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INTRODUC

This thesis consists of four chapters,

-

The imnetus for the wrk in Chapter 1 comes from the
concept of 'cenditional abtom' introduced by Heveu L[19], Here,
using conditional atoms we gencralize the concept of nonstomicity
of measures,(We confine ourselves to probability measures), We

obtain generalizations of results on nonatomic measures in [1],

L3) and of Liapounoff!s theorem,

The results 1n Chapter 2 haove their origins in a paper
by Boylan [7], To study 'equiconvergence of martingales!
Boylan introduced in {7] a metriec on Tthe space of complete
sub ¢=algebras of a probability space, A little later, Neveu
showed in [lQal, this metric space of complete sub o—algebras

1

1s "tight' § that is, if tw sub g-algebras are 'close’ under

’
this metric with one contained in the other, then thers is a
set (a conditional aton), with 'high' probsbility on which the
traces of these o—algebras coineide, In Chapter 2 we investigate
what else this metric spacce lg begides being 'tight?, We prove

a host of results concerning the topological properiies of this

metric space ; we alsc study an lscmorphism problem,

Chapters '3 and 4 are de votod to problers in martingales,
In Chapter 3 wo prove a convergence theorem for 'fairer with

time processes! ( 5 gencralizaticn due to Blske of martineales
£ g
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[41]

in [5]), In Chspter 4 we disprove with the help of an example
a conjecture on singular martingsles made by Luls Bacz-Duarte
in [14],

Some of the results in this thesis have already appeared

in print, Sece [23] and i{24],
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CHAPTAR 1

e 20

A GEVERALTZATTOW OF NOWATOITICITY OF MEASURES

! IntidnaEied ,

Let (), A, ¢) be a probability space, Let ']"\‘IM denote
the class of all wu~null sets, In [19], Neveu gives the following
definition that generalizes the classical concept of an atom of

a probsbility svace,

Definition | Let 3B be a sub o=-algebra of 4., A4 set A e A
is called a conditional atom of 4 with respect to B if
g () >0 and the traces 4 () A= 4 () B (modulo E_JM) 3

(that is, if for every Ac A one can find B e 3 such that
p(a ) Aa B ) A) =0). In symbols, 4 is a (B, &)
atom,

It is easily verified that 1t B={ ¢, {1}, the
conditional atom as defined sbove coincides with the classical
concept of an atom, This gencralizabion leads, in a natural

way, Lo that of the concept of nenatomicity of & probability,
Definition 3 p 1is sald to be (B, &) nonatonmic if there is
no (B, &) aton,

Clearly when 3 = { 7, () }, this concept coincides with the

classical concept of nonatomicity | so when nx is (B, A)
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Lzl

nonatomic for B = { 7, () } , we shall simply write p 1is

nonatomic on A .

In this chapter in section 2 we give scme characterisations
of (B, &) nonatoricity, in section 3 we consider the product
broblem and in gection 4 we obtain a generalizotion of Liapounoff!
theorem, Section 5 is devoted to a generalization of a result
of Halmos, In section 6 we study this nongtomicity on Polish

(complete scparable metric) spaces,

In the seguel ( _(___l, A) will stand for a measurable

space where 4 1s a o-algebra, 3, 215 Boress, ote,, will

denote gub o~aglgebras of Lol Ag,, ete,, will stand for
probability measures on (_ﬁ_“_l, A, Let Ae & and £ bhe a
A-measurable function, The conditionsl expectation under «
of I, (respectively f) given B will be denoted by PM(AH;))
(respectively Pu(flzB)), A statement like ' Pﬁ(fl‘B’) = g 'yill

mean that g 1is a B measurable function and Pﬂ(flg) = g a,8,w],

=]

Following Boylan [7], we can introduce a pseudo-metric
dﬂ on 8, the space of all sub c-clgebras of the probsbility

space ( (', 4, 1), by setting

= : B.) +
du(gl, B,) Bs;l i;zg u(By & B)
L= 2 =
su inf u(B o B,)
B_e B,eB

2.'=2y =
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3]

|

for By, By e &, This distance gives us an useful characteri-

sabtion of nonatomicity, Tor ocur study we need the following
result, a proof of which can be found in [19],
Theorom 2.1 et w1 Be- (B, é) nongtomic, Given any B-measur-

able function f with 0 2 f <1, we can find Ae 4 such

[

that P (4|B) = r,
g

The folleowing well-~known results will be used without mention,

Bvery cowntably generated o-algebra is atomic, A measure on

a countably generated o=-algzebra 18 nonatomic if and only if

the measure gives mass zero to every atom of the o~algcbra,

2. Some characterisations of nonatomicity.

Theoren 2. Let o be (B, ___A) nonatomic and N << g, Then

A is also (B, 4 nonatomic,

Proof i Let g denote a version of the Radon-Nikodym derivative
of A with respect to p, Let D= .{g > O];, Observe that

(1) 2 (D) =1 eand (ii) for any Ae 4 A (D we have

A (4) =0 1if end only if o{& = 0, Now, let if possible A
bea (B, & () atom, 3y (1) a4 () D) =x (4) >0,

Also, since any subset of positive measure of a conditional

atom is itself a conditional atom, it follows that 4 () D

is a (B, 4) ) atom,
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Thet is, (4 () D) ) a= (4 YD) () B (modulo J).

This implies, in view of (ii), (4 Yoy () 4= (a () DCHB

(modulo ;,T\_Tﬁ). Again, by (11), w4 (YD) >0, So A (M D

is a (B, & (#) atom. A contradiction, Hence the theoren,
Before proceeding with the next result we would like

to observe the following, Let (_ B Then for any [,

=] = =Dr
d,(8, By) < 1/2, This is because,for any By e By,
- ggf p#(B; 4 By) = 0 and for any B, e 3o, BlIglf w(B; & By) <
oo 188

min { u(By 5 #), u(By & () )} = 1/2,

Theoren 2.2 £ is (B, 4) nonatomic if and only if for every
X< <p, we have &, (B, &) = 1/2,

Proof + Let z be (B, & nonatomic, Let A << . Then by
Theorem 2,1 A is (3, _LA) nongtomie, By Thecrem 1,1 there
exists A e 4 such that P}\.ubl:-B) = 1/2, MNow for any

Be B M(A 4 B) =X (f =B +2(B~ A)

Il

=J I, d+ §,I,ca

RC T4 B A

- uE ¢ =8
_écp?\ (%15)&4-%13}\ (a1 B) &

tl

1/2) MB%Y +(1/2(B) = 1/2

e infA (A A B)Y=1/2, S = > sup int A (4 & B) > 1/2,
Ec B N < fep Bl
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5]
Hehce dl(zB, g) = 1/2 and this completes the tonly if! part,

Let 4 be a (B, & (u) atom, Define A on Aby,

for Ae 4, A(Q) = u(%) . Clearly N <<y, ©Since, for

every Ae A there is a Beg B with pl(a a B) ) AO] & 8,

we have AN(A & B) = 0 ¢ hence dy (B = 0 and this completes
: ] A =D

tile 41 T plarite
Remarks . With the same proof, therem 2,2 can be recast as

v is (B, 4) nonatomic if and only if for every & << pu, we

have dy (8, & *0', The following stronger version of
Theorer 2.2 can also be proved, 4 1is (B, & nonatomic if and
only if for every X = p we have &, (B, 4 = 1/2,

Theorem 2.2  Levd - B, (_ B, If p is (B, B,) non-
)

it

[
115w}

atomic then it is ( nonatomic as well,

i

B
12 =

oo

Proof * Tor sny measure X, from the definition of dy it
. 1ie
) 5 & (B, Bg) 2 g. TNow, an

application of theorem 2,2 gives us the result,

is clear that d, (@1, B

The next theoran helps us to generalize the result
that g is nonatomic on 4 1T and only if it is nonatomic

onh a countably generated sub gd~algebra £ of 4. (See (1),
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[6]

Theoren 2.4 Let B and £ Do sub o-algebras of 4. Let
1 be such that (i) p is nonatomic on § and (ii) under

@, the sub o-algebras B and £ are independent, Then p

hi

is (B, BV L) nonatomic wvhere BV C stands for the o-algebra

)

Ce

generated by B and

Proof + To prove this theoram we assume that g 1s not

(B, BV C) nonatonic and arrive abt a contradiction,

Obhserve that the collection

m
() ByC e Bye s CGyel, 12 Jzxm )
I o=k

D= B.C ("‘)B,cj, g ir 1 <3i#3i' 2m

is an algebra generating B V L, Let 4 be a (B, BV 2)()

atom, Let O <eg = P(AO). Choose and fix

o

o
B.C. D ich that A B.C.) < 4 2 cEX;
Jg;% ;G5 € D such th t w4 g:_:i JCJ) e/4, For easy

understanding the remsinder of The proof has been divided

into a few steps nurbered (S1) through (84),

(8;) For any Ae B V g, thereis Be B such that

m

n
(L) B,C,l < ¢/4,
szp 3

=1

pleaa B O)
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Since 4 is a (B, BV $Y(u) stom, given A thereds

Be B such that ul(a a3) () f1=0, Therefore,
m ~
plaa® O () B.C.) cul(an®) O) alt
J=1 J J 1’“
n{(s0B)CX :% - &)
IY‘
20 +ulC )Bf‘)A 81 2 e/a,
'}ﬂt

Hence (S1)

(82) For 1 <J <m, choose C? - Cj such that

u(cj)
p(C?) = =5 Sueh & choice ig possible as o 1is nonatomic
- m
on & Take D = §_=_;))_ Bj CCJ?. By (81) fthere is BO e B with
o
ul(d 4 3) (7Y () B.C.] < /4,
i=1 373 1
o
m u gzi B,Cy)
(83) U[(D & B Wl » ) 3 C )1 = z . We present
Tk
the proof below.
mo I’”O 3"1
(pa B) (¢ () B.c)= [ L) B 5y 8B (L ) B, c;) ]
o o 3=1 JJ j=1 J iE l 3
m .
= [ () B -81yE O ) 3,(0; - &;N)]
j:l J d o J l J

(using the fact that B C C )B:gbax gir 543",
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=
O

I o _
So, nl(p 8 B0 ( ](:___i BjCj)} = 1 LC S

= NN ]
m m
p( B.3%) + 2wl )
z : & (G, = CL) B.B |
j=1 i = jzl "t 57 P57
(using the fact that 3303( JILE gC], = ¢ 1r Z 31
m 'S . 1 ,
=3 w(d)., 23,3 + £ (. - &2 B
Pt ol s Gy - C3). u(B;B)
(becausc of independence of 3 and g)
m_ m
_l[ o © H—
Z u,(c }u(B B ) + 2 p(C,) p(B.B )]
2 §=1 j=1 X J ¢
{(by the choice of C‘g, 12 2m)
mo i1
1 s 2
=3 I wC)p (B)=7 I u(g3)
i=1 ¢ i=1 )
"o
=TuC (B, 0,
j=1 AN
Henece (83}, n
o
b2 (0 Y B,C0.9 ‘
S d=1 _J_ ¢
(84) 3y (323) ana (82) . <e/4, Do,
Tﬂ
Pl a ) B, C ] =e./5
=1

Iﬂ

On the other hand ,LL((( )330 ) i\ﬂo) <e/4, This implics that
Jj=1
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(o]

m

G -
uw( (C) B.C.) ¢ —-e/4=‘i‘3'
theoren,

Lenma 2.5 Let u

- —] >0
such that Pu(AolzB) € .

vith Pu(fallg) = ¢ /2,

Proof ¢ Let Ky be defined on Aby u
0

be (B, &) nonatomic,

A contradiction! Hence the

Let AO e 4 be
Tnen there is A e 4 & (. 4

nia ) AO)
pla)

(.A.) =

*

A

Ae A, Since MAo << p, we have ,u,Ao is (B, A nonatomic,

S0, by theorem 1,1, there is

A

. R
e A with P#Ao(iﬂ,l];j%) - o

ds p, (A) =1, we have uﬁo[(ﬁl M A) b ALl=0% s0we
. :

can teke 4 - A and PUA(AII‘-B) = Jé‘ Now, for any B e B

_ wla ()B) (s ()B)
g, (& (YB =Ly (B = =+ 2 (as .
4 ! 24 p{a) 2 u(AO) 23 - AO)
___};J,(Al (M) B) 1 1 (B)
pla) 2’ M(AO).

Therefore, P

. e/2,

Theoren 2.6 pois

a countably generated sub o-algcbra §

£ B and ¢

are independent and pu

Henee the lemma,

(B, & nonatomic if and only if there is

of 4 such that, under
Ce

is nonatomic on
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Proof: Let C be a sub o-algebra of 4 such that u 1s
nonatomic on & and under u, 3 and G are independent,
By theorem 2,4 g 1is (5,3 V C) nonatomic, Since BV & . 4
by theoren 2,2 p is (B, & nonstemic, This completes the

proof of 'if'! part,

For the proof of 'only if' part, we obtain a collection

S0 Ao
A1 boo foq bog
e . s ;-o F Y (*)

A Ao A3 see ean AT

of clamonts of 4 as follows M, ¢ 4 with P, (4,12) =1

o 7
= & I e tha : B) = 5. After having
and A, i A, } note fhat PM(A12|§) 5« After having
obtained the sects in the nth row of (¥) satisfying the condi-~
i = 1_11 R > o] i 1 I ol
tions that { s L Xk £ 2} is a partition of {2 vy
2 Pﬁlf,(%glg) = 1/2n, we obbain

L-sets and for any 1 <k =

the sets in the (n+i)th row as follows., A . ¢ (L A4 with
1, Y

=
; = = = - g ~

PM(An ﬂ’lij_ij) ) nd Ay o5 Ay Ao, More

Py a 2] A £, 11 ) & =

generally for 1 Sk < 2% Ay geog (o Ay Wit B (A o 43

el

2n+1 and %+1,2k = Ank = Axﬁ-l, of—1° Such a congtruction 1s

possible by Lemma 2,5, It 1s clear that {‘p‘m—l 1c? 1
. ._ .

