebra containing the

sots

SC

iy

{note that

)

on

=3

uniguely sne

in (B84244) and hencc the

Se

-
eilie

194

sots
of the form
(BeZad)

= @ and hence there are, in all

Clearly a

d by its wvalucs

Tollowing

ufficicont condition for the

(s,

) such t

-

el

unknowmn

1 ¢ i <N ig that there exists a noun-ncgative
X i

sysbem of N+l lincar cquations in 2 =l
given by

% x(B) = }

) . %

ZX(B): 3 léiﬁﬂ\]-. J

B 8.

How we prove

at Q(Si)=ﬂia

soiution to the

x(B)'g,

Broa=)
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Theorem 8e2e2: I 7
cxists a non-nogative solution to the system 0f equations

(Be2e5) s

\

Proof: Let P e a probability on (8, Ot ) such that
P(8;) =m;9 1 £ i < W, [existence of such a P ig guarantecd
because wo have alzcady noted before that various authors have
constructed P's satisfying (8.243)] and let Q be the res-
triction of P to (8, (£ )s TFrom Thoorem (Be.2+1), Wwe see

that, {Q(B) } vrovides a non-negative solution to (8e2e5).

Remaik Belel: Onc can congtruct examplcs to show that the
solution to (8e2e5) nced not be unigues

We arc now in é position to characterise the clags of
2ll P's on (8, ) satisfying (8.2e3)e Let {tQU% } be a
non-negative soluticn to (8e245)s Allot Q(B) to the counta-
bly infinitc number of samples s contained in B in any

arbitrary mannex such that

Q(s) >0 anda T QQ(g) = Q(B). (8e2eB)

Do thig Tor cvery non-cmpty atom Be{® Clearly any particu-~
lar mode of allotment of Q(B) +to the samples 86B, Tor all

BE:@%, specifics a probability P on (S, ) such that

‘¢
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el ) = BEEL) 5 dh— L. 89 X W,
;
We say that such a P ig generated by Qe Corregponding to
any solution @ fox (B.2e5) 1ot {ga denote the sct of

theorem now beecomes obviouse

Theorom BeZe3: f\p ;_«{ UTQ :

class of deolgns having the

0

. 'S where NS (8.245) isg th

al
tiong to the

sygtem of linear

(8,01 ) gonerated by Qe

The Tfollowing

Qe TS (BeZe5) } gives the complote
pecified inclusion probabilitics

¢ set of all none-necgative solu

equations (842.5).

Remark 8.2.8: It follows that the eardinality of (P is ¢ -
witee ¢ denotes thie cardinality of the continuum - since
‘) bl . -
gach GQ nag cardinality c.
Remark 8e2¢3: 4An cquivalence class of L{HT, u) as defined

earlici contains ¢

0f Romark (Be242) e

many membe

-
T

Tollows as

a Cconseguence

fnother important problem concerning the consbtructicn

o

of designs ig: Given a scot of

<1,1 <1 <N

+

and

w.'s and w..'s guch that

s L

0 Xy 2 K158 $DALT TR

1J
(8 .2 '?)
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is it possible to constiuct a design p which hag the above

's ag itg first and sccond order inclusion

'y

It is cleaxr that gome congigtency conditions ghould be
patisfied by the given n.'s and mw,:'se Some neccssary
conditions to be satigficd by the given n,'®s and nij's are

well~known in literaturc. For cxample

o

ii) ¢
Ho compaet sct of sufficient conditions to be satisfied by the

given ni's and m.;.'s are known in order that therc exigts

s

at letgt one degi vith thosc ag the inclusion probabilitics

(see Hanurav [ 22]).

o ] . - -t * AN kl T
Now there cxists a probability @ on (S, {h ) such that

a(8;) =myy 1L <3 < W and Q(Sﬁflsj)

= n‘ij"

11 £3j<£X (84248)

.o Y “ ] > I\I -
if and only if the following system of 1 + I +(5) linear
[

cquations in 2 -1 unknown =x(3)'s has got a nonenegative
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1
[

2 x(B)
B 4
z x(B =7,y 11N, (8+249)

BIC 18,

i 4§ <N,

B(Cs,; 0 85

Analogous to Theorem (Be2e3) Wo-have now the following

f,"“"

Theorell 824! { U : Q6 WS ("eRe9) } gives the complete

Q
-
[
3]
)
&)
Ity
o
o
{dip)
8]
g
]
4]

naving th e given n.'% and w..'s as their
inclugion probabilitics, where NS(8e249) is the sot of all

non=-necgative golutions to the system of eguations (Bel49)e

8.3 On a proof of Hanurav's conjecture due to Te Je Rao [ 53]

We de seribe briefly Te Je Rzo's [ 53] constructive proof
of Hanmurav's conjecture stated in Sccticn 8.1, before pointing
out the fﬁllacy'in ite Bupposc dl ig a design satisfying

(Belsd) so that

N
ié? nij(dl) = - 1) + ;(1- Y. B g (Be3el)

wiere [\ > O

Lot my45(a)) = my(a))+ nj(dl‘)—l-.u Dy (a), (8432)

