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CHAPTER 1

INTRODUCTION

i.0 General

All commonly used parametric test procedures are derived under
certain restrictive assumptions regarding the form of the parent
population. These assumptions are usually made to simplify the problem
and to arrive at an elegant solution. Some assumptions usually made
are normality of the parent distribution of the basic variables and
simple randomness of the nature of sampling. Another assumption
often made - as in tests of linear hypotheses in a Gauss-Markoff model -
is homoscedasticity of the vériables. In practice; in most cases,
there is no way of knowing a priori whether all the assumptions are
valid, nor is it practicable in many situations to test on the basis
of a few sample observations, the validity of the assumptions. Hence
it is important to know to what extent a procedure is insensitive to
variations from underlying assumptions. This insensitivity of a
procedure to an assumption is called its 'robustness' [Box (1953)] with

respect to that assumption.

Obviously, a study of robustness cannot be exhaustive for the
simple reason : "assumptions can be violated in many mere ways than
they can be satisfied' [Scheffe (1959)]. Conclusions that are
derivable are of a very general nature and 'standards of rigour possible
in deducing a mathematical theory from certain assumptions can not be
maintained in deriving the consequences of departures from assumptions'

[Scheffe (1959)]. F o
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In order to study the robustness of a test procedure it is
necessary to obtain the distribution functién of related test
statistic after relaxing the assumptions. Since assumptions can be
relaxed in different directions it is often impossible to obtain an
exact expression for the distribution fumction in this relaxed
condition. Even in cases where exact expression is obtainable, it
is sometimes too complicated to be amenable to numerical computation.
Thus it secems that the only tools that are available to us in this
situation are heuristic approximations and the technique of simulation.
Both these methods have their limitations. A heuristic approximation
has the disadvantage that useful error bounds are not available in
general and the only way of judging the efficiency of an approximation
of this type is by numerical comparison with known results in specific
-cases. On the other hand, for any effective conclusion the application
of the simulation technique requires a large number of so called random
numbers, the generation and testing of which itself gives rise to many
difficulties. PBut the problem of studying robustness of the well known
statistical procedures is important, and, in the absence of any rigorous
mathematical tool for handling this problem, we have no other alternative
than to depend on heuristic approximations and simulation inspite of

their limitations.

One of the purposes of this thesis is to develop some tools for
the study of the robustness properties of a number of well known test

procedures. The test procedures studied include student's ¢ test
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for exaégzg whether the population mean has a specified value, Fisher's

t test for equality of two means, analysis of variance for linear
hypotheses and the test of independence using the sample correlation
coefficient - all based on the primary assumption of normality. A number
of heuristic approximations are obtained for the distribution functions
of these statistics, by using the first few terms of formal orthogonal
polynomial series approximations. We have attempted to assess, in some
cases, the accuracy of these approximations by numerical comparisons

either with known exact results or with results obtained by simulation.

The other problem investigated in this thesis is concerned with
the use of non-coptimum statistical procedures, which may be necessary
because of cost and other complications. For example one may choose
to 'count' instead of 'measure' and test independence of two statistical
" variables by using a contingency chi-squ;re statistic and not the
correlation coefficient even when measurements are known to be normally
distributed. In such situations, it is important to know how much
information is lost because of the use of the non-optimum procedure.
We present here also binomial test procedures for independence based

on a simple dichotomy which are likely to be convenient in certain

situations.
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1.1 A brief review of the previous related work

1.1.1 Approximations to distribution functiongusing formal series

exgansions

In order to study the property of robustness of a statistical
procedure, it is necessary to know the distribution of the relevant
statistic undér different types of departures from the basic
assumptions. When the distribution can not be obtained exactly,
one seecks an approximation. If we assume that characteristics of
a probability distribution are displayed, at least approximately,
by the first few moments of the corresponding random variable then
an attempt can be made to approximate the distribution by retaining
a finite number of terms of a formal series expansion where
coefficients or parameters of the expansion are obtained in terms

. of the moments of the distribution.

It has been observed by Cramer (1962) about the Gram-Charlier
expansion that in real life validity of this expansion from the
consideration of convergence can be justified only for a small class
of distributions. 1In fact, many of the important distributions
occurring in statistics are not included in this class. This
observation seems to be true in general, about all formal series
expansions of density functions. However, as has been pointed by
Cramer (1962) ‘'in practical applications it is in most cases of

little value to know the convergence properties of our expansion.
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What we really want to know is whether a small number of terms -
usually not more than two or three - suffice to give a good
approximation to density and distribution functions. If we know
this to be the case, it does not concern us much whether the
infinite series is convergent or divergent. And conversely, if we
know that a series is convergent, this knowledge is of little
practical value if it will be necessary to calculate a large number
of terms in order to have the series determined to a reasonable

approximation.'

Finite term series expansions have been used by Gayen (1949,
1950a, 1950b, 1951), Tiku (1963a, 1963b, 1964), Srivastava (1958,
1959), Roy and Tiku (1962), Roy and Mohammed (1964), Durbin and
Watson (1951), Khamis (1960), Roy (1965) and others including
 the author (1968b, 1968c). The approach due to Gayen and also used
by Srivastava is essentially this. They start with a Gram-Charlier
expansion for the population density function. The distribution
of a statistic is then obtained by integrating the expansion for
the approximate density over the relevant region. This is possible
when population moments are known. The approach presented in this
thesis and also that of Tiku, Roy and Tiku and Roy and Mohammed is
different in the sense that here approximations are sought directly
for the density function of the statistic. This requires the knowledge
of first few moments (or in the case of joint distributions, first

[l
few joint.moments) of the statistic. It may be pointed here that
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though the exact distribution of a statistic is difficult to obtain,
in many cases it is still possible to compute the moments of the

statistic without much difficulty.

