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Ever since ¥olmogorov's model for probability theory
(see 118]) - the trinity (X, &, P)- started gaining accep-
tance among workers in probability and ststistics, there
have been several attempts at studying pice classes of proba-
bility spaces {see [2], L[12], (22], 3¢] ana [371). In one
such attempt, the fascinating class of perfaect probability

spaces was introduced by Gnedenko and Kolmogorov (8],

A'probabiiity measure P on (X, 4) is called perfect
if for eﬁery' real~valued L-measurable function £ defined
on X the induced measure Pe on the class of linear Berel
sets is oﬁter regular, (X, Ay P) is called a perfect proba-

bility space if P 1is perfect,

Although the reason given in [8] for intrcducing the
concept of perfectness is '"to achieve complete haymony
between the abstract theory of megsure and the thecry of
measures in metric spéces' (see chapter 1, § 3 of [8}), the
work that has been dore inveolviing the concept of perfectness
since its introduction has brought out varicus other nice

propertics of perfect measures,
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Probzabilities on the Borel subsets of complete separa-
316 metric spaces are well behaved. For instance, they are
approximable by compact sets from inside which is the crux
of Kolmorogev's consisterncy theorem on product measuTes.,
But in a genersl probability space, to start with we do not
have compactness, However we can call a collection of subsets
of a set’ X to be a compact class if every sequence of sets
from this collection having finite intersecticn property has
nonempty intersection, Marczewskl 122] introduced this
notion and defined a megsure P on. (¥, ﬁ) to be combact
if it is approﬁimablé by a compact ciass.A Lgein, a -compact
‘measure méy be mecre thah ﬁhat is neéded because more of ten
the interest-of a probabilistris not as such on the space he
works with but mainly on the behaviour of random variables
defined on that space. "It suffices then to require the measur:
to he compact on'every countably generated sub=c-algebra,
This is the notion of quaéi—com?aetness intreduced and studied
by Ryll-Nardzewski 371, lel-NardZQWSki proved the eduiva—

lence of quasi-compactness and perfectness of a measure,.

Further, as in the theory of stcchiastic processes,
when cne wants to study conditional distributicns regular

conditicnal probabilities ccme into pictuTe., The existencs
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of regular conditional'pTObabilities,'which enables such
studies to be done nestly, iS‘guaranteéd.in perfect spaces,
Moreover, certain péthOIOgies inherent «in the theory based
on Kblmogorov‘s model do not arise in-perféct spaces (see
introduction in [21) while the concedt 1is reneral enough
for all applicaticns, Thus todey perfact probabllity spaces
are, perhaps, technically the most pleasing classes of

1

probebility spaces.

The first four chapters of this thesis are devoted
to studying some interesting problems on‘perfect measures,
The fifth chavter treats some problems regarding SEQUENCES
of o-algebras and has connection with perfecﬁ probability
spaces in applications, The last chapter_studies the
invariant measure problem in ergodic theofy for a group of
transformationg. We give. below a chapterwisc summary of the
thesis;r

CHLPTER 1: It is showa using the notion of strongly

Blackwell spaces that there is a nonperfect probability space
in which the two definitions of independence arec equivalent,
This answers a guesticn of Rodine (32] in the negative.

Some related gquesticns are alsc discussed,
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CHLPTER 2: Let (X, Ly P) be a probability gspace and

iet B be an etomlc sub-d-algebra of L with respect to
which there is & regular conditional probability which is
proper a.s, Pl, It is shown that if P, isa procbability
measure dominated by P then thére is a regular ccn-
ditional probability with respect tc B in (¥, Ly Py) which
is-proper BeSe [Pl]. 3 decompositicn of the whole space X

intoc sets one-shested with respect to B and a set not cen-

taining any one-sheeted set of positive measure is obtained.
When 4 1is separable a necessary and sufficient conditicn
is given for the existence of an independent complemant

of B.

CHiFPTER 3:° L new characterisaticn of Lebesgue spaces is

obtalned by using certaln conditlcns on a fixed measurablc
partition of a separable space. It is shown that -ny twe
independent complements of a measuréﬁle partition of =

Lebesgue space are isomorphic a.s, L necessary and éuffi-
cient conditicn is obtained for the existence of a'unique

independent complement,

CHLPTER 4: L detailed study is made of the mixture prob%g
for perfect measures, It is shown that perfect mixtures of

perfect measures need not be perfect and that a perfect
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mixture of nonperfect measures can be perfect thereby settling
2 conjecture and a question of Rodine 133}, Perfect mixtures of
discrete measures are shown to be perfect, AL necessary and

suffiecient condition, using results of chapter 3, 1s given for

a perfect mixture of pevfect measures To be perfect,

CHI{PTER 5 Some (Jquestions regerding'sequences of o=~algebras
which oécur in & certain formulaticn cf the theory of non-
linear prediction are discussed, Some results on point sepa-
ration in seguences of owalgebras snd on crossed o-algebras

are proved., Applicaticns bo product spaces are alsc given,

CHAPTER &: Let & be a group of measurable, nonsingular
transformations on (X, é. P), . Some resuits on the equlvalence
by countable decomposition.of measurable sets are proveads,

Using Tarski's theory of mass functions on abstract semigroups,
condition (H) which is'a generalisation of Hopf's conditién
for eyeclic group, is shown to be necessary and sufficient for

the existence of a finite measure equivslent to P and

invariznt under G,

Some of‘the results of this thesis have been submitted

for publicaticn (see [27], i28], [29] and (301).
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CHLPTER O

INTRODUCING PERFECT ME/LSURES

'THE TERMINOLOGY 4LND NOT.TION USED IN THIS THESIS CLCSELY
FCLLOW THLT OF .NEVEU [24] (4LSO REFBER TO HLLMOS t1ih) .

411 measures considered in this thesis are probabllities,
The word'function', when'used without qualification, will

always mean 'real-valued iunctlon .

If € is a collection of subsets of a set X then

alg (¢) anda ol(g) will denote respectively the algebra genera-
ted by C and the o-algebra generated by C.

Let (X, &) be a ‘measurable space. é 1is said to be
countably generated if there CXlStS & ssquence of sets {Q&J}
(N 4 such that L = G({'Ln} V& L is said to be separable if
itAis ccuntaply geﬁerated and cohtéins all singletons, Let P
be z measure on (X, é). L oset L€ L " is sald to be a P-atom

if for every Be L, B (C 4 either P(B) =0 or P(B) =P(4).

'The measure F 1s gsaid tc be discrete 11 there is a segquence
S.Ln} of pairw156.615301nt P-atoms such that ﬁ; P(An) = 1,
4 | B

" We usc the following definition of.perfectness of a

measure which is*equivalentltc the definition gilven by Gnedenko
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and Kolmogorov in {8}, L. measure P on a measurable space
(X, é) is called perfect if for every 'éymeasurable funetion

f on X and every subset 4 of‘the-real line for which
£=1 (¢ . there is a linear Borel set B contained in . suol

that P(f"l‘ﬁr) = P(£71 B), We call (X, 4 P) a perfect probebi-

C1lity space‘ifi P is a perfect measure,

We now collect some useful, well known facts regarding

perfect measures (see [591).

Pl, & measure P on a measurable space (X, L) is
perfect if and only if for gvery é—méasurable'function f on
X there is a linear Borel set B(f) contained in £(X) such
thet P(£™T B(£))

P2, 4 measure is perfect if and only‘if its restriction
to every counﬁably generated sub-d—aigébra is perfect,

-P3, The restriction to ahy sub-d-algebra of a perfect
.measure is perfect

pa, (X, Ao P) is a perfect probablllty space gﬁpaﬂd

only if (X, 4, 5). is a perfect probabllluy space, where

=1

(X, é, P) 1is the completion of . (X,.ﬂ, P).

PS5, 4 measure P .on a product space

( T X4 X él) is perfect if and only if every marginal
1g1 el

of P 4is perfect,


http://www.cvisiontech.com

Suppose a measure. p on,“(X.‘é) is 0~ 1 valued, that
is, :"u(h)‘z ¢ or 1 for eVefyiﬂﬂg L, Then evefy a=measu-
rablé function on X is essen£iélly a constant and hencé. by
;Pi. g is-perfect.H Simiiarly it.caﬁ be shown using Pl that

a discrete measure is perfect,

Let (X, 4) be a measurable spacse with L countably
generated, Lgtdiﬁn} be a sequence of measurablc sets such

that d(-{Ln}_) = L, The fynction

’ f(m = T (g8 1, ()

W g we BEIE S e By
is called the Marczewski function of {_ﬁﬁ}- o+ It.is easy to
chgck that f(xl) # f(xg) if x; and X belong to different

atoms of 4 and that f(é) = B [0,1] o £(x) where E{O.rl]

denotes the Borel o=-algebra of {0, 1], Further the following

fact can be verified using Pl,

P6, L measure pu on (X, &) is perfect if and only if

(£(X), B 0 F(X), uf™l) is a perfect probability space.

={0, 1]
Suppose X is a subset of ths real line, Let
@X = {;B 1 X: B is a linear Borel set }v, Then we have

Y

B7 . (Lemma 3, [39])). In order that every measurs on

(X, @X) be perfect it is necessary and sufficlent that the

-y n -

Sermpregsion; QCRwebnpimizalipn usingmwaliennas
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ILet X be the iLebesgue measure on ({0, 11, Bio 'lj).
=0, 1]
Let M be a subset of [0, 11 such that »* (M) =1 #r (M)
where A* and‘"i* dencte reépeétiveiy the outer measure and

the inner measure induced by A. Using Pl we can see that

(M, E[O, 1] Iy By e % b? is a pdnperfect probability space,
We shall give exact references to other facts about
perfect measures wienegver Wwe use them, Interesting results on

perfect measures can be found in Ryll- Nardzewski [37],
Blackwell 121, Kallisnpur L16]}, Sazonov (39], Jirina (151,
Pfanzagl and Pisrlo {26] and some others listed in the

bibliography.


http://www.cvisiontech.com

CHAPTER 1

PERFECT MEASURES AND THDEPENDELCE

1,0 TIntroduction

Let (X, g, P) be a probability space. For an

A-measurable function f dJdefined on X let

Bp = {f’lB: B 1is a linear Borel set} ’
and let
Ap = {f"l Ce A3 € is a linear set} 7

Two A-measurable functions I and g are sald to be

(1) independent according to Steinhaus' definition if

g are indspendent, and

s
(2) independent according to Kolmogorov's definition if

! gf and A are independent,

g

‘In general the two definiticns are not equivalent (see {6}, [12]).
Doob (sce appendix in [8]) has hoted that the two definitions

of independence are equivalent if P 1is a perfect measure.
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The requirement cf perfectness of mezsures is sufficient
to refine the Kolmogorov model for prcbebility theory so that
it is technically pleasing (see appendik in [8] and introduc-
tion in. [2]). But the necessity of perfectness for a techni- |
cally pleasing model has nct been invegtigated so far, Rodine
(321 raised the following question in this direction, If the
two cefinitions of independence are equivalent 1n a probability

space (X, A4, F) then is P perfect? We show in this ghapter,

using the notion of strongly Blackwell spaces, that the answer
to the above questicn is dn the negative;"Wéralsq_study solle

related problems,

Ll Main results

Let (X, é) be a measurable space where 4 lg a separs-
ble o-algebra, (X, é) ig said to be a Blackﬁell space if él
is a separable gub=o=olgebra of A impliies A4 =‘§. (X, é)
is said to be strongly Blackwell if ény two countably generated
sub-c-algebras cf A with same atoms are identical, 5 181y

Blackwell spaces were introduced by hshok Maitra,

For a measurable space (X, 4) where the o-algebra 4

ig separable, we have the following theorem,

Theorem 1l.1,1: The following conditions are equivalent,
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1) (X, 4) ‘is a strongly Blackwell space,

M)FIf B'is a countably geperatud sub~d—algebrﬁ of

4 andé L€ A 1is a union of B—.;,tom._;t then A€ B,

iii) For evsry = measurablp furct on f gefined on X,

st

Procf: (i) ==» (ii).

)
vy

{;B, “} then B' = B by (i).

(11) => (ii1). The sub-o-algebra
Br = {?-l B: B is a linear Borelset}’

of & 1is countably gencratzd,- Cleérly gf'C: éf . On the
other hand every set f"l Cy whers C 1s a linear set, is a
union of atoms of Be and thus is in By if It is ia  4q by

i (11)

(iii) => (1), Let 4, £y be two countably generated
sub-c-algebras of 4L with same ztoms, Let “l = S-Aln} and
let f be the Marczewski function of {;Aln} {see Chapter 0),
Now ko (U 4p = Bp (by (iii))

2x
similerly £ € 4y and (1) holds. .

Corollary 1,1,2: Tet (X, &) be a strongly Blackwell space.
Let P be any measure on (X, 4)s Then the fwo definitions of

indenendence are eduivalent in (X, 4, P).
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Procf: For every h-megsurable funection £ dJdefined on X,
by 1.1,1, Ef = éf » Hence whatever bhe the measure P on

(X, &) the two definitions of independence are equivalent,

Now we present an example to show that the answer to the

gquestion raised in 1,0. is in the negative,

Example 1,1,3:

Ryll-Nardzewski 132] has shown the existence of a non-
Lebesgue measurable subset X* of the unit interval {0, 1]

such that if

-

A% = %;BIlX*: B is a linear Borel set‘?;

then (X*, 4%") 4is a strongly Blackwell space, Further X*
is thick, that is, X* has outer Lebesgue messure che, Let
P* Tbe the trace of outer Lebesgue measure on (X*,ig*). Then
(3%, %%, P*) is a nonperfect probability space. But in view

of 1,1.2 +the two definitiohs of independence are eduivalent

in (X*T -ﬁ_'_*' P*)c

. Remgrk 1.1.4:

The following question is a globalized version of the
gquestion asked in 1,0: -

suppose (X, 4) is a measurable space such that whatever
be the measure P onl (X, &) we consider, the two definitions

~ of independence are equivalent in (X,*4, P), Then does thers |
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exist a ncnatomic, perfect measure on (X, 4)? Here we demand
something weaker after making a stronger assumption on (X, 8).
8till the snswer to this -gquestion is in the negative as we shall

proceed to show,

4 subset D of the real line is said to be a perfect set
if B e {_limit pecints of E}'. Every uncountable Borel subset
of the real line contains a perfect set (see {191, page 447),

The foliowing result goes in the opposite direction of P7:
Suppose X 1is a subset of the real line and
§X1=A{BI1X: B is a linear Borel set } A

/ . A A -
Every nonatomic measure on (X, @X) is nonperfect if and only

if X does not contain any perfect set,

The probf is easily carried out using P31 anc we omit
the details.,

The set X* wused in 1,1.3, constructed by
Ryli-Nardzewski, can be taken to be such that both X* and
10, 1] - X* do not contain any perfect set, Hence (X*,_g*)
s in 1,1.,3 is a measurable space such theat the two defini-

tiong of independenhce are equivalent in (X#, A%, P) no matter

~

P we consider, yebt every nonatomic measure oOn

o]

what measur
(X*, &%) is nonperfect, Thus the answer to cur globalized

question ig in the negative,
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-We aliso note that (X*, é*) a8 in 1,1.3 is a measurable
space such thet for every sub-c-algebra B of A% and for
every measure P on (X%, B) the two definitions of indepen-

dence .are equivalent in (x*,rg. P).
How one may raise thé following question:

Suppose (X, %)  is a measurable space such that
(a) A ishseparable, and
(b) for every measure P on (X, A) the two

. definitions of* independence are equivalent in

(X & P)

then is (X, 4) = strongly Blackwell? The answer to this ques-

tion also 1is in thé negative as shown ty the foliowing example,

Bxample 1,1,5: . L ;

4

Let X, be a coanalytic subset of the unit interval such
that if A = {?lel: B 1s a linear Borel set}-then '(Xl' él)

- is not a Blackwell space, ¥Such a coanalytic set Xy has been

-

constructed by Maitra [21], WNow by P7 every measure on

(X3, 4;) is perfect., Hence (X;+ &7) 1is a measurable space

satisfying the conditions (2) and (b) of the question since °©
perfectness of a measure implies the equivalence of the two
' : v

definitions of independence, But (X34 £1) fails to be a

strongly Blackwell space since it is not éven a Blackwell space,

4
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Next we modify example 1,1,3 so as to get a nonperfect
probability space in which the two definitions of indepenCence
sre equivalent but whose underlying measurable space 1s not a

Blackwell space.

anmple i Sl .fS_

Let (X%, 1}*, ?) be as in ‘exampie 1,13, Let N be a
subset of the interval (2, 3} such that if ¥ ={Bﬂ N:B is
a linear Borel set} then (N, ]."_;T) iz not a Blackwéll -space (for
~instance, we can take N ::{x + 21 X¢E Xl} where Xl ls as in

example 1,1.5), Let X = X*UN,

fi_é = {A* U Ny ¢ h¥e A% 4 B, € E}.
end for Le & let F(A) = ?*(Aﬂ){*). It is easy to verify
that (X, _ﬁ) is not a Blackwell' space and'that P on (X, é)
is nonperfect. We shall show that the two definitions of inde-

pendence are equivalent in (X, 4, P),

For every L=~ measurable function f defjned on X let

f* = the restriction to¢ X* of £, Then we have

roaxx O oax £+~ gg L* 3 C is a linear set
=& =

I8
:J.

= BplXx ( Ap DXx, Hence
Ly L X = Bp 1 X¥, _dewdd L and g are two L-measurable

¥

/g‘?:‘i-&p,.,,‘

27eN\. 1 9.1aN 1084
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functions defined on X then By and Bg are independent

= B L X* and B, I X* are independent

= Le O X* and N X* are independent

;
Fre
=5

’

=> ip and & are independent.

—

-

Thus in (X; 4 P) the two definitions of independence-are

equivalent,

1.2 Comments

.. study of properties of measures on Blackwell spaces

might yleld interesting Tesults and ours seems to be the first

attempt in this direction, For instance, it is not known

whether in 'every probability space whese underlying measurabls

space is a Blackwell space the two definitions of independence

are equivalent,

In ocur example 1,1.6 if we remove the P-null set N

from X then the resulting space is strongly Blackwell,

We do

not_know whether there is a nonperfect probability space in-

which the two definitions of independence are equivalent sudk

that the underlying measurable space 1s not a Blackwell spéae

even if we remove any null set, 1In this connection we may

raise the following speciflc question,
~

i ”
{
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Let E be a graph in the unit square, intersecting every
closed plane set of positive Leéesgue measurs, Such sets exlst
as is shown in chapter 4 (lemma 2,1.4) of this thesis, E 1is
clearly hon-Lebesgus measurable, Let E be the trace cn B
of the Borel-o-algebra of unit squere, Let I be the projec-
tion cf E ontc the first coordinate, £ 1is 1-1 ahd
@-measurable and Ef ig a separable sub-o-algebra of E w L

By = B it would follow that (sce 1193, page 489, theorem 1)

—

® is a plane Borel set, but E 1is not Lebesguec-neasurable,
Hence Be #L ang so (B, B) is not a Blackwell space, I 2

is the trace on (B, E) of Lebesgue measure and Mg B is such

that A(N) = O, then by a.similar argument (E 0 K%, B 0 %) is

not a Blackwell space, Jire the two definitions c¢f independence

equivalent in (B, B, A) 7 *

Finally, our examples peint ouvt thet a nicer model for
probability theory mey not be achieved by Jjust demanding the
equivalsnce of the two definitions of independence, Further
other pathologies like the nonexistence of regular conditional
probabiiities also need be avolded, It wiil be worthwhile to
investigete Whether s model less restricted than perfsectnass

exists wh;ch avoids these pathologies. ‘

* Dur 16 e dlscu sion w1tn K,P.8,Bhaskars Rao we ciscovered
that the answer to this question is in the negative, For,
if we take E® to be a graph both ways then the projectlons
to the flrs* and second coordlnates are independent according

Fan -

feksior; GCRywdb aptimizatibn ngngted

Ty e A . L Ao b Y AT L S O L i d g
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2,0 Intrcduction

Let (X, 4, P) be = probability space and let B bhe a
sub-c-algebre of 4, 4 o-algebra B* (_ A& 1s 8aid to be an
indevpendent complement of B if

m L 4

N * . |
i) B and 3 are independent and

ii} for every ACA there exists A‘GO‘{?, @*é such

that P(4& A &%) &,

il

It follows by (i) that

nizy

g

{Xg g% S eSS LP}-

p—

Eal

The problem of existence of independent complementd #igs

been studied by Rohilin {34} znd later by Rosenblatt {351, In

this chapter we study this probiem in detail for the case when

i1

is sepergsbie and B  1s counitably genersted, First we collec

some facts about regulsar conditional probsbilitiss, With reguls

P

conditionszl vprobabiiitics as our main toocl, ws next employ

Rohlin's technigues in his Treatment of the »roblem Lor lLebesgw
EPaces, to give necessary and sufiicient cocaditions for the

existence of an independent complement, We apply these resuits

to rperfect orobability spaces in the last section,
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2,1 0On regular conditional probabiiities

Let (X, &, P) be a probability spece and let B be g

sub-c-algebrs of A,

A functioﬁ u{x,e &) defined on X x & 1s celled a
regular conditicnal probability (hereafter denoted by Tr,c.D.)