1< 2n+1}

* o - - o i — — — -
ig a partition of { ) by A-sets and Pu(‘&h-l-l,k l :B) 2"]"'*‘1,1_!_1 "
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Define £ to be the o-algebra gemerated by {A,,1 Sk <2

s 1
and n 2 1}, Since for 1 <k =2 o . M(Ank) = —— 1t is clear

2"

fhat pmeasure of any atom of £ ia zero; alsoc £ 1s countably
genergted, Hence g is nonatomic on L. Obgerve that the
dollection of sects {D t D is & union of some gsets in the nth
row of (*) for some n = 1} is an algebrs gencrating & .,

So, to check the independence of £ and 3 under u 1t is

enough to check that p(D () B) = = (D), n(B) for any Be B

end D from the above collection. Let D, = () A where
‘ i i n k
0 ke 0

J 18 a subset of 1,2,,..,20.

For any Be B, u(DO () B) = kEJ ,u(An I M B)
ke 0

= & I d
ked B Anok

= Z

R ’(A
ke d e noklg)d#

i

J
B

3 u(B

ked

it

1 (BY, u,(DO).

Thus B and £ arc independent under n, This completes

the proof of 'only if' part and hence the theorem,
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hich
3., The Product Problom

Let (_(:M_)_l, 4 s ’U’l) and (__C__lz, A, u,g). he nrchebility

(A i=1,2, In this section we investigate
T =X .

the probler of u = py ™u, being (§1 ) =B2’ b, ) z_‘}%)

spaces, Leb

L

ez

nonabori e,

Inecoren 3J ¢ is (B (%) E ) 4,) nonatomic if and
only if either p, 1is (B, %_) nonatomic or p, is (Bo, &)

nonatonic,

Proof* 1f there arec scts A1 and A2 such that AJ is g
(]__35_, A_i) (ui) atom, 1 = 1,2, thon clearly & > A, is a
@1 G) §2, £ (&) 523 ( ey < 'U’Z) atorm, This proves the

'only if' part,

Let p, be (B, 4y ) nonatoric, We shall show that
By <pg is (;31 x) §2, Y (%) .1;2) ronatonic, 3By Theoren
2,6 there is __C_}l (_ é’i sichy &hzb #4 s nonatoric on gl
and under 1y the o-algebras 91 aind ;51 are Independent,

4 ~ [ ey MNet >~ i noned i ;r:_. 5
It is easy to see thet pq ™u. is nonevomic on & (x) {(Qf,.ﬁ. 200}

A , - - . : o -
and i e ["'l X'LLZ? Ql (-{}) {g, L ,)42} (ilﬂ’.d _;31 \_]‘_() :B2 aro
independent, Hence by Theorem 2,4 the measure u, >py 1s

2 (3 % B, Vo (% T o AL A
(:31 (_._) :-1_32! :Bl (X) ng LC}l (L) .{ @', _L _)_2 ]:) nonatomic, Now,
an gpplication of Theorem 2,3 gives us that p, >u, 1is

(;‘31 ) o0 &y ) :1_12) nonatomic, This completes the proof

of "if'! part and hence the theoren,


http://www.cvisiontech.com

L13]

Remark® The above theorem zeneralizes the theorem of (1]

for product measures,

Let A be a measure nn ( Lﬁll >E£i22, @1(z)§2). Let
A, be the marginal on ( Lﬁli, éi)? i=1,2, Then it is known
that if one of the li‘s is nonatoric then
so is AN (See {11), This however does not generzglize as

shown by the example given below,

Exguple 3 For 1= 1,2 1let Lflﬁ = [0, 11 and 4 = the Borel

o-algebra on (0,1}, Take B, = {ﬁ, ( ll} and B, = 4.

Let X be the wmiform meagure on the diagonal of Lfll > Lﬁlg,
Then it 1s clear that A T Ay = the Lebesgue measure on 0,171,
So Ay s Q@l, él) nonatomic, However AN ig not (EI(E) B
§1C£) ég) nonatomic since the diagonal of ,ﬁj)l ><£—22 ls a
3 & By, 4 @ 4)Q) atom,

4, A gsencralization of Ligpounoffis theorem

In this secticn we obtain a generalization of the classical
Liaspounoff's theorem, Our proof is essentially that of
Lindenstrausse! of the classical version [13] with suitable

modifications,

ITheorep 4.1 (Liapounoff's Theorem) Leb [1q, Loyese,i, DO

(B, &) nonatomic measures, BHeuip I, ( ﬁf}, 3, ui) with the
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w* topology (that is, the weak topology induced by Ll( ), B3
let L, (,u.) stand for this space. The seb
{(Pul(ﬁig), Pﬂg(AD)""’P (4B /4 e A], a closed convex

_subset of I (ul) > L (U,Z) > esex T (,un).

Proof* Let n =1, DBy theorem 1,1 it is c¢lear that

'{Pﬂl (AlB)/ Ae A} =4f L 02121 and fe Tpo (92}

and hence the result, We Vcomploto the proof by induction,

Let © =g T lg + ove 1 Lat
w:{g;o_gggl,gslbo(il .g,u)} Equip Ty, ¢ {2, 4 u)
with the w* -topolosy, Then it is known that W 1s a compact
set, Clearly, W is convex as well, Define a mapping T from
Woto Ty, (q) =Tg, (o) >t = L, () by setting, for g
in W, I(g) = (Pﬂl(gllj), P (zlB)

we show that T is continuous, Let {ko(} be a net in W

(21B)), Presontly

Ll’z g te vy M

converging to g, in W, Consider he Ll( _(_"_)_, B, ,u,i) for

dgs . -
some i, Observing that h, "“di‘ 1s in Ll( _(__l, A ) we

have

§ Pui(go(@)h duy = § gy eh duy
dgs . dg .,
s I gc{ oh- C],LL / IDO h dJ-L du’
= [g hdyy = (g, 1B) h duy


http://www.cvisiontech.com

L15]

Since h and 1 are arbitrary it follows that T is continuous,

So, T(W) 1s a compact (snd hence closed) and convex (gince T
is affine) subset of Iy luq) *Tgg (g7 e ee ™ I (u, ). The proof

would be complete if we could show T(W) = {T(ID) | De &},

Let  (hy, Doy ees, h) e T(W), Wehave to exhiblt De 4
. m - = m1
vith T(Ip) = (hy, hgyeee,ny)e Let W =T (il T eresers LH VR
W, is a compact convex subsetb of W, By Kreln~Milmen theorem
WO has extreme points, Let g be an eXtreme point of WO.

We shall prove that g = Iy a,s, (¢) for some De 4.

Suppose not, Then for some & > O ;_L({ e €g <1 ~ s}.) > 0,
This implies that for some 1, say 1 = 1, ,u,i({s L e 5 1 - 5};) > 07
that is ul({sggf_l—s}) > 0, Denote {e_ggjl-e}byz.
Choose an 4 measurable subset A4 of Z such that for every

Bedou (A2 DI >0 andpl(z- 046G (Hz)] > o,

)

(Such = choice is possible since 2 is not a (B, 4)(u;) atom),
By induction hypothesls, we can find 4 -measurable sets B and

¢ satistyine (1) B C 4, ¢ (C z- A and (i1) for 2 51 <nm,

2P (B|B) =P (4AlB) a p (¢|B)=17P, (2~ AB).
iy | B) Mi(nl,ﬂ_) nd 2”’3‘. | B Uy | 2
Choose end fix versions of P (B|B), P (AlB), P (C|D)
e = #q = My =
and P!-L (z - AlB), Denote by x and y the functions
1

oP (B|B) - P (alB) ana 2P (C|D -P (Z- AlB) respectively.
!ul . ;U’l = .Ul - »u'l a
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Define two Brmeasurable functions s and t  as follows,

s =¢ and t

i

m

o}

=
-,

[}
o

<

pod ,_,=O];,

g and t=0 on { x=0 y#O},

[#}
]

s =0 and t = ¢ on.{x?’o y =0},
R y
s=t,;andt=eon{0<|;('[_fl} and

r ) ;
s = g andt=5.~§_0n{|;{] >1}.

Clearly |s(w)] e and |t()| <e for a1l we ) and

sx = ty, Define a function h by h = s(2IB = IA) o oI ),

A~ =€
T Fom @ 58 Sy P, (l® =0,
i
If 221 2n, this is clear from the choice of sets
B and C 3 for i =1, this is by the choice of functions
s and t,

20. g+h osnda g=~-h arein W,

This is because |h|l < g <1~ |nl on ) so

O<g+hxl agnd O02pg~h 21,

o :
g 3 sth and g-h arein W,
J N ] o) 0
This ig immedizte from 1 and 2.
o)

Lo ul(h¥0)>0.

Suppose not, Then h =0 on Z a,s, (uq)e Tote that
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h=g or=-son A =2nd h=1%t or -t on %~ 4 So, s=20

on A a,s (ul) amd £t =0 on Z=- A a,s. (ul). Then, from

the definition of s and t we have
4 {s=0}= {x 40, 7= 0} a.s, (u7) and

Z - A (: {t= O}= {X"—' 0, y%’O} eyl (ul).

1
Il

Now, p(AA [{s 0% () zl) plla a {s = O}) () z

1

pq({s = 0} Y z- 1) =0,
A contrediction to the choice of A since {S = 0} is a B

)]
measursble set, Thus 4 ,

Fow, from a° it is clear that wp(h # 0) >0, In view
of 30, therefore, it follows that g 1s not an extreme point

of WO. This contradiction concludes the proof of the theoren,

Remerk® ~ In the above we have shown more than vhat we set oub
to prove, We have shoun that the set

,[(Pul(Ale), Puz(Alli), I Piuq(.éllrli;_))/"&s g} is convex cven

L

when the ‘'weiehts'! are Bmeasursble functicns, The paragraph

below is intended to amplily this,

Let U1y Hoseseytly, D (3, & nonatomic measures, Let
W and T be as in theorem 4,1, Let &, A, be clements of
4. Let g, g, Do two B -measurable functlons with Q< g3 1,

i=1,2 and gy +g2__<_1. Clesrly g, I + o, L, & W, Now

1 Al =2 A2
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J b = oy I B
pL (g, O, Vg, IAz | B) =g Puj(IéllE) . Puj( A2| B),

(as g, and g, are B measurable),
j= 1,2’..‘ni

So, Ti; + g Ay N= T(IA)-i-p;

g pe T(I, )., Since
e Ao 1 7 2 AE

- { T YT O e
T(W) ‘ﬂT(ID)/D e 4} we have that
g (I, ) + g, T(T

a) * 8 @) e Iy /Pen.

As a conseduence of the above theorem we have the

followinz generalization of theorem 2,6,

Iheorem 4.2 Let Bps Pos deey Iy be (B, &) nonatemic
measures, Then there is a countably ~aencrated sub o=-algebra
¢ of 4 such that each u; s nonabomic on ¢ and under
cach 5, 8 and € and independent,

Proo? § Use theorem 4,1 a2nd imitate the construction of L

in theoren 2,6, We omlt the details,

5, A goneralizotion of a result of Halmos

Lot # be a nonatomic measure on ( { ), A, It is known
that g is uniguely determined by the class of A sets on which

i+t tokes a constant value T (0 < r < 1), Mre preciscly

Theorem 5.1. Let ;L] and o he bwo nonatomice measures on

( ..(.m.l, 3., Let for some v with © <1 <1,
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{Ae “_A_/ul(A) = A= {Ae 4/ pl8) = r} . Then 4y = Mg
| This result is implicit in Halmos's proof of
Lispounoff's theorem [8], as has been pointed out by Bolkar.
For a proof of this result see corallary 1,23 of (6] or theorem

1,5,1 of L3l, Below, we obtain & peneralization of this result,

=
—_

Theoram 5.2 Let pq and u, be tw ( B, & nonatomic
measures, Let f, be a 2 mWeasuTable function with the

property ;Ll({O < s 1}) = 1, Forther, let

fae s /P, (4B = 'fo} = f{Ae 4/P, (D =1},

1 2

Then B 7 Hoe
The proof is completed with the help of tw lemmas,

Lema 5.2 Assume the hypothesis of theorem 5,2, Then

g =, on 4, Mso for any B e B,

{he 4 /PMI(A[Q) = £ . IBO} = {he 8/ PMz(AIB__) =1 . IBO} .

Proof s Let Ae 4 with u4(A) = 0, Choose Ce 4 with

P/J (c|B) = £ e (Such a choice is possible in view of theorem
2l

1.1), Then P, (c Q) Alg) =1, and P, (c - 4B =1,

dl 1

So, P, (C () &] B)=1¢f, and PM(C—All;)=f

., Hence
Eg 2 ¢ ’

P [(c(yn~-(c-nlpl=o0
Ho
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L20]
ie. pﬁg(ﬁ,]g__) = 0, This implies pg(4) =0, Thus py << 4.

4

Interchaneings the roles of Ly oand pg in the ashove we conclude

e <% Lo Thus pq = o on 4,

. ! 34 ! ¥ q o7 1 B) =
Fix B, ¢ B. Let 4 € 4 Dbo such that Pul(“olt‘-)) i IBO.

0O B

To show Puﬂ(flolfg) = £ &
el O

dpu,=f P (A|B ap
se A THLT 5o Tuy B A

i .f € °IB d U’l ¥ Oe
C

So, [ (AO (M Bg) =0 (as ulﬁug). Choose C e A with

Eultclgg = £, and ﬁug(clgg = £o (Such a choice is possible

in view of the remark following theorem 4,1), Let D= C () Bg.