Qur contribution in approximating distribution function is
summarised in section 1.2.1 and presented along with already known

approximations (for completeness) in chapter two.

1.1.2 Studies on the robustness of Analysis of Variance

The analysis of variance (ANOVA) is a powerful précedure for

testing the significance of difference among means under certain

assumptions. Studies on the robustness properties of this procedure

héve been made by Cochran (1947), Tukey (1956, 1957), Welch (1938),
Box (1954a, 1954b), Hammersley (1949), Zackrisson (1959}, Hooke (1956),
Chakraverti (1967), Box and Anderson [1954, 1855), Pearson (19313},
Pitman (1937), Bartlett (1935), Hsu (1938) , Geary (1£36), Gayen
(1949, 1950a, 1950b), David and Johnson (1951a, 1951b, 1952),
gggsnell (1953), Collier and Baker (1966, 1963), Donaldson (1967),
Srivastava (1958, 1959), Bannerjee (1962), Atiqullah (1962, 1964),
Tiku (1963a, 1963b, 1964), Gurland and McCullough (1962) and others.
Much of the work prior to 1959 has been Treviewed in Scheffed (1959).
The general conclusion is that ANOVA procedure, if normality
assumption is violated, is moTe Or less unaffected in inferring about

means. The same is true concerning inequality of variances when

normality assumption is true and samples from different groups are of

same size. The studies that have been made mainly concern
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themselves with the first kind of error or the level of significance.
Notable excentions are studied by Tiku (1¢64) and Srivastava (1658,
1959). Srivastava (1958, 1959) has investigated the power of ¢ and
? tests under deviations of normality, and Tiku (1964) has considered
the power of one-way classification ¥ test. Horsnell (1953) has
determined the power of ANOVA procedure when there are four groups,
and the group variances are not equal. Donaldson (1967) has studied
the effects of extreme departures from two underlying assumptions
namely, normality and homoscedasticity - on the power of ANOVA test
by modél sampling experiments. David and Johnson (1951a, 1951b, 1952)
have studied the robustness of ANOVA F test in non-normal samples,
and have suggested a procedure for investigating the ‘effect of non-
normality and heterogeneity of variances on tests of general linear
‘hypothesis, and obtained certain general formuale to facilitate the
application of the method to random and mixed models. Empirical
investigation into the distribution of F in non-normal samples has

also been done by Hack (1958).

If the equality of variance assumption is violated the distribu-
tion of the F statistic depends on the variances of the basic variables
as nuisance parameters. In the case of one way classification ANOVA,
various approximations and exact expressions for the distribution of the
F statistic have been obtained by Quensel (1947),_David and Johnson

(1951b), Horsnell (1953), Box (1954a, 1954b), Bammerjee (1962) and others.:
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Chakravorti (I967) has cqnsiﬂé?cd the effect of violation of the
assumption of eguality of variances by introducing a-priori distribution
of the population variances. 3
N\

Studies on the robustmess properties of ANOVA “have been mostly
confined to the violation of as;umptions of normality and homoscedasti-
city., The effect of error in the expectation model on the procedure
for testing a set of linear hypotheses in a Gauss-Markoff set-up seems
tobe still Targely unexplored. Ra¢ gnd Mitra (1968) have obtained
a set of necessary and sufficient conditiens on the model so that tle
best Iinea; pnnbiased estimates (BLUEs) of the estimable parametriec
funetiofis under the old expectation mddel remain so undexr the changed

one.

It is known that [Fang (1938)]'ﬁsual variance ratio statistic
F gmployed in ANOVA follows a doubly noneentral F distribution
wher the true expectation model is different from the assumed one!
Madow (1948), Weibull (1953) and Scheffe (1959) have conéidgred the
application of this distribution in finding the power functions for
ANOVA  tests in thch interaction or bias effects occur. The
difficulty in handling a doubly infinite series is obvious.. Price
(1964) has given an explicit and exact finite term formula for the-
doubly noncentral F distribution where theﬂnumbews of degrees of

freedom are either both odd o6r both even.

Box (1954a, 1954b) has dbtained distributions of quadratic forms
useful in the study of robustness of ANOVA. Other uiseful tepresenta-

tions for the distribution of quadratic forms have beer obtained by
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Robbins and Pitman (1949), Gurland (1953, 1956) and Rubem (1962). ndrg_'}j”"
Extending and modifying their work Johnson, Kotz and Boyd (19g?j’and
Johnson and Kotz (1968) have developed several expansions which

appear well suited for computer applications. Bounds of error have

been given for these expansions and uniform convergence of the

expansions have been established. Subrahmaniam (1567, 1968a, 1968b)

has obtained distributions of some standard statistics starting from

a.Gram-Charlier type of parent population.

Qur contribution in studying robustness of ANOVA procedureg
is summarised in section 1.2.2 and.presented in detail in chapter

three.