- with respect to B if

i

(cpl) u(x, *) 1s a probability on for sach

i e

fixed x in X ‘ iy
(cpg) ple, A) 'is B-measurable for each fixed.
A in A

and ~ (CP3) P(LnB) = fulx, A)aP for every A€k, BEB .
L B : L = =

A r;c.p. ulx, ﬁ) is said to be proner at XOBX bl

(Cp4) u(xor B) = 1 whehever xbeBegq and p{x, &) is

%aid to be everywhere proper if it is proper at every xeX,
J 1 N

The following lemms will he needed for later use,

 Lemma 2,1.1: Suppose B is countably generated and w{x, 4)
is & r.c.p. with respect to B. Then ulx, 4) 4is proper

2.5, [P v
B
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i'o

roof: Let go be a éqﬁntableralgebra generating B. Using

el

CP3, since B, 1s countable, we can choose NeB with P{N)=(

such that for every x7Z ¥ we have

uilx, BO) = 1Bo(x) for all BOBEO.

Now for every x¢gN, u(x, ») and l(.)(X) are two probabili-
ties on B which coluneide on B and hence wix, B) = lB(x)

foI‘ all Be;@o

The following proposition deals with the existence of
r.c.p. with respect to (B in. (X, 4, P,) where P, 1is

absclutely continuous with respect to P.

Proposition 2,1.2: Suppose there'eiists a-r.c.p. g(x, &)

with respect to B in (¥, §4-P). Then there is a T.c.D.
“l(X' 4) with respect to B i PO i Pl) where P, SiNs
any probability absolutely contiﬁuous with respect to P. If,
further, u(x, &) is proper at =x _eX, then ul(x, L) is also

proper at X, .

.,  the Radon-Nikodyn

o 8

Proof: ILet £ be a fixed version of

1

bri

derivative of Py with respect to P. or every A-measurdﬁi

function g on X let

w(x, g) =S gx")ulx, ax*).
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Then it is easy to check that ufx, g) is a version of

E(g|B), the conditional expectation of g with respect to B,

It follows that u(x, £f) is a version of the Radon-Nikcdym

derivative of Py| with respect to P| , Now let

B =HE 3 B

-,

E = {X: ulx, £) >o} . Then EEB and Pl(E) =1, Deiine-

ul(x, L) on X x i by , .

ufx, £1,) if  xeR
-H(Xt £)
Jul(XT-_A) = i -
pix, &) if xgB

clearly “1(X' L) satisfies CP1 ang CP2, If BgB and Aeh

then

i

é gl(x, £)aP, £ ui(x, Oplx, £)ap

H

f ulx, flA)ﬁE
BN E

[ flIdP'
BOR “

i

n

PluulBﬂE):}H}AﬂB).

Thus ul(x, &) satisfies " CP3 as well and hencc “1(X‘ L) is

a r.c.p. with respect to B in (X, by Pl).

Finally, if wuix, &) 1is proper at z,6X, then clearly

#1(x. L) is proper at x, if XOGEC. Cn the other hang if

= AR and w £BEB then
(S [ =S
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e
ez, 1.0 ulx 1)
u.(x, B) = WMTQL--§L— = *T—9w-“ =1

since p(xof B) = 1, Hencs gl(x, My iss pﬁbper at X

let X _6h ‘with P(XO) > ¢, Congider the subspace
' P(L 0 X,)

3 a4 B r 1 = e g — £ r : .
(Xo‘ a1 X, PO) where PO(L Al XO) = PCXST“—" for neg o &S

a consequence of 2,1.,2 we have the following

Corollsrv 2,1,3: Supposeé there exists a I',c.D. u(X, L) with

respect to B in (X, L P). Then there exists a r.c.D. é

uo(x, i 1 X)) with respect to B N X, in (XO, £ DX, Po)"

If ulx, L) 1is proper ass. {P| } then go(x, il xo) is
B S

PTOPEr 2.8, [PO e

2 2 i i =3 T [;.h N
Proof: Define P; on 4 by Pl(“) PO(L Q.XO), LEn . Then

P, is absolutely continuous with respect to P. Let “l(X‘
be the r.c,p. with resvect to B in (X, £, F.) obtained by

-
b
% .

2,1.2, By CP3, there exists N,€B with Pl(Hl) = 0 such tha

-

gl(X, XO) =1 for all nglf. Define uo(x, i 0 XO) on

XO % L0 XO by

s
—


http://www.cvisiontech.com

-19-
i . o N
<)“1(X'-4 ﬂ.KO) if Xﬁ’ﬂl nx,
uolxy &L D X)) =
LFO(L 0 XO) if xg N 0l Xb .

Tt is easy to check that pu (%, 40 X)) setisfies CP1l and

CP2 and that K1 X, ¢ B A X, with PO(Hl.ﬂ Ko) = 0, If

Be B andéd =x»f L then

— —

S “egx. L0 X)AP = fc ul(x..h ! Xo)dPo
B O X B AN, OXg
= f yl(X, LA Xo)dPl
B Q N‘i
- e =
= Pl(B‘ﬂ Ny O L0 XO)

PO(L 0 B X07 g

dence uo(x, Pl XO) satisfies CP3 and thus is a r,c.p. with
respect to B 0 X .

suppose ulx, 4) 1s proper at every =zgN, where NEB

et
-

with P(N) = 0, Then P, (H) = 0 and by 2,1.2, ul(X, L) is
proper at every g, It csn now be verifiea that
Pé(N H Nl) B-XO) g 0 and that pO{X. 2o ) XO) is proper at every

xg (B U L) O X
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One may wonder whether im corollary 241,73 if we start
with a r.e.p. wplx, 4) which is everywhere proper then
“o(X‘ % 0 XO) can a2lso be chosen to be everywhere prover, To
show that such a choice is not always possible we shall give

an example using the following two results,

Suppose there is a r-c.,p. with respsct to B whicn is
D L =4

prover a,s. LP J. Ve shall giv: a nccessary and sufficient
B

condition for the existence of an everywhere Proper T,cep. Will

respect to B. 4 functicn Q(x, 4) on X x L 1is called a

transition function with respect to B if

i) o(x, ¢) is a probability on L for each

fixed x in X

and ii) (e, i) is B-measurable for each fixed .84 .

The transition function @(%, &) is said tc be proper at X,

if Q(x . B) = 1 whenever x €BEE  and Q(x, &) 1s sald to

i -

be everywhere proper if it is proper at svery x in X,

Proposition 2,1.4: ° Suppese there exists 4 TaCuDe HIX¢ A)

\

with respect to B, Then there exists a T.c.p. pq (%4 2y wit]
respect to B which is everywhere proper if and only if there
ezists a trangition function @Q{(x, A) which is gverywhere

proper.
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Proof:  Since uq{x, &) is itszelf a transition function on

X x 4 the 'only ift part is cbvious.

To prove the 'if' part, let NeB with P(I) = 0 be such

that wulx, L) -is proper at every xgN, Define

(u(x. L) if x ¢ N
!Jl(xt iy = |
1 Qlx,y 4) if x e N,

It is easy to check_tha}_ yl(x, L) 1s a TeCePe with:respect
' t¢-'B which is proper everywhere.

"he next result is due to Bleckwell and Ryll-Nardzewski

(see {2D).

Theorem 2.1.5: Lét ¥ be a Borel subset of a Polish space and

let EY be its Borel o=zlgebra, Let f be a2 measurable func-
= | ) - N
tion on Y and let B, = -if"lB: B is a l1linesr Borel set‘?.

Then there exists a transition functicn Q(y, &) on ¥ X Ly

with respect to 'ﬁf which is everywhere prover if and only if

there e¢xists a B?-measurable function g from Y into ¥

quch that f£{g(¥)) = £(¥) for all yeY,

Fxample 2,1.6: Let X be the uanit sguerce and L its Borel

g-algebra. Let B be ths o-algebra of verticel cylinders,

namely, the o-algebra By where £ on X is the projection
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to the first coordinate, Let XO be a2 Borel subset of X
which does not contain any graph and whose vertical sections
are all nonempty (see {3}, 125]). Let. Py be any probability
measure oL (XO, é,ﬂ XO) ané let P on é be defined by

Pla) = PO(A.ﬂ Ko): 1t is known (see theorem 5, [21) that there

is a T,c.p. wWith respest to B which is proper a,s. P| 1.
= B

It is also ezsy to check using 2.,%.5 that there is a transition

function on X x 4 with resnect to B which 1s proper every-

where. In order to show that a T',c.p. “O(x, A ElXo) on

Xo p e é.ﬂ XC with respect to B a Xo can not be chosen to be

proper ‘everyvwhere it is now enough to show that there is no

transition function Q (x, & 8 X)) on X  x L L X with respect

to B HQXO which is everywhere propsr, .gain by 2,1.5, it is

. sufficient to show that there is nc B Q.Xo—measurable funetion

—

g from X  into X, such thet for every (=, y)gXo,

glx, Me ( {x} x {0, 1J)£1xo. But the existence of such a ¢

-
b

Y
implies that G=:ig(X: y)i(x, v)e Xoj C X, is a Borel grapl

=

which-is a contradiction, Hence there-is no r,c.p., on

X, % ol X, with respsct to Bl X, which is everywhere propﬁ
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242 L dccomp031tlop of the

whole space

Let (¥, iy P} be a probability space and let E be

an atomic sub-o-algebra of L. We agssume throughout this sec-

tion the existence of & 74CD, M(X, A) with respect to B

which is proper a.s. [Pl i that is, there ex1qts 'NeB with
: - =

HEn

P(N) = Q0 such that u(x, h) is proper at every xgu,

S S Sy U A A A e ————— ——

i set Le i 1s szid to be one-sheeted with respect to B
(or just one-sheeted when there can be no confusion) if for
every B which is a B-atom, the set LB contains at most

one point,

The proofs of results in this section sre essentially
Rohlin's proofs of analogcus resuits on Lebesgue spaces {see
g 4, No.2 in (34]) carricd over with suitable modifications to

the general case, .

Proposition 2,2,1: Among the [~measurable one-sheeted sets

there exists a set of maximal measurs

1
=ng let

d ¥
B = sup -{P(A) s A€ %o}‘“ Let {An,-; i} é be a sequence
B

of one-sheeted sets such that limP(ﬁ ) =
n

Proof: Let A, = ~{Ae.ﬁ: L is one=shecte

Yie shall construct
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a sequence < C_, n 2 1y of sets such that

1) €56 &, for all m

ii) lim sup CL€ b

Cand  iii) P(Cn) _?_P(An) for szll n,
From (1), (1i) and (iii) it wiil follow that P(lim sup Cp)

Let Cl = Ale féo' Suppose Cl‘. CE;..., Cn-l have been

defined for n ¢ 1 such that Ci I. o' 1 1<K n-1 Let

Bio1 = ‘{X sop(xy &) 2 u(X. Cpe )ﬁ%

and let €, = (Bf | 0Cy ) U (B ; 0L). Since, by CP2,

r

B,.1€ B 1t follows that Cp€ 4. Let <icn, n 2 1?} C L, be

-

Nel

constructed in the above fashion. We note that

-8 => plx, ) = ulx, Gy 0 By ;)

() = u(xy &y 0 B _5) = ulxy &) 2 ulx,y €y _y)
*

XSB;;_]- =y pulx, Cn) ‘= ulx, c, 4 Eg_.i)

= ulxy Cpy 2 Bo_y) =iz Cpg) 2 plx, &)

ond hence for ail x¢gN we have u(x, Cn) 2 ulx, € _)e For
every x, let B(x) denote the g-,atom contsining x. Let xgk

Then SB(X) i} Chir is a seguence of subsets of B(x) each
L he
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containing at most one point and such that u(x, B(x) 0 Cn) 2
ulx, B(x) 0 Cy_;)s Further from () w(x, B{(x)nCp)

ulx, B(x)1 cm__l) => XBB - N => B(x) i Cp = B{x)n ¢

e me]1*

Hehce B(x)llcn containsg 6nlyva finite number of distinct
points, Hence there is a natural number n(x) -sluc:h that for

n 2 n{(x), B(X)ﬂ.cn = B(x)flcn(x).

Let ¥y = = U B(x),0¢C n(x) * Then M o= 1lim sup C, € &, But

M; 1is cleaTly one-sheeted and hencé MlB éé.{rFrom (#) we have

pixy ) 2 g(x, An) for all x¢N, Hence, using CP3, for
every n |

P(Cy) =S plxy ¢ )aP 2 [ ulx, 4 4P = P(4 ).
We now prove the mzin resuit of this sect"iond.
+

Theorem 2,2.2: There is- decomp051tlon of X' of the form

& E MO Ui'v’il U M2 [
where
i) . M, <sian érméasurable one~sheeted set for
every n 2 1
i) ¥, is a set of maximal measure among all
Aé—measurable one~shested subsets of —Xn—l =
n-1 ' |

(U M)® for every n > 1
—F—L ""
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‘and - iil) M, comtains no stbset of positive measure

which is one-sheeted with respect to B,

Proof: Let Ml be constructed accerding to 2,2,1, Suppose

Ml' Mot aeen Mn—l have been consfructed for some n 2 1, Let
— T M (] d i _ P -
X,y = (U M)®, If P(Xy ) =0 take My g, If

' P(Xn_l) > 0 then, by 241.3, there is a r,c,p, on

Xpo1 ¥ é { Xn—l with respect to B L X _; which is proper

O e [Pn-l] where Pl’l-l ol f::-ﬂ Xn—l is defined by

E

P(a X ;)
=l (& 8 Xn—l) = : Wow we can =pply 2,2.1, in the

L)

4

space (X, 5+ & & X, 54 ﬁ—l)‘ tc the class of all measurable

sets one-shected with respect to B il Xn~l to get among them

of maximal measure, Plainly Mh—l is ah L-measu-

. . i
rable set one-shected with respect to B and also has meximal
messure if one considers only one-shezted measurable subsets of

X ., Having defined {;n' n 2z i}— in this fashion we set

N=1

M, = (U 2)% Finally if ita 1s any onc-sheeted subset of
i=1 B .

M, -then P(a) < P(Mn) for z1i n and hence P{&) = 0,
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L o

2RO mecessary conaltlon

_--u_--.— —— e 8

Throughcut sections 233, 2.4 and 2,0 we leb CLy &y B)

Pe——_—g —————

be a prcbability Space where % is separsbie and let B be

an atomlc SUD“U'ngebrr of A. We ssume further that there

PR pe—— PR L 8

GX1SLS & TaCaDe ulxy 5 with respect to B which is proper

[P], that is, there exists WeB with P(K) =0 such

B e

that ulx, &) 1is proper at every Xfl&, .

e

Tn the present section we shall give a hecessary condi-

tion for the existence of an independent complement . B* of

B, Ve need the following lemna, ¥

Lemma 2,3 .18

1) & set B84 1s jndependgent of B 1if and

only if u(x, Bl) = P(B)) 2.s. p]
|

ii) A o-algebra §l (: 4 is independent of B
if and only if for every B€ Bj ul(x, Bl) = P(Bl)

8 s, fpi.

iii) A bountably generated o-algebra B C 4 1is

—

independent of B if and only if there 1is a set
ElGE- with P(Nl) = 0 .such that for every
xﬁNl'

)L‘L(XI B"l[)

a1}

i L

L

—
o
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Proof: By CP3 for every BEB

_—

P(BOB

1) @ é plx, B }AP

"~ and hence (i) follows, Conéequ’éntly (1i) follows,

The sufficiency part of (iii) follows from (1) To

prove the necessity part Jet ‘{B g m |2 :} C B By be a countabl

algebra generating B,. It is clear using (1) that there exis}

with P{N,) =0 such that for every XgNi,

N1€By i

ulx, B} = P(B i
n

Now if Bj = {?GB ull=y €Y = P(C{} for all XﬁNl

then 'Ei being a monotone class containing ‘{FE, n 2 %} we

| -
have El = El'

We shall now introduce, following Rohlin, a sequence =
-Lmh. n 2 1}» of functions on X which, as we shall se2 in t
sectian and in section 245, are very uscfuL in studying the

structure of the space (X, & P),

Let xZN. Then (F{x) £ 0 R{x), ulx, -)} is a probab:
lity space where B(x) denote the B-atom containing X, Let

,?1! You eset Yyt eee be an enumeration of points of R(x) of
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positive u(%, *) measure such that for every n 2 1,

u(X} {yk} 2 M($1 {yk+l}.)‘ If the sequence iyk}.is infinite

let

mn(x) = g(x,-{yh} )4 e iy, Bh et

and if the seguence '{yk} containg only r elements let

et (ulx, fyhl ) if mgr
L .

mn(x) = J

O o e S

We have thus defined a sequence of functions .{?h' n 21}- on

L - H, Let mn; for each n 2 1, be defined to be identically

zero on I,

How {;mm’ n 2z 11\ is a seQuence of functions defined on
4

¥ such that

oo

3 i) ‘
a) m 20 (b) m, 2m 4 and (c) nilmn <1,

The foliowing provosition gives a necessary condition for

the existence of an indopendent complement §* of B,

Proposition 2,3.2: Tf B admits an independént complement

B* then for every n 2 1, m, = constant a.s. [P\ 1.
= . lB
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\ |
Proofs Since & 1is countably generated we cean show that therd

is a countably genersted sub-c-algebra -@** of B* such that

B** = B* a.s. P], It is easy to check that B** 1s also an

independent compliement of B and hence without loss of gene-

rality we can assume that B* is countably generated.