The = pat T - F
Then 3u3cnlg> foel o and gug(Dlg) %I
) O &

Pﬂl(!%l§) +'Eul(Dl§)

. low,

i

Pul(Ab () oD

C (e OID) < g () BS) = 0)

PO 5, (.tfxo (_) Di_@) = fO'

fee B, (R1D +F, (0D =1, Copgla, O D) 2 p (4 (BD=0)
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1 5oy Puz(ﬂol_l;) b

Hence PMZ(AO]];) e IBO. Interchanging the roles of #q and
o the proof of the lemma can be completed,

Lemma 5,4 fAssume the hypothesis of theorem 5,2, Let g be a

B measurable function with 0 < g <1, Then

u

(1) JAe g/Pul(Alg) gl{g__fo]:}____-

{ae 4/ Pu2(A|._,__B) =g 1 ngo}},

id
~—

(11) {4 é/Pul(A[ = g I{g‘ ) fo}} -

2

(111) Jae 5/ PMI(AIQ) = I{g‘ : fo}}:
{ae i/ P!__,,g (4l3) = & I{g < fo}i.
Prooft Since & I{g - 13" s I{;3 - 3 and {7 = £}

is a 3 measurable set an applicetion of lemma 5,3 proves (i),

Let A s A be such that P, (A 1B) =g I
1

To show Pug(ﬁolg) =z I{g B fo]’ . C{ince p&l({fg > 0}) = 1,
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f N N
the function “;Q can be meaninsfully talked of, Take

h= =% 2 1. By the remark following theorem 4,1, thero

is 2 De & with

(3u1(D1§), gag(nlgg) = (n Pul(ﬂblg), h guztgblg))_

N =
low Pﬂl(D!B) Pﬂl(ﬁom_.)
=h gl B
{L) >} fo}
fo f.O..
PR SI{g>fo} (as h=gontheset
&> 5P
= & I
0 {g > fo}
.0. By lemma 5,3 P (DIB;) = I
’ Ho {g = fo}
i.2¢ h P AOIB) = f 1 *)

e > o}

Observe that since ﬂg({fo > O}) = 1, we have ,U,Z{{h = o})

1

Now, r,h,s, of (¥), and consequently h Pﬂ (z’“blﬁ), is 0 on
: : 2 :

{gjfo}. So, PE(AL_S_ =0 a4a,8, (,wg) on fgifo}.

Again, r.,h,s, of (¥), and consecquently h P,J (Aoll';), is f

2
on {g > I }
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‘ f
1.6, E? P (alB) = £, on {g > fc} (as h = ?? on {g > fo})

i,€. PM (!%1@) T g G S (uz) on {¢ > fo}, since ﬂg({fo> OP=1,

Thus P (A |B) T.
’U’Z Ol_—j ?Eg . fo}.

The other part of (ii) is sinmilarly proved . Hence (ii1),
Let e A4 be such that P ( = g I
4 43 {g < fo} .
Choose Deg 4 with

-f
(DlB) (D\B)) 0——41 4 1) (P (AblB) (gle)) +

f -
{g < 5,3 1 z - (1, 1),

Verifying that there is such a D 1is routine (using the remark

following theorem 4,1) and is omitted,

pl = T =g

Y o (— 8 £ -

Now, gulung)..(l_g A1) gulc%ig)-+1{g<gj}_ e
1-f CI-e

—_— -
G Delp et igs) s 1%

So, by lemma 5,3, gug(nlg) = f I{g <7y

By To's fe<f,} 1 ~g fo I{g<fo} )
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On {g < £} (**) reduces to
1-f S
P (A |BY +:%— = 7
or (l—fo) P,wz(ﬂolg) #T e = fo(l'-g) (note that since £
gus Bl =g e 1)
or (’l“fo) ngubl-—@) = g(l"fo)
or P "
MECAOI:B) ' g
1ec Puz(AolQ) = g 2,8, ;) on {g < £} .
On {g 21} (**)  reduces to -
1-f
(—--D-l_ s A 1) Pﬂ (Aol_;_s) = 0
2
or Puz(j\blg) =0
1, e, Pﬁéz(ﬂbl'—@) =0 ga,s, (/“L‘B) on {g > fo]; a
Thus Pﬂz(ﬁol;}) = g I{g = fo} .
Interchanging the roles of 1y and pf, the proof of (i11)

is cormpleted,
Henee the lermna,

Proof of thecrem 5,2 §

Th o
g P’r‘!’l Then

(41D

Let Ab e A,

Let

<1
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g = (4 O qeee, P QO O PO (4, O e .

Now,

P, (4 ) {zg <1 1D

Ulc < i S'I{g T
Pulcﬂo () {e= o} = g‘I{g = 1} i
Py, O) e > LD = felle > £} ¢

So, by lemna 5,4,
PME(AO @b {??-f = fo]:lzB) = E-I{g < fo} )

Pug(Ab () {E‘ B fo}l.lﬁ’) = g,I{g - fo}- and

%”2(%3 (=) {g > fb}l@) = g.I{g > £} .
Hence PM2 (418 = =,
o Pﬂl(%@) = Pug(Aol;). This implies ,Lzl(.ﬁb) = ,u,z(Ao).

Hence the theorem,

In the above theorem the condition that p ({0 < £, < 1P=1
(which is analosous to the condition that 0 < r <1 in theorenm
5,1} cannot be relaxed, For this, consider the following

eXemple,

Let .(.“.l - [0, l], A its Borel o~alrebra, Let p be
the Lebesaue measure on ( (), &), TLet o and %, be numbers

such that <4 # oy, O <, <1, 1=1,2, Define measures Ly
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and 1, by settine for Ae 4,

u(a ) [0, +1) y #aOLE 2D

(1 -
(1) = = - f
“1 2 (o, 1) 2w, in
p(a ) [ L 1D
o« sa o, 2 Loy s O G, D
b8 = & Ol : ¥
u(lo, 1) u(lZ, 1

ua O [ 3, 1D,

Let B=4{0, [0, D), 5 1], LA 3. Clearly py and g,

are (B, A) nonatomic measures, WNow, for any 4 with
pta ) Lo, 1) = o,

P, (A1 B =0 onlo )

it

2u(a () [L 1D on [§ 1], and

= L
Pug(.fxl 3)=0 on [0, %)
=gu(a () [51D) on (3,11} that is
pﬂl(A_l‘_) = Pug(fxlg).
Let € =T - .
9]
[+ 1]

2’
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p, (D) = £, = (4 "y [0, ) =0
= P!-Lg(ﬁlz)) = P‘L"]_(AL_'B)
= Pﬂjg(ﬁl@) =y

Likewisc PMQ(A\,I}) s == %1("*@ =
of

! o :
However pq # pg as u4 (L0, i‘]) = ’-21 and @2([0, ;1:3) = "é‘z 1

3t

6, Nonatomicity in Polish Spaces

Let _(_-_,)_ be a Polish space and L 1its Borel o-alsgebra,
In this section we congider the problem of characterizing
those sub ¢-~algebras B of 4 vhich admit a (3, 4 ) non-
atomic measure ; also, we ~ive an equivalent characterization
of a measure M being (B, &) nonatomic in terms of the atons

of B. For our study, we need the following two results,

Theorem 6.1 (Blackwell), Let 4e L, Let

generated sub o-algebra of A4 such that A () B has singleton

be a countably

i wwo

atoms, Then 4 () B= A() 4.

This follows as an easy conscauence of Corollary 1 to

theorem 2 of [4],

Theorer 6.2 (Lusin), Let B be a countably generated sub o-
slgebra of A with every atom countsble, Then we can ret

a sequance {An} of Borel sets such that
n21
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— OO ——
W 4 ) Ay =0, 177 end (__:)LAH=.£,1 and

n=
(2) each 4, contains at most one point from every atom
o8 1B &
A proof of this 1s available in pase 235 of [10],
The next theorem gives a complete solubtion to the
problem nentioned in the beginning of this section when

the sub o-algeobra considered is countably cencrated,

Theoreom 6,3 TLet B be a counbahly rencrated sub o-alsebra

of 4, Then there exists a (3, A4 nonstomic measure if and
only‘if 3 has at least onc uncountable atom,

Broof, Let B have an uncountable atom, say B . By Borel
isomorphism theorom Bo supports s nonatomic measure, say X\,
Let A, be the extension of M to A4 defined by

A (0 =aa O B,), Ae A, It is clear that X; 1is a non-
atomic measure. We shall show that A; 1is (B, L) nonatomic,
Let Ae 4 with 2 (&) >03 so A (4 () B) >0, Choose

i e L B . .’ —_ _l ,-‘- te -

i (_ 4 () , with 1\1(-!1) 21\1(1 () B).

() BXDB =20, OB

A ) {(D, (@) } (since B. 1is a B-atom)

{2},
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On the other hand & € A ) B, (™) 4 and Aq(a 8 9) >0 and
}Ll (A O A)l >0, So, the traces of 4 and B do not

coincide (upto Aq—null sebts) on 4 () B § hence they do
not on A, Thus, A is not a (B, &) (2\1) atom, Since A

is arbitrary it follows that Ay 1s (B, 4) nonatomic,

Hence the 'if'! part,

Let now every atom of B be countable, By theorem 6,2

there are Zorel sets Al, ‘A‘Z"“i%’“' sﬁch that

— C3) o
(1) 4 O Aj=® if 14 j and 1&:% A =L and
(2)°  each An contains at most one point from every atom of
B, We now claim that A ) B = & (7) 4 for every n.
(Note that there is no measure inwlved), Tor, A, () B has
singleton atoms (in view of property (2) mentioned above);
hence by theorem 6,1, 4, () b= hy (™) 4, Lot A be any
rﬁeasu.re on 4. Let n Dbe such that A.(An) > 0, Then clearly
A, 1s a (B, & ) atom, Thus no mecasurc on 4 is a (B, 4

nonatomic measure, Hence the l'enly if' part and the theorem,
Regarding the case of not~countably generated B we

have the following two cxamples,

Example 15 Let () be wmacountable, Let

.

B= (B /B 1s Borel, elther B or B® is a countsble set }
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Clesrly B 1s not countably renergted, Let A be a nonatonmic
rneasure on ( _(_m_l, A, (Therc exist many such), Since

o, £ } = B (odulo F) it is clear that X is (B, &
nonatornic, Thus there are not-=countably renerated sub o—-alpebras

B admitting (5, 4) nonatonmlc neasures,

Exarple 20 Let ()= 1[0, 1], Let A be a non-Borel
universal null sct, (The cxistence of such sets assumesthe
continuum hypothesis and the axim of choice, For details sece
pages 525 and 532 of {111),

Define 3 = {B /B is Borel, and elther 3 C Afor B°C AC} .
That B 1s a o-algebra 1s evident, Since 4 1s a non~Borel
set, it follows that B 1s not couvntadly ecencrated, Let X
be any nonatomic measure on 4, By the choice ¢f 4, we have
A 1is A-measurable and A(4°) = l, So, B= 4 (modulo ,1}&).
Hence M is mot (B, 4 ) nongtomic, Thus D does not admit
any (B, &) nonatomic measure, 8o, there are not-countably
generated sub o-algehras 3 not admitting any (B, & non-

atonic measure,
Before stating our next result we need a definition,

Definition i Let B be a countably zenerated sub o-zlgebra

of 4. Ae 4 is sgld to be one-sheeted with respect to 3

if it contains at most one point from each atom of 3.
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Theorer 6.4 Let M be ameasureon ( £, &), Let B
be a countably generated sub o—algebra of 4L ., Then A 1is
(3, 4) nonatomic if and only if there is mo Ae 4 which

ig one~sheeted with respect o __B end has positive AN-measure,

Proof s Let D he a (3, & (A) atom, Let 41 e a
sequence of sets generating 4. Since D is a (3, & )
atom, for each n we can 7et a B-set B with

T Co
AM@B s 4) ()D) =0, Let L=D-~ Ig_:_i (B, & ¢,

Clearly XA(A) = A(D) > 0, Presently we show that 4 is one-
sheeted with respect to J. It is easily verified that
A()‘Bn=A()£h for all n, So

2

I

iy (6 i the ¢=aleebra senerated by {A(m) A, A(—)z‘sg, ...,A(—)An,..}

the o¢=~algebra gencrated by {A(—)Bl, 4 Bg, 2§ &) Bn’ i ,}

C a3
e AY s = 2 () B, Since 4 @) L has sinslcton atoms,
A () B has singlecton atoms, Hence A contalns at most one

point from each atom of 3, This completes the proof of 'if’

part,

Let now A be ohe-sheeted with respect to DB and have

positive A-measure, Then A4 () B is a sub o-algebra of

AT L eand has singleton atous, Therefore, by theorem 6,1,
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ACYB = 4 () 4’ in particular, A 1s a (B, & ) atom,
This completes the proof of fomly if' part and hence the

theorem,

Remarks %
(1) The concept of ‘one—-sheeted' subsects has been introduced

by Bohlin in [22], for Lebeszue spaces,

(2) Theorem 6,4 is not the best possible, A careful perusal
of the proof of the theorem reveals that the 'if' part remains
valid so long & 1s a countably senerated o=-algebra with single~
ton atoms §} no assumption of topological nature need be made on
() . However the same thing cannot be said of the "ohly 5 Bt

vart, DBDelow we present an example to clucidate this,
Example? Let £) be an arbitrary set, 4 a o-alsebra of its

subsets, Let B (C 4 and M be a (B, & nonatomic measure,
Llet A*  denote the A-outer-measure, Let D be a subset of
{) with A¥(D) = 1, Deflne Ay on D (1) 4 by

Aq (> () 4= A(N), Ae 4. It is routine to verify that

Ay is unambizuously defined., The fact that A is (B, &
nonatomic implies that X is (D 3 pD() Y nonatomic,
We sketch the proof of this, Let X,(D () A) >0, So,

A(A) >0, Bince £ iz not a (B, & ) atom, there is

& (C 4 with A((4 & D) (") L) >0 for all 3 e Do

P
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So

y

Aq((4) & B) Y ) D))>0 for all Be

Iz

iee M((4, D4 BD) () M) >0 forall Be B.