1.1.3 Performance of some tests of independence

(r) in non-normal Samples when tlie population coefficient of
correlation (p) 1is zero haé.been given by Quensel (1938). Gayen
(1951} has obtained a more general result when ¢ 1is not necéssarily
zero. Ie has obtained this approximation by Starting with a bivariate
Gram-Charlier expansion of the joint probability density function of
the population and ignoring all joint cumulants of the population
above the fourth. He has studied the robustness of the distributions
of the sample correlation coefficient r -and Fisher's transformation

Z o : .
z = tah - ¥ with respect to departures from normality.

g

g €L
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1t has been observed that-when o = 0 and, in particular, when

the variables are independent, the sampling distribution of r» is

more or less robust, even for small samples. But if the value of p

J—

i pmmi ST _..-—-‘__L_\

e i S Cremm <

is large, the effect of departures from normality is quite appreciable.
About Fisher's transformation, the distribution of & remains
asymptotically normal, but the convergence of the distribution to
normality is slower., The mean and variance of £ are, to order n_I,
unaffected by skewness in the parental marginal distribution. But

the effect of departure from normal value of kurtosis may be considerable.

when the form of tie parent distribution is not known and a large
number of observations is available, independence between two variables
mﬁy be tested by forming a two-way contingency chi-square statistic.
Properties of chi-square statistics either for goodness of fit or for
testing independence have been studied by Eisenhart (1¢38), Mann and
Wald (1942}, Cochran (1952), Williams (1950), Hamdan (1963, 1968),
Mitra (1955, 1958) and others. Eisenhart and Cochran have shown that
the limiting distribution, in the sense of Pitman (1948), of the
goodness of fit chi-square in the non-null case follows a noncentral
chi-square distribution. Mitra (1955, 1958) has shown that the
non-null limiting distribution of the contingency chi-square statistic

too follows a non-central chi-square distribution.

Mann and Wald (1942) and Williams (1950) have dealt with optimum

number of classes, in the case of goodness of fit testing. Hamdan (1968)

10
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has studied the problem of determining the optimum number of classes in

a two-way contingency table. Chapman and Meng (1966) have obtained the
power function of chi-square test for contingency tables. IHarkness and

Katz (1964) have given the exact power of the randomised chi-square test

in a (2 x 2) contingency table. They also have given a normal approxima-
tion to this power function. The tables prepared by fhem in a sense, supple-

ment the tables prepared by Bennett and Hsu (1960).

Our contribution in studying the performance of some tests of
independence is detailed in chapter four and a summary is given in

section 1.2.3.

1.1.4 Effect of deviations from simple sampling on some statistical

Erocedures.

Robustness of ¢ tests and ANOVA procedures has been studied
mainly with respect to departure of the populations from normality and
homoscedasticity. Not much seems to have been done to study the effect

of deviations from simple sampling on these procedures.

Anderson (1942) has obtained the distribution of means for
stratified samples for the rectangular population which is symmetric
'and also for a J-shaped skewed triangular population. The means
computed from stratified samples show less variability than the means
of simple random samples. It has been observed by him that the stratified

sample means from a skewed population are less skewed than the random

--""'_—"h-_““

1_91“‘... >
-‘,l ot/ “38“ \éij
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sample means. He has also shown, for the three populations considered
by him, that the effect of stratification in sampling upon the distri-
bution of the standard deviation is to make the distribution more
symmetric. It has also been demonstrated that for stratified samples
from the rectangular population student's ¢ is much more stable

than it is for random samples of the same size.

Our contributions in studying the effect of deviations from
simple sampling on f-tests and one-way classification F are

presented in chapter five and summarised in section 1.2.4.

1.2 A summary of the present contribution

1.2,1 Approximations to distribution functions using formal

series expansions

In chapter two we seek approximations to sampling distributions

which are used later to study robustness of some statistical procedures.

The density function of a statistic is approximated in terms of a

standard density function and orthogonal polynomials associated with it.

These approximations can be used when exact moments of the statistics are

known. We consider two standard densities:(l) gamma-when the range of

the statistic is the non-negative part of the real line, and (2) beta -

when the range is the interval 0 to 1. Methods for obtaining similar

approximations for joint distributions of two or more statistics, when

12

the exact joint moments of these statistics are known, are also discussed.

An expansion for the joint distribution is then used to derive an
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approximation to the sampling distribution of the statistic
U= XZ/ (XI + Xz) where X, and X, are non-negative random

variables and the joint moments of Xl and XZ are known.

The approximations to density functions used in this chapter
may turn out to be negative for certain values of the variables;

the practical consequences of this are examined in section 2.5.

1.2.2 Studies on robustness of ANOVA

[

It is known [Tang (1938)] that when the expectation model in
a Gauss-Markoff linear set up is wrong, the distribution of ANOVA
F foilows a doubly non-central F distribution. In chapter three
we give a computational procedure for exact evaluation of this
distribution function, and also suggest two simple approximations.
One of the approximations uses a beta density function and Jacobi
polynomials, and in the other we use gamma density functions and
Laguerre Polynomials. These results have been published [Dasgupta
(1968a, 1568b)]. No attempt is made to obtain error bounds for these
approximations, but numerical comparison with the exact results show

that generally these approximations do fairly well.

Some authors (for example, Chakravorti (1967}) have suggested
the use of the average power of the ANCVA procedure, by agsuming
a-priori distributions of the unknown parameters. A computational

algorithm is derived here for evaluating this kind of an average

13
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power assuming that the non-centrality parameters are independently

distributed as Pearson's type III variables.