ILSEG {Bi, Bg, ...} . be sn enumeration of Bfatoms of
positive measure such that P(B]) 2 P(BE) 2 ... and let
E — + * c = & a 3 -+ FAI . 3 " - ;
B = ( an) ., By 2.3,1, thers exists “105 with ?(Il) C
such that xgK, and B*¢B* =» pulx, B*) = F(B")., since

- -~
6{13. @*j = 4 a,s, {P] and since A 1is countably generated

we can fingd }{le.ﬁ_x with }?‘(}Cl) = ¥ such thal & {@, ]_5:*} DX+

A0X;. By CP3, P(‘Xl) = 1 implies the existence of FyeB will

P(NP) = 0 such that for all =x=¢ No 1 w(x, Xl) =1,

Let I‘IO = N U I‘T"l Y 1‘\32 and let x¥ NO . Then

p(x, B(x))

tH

ulx, B(x) 2 %) = T alx, B(x) 4 BY)

1f yeB(x) 4 B  then

p(xy 3y} ) < ulx Blx) 2 B (y))

i

w(x, F(p) = B(BH) = 0
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where BI(y) (C BY is the B'-atom conteining .

If vyeB(x) - Xy then

H(Xl {Y} ) < ,LL(X, Xi = C,
Henece for every xgiﬂ),
< = - i X
ulx, {y}) >0 => yeB(x) L B} 1X;
7

and since 4 Xy =0 %:E*, B‘} 1 Xy we have

3(x) 4 BL A X = {J} .

Thus for every xgiﬂ) and for every n 2 1 +we have
m (x) = ulx, B(x) 2 B 0 X.) = p(BY).

T MAZg { < Pn i e

B]

o »

or m, = constant a,s. P

The natural question now is to ask whetherfthe condition
stated in 2,3.2 is sufficient for the existence of an indepen-
dent complcment, Indeed it is, and ws vrove this in section
2,5, In section 2,4, under the assuupbion thet there is no
oné-sheeted set of positive measurce, we prove the existence of

ah incdercindent commlcement,
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Dot A SUfil"lCTt conultlon

- e s e

]

The iollOmlng tneorcﬁ is a gene ﬂal¢§atlon of a theorem
of Rohlin (see § 4, No.o) on the nXlstcn e of independént
complements with respect tc a measuT able partitién of g
Lebesgue space which does.not aémit bneﬁéheeted sets of posi-

tive measure (see nn‘ptem 3 of hws thesis, for relevant defi-

niticns}, The roof given by ?ohlln can bc Lm,uated with

obv1ﬂUs modlflCctlonb to prowc our fh olem and he ‘nee we refrail
\ ' =

ifom repedtmng that proof here.

7

Theorem 2.4,1,: Suppose there is no one-sheeted set with

respect to B of positive measure, Then there is an indepen-

dent complsment  BY of B,

B where D
Blo, 17’ ¢ Bio. 13

Remark 2.,4.2:  Consider (iC, 11,

denotes the Borel o-algebra off 1 8,112 Let g‘ be a probabi-

.Ll.ty ch (LO 1]1

]) and let §O’ be a countably genera-

=0,

Hw o

ted sub~o-algebra of | +» Then there is a r.,c.p., with

e

0y 1
respect to BO which is proper almost everywhere (sea theorem

5 of {2]). If B, does not admit onc-shested sets of positive

measure then, by theorem 2,4,1, it follows that there exists

an independent complement gz of B . This essentially is tif
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result of Rohlin that we referred to at the beginning of this

section,
Now using 2.,4.2, we prove the following

Theorem 2,4 ,3% Let .gZ, Chr Q) be a probability space where

C 1s separable, Let Co be an atomic sub-o-aigebra of ¢

such that there are no one~sheeted sets with respect to go of
positive measure, Then there 1s an independent complement

* o
01 .
o ¢

Proof: By taking a generator {Fn‘ n 2 l}» of C. and by
using the Marczewski function of _fcn}. y We can assume without

L
loss of generality that 7z (C [0, 1] and that

C= J4all %2 1+ Ac B. I
= { :{0! l]}

by w(4) = (a0 2), A4e B. .

Define . on B

Let C' = ¢ %;Cé}n bs a couhtably generated sub-o-algebra
= O b ) - 7. ‘
such that ¢C' = CO 8,5, tP] (choice of C' 1is possible
=0 = : =0

since C 1s countably generated), Let, for every n, AF€ §70 1]
! ol " |

be such that A, Q-Z-= CY and let B_= o {An} .

There are no one-sheéeted sets of positive Q-measure with

respect to go implies . -that there are no one-sheeted =ets of
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positive u-measurce with respect o @Os By 2,4.,2, there is

%*
O

anr independent complement of

[ Rvs)

Hod

. 1t is easy tc check
Y :

that gz = .{B*Il v B*e@i} is an independent complement of
= L = .

-

N2

O'
Qur next example shows that thsorem 2;&.3 is reaily

[

stronger than 2.4.1 bocause there is no assumption in 2,44
abcut the existence of anh almost everywhere proper r',C.D.

Exzinple 2,4 ,4: et Xy =X, = {C, 1] and let »  on

——— - — ' S X T

X, B
(Xq B0, 1]

{0, 1] with outer. Lebesgue measure one and inner Lebesgue

} be the Lebesgue measure, Let M be a subset o%

‘messure zero, Define a measure

, on Ay = U{Bm 17" M} = {(BﬂM}U(Cﬂ M%)
=1 = 1

B B

by P(BLM U (c M%) = 2(B). Then it is well known thaff

P

on X, x A (set
=% :

there is no r,ec,p. with respect to 1

B
=Gk
LEidrabr 2T0) &

Let Z:XJ_XX2| G = 4

x B_
= =17 ={o, 1]

and let @ = Pl X j

It is easy toc see that thore is no r.c.p. with respect to

" . o . P
@io ;7 % 10 1] on Z x ¢ since there is no r,c,p., with*
=00, 2 !

-

respect to E%O o o7 Xi X . But by Fubini's theorem !

I =L
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thére is no one-sheeted set with respsct to E{O 13 x {0, 1]
o 1

.0f positive measure, Thus in this case there is an independent

complenent of B

i - r AL 3 b " 94. N
""‘[Ot 1] ¥ [01 l] by 244, a__l_thoughg 1 is

not zpplicable,

The followings corollary of 2,4,1 will be needed in the

ne st sgection,

Corgliary 2.,4,5 @ Therc are no cne-sheeted sets with respect

to B of positive measure il and only if almost all the measures

{g(x. .{} are continuous,

Proof: If w(x, +)'s aTe continuous for every XgN, where
N,EB with P(NO) = 0 then for any one-sheeted set Acd, by
CP3,

P(a) = f p(x, B(x) 0 A)4P =0,

1f, on the other nand, thsre is no one-sheeted set of
positive measure then, by o.4.1, there is an independent comple-

ment B of 3. Since 4 1is separable B® can be assumed

without loss of generality to bs countsbly generated, ~By

lemmz 2,3,1; there exists Nl€§ witlh P(El) = 0 such that 5;1

every B¢ B ulx, B*) = P(B¥) for all xg ¥p. Since

o

X
1od

= -

T .2 o.c, 0P} there avists ¥.fA with P(X.) =1
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ax

M

1 Now for every XSNE '

such that o %B* aB} =

i

pix {r}) € ulx TN = pER) = PEG LX)

since B*{y) & Xl is one~sheeted where P (y) is the B*-atom

cortelning

Je

A necessary snd sufiicient

nd
fos

cohdition

In this sectlon we rrovL that the necessary condition
given in 2,3 for the existence of an independent comolement
is sufficient as well, First we prove sonme ge‘ner'al results

about the functions {mn} which were introduced in 2.3.
Let X =M UM UM, U... be the decomposition of X
4
obtained by theorem 2,2.2 .

is continuous a.s. P! ]

Provcsition 2,5.,1: ulxy *)
Y% |B

end for every n = lp 2y avs .
iy, M) 2l dg,)  aes. [P

£

proof: If P(M) =0 Bhen the First assertion is trivial,

If F(M,) > ¢ then consider the subspace (v & .0 My

P(e 0 M) ‘ \
Py = STma ). Clearly in this space there 1s no olie-sied
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set with respect to B 0l ¥, of positivéw pegsure, Furtier,
by 2,1.3, there is a r.c,p. uo(x, 4 ﬂ_MO) on M x g oM
with respect to B O M which 1s proper  'a,s. EPM } such

o)
that

» plxy & DM)
%&,Aﬁ%):;mfﬁyﬂ"aﬁ.W%L

BY 2.4.5¢ i (%, +) 1is contimuous ‘a,s, Py, 1. It easily

s

follows that u(x, -)lM . is continuous a,s. {PL
o

B
‘TO‘prove the second assertion léi" |
N, = {ﬁc:'u(x,,ﬁn) < ulxy Mn+l{} |
ne I=TC' g ' s
and let M) = (N 0 M) U (B, 0 M )¢ then M€ 4 and is
, _ nﬁl < . -
an one-sheeted subset of Xn ] = ( M), If P(N) >0
: T *

.

then

[}

S oz M)AP

P(2)

S oulzy M)ap + { ulx, Mn+1)d?.
N

el
Nn n

O ulxy M)ap = P(H)

which is impossible since Mn is a set ofrmaximal measure

among all measurable one-sheeted subsets of Xh-l’ Hence

P(Nﬂ) = 16}
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Proposition 2,5,2:

s ——— ————_—

There exists

tihat for all =g N,

plx, M) =u =), n

n o= 1!2!-

)

- |
NeB with P(N)) =0 such|

:}-lgl R

m is B-measurable

In other words for all 5 Gen I n
a.s. P| 71,
B
Proof: Using £,5.1 we can get a gset I‘IOG';E_? with P(I‘éé'o) =49
uch that for every xg N, (x, +)| is continucus and
ulx, Mn) 2 ulx, Mn+l) for 811 n 2 1. It fcllows that for
every X No' the sequence {B(X) Al Mﬁ ccngists of sets

contsining at most one point and sc

forn a non-increasing sequsiice,

every singleton which has

of {mn} we have
mn(x)
Ter gl1 n

and for evaery

2g N,

Theorem 2,5,3: There exist:

|92

of B if and only if for every

Purther,

asitive messure,

=i ,U,(X‘ B(X) i

ann indepsndent complement

rrenged thiat thelr measur
this seguence contai

So by definition

‘B*

nzil
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o, = constant G454 L p &5
, " B

Proof: 'Cnly if' part has been proved in 2,3.2,

To prove the 'if' rpart suppose the conditicn holds,
Suppose P(Mo)-> ¢. In the subspace (M | A (i MO, PN.) there
is no one~shested set with respesct to B LR of pOSlthe
measure, By 2,1,5 and 2.4.1 (or just by u._.o) there . exists

an independent complement B® of B il mo in (M 5 A n Mb. PN ).
=Q = :

By 2,6,2 and CP3 +the given condition implies that for

every n 2 1

) T a0 < PO s ), 0

5
Let ' 4 -
b 1B Mg Mg,...j Cif P(M) >0
*
§ ==
5 {:M TR it P(M) =0 .

It can be shown, using 2,0.1, 2.5.2 and the fact thot B is

independent of B A M/ . that B* and B are independent,

Ayain we can check, since cach Mn is one-ghested with

, - i
respect to B, that o 1}_3, B, = &4 a,s. {P], Thus B* is

(S

ann independent complement of B
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.6 Aapplication to perfect probability

spaces

- ——_——

Let (X, &, P} be a perfect prchability space

=
ot
o
il t=

separable, Suppcse B is any sub-s-algebra of A, Then the
pred o = S
L

ziways exists & r.c,p, on X x 4 given 3 (see

T i T A by 5 T

theorem 7), This enables us tu tackle the problem of existence

of independent complements in these spaces.

If B 1is countably generated then becouse of 2,1.1 our
assumptions of section 245 hold, Tsing 2,5.3> we can give a
necessary and, sufficient condition for the existence of an
indepencent complement, For an arbitrary sub-o-algebra B of

é, since é is countsbly generated, we can choose = sub-;w
algebra 3, of B such that By = B e.s, {Pi. Clearly the
choice of El is essentially uniqu: and now we can obtain a
Necegsary ald sufficiént condition for the existence of an
independent complement of E through similar conditions for

Bl. We omit the details.


http://www.cvisiontech.com

GY LEBESGUE SPACES

9.0, Intrcduction

Lebesgue spaces gre probability spaces essentially
isomorvhic to a subinterval of the unit interval with Lebesgue
measure together with countably many points of‘positive measure |
A gystematic study of lLebesgue spaces, their isomorphisms and
their factor spaces was carried out by Rohlin [34], A Lebesgue
space is always a perfect probability space (see theorem 5,
{39]1), In this chapter we give new characterisations of
lLebesgue spaces and study the class of independent complements

of a given measurable partition of a ILebesgue space,

3.1 Separable spacesy canonical system of measures

and Lebesgue spaces

- s

4 probability space (Z; Cy P) is said to be a separable

space if there exists a sequence of measurable sets

A AQ. .o 1 called a basis, such that

A3,
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~AD
2y (z, ¢y P) 1is the completicn of the probabilily cpacy
— |
= LAl
(é_t of 4}_}“1’1} Vi \E‘Jl(l
' la( .“_} ) |
|
b) & separates points, that 1s, glven 2z, AOE G s T
there exists n suvch that 26 4 and z'¢ Ly, oT A A and |

N
.{P, %} © denctes the wnilatersl countable product of tihe
space {U, l}- and F denctes the product of discrete
G»algebfas cn the component spaces, If M = {Gn} is &
segquence of measurable éets of z measurabic space (%, g) then

the Marczewski funetion £ _ of the seguence r_ from 4 to

Ty
{O, i is defined by

5 0
£ (2 = 1s (z) + n =1, 2, ...j- . ZEZ

T+ can be verified that I ig a measurable map from

(4, o( {6,})) onto (£(Z), £ 8 £(2)) such that forward image
4

of messurabie sets ares maeasurasbic,

Rehiin has defined o separable space to be a lebesguse
space if for some basis @2 = Séni? therc exists
~ = I
that B fz(b) and P(f_“(B
Lebesgue space then P is called a lebesgve mgasure, 't s

well known (see L37J), L39]) +that a sevarsble space 1is ¢
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adna

Lebesgus 8pace if znd on’y‘lf it is a perfect probability spaes,

It is not qifficult to check that if pr  ig a measure on
(Z.,g) stch that (g, Ce P) is & s€pal'zbi¢ space and if P
is absolutely continuous with a Lebesguc measurs Py then P

is also a Lebesgue measure,

Let (4 Ci P} “be & separable space and let r¥ be an
arcitvery partition of z ~ Let ZE be the quotient space,
Let Hr be ths qvﬁ*ignt map sending z8%4 to that unique Cer

* which contains 'z. Let 55 «=.-LX C ZE: HEJ'(X)'E'- g} : D‘e_f:!im:_z
PE(X) =.P(Hg1(x)), Xe ég' (ZE' égg PE) is thequof;ent space
of (2, €, P} with respect to the partition ¥, We shall cali
a partition '3 measuraﬁle if there exists a sequencge {:B'}
©f measurable sets, cqllea a basis- of the partition' ¥, such
that £ is collectaon of atoms of of {B J. It follows
that elements of a measurable partitisn are measurabie sets,
However, a part;tion 7 whose elements are measurable sets
Heed not be-n Leasurabic¢ rertition, To see this let
& = (o, 13, 'g = Lebesguc messurable subsets of [O, 311s
P = Lebesgue ueasurs and let 7 be ‘the partition Iriduced by
the relation R defined by

¥Ry if x-y is & retionad, Xr-ye {o, 13,
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let El and fo be two measurable partitions, Ve say
that El and ¥,  are complementary if there exists a basis
r -‘T 7 7 »

! 2 i ! & = set Z_ e C with
ian of Fq4r A basis {an; of Eo nd a % o

( i ! ; A bad:

P (% = 1 sguch that B % U<B!' 0 Z j igs a badi
o) - of noe n °) n>i

of the separable space (Z_, C N Z_, P

Y. If furthsr the
= Z

O

(éE) and  of jfB'jr) are independent then we
=£, 1

say that Lo -is a pseudo~in dependbnt complement of El'

c-aligebras H_l |

}_J

o s . : i
Rohlin has defined £, Lo be an independent complement of £y
i

if Te ana are complcmentary and wl(a_ ) ana
Tl. ,2 &

H;l(A } are independent, In the case of Lebesgue spaces the
g =%g ' :
\

two definitions are equivalent, 3But in a general separable |

space the two definitions need not be egquivalent, For, recall

the example constructed by Doob (6] and Jessen [14] to show |

that the two definitions of indevpendchcs (sec chapter 1) are

the partitions induced

4]
=
o

not equivalent, If ¥ and x*
by prcjections to first and second coordinates respectively
in the space constructed by them then ¢ and r* are ]
pseudo-independent complements of sach other but not 1hdepend%

complements,
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=l

Let' r be a measurasble partition, By using the measure

P, it is possible to spesk of almost all clements C - of £ .

g

Definition 3,1,1: Suppose for every C .in ¥y there is a

N
‘s=algebra ‘éc of subsets of C and a measure Ko on AC such
that

1) (Cr &y M) 1s a separable space for almost all C

ceoe 2) A eAeg then

a) 4L fCe Ag for almost all ©
b) the function u, (£ 2:C) oﬁ;hZEV is

L -measurable and

¢} P(&) =/ uyla nc) ap,

then the qj%teﬂl 1“C} - of measures is cellied a canonical
cer

system with “espe,t_to £, If we deflne p(Z, L) on

Z X by wulz, 4) = “c(é) (L 0¢c(2)) where ¢(z) = HE(Z)

1<z

then it is easy to verify that pulz, &) is a r.c.p. with

regpect to H;l(ér) whichh ig proper almost. everywhere,
EUEE

Lgain 1t is easy to see that any two systems of measures cano-
- b 7 .

nical with respect to z are equal . a,s, LPrJ. ‘Rohlin has

shown that 1f ¢ 1s a measurable,partiticn3pf a Lebesgue space

then there exists z system SPuﬁl _ of measures canonical

. _J uuc_‘
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_with respect to ¥ such thet. He is a lebesgue measure for

almost all C in £,

Tn what follows 7 is a fiXed measursble partition of

the separsble space (Z, T, P) such that there exisis a cano-

nical system of measures with respect to ¥y & set & C &
is said to be one-sheeted with respect to ¢ if L 0 C con-
tains at most one point for every C in ¥, The following
two theorems are direct translaticns of 2,2,2 and 2.4.1 to

the present set-up.

Theorem 3.1.2: There exists a partition of Z of the form

[+.»]
2 = U ¥, whers M., n 2 1 are measurgbiec sets one-sheeted
n=c -
with respect to ¥ such that Mn is 2 set of maximsl Measursg
among all measurabie one-sheeted subsets of the set

n-1 p
( U Mk)c and M does not contain any stubset of positive
k=1

measiure which is cne-sheeted with respect tc .