Hence the traces of D () 4 and D (7) B do not coincide

(upto N, sets) on D (YA S, D() A isnot a
1 .
(0 ()3 D)WY () atom, Thus Ay is (D (H)3,0M &

nonatomic,

Now let us specialize, Take )= [0, 11 = [o, 1],
4 = ‘the Borel g-algebraof (). Let B= {B x[0, 1]/ 3B
is a Borel subset of [0, 1]} «» Let X be the product
Lebesgue measure on ( O y &4 ). Let A* denote the outer
Lebesgue messure, Clearly N i1s (B, & nonatomic, Let D
be a set with A*(D) = 1} further let for every x e [0, 1],
D* = {y v (x, ¥) e @) } be at most & singleton, (A construc-
tion of such a set D is avallable, for instance, in Lemma 2
of [211), Define A; as in above, Then Ny 1is
(0 )y D () 4 nonabomic, HEvidently D () g is
countably senerated with singleton atoms, D M B 1s countably
generated and D is one-sheeted with respect to D M) B
(as D* 1is at rost a singleton for each x e [0, 11) with

’“1“’) = 1,
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THE

1, Introdwction

Let ( X, 4, P)
Bof 4 1s sald to be complete if every 4 measurable set

} TRIC 3PACE OF SUB g=ALGERRAS OF A PROBABILITY
SPACE .

ba g probability space, A subo-algebra

By the completion of a sub o~

in §c
mean the swrallest complete sub o-algebra

of P-measure zero is
( -C-ls. 4, P) be the class of all

algebra B of 4 we
containing B, Let 3
complete sub o=algebras of 4. In [7], Boylan introduced a
mertic 4@ on § (), & P) by letting,

o dng T2 ),

a(B.,B.) = sup inf P(3, A B.) +
B1s 25 14 B T g

BieB; BgeBy &g

clements of S ( L), 4, P)

is used to obtain an elegant sufficient

In

B, are

end o

where By

that paper, this metric

condition for fequiconversence of martingales!, (More about it
When there is no room for confusion we will

in section 3),
just write 8 or (8, d) in place of (8 ( L), 4,P), d4),
In this chapter we study the topological properties like

completeness, compactness, local compactness, scparability,

connectedness, total discounectedness, perfectness and
M so we consider an isomorphism problem,

dimension of (§, d),
[34]
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Let X be any metric space with a bounded metric o ,
On 2X (that 1s, on the class of all closed subsets of X)
one introduces what is known as the Hsusdorff metric, Pys

by setting

@l(C,D) = sup dnf plx,¥) # sup inf plx,v), C,D & 2=,
xC vyeD veD xC

Some topological properties of (ZK, _pl) can be characterised
using similar properties of (X, p), (Sce sections dealing

with (2X)m of {11] ana [12]1).

I%‘or any he 4, denote by LAl the class of all measurable
sets that are equivalent to 4 (i,e, those sets which differ
from A by a set of nmessure zero), Let X = {[A]/A e 4 }
and define p([Al, [B1) = P(4 A B), where (4], [B] & X,

(X, p) is a metric space, X is usually referred to as the
reagsure algebra A(P) [9, P,167], Define a map (_i_) from
5 bto 2X as follows,

(+) (B) = {[B]/B e B}, Be &, (+) (B) is a closed subset of

(X, p) and hence an element of 2X 3

For any Byy Bo 8 5y
d(.@l, B, = 91( (+) (L—Bl)’ (_,}.} (2)2))’ where Py is the Hausdorff distance

g
g R 3. R X
as introduced above, Denoting by § the range of (+) in 27

i -
R

ve, therefore, have that (+) is en isometry between 8 and

We will use this fact to prove some of our results,
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We recall a few definitions, Lebt (), 4, P) bea
probability space. Ac¢€ A is sald to be an stom 1T
(1) P(A) >C and (i1) Be A, B (C a=> P(B) = O or
P(B) = P(4), The probability P 1is sald T be nonatoriic on
A 1f therc are mo atons ; 1t is sgid to be completely atomic
on A if () ig the union

P gtoms, If P 1is completely

O
1)

atomic on 4 then () is a disjoint union of count ably many
atoms, Tor A e A4, P ig sald to be nonatomic on A 1if

(i) P(AO) >0 and (ii) no subset of A is an aton.

For our study, we need the following facts about conditional

atoms (as introduced in chapter 1), Let By and 2, be clements

of 5 with 3, G B,. Let A bea conditional atom for
O 0
(§1, =}32), Since for any B, e B,, there exlsts E; e By with

BY () A= B:OL () A, we have

pa B) =PI A B) () Al + P A ED (O) &)

p(a%),

A

0 c
Therefore, for any B‘; e B, inf P(B, & B;) < P(A),
Bls_@]

Hence d(Zy, B) < P(2%, Let By and B

be elaments of §

2 2

with By (_ Boe Let {Ac(} be a collection of measurable sets

generating a sub d-algebra who se comblebtion is .Ep' Then,
it is not hard to sce that Ae Zg is a conditional atom for
(By, By) if and only if for every A, one can find B e By

such that PL(A () 4, )a (2 ("y B)Y1 = 0, The proof of
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'if! part uses the fact that the class of Be B, with the

property that there is Bl £ Ql such that

Pl(a Oy ) & (a ) Bl)] = 0 4s a complete sub d—algebra

containing 511 Ad’s, The proof of ‘only if' part is trivial,

In the sequel, ( (), &, P) will stand for a fixed

probability space and X Tor the measure algebra 4 (P),

llerh

will stand for the image in 2X of S under the mapping
considered above, Given any A ¢ 4 with P(4) > 0, the
symhol PAO vrill stand for the probablllity measure on
P(3 (7) &)

P(n) o ° 4

A () 4, defined by P

) (B () 4) =

%

Given a collection {Aﬁ , X & r-} of & -measurable sebs,

the symbol G{A& , X & r_} will denote the smallest o=—algebra
containing all A 's, A word about the symbol (+). Thiys_has
not been reserved exclusively for the mapping considered above,
In the latter sections of this chapter we have occasions to
nse (T) to denote other mappings as well ; however, it will

be clear from the context which mapping is being referred to,

o, Completeness of (§, d)

It is knewn that X 18 complete and hence 2X is
complete [11, the theorem in P,407], 8o, to prove that
(8, @) is complete, it is enough to prove that £ 1is a

closed subeet of ZX.
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Lenms 2.1 S ig a closed subget af .
Prcof ¢ Let gn be a seqence of clements of __S_, conver-
ging to an element F of 2X; Since F 1is a closed subsct

of X, (Fl e F if and only if : %nf P(F A G) = 0, We have
- : Gle F

. For this, in the light of the above

o
2

to show that F e
observation, enough to show thet
(1) [Fle F=> inf P(F°A G = 0 and
Lcle B

(11) [ 1L IF.], .0, [F 1,..., eF=>_ inf PL(() F ) & Gl=0,
11 1 2 *-Tn S [G:l?je-_f_' L = n

Let e >0 be given, Let [Fle F. Since

pl(Qn? F) — 0, there cxists B, s foxl’ some sufficiently

large n,, such that p‘l(gno, F) <35 . Choose [BnO] € __];no,
for which P(FABn Y <e/2, Then
o

inf P(FC A Q) <P(F°ARB° )+ inf P(B A @)
[aleF "ol IECIE )R o0

it

p(FA B )+ inf p(8° A @)
o (Gle E By

Y <e
nO

£
<"é‘+p1(

=

lit

*

Now, € being arbitrary, proof of (1) follows,

Let [Fy] and [F,)} belong to F . Choose n, large

: £
enough thald plﬂg, B, ) < 7 » Tois implies that there
O
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€

such that P(Fﬁ A Bj) < 7

exist [B] and (B,d 1in Eho

for j = 1,%2.

ing PL(F, () Fy Y a Gl = P[(F1 JIFS) & (By (L) By)l +
[Gle F
inf P[(B () B,)) b ¢
LGle F 2

< P(F 8 B))+P(Fy & BY) + p1(E, B, )
O

€

'(3'4"'4:5‘

() F.)A Gl =03
[cle F . ?

o=

¢ being arbitrary, we have ﬁnf PL(F,

[r, () Fle F. So, by induetion

[Fl], [Fgl,,,,,[F le =1 ﬁFi F le F.

Now, let {[Fn]’ n 2 1} C:1§ s Choose n, =0 large that

n, n |
o

P( ) S ) F,) <e . Since [()F e E. Wehave,
=2 " w " m=1

JmfP[(()P‘)&G]<s , lgain, e being arbitrary, the
[G] € F =1

proof of (ii) follows,

is a complete metric space,

Theoren 2.2 (8, 4)
Proof., The proof follows from Jemma 2,1 and the observation

made in the beginning of this section,
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Remarkt Boylan gives a different proof of this theorem in 71,

3, Compactness and local compactness of ( §, d)

In this section we show that the following are equivalent,

(i) P 1is completely atomic on 4.
(i1) ( §, d) 1is compact,
(1i1) ( 8, d) is locally compact,
Let B & 4 be such that P is nonatomic on B . Let

BO be the complete sub o=algebra of 4 defined by

- / o . Cy c '
B, = {Ac &/P(a () B)) = P(W) or P(4 (7) B)) = P(B))} .
Then we have the followlng lemma,
Letimg 3.1 Let €& be such that 0 <e < P(QD). A sequence

{-En}n > 1 from §, can be found satisfying

(1) a(@,, B)) <e, n21l and

(11)  a(B, =m) 27 2 Wy .3 L m # m,
Proof &3 Since P 1is nonatomic on BO given any messurable

subset B of B with 0 <P(B) and given any Y < P(B),
one can find a measurable subset B' of B with

P(B!) = Y., We construct a family
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By

By Peo

s (*)
Buu Pz e B ol

»
sam
(YR

of meaurable subsets of %3 as given below,

: SR
By, is a subsct of B, with P(-Bll) =3 Having obtained the
sets in the first n rows, the sets in the (n+1) P row are

obtained as follows,

P(B_.)
. ] . = I 11 NS
Bn+1,1 is a subset of B,y vith P(Bnﬂ,l) 5 and
= -~ A1 6 n-l ©
Bn+1,2 Bnl Bn+1,1' In g.oncral, for 1 <k <2 —, the
‘ P(B_ )
. . = ——li
set Bn+1,2k-1 is a subset of B, ~with P(Bn+1, 21{-1) >

= - " *
and Bn+1,2k B Bn+l,21<:-1' The rows of (*) form

€
successively finer partitions of By with P(Bn,k) N g

1 <x .20t

and n = 1,
Now, define
B, = {Ac B, /Pa ) Bll) = P(8;{) or O}. More generally,

for n=21

B = {ac B, /P(a (D) By) = P(B,)or 0, foralllsks 7.
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Cloarly (0 By >1 =8, ) By B foral nzl,

(V) B,'s are increasing with n and (6) for every n, the

set B]cfl is a conditional a‘;om for (=-Bn’ '-]éo)" Hence

€
d(B, §o) <P(B) =3 , This proves (i),
g1
Let D be the B 4, set defined by D = }(C;) Bn+1 —_——

Observe that for any Be B, we have DA B ) DA (8" )By1)3

and that (B8 () Bll) is the union of some of Bnk s, Therecfore,

o
-

, €

it follows that B1?f3 P(DAB) =7, Hence a(Bps -—n+1) 2
‘ =n

As B, 's increase with n, for m >n we have

E

a(B ) 2 a(B, Byq) 2 7 « This proves (11),

=n? "m
Theoren 3.2 The following are eoulvalent,

(1) P is completely atomic on A4,
(11) (8, d) is compact,
(ii1) (8, d) is locally compact,

Proof, Let P be completely atomic on A Then X is
compact([15, Section 1, p,94] or [2]), S0, 2)'{ is compact

({by the theorem on Dp.47 and theorem 1, on p,45 of (12)1),
S being a closed subset of 2X, ig, therefore compact,

Hence 2 1is compact,
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The fact that (ii) implies (iii) is immediate,

Suppose P is not completely abomic, So, there exlsts

B e 4 with P(B)) >0 and P is nonatomic on 3» Then

it is clear that, by lemma 3,1, no closed sphere around =Bo

(as defined before that lemma) is compact, Thus (iii) == (1),

A digression | Theorem 3,2 can be used to make an observation
on equiconvergence of martingsles, First, the necessary
details,

Let {_gn}n > Pe & sequence of elements from 8, increas-
ing to Foob 1. __En‘s are increasing and FE., is the
completion of () E . Tet Ze Iy (), 4, P). For any

- 1
Be 8, let P(Z|B) stand for the conditional expectation of 2

given B, It is part of the folklore that {P(Z!’:Fn)}n >

I
is a martingale and P(Z|E)) -+ P(2|E), (Sce, theorem V T 18 of
(161 ). Let J be a subset of Lq( (), 4, Py,
Definition (Boylan, [71) § The martingales
{P(Zlg‘l), P(Zigz),,,,,P(.Z@n), 5 & /ﬁ'Zs J} are strongly
equiconvergent (over J) if P(Zlgn) -1> p( 4F ) uniformly

over J, That ig, given & > O one can find n, such that

for all n 2 n, and for all 2 E,I ’