,;..------l-l
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L,wa (dl) > 0, with strict incgquality Tor at lecast one

i 4 j, since A > Os Lot 3 be the number of non-zerc

clementsg in the matyix

A = I!' (80515)
‘\\\ 1< 3 7/
Hext, he shows that _
A
z L35 (4) > — (Ba3ed)

(Note that thig is true only if uw # N or N-1) where the
summatisn ig tsken over the 8 mnon-gero clements of the

matrix A in (Be3e¢3) and thet there oxists a partition of

~5—.such, that 'Zl D, = O/, with the property that
i= 5

FAY ..(dz) got by subtracting &, Lgjyee.y Oy Trom the

non-zeirro clemeonts of ilﬁj(dj) are non~ncgative with at least
|
one pogsitive. Onc can note that the zero elements of él..(dj)

remain unthangod wiilc constructing L}ij(dg). Next hie cons

05
tructs the matrix «'n (dg)),-where

and claima/é;at it satisTies the property (ﬁ) , Tor clearly
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the new set of numbers nij(dﬁ) satisfy

1) my4ldo) < my5(d) with strict inequality holding
at least once, "
11) 'Eij(dg) — Tﬂai(dz), and

But these are ohly some necesgsary conditions for the exig-
tence of a design dg satisTying (ﬁ and are not sufficicnte.
The set ol numbers nij(dz) constructed as above, may turn
out inconsigtent in the sense that therc may not exist a
design with the given n4's, namcly, ni(dl)'s and the
constructed nij(dz)‘s as itg firgt and second order inclu-~
sion probabllitiese Thig we illustrate with an cxample In
which some “ij(dz)'s ag congtructed by Te Jo. Rao's [53 ]
method turn out to be negative - obviously incongistent -
which incidentally contradicts an unsubstantiated claim due
to Te Je. Rao [53 ] that the nij(dg)'s congtructed according

to hig method arae non-negativece

Eﬁégple: Consider a population of gize W = 4 and let the

sampling design d1(s, p) be as follows:
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5 pls)
il e
1,3 +50
1,2,4 " 25

We have corregponding

% (4) =1, g (d)) = o25, ng(d)) = 50 and ma ()

4 :
g0 that Z “i(dg) = U

i=1

= a2

my3(dy
fiog(dy)

ngw(éﬂ

) = 30
= e85 =
= 0 =
= waD, =
- =

o A e ———
it re——— A

scd

to thig design,

_— i-.-’ and

= 1+ o256 -~ 1 4 (0)

=, 1% |50 = E % (0D
P e gy 2 5, LoD
25 4+ ¢50 = 1 + (o25)
25 + 25 - 1+ (75)

«50 + 2B = 1+ (125)

= »2b
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We nave

g (D45 (@) D= | * o .0 0
. ok < ! -
LA | ¥ o35 o75
| x .25
: *
N - N
and 3 = 9 @:ﬂd :ﬁ“" = 0125¢
Let Q'I = elOy &ep = 0 and &5 = G
Then
(py5 @) ) = ‘ * g | Brm B
T | £ 0 75
% # 28
l *
go thet
(85503 N = £« 0 0 0
G * O 75
0 0 * o225
0 27D et *
and consequently A=
(( ’J'Eh;j(dp) )) = i5 025 050 !25
) 05 k=485 o425
!50 ".25 * O
.:\,5 .2 O *

—

=3

Tne above seb of m,4(dp) is obviously inconsisbent since

|

Tog (dn) is negative.
[ 9]
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Bed4 A counter-example

A W bt

Before proceeding to give a counter-example to disprove
Hanurav's conjecture stated in Section (841), we give an

v alté&mative equivalent statement of it.e We prove

Theorem 8e4el: iven a degign satisfying (8.1.4) Hanurav's

-conjecture is equivalent to saying that there exists a design
- EN I
dz satisfying G} end moreover
i(dz) = plu= 1) + 2@~ £). (Beds1)
1373 ‘
Prooi: One way Implication ig clear, namely, existence of a
design d, satisfying (?} and moreover (8e4.1) implies
Hanurav's conjectures Hence tc prove the kheorem, it suffices
_To show that Henurav's conjecture implies that there exista a

design dz satisfying £ and (8.4.1).

Using the formulation in Sgction (841) it is clear that
agguming Hanurav!s conjecture, the system of linear constraints
x(B) > n

T x(B) =1
B (Be4a)
B8,

BCﬁiﬁSj
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.

congigtent. Now minimige the lineal Tunction

=
0

I
£z 3 %(B) (8e2e3)
£ ]

1#3 3 5,08,

gl x)

subject to the linear congtraints (Be242). Thig ig a typical

|~
=
H

H

bounded linear programning problem and hence it has an o

i)

t
golution. Let { xo(B) } denote an optimel solution and ¢
the corresponding minimum value of the cojective function

g( x ) in (8.4.3)., Next we shew that

Bls) = @, = ulu-1) + 2@~ 1),

If not, using Hanurav's conjscture there exists an ¥

8.402) Su.lo}.l -th.a—c

ﬁ(}{l) < Q(RO) = QO ’

a contradiction to the Tact thet  xj ig optimal.

qitecdo
iow we give a counter-example te disprove Hanuravls conjecture.