'l

Theorem 3.1.3: If there dces not axist cny set of positive
measure one-sheeted with respect to ¥ then I admits a pesy

independent complement,

Let the measurable pertition £ be without orne-sheeted

et o s F per R nawesue wais Dot o ¥ be o _nssuin-Inpevendel t‘

complement of ¢ which is guaranteed by theorem 3.1.3.
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|

Cons&quently there exist bases { }of £ —and XB} of g
and Z_gg with P(2,) = 1 such that B, 0% } {B*nz}

is a basis of (2,0 C 0%, P

) | and the G—algebrag
7
(@]

=ik ! .
HE (ﬁg) and of {Bn} ) are independent, Let

EE* = & {EE*EB§S§-' the completion of o HE* (Bz)}.with

respect to P, 3 Then (ZE*' ?E;: Pr*) is & separable space.,

Tt is not difficult to check that. Hgl(éz) and  H3( B,.) are
iﬁdependent. Noarliet @& = ZE ® ZE*, g"‘gzlx Ef*‘ and

tn

P! =D ‘x"@r*. Define the map, h ¢ Z ~3Z2' by

hE(Z) (C(z), c*¥(z)} where -C(2) anﬁ C*{z) arglrespecti—

vely the eLements.Z: i & and G* in p* which cpntain

Zy | ‘ - ‘ | |

Iheorem 35,1.4: ;égzmmgﬂ;belwithout cne-shected sets of posii

tive measur;. Then hE is meuuurable and PhEl~ R Llg

Further if 2! = hE(ZO).then the probability spaces

(iom g n Zo' P 2 ) \and (55: g'ﬁ-%é' PJ*'Zt) are isomorphic,
o 0

Proof: Let X¢ A, and X*e€B _,. Consider the measurable
= £ :Ca » =

rectangle X x X*. Then


http://www.cvisiontech.com

Hi

) e -
B % X6) ﬁ.zl(X) i} HE-;E(X*)

. "l £} 3 b . b
and sinece H_7(4)) and o (Br*) are independent we have

E

P1{X x X*)

i

Py (x P L{X*)

P('ﬂgl(x) ) P (H;;(Xf) )

il

P(RTH(X) D H ()

]

Ph';l(?l x Xk .

<

Thus it follows that h_ is measurasble and P' = Ph;l.

v

Clearly h? is 1l=1 on ZO. In order. to prove that

(Zgr COZo0 P Y ang (2!, c'z!, P'*} ) are isomorphid
3 = QO ZO ¥ O = Q Zb i .

it remains to show that hz(g nz)Cgaz, . But

i L, [ r, i 1
h{(Bnkl ) (HE(BH) x &E*) D 2y

% @

"E*(Bﬂﬁ))ﬂ Z{  and so

(A?

ne3

o= .
and hE(Bnﬁ z,) =
b, ( {Bnil Zo} U {B*nﬁ Zo} ) C g0z}, It follows that
_hi(g.mzo) C c'a Y.

Defipition 3.1.5: Let z be without one-sheeted sets of
positive measure., Then ¢ is said to resolve (Z, ¢y P) as

a product space if hr(Z)G Ct.,
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Theorem 3,1.6: Suppose £ °~ is without one-sheeted sets of

. positive messure, Then (%, C, P) 1is a Lebesgue space if
and only if

) (A 1 P ) is a Lebesgue space,

—Z‘

ii) he 1s a Lebesgue measure for almost all C in %

and 1ii) ¢ resodves (Z, €, P) as a prcduct space,

Proof: The necessity of conditions (i), {ii) and (4ii) -
fol.ows from theorems of Rohlin on Lebesgue spaces (see [34]

§ 3 and § 4).

f
To prove the_sufficiehcy‘let £* be a pseudo-indevendent
-complement of x., Let {an ,{B;% and 2, be defined as
. b r -
before, Let Y& By,. For any Xe AE we have by 2(c) of defi-

nition 3,1.1 ang indsvendelice

i

f pple o H (Y))dP

P(HZ'L(X) n H L))

| ~1
P(HE (X))-P(HE*(Y))

:{{PE*(Y)dP{b

Hence P_,(Y) = ug(c B B(Y)) for almost all C. Let

2= alg {Hr*(B;j} . Since ¥ is countable we can find a
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set ;6 with Pi(ﬂl) = 0 such that C# Hj implies

=

¢ I (X*Yehy and uglC 0 Hzﬁ(X*)) = P, (X*) for all X+ in

>

Z*, Thus for CZ Xy, the map H., from C to the separable
space (Zr*. @r*, Pr*’ is a measurable, measurc-preserving mapd
f = 3 r

> > s

Sinqe

f [.LC(CHZO)::P(Z):I.

- (@]
r

there exists Ngegz with PE(Né> = ¢ such that fer Cf Mg

. y !

CRZ,ed, and up(c il z.,) = 1. By conditicr (ii) there exisi

i

Ngeﬁz with P{(NS) = 0 such that for CENS, He is a |

o . = 4 ,.\‘-i. - - - TN m A ) = g i
Lebesgue measure, Let ] Nl U N2 U NS. Then Neéz and

P.(I) =0 and for CgN, H, is 1-~1 on CA Zo;‘ Under a 1
> £,

measurable, measure-preserving map the image of & Lebesgue spd
in & separable space, is a lLebesgue space ({543, 8 2, Ho5) .
S0 1t is enough to look at some CEZHN to conclude that

(z '

B P

gxt B ,%) 15 a Lebesgue space, since for such a C,

(Cy &gy ug)  is a Lebesgue space.

1
Now (2', €'y P')'is a Lebesgue space since it is a prod
of two Lebesgue spaces, So by condition (iii) (Z, C, P) can

be imbedded in = Lebeggue space as a measurable subspace of
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measure ohe which means (Z, C, P} 1is a Lebesgue space,

We shall give an example in chapter 4 (see remark 4,3,7)
to. show that condition (i} and.(ii) of theorem 3,1.6 are not

sufficient to ensure that (Z, C P) 1&3 a Lebesgue space,

The following lemma casn be proved by arguments analogous

to those used in the proof of theorem 2,1,2 and so we omit

AY
4

the proof,

lemng 3,1,7: .Suppose 26§ with P(Zl) > 0, Let

X = {C :‘uc(c a Zl) > d} » Then for each Cy = c D.Zl, ceX

if we define éc = ho 0% and uc\i'(ﬂ Do) =

1
ulad 2,0 cy and for Cg¥ if we define 4, and 4
telCy) 1 ¥
arbitrarily the systeﬁ14{gc‘l | , where £q = Ei is the
1 ae “y
1E1

restricticn of ¢ to Zl‘ is & canonical system of-measures

with respect to £~

. _ . _
Definition 3.1.8: We say that r 1s a2 product tyre partition
if, wheneﬁér P(Mby Smb;r Eo' resolves the subspace

P( )

‘(Bfo, -0 My PMo = ﬁ-(FTT)O

as a product space where the measurable partition g, is the
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restriction of ¢ to Mb;

Theorem 3,1.2: (%, Cy P) 1s a Lebesgue space if and only if

» J -—

i) (Zr‘ Ar' Pr) is a Lebesgue space

11) pe 1is a Lebesgue measure for almost all C
in ¥ -and .

iii) ¥ 1is = product type partition,

Procf: Let 4

It
I
=

be the partition of 2 ‘given by

v s 1
theorem 3,1,2, For =n 21 let X = LQ : uC(C I Mn) 2 QJ’

N i
and let Yh = HE (Xn). Then

'P(yn M) =[S pgle D mdar, = p),

i

Since Mn 1s one-shested I ig a 1-1, measurable map fronm

N

(Y, A M, C 0Y, 24) to (X, & 0 X). Further if

Ye ¢ 0%, 0N, observe that H (V) = {c : (DY) >oj

N

nx Hence H, @ Y 0 Mn —>X, 1is a 1-1, bimeasurab]]

>

]
i =
T

n.

are mutually

sbsolutely continucus, Now from (1) 1t follows thet

map, rurther the measures PV H'En andc PE

(Xn, A, n Xy PE . } is a Lebesgue space. SQ it follows thi

-
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(7, 0 Mn* c 1y ﬂ'ﬁn* v 0y ) and hence (M« C O M, PMh) are

Lebesgue spaces..

—

1w P(M)) > Oy let T = tp : ug(C O M) >ﬁ0} ¢ and let

= BmH(X). Let: =Y 0 K T ') =
Y = HE (X)), Let Y = Y 44, Then P(Yb) = P(MO). Let

¢c =¢lYy and « ¥ =& . Consider (X, & 0X), Let
=0 = © = v =

v O 3
gi: X —>Y be deflined by

on

. -'T-'l- 9
g(c) = ﬁﬂ(hr (c) n u%).

e} -
Then @ is 1-1 and measurable, Further the measure Pﬂﬂ is
absolutely continuous with respect to the measure PE . It
a X

. foliows from (i) that PE is a Lebesgue measure and hence
X

S

(Ybn' gon' Pn) is a»Lebesgue space, By 1emma‘3il;7 and (ii),

in the separable space (YO: C o Yo PY ) there exists a systenm
= 8 -

Ke Z of measufes cancnical with respect tec mn such
L ) C.én :

tnat almost all measures “CV are Lebesgue measires, Since

MO does not contzin oqe-sheeted subsets of positive measure

with respect to £y n 1s without one-sheeted sets of positive

measure, Hence by (iii) and theorsm 3.1,6, (Y1 C.r Py ) and

so (Mg C I ¥or Py ) are Lebesgue spaces
= o
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Finally let | be a basis of (Z, ¢ P) ond et ,fr_

- N
be the Marczewski funetion from 4 to {G, lj O correspcn-

dging to [ . Let [ =0f,+n=0,1y2,..., Then F;
v.l..n -

is a basis of (M C 0 Mp» ng)l n =20, 1y 2, ... . BSince
T " ] ] . W W s -
f{_ (1) and since (i%, C a ¥y PMH) is a
o T

o
N

P (Z) &
| ¢}

]

[

o
lLebesgue space for each n = Uy l} 2,... we have for every n,
S , 3 T =1 L —l -
1%e£,;%(:f_i%)wmh p(r - (B)) =1 or Hfrf%ﬂ = P}
n B.- ! iy
B.'s are disjoint since M 's arc . Therefors B = UBECE

v
n n=zo

o P(ft}(B)) = P(Mh) = 1, Hence (Z, C, P} 1s a
n=c¢ =

|

Lebeggue space,

Lemms 351,103 r does not sdmit one-shected sets of positive

measure if-end cnly if npy 1s continuous for almost all C

Proof: By 2(c) of definition 3,1.1 for any AEC,

P(&) = [ uC(A il C)dPE. If almost all pn are continucus and
A > g
r

b3

if Ae ¢ is one-shected then, sincs A0 ¢ 1is at most a

singletdn,for every C 1in ¥, P(A) =~ 0.
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Suppose ¢ does not admit one-sheeted sets of positive
measure, Let z* be a pééud5:indepéndent coﬁbiéﬁént'af Ex
Proceeding as in the proof of 3.1.6 we can find a PZ-Qnull
set Ne ér and g 'set Zoeg'\with P(ZQ) = 1 such that for

CZ N we have ‘ \
(1) H.,:C—>%, is measurable and measure-
= el
preserving

(2) clzge Aar uplCd 2} =1 and

\

f

- - - I ., f y
(3) Ht* is l-l on CO2Z .,
In the”separablergyace (ZE*' ii*' PE*) PE* is a continuous
measure, for, if C* 1is a point in Zr* then

Pl {OF) = Plex) =Pk ) =0

as Cx 0l ZO is a measurable set one-shseted with respect to r.

Now if zeCZ N then J
H»c"( {Z} )
He {Z})

1

O‘ if Zg C.[]. ZO‘ and
Py {H'E*cz)} )

::O ifZGCﬂZOo

-

Thus - pc ris continuous for almost all G in z,
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Theorem 3.1,11: If (Z;, AE. P ) is a Letesgue space and if

Ko is discrete for almost all € din r, then (Z, C,.P) is a

Lebesgue space.,

Preof: We shall show that il Mg is discrete for almost all

C in ¥ then P(Mb) = 0 twhere M, given by 3,1.2, does not

contain any subset of positive measure one-sheeted with respect
D

to f. By theorem 3.,1.9, P(M)) = 0 implies that (Z, C. F)
is a Lebesgue space,

Suppose P(Mo) > 0, Then the set X = {? 2 uc(cflMo) B éE

is of pusitive P, -measure, By Lemma 3,1.,7, for each

3

Co = CIIMO} CeX, 1if we def'ine éco e Q u and v
e (AL @) = (AA-V 1c) . AGA., and for
CO o] u (C“._\I ) =C

and for each C_ = CA M, chb if we define éco and g

arbitrarily, then the systen is a canonical

{4
o) CEx,
system of measures with respect to £ the restriction of ¥

to Mo. Now Eo does not admit one-gheeted subsets of posi-

tive measure, Therefore, by lemma 3,1,10, M must be conti-
nuous for almost all G in Fot Say fo? all COEXQI‘

D - m1
r,(Xo) = 1, Then
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= | VM - -1
POEI0)) = P0G = PO AN

- ] _l Y -l‘ l..- ° a -
let Y = HE (X)l;MOIIHEO(XO) and let X' = {p : gC(CLlY) > d}a
Then P(Y) = P(M) >0 and so P.(X') >0, Further X' ( X,

Thus we have for all &X', Pr(X‘) 2 G, Mo is continucus on

the set COM, with MC(CIEMO) 20, Bo pup is nct discrete

- for (CeX', Pr(X‘) 2 0, vhich is a contradiction, Hence

P(Mo) = C.

3.2, Un the collection of independent
complements of gz measursble partition

[ "

In this section’we let z be a fixed measurable parti-
tion of s Lebesgue space (Z, C P): We shall show that any two
independent complements‘of F  are isomorphic‘&.s."in a sense
to be stated precisely laﬁer'and we conclude the section with

& necessary and sufficient condition for the existence of a
unigue independent complement,
Suppcse r* 1s an independent complement of .

Proceeding as in the proof of 3,1.6 wercanushow that there

3
such that for all CgN,

exists Neh with P (§) =0 and Z_6C with P(Z)) =1

i
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i) Hr* 1Sl e measuraple, measure-preserving map
ffom (@5 éc,'gcy 1o (er‘ %E*' e .} (as noted
ezsrlier in tle case of & Lebesgue space EE*
defined ea*%1“” is the same ac éi*)

1) pelcfzy) =1 and
1i1) He o is 1-1 on CLZ_ .
Suppose r* and g**- are two independeﬁt complement s

of ¥, Then it is easy ©o see that conditions (i), (ii) and (iijf
aTe simultaneously satisfied by both Hr* ana HE**'

Lgain sinces we are dealihg with Lebesgue s;écgs (see 1344, B2,
o B) it follows that Hy* and Hr** are isomorphisms a,s.

Hence the followirg pr00031tlon holds.

Proposition 3.2,1 There exists a map f from

o ) to (Z_.xs ér**"Pr;*) such that f 1is an
=7 r

E*‘-l r".
isomorphism a.S, fP 1, that'is, [ 1is measurable, msasure

preserving and l-l except on a Ppx- null set,

The next proposition is a dircct consequence of 3.2.1.

Proposition 3,2.2: The

(Zp % Zpsy By X é; P, X P..) ‘o (z, x ZE** , gg X é{** i

P, % Pres) defined by g(Cy C¥) = (C: f (¢*)) is an
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 iscmorphlsm a,s, [P X P,* .

& &

Now we have the following theorem on the isomorpbism

of the two independent complements‘ ¥ and r** of ¢,

Theorem 3.,2,3: There.exists a map ¢ from (Z, ¢, P) to

(Z, C\ P} which is measurable, measure-preserving and such

a) f# is 1-1 on a set 2, with P(Zo) =

b) Q(Aflzo)

= A0 Y (Zo) for all AGHE;(éE) and

c) glapz) = Arx <082 .

Prcof: Iet hl :

defined by
hl(z)

h,(z)

where C(Z)t C*(Z)=

= (c(z) ¢ C*(2))

i

(c(z), C**(2))

C**(z) are respectively the elements of z,r* p**

containing 2z, An argument similar to the proof of 3,1,4 will

show that there exists 2%,6C with P(Z;) = 1 such that

(4 IEA ;1 Pg )
Lil
hi(Zi), i=1,2

is iscmerphic to the subspace induced by
~

8ince all the spaces we are dealing with

= : IR
happen to be Lebesgue spaces forward lmages under hi are
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wmeusurable. Let g be the mapping defined in 3,2,2 and iet

yARS by ¥ féi* with p{ x P fz') = 1 be such that g is 1-1
on 4',
Let 7, = %y AN (g7 ny(Z,) 1%1)  ang let f be defined
by
ntg h, on Zg
i Z on Zg whare ZOE}Zg 3

# cen be verified to sabtisly the conditions (&), (b) and ()

of the theorem,

To obtzin the necessary and sufficlent condition for the
existenice of a unigue indgepencent complement we use SCms8
results of Rohlin regarding the structure of the measurable
vartition r of the Lebesgue space (Z ¢ Ca P), 4s we ald in
the carlier chapter (section 2,3) we dc¢fine Ior zlmost all C
in ¥, mn(C) = “C( {yh(C?}.) where yl(C). yQ(C)i we. 1is an

genumeration of points of € of posltive p-keasure arranged

in such & way that thelr mieasures form a hon-increasing sequeny

s 3

(as before we define mn(C) = ¢ for n +» p 1if this sequehce
contains only p many points)., Kow for each n 21, my is ¢
function defined on Zr . Theorem 2,5,3 can now be restated

3

as
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|
Theorem 3,2.4: ¥ admits an independént complement if ang

only if for every n 2 1,- m, = constant a.s, tp

g

Let ¥ admit an independent compiement, By results
cf Rohlin (see [34], 8 4, YNo,l) and 3,2,4, we cany without

loss of generality, take (Z, €y P) and ‘£ to be as follows:

Let Cyi Cgi +.. be a sequence of points of 2, con-

k)

taining all points of Zr of positive Pr—measure and such

that P, (Cp) 2P (Co) 2 ov. v Let [y = PelC)s k21, and
. let Xo =1 - X Xk .-.Since ¥ admits an independent comple~
: - k=1

ment = constant a,s. {P } for all =n and‘lét
Ay e 3 ‘ 0o "n
itself denote that constent value. Then m, P L 20 for

all n>1 and T m <1, Let m =1- % m.
La T = o ney B

Let

- .l \‘ }
le"_" fo, £} U {xk-: 1+ E}kgl

o~

4, = ¢ J Lebesgue measurable subsets of
0 hode {mo ®21} 4

for every A4€ A; where A denotes

the usuel: Lebesgue measure on [0, 1]
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P 1 ]
(10, m 1 U {x =1+-—} |
2 o K L

=0 {?ebesgue measurab.e gsubsets of

™
i}

22
£¢, mOE andé {XKJ
k2 1
s o0
P = 2 (&0 [0, m_]
] 2(A?) (4o L0y X Y o+ kélﬁkle(xk)
for every AEC:E? s

Now take

Y
it
A
o
™
e
o
[
o
b
M
I~
|,_.J
Ll

If l{ happens to be the partiticn of (Z, g. P) consig-
ting of {Z._Q{} then clearly the only indenencent compiement
of r is the partition of % consisting of singletons< Hence
let us assume thet the partiticn ¥ 4is nontrivial a,s. P,

Let R = {k 21 my 2 OA};

Thegrem 3,2.5: ¢ admits a unigue independent complement if

o 3 - & S £ e 1R 3
ané only if m 0 and By ¢ Wy, for al;q kER,

Proof: The necessity of the conditicn is obvious, To prove

the sufficiency first observe. that z* = {Zl X .gx}-, XE€L z
L

ZJ’

is an independent complement of ¥. WHow by the given condi-
tion 24 = {Xk,'k 2 l% . Suppose r** is enother independent

’
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complement of r, Let Z'cC with P(Z') = 1 be such that

{C**ELZ‘E— is one~-ghested with respect to r for every
-~

Il

element C** of ¥+, Let C** , C3¥,,.. be the elements

n 1 !
of p** of positive measure,
let
- Ly - _— - i "‘n“*ﬂl—
C =29 X {LL{} TS P(Ckﬂ_ C1 71)
- s { : Qoxxil 7
and r, = P(Ak) for keR,
L) % 3% e =
ingn c IlCl az' = kil\Ak x 42)

.CEF 02 0 (&, x D)

and hence by independelnice

\, =mr7r = ( % xk) 0

L ]

k kK k KER k ‘

Therefore r.) =( T mr )
ke? mk kER ﬂk

How ry's are such that r, 20 and I =1 and

: kXeR °

> Mesq for all kER, 8o by Cautchy-Schwarz's inequality
' i ‘ e x

we have T, = for me R, Henee A. = m, oI A= E
we ha i L S0 JE ;c 3 3 CJ 1
a.s. for some jeR. Similarly for every: k, C"f{* = C) 8.8, lpl
for some ijR. Finally g** being = complement of ¢ it foliows
that there is 2 k; such thet € = C}*, for every. k.
-~ FIC T, - ek - = {;ﬁ'} j

Ninpressien. OGRE we UM = .8 Ws

2 il
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let p (%, B)
is, u (x, B)

in L0, 11

CHLPTE

MIXTURES OF PERFECT MEASURES

4.0 Introduetion
and (Y, E) be tvwo measurable spaces and

a transition probability on X x B, That

a function defined on X x B taking values

sueh that for every X

in %X, o (%, +) is =a

probability on B and for every Be B 1 4 (s, B) is

iL-measurable.

v defined on

by '

Let N be a measure OL s

u(B) = i H(X; B) &x, Be

is a measure cn

B, @

A 1is called nixing measule,

meagsures and

properties of

and mixand measvreEs.,

chapter,

problem,

is called the Z-mixture of
!—L(Xt “)‘S

ig called mizture messurc.