In a different direction we show that the level of significance
of the ANOVA procedure and its unbiascdness as a test of significance
are not arfccted by certain types of deviations fyon the assumed linear
model. We also obtain a set of necessary and sufficient condition
on such deviations under which best linear unblased estimates (BLUEs)
of parametric functions retain this property of best linear unbiasedness
and simultaneously the ANCVA procedure retains its size and unblased-

ness. These are extensions of results due to Mitra and Rao (1868},

An exact expemession of the non-null distribution of the F
statistic, when the homoscedasticity assumption about the basic
- observations is violated, is obtalned Ly an extension of the results
of Pitman and Robbins (1948) in the restricted case winen the 'Within!
and 'Between' sums of squares arc imdependently distributed. An
approximaticn is also suggested in this case using a method deweloped
in chapter two. Accuracy of this approximation 1s judged by observing
its performaince~ in two cases where exact distributions arc derivable

using David and Fix (1960).

Finally we suggest a general approximation to the distribution
of F when onc or more assumptions are violated. This approximation

is based on an expansion for the joint demsity function of the nume€$or

and denominator sums of squares. This approach is similar to that of
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Tiku (1964). The essential difference between Tiku's method and the
one presented here isithat unlike Tiku we suggest using scaled sums of
squares rather than the sums of squares themselves in obtaining the
approximation. This is done in the hope of minimising the number of

terms in the approximation without affecting accuracy.

1.2.3 Studies on the performance of some tests of independence

-

In chapter four we consider the performance of some tests of

independence.

It is known that in normal samples the sample coefficient of
correlation r provides a uniformly most powerful unbiased test for

independence for both one and two sided alternatives. Gayen (1951)
has obtained an approximation to the distribution of the sample
correlation coefficient when population is non-nermal by starting
from a bivariate Gram-Charlier expansion of the population density
function. An alternative approach is presented in this thesis.

The probability density function of X = %{I + 1} is approximated
using a beta density function and the asscciated orthogonal Jacobi
polynomials. The accuracy of this approximation is judged numerically.
A compariscn of some approximate values of thé distribution function
with the exact values, wﬁen thie population is bivariate normal, at a
few selected points show that the approximation is not toc bad. The

efficiency of tie approximation is also studied by two model sampling
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experinments. Some of these results have already appeared in Dasgupta
(1963c). HNext, we consider the performance of the contingency chi-square
as a statistic for testing independence. An expression for the Pitman
power [Pitman (1548)] of the contingency chi-square procedure in normal
samples is obtained. This is then compared with the Pitman power of the
uniformly most powerful procedure based on # It 1s proved that for a
(2 = 2) contingency table, when observations are drawn independently

from a bivariate normal population, the Pitman power is maximised if the
s P

divisions are made for both the variables at their respective means.

Using a result due to Roy (1966} we obtain a class of test
procedures based on counting for testing independence quickly in bivariate
‘normal samples. This class contains the most powerful binomial test
based on counting for a fixed alternative. The performance of the most
powerful test as obtained from the class is studied with that of the
binomial test based on median dichotomy and also the test based on the

coefficient of correlation,

1.2.4 Effect of deviations from simple sampling on procedures

for testing means

In chapter five we study the effect of deviation from simple

sampling on some standard statistical tests.

Stratification is usually resorted to for improving the efficiency
of the estimates obtained from samples or for convenience where the

population physically exists in a stratified form. Sometimes standard
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statistical test procedurcs, which are strictly valid for simple

random samples only, are used even when observations have been drawn
using stratified sampling. This is done, perha;s,.with the implicit
belief that the result will not be teo much vitiated due to deviation
from simple sampling. That, this is sometimes dangerous is shown here
by obtaining the limiting [Pitman (1948)] power of the student's ¢
procedure for testing the significance of the mean in stratified samples
from normal populations when deviations of the alternmatives from the

. ; . . ~-1/2
null bypothesis ave ©f order 7 / 5

where #n 48 the sawple size.
Tt is demonstrated that this power decreases if stratification 1is

increased by splitting up any one siratum.

we, next, consider the power function of student's ¢ in general
non~normal samples when stratification is used. /n approximation to
the pover function is suggested using a metitod discussed in chapter two,
after the joint moments of x and g have been obtained using a technique
due to David and Johnson (1951a). Use of this approach for obtaining
approximations to the power functions in the case ¢f the ¢ test for
equality of means, and the onc-way classification F procedure is also
discussed.

Finélly, we consider a generalised 'probability proporticnal
to size' sampling scheme which provides an unbiased estimate of the
population mean, and obtain an approximation to the péwer function

of students' ¢ procedure in this type of sampling.
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In'short, apart from suggesting heuristic approximations in
studying robustness properties of some well known statistical tests,
some interesting results are obtained in this thesis. These include
a set of sufficient conditions under which the ANOVA procedure
retaiﬁs its assymed size and the property of unbiasedness even when
the true expectation model is different from the assumed one, a
necessary and sufficient condition that (i) the best linear unbiased
estimates of some estimable parametric functions under the assumed
expectation modgl remain so under the true model and (ii) the ANOVA
procedures pertainihg to these parametric functions derived under
the assumed model retain their size and the property of unbiasedness

in the true model,

It is noted here that the limiting [Pitman (1948)] power of
the contingency chi-square test of independence in multinormal
sample does not increase with the increase in the number of classes
and that the limiting power of the procedure in a (2 x 2) table is
maximum when the table is formed by dividing the marginal distribu-
tions at their respective medians. Most powerful binomial tests
for independence in bivariate normal samples are obtained for fixed
alternatives. The performance of these tests are quite encouraging
as compared to the test based on the coefficient of correlation.

It is also proved that in normal samples the limiting power
[Pitman (1948)] of the standard student's ¢ procedure for testing
the significance of the mean value under the assumption of simple

random Sampling decreases with more and more stratification.
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Computations for this dissertation have been carried out using
machine systems IBM 1401-8k, Honeywell-400-2k and IBM 360/44-128k

systems with programmes written mostly in FORTRAN.