Congides a population of sige H=4 and let the sampling
>

=

deaign dl(S, p) be ag Tollows:
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&
sample probability
5 p(s
4 ol
Tusst™ Pt
138,58 8
E p(u)
\i - -
Clleaslsn U =@ igo What & e o E1d

It is cleax thwt 4, satisfies (8.1.4) and that there *oes
not exist a design d, satisfying ﬁ) and moreover (8.4,1)
Lises Vg (n(s)) = (1~ )], since “lé(ds) = nﬁé(d )-.nn4(d )=0

ntaining unit 4 alone in order to make nd(dg) = Oel«

Remark 844: How The equivalence relation, o~ H, 1sF
et 1 o

o (1 B i (H Y, 1 <1 W, partitions L(HT, u) inte

equivalence classess From Theorem (8.4.1) we see that

[¢]

Hanurav'!s conjecture Implies the existence of optimal strate-
gieps within each equivalence clags, 1f the parameter y is
reptricted To the positive quadrant of Rp. But unfortunately,
the Talgity of Hanurav's conjecture entrils the possibility

of non-exigtence of optimal strategies in certain equivalence


http://www.cvisiontech.com

classes. But whenevar it exists, from the preceding & scus-
gion we see that, it can be obtained by metlicd of linear
programing, We diilugtrate thig with an example below.

.

Howeve:r, it ig pextinent to note here that when ¥ ig large,

the LasPe. method for golving the above pioblem becomes unmana-
diffteull

— =

ExamﬁWe- Consider» a population of sige N= 4 and let the

desion dl(S, p) be as Tollows:
Sample probability
iy 1Y)
14 el
23 2182
24 <063,
124 e 345
234 o147
1254 002

Corresponding to thig desicn we have
mqy (&) = 578 nln(dl) = o347
ng(dl) = 739 nlg(dl) = +008
ne(dy) = o361 nya(dy) = o578

my (&) = .788 o (d)) = 4361


http://www.cvisiontech.com

go that p =

a0 that condition (8.1.

|~ [ R [~ [ o - - - | L
! [

-4

207

4 4
o | 24496 and §#§ ﬁij(ﬁl) = 3.988.

Ll

ni(dl) =

Al gc

4

T nﬁj(@1) - 3,988 > ulp -1)+£(1- %) = 3.984

1

Jde |27

1) ig satigfied. BSince N = &, We will

TS

4

I af

15 non-empty atoms B, as given in (8e244) and

svatem of linear congtraints (Bale2) becomes

-

l_l

l_l

|-

I_.I‘

o O

B, B @' L QK &S

Xz X, ¥g Xg Xy Xg Xg X9 %17 F12 F13 Fid F15

2 4™ e A R AEE a0l 2 ek

) 4w iy ® 6 @ @ B B 5 2 b6
1w :E 8 Brw s @2 &G 6 D e i
o5 ne 0% 0 B . ® 3 e R
1 4 6 5 101 L '3 G. k-0 @9 = w768
L 1 806 e o @ -0 M & AT
01 E ® 0@ Wog o6 & @0 @ w00
L ire @ L0 e Y8 prE % % of Bn
6% @ % ¥ @1l ®'® T 0.8, © & 30
1 00 0001 0 1 © ©0 © © £ #8557
vk B8 3' 2 6B B ow sl @ & wids

(84444)
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The objective function @ in (8.4.3) becomes

§ = 2(63 +3xn+B3xg+ B, + Xg+ Kg+ Xp+ 3Xgh Xy gyt X10).

W]

Yow we minimigse @ subject to the linear constraints (8.4.4),

Simnlex algorithm is used and computations were done uging

T2M 1401 machine. The optimal soliution obtained is:

Xsopt = .047’ }&AO*Tt“ -OOE, }s_r?o_p_t: 0229, X90 t= 014?
1 optT «063, %0 Olt:-ﬁlﬁ and the »eagt of 'Xioptz 0.

i design, dopt, corresponding to the optimal solution

s

{ %5 opt } is given below:
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.

sample probability

S ' pls)
1,4 22

28 B2,

2,!5 o'-!lh

2,4 +063

1,2 ,4. .34’.’?

1,344 <002
4

04344 BN

- 0 e ’_“1 3 _|_-.l
Tt con be easlly checked that

ni(dopt) = ni(dl), 5 <

[_l
172y
.

I

4_ o - Lo
and o ﬁﬁj(@GPt) = plu-1) + £(-1) = 3.984.
i .
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GHAPTER IX

SOME FURTHER RESULTS ON & (s,y) AND ITS
VARTANCE ESTIMATION

980 _ Summary

Godambe and Joshi [ 17] have proved that the

A

FMeentimator e (g, ¥ ig admigaible in the clagg of all
Y J

-

unbiased estimators of the population total for any design.