—AL -

The sect functicn

0ig-

ulx, .)'s.
are called mixand

In general the

- pixture measure dspend on those of the mixing
We shall study in detail, in this

the role of perfectness of measures 1n the mixture

BT e L e IEH g PR
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We call a mixture measure perfect mixture or nonperfect
mixture according as the mixing measure is perfect cr non-
perfect, Rodine {32], [33] initiated the study of mixtures
of perfeét.%masures and showed that mixtures of perfect
measures, ih.general. need not be perfect, Rodine conjectured
that perfect mixtures of perfect measures are perfect and also
raised thé following guestion: If wu 1s perfect, does it
follow thﬁt the u{x, «)'s are verfect except pessibly for
x's in axk;null set? In section 4,1 we glve exXampies to
show that fhe conjecture is false and that the answer to the
above queét&on is in the negative, Later we study at length

perfect mixtures of” perfect measures, Finally we treat the

mixture problem for compact measures,

4.1 The Exgmples

Rodire's example {example 4,1,1) consisted of a non-
perfect mixture of perfect measures which is nonperfect, Then
he méde'the conjecture and raised the gquestion which are stated
in 4,0 and which are answered by our examples 4,1.3 and 4,1.5.
The following table lists all the cases that can arise in the

mixture probiem andg our examples illustrating ezch case.
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Mixing

——— e

bility space.

No. pemsuce  memsuves _ mesenre  EXeDle
1 perfect perfect perfect 4ql.2.
2 perfeét nonperfect periect AeLD
3 perfect. perfect nonperfect il 55
4 perfect nonperfect nonperfect 4,17

Itz ~nonperfect ﬁerfect perfect £,1.6
6 inonpeffect nonperfect perfect 4,.1,9
7 nonperfect perfect nonperfect  431,1
8 nonperfect nonperfect nonperfect 4,1,10.

X x B be defined by u(x, B)

being a 0-1 wvalued measure,

let Y=X%X, B

et

Example 4,1,1 (Rodine): . Let (X, Ly A)

i

- e a— v ——

be a nonperfect proba-
= L[ and let ulx, B) on
1 (). Ther each , ulx;" ¥¥;

is perfect, The mixture g = A

and is nenperfect,

Example 4.}.21

L et TR

Let Y = X,

Let (X, 4L, M) be a perfect probability

space., B =4 andg let u(x, B) on Xx B be

defined by u(x, B) = lg (x). Then the mixture g = X and is

paerfect,

Gxample 4,1,3: Let X = {0, li, the unit interval, L = the

Borel c-algebra of X and A = the Lebesgue measure on (X, 4)
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Consider the product space (X x X, £ X &, A x 7). For our

ne-

rurposes it is cnough to consider a set B contained in

% x X, which meects every closed subset of positive A x A o ¢

v

measure and no three of whose points are collinear, constructed
iy

by Sierpifski 401 ., But we use the following lemma,

Lﬁ@ma_é.l.i;: There exists s subset E of X x X such that

(a) B intersects every closed subset of X x X
A

of positive A X A measure

and (o) E is a graph, that is, for every x in X
the set E_ = {yejiz (x, y)e‘aj is exactly

a singlcton,

AN
Proof: Let W, be the first ordinal corresponding to ¢, the

%
< cardinality of the continuum, Let 1La HENAR Y v, f be a well

ordering of all closed subsets of. X x X of positive A x A
, . ]
messure, We shall define a. transfinite sequence
{- — ‘ ’ . j — ¥ B
i“pa,m g%@' gd) P o < WC~? ag.follows. Take Py = (xl. yl)e Al,
e N ,
suppose ipa = (xa, yd) : g < B}- havg been defined for g < ch

The set l{x : l((LB)K) > O} is an uncountable Beorel set ang

hence has cardinality "¢, So we can fing x. in N

; B
j7 0 alag)) S0 - {xawwg .

A
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Take & yﬁe (h ) . Let Py = (XB. ys). Let
i I s 1 .

— 1 { a L T o= . }Ty v 10
X._A-—i:x:a.cchj and let & = pa.oc<wcjt o ¥

==Y

Then E has the required propertics.

T

The set B gilven by 4. .% ig such that both E and
¥ x X - B interscect every CLOSGd subset of positive N X A
5 \ A : *
measure, Hence, letting ¥ =X x X -, we have (n» =N (B) =

(A x WY = 1 where (A x SN is the outer measure induced
-

1\) J..1. Y H CE -L-L .1:.. %‘ M Since

by » X 2. Llet § = & X

i
£y
Y
i

(x x \)*(¥) =1, if we Qefine wu(B) = (A x x) (B), BE By then
¢ is a measure on B, Define u(x, B) on X x B by
plx, BY =A(By). If B=C &Y, Celxi then k(x, B)

-

l(BX) = x(cX a Yi) = x(cX) since, for each x€ X, ¥
from X by exactly one point, It is now easy to see that
ulx, B) is well~defined and is L-“easufable for every B¢ B,
Since owr definition of wu(x, B) is such that pulxz, ) is e
measure on B for every x in X, w(x, B) turns cut to be a
transition probubility on X X ?‘ For any ‘Be.l; q wo have

3.

f ulx, B)dk = f x(c Yan = x x A Q) = p(B)

where C€ i X & such thet B = C 0 Y, In other words u is

a A-nixture of ulx, +)'s,

A

differs

|
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» and wu(x, #*)'s are all perfect, Let g be the res-

“r

x A-meagsurable funection on X x 7,

For every linesr Borel set contained in ng) 1 g-l B 1is an

triction to Y of a 1-1, !/

a

. X lL-messursble sct contained in Y and since (A x A)7(E) = 1,

u(g71B) = x 2(g™*B) = 0. Thus, by P, u is nonperfect,

Hence a perfect mixture of perfect measures need not be perfect,

Bxsmple 4,1,5: Let X be any uncéuntable sct and 1st A be
the ciass of countable subsets of X and their complenents,
For each x in X let (f X, b, ) be = nonperfect probabi-

lity Space. Let Y =~ ‘ Y ¢« the moduct space and
XSX |
= (:) Bxﬂ the. preduct o-algebra, . Fix fo in Y, Let
xeX

no

'fi = fo‘X- {x} y the restriction of fo to X- {x} o For

gvery Be B define BX = f§ -th section of B
= {g(x)eYX: geB and g =f_  on {Xl}

It can be e%§ily verified that By € @}'. DPefine
w‘” - -~ -

" ulx, B) “on X x B as u(x, B) = PX(BX). For each x in X,

i
ey
s}

e
I3

u(x, +) is a measure on B. P, ou B, 1is nonperfect implies

that u(x, ) is nonperfuct on B' = i}3 > STl Y, * B SEX% .
) , zeX; -

Therefore by Po p(x, ) is nonperfect on B for every X in
X. Since every B in @ is a countable dimensional cylinder

it follows that elcher By = ¢ Iof adi vul a connlavie QUIHEY
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of x's or By = Y, for all but a countebie number of x's,
S0 for each fixed B in B either u{x, B) =C for all but
a8 countablie number of X's or ulx, B) =1 for all but a

countable nurber of x's, Hence pm(e , B) 1is [-measurabie

for every B 1in B. Let X be the O0-1 valued measure on
L defined by i) =0 or 1 according as . 1s countable
c;f%ountable. % 1is perfect, The miXture u 1s such that
u(B) =0 i 1 saccording as fog B8 or foBB° Therefore
is perfect as weli, By cheice u{x, +) 1is ncnperfect for
every X 4dn %,

The above exemple is only a modificstion of the one
ecngtructed by K. P. S, Bhaskara Reo ané M, Bheskare Rac {1]
+o show that mixtures of nchatomic measures need not be non-
stomic. The set-up in both examples is the same but instead
of taking n(x, s)'s to be nonatomic, here we take them to be

nonberfect,

The o-algebra B considered in this example is not coun-

tebly generated. When B happens to be covrntably generated,
Rodine's guestion has an affirmative answer as we shall show in
thecrenm 4 .,2,2,

Example 4,1.6: In order to show that a nenperfect mixture of

perfect measures can be perfect it is sufficient to consider a
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perfect measure p on (Y, B), a nonperfect space (X, Ly )
and define u(x, B) on X x B by taking u(x, B) = p(B) for
all =® dn X, , Bub. in €this caée the‘transition funetion

u{x, B) is actually measurable with respect to the trivial
sﬁb-cmalgebra -{X, ﬁf} of L. Clearly the restricticn of A
to this o-~algebra is perfect and thus in this case u turns
out, in fact, toc be a perfect mixture of perfect measuré%.

We give below a nontrivial example of a perfect messure which

1s a nonperfect mixture of perfect measurés,

Let- Y be the unit intervel and B the Borel subsets
of Y, Let X be a subset of the unit interval with outer
iebesgus méasure one ané'innerlLeﬁesgué‘measufé zero, Let
£ =B 10X, the trace of E on X and let N on . be the
trace of outer Lebesgue measure, -(X, Ly A) 1is a nonperfect
probabiiity space. Define a transition probability u(x, B)
on X x B by u{z, B) = lB(X). Plainly 4 4is the smallest
o~algebra on X with respect to whiech the transition function
is measurabie, Each wu(x, +) 1is perfect and the mixture,

being = measure on the Borel subsets of the unit interval, is

perfect by P7 %hough A is ncnperfect,

Example 4,1,7: Let Z =30}, L ={K. f?f} and let A op

(X, 4)  be such that A(X) = 1, M(¢) = 0. Let (¥, By u) be
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a nonperfect probability space, Define u(x, B) = u(B) for
2ll x in ¥. Then u 1is a nonperfect measure which is a
perfect mixture of nonperfect measures,

For the ccnstruction of our next two examples we nNeed

the following result:

TSR

Let for cuch 1 =1, 2 (X1 Ly dy) be two probability

spaces, (¥, Ei) two measursbie spaces and (x4 B,) on
Ki X Bi two transition probabilities, Let My be the

. . - ) = 1 X
ki—mlxture of “i(xi' J)'s. If we define X =X  x L,

o]

‘f*=‘.{_:l 22,7\_:7\lx?\2,Y=Yl'xY2, ==§lx}22 and

p((Xl| X2). °) = “l(Xl‘ ) X pé(X2| +) then the following
lemma can be easlly established,
Lemma 4,1,8: u((xl, kg). ») is a transiticn probability on
X x B such that pu = My % Hg where u is the A-mixture of
the w((x{r Z5)1 +)'s, "

We shall cell  u as the product mixture of My and Hgs

Example 4,1,9: Let My and oy be obtained as in examples

4,1, gnd 4.1s6 respectively. ‘Then, by 4,1.8 and P5, it
follows that the product mixtuvre is a perfect measure which is

a nonperfect mixture of nonperfect measures,
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Bxample 4,1,10: Let My and p be Obtained as in examples

4,1.1 and.4,1.5 respsctively, Then, by 4,1.2 and P5, the pro-
duct mixture is a nonperfect measure which is a ncnperfect

mixture ol ncnperfect measures,

4,2 FPerfect mixtures of discrets measures

e - ol e Rl RN

Let (X, iy %) be a probability space. Let (¥, B) be

=

a measurable space and let wu(x, B) be a transition probsbility

on X x B, Let p be the r-mixture of plx, +)'s and let Au

¢cn (Lx V. é x B} be the product prcbebility measurc defined

i

by

ru(C)

Jowulx, clax, Ce A x
=

9

1 b

Weg have the following result on“pérfedt mixtures,

F4

hecrem 4 ,2,13 Suppose N 1is perfect. Then ‘u is perfact

if and only 1f Ay 1s perfect,

Proof: If u 1is perfect then both the marginals of Au are
perfect and so Au is perfect by PS5, If Aup s perfect then

by P3  the marginal of Ag on X x B 1s perfect and hence u

is perfect,

Before considering perfect mixtures of discrete measures

we ncte that our exsmple 4,1.6 shows that a theorewm of Rodine


http://www.cvisiontech.com

(thecrem 2,12 in {321} is inccrrect, WWe now directly. prove

the following modifi@d version of Rodine's theorem,.

1

Theorem 4.2.2: If B 1is courtzbiy generated anc iff wu  1s

Qs

perfect then pf{x, ) is perfect for almest all x 1n X.

™~

Prcof: . Sines P 1s countably generated using. the Marczewski

funetion (sec Ghepter O) we can assume that Y is a subset cf
{0, 11 and that E is the trace cun ¥ of the-Borel c-algebra
‘of [0, 1], u is perfect implieé that there is a Borel subset Bg
of 10, 1] sueh that B, C ¥ and w(B)) = l. Hence

u(x, B,) = 1 for all xg [, wherc Ne€hi with a(K) =0C.

For each x¢ N,y p(x, ) being a measure on the BoTrel subsets
of Bo‘ by P7 is perfect,

Using 4,2.1 and 4.2,2 we have the fcllowing ccrollary.

gerollsry 4,2.3: Let B be countabigw generated, Then Au 1s

perfect if and cnly if X\ 1is perfect, u 1s perfect and

ulx, +) is perfecct for almest all x in X,

We shall now proceed tc show thet perfect mixtvres of
discrete measures are perfcect, The rresent prccf is e direct
onc ané in secticn 4,3 we shall give yet ancther proct of this

result using resuits cf chapter 3, \

_ dencte the Borel o-algebra of 10, 11,
0, 11
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Lemma 4,2,4: Let Xe B an¢ let L = B

u(x, B) is a transition probability on X x B, ., then
- t

the set

[
S ‘—-'n-l"

—

B = '{(x, y) s p(x, {y} y >0

is a Berel subset of the unit square,

Proof: First note (starting from indicators of cubes ett.)
‘that for any measurable map & from X x {o, 11 x {C, 1] to
{0, 1] the function @* from ¥ x {0, 1] to [0, 1]

defined by

!

Bz 9) = F 8x, 3o 2 ulx, az)

is &£ x B

- measureble, Taking
= ={0, 1]

(1 if y=z
1‘0 i iR

ulx, {y} ) is 4 X B o 1]
- N - . t 4

34

g(xt VA %

o

“we get @ (x, ¥) -mezsurable and

henee D 4is a Borel subset of the unit square,

Lemma 4,2,5: Suppose (X, &) and (Y, B) are two measurable

spaces with X€ B, nx

TRy l]t g E[-Ot l]

Y, If wp{x, B) 4is a transition probability

Y a subset of [0, 1], &
a8 B o

cn X x B then the get
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als z{(x‘ vt wlx fv} )2 c}

is a Berel subsst of the unit square,

Procf: Define up'(x, B) on X x B by R B E

ulx, B4 v), It is sasy to check that p'(x, B) is a transi-

tion proebability on X x B. . Hence by 4.2,4 the set
T .0, 1]
f" _
B -L(x, v): u'(x, {y} I é}
is = Borel subgset of the unit square, But D' = L,

Theorem 4,2,6: Let (X, Ay X) be a perfect prcbability space
with 4 countably generated. Let (¥, E) be a measurabie
space with B countably generated and let u{x, B) be a tran-
sition probability on X x B such that ulx, ) is discrete
for almost evéry X in X, Then u, the a-mixture of

u(x, #)'s, is perfect,

d

roof: By using the Marczewski function and P6 and by sui-
tabiy redefining the transition probsbiliity we can, without

40ss of generality, assume X to be a Borel subset of [0, 1} |

with 4 =B .0X and Y to be a swbsct of (0, 1] wvith
- - 1

B =B 1Y, By 4.2.5, the set

= =0, 1] :

L]

c N .
D=1‘(X! ) e s {yf) >0}
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is a Borel subset of the unit square. Since w(x, ) is discrete
for almost every x 1n X

(D) = fulz, DJar =1
Thus (D, 4 x B D, ku[D) is a perfect probability space

(see [39], section 2,5) and hence Au 1is perfect., By 4,2.1, u

is perfect,

Theeren 4.2,7: Perfect mixtures of discrete measureg are per-

vl e .,

Proof: ILet (X, by ) be a perfect probability space, (Y, B)
a measurable space and  u(x, B) a transition probability cn

X %= B such that pu(x, ») 1is discrete for almost every x in

e Lt Let‘ M be the A-mixture of the plx, «)'s, Let E’ be a
countably generated sub-o-algebra of B and let u'(xy B') be
;the:reStriction“of u(x, B) c¢an X x B', Then py'(x, B') is a
transitlon probability on- X x B and - g?, the smallest sube

G—algebra of - A with respect to whlch..{y'(-. BY) B'e@{} are

all measurable, is. countably generated, Thus if g = ”lB' and

-1'*_" = kl_&r then ¥t is t‘he' NMemixture of ,u’ (X-, «}'s where

.....

p’(x, ) i dlscrete for almost emery x 'in X, By P2, m
is perfect Hence, by 4 2 6, y"_ls pe”fect Againlby P2,

4 is perfect
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4,3 Perfect mixtures c¢f perfect measures

In this secticn, given a mixture problem where the -
o-algebras considered are countably generated we construct an
associated separable space and a measurable partition of this
space which vossesses a canonical system of measures, Sazonov
has proveﬁ (see [39], theorem 5) that 2 separsble space is &
perfect probability space il ang conly 1if it is a(Lebesgue
space. Using this fact asnd the results bf chapter 3, we shall
study the perfectness cf perfect mixtures of perfect measures

throvgh the assccisted separable space,

Let u be the A-mixture of pu(x, +)'s where (X, 4, A)

is a probability space with A countably generated, (Y, @) is

a measurable space with B countzbly generated and u(x, B)

‘ : ; 2
is a transition probability on X x B, Ve denote by (X, &: 2)

the completion of the guotient space of‘(X, Ay N} with respect
to the partition of X by atoms of 4. and by (§ i g ' Z) the
quotient space of (Y, B, w) with respect to the partition of

Y by atoms of B, For x¢X let X denote the A-atom con-

taining % and for BEB let B denote the corresponding set

* . ¥ - = X ¥ K- ome
in B, Define u(%, B) on X x B by ul&, B = ulx, B). Thﬁ4
o = . ;
u(x, B) 1is well-defined and is a transition probability on
s = * * % % =
X x Bs Let Zu =XxY ¢=4x3B and Pp =P where P on
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X

thin ¥
Tekd

is defined by

P(c) = f ﬁ(i,'c_)di, Ce

i1 h=s %
oM
it

The following facts can be directly verified,

4,3,1: (ZM' QHT PH) is a'separéble spacé.
4,3,2¢ (¥, Byp ) and (%, X x3B, P |4 ) are isomor-
L] H = K X x B.
phic probability spaces.,
4,§.Q Let g- be ‘the partition of Z - of 'the form
{i } . EH is a measurab¢e partltlon.
such that the dUoBHanE space of (ZH, g#}‘pui with
: P C B NI '
respect to 5” is isomorphic to (X, AN,

* " . W B - I = J et
s Y _Defingi g_( {:{}v X B) = u(X, B) for xeﬁ,,Be,@.
X R 2 L

For sach xeX (i j X Y, { :} E z wis_isomqr-

(if »)) and the completion- of

*
7}
- ¥ ox . -
-} X By p_) is a separable space,
== % e : '

: e * :
423483 L8t us denote for each X “in X the completion of

e ¥ * *
_pn-{xi} X B by u_ itself, Then the collection

Y

" ¥ e £ o
{-u’{}f is a canonicel system of measures with
2 : asur e
e X

respect to £y
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We call (Z ¢ G P ) the gseparable space assoclated

with u and we have the following theorem which is ancther

form of theorem 4,2,1 for the cowmtabliy gencrated case.