I |PC2|E) ~ P(Z|E )| P <e .
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The metrie d gives an clegant sufficient condition for

strong couiconvergence of martingales,

Thegren (Page 554, £71) Let J = {2 Azl < 1} . Let
a( By Foo) = 0. ‘Then the martingales
{P(Zlgl), P(Zlgg),oach(ZlEn)p as a3 /ZE J]! are StI’OHgly

eouiconvergent,

As pointed out by Boylan, it is not true that gn’s increase
to F,, implies d(E , F_) => 0, Also, in this theorcm, J
can be taken to be any uniformly intesrable subset of

el G 5B

We want to assert thabt when P is completely atomic on

on A, this sufficient condition (viz. d(F, Eoo) = 0) is

satisfied and hence strong ecquiconvergence ofF martingales

obtsgins, For this we need a 1omma,

Lemma Let § be compact, Let (£ by >1 be a sequence from

§ increasing to F. Then d(gn, F.) =~ 0,
Proof ¢ Since § 1is compact, there is a suhsequence {nk}
and Ge § such that a(F, , © — 0, We will first show

=1, ?
JAS

G=Foelet Ce G Let & > 0 De glven, Since d(Eh 5 Q)"* 0,
nl Kk

-1

there exists F e gn (for somc sufficlently large ny ) such that
K

P(G AF) <eg, So, inf P(G AT <e, Since € 1s arbitrary,
FeF oo
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we have, inf P(G A F) = 0, Using the fact that F., is
FE:—EOO ,

complete, we conclude Ge Eoo Thus & (_ F... To show

ocoOw
Fo, C G, it is enough to show () F, C G. Let

n

Fe E, for some n, Since §HT = Enk for gll sufficiently

large n,. Nowlet e >0 be given, Since d(g'nk, §) —=0,

there 1s Ge § such that P(F & G) <e, Therefore

Ginfg P(F & G) <e. Again, the fact that e dis arbitrary
E

and G is complete implies Fe G, Tmus () F and
: n

consequently E are contained in G,
s s d(g‘nk, Foo) —> 0,

Now, let & >0 be given, Choose n, such that
: o

ACE. ! Eepl- < & o Det njnko. Then

A(E,, Food S A, , Foo) (as E Ty < ¢,

-4 a
o

Thus d(F,, Foo) = ¢ and hence the lemma,
Let P be completely atomic on 4., By theorem 3,2
S 1is compact, So, by the lemma above d(g‘n, Fo) == 3,

Hence strong equiconvergence of martingales obtains,

4, Separsbility of ( 8§, &)

We show that 8§ is separable if and only if P is

completbely atomic on 4,
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Consider the two-point space {0, l} , equipped with
the disecrete o—algebra L and the prbbability measure Q
which gives mass é to each point, Let N be the set of all
natural numbers Let (. 'll = {0, 1} the product |

measiure on D and £ the Qh"comploulon of D
Lgmmi,_l The space § ( £ _)_l, c, 9 Ny is not separable,

gm; Let d4 denote the distance in 8 ( L_)_l, g, Q )
We shall exhibit an uncountable family {Qq}q =3 of elements

of §CLN,8 ) with 406, L) 2 5, XA X amd e [,

Let
[ = {d / o« is a subsequence (finite or infinite) of the
sequence 1,2,...,1, «io}s
For me N, let - denote the mth coordinate mapping from
_(__)__l to {0, 1}. Set G, To be thoe QN'-completi.on of
U{v;I(Q)/m is an element of OC} s Let o« # «', Then elther
o« has an element m which is mot in «' or vice versa ;
say, m belongs to <« and does not belong to «', Since the
ecoordinate mappings are independent under QN, it is clear that
~1 S il
T (D) is independent of G 1+ Let A = ™ ({ Q }). Then

for any B in L. ,
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H

a s B) = @iy -3+ QB - 4)

il

T Ty T
d(a) 7759 + q'(3),4" ()

= %[QN(BC) i QN(B)] (since QN(AO) = %)

= i
2 »
. N i Py S
So, sup int Q (A & B) 2 . This implies that
G Bl
ﬁl(go(s gﬁ(t) ] % if «F «t,

~"111‘vidently [_ is an uncountsble set,

Lemma 4,2 Let P be nonatomic on 4.+ Then 2 is not

separable,

Proof® Since P 1s nonatomic on A, we can find a countably

generated sub d—=algebra % of

i

such that P on A ils

( ), completion of A

% P)

nonatomic, FEnough to show that

oo

is not separable,

Now, by Halmos-Von Heumsnn theorem [o, theeren ¢ p,173],
the measure algebra :H.O(P) is 1sororphic to the measure
algebra J_DN(QN) (es introduced in the beginning of this section),
This cstablishes an isometry between § ( ), completion of %D,P)

and SC £ ‘2‘1’ g, Q") , (For detalls see secticn 2),S8ince sC ( _).l,g,Q )

18 not separable by lemma 4,3, the desired conclusion fellows,
Theorem 4.3 £ 1s separable i{ and only if P is completely

atomic on A4,


http://www.cvisiontech.com

(48]

Proof : Let P be completely atomic on A, Then by theorem
3,2 (g, 4) 1is compact and hencé separable,

Let now there exist Bj & 4 sﬁ.ch that P 1s nonatomic
on B, From lemma 4,2 it follows that (B, B, (™) 4, PBO)
is not sevarable, Define a mapping (+) from

g8, B a4, PBO) to § by setting for De S(B ,B (")g,PBO'

(+) (R) = P-completion of {A/A e Dor () - Ae D} .

It is not difficult to check that (+) is a homeomrphism
between (B, B, () g,PBO) and (+)E§(BO, B, ( ) 4, PBO)].

This implies that a subset of § 1s not separable, Hence

8 1s not separable,

5, Connectedness and total disconnectedness of (g, d).

Lomma 5.1 Let P be such that it has at most one atom, Let
A stand for the atom, if there is one ; for the empty set,
otherwise, Then, given any D e S a continuous function f
can be defined from the interval [0, 1 -~ P(4)] to 8
satisfying

(1) £(0) =3 and

(11) £(1 - P(4)) = 4. .
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Proofs From the hypothesis of the lemma we have that P 1s

nonatomic on c. Then., it is well-known that we can find a
)

collection {Bt}t e [0, 1 - Pu‘o)] of measursble sets
sabtisfying
(«y B, (B iF N = Lald
tl ‘t2 1 2
- (Y) 5

Biep(a) © Al

where t, ty, By are from [0, 1 - P(4 )], Definc complete
sub o-algebras Ly OfF L by

= . Cy c
B, = {Ac 2 / P(a () BY) = P(By) or O}, te Lo, 1 - P(a)L.
If t, < t,, we have B (: B_ and so B (: B, . DNow
1 = Tos t, - £ty Zt, s
B, () B% is a conditional atom for (By , By ). To see
1 2 1’ e
this, let Ae By . If P(4 (") BS ) = 0, consider the By
2 2
sot A defined by Ay = 4 ) Btl, Then
pla (H(B, (L) B4 Ky ™) (8, () Bg I =0, If
1 2 1 2
p(a () B¢ ) = P(B® ), consider the B, set A defined by

A o= A () (82 - BY), Then
1 " g

pla () (B, B2y s & () (B BS )1 =0,
2 1 2

Now define complete sub o=algebras G, of 4 by setting
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g, = the completion of d{ B () ‘Et} P - [0, 31 = P(%)].,

For 1ty <ty the set By () B 15 a conditionsl atom for
: 2
(Cr » &y ). To verify this, in view of an observation made
i 2

in section 1, we have to only check that for any A in DBy

or B there exists A in & such that PLa (T (B () B )
=% | By = bt

A Al(")‘ (B (_)B%)]':O, If Ae B take A& = A IT

: 1 2 '

Ae B, take A to be as defined in The earlier part of the

proof, Therefore, if 1t < t, we have that
4o, . G ) < PL(B, (L) BS 1= P(By - By ) = tp = by
—tl’ t2 tl t2 t2 tl 2 1

Hence the function f defined on (0,1 - P(4)] by £(e) = G

is continuous,

B, = {hc 4/ P (4 () BD =P(R) or O}
= fae 4/ P =1 or 0 and

B = {ne A/ P(a() B ) = P(BS ¢, y) 0

21-P(4) {he & 1-P(4)) 1-P(4,) or O}

= {he 4/ P4 (™) &) = P(4) or O}

= §, since AO ig the only atom,

8. £(0) =B and f£(1 - P(&)) = 4.
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Theorel 5.2 The following are eouivalent

(i) P has at rmost one sabon,
(i1) (3, 4) is arcwise connected,

(1i1) (3, 4) is connected,

*

Proof ¢ Lemma 5,1 gives the proof of (i) == (ii), That
(ii) = (i1i) is trivial,

Lot P have at least two aboms, say A and A, Consider
the probability space (4 (1) A&, (4 () AE) a4, PAl( ) Az)'

Clearly, 8¢ = 5(4 () By (&) A) ) 4, PAl (-)"“2)

contains exactly two elements, Define the map (+) from §

to § by setting, for Be 5, (@ = (4 Q) A) ) B.

(+) is continuous and onto §;. Since £; 1is not connected,

8 is not connected, Thus (iii) =* (i), Hence the theorem,
Regarding totsl disconnectedness we have

Theoren 5.3 (8, d) is totally disconnected if and only if

P is completely atomic,

Praoof s P is completcly atomic implies that X 1s compact
and totally disconnected ([2], theorem 6,1), Thig implies
that 2X is totally disconnected (by the theorem on Dp.47

of [12] and proposition 4,13,2 of [171), So, 8 and hence

Py
=

§ is totally disconnected,
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Now, let P De nonatomic on B & 4. We shall show
that there is a comnected subset of (§, d) containing at least
two clements, This would then show that ( §, d) cannot be
totally disconnected,
Consider the probability space (B, Bj ) & Bp Y
o
By our assumption Py 1s a nonatomic probability, Let
o) : ‘
§1 = g (BO, BO ) A, PBO), By theorem &,2, gl Is a connected
metric space, Define a function (+) from §; to B by setting,

for every D€ §1’
(+) (D) = P-completion of .[11 e 4/ Le Dor )~ Ae D }

The mapping (+) can be verified to be a continuous one,
Therefore (1) (8,) 1is a comnected subset of 8 , being the

continuous image of a connected set,

(P ({7, 3P

(p (B &)

Prcompletion of { 7, By Bg , O ]: and

it

{Ae 4/ P4 (™) B) = (&) or P(a () BJ ) =
C '
P(E)Y .
The two 0—algebras above are obviously different, Thus
(+) (§1) contains st least two points, Hence the theorem,

Tn the remainder of this section we study the components

of (g, &),
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Let 4 Dbe the union of a1l atoms; ‘(% nay be empty).
Consider (A, A 6 AL PAO). . (In case 4, 1is empty take
(AO,‘ A @y P%) to be a set with one element), Define
a mapping (+) from § to § =B (a, 4, M &, Pﬁb) by

setting, for Be §, (LB = 4 ) B.

Theoren 5,4 The components of § are precisely the collection
{'(+)_1 (@ :De 8 }, where (+) is the mapping as defined
abcve,

Proof. We merely sketch the proof, omitting the details to

the reader,

Since (_‘_) is contimuous and §; 1s totally disconnected,

the image under (+) of any component of § is a singleton,

So, we have to show only that for every D e 5, the set

(+)"1(Q) is connected in § . Fix D € Sy o+ We shall show

that (+)-1(]_;)O) is arcwise connected, Let

e

1={A€_§/A(—)AQ€_EO} and let F, be an arbitrary
clement of (+)-1(J_?0). Consider {-Et}t e [0,1-P(4)] as |
defined in lemma 5,1 and set Gy = comple’;ion of oﬁ{,_Bt(_) =FO} .
It can be verified that for ecach t, G, ¢ (_5_)"1(;_)0). Define

¢ from [0, 1~ P(4)] to (V7 (p,) by £(¥) = Gy . Then,
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¢ is a continuous map with £(0) = E = end £(1-P(4,)) = E.

Since E  1s arbitrary, the result follows,

6. Perfectness of (§, d)

a————y

We show that ( §, d) is perfect if and only if the
range of P, i,e, the set {P(8)/4e A}, 1s an infinite
set, :
Lommg 6.1 Let By and §2 be elements of § such that for
some Ae b, & ()3 =4 () B . Then d(B, By < 2P(W,

Proof: The proof of this is similar fo the proof of a result

in the introduction,

Lemma 6.2 Let the range of P be an infinite set, Then
E

given & > 0, one can find 4 e 4 with 0 <P(A) < 3,

Proof: Supprose there is Ae 4 such that P restricted
to A 1is nonatoric j then the procf is clear, Let now P
be completely atomic, Since the range of P 1g an infinite

set we can find {Ah}n -1 of atoms which are palrwise
disjoint, The fact that Z P(ﬁh) = 1 gives the desired

n=1
conclusion,

Theoren 6.3 (8, d) is perfect if and only if the range of

P dis an Infinlite set,

Proof: Let the range of P be a finite set, Then B

contains only finitely many clements and hence is not perfect,
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Let the range of P be an infinite set, Let B & 8
and & * 0 be given, We have to exhiblt a [y € § such that
0 <d (B, By) <¢ .