He give an aslternate proof of thisg result with a more general
deiinition of a design uging induction on U in Section

(R )ls In Section (5.2) we demonstrate the non-~existence of

a & o-best strategy when pu  is not an integer. In the last
gection We meodify the well-known Yates and Grundy variance
estimator to suit varying sample spize designs and after
deriving a get of sufficient conditions Tor its non-negativity
we prove The existence of such designs in a special but

important cagee
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™ 911

9ol _ Admisgibility of the Hl-estimator  elS.¥)

~ the exclusive

J .
o
I
::;
2
s
]
o
o+
£
o

.
o)
s
l_t
o)
[_

We give gome defini

n this gsection.

=

use

Population of size W: Uy = {1, 2, 3,0u., v}.

Sample: A gsubset of integers from Ug. There are, in all,

o radom i =

N - "
2 sampleg witichh we denote by Be ‘

Design: A set function p on S5 guch that

pla) > 0, for ali geS and = p(s) = 1.

p(g) ‘may also be greater than zero and selection of @
gignifiieg that no unit ig selected in the pample. Clearly
this definition of a design is more general the usual one in

which p(@) is defined to be zero.

Bstimator: A real valued function e(s,y) on 8 X Iy such
that (1) e(gd,y) = 0 for all ye Ry and
(11) e(s,y) depends on ¥ through only those yi's
Tox wnieh ie s,

At A e————

a(p): Class of all unbiased estimators of Y = T ¥
Al
design De

We now prove
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—— Y

. - a2 b

Theorem Jelasl: For any design P, Tor whlch 0 < ﬁi(p)ﬁ 1,

ible

w0

(1<4i (W) the HP-estimator &(s,y) is admis
(

Definition 1.1eD)in 4 (p).

Proof: We nropcse to prove the thecrem usging induction on N

o size 4, and any degign p Tox winich O < 7. {p) K iy

snow thatv given any design p* corresponding to UN 41
o

B (g% ,}**)BAN +1(‘p*), V(o o) _gV(é,y*), Top all 3;'*831\F +1
o

£y ‘t’r‘-(sa? ’TJT*) = é(s* ,}r*)’ Tor all S*GS*, }Y*GR}I 4
R

(9.1.1)

L* will always correspond to something concerning the popula-

tion U, 1o Let U (3) denote the populaticn of size U
EY) +1 i e}
o} 0
obtained from TN R by removing unit j Ifrom it. From ok
o+l
We construct & design p corresponding to UW (j) as Tollows:

Remove unit j Irom every sample g* contaﬂnﬂnﬂ it and put

Pl = o (@) + p*(§) where (j) denotes the sample containing
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M »
unit Jj alonec. Algo define
t(g, ¥) = tx(g%, %) (9.1.2)

wiere
¥ (yl"”°’ijl’yj+l"'°’yN'+l)eRN
0 0
7 = Fpreecsyyg O yqu""’be+1)eRNo+l WERTLE)

and s d1p obtuined from g% ag explained above. Since t*

Na+l
13 unbiaged fox % Vi9 it ig clear that t 1g unbiasged Tow
Kol 1! =
z y. and morsoved
iy *
V(t, 3) = V(t*, y*) (9.1.5)
and vie, v) = v(g, y*) (9.1.6)

where y and y* are ag in (9.1.3) and (9.1.4) respectively.
From {9elel), (9.1.5), (92.1.8)

tion, we hars

t(s, y) = (8, ¥), for all seS, ye Ry (9.1.7)
_ @
Since we can rTeamove any unit j Fimm Uy H and noting that
l N s
an estimator depends only ~a those y{'s Tor wiich i1des, it

Tollows Trom (9.1.2) and ($.1.7) that

t*(o*, 7*) = a(s*, v*)s Tor all g*
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- ... = = = o e
excent perilaps for the sampls s

* Bl , 4 e M2l Bow
7 o471 © O
4L
since t* dig'unbiased Tor % ¥ it ol GvE) st
. l‘ S ‘
(S ) should algo be linewr and henen aqual to

gezeCa
dote:r It is clear from the construction of p  that it may
nappen that two samples s¥ and 8% get mapped into the
seme S. But this ghould not cause any ambiguity in the
definifticn of t, for if t*(si‘ vE) A t*(un, ¥v*) where ¥
ig as in (9.1.4), the estimator +t(g,y) obtained by averaging