Thecrem 4,3,6: Suppose A is perfect, Then u is perfect

if ane only if the assoclated separable space (Z“; Ct Pg) is

a Lebesgue space,

¢k % :
Proof: If u 1is perfect, then (%, B, i) and hence
£k
(Z“, X x B me *) are perfect probability spaces. Since A
= - .

&

: | n .
is perfect, the separable space (i, Ay A) is a Lebesgue space

by P1 and P4, It follows that in (ZH' gu, P“) which is actu-

ally a'produCt space, botnh marginals are Lebesgue measures,

Hence (see 1341, § 3, No.4) id fact (Zyo 0 P) is a Lebesgue

space.

S (2= 0!

gt S PH) is a Lebesgue space then, by

| % %
P3, (Z , X x B, P |« ) is a perfect probability space,
H . HIX x B

R U '
Hence (Y, B, u) 4is perfect or, in other words, u is perfect,

Remgrk 4.,3.,7: DNow we are in g position to show that in

theorem 3,1.,6 of chapter 3 condltlons (1) and (lL) are not

sufficient to ensure that (A C P) is a Lebssgue space, It
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1s easy to observe that H(x, o) isg perfcct lf and only if

(X, o) is perfect and so if and only il i g_ is a Lebesgue

M

measure, Consider the set-up of example l of section 4,1,

Construct (Z#, gu, PH) the separable space associated with 4.
A is perfect implies the quotient space‘of (Zu' g#, Pu) with
respect to Eu is a Lebesgue space. Bach ulx, ?) is perfect

) . 3 " B :

implies that each u_ 1is a Lebes%ue measure, Thus conditions
= ,

(1) and (ii) of theorem 541.6 hold, But ¢ 1is nonperfect and

so by thecrenm 4.,3.6 (ZM,'QM, Pg) is net a LeEesgue sﬁacé.

Let us.how turn our attenticn.to the genefal mixture
problemn, We are given a pLObabllLty space (X, A, A'), a mea-
surable space (Y} B‘ Al), a tran51tion prcbability  w(x, BY)
on X ¥ g‘. Let u' be the l'-ﬁixture of plx, «)'s. Supvose

B 1s a countably generated sub-o-glgebra of E‘ and M = M'IB.

We shall dencte by‘ 4 the smallest sub-o-glgebra of A' with

respect to which.-{g(-, B), Be Q}- are all measurable. It is

“easy to chegk that & is countably generated, We denote \! i

by A, 8o u is in fact a Ae-mixture of u(x, +)'s and the
og-algebras congidered now are cduntably generated, We can now

associate a separable space (ZM' gﬂ, PH) and a measurable par-

tition £, of (Z,+ C )+ P,) with p. Thus in the gemeral mix-

1]

ture problem whenewer y denotes the restriction of the mixture
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<
measure tc a countably generated suh~o-gligebra, we can assccilate

a separable space (ZM’ g“: PM) gnd a measurgble partition Eg

of this space with u, If in addition the mixing measure and
almost all mixand measures are perfect, then the quotient space

cf (A“j gH' Pu) with rgspect to E“ 1s a Lebesgue space and in

the system of measures canonical with respect to E almost
n .
every measul'e ls Lebesgue, Hence we have the following theorenm

on perfect mixtures of perfeect measures,

Theorem 4,3.8:  Let the measure u' on (Y, B') be a perfect

=Tl .

mixture of perfect measures, In order that u' 1is perfect it
is necegsary and sufficient that for every countably genersted
sub-c-algebra B of B' the measurable partitioqﬂvgﬂ of the

separable speace (Zu‘ gu, Pp)- is of product type, where

Proof: If u' 1is perfect then, by P3,. u 1is perfect where

and - B 1is countebly generated, By 4,3,6, (ZH' Qﬂ' P“)

is a Lebeséﬁe space. By 3.1.9, Eu is of procduct type,

Suppose the condition holds. 3By 3,1.9 and 4,3.6, it
follows that the restriction of u' to every countably genera-

ted sub-d—algébra of B' is perfect, By P2, u' is perfect,
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Remgrk 4.3,9: We are 1a & position16? give an slternstive
proof to theorem 4,2,7  which says that perfect mixtures of

discrete measures are perfect,

Proof: let the set-up be as in theorem 4.,3.,8 with the addi-
tional assumption that almost 211 mixand measures arc discrete,
Let B be a countably generated sub-o-algebra of B' and let

p o= u'| . Consider the measureble partition B of the asso-

Hlley]

B

ciated separable space (ZH' E“, P“), Since the mixing measure

is perfect the quotient gpace of (Zu, g“, Pg) with respect

to gu is a Lebesgue space, It is easy to check, sinece zlmost
all mixand measures are discrete, thst in the system of measures
canonical with respect to £, almost all measurés are discrete,

Hence, by 3,1l.11, (Zu' QN,VPR) is a Lebesgue space, By 4,3.8,

£ 1is perfect, Now it follows by P2 that u' is perfect,

4,4 Mixture problem for compact measures

We shall make an attempt, in this seection, at studying
the mixture problem for compsct measurss.‘ Marczewski [22] intro-
duced the noticn of compact measures, which are elosely related
" to perfect measures. We are not sbie to obtain general resuits
in this secticn and we will be raising more gquesticns tnan we

S el T,
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A collection K of éubsets of a set X 1s calied a

compact class if any sequence,{rKn} of sets from the class
n . 3 X i

K having the property g Ky ¢, n=1, 2,4.., also has
. : - =1 ' :

the property n Kj £ L. 4 measure P on a measurable

space (X, &) 1is ssid -to be compact if there is a compact
class K of subsets of X - approximating 4 with réspect to

. Py that is, for every A4 ang for every £ > 0, there exist

—

K€% 1 4g€ L such that 4 (K, (L4 and PlA- 4) <.

Let (X, 4) be a measurable space., The following results

are well known (see [22], [37] and [39]):

Cl, Every compact measure is perfect,

C2, Suppose .4 is countably:generated. Then a

measure P on (X, 4) is compact if and only if

it is perfect,

C3. If (X4 &5 Py)y L =1, 2 are two probability

sSpaces where each Pi is compact then Pl X P2

on ‘(x; x ng ﬁl X é2) is compacﬁ.

- Every 0-1 wvalued measure P on (X, é) cah be chacketl
to be compact, é‘ being spproximated with respect to the mea-

sure P by the compact class {igle Lo P(L) = 1? , g ﬂ}.
' = Pl o :
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every nonperfect measure is noncompact,,  Tsing C1, C2

and C3 it 1s easgy to verify thzt the examples we have given

ir secticn 4,1

alsc illustrate the cases that can arise in

the mixture problem for compasct measures, The following table

lists all the cases snd our examples iliustrating each case,

The only medification needed is in

(X, 4) to be a compact measure,

[PV ST

4,1,2

where we take 2\ on

No Mixing Qgiand Mizture
oot Jieasurse fegsures JHessure
1 compact comvact compact
2 colipact noncompact compact
3 compact compact noncompact
4 compact noncompact noncompact
S noncémpact compact compact
& noncompact noncompact compact
7 noncompact compact noncompact
8 noncompact noncompact nencompact

Exsmple

e

4,1,.2
4,1,5
£4,1.,3
Lel,7
4;1.6
4.,1,9
4,1l.1
4,1,1C

When the s-aigebrasare countably generated, since compact-

ness and perfectnesg are eguivalent by
results of section 4,2 and 4,3

the word 'compact'.

the following two results,

replacing the

C2, we can recast

word 'perfect' hy

We omlt the details, We shall brove only
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Proposition 4,6.1: Let u be the A-mixture of u(%, .)'s.

Surpose A is compact, Then u 1is compact only if au 1is

compact,

Proof: If u 1s compact then both the marginals of Ay are

compact and hence, Ay 1is compact (see (221, secticn 6),

Theorem 4,2.6 together with €1 yields the following

Theorem 4,4 ,2: Compact mixtures of discrete measures are
perfect,
We now mention three questions for which we do not know

the answers:

,Ql., Is the restriction of a compact measure to any -
sub=¢~algebra compact?
Q2. Does there exist a noncompact perfect measure?

Q3. Is every compact mixture of discrete measures

compact?

Since we do not know the answer to Q1 we are unable to
assert in 4,4,1 that if Ay is compact then x and L are

compact.,


http://www.cvisiontech.com

g7

These th£QQIQues£ioﬁs afeirelated. A negative answer
to QL or @3 will answer Q2 in the affirmastive because
of P3 cor 4.4.2; i negative answer to Q2 will show
that perfectness and compactness sre equivelent and hence
Q1 and @3 . will be answered in the affirmative, 4n
af firmative answer tc any of these qugstiona will leave the

other two unanswered,
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CHAPTER 5§

ON SEQUENCES CF o~A4LGEBRAS

540 Introduction

The objective of this chapter is to prove some results
on sequences of o-algebras which occur in certéin formuliation
of the theofy of non-linear prediction due to Wiener and
Kallianpur [17] and Rosenblatt [35], {361, 4 succinet account
of this theory together with some unsolved problems is given
by Masani (page 89 of {25]), Contents of this chapter have

their origin in some of these problems,

5,1 Point separation in c=-algebras

Let 4 be a o-algebra of subsets of a set X, Two sub-
sets A and B of X are said to be separated in L if

- there exists a subset € .¢ L such that 4 C: C eandl " B C: X=C.

We say that L separates points if any two distinet points of

X are separated in A. For any finite coliections

Al' 52,.... én of o~algsbras of subsets of X we write

V LoV .oV &, and L34 hiph ues A

él Lo Ly L to denote the

P
=1

o-algebras generated by 49 U .es UL and 430 woo 0 4

oo

o0
regpe’ctively, V ﬁn and  p Ly have similar meanings.,
n=l = n=l =
- 88~
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We shall need the following theorem due to Blackwell [2] and

Mackey (20}

Blackwell-Mackey Theorem:  Let X be an analytic set in a
oom?lete separable.metrio space and let B denote its Borel

o-algebra, If 1s'a countebly generated sub-o-algebra of

1=

B which separates points then 4 = Bg

Proposition Oel.lt Let {Cn} n>ob -{D e Ol— be two

4

sequences of o—algebras or subsets of a set X and assume that

the sequence -1D Ao > OFL is decreasing,
Let ¢= V C, D= A D

Ch 1® Let x and y be two distinet
n=0 - n=0Q = : : g e |

points of X, Then

for every n

(i) x and y are separated in Co v -

ilt:' utj

implies that x &and y are separated in ,C vV

(i1) x and y are separated in C V I implies that

for some n, x and y are separated in c, VD I8

Froofs (1) Since x and y are separated in C_V D_ for
gvery n, for any given n it is true that x and y are

separated either in C or ‘in Do If x and-y ere separa-

ted in Cn_'ﬁor'some' n, then clearly x and y are separated

in ¢ and hence in 'g Vv D,
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Suppose it happens that x and y are not separated in

any C

Cue then x and y are separated in D for every n,

n

g il

Hence for every n 2 0, there is an 4 € such that x¢ A

n
and v # A . Let A =1lim sup A Then x€ A and yg A.
Since {Qn}‘n 2 0}u is a decreasing sequence, A€ D, for

every n 2 0 and hence A€ D. Thuz X and y are separated

o

in D and hence in ¢ V D,

(i1) If x and y are separate¢ in C V D, then they

are separated eitkher in C cor in D, If they are separated in

C, then they are separated in some Cp! (for if not, then the

aollection SLE\,. TR, Y & & o E,yY S kclj i o g-zlgebhra

which contains every gn and hence C and thus x and Voo
c 1

are not separated in Y. Hence x and y are separated in

some C,. V D.. If % and y are separated in D, then,

since D C: Dn for all n, X and y are separated in Pn

and so in Cp V D for every n,
Some immediate consequences of this precposition are the

following:

Corollary 5,1.2:  Assume, in addition te the hypothssis of

j =

5,1.1, that {:gn' nz 0‘} is an increasing segquence, Then
(i) x and y sare separated in C, V EH- for all

but finitely many n if and only if x and y are saparated

iv. o 17’ ™
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ii) G,/ V D, separates points for all but finitely many

n  implies that VD separztes points.

eIl

Corollary 5.1.3:  Assunme, in addition tc the hypothesis of‘

provosition 5,1.1, that X 1is an analytic subset of a complete

-

separable metric space andé that for each n, C_ and D = are
countably generated subwo=algebras of the Borel o-algebra E

of X, Then.

i) C,VDb,=B for all n implies C v Q, separates
points |
11) ChoVDy=B for all n and D is countably genera-

ted implies C V

e
il
nd

~ Part (ii) of 5,.,1.3. follows from Blackwell~Mackey Theorem, .

i ; 8 ' ¢

It may be conjectured that if {jc ¢ D2 Dj ' rD , n 2 0%
are respectively increasing and decreasing sequencss of coun- '
tably generated sub-c-algebras of the Borel-c-algebra- B of an
~analytic subéet X of a comple%é séparéble metric space such that

C,VD,=58 for all n, then C VD =B, This however is not

L
— - f=l
= =

- true as iilustrated by the following example, method of which
is connected with the problém of complementation of o-algebras

considered by Be. V. Rao 131].
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3 I 5
Example 5,1.4: Let X = {o, 1} ©  whers {o, 17 is the

\

additive grour of two elements with discrete topclogy and K

9]

compact

T

is the set of non~negative integers, Regard X as
group with cocrdinatewisce addition and product topoiogY. Let

Q be the subgroup of X ccnelsting of elements with finitely

many ones, Let D, be the smsllest o-algebra with respect to

n
. - - iy 1 TN ’L B
which 311 the cocrdinate variables i_fk' k 2 nJ are measurabley
24 oo I - j o
Then D C_ D and D = A D is fthe sub~c-algebra ol
Tn-+1 =N = =n z
n=9_
Borel sets of X invariant under translation by elements of
%, D is not countably gsnerated, D d4s atomic and the atoms
of D arec precisely the cosets of Q, Further by Kolmogorov's

zero-onie law every element of D has Haar measure zero or one,
Let F be eny other sub-c-algebra of B "Then F VI (.

-{Bo B: h (BAF) = 0 for some Fe E;} where h stands for
X -
the Haar measure on X, Now let o€ X= Q, say a = (1,1,1,...).

lLet A = .{xe Xelxm = % whsre X denctes the Otn coordi-

¢
nate of %, Then A + .ix. Xy l}- :.AC.V Now let
e
C= JBUB+«t B aBorel subset of A{ , Then C is a

countably generated sub=c=algebra of B and the atoms of C
are of the type %ix, X a}- y X6 A, Since o £ @, x and
X+ o are sevarated in p for VCLV X. 1hus C v D scparates

pcints,., But every elemcnt of C v D dlffe“s from a set in c

by a set of Haar measure %gro, Thus the set A c¢an never
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bclong to C V D, Now let for all n,

) = & 3
_ 0y = Qe Ten gV I,
is countably generated (since ¢, and D are countably gene-

rated) and . separates points (since D C Qn) for every n,

Hence for each n, Ch, VD =3B ECV 2,

Remerk 5,1.,5:  Instead of sequences of c-algebras, if we consi-

der collections {gt, & 2 O} : {gt, t 2 0}

of o-algebras then it is easy To check that prepesitions analo-

gous to 5,1,1, 5,1.2 and 5,1,3 hold in this case.

8542 Crossed c-algebras

Let (X, & P) be a probability space and let 4, be a
sub=ocwalgebra cf L. In the theory of non—liﬁear'prediction one
- seeks, as a firs§ step, COnéitidhs on él "under which there is
an indepencdent complement ﬁ . of él' We have treated exfen—
sively-in‘chapter 2 the problem of existence of independeﬁt
eomplements; ‘The example given under remark 4,3.,7; together

-

with theorem 3,1.6, shows the followings

Given a probability space (X, 4, P) and independent

o-algebras A, and Ao such that 4. V A, =4 a.s, [P], it

[

is not necessarily true that (X, 4, P) can be identified with

=1
through a bimeasurable, Measure~-preserving point map T such

a product space (Xl x X1 By x Bor P X Pg) f4S . [Pl X ng
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ey

thet T°% (B, x %) = &, and T

2 =1

b
b4
11ty

N ¥
2

.2)

In this seetion we consider atomic o=-algebras Al and
& in the special casec whers (X, £, V Ly) can be igentified
as a product of twe spaces and by 8nd L, as g-algebras of

coordinate wvariablies,

By an agutomorphism of a o-algebra [ of subsets of a

set X we mean = l-1 wmapping of L onte £ which preserves

countabhle unions and complements, Let /4. and 52 be sub-

c-algebras of L, We say that 4, 1s isomorphic to 45 mudulo

=1
4o In & if there is an automerphism T of A4 such that

i . BE e T
TL, = &y and Tig = 4y,

. ' . : o . s 1 e A B . .
If é is isomcrphic to Ly moaalo_ bg In Lg v Lo
= T }’_ (=31 i ! F t—‘ = { i - [ - frd T i
under T then L)V 4y = TL. V TL, T(L V L) &y Vb o

Suppose él and Lo are atomic cezlgebras, Folliowing Rohlin

we say that L and L, are crossecd if =n atom of ﬂl and an
tom of 4L alweys have a nonempty intersecetion , It is ecesy

to see, if él and §2 are crossed, that
. . = "J
3 ’ H [ = §X B
Wl B0, SRR

ii) 5 1s atomic and its atoms are obtained by

teking intersecticns of atoms of 41 with atoms

of 4L~y ang
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iii) Consider fhe‘ﬁap if(x) = (Al(x); Lg(xS)' where
) Ai(x) is-thé‘ L ;-atom containiﬁg x {1 =1,2),
Let for 1 =1,2 (X;. B;) denote the quotient
space;of V(X, %) ‘with respect,tb the partitiun
of+ X by fs-atoms. Then f is an iscmorphism
from (X, é) onto (Xl x Xg1 gl
and 70 (%) x B

X ?2) such that
=t (8, x X,) = &

l,'

Proposition 5.2,1:  Let Ly ‘and Ly De crossed o-algebras of

subsets of a set X, Let Vél be isomorphic to gi Rodulo

—

bo =
4) Ly is atomic,

ii) éi and' §2 are crossed, and
1ii) there is an autémorﬁhism T of 17V i, such

that T Ly = 47 and T is identity on 4.