1.3 Notation

Unless otherwise stated the following symbols will be used

throughout this thesis :

A:nXm represents a matrix with »n rows and m columns
Al represents the transpose of 4
u(4) Tepresents the linear manifold generated by

colums of A

4 represents a generalised inverse of the matrix

4 as defined by Rao (1965).

P, = A(ATA) AT is the projection operator projecting arbitrary

n-vectors onto ul(4)

al - 0

Al- denotes a matrix of maximum rank such that A4

d(x) = ;%:- exp(- %-x ), - @< x <« represents the density
2% N

function of a standardised normal variate (N(0, 1))

.pj( A= exp (-0 AJ/’j! LRl .. represents the probability
that a Poisson variable with.mean A( > 0) assumes

the value J.
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m b -
o(x) = [ ¢(t) at represents the distribution function of

H(0, 1)

_Matd) a1 _ bl pcxca,

Blxs a, b) =
(o T(D)
represents the density function of a beta
variable with parameters « , D (a, b > 0)
x
Blx; a b) = f B(t ; o, b) &
o
glzs; m) = exp (~x) xm—l 5 7 B0 represents the density
I(m)

function of a gamma variate with parameter

m(m > 0)
m .
s m) = [ gty m db
0
1
1 Al el
fn(o:) = 2 exp(~ E:r) 7 represents the density
¥ 1)
function of a xz(n) variable (n > 0)
xz(n_, A) represents a non-central chi-square

variable with #n degrees of freedom
and non-centrality parameter A, i.e.

a random variable with density function

fn(x,' A =

5 i
FIRYE SENNEAE
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iz
Flx,n, A) = [ fn (t :A) dE
o
zi(o, 0, 1,1, p) represents a bivariate nox_‘mal variable
with density function
1 .
fla,y,0) =—2— exp [ (x° - 2ozy + y°)]
o \71——p2 2(1-—;)2)
—e <,y <o . 0 <p <1,
ko7 i
T = Lo, denotes the mean of »n real quantities

=1

£ < PR xX .
1° 7g° > n

21
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CHAPTER 2
APPROXIMATIONS TO DISTRIBUTION FUNCTIONS

USING ORTHOGONAL POLYNOMIALS

2.0 Introduction and summary

In the following chapters in this thesis we seek approximations to

sampling distribhtions of various statistics in terms of a standard density
function and orthogonal polynomials associated with it. This requires
knowledge of the first few moments of the statistic. It is difficult: to

get any pseful estimate of the error im such approximations, but comparisons

can be made when exact sampling distributions are known to get an idea of the
magnitude of error. Theoretical results on the convergence of such expans-

ions ﬁsing infinitely many terms have been studied, in some cases, by Szego (1939), Cram

(1925, 1928) but are not very useful in our context.

Let f(x) be the exact density function of a statistic X whose

T-th moment

o(r) = E(X")

exists for T = 1,2,...,t. Let w(x) be a standard density function with

associated orthogonal polynomials

J r
wlf, ) = L eld, rlx
re=0

satisfying
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9] if §#k
elf)>0  if F =%

-]

J o owli, =) w(k, x) wlzx)de

—C0

We shall denote the t~th order approximation to £(x) in terms of

w(x) by

t
f, = ft(x]w) =wlx) T ali) n(j, x)

Jd=0
where
J
alj) = réo eli, r) @' (r)/c(F)

It is to be noted that ft itself is not necessarily a density function.

In like manner, we shall call

*
F, = F (x|w) = fw fy(ulw)du

the t-th order approximation to the cumulative distribution function

a2
Flx) = f flul)du

-

in terms of w,

We shall be concerned in particular with two different standard

distributions nanely

(1) gamma - when the range is the non-negative part of

the real line, and

(2) Dbeta - when the range is the unit interval from 0

to 1.
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Results relating these two standard distributions are discussed in sections

2.1 and 2.2.

Methods for obtaining similar expansions for joint distributions of two
or three statistics are described in section 2.3. These results are Utilised
in section 2.4 to derive an approximation to the sampling distribution of
U= XZ/(X1 + XZ) where Xl and X2 are nén-negative random variables whose
joint moments are known.

The approximations may turn out to be negative for certain values of
x; the practical consequences of this are examined in section 2.5.

Y

R
2.1 Laguerre series expansion

If the statistic X 1s non-negative, we may like to take as standard

the gamma density function

1 z M-
glasm) = T ¢ " I, 0 <x<w (2.1.1)

.where m > 0 is a parameter. Associated orthogonal polynomials are called

Laguerre polynomials L(j,x;m), j = 0,1,2... and these are defined by

o a - j —nm e -
il L(g,msm) e & L (E%J o & P

J
or Lii,em) = T elj,eem) (-x)7/r! (2.1.2)
r=0

where

24
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(mtr) (mir+1) .. (mef-1)/(j-v)!,for

r=0,1,...,7-1

elf,r;m) =
T ' for r=j
(2.1.3)
for LSO D2 v
Also,
i) e(jim) = fl Lz(j,x;m) glx;m)dx = e(j,o,m)
: o
i) 5‘” L7, a;mL(kyxsm) glzsmdde = 0, § #k
, and
i24) [ g(t ; m) L(rv,t;m)dt
% o]
= %g(x;m-f-i) L(r-1, x; m+l)
(2.1.4)

w%‘-g(mgm) L{r-1, x©; m+l)