A k] 0

t* (g*, y*) over all theee samples so* wnich get mapped into

8 will be uniformly better than the Meestimator 8, Tor the

population U, (3) - a contradiction to the induction agsuy -
B,

2w Nonexistencn o a /\ ,-best strategy when u ig not an

integex
For any given number pu, 1 < u ¢ ¥ let I,(H , u) denote

The class of all strategies contained in L(H, n) satisfying

}-iOeLl(H,)u) 1 (n(g)) = £(@- 2 L)

and, n and I are the integral and frac-

-

Wiere M = n+

fonal parts of wu Tegpectivelys When p ip an integer it

J

L
<
r
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> thiat L1(H3N) congistas of 3ll Fixed sample sigze
e Tet 4 (H,u) be the

class of A(H,u) such that

(T—l, M) = V{ Eeladl = FlE -,

the same super-pepulaticn modsl as was considered
denote the clasg

~liex (vidae Ssction 1.3 Y« Let "\g

il fiRled of bl B ticn 8 for which

&
P \
E ooy lm) =
Tl I m) = g (94242)

covarisnce and =x,(¥ 0), 1< i < ¥ are the

1 - )
where (- denctes
iary variable .Y, correlated with gf :

known values of an auxil
Godambe nag piroved
Theorem 9.2.L1: Wien g ig an intesger any strategy

g Gl )| 2 | B/ B A B

|
e

ed to L(H, w), 4 (H,u)

8 teen generaliged
Godambe and Joghi [17 ] and
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216

E.™ &

S

Vijayvan { 64 respectivadys It ig known that the theorem

[

true For the class {\g with g # 2. We propsse to ghow

-

vhat.the theorem ig not trus even for Ny, if y is not an
b
integer. Let C, dencte the coefficient of variation for

X, and@ C that for the super-populaticn, given by

p =
0. = - and C = o (9.200)
X ¥ a
where ci . % ; (xﬁ-'ﬁ)ﬁ; Congider the strategy HT(dl’t1)
- - i:l — . ' L —
whera d, 1o the design obtained by srewor of size n and

n4d Vs (prreobabilities 1= F and T Tegpectively and tl
1z The usual estimator, namely Ny, for the population total.

One can eagily chieck that N M g L,(H, ). Ye now

then there oxists a value GO Tor the super-population para-

meten C,y, such that Il(d']’ t ) ia hoire Pirecige ox leasn pirecis

205

(in the L n-expected variines sense) than the strategy

AB o? e) in Th 6“em (Selz 5y accoxding ag ¢ < CO ar & > CO-
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Pos
2, oV By ¥) =
and

One cen easily check that, T

= X7a" (I + ko
i L

B = Ge? the two strategies are equdlly =f

=
0

o O
i)

o
e

: ’ 2.Z ‘ 2
s AT Ry ¥) = XTa" (K + K C%)

1, N 2
b 5=

L]
T
i’ - o B e T g

cp— Y

any 43¢

-a sy

T 5 = g A N B NS ‘
G o ) - ¢ gTULY) = X (k) ~ky + Kook,

217

e

fieiant,.

B

(5
[

(9.52 e-ﬁ‘&")

(9246)

{Qnﬁ <7)
(:8 i .g}

(942.9)

(G210

&
R

cigh (948,10)

One cun eanily check that k,-k, > 0 and (9.2.4) implies that

the tTheoren ig gived 'b-y

From (€eZ,11) it Tollows that the value of

g, 1
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Yo,
s
o n o B
0_. \_/ kg“ké &
Q.e-odo
Remoxk 9.0,.1: It Ew nois d_zllcu t to establish that ir at

11 thers exists a £ o-best atrategy in LI(H’ M), then it
should be of The form Hb(do, e) considered in Theorem

(942.1). Hence it folliows From Theorem (9.2.2) that under
condition (9.2.4) thera does not exigt a D o-begt strategy

4, M) when u is not an integer.

9«5 | Bstimation of variunce of the Hl-egtimator

1)

Porx any sampling design p fox» which n,(p) > ©C,

R o

'}

.
e HT-egtimator &ls, ¥) is given

hn

1 £ 3 £ Wy the va=izies of +i

S = i1 E;T57 = yi+'f£3 z (5 'Tbin Gy Ly .

(943.1)
Two unbiaged estimutors have been provosed in the literature

fOl" \r(e(x),-‘f)) in (905'1) ) namf?l:,"
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o’ w50 -y (D) (B) ¥y ¥y
Vop = X 7S y;. = kSO * T.Xp) m.ip)
H e ~(p) o —#Je mig\P) o) i

(9e342)

T, (?)n () - ms(®) v, T3 .2
2 (Tﬂ_ J (TE (:—' - ( ) s
) 1)) nj p)

J 1 (9.343)

3
;.a.

The estimate V. hag been proposed by Horwitz and

; . Y o e
Thompson [©6 ] and vy, by Yates and Grundy {66 J. While
Cen be used for any sampling design in which V(&(s,y))

ig egtimable Vye 18 applicable only for fixed sample-size

1~

designs in which V(&8(s,y)) is estimable, since it becomes-
biaged Tor varying sample size degigns. Yates and Grundy
{ 66 ] nave vigorougly rejected Vyp  in (9e342), preferring
Ve in (94543) on the considerations of sampling rluctuations,
mostly based on illugtrative exampless From (9.3.3) it is

2o e . = - LY

obvious that a get of sufficient conditicns Tor the estimator

VYG to be non=negative ig that

o4)

1

mss(2) <y (o)n (o), 1 ¢1 45 <m (9.