=1

Proof: 1) Since L, 1is isomorphic to LY anad L, 1is atomic,

H s, k
él is ztomic .
ii) Let “T; be an automorphism of Ly V &Ly such that
== “ . al — i ' _‘"c‘ al .‘
Ty ﬁl = &y ang T, &g = Lo L8t £, 7 be_atg,mu of 4y and
32 respectively, Then"T;l{ “and ;mgln are atoms of él
and ég‘ respectively ané since él anc ég are'crossed

-

1ty o "ln #£g, Hence rom =T (TThrn g 44,

o
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111) Fix an atom f of 4, and let B =frfat o an-

atcm of Al:} + DBNow any atom of A V &y 1s the intersection
of an atom ¢, of A

the atom of A} such that- a0 g

and an atom o of §2° Let ai be

H

a{fzy and define

T(alﬂ a2)= aiflzgs It 1s easy to check that Tag = o, and

Tag = ajs Thus T 1is identity on 4,., Since 4 and

=2 =]! é

1
1
ﬁl v ég. induce same o-zlgebrz ci ¥ we gee that Tﬁl = ‘i,

e

o .
Finally if 318 él and _A2€ %2 then T(Alﬂ.Ag) = TA IITAQ
from which it follows that T is an automorphism. of

4, V 4.

Froposition 0.2,2: Let 4; and £, be crossed c-algebras

and let v, ¢ be atoms of él v g?

atoms of 4L,. Then there exists an

which belong to distinct

isomorphic to 44

t
N

=) |
moduio 4o 1n él v ég such that p and ¢ belong to the

same atom of 4!

Proof: Let = and ¢ be atoms of él

respectively, Define A' as follows: its stoms are same ag

containing p and q

those of ﬁi except that the atom =% is replaced by

(T q) - (n2%) ana 9 is replaced by (9 - q) U (nn )

where #n is the atom of ég which interscets ¢ in ke
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The elements cf é‘l are those sets in by V Lo which are
unions of atoms described above, 8ince v, ¢ belong to dis-

tinet atoms' of Ag""we see that

pr € (U Q) - (namn

P qrﬁ( (Q—Q) U(Tiﬂ%:),

Thus p and q belong to the same atom of étl—' Finally the

automorphism
{ = it x#q or nar
Tz = nam if X = q
sets up an isomorphism of ‘E*l onto L' modulo _1&_2 e
- =1 =
I By [
ig V £
:'_3__33 “Lpplication to Product spaces = . . .

Now let 4Ly fLq¢ Lo eee De point separating c-algebras

SUbSEtS of Xo' Xll ng e i Te'sp'ectively. et

£ =X, 2% XXg X sour b= by X Ay X &gy X ouy o We denote
0 1 @ o PRk Wl

by ik also the o-algebra

XO pd Xl Eoaay BERLL X {'—,‘kx}‘lﬁl FLE 2 ré

oy b |
Let Dy =Ly Vi T oees i

™ =

von
—ad .

et 4
lratt

VoL,V
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| . . TR e :
Then gn_V D, &. Let ﬁk. be isomorvhic to Ly modulo
A - i PR ’:S.l 1 1 .\.' m
£k+l in gk ang write Eﬂ “y il femest I ¥ gn—l . <Lhen
. o0 o
b =C_ VD =0 VD, The proposition that ¥V ¢T_= v ¢
= =0 =N =n  zn . n=o ** np=o =0

is not true in general sg shown by the following exampls,.

A

Example_§i§.l,= Let for every n 2 0, Xn = {O, l}- and

én = ‘the discrete o-algebra on .{G, l} + DNow taks 1p, qeX

which belong tc distinct atoms of Diow™ = n%o Qn (see example
5,1.4) ., 8Since D, :) Qm, atoms of ;%. are contained in atoms

Zde

of D _ and so p, ¢ belong to déistinect atoms of D = for

each n, Let for every n, m, and Qn be the atoms of

H

n

containing p and q respectively, Then m, and ¢ = ars

subsets of distinct atoms of 2n+l‘ Hence, by proposition

5,242y for every n there exists a o-algebra Ah isomerphic

, Como i eh tha : ¢ . ng
to ﬁn dulo £n+l in En suneh that m and 9n belong
te the same atom cf éh " Having thug defined Ah for every
e " ik T oo 3
n, we see that p -and g are not separated in v st
nEe | -

1 - i g (s ol
by 5,1.1(ii) vhereas they are separated in V 4 , Hence

n=oQ
o3 [e=) (2] o0
V 9' = vV h;f-l ié V __(::,n = V Cn 1]
n=¢ - n-=g v n=op ° n=o -

In case (Ki‘ éi) are complehte separabie metric spaces

with their Borsl o-algebras, we have the following
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Froposition 5,3,2:

st i s 4

=59

oQ (e ] C o0
W et & C! <= Dm ¥ oet.,
n=o =% n=g I : S n=g =%

B Qrwy Co.
=° T pze =B
To prove '<== part ' we note that for every n, since
¢!V D = Ly C* VvV D Séﬁarates peoints, Hence by 5,1.3
=1 =1 = =n =n i
(i), V Ch V D_ separates points, If in addition
n=o0 ~ - oy
o0 =) 3 1
v C v c then. ¥V ¢'. separates points,  Since
S n=o = n=o =1
Y .Ch is countably generated,by'Elackwell—Mackey theorem,
1i=Q =
V: . Cl = & = s T %
n=o 2 i n=p =0
Though V [EB.= V o is not true in general one
=0 Tn=0 : '
o) -
may susbpect that v C-VD_ =,V ' V D , Here we
' n=zpo = = n—o -8 = b

give an example Yo show that this also need not be true. Ve

shall make use of example 5,1.4,

Exarple 5,3,3:

Let Xk = _{0, l} N ‘;f = the disgrete o-algebra on

X, ( k2 0}, Denote also by iy the c-algebra

{
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=] 0 0=

XO X}s.lX L A, XXk-lXékXXK‘PlX s E | 7

Let D =Xy X ave XXy Fly X Lyg Xowne s
Let X=X0 X}:lx PR} ]-

_ . = ) :
by = Xp XXy T oeee XXy X {0} X {1} = g moee

i’lcE .—.‘XO XX X aes XK 4 X {1} X {C} x }ilﬁg‘x NI
A Lefine f-’_*i; = { v Ky ‘F‘k.‘ X - ‘f‘k} where Ly = Ly U f;Kg and
fk by | |
£, 000 Xy ever T O Ly Kpyotes )

= (Xog Xl"'.”‘ Xk"l' l| l( 3Ck+27.e- )

fk(XO‘ Xl!...t Xk—l' l! OE Xk_._z' L 0 ] )

= (XOI Xl!oool Xk;l: lt. Og Xk+2|ovo )

fk(XO' Xl!-ou[ Xk_l! l! 11 Xk+2| ' )

(Xor Zyveeear Xy g1 0y 11 Xpeoress )

fk(XO' S RARRS et 0, 0,|-xm21.6- )

= (Xoi Kyreeer Zp g0 0, O, Xk+2]op--g)" _
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It is easily checcked that £

= 1 - i ) N .
between ék and i moculo Ek+l in Sk « ©lncs
B ©Q
by ¥ @ = lgr the o-zlgebra V A; v Which is the same as
n=zo =
V ¢l 1s contained in C where: ¢ and ( are as in
n=o - - -
_ o . I oF
exgmple 5,1,4, Thus Vv ¢!} Vv D C ¢ v D #
n=6 =N = |0 = = o
Borel o-algebrz on X = v C V I .It is worth noting
n=o =n = oo N

that the collection ?'ffr‘l y N2 O} is independent ang Ar‘l
L .

and j‘n- are both independent complements of I . in D
= : ‘ ' —=n+l =N

with respect to Haar measure, .

P X =0 X gsets up an isowmorphism
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CHAPTER 6

HOPF'S THEOREM OK IKVARIANT MEASURES
FCR 4 GROUP OF TRANSFCRMATIGLS

640 Introduction

Let (X, 4, P) be a probability space and let ¢ =

g} '

i

be a group of measurable and nonsingular tranéférﬁations
defined on (X, A P). The problem of existence of finite
invariant measures for G has been studied fer a long t1me
and 1s of interest in ergodic theory. Hopf [13] gave a neces-
sary and sufficient condition for the existence of a finite
invariant measure y on 4 equivalent to P for the case

when G 1s a cyclic group,

Tarski {41] studied the existencs and vroperties of
mass funetions on abstract semigroups and used his results to
give a necessary and sufficient condition for the existence of
a finitely additive measure X on the class of all subsgets of

a metric space X guch that

i) A(B) = 1 for a specified subset E of X, and

i

ii) a(a) AMB) if 4 and B are isometrically

isomorphic subsets of X,

ERaEal
« st
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Luring a seminar on Terski's paper Frofessor Ashok Maifra
raised the question wheth;r.ngf's theorem on invariant measures
follows from the general results of Tarski. We show in this
chapter that the answer is if the affirmstive, In fact we
prove using Terski's results thet condition () (see section
6.2), the analogue of Hopf's condition when G is a general
group of transformetions, is necessary and suflficient for the
exlstence of a finite, equivelient measure invariont under every
gea, ‘

The only alternative proof kxnown (see Hajian andllto {101)
of Hopf's theorem for 2 group of transformations is through the

A . &
equivalence of condition (H) ané the condition of nonexistence
of weakly wendering sets of positive mesasure introdﬁced-by
HaJian and Kakuﬁéni. While Hajisn and Ito use functiocnal
analytic methods in their proof we use¢ Tarski's results. In
section 6,1 we give some definitions and notation. In section
6,2 werconsider condition (H) and cderive some conéequences.
In seétion 6,3 we praesent %he results of Tarski andé in

section 6,4 we Prove our main theorem,
i

6.1 _Dofinitions anc notation
Let (X, 4, P) be & probability space. 4 finitely

adGitive measure u on A 1is said te be equivalent to P if
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@ and P have the same sects of measure zero, A measurable
map g of X into itself is called nonsinguler if for every

ics, P(4) >0 implies P(g™t4) > o.

By = group of measursble and nonsingular transformations
G = {g} defined on (X, é‘ P) we mean that each gBG is_a
measurable and nensingular troensformation defined on (X, é} P)
ané such thet the multiplication in G is defined as follows:
ifr g, g'eG thén gegt{x) = glg'(x)) for every x in X,
We note that in this case every ge€G 1s a 1-1 map af X onto
itself such that both g &nd g-l are measurable and nonsin-

gular transformstions defined on (Xy A Pl

Let G =-{g}- be a group of measurable and nonsingulear
transfcrmations defined on (X, Ay P). A measure {4 on ﬁ
is s»ié to be invariant under the group G if for every g€G
ang for every Eeé we have u(gB) = u(B)., 4 set Bek 1is
called an almost invarient set if P(gE - B) =0 for every

g6G, It is easy to check that the collection

~
A* = {Eegz E is almost invaria_nt)

is a sub-ow=algebra of 4 and that given any. LEA the:e is a
minimal almost invariant sct By containing A in the sense
thet 1f Ag€A* and Ay D & then P(4)) < P(4,). In what

follows if L4E4 then A% will denote a minimal almost
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inverisnt set containing A4, If 4, Be@. ané 4 (C B (T &

then it is easy to see that L4L* = B*,

If C 1is a o-zlgebra of subsets of a set 2 ".and if
LeC then we use the notation 4L = C4D, &£ = T L, and
: [s] . . A J :1 J .
L= T ﬁj to mean respectively that .4 is the union.of .
J=1

disjoint C - measurable sets € and Dy L 1s the union of

andg 4 ig the

Hie!

ynicn cf pairwise disjoint scts {fj: j = 1 2:..{} (_ G.

6,2 Equivalence of measurable sets

snd econdition (H)

-~

Twe L= measurable sets B and F  are said to be

equivalent if E = 3 Bem & = :Fj and there is a sequence

j=1 Y i

I ™8

, : 1 7
{gi} C G such that Fy = g;B; for every Ji and in this
case we say thet E is equivalent to F under‘{gi} T
B ig called bounded if it is not equivalent to a measure
thecretically proper subset of itself, that is, E 1is equiva-~
lent tc F snd F ( E ﬁimplies P(E - Fj =0, The group &

is bounded if X 1is bounded, We now consider the following,

CONDITION (H): G IS BOUNDED ,

This condition, introduceé by Cotlar anéd Ricabarra [5],

reduces to Hopf's cendition when G is a cyclic group.
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Lemma 6,2,1: If (H) holds then every 44 is bounded,

Lemma 6,2,.2: If E,‘Feé are equivalent then there is a 1-1,

bimeasurable map h from E onto ®  such that for every

E ¢ &, By C & B and . h(E,) sare equivalent,

£ By, F= F. 2and there is a sequence
j=1 j=1

{gi} C ¢ such that gjB; = Fj.

il

Proof. E

n™8

The function h 'on B _
defined by h = gj
required properﬁies.

on Ej. d' TAn B et éatisfies the

lemms 6,2,3: let &, FEA be equivalent under {:gj},. Then
for every Cei and for every countsble subgroup G' of G

such that .{gj} C ', BO(T g€) 1is equivalent to
E . G 1 :

70 (U g¢) and B - (U gC) is eguivalent to F - (U gC).
Gt GI Gt

Proof: It is easy %o see that

‘n(2A(U g¢)) = Fo(U gl end
. G . ar

F - (1" gC) where
Gl

h(E - (11 gC))
G.\
h is given by lemma 6,2,2,

The following lemma is a generalisation of lemma 6 of

fol. - ” i
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7

Lemma 6.0.4: TLet A4 and let A* be fixed. Then there
exist C, De&, O*, D*¢A* such that .

i) A =C + Dy, A&* = C* + D*
41) © is equivalent to a subset of C* - C
and  4ii) D* - D 1is equivalent to a subset of D.

-

gggf: Let B = &% - £ and let
@y = sup {P(g -1 (g2 0B)) geG} Choose AleA and 816G
such that 4 C 4, By = g4 C B and P(ul) 2 al/z Let
n be a positive integers “Suppose pairwise disjoint sets
| {Al A.Z,...,An} - 4 pairwise disjoint sets- g
| {B]_: Bas‘..., Bn’] C A and {gl: Boresr1 8p & C_frr_‘havef
been. chosen such that for 1<k < n, | .
T N el
coay Ca- jzl Aiv By = gdy T B~ jzl By
éné: 'P(Aﬁ) > ock/Z' where

4y = Sup {P(g fgla - Z Ay Yo (B - 3z I B Yh: ge%.
B el Y s [JEL

Let Cnel = sup {P(g l[ (A - _21 AJ)Q (B-_El B.)D): ge G}

bl

and choose A&, ,:6 & 8,6 G such that
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ﬁn+1CA"‘ 2 AJ'B 1:gn¥lAn+lCB' -ZB

=1 | ' =5 T i=1 Y.
Let A = 05‘0 A and B = ¥ B , Then A is
o) =l B | o) n=1 n o)

equivalent to B_ under {gn} 2 If geG then

P(g_l[g(fa-— A) ﬂ(B- BO)]) < ocn/2 < ctl/2n for every n and

so P(gjl{g(A--‘Ao).I_l(B-lBO)]) = 0 for every g€G. Smce every

geG is nonsingular P(g(".A - A Yya(B - B )) = 0 for eve;'y geG,

Let G' . be the countable subgroup generated by -{g g N l}.
and let (4 - A )* be fixed, It follows that |

(4 v B,) & (gl g(& - A)*)e L¥ and-is"é' minimal almost invériant

set ucontaining (& - AO) . et D =410 (g; g(ﬁx - "Ao)sky

=(4-4) U (ﬁoﬂ(g‘ gls - 4 ;)*)). Since (4 - &) C p, o

D =D U (Bbﬂ(U g(A - A))*)) = (L U B )ﬂ (U g(ﬁ - h)*)e iy

By lemma 6,2.3, B 0 (U glo = & )Y and Aofl (g' glh = £)%)
are equivalent and so ID* - D 1is equivalent to a subset of D,

Now let C = & - (‘gl gL -fhg,o)*):. - Again by lemma 6,2,3, G

‘is equivalent to B, - (g' g(L - AO)*) . Let (% = p% - D

=CU (B, - (U #(&-4)%) T (B-B) tocomplete the proof .
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PropositionWG 2,5:  Let AGA. and let A4* ©be fixed, Then

and a&* admit decomp0s1tlons of the form

$0L#"F D
- k0

b*

!

where
i 2y L
‘l) ?(Dfl) e
ii) For each x = 0,.1, 2, ...

‘D¥ - contains 2k pairwise disjoint measurable sets

o
% . ok P : g™
 Dk,,4.! Dk each egulvglent tg Dk and Ek“— Dﬁ - Jil Dk
" {’s" equivalent to a subset of T ,Di
J=1

"and  iii) DX contains infinitely many pairwise disjoint

sets each equlvalent to e 5

Bgogf: . First we shall show by inductive application of

lemma 6,2,4 thet there is a sequence Dy rl,..., Dictoss

of subsets of 4L and a scquence of subsets D Dl""'Dk""

of 4* satisfying (ii) of the propositicn and

iv) for every k = O, 1, 24,0,

k+1

k g
, 1 2
A* - :l EO*D’E k+1 +. . | Fk“'l "-'Hk.{,l I

1.