In particular,
CL(0, x; m) =1

(i, z; m) =m -~ &

2
£z, o m) = "I nel)e + 5y
L(4, z; m) = m(m+1i‘€m+2) (m+3) (m+1)(§?2)(m+5)x
= _(m_ﬂ'é_,ﬂ*ﬂ %27— (m+3) "Sif- + %?.

and

23
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il
[

a(0)

[m - 0€1)]/m

a(1)

9(2)1/ m(m+1)
2'1 ]

%) ["’(m*“ - (mt1)0(1) +

m(m+1)(m+2) (m+1) (m+2)0(1) (mt2)8(2) &(3), m(m+1)(m+2)
0.'(3) =i [ = 2.[ i 2,( = 3! J/

m(m+1) (m+2) (m+3) (m+1) (m+2) (m+3)8(1) ﬁw+2)6m+3) 8(2)

a(4) = [ 27 . 5! 2! 2!
(m+3é§(3) Qﬁ)}/ m(mﬂ)(’zjjﬂ (m+3) (2.1.5)

Ifi we consider the transformed statistic

¥ = cX
~and choose c = 8(1)/18(2) - 02(1)]
m = o2(y/Iec2) - 6°(1)] = v72

where v 1is the coefficient of variation (that is, the ratio of the
standard deviation to mean) of X, it can be easily shown that the fourth
order approximation to the density function of Y at the point x

is

fy = glazsm) {1 +8&(3) L(3,25m) + %(4) L(4,2;3m)} (2.1.6)

where @®(3) and ®(4) are obtained from a(3) and a{4) in (2.1.5)
by replacing G(r) by c” a(r).
The corresponding approximation to the cumulative distribution function

of Y 1is
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F4 = Glx;m) + g(x;m)'{%-Q(SJ.L(2,x;m+1) + = a(4) L(3,x;m1)}  (2.1.7)

Hafa

X
where Glxsm) = I glusmldu
o

Approximations of this type have been used by Roy and Tiku (1962), Roy
and Mohammed (1964), Khamis (1960), Tiku {1963a, 1963b, 1964, 1965) and

others.

2.2 Jacobi series expansion

If X 1is a random variable distributed over the interval (0,1),
it is natural for us to seek an approximation for its density function
&

in terms of the beta density function

3(wia,b) = =L 8L g Pl g ca <1 (2.2.1)

where a >0 and b > 0 are two parameters.

Orthogonal polynomials associated with the beta density function are

called Jacobi polynomials, and defined as

d L - .
d(j,x;a,b) = T (-1) al(f,r; a,blx (2.2.2)
=0

where
el(js;0; a.b) = alatl) ... (a+rj-1)/5!
elg,r;a,b) = [(Jra+b-1)}(j+atb) ... (Jratb+r-2)/7!]
X la+r) (a+r+1) ... (a+j-1}/(F-r)!]

for Po=1,2,0005 J-1

elg.dza,b) = (Jrath-1) (F+a+b) ;.. (8+a+b=-2)/7!
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“Also
- 1 . ,
i) S J(F,a,b) Bla,a,blde = e(fa,b)
o
where clo; a,b) =1,
clitab) = ala+l) ... (a+j-1)b(b+1) ... (b+j-1)
I3 1 (27 +a+b-1) (a+b) (a+b+1) ... (a+b+j-2)
for 4 =1,2, ...,
and
x
ii) S J(r,t; a,b) B(E; a,bldt
o

ab Blx; a+l,b+1) J(r-1,2: a+l, b+1) (2.2.3)
r(a+b) (a+b+1) .

Heres, if we choose

o(1) (o(1) - otza))
& = or2) - e2(1)

(2.2.4)

(e(2) - e(1))(e(1)-1)

6(2) - 0°(1)

then the fourth order approximation to f£(x), the density function of

X, in terms of B(x; a,b) 1is

fé = B(x; a,b) [1 + a(3) J(3,x; a,bB) + a(d) J(4,x; a,b)] (2.2.5)

: 1
where alij) = é J(i,x2; a,b) flx)de/cl(d; a,b)

j .
=. % (-D)F ali,r;a,b) 0(v)/c(Fab), §=0,1,... (2.2.6)
r=0

28
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Consequently, the fourth order approximation to the distribution function
Effi & LIS
g Blx; a, b) - 8(x; a+l,b+1)[dBII(2 2 a+1, D+1)

+d(4) JB , x5 o+1, b+1)] (2.2. 7

. 5
where Blx; a,b) = [ B8(t; a, b) dt,
o

and, writing s = a+ b,

. B s+ a . (s+8)(s+3)0(2)
gl (b+1) (b+2) 7 - (s#2)8(1) + a+ 1
. (g+2) (s+3) (s+4)
. 3(a+1)(a+2) 8(5)]
_ (s+7)(s+2) «a 2 3(s+3) (s+4) 8(2)
A9 = ey (hea) (5r3) La- (943 81+ 73D

(5+ 3 ) (s+4)(s+5) (846)
Ao +1)(a +2)(a+ 3)

(s+3) (s+4) (3+5)
(a+1) (a +&)

e( 3) + 0(4)] (2.2.8)

2.3 Expansion of joint density function of several variables

Ve shall illustrate the method by considering the joint frequency

density function J (.:cz s ‘Ug) of two statistics XI 4 X2 whose joint moments

r

1 T2
o(ry, 7,) = E(X;” X

P

are known. Let wi(m) be the standard density function, considered
appropriate for expansion of the marginal frequency density function of

X’L and let T (7,2), 4 =0,1,2...,denote tie ortihogonal polynonials

23
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associated with Wes i = 1,2, We expand f(mi, mz) formally in a power

geries form

‘ 2
f(ml,xg) = F Z a(kz,kz) R “i(ki’xijwi(xi) (2.3.1)
- k, k i=1
S 1 é
2 ,
Multiplying both sides by I ﬂiCji’xi) and integrating over the entire
t=1

two dimensional Euclidean space, we get formally

g .
i I 7;21 wi(gi,:ci)] f(:r:l,xz) dxl dx2
i 2
.= W I a(kz’k2) _E e ﬂi(ki,xi) “i(ji’mi)wi(xi)dxi (2.3.2)
kl k2 =1

if the order of summation and integration on the right hand side can be

validly interéhanged.