Thug we have the Tollowing interesting problem:

Given a population

U= {1, 2yae., 0}
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I ==

D% | % % i

{e

L, Ty

i

14
1

M

7

of N unitg and numbers i, yTosesss Ty such that
L i Ly

¢ an integer, doeg there exist a sampling design P

satiarieg

) T (0] | Bl [ € B I
S (&) = U o all seS  guch that
= @ila) >0
el nij(p) > 0 L <143
iv) nij(p) STy MR A A o A

The answeir ig known to be 'yves'! and variocus autlio

metinods of construction of degigng satigf

71

fyin

ng

all

-

22

(94345)

> (9,3.46)

g nave gilven

the

anove

conditionse Hanurav [ 21] put Torward some more conditions to

te satigfied, namely,

Ty (p) .
V) T (D njrg) ig not too small (1<t £3
i n*j(p) is eagily computable from g si

ma

mple

I

)

fTormala,

vii) The computations involved in the method are not too

1 e
Ile a7y J’ .

We witl not botiier about conditions (v), (vi) and {(vii)

N

since they are highl

¥ subjective and are ncot relevant in a


http://www.cvisiontech.com

~igorous mathematical treatment.

rundy variance es atimator

ing sample
conditions

designg sat

Yateg

, non-negativity,

those condition

®

Below we modify Yates

ok,

in (9.3¢3) to sui

after deriving suf

5 in a special casé.

and Grundy variance estimator

Foi
Y (e(b.) ,y))

v(8(g,7))

+

s

wileire 1

T dig the
"
Z n.(p) - N,

(9.0.?) is unbiasedly

unbiased egti

Vs

any

in (9341

design a(s,p)

1y E(n(@n(
) #3

N

E [(1 - ’)ni(P)

, direct calculaticn shows

) can be written as

=¥

(P))( % ) = njgp))“

)

E‘-D

.-5———-

I
+ 3, ™ @%ﬁm(ﬁ]n(p

J

i)

221

'and

Ticient

we prove the existence of

tihat

(9e¢3e7)

the largest integer not exceeding E Ty (p) and
N i =

Ir~actional part of

Clearly

mator of the
f"}

w7

v

z a,(p) ==
iga - ns (p

e firgt component of

r

U (ﬁ), namely

V(e(s,yy))

Vye in (De343) 6

econd compcnent is given by

An

(9e348)
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where
¥
a; (p). = (- D), (D) + z nij(p)— an, (p)e  (9.3.9)
o = el Sl <

The modified YG~variance estimator is given by

Yye¢r = Vyg * Vg (9,3.,10)

ig clearly unbiased For V(e(s,y)) in (9.3.7). Algo it is
easily seen that a set of gufficient conditions for Vyap to

be ncn-negative ig that

1) nij(p) < ni(p)nj(p) (1 < 1£3 <) (9.3.11)
Sl a,(p) 2 0 1 <1< (94341%)
where 2,;(p) is as defined in (9.3.9).
"Remaik 9.341: For a Tixed sample size design, £ = 0 and

a, (p) = 0 and consequently <V, = 0 so that

Vyer = Yye

Ye3e% _Special case

How we consider only those designs, p, for whieh

Vp(n(s)) = £(1 ~ ) (9.3.13)
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N

nis’ = n with probability 1-f

Il

e
L
o
[ ]

(943414)
n+l with probability I -

Such degigns have got the advantage that, under a linear cost
function, the variation of cost among samples ig a minimum and
survey-practitioners congider random costs undesirable.
Moreover, we have mentioned in tie previous chapter that given
any p satisTying (9.3¢5) and (9.5.13), it is not possible o
congtiuct anotiier design . p' ‘witb tihie same expected sample
size ul(p) for which the corresponding HT-cgtimator has

wmiformly smaller vaviance than that for p. For any design

satisfying (9.3413) it can be casily checked that
i3]
% TI:_T.(]_)) = n‘n:ﬂ.(p)—n '?(p) (905015)
P A = -
where nni(p) = = plg) and T stands Tor summation
g V)i g, )i

over all samples of size n containing the 1-th unit. From

(9e5e9) and (9.3.15) we have

a;(p) = (1~ £)7, (p) . mq (D) (943.18)

Hence the goneralised YG-variance egtimator becomes
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61~ D)n, (

PX
ics =

Trom {GeB3sll), (9.341

e

r
.