Case (j_l P on -30 has a nonstomic part., Then choose AO £ 'go

£
such that 0 < P(%) <3 and mo B, measurable subset of A

is atom for P, Let Bl be the completion of 0’{15, ( ) B }.
Because of nonatomicity of P on A4 we have 0 < a(B,» §1)
and by lemma 6,1, d(B,, By) <¢ .
Case (13) P on QO is completely atomic and has only
finitely many atons,
Let Ay Ay eeey A, Dbe all the atoms, By lemma 6,2,we cen
I b e
get 4 € g:'w1th 0.< P(4) <min P(4), P(A)D, ..., P(Aa), 5 }-
Take the required B to be the completion of
{4, & () B}« DBy the choice of &, a(B,, B;) >0 and
by lemma 6,1, d@o’ 21) <g ,
Case (11i) P on Z is completely atomic and has infinitely

nany atowms,

- £
Choose two atoms 4q and  fg with O < P(A1)+P(A2) <5

(This can be done since there are infinitely nany atoms), Let
A4 = & (O Ay and define By by [y = Complotion of

O‘{AO, %3 ) @O} o Again by the choice of A4, d(§ s _Bl >0
and by lemma 6,1 da(B , B{) < .
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- This completes the proof of  'if' vpart, Hence the
theoren,

7. Dimension of (g, 4)

iy

For nctions in dimensicn theory we refer to Nagata [18],
By dimension we mean covering dimension in the sense of Nagats

[See 18, p,9], We need the following theorem from [2].

m Zodl Let P he nonatomic on A, Then dimension of
A(P)is infinity,

For a proof see theorem 9,2 ot [2]. |
Regarding the dimension of (8, 4) we have the following

theorem,

Theorem Z.2 The dimension of (8, 4) is either zero or infinity,
If P is completely atomic on 4 the dimension ig zero ;
otherwise it is _infinity.
Proof, Let P be completely atemic on 4+« Then, by theorem
5.3, (8, d) is totally disconnected » hence the dimension of
(8, ) is zero,

Let now there exist Bl e &, such that P is nonatomic

on BO. Without loss in generaiity we can take that O < P(BO)< ‘%.

Consider the measure algebrs (BO (")é )(PB ). By theorem 7,1 the
= 0
dimension of (B, - é) ‘(Pbo)is infinity, We shall establish a


http://www.cvisiontech.com

1571

homcomornhrsm () from (B, () (P; ) into § such that
(+)[(B M) p (g )] iis a closed sibsct of § . Then it would

follow that the d:mmsmn of 8, being greater than or .equal
to that of (LB () Q(PBO)], is infinity,

Define the map (_1_) from (B, ) g)(PBO) to § by setting,
for [B;1 e(B, () Q(m%) |
(L) ([8;1) = the P-completion of { ¢, B, {1~ B, L:l .
The fact that (+) ig well defined is easily verified, For

two elements B1 and B2 of é (_) Bo we have (&) P(Bl) <-:|2-

and P(B)) <% emd (p) PLB; & ( () - Bl >3 . (To prove
() and (B) it is enough to observe lthat P(BO) <‘]2' by

choice and the sets By and By are contained in B)). o,

rin[P(8)), PC L) = B)), P(B;4 By), P(B;4 ( () - BN
= min[P(B;), P(B; & BZ)];
Tms  aC ((By), (LI(By)) = min[P{8;), P(By 4By)] +
nin[P(B,), P(B{4 By)l,
Hence P(Bja By) < a( (L)(By), (D(By)) < 2P(38 By) — (%)
Bvidently, (1) is a 1-1 nap, Using (**) we conclude
that (1) is a homeomorphism between (B, () L (P ) end

WiE, O ._g)(PBO)] and that (LB () g)(PBO)] is a
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complete subset of § , Since‘ £ is complete, we have that

(PLE,O) D@3 )] 1s closed,

Tn view of the observation made in the earlier part of
the proof, we have that 1f P is not completely atomic the

dimension of (8§, d) is infinity,
Hence the theorenm,

8, Some additional results on (8, 4)

In this section we show that the following two subsets

of 8, namely

Los]
i

{ Be §/P is completely atomic on B } and

kn
it

S, { Be §/ Bis the completion of a countably gemcrated
sub o=-algebra }
are closed,

Let P be completely atomic on Bo with infinitely

rany atoms, Let {An]' >1 be all the atoms, Let & > 0 be

given, Choose n, such that Z P(Am) < ¢ , Define
m>n
"El = the completion of o"{Al, AE""’An.. }; It is clear that
no <

A, is a condltlonal stom for (Bqy B.) and so

m=1 e

a(B,, B) < = P(Am) < ¢, This observation gives us that
....1 =0 m>n,0 5
. ,
8. o = {H/Bc &,

o
» e

and P on B has only finitely many atoms}

is dense in §C-a <
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Lemmg 8,1 Let B e § . DLet { “—En}n s 1 - 8} . Dbe such

s e

B and (11) d(By, B) =0

—
—

that for each n (1) By (

as n —>0, Then'go € §C.a..
Proof: Suppose there exists BO £ "-]53’0' such that P(Bo) >0

and no QO measurable subset of BO is an aton,

Fix n( > 1) end consider B . Let 4, Ay waey A
be all the atoms of B . For esch J(1 < J <k), choose B, & ;

3 -
such that By = ¢ ir P4 ()B)=035 By (L 4 () B
P(a, (M) B) = |
and P(B;) = 5 if P(4y () B)) >0, (Such a
| k
choice is possible since 3B, (. =Bo)' Let B = ;E;Z)L Bs.
P(B)
Clearly for every De B, P(B A D) >2—p~ ., ©So,
P(B))
1B, B )2 —g— . Since n was arbitrary, this would
P(B))
imply that d(B,, @O) > 5 for a1l n., 4 contradiction,

since d(B, B,)) —> 0 as n —>, by hypothesis, Hence

the lemma,

Theoren 8.2 gc-“- is a closed subset of £ .
Proof s Let (&}, > q = 8, ,, ~Dbe such that for some

B8, 4, 8 —>0 as n >, We have to show

that e S . Since 8': ig dense in S  we can
‘§o éc.a.. =C, G Zc, .
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assune without loss in generality that {gn}n > 1 - c!:.a. '

 Fix n( 21), Let ACL’AZ""’--AK be g1l the atoms of
G o For each subset J of {1,2,.,,,1{} choose a set BI;.

n
of B, such that P( By & ;5_8.3 4) < 2a(gy, B). Lf-zt‘

g»n = P-conmpletion of o’{ BIJ} +J 1is a subset of {1, 2,...,k} } .
Now, for any B in B, therc exlsts some subset J of

« A
{152,445k} such that P(B gg} Aj) < gd(gn, B)). So, for
any B in B, there exists By in B, such that

B ).

P(B A %j-') < 4d(§n, 50). Hence d(;En: ;3‘.0) < ﬁ(gna =5

Mso, we have B (@ B, Since n was arbltrary, wve get
P '
{T—Bn}n - C “§c.a, and B - .‘BO for every n, From

Lerma 8,1 the result now follows,

Theoren 3,3 §s is g closed set,
Proof, («) TLet De -§sf Then the metric space D(P) is

separable, Let ¢ (: D . Then the metric space Q(P),.
being a subset of a separable metric space, is separsble,

So Csﬁ.
=3

=

(B) TLet {C.} (C S, Deawte by VG the completion
. n ;

of o’i(g)_gn} o It is easily verified that V G ¢ 8, .
n
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(¥Y) Let { gn} C §, be such that for some B & $

r—
=} 3 5 =
w 5

-

a¢ g, B) >0 as n —> 0, Let B, e B . Then

inf P(B A D) < . inf P(B A C) for every n. So
Deve o i cne 9‘1 S n ¥ )
.."'_n -1

0, This gives that B (L V C .
=0 n =n

"

inf P(B A
De VG ( o) D)
n“‘n

e

Now from («), () and (¥) the result follows,

9, Isomorphism Problem

Let us start with an observation, Congider two metric
spaces Yl and Y, equipped with bounded metrics, Let T
g
be an isometry from Y; onto Y. Let the mapping (+) be
Y
1

defined from 2 © to 2 ° by

(+)(C) = {T(Yl) A } Ce 2 Then, it is easily scen
that (+) is onte 2 & and is an isometry.

Let ( (), 44, Pp) and ( (s &y Po) De two probability
spaces, Let T Dbe an isomorphism between the measure algebras
Al(P)and %(P)(soopagom? of {21, 1.6 T is a
one to one transformation from gl(P ) onto ,_Q_,a(P ) such that

T([B] - [c]) = T([B]) - T([C]) and

oG
T( Q)[4 D) = (__) T([Ahl]) whenever B, C and A4 ,'s are
n=1

n=1


http://www.cvisiontech.com

[s2l

elements of 4 j moreover I sreserves measure! in the sense
whenever Ao € TLadjq) we have Pl(All) = P,(4 ), Evidently,
T is an isometry from gi(Pl) onto éz(Pz). Use the observa—

tion in the first paragraph of this section to define an isometry

— (P.) (P.) e
(+) from 2& 1% onto 2§2 “ . Restricting (+) to

5 ( _(__)_l,él, P,) we find 1t is mapped onto § ( (), Jo, Po).
. ,
Using the natural mapping betwean § and § mentioned in the
Tty
introduction (page 35 ), we can look upon (+) as an isometry
from $( -(-—)-ié’ 4, P;) onto §‘£\L-_)_2, &, Po) and we do so,
It is routine to verify that (_+) is a complete lattice

isomorphism as well,

l.e, for {B } C 8 (L, &, P,
(+)(Z§°{)= Z(J‘-) (B, ) end ('l') (£§q)= ;’(L(_{_) (Qq).

(Here, 'V! of a family of sub d=algebras denotes the smallest
completed sub 0-algebra containing them and ', ' of g
family denotes their intersectien). We call this mapping E;;
as being induced by T, Tow, we ask ''Is every isometry

(+) from §( 'Cll’&l’ P;) onto § ( _(,—)_2, 4,

preserves lattice operations induced by an isomorphism T

Pg) which

between the measure algebras 4, (Py) and A(P;) % ', The
remainder of this section is intended to provide an affirmative

answer to this question,
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Since the precof will be a long one we first give an outline
of 1t, Let (+) be an isometry from §( L—_)_l', 4, P;) onto
5( _C-lg, §2 s P2) preserving lattice operations, (Ia fhe rest

of this section (+) will refer to this fixed mapping)., To

ey - p—

start with, we will show how Lo associate with every

[Al] £ :1_;\1 (Pl), satisfying Pl(AfL) < Jé an element

[Az] e & (Pz) satisfying P2(A2) =_P1(A1). We will check
such an association 1s well behaved, Then we will get a
finite partition of -Cll by A, -sets, consider the associa-
tlon on cach element of the partition and piece them together
to get an isomorphism T between é\l(Pl) and A (P,),

Finally we will check that T induces (+).

Let {4, «¢ 1—} be a collection of measurable sets

of a probability space ( _(—)_, 4,P), In this section, for

case in presentation, we will let U{Ao(, o g ]_} stand for

the P~completion of the o=algebrs generated by {Ac( , X & r }

s

Before proceeding with the proof two remarks are in order,

In any SC L), 4, P) the distence between any B € §
and U{ {D, L—_)_ } is attained | that is, there is Bo e B

=

with P(B)) = a(@, 0P, (AP, (This follows becanso (*)
a(z, o'{tD, _(__Z}) = sup{P(B)/ Be Band P(B) < 32-} and

{P(B)/ Be B and P(B) < 32"]. iz o closed set),
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Ago if B =o{A} with P(a) <% then

(3, 7{p, L2} = P(A.

(%)

In the sequel (§;, d;) (or simply §;), 1 = 1,2 will stand
respectively for S( (15, Ay, Pi)y 3= 1,2, Aypsbigsbogseees

Anl,... wlll be sets from % and AOE’ A_LE’ A22’ tony %2,000
will be sets from A, .

Lemmg 2,1 Let { } ( Then

WOTERD =V (D@D ad () Ca B = & PG,

Proofs Since (+) preserves lattice operations and since.

B O ;\T(,_fjo( s we have (-i-)(z:-%x) o (+)(z B, ) for each o,

o, V() (B) C QO 730,
, TQ @O C o )

Let {Gu} C Sy Wrking with ()7 instead of (})

. -1 - =
we have o\f(' (+) (g ) (+) (g Cole Tate G, = (+) (B )
Then V (7T ( (VE)) C W™ W B.))
Then v + L X, - M L,i.)(;c(

H - -1 i
.-'- v — V( )( ).
i.e o(§°( ( (_i_) (0( + ._?0(

% s ('l")(::( ,_}5:3‘:() = lf( (+)(§°():.

The other part is proved similarly., Hence the lemma.
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Loz 2.2 (1) P G{LLP=9{L ]

(i1) For any A€ & with Pj(4;) < § there is hoe by

" with Py(4,) = P,(4,) such that (_,_) (O‘{All})= {40} o
Proof ; Observe that () ™o (P D of (A},
So, (+) (d{ jf]l})(: o Lﬁlg} (as (+) preserves lattice

operatlons) 3 hence (+) (o4 Lill}) = d{jﬁlg}, This proves (i),

Let &, & & with Py(4,) < Jé- Then
4100 § T}, 0§81} = Pa) by (**), So,
d2{(+)(d{_£ill}), Q+)GT{A11})) = P1(4;;)(as (+) preserves

metrie), ,
iee, Pp(49) = 4, CE] 1712} , (+)(G{A11})). Using (*) we get

boe (WO{aP with Polay,) = dylo{ (Do}, (o {a, P).
Then we have P2(512) = Pl(All)' It remains to prove

(PO, P = oz}, Clearly, (D4, 2D ofay}. If
the equslity is not true, (+_) (6{1;11‘}) will contain at least

two distinet elements of 5., both of them different from

U{ 1712} whereas d{ﬁll} contains only one such (i,e, itself);
this will contradict the lattice preserving nature of (+) .

Hence (ii) and the lemma,
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Let A4 and  Boq be elements of 4 with
Py(A, 8 Ay) = 0, Since o{hq}= o fA} s It ig obvious
that the association mentioned in (ii) of lemma 9,2 preserves
equivalence classes,

i,e, if for &, we have A, ana Ao we have Ag, through

the assoclation mentioned in (i1) of lemma 2,2, then

P2(A12 A Ao) =0, Thus we can unambiguously define a mapping

‘ L

T, from {[All]/ Alle s Py(dg,) < = ‘to |

{[Algl/'Algs L., Py (Alg) < % } using (ii) of lemma 9,2.