From the orthogonality property, all terms of the right hand side

vanish except the single term for which ki = ji’ 1 =1,2,

Consequently
z 2
a(gl,ag) izl f T (Ji,xi) wi(xi)dxi
2
= ff [izl ﬂifJi,mi)] f(xl,mz) dxl dx2 (8.3.3)
Let us write
2 ,. N .
;o &5 &) widx = §i(3) (2.3.4)
Further, let
L .
ﬂi(j, Bl =ps ci(j, r) x (8.3.5)

r=0
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so that
2 d; %z 2 v,
T w. (j.,2.) = & I I Wpcelflal . )r do
=) o W r,=0  1y=0 i=1 * L
We thus get
J7 do c.(ji,ri)
alfpdy) = 2 2 [T a7} e(rpry) (2.3.6)
r.=o r,=0o =1 i Y%

However, we are not interested in the doubly infinite series and the
quegtion of its convergence. We are concerned with the truncated series
obtained from (2.3.}) by retaining only the terms for which j1+jgfﬁ.

We shall call this truncated series the £-th order approximation to
f(ml, xg) with respect to the standard frequency density functions

Wy Wos and denote it by f%(ml, mg,[ Wy w2) or simply by f% when

there is no possibility of ambiguity. It is a matter of simple extension

when more than two statistics are involved.

To estimate the error in replacing f by f} in general is
beyond the scope of ourf investigation. We shall however compute in
certain specific cases the numerical magnitude of the error to satisfy
ourselves that this approximation does provide usable results in certain

situations.

When the standard marginal density functions are fixed, there is
one to one correspondence between the ?¢-th order approximation of the
type (2.3.1) for a multivariate distribution and its joint moments upto
order t. This becomes obvious_if we note that (2.3.6) can be represented

as
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G 8 = 4 (2.3.7)
where
6 = (800,0), 6(0,1), .., 0(0,¢t), 8(1,0),.., 0(1,t-1),...,08(£,0))1",
A = (a(0,0), al0,1), .. a(0,4), a(1,0), .. a(l,t-1), .. a(¢,0))"
and |
gij -- the j-th element of the <-th row of the matrix ¢ --

. o B k . .
is the coefficient of o xg in ﬂI(u, xl) ng(vj xz) (assuming
that f nl(u,x)wlfx)dx = J n2(v,x)w2£x)dx = 1) where(k,1)
is the suffix for the j-th component of © and (u,v) 1is the

LY

suffix for the <-th component of 4,

and the non-singularity of ¢ can be established.

2.4 Approximation to the distribution of Xé/(X1+X2) where X, X, are

non-negative statistics.,

Let us write

m, = E(X,) = 8(1,0),
my = E(X,) = 0(0,1),
by = BLX, - m )7 (X, = m))®),
YI = 01 XI’ ¢y >0
and Y, = oy Xy ey > 0. (2.4.1)

Since YI and Yé are non-negative we may like to take as standard the gamma

density functions g(yi; m) and - g(y2; n). Then using (2.3.1) the ¢-th
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order approximation to the density function f(yl, y2) of (YI, Yg) is

Fi = L alr,s) L(r,y,;m) L(s,y;n) gy, ;m) gly,;n) (2.4.2)
17 rre<t 1 2 2 2

where

E[L(r,y ,5m) L(s,yzm)lﬂ
elr,0,m)c(s,0,m)

alr, 8) =

and, L's - the Laguerre polynomials - and e(r, 0, m) are as defined in

(2.1.2) and (2.1.8) respectively.

In particular, the first few coefficients are

al(0, 0) =1

ali, 0) = (m - clml)/m

a(lf, 1) = (n - c2m2)/h

a2, 0) = L5 (e uy, - m)

a0, 2) = ——2 (c] u,, - )

al(l, 1) = ¢ e, ull/mn. (2.4.3)

The above relations show that if we choose

ey = My Uy
Co = Mg/
2
1
m = -
Hap
2
and 7 £ s
Yoo

then a(1,0) = a(0,1) = a(2,0) = a(0,2) = 0
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Do

)

Dof ks

, ¢y PlUg, W -
ad (T, D= e mff’ L2 o (mn)

where p is the coefficient of correlation between Xq and Ly

s
From (2.4.2) the second order approximation to f, with the above

choice of (cl, e., m, 1), 1is

P

Fo =glyysm) glygin) [1+a(1,1) (y,-m) (y4-n)] (2.4.4)

-Consequently, the corresponding approximation to the distribution of .

7 = Y2/(II‘+ Y2) obtained by integrating jé over the region

yg/(y1¥+ y2) < z turns out Fo be

)
Fylz) = Blzsn,m) + o(mi)? 1B(z;n,m)

-Blz;n+l,m) - Blzgsn,m+l) + Blzint+l,m+1)] '

1

= Blgn,m} + p(ﬁ)g L (i)

n m mn -
m g (1-2)"{-1 + —;1— 2] (2.4.5)

Hence, an approximation to the cumulative distribution function of

V= X2/(XI + X,) at the point x is Fé(x*) where

81(1 -zx) -1
e 1 F =]
2
m H
=[1+ ml u02 . (I;x)]—l
2 20
and n, m, p are as defined before.