Lo
|-

) = nl’ll(p)] (905017)

(p)

- A

T

2) and {9.3416) that a set of

It follows
sufficient conditicng for VYGR in (9.3.17) to be non-negative
wil= W P =
) 1y5(0) < =y (p)m (D) Q<1 £3<M  (9.3.18)
LI 5 - 5 .
1) Tns (P) < (L= )ny (p) (1 ¢2¢m, (9.3.19)
low we have the generalismed problerw:
Given numbers T, such that
. . N
O <my <Ly 1 £3 <0 and T, =n4f >1
i=1 =
| (943420)
Wiere n 7 e e &
%nc I are respectively the integral and fractional

paxzt of 3o,
. i

i=1 -
Ties
1) ni(IJ) = ‘ﬂii (-— _< d
E0) vp(n(s)) = £ (1-1)
134) nij(p) >0 1K+
iv) nij(p) < ni(P)nj(p) (1
) nni(P) < (1L-7) ni(P) (

does there exigt g design d(S,p) witeh gatias

L
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We now ungioy the questicn in the efTirmative in the

1llowing

&)
ot
]

g o ]
Theorel edel: Civen n.'s satisfying (9.3.20) there ex

= - i

pe)

a design p which sabiafies (943.21) and-moreover
ns(p) >0, 2L LW (9.3.22)

Proof: We propose to prove the theolcm uging induction on

He For 1T = 2 the theorem ig evident Tor congiderw the

sample probability
s p(s)
il a4 = T
2 1 - T
1,8 AR P

It ig easily verified that p ag defined above satigifies all
the conditions listed in (9.3.21) and algso (9.3422)« Now
agsuming tnat tie theorem ig true for gome 1, we gshall ghow

that it ig true feor Hele Withoud

ot
[ —
o
e}
m
o
14,
g
o
=
(6]
R
o
I“"J
H -
)
=
[0]

Ty £ My $oeee Sy (9.3.23)
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Let
Wl
Y m, = n*¥ 4 I* '
o a
ie=1 -
where n*  and I©*  are iregpectively the
EN
tional parts of AT, .
l —_
Cage 1: n* = 1 and Ty 2 T
Since m, > T*, from (9.3.83) it Tfollows
Ty 2 L 1 <4i < 04,
In thig case we directly give a design p* whi
all the required conditions. Congider the desi
-b,'y_ -
( Rf*e, (1+ TFeq,)
(1) = - = =
¥ (1) =75 - Fr1 (1
%o, (L4 fxem)
1 a
l —
2% m, m.
. s i i
Sl Gl = ] . ;
I ( yd/ Nl (l_g i
S g (l4fxon,
2 mg(Letr o)
Clearly
(i, J) >0

226

(Ge3e24)

integral and Tfrac-

that
(9e3425)
ch smatigfies
gn  p¥ defincd
< i< Hel)
(9.3426)
> J < N41)
(ve3427)
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T+l
1 5 gL (Lafren,)
and T 5 p¢(i,5) = ik = BX (943428)
123 %oy (Laf*-my) :
i=1 ~ -
ow uging (9s3425) we havoe
N+1 N+l
T om, (4 Tren,) > D6 % (14f*-qy)
=i = B 1 -—-l

> 8tk (14 f*- m,) since N > 2.
Hence px(i) > 0 TFor all i. A4lso
H4l
5 opF(il) = 1 4 T%-20% = 1~ Tx (9+43429)
i=1
50 that from (9.3.28) and (9.3.,29) it follows that
, Uy 41
sp¥(s) = = p*( Y + =8 p¥(i,j) = 1. Hence 7p*, as defincd
S L ix ]

above is a designe. We now chieck that p* satisfics all the

required conditions listed in (9.3,21) and (9.3.22). HNow
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(n(s)) = ©* (1~ %), Hence condition (ii).

=
[

Condition (i

)
nij(p*) = p(i,3)+ To establish

ileCe ‘ "'_ “_j_ <

witlcih 1g truc sinee f* (m., 1 < i ( N41, and W > 2. Tt
remaing to check that pt satisfies: (v) - and (9,3.22).

How
27 (14 T 1,)
) T Vi

2T* (L4 f* - ¢
Cey - g g S %
T, Do) T
i.e. 2(:’.4" TH w " > o AL % ~ R
R na( + nJ)

iace 1-m)" + E Y - TC S o
L ) j i -
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i

which ig truc since m. > TF, for all j. . Condition (9.3.22)

j —
ig obviously satisficde Thug proof of casc 1 is completee.
Cage 2: n¥=l and n, < T¥ or n* > 2 and n, S £*
e s
In thig casc, )
T omy =nk o4 (PEoqg) > 1. (943.30)
i=2 - 3

Since the thicorvem ig assumed to be true For W, there exists
a deslgn p corresponding to the population congigting of

the ¥ units 2, 3jeev, He4l which patisfies

(@) 7, (p) =2y (2 < i < T+1) :

() Vp(n(s)) = fl(l— fl) where Ty = DF- g

(e) nij(p) %10 2 % i £ P Fal)y 1§ ensesl)
{a) nij(p) $mg my 2 < i A3 N4 g

(&) mpuy () & (X-i))m, (2 < i < Wel)

(1) nn*i(P) > 0 B Ed<He )

J

It is clear frem (943.51b) that p gives positive probability

to sampies of gize n* and n*+l only and

pln(s) =n*) =1- 1 =1-1* 4+,

p(l’l(S) = 1’]_*-}-1):: il = T*F . T ! (9.5052)
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Tow construct the design p*¥  corresponding to the population

of (¥4l) units asg Tollows: To any sample 8 of gize n¥

for 7p, include unit 1 and put

n*

-
Consider the sample 8, &5 a sample Toxr pk, with
A -_l_ ’ o rr
o (Sn*) = (1-— l_-'T-‘) p(un*) . (9.3-04)