L
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i L

where Fo is equivalent to F gr e T DG Iw< i €2

k+1
k+l k+l jzo 9

We shall 'alsc denots Fl

k+1 by F

k+l*

et Fé = Le. Lpply lemma 6,2,4 to L and A*  and let

2

L
D,=D =D, P = Fi = Cy F; =2 subset of C* = C equivalet

te C and H = C* - (FI + F5), Thus (1i) and (iv) hold when

k¥ = U, Suppose for %k = n (a nonnegative integer), DotTqvser Dy

D¥ + ¥ D¥ have been constructed such that DRC: i for all

l'?rﬂl

iy D f Dj =@ -= L§£1D§ if ¥ £ 3 end (ii) and (iv) held
n+l

7

n
v LE = [*- T DF,
1 n+l ‘41 ijJ

for every 0 £ k £ n, let Ln+l =

LA

J
Clsariy Lﬁ+l = FE+1. Proceeding as in the proof of liemma €,2.4

we have /- measurable sets if,. C Lnapr Boap & Bag = fna

and n+¢ m 2 i}- C & such that Lpyp is equivalent to

n+l ; - et s
B4y under <{gH1}> . Further Dl . = (Ln+l uﬁ+l) is such

) ) B Let FJ

n+l

that for evefy 'g€G1 P{gD 1+l " (An+1‘ n+l

be equivalent to F under the countable set G%+l (@ for

n+l
g K 2n+l. Let Gy be a countabie subgroup of G con-
oh+l .
taiming (U @ ¢ 1 ang let Di*. be fixed. Let
a. illg J—l l’l+l l
* i _ - y :
Dhv (Lnél U n+1)ﬂ(U gI‘+l By 6'2'&‘ D1 ey IS

Y+,
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equivalent to Dn+1ﬂ Bn*l and Ln+1 D%,y is equivalent to
Bhel - Dy e - Let, for 1 < i < ot N
pd  =puen M . =rFb 0 (U gD%), D .. =Dl , and let
n+l T Tn+l n+l ~ ‘n+l g Snsl’t ol n+l' T
n+l
' n+,
D?i-l-l = Dlll'_!_*l Since { éﬂ. 1< Jl< 2 l} ‘are all equivalent
. + . B |
to F,,; and since Gy, _Ul 6l it follows by lerima
6,2,3 that Dj 1 <3 oft’ 1}'1re all equlvalent to
72y nert S 8 Dn+1°
2n+1
Let ,En+l D’*‘_‘_l - ‘El DJ+1. By constructlon, En+1 D e Ln+l
d=4d .
- ,ﬁﬂ —_— . |
D Bn, Which is equivalent to Dn+lﬁ.gn+l (: n+lﬂ_An+l
2n+1 :
= D%+1‘ Thus condition (ii) of the proposition holds for
j=1 , P g Sl e &
k = n+l,

J - I*r J". JW i* n+l1
Let Fy,o = (‘n+i Dn;l) o Fy 4 Fn+l D‘+l, 1<j<®2

) N e‘ L . . : Fl J B V 4 ;s i i B . n-E-l .
and let Fn+2 = n+o [ Clearly Fn+2 = Fn+l - Dn+1 = Ia.".?- Dj .
j=o
ofi+1 _
Lgain by lemma 6,2.3, since n+l:) U GJ+1 it follows that
| i=l

—

{?ﬂ+2' 1<3J K 2n+1}‘ are all GQ%iValent to Fn+2' ‘Since

ghtl ; :
ek Fpag = Ha1 = Dify 1S squivalent to By, - DY we can

, 21’1*2 s s Il+1+.

write. using 6.2.2, Bn+l Dﬁﬁl Fn+2 v where Fn+2 J

332“*3;, 1
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n+1

is equivalent to F%+l for 1< 3 < 2, Let
n+l 2n+2 3
Hojo = &% .jing jzl En+2 Thug_(lv) holds for k = n+l,

Hence, by induetion, there is a sequence {Dk}. of subsets of

A and a sequence {rii} of subsets of A* satisfying (ii)

and (iv).
A ‘Lef G, be a countable subgroup of & éontainingl‘w-
. 2k+1 ] ’
U U Gy where for every k 20, Fj, -is equivalent to
k=0 j=1
under Gﬂ+ (1< <2, Let ax=vgls Di and let
Al )
Go k2o :
D =A-Ct,D.=4-(D_+ & D)
o 1 "l k>0 D:k
DY, = A% - Ck, DXy = &% - (Df + I Df),
. % :l{)O |
Since I Dfg &*, C% - £ Df = DX, is such tiat P(DE;)
k2o © . F kzo = ——_ '
Now let
= FE G DE =Py = 05 K = 142y ...
| 1 ko gk e e A
For each Kk > Ly C: k (LI C Fk and F is equivalent
to F§ under elements from G « Hence by 6,2,3,
n ¥ k

D, = F. - C* is equlvaant to I~ cg = D_ for every k.

[=- k o

W

Since by construction .{F}' k 2> il is a palrw1se a13301nt
)-.. _,


http://www.cvisiontech.com

-jl3-

i
family we have Do 4 D. =@ if m#£n and the proposition

is proved,
Llet Y = Nx X where N = {l, 2,...} and let
={U {n} < ‘-_%: 2 %Cé for each : 'neN},.de set!s A, BEB
n=1 ' - e - =
are called.equlvalent IFT fe= El nj} ps Aj, B : El{_mj} X Bj

and Aj is equivalent to Bj for all j (the na‘s need not

be distinet for different Jj's and the mj's need not be

distinet for differen't j's).

Lgmmma 6.2 ,6:- If A, Be B are equ:.valcnt then there is a
-1, bimeasurable map h from A onto. B such that for

every Al€_1§, & C & 4, and h (4;) are equivalent,

Proof: A = 2 nJ’}XA., B= % mj}“'x Bj and A, is

i=1 J i=l 2
equivalent’ to Bj‘ for svery Jj. Let, for each . Jjy hj be the
map from: A, onto By given by 6.2,2. Let h-on & be

defined by h(njg x) (mj, .hj(_x)) on {nj} x A jijor every

j =142, 4e..o Then h has the r\equired properties,

Lemmp 6.2.7: Let A B CPB be such that A0B =g =4A0C,
Suppose A+B is eun.Va’len* a subset D of 4+C, "Then B

admits a de compos ition
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B=3B +*§2 where

iy By 1is equivalent to a subset 4y of 2 such that
A contains infinitely many pairwise disjoint sets each equi-

valent to Al,.and

ii) B, 1is equivalent to a subset of ¢,

Proof: ILet h be the map from A+B onto D given by -

lemma.6.2.?. Let

i .. L
Dl = hi(B) 0 C | Fl = h (Dl)
= h2(B - PV C F i n=2(p ) ~
Eb . 1 o 7 D
. . . L] . ) ];:.-i . "] L) - . * - - -
B =BB- ZF)AC - B, = 5
=1 Al = R

* »* . - . - * L] L] - L ] v L 3 . - 15 »

Sirce h is 1-1 from 4+B onto D it is easy to verify
that Dl' D2"'* is a sequence of pairwise disjoint subsets
of € and that Fl' Fzgu.. is a seguence of;pairwise disjoint

subsets of B, Further, by lemma €.,2.6, Fk 1s equivalent

(&=}

k . = ) "= Ba
to h (Fk) =Dy for every_ k = 12¢se. o« Let B1 =B jil?j
and B, = ¥ F.. Clearly B, is equivalent to ¥ D, (C C.
2 .]::I_J o ! J:.:l'}
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By mnstruction, h(B;) C & for all k21, B and h(B)
are disjoint, Since h is 1-1, .{él, h(Bq), h?(Bli} are
pairwise disjoint, Siwmilar argument shows that 4{hk(Bl), kﬁ,i}
is a pairwise disjoint sequence of subsets of &4, By lemma

6.2,.6, hk(Bl) is equivzlent to h(Bl) = 4 for every k21,

Lemmg 6,2 ,8: (H) holds if and only if for every sequence
{J%;} of érmeasurable; pairwise disjoint, mutuelly equivalent
"sets 'P(An) =0 for all n, -

Proof: 'if part', Suppose (H) does not hold., Let /G4
with P(L) < 1. be 'such.thst X is equivalenﬁ‘to ‘A, Let h
{from X onto A be the méﬁ given by 6.2.2., Let for every

n=1,2,... A =h(X-4), Since every ggG 1is nonsingular,

-

from the properties of h 1t follows that .{An} C A isa
sequence of pairwise disjoint mutually equivalent sets such

‘that P(An) >0 for all n,

'only if' part, Suppose there is a sequence {An} of
L-measursble, pairwise disjoint, mutually equivelent sets
such that P(én) >0 for some n, Since every g€G 1is non-

singular, it follows that P(An) >0 for every n, Hence

(=]
z An is equivalent tc the measure theoretically yrorper
n=1 ' : '

z
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o oo .
subset = A and‘gso - T A is not bounded., By 6.2.1,'(H)
1’1"‘2 .‘[’}.:'f]:rl

does not hold.

Proposition 6,2,9: Let (H) hold, Then for every B5g4

k+
with P(E) > ¢ an¢ for every positive 1nteger Ky Z

is not equivalent to any subset of % } % B,

Proof: By 6.2.1, the-PTOpOsitidn is true for ‘k = 1,
Suppose the propesition is true for k =n 2'1; Let, if pos-

) n+2
sible, Fe 4 with P(F) >0 be such that % i} x F
= =

7 n+l
is equivalent to a subset of ) g;j}f x F, Take
=1 '

: { } n+2 _ n+1
A=21z B, B= 3% jrx B, €= Z Jyx F and apply.
: , j=2{ } Jj=2 }
Clemma 6,2,7, We get B = B+ 82 where B2 is equlvalent to

& subset Co of € and there .exists a seguence 1|A219-e
of pairwise disjoint measurable subsets of F such thot B1
is equivalent to {;1i} X Am lfor every m, By lemms 6.2.8,
P(Am) = 0 for all m, 8Since B, is equivalent to Csi we

have By =l i }x Byir  Co 2121 m}x Cp; and By

ig equivalent to 02 under {g w2 %}'C: G. Since Bl is

equivalent to 1%x A we have B, = Z nt X B, '
ent to {1} 4y = B e
il} xE = iz_.l 1} x Ay; and By, is equivalent to

e s {g;ni| m_}_l} C 6. Let 6, D El{{gf’"ju{g }} J
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be a countable subgroup of G and let N =Ug Al Since
Go

every 2€ & is nonsingular and since
P(4;) =0 we have P(N) =0, Legts Bl s F-,NG-J}[ '« Then

n+g ' n+2
P(E) > 0, DNow L j} *xE =B~ j},x N, Further, since

| Bli ig eqpivalent to A4 under: {g;ni} and S?nce

. 1 c
Gy U g‘"} we have B % jEx I, Therefore
oi=1 { a 1= i =2 } s s L

n+2 n+2 o0

o3 j}xE:B—E :vx N= T §$n,%x (B,.-N), But
j=2 AL i=1 l}. =L g

(BQi- N) is equiva'*lent to (C i N) for every £ by 6,223,

since GO:) Ul gi—_} or Z.‘ n}x (By, - _') is equiva-

- ‘ n+l
lent to __2;1 mi} x (Cgy, = K) =Cy - _22 J} x N

. n+l n+1 n+l :
. © , }x N = 'E {j}x E, This means® that 2 J}x B

is equivalent to =z subset of Z {J} x B where Ee 4 with

P(E) > 0 contradicting our 1nauctlon assunption, Hence, by

indwnetion, the propositicn is true,

6,3 Mass functions on semigroups

Iet (8, +) be a commtative gsemigroubd, The proofs of
propesitions stated in this section are elementary &nd so

after cach proposition we only hint at the preceding definition

L]
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and propositions from which it follows,

£
L

@y Br 31 E1 My w.. denote elements of .S, k, my n

dencte positive integérsq let e be g fixed element of S.

Definition 6,3.1: o X8 =) either g = or there is a
. % £ B8 <= B

in 8 such that g + ¢

= B-, ‘
Definition 6.3 .2:
oy tao * .. mk3= %y if x =1

0 ¥ o+ oty =

(ag + ¢us @)t @, if Kk > 1
Definition 6,3,33 ka =« if k = 1,

ke = (k~1)a + a if %k > 1.,.
Genéral commitativity and associativity of addition
oy * oe.. * oy and associétivity and distributivity of multi-
plication ka can be éasily verified,
Defipition 6.3,4; BE(e) = {@es i for some k21 o kej%.

Proposition 6,3.,5: ec E(e) (6,3,3, 6,5,4).

Proposition 6,3,6: If o+ 3 = g+3 and aeB(e) then there

is @ k such thaet a+ ke = g+ ke, If a+d< B+3 and
3¢ B(e) then therec is a k- such that ¢ + ke { B+ ke,

(643%11 64343, 6.344)
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Definition 6.3,7: a 'is called normal if there does not exist

any k such that (k + 1)a £ ka.

Proposition 6,3,8: if « is normal then
ke £ mo => k{m and
ke = mg => k =m (64341 63,3, 6,3.7) -

[ d

Dgfinition 6,3,9: A function f from a subset J of § to

{0, ©) 1is called é’masé"fuﬁcﬁionton' J  in case
i) ee J C EB{e)
11) fle). =1 and. - | :
181) 4f Eqs geeess Lyt Myeeses Ny are elements of

L]

J such that
X PO
51’*i€8-+"" T Eae L ﬂlf ?.. ol then

.f(z-l) + £(zg) + ceu £(g,)
< Eln) + £lng) v wow + Eny) .

In what follewé-in this section f: is a mass function on J.

-~

Prbposition 8.3410:. If oy Ggrever oper ap* mv. ooy ere
all imn 7 tChen .

+

'{f“(.dll'l'" s T ock) = f(ocl) Sl T f(ak) ('6,0509)-'

Proposition 6,3,11: If ' a, kaéJ then f(ka) = kf(a)

(6.3,9)
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_Definitionrﬁ.S.lZ: Lét aE:E(e).r'Then
fi(a) E sup«{z: z = (1/n){f(gl)+...+ f(zk)
L tlmy) = e - 23 Y
where. 51""' rk' NyresetNy eJ and rl+...+§k,§, Nyte. ot N+ Do
J(oc) = irf tg:‘ (l/n)tf(rl)+...+ £(gy)
- £(n) - .o - £l )J}
where Eireeetfy: ﬁl""'. 1,6 J and
Nt eee F My RS EF vee + By

Proposition 6.3.13: Let «€E(e), Thén

0 < t(a) < f2a) . (64344, B43.9, 6.5.12)

Proposition 6,3.,14: Let e E(e), Let f{a) Dbe chosen such

that fJ(a) fla) € fg(a). - Then f is a mass functicn on

Jufal . (6436, 6,3.,9, 6,3,12, 6,3,13)

i

Propqsitién 6.3.153 Let* Jd = {e}'. Then h is a mass func-
tion on J if and only if e is normal and h(e) = 1,
(B,3,7y 6434 8,' 03,9)

Proposition €,3,16: Let ot Jl“"' Joees Dea (flnlte or)

 transfinite sequence of subsets of 8 sucH that ec I, C Jg
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for =g 9 <M where X 1is a given ordinzl number > O, Then

h is a mass funetion cm U JTlr if and only if h is a mass
' : <R :

function on J_ for asvery = < X, (64349)

Theorem 6,3,17: Let J C V (C B(e), Then there is a mass
functicn h on V such that h=f on J,
The above important extension thecrem follows from 6,3,14, ;,,

6.3,15, the well crderinz theorem and 6.3.16,

Theorem 6.3,18 (Fundamentsl theorem of Tarski):
There is a mass function on E(e) - if and only if*g. Is

normal, ol 7 _ _ : (6.5.15, 6.e3 417)

6,4 Honf' tutb"ﬂm on unvhrlant meaqur
for a gfoup of transformaticns

Al P el e . "B T8 B gyl . ] T TR 1VTY A 7S 1 o TR e PRSP (AR £ e

Let 8 = {[A].: ie @"& where [&] = {ﬁe E : A& is equiva-
{B] = {4 U B]

lent tc B}. For {al, iBle 8 define {4&] +{Bl
where AC tAJ, BeiB] and 4A0B = ¢, Then the ope?ation + ig

well defined and (8, +) is =& commﬁfative gsemigroup, (It is for
this reasohhwe constructed Y as + mey not be well defined if

we consider S ={[A] 1 A6 é}).
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1

Let 3, 2{0%8_8: o, [{l} x &l, Aeﬂ) We assume

throughout Tnis section Toat  (B) wolds,.

In view of derinition 6,347 we cusn restate proposition
C.,2.,9 as

Proposition 6.4.,1: Let o,€ S be such that P(4) > 0. Then

oy is normal.

L 3

“Les 8% ={°CA e8 Aef*} g | elIE oy aBE:S* and Uiﬁ = og

it follows that P(&) = P(B), If au€ 6%, 1< J<n and

+ ... +oQ -

;A.ﬂﬁ. :gf for i #j then An=%‘l ...4!;11.

J

cﬁAl
Nowr deflne £* on S* by fﬂ(aﬁ) = P(4), a,€ 8%, F* is

well defined and if Ap 1 eee 1 ocAnE: 8%, 4,0 uj | G -

s
n

then f*(aé‘il*‘.oo'}' An) jgl fﬂ:(aav)u Let CCX = e,

Proposition €,4,2: f* 1ig a mass function on S%,

11) f*(e) =1, £ 20,
- ili) Suppose @y 1 ap E5%,
" J

lLigk, 1L£Jj£Em and oy + ee. H 0y, £ 0oy % oo ¥ 0y
& A By By

~is, .Z {i}x izi is equivalent to a subset of 2 J} x B .

that
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Let G be a countable subgroup of G containing all the

elements of G involved in ‘this equivalence. Replacing Ly
by gﬁi ’ana Bj by ’g'gBj if necessary, we can aééume

bo or

that by and Bj are inveriant under Gy for every 1 and j.
Let Dys Dote..r D, Ds the partition of
k | . z
( U 4, ) U ( U B }  induced by -{ﬂi, Bj, 1<i1i<k 1£3J3 & ﬁ}-.
=1 * J= 17 ‘ )
O

Then D;8A&* and D 1s invariant under G_- for every i.

Letting ai = ap, we have positive integers Tiv Sy such that
N .

.0 es.+ I 0 —(X-v+.to+ Qpt
l l n n Al Ak

I~

Oy Feset O
Bl Bm

Slal+.;|+ Snan

R
Since I {i}-x Ai is equivalent to a subsat of 2 J},x 3. under G
- =1

and since every Dy is invariant under. G it is easy to see
that ra; < s;90, for every 1, DNow if P(Di) = 0 then

- Y - i £ T -
£¥(3;) =0 end so O = hif*(ai) <.s,8%(ay) . If P(Dy) >0

then, by 6.4,1, air is normai and S0 b& 6 o3 48

. = 7, = * I*(9.,
rd; < 8505 > vy sy =>rf (3y) < s;7*(a,).

..Thus

B B T e g
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% i
T £«

n n ' m
DR I = JI* . £
= ) ) z flf (al) L 2 Slf (al) zf (aB_).

Sk de=1 =0 J=1 J

B

Thus £* 1is a mass funcetion on S*,

By Tarski's extension theorem 6,3,17, I* admits an
extension f to the whole of E(e) as & mess function. 1In
particular f is an extension of f* as a mass function to
SO'

Propositicn €.4.3: Let ‘Aci, Then

fay) >0 <=> P(a) >0.

roof: P(A)

i
(]

= P(A*) = Q"
=2 f*(aﬁ*)A; 0

=> (o) + flagg_g) =0

Dy (6,3410)
Lo f(aﬂ) E [
Now suppose P(&) > 0, Let A* be fixed, Let
+D, 4+ & D, and
k2o

Y

fro=DE +DE s 3 D

be the decompositions of A and A& _according.to p;oposition

6.2.5, P(Eﬁl) =0 Dby 642,85 and P(D,) = C -by lemma 6,2,8,
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Therefore P(Dk} 20 for some k 2 C, Further

Di = Di + .. * Di . Ek’ Dﬁ is equivalent to le Tor a1l i
and E, 1is equivalent to a subset of o - Ek (see 6.2,5), &o
A= & k.
€@ ;s T a for all i and ap £ 2%, . We have
ot -k B 7Dy

£lopy) = £5lap) =PI 2P(D) >0, Bt

f(abﬁ) = ékf(anl i +‘f(a

» )
rs Ek

vhere f(aE )} £ 2Kr (o and so f(aD ) >0, Hence

)
K By’ %

Theorem 6,4,4 (Hoof's theorem for a group of transformations):

- There is a finite measure invariant under G and equie

valent to P if and only if ,(H) holas,

Proof: The necessity part is eagy tc verify, To prove the
suffiiciency part first we ncte that the existence of a finite
megsure eguivadient to Pv and invariant under. ¢ implies ané

is implied by the existance of a Tinite, finitely additive
beasure 4 invariant under G and equivalent to P (see [7],
theorem 3,13}, Let () hold and let £ be the mass funce
tion on So obtained at the end of proposition 6,4,2 by exten;

ding the mass finition f£* on &%, Define for every A€A,
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p(A) = g(aﬁ). Then 4 is finite, finitely additive aﬁd
‘invariant under G ByIG;é.S. Jig is equivalent to P and

the proof of the sufficiency paft is complete,

Theorem 6,4.,5: There is a finite measure invariant under G
and equivalent to P if and only if for every countable sub-

group G, of G there is a finite measure invariant under

GO and equivalent to P,

Proof: The necessity part is trivial, On the other hand it
is easy to see tnat the given condition implies that G is
bounded and hence, by theovrem 6,4,4, the sufficiency part

follows, .

Remark 6,4,6: If we can obtain g direct proof of theorem

6.4,5 then the proof of theorem 6,44 given here can be

simplified considerably,
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