T, 1is one to one 1s easy to check (using the fact that (+)

preserves the metric), Working with (+)-l in the place of

(+) we can conclude that T, 1is onto

{(‘Alz 1/ Ase b, PB(Alg) < Jé‘ } We note for future use that
t e . ~ ~T 3 8 o ~ qF - -

L preserves measure! in the sense it Tl([All]) [512] then

1
Pl(All) B PZ(A12)O The next lemms is meant to show that Tl

is well behaved,

Lg | 4 : : - ot L
Lepma 9,3 (1) Tet &g ® 4, be such that Pl(All) <%
Let A21 and A31 be elements of 41 satisfying

Pi(Ay () ay) =0, Pi((a, () Ay)a 4,) =0, Let

Moy Aoo and  Aqg be eleme@ts of &, such that

o1, §=1,23. Then PZ(A22 () 4,0 =0 and
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Py ((a, () A0 & B4) =0
(11) Tet Ay e & with Py(Ay) <. Let

{%l}n_f 1 = 4, satisfying

Py = 8y) =0 and P(dy = Ay o) =0, n2zl, |
Lot A4y, and {Ana}n >1 be such that Tl([Ahl]) = [Ang], n > 0,
- = - = 0 ‘

Then, P2(An2 AO2) Q, PQ(JAn2 An-f-l,e) and

Tl([(z)ﬁml) = [(H)An2]'

Proof ¢ (For (i), AqE0 ‘[A'Zl]’ V& {ABI} "
So, Mg e 0{A 3V O (Ao} (recall that (+) preserves lattice

operations and

T (Lag ) = Lagpl = (V@ {a P = o {Ap} etel)
: all. c c ¢ e
1.2, 1312 £ o'{the partition Ao Agg, A.22 A82’ A22 A32’ A22 AB?,} .

Now, P2(A22 () A32) = Pg(Agg) i P2(A82)

] [ ]
= Pl(Agl) + Pl( Aal) (., T, 'preserves
measure')

e
= Py (ay) < 3.

. c = c ' .
¥ .o P2(A22 () A32) >J§ . On the o?her hand,

P2(A12) = Pl(lel) < -12* . Henece
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Pohyp = (App Ap ) dgp Asp I fop Agp)) = O
e Poll, = (A, (D) B30 =0
= Pl(All) = pz(ﬂlg) P (4, ) ABE)

= Py(hyp) + Poliyg) = Pyl (i)

= Py (8) + Py (g)) = Ry (I ay)

= P (syp) = Plag,(Mag) < Pyayy)
= P, (4, () &) = o; Mso the fact Py(a,) = Po(ay, (L) 4,)

(which follows from the aﬁove:string of inequalities) ensures
Py (4,8 (A, ) Ay)) = 0, Hence (i),
Let now Aqqs Aoty A12 and A22 be such that
Prlay) < 5, Pylay = &) = 0 and T,([a;y D) = [45,], 5=1,2,
From (i? we have P2(A12'A22) = 0, Now the proof of (ii) is

trivial, Hence the lemma,

loosely spesking Lemma 9,23 asserts that Tl is 'monotone!
and 'additive' (- part (i) = ) and T1 preserves'tincreasing
1limits! and henee 'ecountably additive! (- part (ii) -~ ). That

is, T, is an isomorphism from éijl) ) [?11] onto
B Jwheneve L
4, () O Tl([All] whenever Py(A.) < 5.
Now we would like to dispense with two trivial cases,

Let P1 we completely atomic on gl with exactly one atom,

Then §; contalns only one element, So, §, will contain
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.only one element, This will imply that P2 is completely
atomic on gg with only one stcm, Then the answer to our
question is immediagte, Next, let El be completely atomic

on A with exactly two atoms (say £, fy). Then 8, has
two clements, This will imply that gg has only two clements,

So, P2 will be completely atomic cn §2 with exactly two

I l 4 L] L]
atoms (say Alz’ ‘ﬁ*22)‘ ir Pl(r‘ll) <%, using T, it is
scen that ceither Alz or 322 has P2 measure cqual to
Pl(All) s Then the affirmative answer to our aquestion follows

i : N [ W T
immediately, The case is same if Pl(A21) S g

Pl(ﬂll) = Pl(ﬁzl) = % then using the metric prescrving nature
do! i - = A »
of (4) , it is evident that P,(ly,) = Po(Ay,) =5 .  Again,

the answer is immediate, 8o, hereafter we will exclude these

two cases from our consideration,

We are set to define the mapping T from él(Pl) onto
fal g - I3 -
éz(Pz)' Get a partitien {ﬂll,ﬁzl,...,Aml} of () by &
sets as follows, f;; 1s the atom with the largest P;-measure;
if there are no atoms take fqq = P, The reomaining sects el
- T 3
Ao1s Agpyece, Ay are so obtained that Pl(Ajl) <2 =23y,
This can be *2ne since we have cxcluded the case when P1 s
completely atomiec with only one or two atoms, Let 422,A32,..,,

Apo Pe A, scts such that A, ¢ Tl[aﬁlj’ I = 2,3, 000,
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Now we claim that P2('&j2 ) Ajrg) =0, 2<J#J"'2m
For 1f De Tp0 ([4, (O &:,0) then Py(D - 4,) =0 and
Pl(D - ‘Lj'l) = 0, (This is a conscouence of (i) of lemma 9,3)
But 1@1(%1 () Aj,l) =0, &, Py(D) = 0, Thus
PQ(A:}'2 (—) Aj’z) = O’ 2'5 :] ¥ J < m, Thus .%2, %3""’%1‘1‘1
ere essentially disjoint, Tet A, = _()2 g Y 4,.. We
presently show that ‘Pg(ﬁig) = Pl(All) and if All is nonempty

then A, 1is also an atom, That P,(4 ) = Py(4,) follows

je ol
nonempty and A12 not an atom, Choose G (C Ao with

as Po(a,) = P (4.3, §= 2?3,,',,,m. Let if possible A, be

0 < Py(0) < min{%, Po(iy5)}. Let De Ti‘l[c], Since

P(41) = Po(4 ) > Py(C) = P{(D) and A, is an atom |
P,(d0 () A) =0, So, P;(® () ;-,jl) >0 for some J = 2,3,.0e,M,
Let. Ee T, (D () &;)s Then Py(B - Ap) = 0 and P, (E ~ c)fo_

» » . - —

£ T[Alj] ~4[A2j1 and T[D] = [c])., But P2(A2j ) ¢ =
So, Pg(E) = 0 = a contradiction to the fact P,(D () A;) >0
and consequently P2(E) > 0, Hence A12 is an atomn,

Define T by

m

T([{D]) = _)T([D()AJ]) De &

(Here interpret Tl([All]) =‘-:[A12]. This 1pterpretatlon ig

i
<2).

E

consistent if Pl ( &_Ll)
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Lemna 9,2 and the observations we have made Jjust above ensure
that T is an isomorphism, In order not to lengthen an already
long proof we omit the details, which are in any case ecasy to

check,
—

Lemma 9,4 Let (+) be the map induced by T, Then fer any

() @Pp = E_I_?(G{D];).

Proof i 1°. Let P (D) < +, Then
m
TP = () T.([p ) 4.1
. A1
m —
= ;00 [0 ) A D = 1, (DD,

B=1.
Let Ee Tl([D]), By the definition of T; we have -
(+)(G{D}) = U{E} . On the offfr hand E e T([Dl) &and by the
definition of (+) we have (+) (G{D}) = G{E},
%, WEPP = (DEPP,

2, Let By, B, be tw clements of 4 satisfying

—— A1
(1) Po(EB; () B = 0, (11) 0 < Py(E() <3 and
(1i1) Py(B, () B =%, OConsider 7 By, Ez} . It is clear

that it contains only five elements of gg

viz oy O}, ofB ), 0B}, o{F (O By} and o (B, B}
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Now,
dg(d{ .Cﬂlg} ’ U{ f—lg}) = O:
aglo{ LAh s 9{EL P 5
2,0 L} 5 9B = PplBg) < %

1,600 L2}, ofB QO B = Pply (O B =3 =d

i
ael
I=
A

ay00{ L}, 0By, B = min Py (Ey),Po(B)} <<,

So, the only clement of 25 contained in G{El’ Eg} and
. ) . 1 - . .
is at a distance 3 from o‘{ { _)_2} is O‘{El () l‘h2} .

O

L. Tet Pl(D)=%, Let B be an 4, set with

B C D and 0 <Py(B) <P (D),
gD} C ¢{B} VoD - B} S0,
(1) (@ {DP C QPEEP T Q6P - B})  end
(:5(6{13}) C @(@{B}) v @(U{D = B})

= (+) (o'{B}) v (+)(6{D - B})

(- note that P(B) <3§ , P7(D = B) <J§ end use 10 <),
So, (+) (U-{D}) and E_;f(c {D}) ere clements of §, conbained
in (O {BP ¥ (y) (@D - B1).

Let By e T;(B] anda Bye T,[D - Bl, Then
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(1) Po(E, (7)) By) =0, (i) 0 < Py(E) < 2, 0 < Py(E) < <

and  (111) Py(E; () By =3, fso, by the definition of

L1, we have

(+)(G{B}) v (_+)(o'{D - B}) = O‘{El} v G{Ez} )

Observe also that dai@{ ()}, 9{D}P) = § ; the fact that

Sy

(+) and (+) arc isometrics implies,

1,00 L}, (PEPY =3 ad a0 O}, WEPP= 3.

Thus (+) (G{D]:) and (+) (o {D}) are two elements of 5

>
contained in O'{El} v 0‘{“‘2} and cach is at a distance Jé‘
fromn o‘{_gj_g} « So, from o 3 (+)(O’{D}) = (+)(0‘{D} Ta

2%, Let De éa- ir P,(D) # £, either

Pl(D) <12‘ or Pl(Dc) < 35 « Ten an apolicstion of 1°  gives

e
us ({_) (U{D}) = (+) © {D}). Now, let Py(D) = Jé' « Hnce we have

excluded the casc of exactly two atoms either D or D° is

not an atom ; say D is not, Then D containg an [_;1 set B

wvith P < Pl(B) < Pl(D). Mow an application of 3°  gives us

(P o = W6 pp.

. Hence the lemma,
E T

Lemma 9.5 For any B e 8§, (+)(=3) = (+) (B).
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Proof: Observe that B =D v ) 9D} » Recall that (L) end (1)
e B ! !

are complebe lattice isomorphisms, 5o

(+)( 3) = (+)(D v = G{D}),

E:

]

i

v (+) CEEXY

DeB
o ng (+) (o {D}) (by lemma 9,4)

(1) (D;,Igg DY = (W B,

Hence the lemna,

Thus we have

Theorem 2.6  Every isometry (+) from § ("("—)'1’ 4, P;) onto

5 ( _(_-‘)_2, gz, P2) preserving the lattice operations is induced

by an isomorphism between 4,(Py) and A (P,).
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ON 4 GEN IZALION, DUZ TO BL/KE, OF Mj TINGALES

1, Introduction

Let ( £), 4 P) be a probability space and {E }5y an
inereasing family of sub o-~algebras of 4. Let {Xn}n:_l be
a stochastlc process adépted to {‘—"P:n}nzl: i,e, each X, 1is
E, measurable, Following Blake [5], we refer to {Xn]'n.:,l

as a game and define

Definition: The game {Xn]'nz,l will be said to become ILairer
with time 1if for every e > O, :

PLIE(X/E) ~ X | el =~ 0 as nnm~>o with n2mn

(In the above definition the symbol E(ng/gm) sfands for the
conditional expectation of X, given I . We have used this
notation for conditional expectation, rather than the one used
in Chapter 1, to confirm with the usage in [5]). My martingale
is, trivially, a fairer with time game and thus this concept

generalizes that of martingales,

Blake in [5] gives tw convergence theorems for vniformly
integrable fairer with time processes, Below we quote those
results, Let {otn}n >1 be a monotonic sequence decreasing to

zero with finite sum, The game {Xn.} >, may be decompo sed

{751
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with respect to {c{n}n »q &S

X" %, " % M eg™ et

vhere Yn}n >1 and {Zh}n » 1 are defined inductively by &
hth
-

(1,2)

Yo=Y oot X - B E ] |
% = Foeq * LK g - BA(XE D e (1,3)

The decomposition of (%X} ., according to (1,1) - (1.3
will be called a Doob-like decomposition, It can be verified

that (¥} 1 of the decomposition, is a submartingale with

respect to {E }, » 1. Define the collection of sets stm}-

for m= 1,2, 4ee¢ and n Zm by

B; A= {lE(ng/gm) - Xml > c{m} « MNow we state the ‘convergence
] ’ ;

theorems in [5],

Theoren 1, Let '[Xn}n > 1 be a2 uniformly integrable game and

Yn]‘n > 19 the submartingale associated with its Doob-like
decomposition, be uniformly dominated in absolute value by an

element of Ll( L_)_, 4, P)o Suppcse for-every 6.> O there

exists an integer N(§) such that
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[l ] <6 whenever nZmn2 N(E) (1.4)
’ §eis
- o( - 24 :
and () ~ Bn,m C (- Bk,k—l whenever (1.5)
n>k 2k-1l2n2 N(8)

Then, there exists a function X in Ll( £, 4, P) such
that 1im J X - X/ aP =0,

B |
Theoren 2, Let {Xn]'n »71 bea uniformly integrable game
satisfying (1.4) and (1,5). Then, there exists some constant
¢ such that 1im I Xn iP = C,

n-—.’>00 (_
L2
The condition (1,4) implies the game {Xn].n >1 is
fairer with time, To see this fix € > 0, Let & > 0 be given,
Choose m, SO large that < < ¢ (this can be done as de, 0)

0

and m, 2 N(s), TNow,

{IBGR/E) - X > e} C {IB/E) - Kl > <)
for all n 2 m2 e
So, PLIB(X /E) = X} > e] s PUBGR/E) - Xl > ety
2 P[Bg’ 1 <& whenever
n=>mnz Iy

Since & 1is arbitrary it follows

P“E(}%/Em) - Xm‘ >¢}] =0 as n, m > with n2m
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Thus the above theorems give a sebt of sufficient conditions
for a uniformly integrable‘fairer with time game to converge,
In this chapter we show that these sufficient conditions sare
not needed ; in fact, we show that any uniformly integrable,
faire-r with time game converges in Ll.