Any sample s of size n*4l for p 1ig retained as a

(S
(5
ct
Fou
=5
(0]
g
[

]
i
O
o
©
o’
IBS
[

wda

\_‘-l

L

sample Tor p¥ wit

[mf

Since mq £ 1= it ig clear that p* as defined above ig

1

a depign for the population of N+l units
LeCe p* (8) 2 0y for all g and I px(s) = 1.
g

loregover, Trom the congtruction of p*, We have

my (p*) =n,(p) (2 ¢ 1 < W) (9434536)
and my5(P*) = 5 (p) (2 <143 < Neg) (943437)
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Aiso‘ nj(p*) = T 3 (943438)
'ﬂ'.t . -
g (0F) = 7 s (P) (2 <1< N41)
1i 1~y il
(9¢3.,39)
and -
K - 1 Y - 3
P*(H(S) = n*) =) (_L- Tt )(':l_- 11) = 1l-T%, (9-5040)
1-%q 5.

We now check whether p* satisfies all the required conditions.

Prom (9.3.36) 2nd (943.38) we see that pf satisfies (i),
Cleazly p* gives positive prabability to samples of size n*
and n*+1 only and hence from (943440) it féllows that condi--
tion (ii) ig satisfiede Using (9.3.51c), (9.3¢31T), (9:3.37)
and (9.3439) it is casily seen that p* satisfies (iii).
Again using (9.3431d), (943.36) and (9.3.37), to see whether

=

p* satisfies (iv) it is cnough if we check
My (%) < mymy 2 <1< N+l (9e3.41)
Using (943¢39) in (943.41), inequality (9.3.41) becomes

nn*i( P) .S (1 - f_l)n_f (9&504:2)
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Tq (—l --‘*)nl’}.*i(p)
it ey () = O - TR () = iR > 0,

Trom (9.3e44)

J
ot

immedi gtely Tolliows that p¥ satislies

—_
<4

—
[
I
1=

-

nn*i(p) < (1- Il)ﬂ;.

s

, 2 <1< Held
which is true by the induction assumption.
From (943443) and (9¢3.44) we see that p+ dces not satiafy

=

(943422) since nn*l(p*) = 0. We get over thig difficulty by

I

the following modiTication, Since =n, £ ©*, in the same way

Foa
ag vie congtructed Pk corresponding to mw,, We can construct
a design »¥ for the population of (I+l) units which satig-
fies all the requircd conditions sxcept (9.3.22) as
T (p&) =0 How define a new design p o
n*g s T i i i ehlgh P, ag follows:

—i> 1

P (8) + pT(s)

pi(s) =

2]

Iists

[

8 eagily checked that pﬁ satisfies all our Tequired

)

conditionge Thug proof of the theorem foir case 2 ig complete.,
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CEge B @ 2N vand T, X Ik

Had
How mq + X Wy = n¥ 4 T* w g

Since the thecrem ig assumed to be true for W, there exists

a degign P for the pepulation of W wunits 1, 3, £,s4.,0+1,

(a')  w;{ng) = m, (1 <142 < W)
G )y - "5 Gallol)= &, (T 25

PS ¥ ¢
(e*) nlJ(pH) > 0 (L < i A 3J AR <)
(ar) “13(p5) Smy oy (1 <1 43482 <)
(e") T (e ﬂ>(p5) < (1~ fg)ni A ke ¢ Wed)
(f*) T(gko1)s (Pg) > O (1<1 A8 < W ael)

Construct the design pf  correspending to the (N4+1) units

]

as follows: To any sample Spx.y ©OFf size n*-1 for Drs s

inelude unit £ and considex it &8s a sample for D with,

Ol ¥

*
Py (84982 =

S(Sn*—l)‘
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To any sample S of gize n* dinclude unit 2 and put
* o % .
pS (ulfl* H "-‘) = fﬂ ps('-’n*) ~
f29)

o]

- AR
Al go retain the sample S 28 & gample Ior Pr with

i
*
Pt

iy
R
jox)

}I

*
pB (Sf(l*) = (1 =

. ; : * . )
As in case 2, one can check that Dry 88 defined above,

)

at isted in (9.3.21) and

|-

l-..J

gfies all the required conditions

(243e22)¢ We, however, omit the details here.
qﬂeldo

-

We have proved only the existence of degigng - except TLow

cage 1 - Toxr which the generaliged YG-variance estimator ig

wi

non-negatives ‘The actual construction of such desipgns, lelt

]_J

ags an open problem by the author, hag satisTactorily been
olved by Sankaranarayznan [ 56 ]. However, extengive
empirical investigations are needed to judge the relative

performance of the generaliged YG-variance estimator over

the Hlevariunce estimator.

Y e b e e s e o  B%
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