2, Maln theoraoms

Theorem 2,1 - My uniformly integrable fairer with time game

Xn}n >1 converges in Ly,

Proof: To facilitate understanding, we bresk up:the proof
into a Tew important steps numbered (S1) through (85), Tor

5 > ~ince = 3 -
every m and n 2m define ¥ E(‘(n/g‘m). Let [T stand

2
for the family {Ym q» for all m and n 2 n} .
s . b

(s1) r ig uniformly integrable,

Since {Xn}n >1 igs uniformly integrable there exists a
function f defined on the non~hegative real axis which 1s
positive, increasing, and convex, such that
lim i:i(:'t')' = + 60
f=—— 0

and sup Elf o |Xn“ <co, (sce [16, IT T 22]),
n
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Yow, Elfo |¥, 11 =Elfo (X, 7E,)) ]

Ia

ELf o m(\X l/Em)] (gince f is
increasing

BLE(f o 1Kﬁ}xgm)]

1A

Blr o 1X )],

< sup BLf o ]Xn]] < oo,
t n
YI",nE r

Inother application of II T 22 of [16] ensures that [ 1s

Therefore  sup ELf o !Ym _,l_l] <

uniformly integrable, Hence (81),
(82) Given € > O, there exists M such that for all m 2 N,

one has E(‘Xm Ym,nl) < g2eg for all n 2m,

Since |7 is uniformly integrable given € > O there

exists & > 0 such that P(A) < & implies

m,n -2 m,n

f]Y | b <&  for a1l Y e [, Choose M so large that

2M and n2m implies PLIX - B(X /E )] >el <6, Then,

it is not difficult to see that

B{]X ~Y |}l <o for all m2M and n >m, Hence (52),
n m,n

(33) For every fixed m, the sequence {Ym,n]’ converges in

Ll‘ to an F, measurable random variable 2.

Let m<n <nt,
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BlY, - ¥ 511 = BLIRGE/E) = BOG /B

1'1 m" ;

U

BL{E(X ~ X /E )]

i

Bl B({X~ X1 /E DY B

iA

E[E({l B(X =~ X%+ /E ) VE,)]

= BLIE(X~ X ,/E )|]
= E[|X - Yn’n,l]

Now from (82) it follows that given e > 0 for all sufficiently

larse n and n!

B, 0™ Y nel] s BU(K - Ty, nt)l) 2

Hence, for m fixed, the sequence {Ym,n} is Cauchy in the

Ll-norm. So, there exists, an integrable random varlable 3%,
, I ‘ y

1
such that oy - . Without loss in generality we cahn
R (17D 2 WY %n . 7
c % to be E, measurable, (Note that each Ymn is F

measurable and there is a subsequence {¥_ n'} converging almost
. "m,

surely to Zm). Hence (83),

(84) { . -m}rl »>q isan uniformly integrable martingale,

The fact that {Zm]'m >3 is uniformly intesrable ‘.follows
trivially because the closure in I-'ZL of a uniformly integrable
collection is uniformly intesrable, (See [16, II T 20]), To

show {%1, g‘m} is a martingale it is enough to show that for

every m,
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Ls1l
E(71n+1/F ) = Z 84S, Since
B B(Y 4y n/gm) - E(Zmﬂ/F )]

EHE{( m+1,n %+l)/§m}l}
E[E{l m+l,n = Gy | /B H

N EHY mt+l,n

1]

fA

there exists a subsequence n' of {0 i n 2mn} such that

2e8e
E(%wl,n’/gm) -~ K %n-i'l/gm)

We can assume {= if necessary, by choosing a further subsequence,=)
8.. S.

that Y ,l’l‘ — Z}n.

Now, E’(Zinﬂ_/F Y = n:g,irg i E(Ym+l,n'/£m) 2,9,

= lin E({E(Xn‘/£m+1)}/—£m) a,s,

n'!-—> oo

= 1im E(xn,4gm) a8,

nl....;,oo
= Jlinm Ym n! S
n‘-—->00 . )

| = 4y &a Sa
Hence (84),

(85) {Xn}n >q converges in Ip.

Since {%; gn}n >1 is an uniformly integrable martingale,

there exists an integrable random varliable ZOO such thsat
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[s2]
L : | L

7 L Be,. Wo shall show thet X, 2> 7., From (83) and
n-e £, ‘

(S92} it is easy bo check that given ¢ > 0O there exists M

aueh that for all mn 2 M

X, - Zﬁl dP < 2 , Therefore, for sufficlently larze m,
Jlx - z)ap st ix- ZldP + 575, -z, JdP < 3 , say,
Hence (85) and the theorem,

Since any game (stochastic process) (X} > ; converging
in Ly can be taken to be a game Tairer with time, by setting

F = A for 511 n

Za” 2 , we gebt the following corollary,

Corollary 2,1 Let {Xﬁ}n > 1 be a game, It converges in L,

if and only if it is uniformly integrable and fairer with time
with respect to some increasing family of sub o-algebras
{gn}n >1 to which it is adapted,
Let p > 1,
Theorem 2.2 Let {Xn}n > 1 be a fairer with time game with
b 1 i s o : 2 .
{IXﬁl }n >1 uniformly integrable, Then Xn}n‘: ] converges
in Lp’
Proof : Noting that the function f defined on the non-negative

regl axis by T(t) = tP 1is positive, increasing and convex and

1im .ﬂ%?l = + 00, 4n view of II T 22 of [16], it is clear
te—> o0 :
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3 i inte - Hence theorem 2,1

that '[Xn}n >1 18 uniformly integrable, ence by
it converges in L, § in particular, {Xn}n . 1 converges in
probability, Therefore {Xn}n > 1 COnVerges in I, (Bee
proposition II 6,1 of [201),
Corollary 2,2 The game {Xn}n > 1 converges in L, 1if and
only if '“anp]’n >1 is unifornly integrable and ,{Xn}n >1
is fairer with time with Tesvect to some increasing family

of sub o-zalgebras {__En}n > 1 to which it is adapted,
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CHAPTER 4

ON A CONJECTURE QN SINGUL AR MARTINGALES

1, Introduction

Let ( ), A, P) be a probability space and {En}n >1
an increasing sequence of suh ¢—~glgebras of 4. Let X, be
the smallest o~algebra which contains all the E%s. In what
follows, there is no essentlial loss of generality if we assune

that A= E,3 accordingly we assume SO, Let {Xh be

21

s sequence of integrable random variables on ), 4, P)

forming a martingale with respect to {En}n >1 (in the sequel,
. N 1 + . . o1

we will abbreviate this by {Xﬁ, gﬁ}n >1 is g martingale'),

For each n, define a measure xg, on 2, by

po(8) = [ % P, e K (1,1)

In [14], Iuis Baez=~Duarte introduced the following definitions,

_ L3 . L] st - v L3 O’ - X " n‘ _;- = B
Definition 1l.Z The martingale e En b >1 1s measure
dominated if there is a finite measure g on B whose
restriction to each E,  coincldes with the measure [,
defined in (1,1), In such a case p is said to dominate

the nartingale,

In view of our assumption = 4§, 1f there is a

oo
measure g dominating the nartingale {X., gn}n >1 then

it is unique,
[84]
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Definition 1.3 Let {%,, Eb > be a neasure-doninated
martingale, It is sald to De a singular martingéle 1f the

dominating measure g 1s singular with respect to P,

Let for each n, Sn stand for the exbended real line

[- o0, o] and 2, for the Borel d=algebra of 8. Denote

?

oo
by 8 the cartesian product TT Sn and by Yn the
n=1
projecction from S to (8, __]_gin). Let the o-algebras generated
by {YZL’ Yz""!Yn]’ and {Yn’ n > l]: be denoted‘respectively
by B™ and B . In the remalnder of this chapter, the symbols

S, Sps :]@n,_ B and Y, have the same meaning as given in this

paragraph,

Given any seguence {Xn}n >1 of integrable random
variables on ( _f_)_, A, P) by canonical mapping we mesn the

measurasble mapping T from ( ), 4)Y o (8, B) given by
T((D) = (Xl(w)’ X.ch), sscy Xn(w), '.’),V'w £ .g._.). .

It is easy to see that if '[Xh’ Eh 1 182 martingale
on (_(.m.)., A, P) then {Yn, __Bn}n S 5 ig a martingale on

(s, B, Po 71y (- where T 1is, of course, the canonical

mapping =) with the property that {Xn}n , 7 and {Yn}n > 1

are equivalent, We call {Yn, ___1?11} the canonical
: n=1
martingale associated with {Xn’ '-En} . Note that for

nz=>1


http://www.cvisiontech.com

[86]

Various {Xn}'s what varies is *he measure P o Tnl and not
Yn}n 21
| It is not difficult to prove (see, for instance, theorem
3,1 of [14] ) that, if (X, K}, > 1 is a measure-dominated
martingale then the canonical martingale assoclated with it
ig also measure~dominated, In [14], Baez-Duarte conjectured
that 1f {X , Fn}n.i ; 1s a singular martingsle on (), 4, B

then the corresponding dominating measure for the canonical

martingale is concentrated on the boundary of T ) We

disprove this with the help of an example,
2. M example

Before proceeding with the construction of the example

we would like to observe the following,

Let ()=8, 4=B and X, =7 for all n., Then
the canonical mepping from ( (), &) to (8, B) is just the
identity mapping, So T £:l= S8 sand hence the boundary of
T Lﬁlis empty, Therefore if we could find a measure Q on
(S, B) such that (¥, B}, »q Pocores a singular martingale

on (3, B, Q we would have disproved the conjecture,

We achieve this in two stages,

2D1 Let _(._.lz F" 2, 8’ LA RN ng LE NN ] OO} . Let ,-El ={¢s.§.l }
and, for each n 2 &, En be the o=algebra generated by the
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partltion {1}, :{2}’ - ’[n-l}, ,{n,-n-l-l,)..., 00} ., The symbol
[n, ool will dencte {n, ntlge sy, & ],. As in sec?ion 1, the
g-algebra generated by (_ﬁ) i, is denoted by 4. Clearly,

3 is Just the class of all subsets of _C_l, TLet P be the

probability measure Gefined on 2 by P({n}) = 'lﬁ , =
- 2

and 'P({ o0 }) = 0, Define a segquence {Xn}n s 1 of integrable

random varigbles on ), 4 P) by setting,

X (@) = —L— if e2=n
Pln, oal
= 0 if o <n,

The fact that {Xn’ '-E;n}n 21 is a martingale is easily verifiled,
The measures g, 'S given by the rolation (1,1) are nothing but
the restriction to I of the probability measure Ego 5 CORCENT

trated at {OO], . Hence an, —-En}n > 1 is a sineular martingale,

5,2  Consider the canonical martingale associated with the
singular martingale construected in 2,1, We show that it (the

canonical martingsle) is singular,

The following two facts are casily cbserved, _
(1) Since the set (X, defined in 2,1 is countable, T(4)

is B measurable for every subset A of G
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[28]

(11) Since T(@) = (X (@), X,(0), ..., X, (@), 000)

1 . l' : I
= (1, = “os 0,0 -.o)
H P[z, m] 2 P[B,OO] ] ] P[(D’OC‘ ] 23

% is one to one,

Now, denoting the measures, corresponding to the canonical
martingale, defined in (1,1) by { uﬁ}ﬂ.& 1s We have
pl(R) = (Y, aPo T = X P = p (THA), ¥ ac B
A ey
That is g =, © 71, Lot p! be the probability measure
concentrated at the point T(),
For any Ae B, p'(a) =1 = T() ¢ 4
<> (T7HA) = 1
<= pl(h) =1
So, for every n, the restriction of nt %o En coincides with
uﬁ « That 1s, ¢! is the dominating measure for the canonical
martingale, Since, P o ¢ ¢ (7) - ) = P(() - =1,
and p'(T(d) = 1, the measures P o 771 andg p' are singular,
Thus (T, gn}n > . 1s a singular martingale on
(s, B, Po 71y, Therefore, in view of the observation

made at the beginning of this section, the conjecture

made by Baez-Duarte is false,
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3, XRgmark
A slight modification‘of the above example will show

that even if boundary of T { ) is non-empty the conjecture

1s not true., We indicate below the modification to be

offected without giving detailed proofs,

Let () and P be as in é.l and se S~24(),
Define S' = 8 = {s} and take ('t anda B respectively
to be the trace o~slgebras of B and B on 8', Let, for
cach n, Y. Dbe the restriction of ¥ to S', (¥, (BM'}, 54
is a singular martingale on (8}, B', P o T4 with p! (defined
in 2,2) as the dominating measure, Now, since T(St) = 8 - {s},
the boundary of T(S') = s, Bub, the dominating measure

corresponding to the canonical martingale associated with

Y, (@n)'}n >1 is concentrated at the point

(l, ‘—l“—‘3 ses ,“‘J"', cve) y and this point is obviously
PL2,00l ~ Pln,oq]

different from s,
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