In chapter 3, this approximation is used in studying the distribution
of the variance-rate statistic under departure from usual assumptions. The

accuracy of this approximation is examined in particular situations where

34
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XI = UI + U2 and Xz = Ul + Ug and UIJ Ug, Ug are . independent gamma

variables.

2.5 Some remarks on situations where the approximation to the density

function is negative.

The +¢-th ordere¢ approximation f% is not positive definite. For
certain values of wx, ft may assume negative values. This by itself is
not a serious defect so long as the probabilities computed from the approxi-
mation agree reasonably with the true probabilities in the range in which
the, statistician is interested. It is however of some importance to examine
this point.

Since

t
ft(x) =wlx) I a(ji) n(j,z)

J=C
it is clear that j}(m) is negative in the region in which the ¢-th degree

polynomial

t
Pt(x) = ¥ alj) v(j,x)

J=o

is negative. This can therefore be studied by examining the nature of the

_ roots of Ptﬁx) = 0, which depends on the coefficients a(j), j = 0,1,2,...¢
once the density function w(z) is fixed. This is taken up in this section

for the gamma and beta densities whem £=3.

As a measure of seriousmess of negativity of ft’ we compute the

total negative area


http://www.cvisiontech.com

36

the integral being over the whole range of the statistic. The smaller the

value of 1F%i the less serious is the problem.

2,5,1 Third order approximation in terms of gl(x;m)

If we consider a transformed statistic of the type Y = €X where X
is a non-normal statistic, and €@ and m are as defined in section 2.},
then the third order approximation in terms of g(x;m) to the density function
of Y at the point x is
fé = glxsm) {1 + ol3) L(3,x;m)}

5

mm+1)} (me2)

We notice that the cubic L(3, x; m} has the value CO = z
)
. : . ; 2 and
at the point z = 0, has extrema at the points x, = (m+8} - (m+2)
| 1
T, = (m+2} + (m+2)2 and that
4
1 2
¢y = L(3, @y m) = g{m+2) {1 -~ (m2)7}
g
and Coq = L3, x5 m) = %{m+2) & (m+2)2}.

The point at which fS is negative and the total negative area Fa will

depend on the positive real réots of

Lréy x5 m) w. % (2.5.1)

where T = -1/ o(3)

At most three such roots are possible and when they exist they will = -

lie in refions :
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< <o (2.5.2)

The existence of all these roots, however, depends on the value of T

and we have the following possibi¥ities ?

(1) No solution exists

(ii) Only one solution r, or exists
f(1ii) Two solutions r, and r, exist
(iv) All the three solutions exist.

Enumerating the different values a(3) 'can assume we have the

following situations :

Case I : when «af3) > 0O

(a) 1f |7} < [CII > then all the three roots axist,
f'_,j, < ¢ for ro<x <1, x>z, and

«©

,;f's de =1-F3(r2)+F3(I°1) ~F3(r0)
2

(b)y I1f 7] > ICII, then only r, exisgs, f‘37< 0 for x> r,

and FS— =il 7 —Fg'(rz).

“Case I1 : when af5) < 0

) then fg- is non-negative in the entire

(a) If T imac(CO_, 6'2

range and is itself a density function.

-

(b) I£f T < ¢, 6'25 then all roots exist. f3< 0 for

#<r. r<x< r ond
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Fp .= FS ('ro) + F3(r2) = FS (.rl).

3
(c) 'IfL c,<T< C, _ asituation possible ‘only when m <2 -
the;1 ‘two TOOts r and ) exist, f3< 0 for r1< x <z
and Fp = Fg(r2) - by (rz).
(d) If C2 <T < CO - a situation possible only when m > 2 -
then only 1 exists, f, <0 for © < 1 and F, = FS(I‘O).

Case III : aB) =0

&

In this case f‘S (x) = glx; m.

In general for a fixed m, the smaller the value of a3 ).. the
smaller will be E_’.j,_. If we simplify the expression for af5) in terms

of the moments of the basic variable, X, we find that

aB) =1 -6(1) e@)/16(2)(28 (2) - 82(1)} (2.5.2)

or in terms of (1) and central moments W = E(x - 8(1))F, r=28

3
0(1) {w, *3u, 6(1) + & (1)} :
aB) = 1 f I (2.5.3)

{u + o?(1)¥ {2u, + o2(1)}

-

2

If X Thas a Pearson type III distribution, them «() will vanish
and the approximation fS will coincide with the exact density function of

¥

iIf X is a statistic based on a sample of size =n and if

Lt E(X) = A

n+oo

1
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1

L
and It n 2E(x-001))T= A, r=2,3
> ]
exist, then for large =
X _ 8
a3) = -z % - +O(n“2)
1

This shows that asymptotically at least in a situation like this f’g will

become a density function.

2.5.2 Grth

In figure 2.} we present the s a'r‘ea[FSJ as a function of

a@@) for m=4,5, 6 and 7.

2.5.3 Third order approximation in terms of B(x.apb)

OTde-r
In the case of third, approximation fé" in terms of B(x;a, b} to

the density function of a statistic X whose range is the unit interval
¢ to 1, the roots to be studied is of the cubic
T+ a3 ) JE sw; as bl

About the behaviour of the cubic J@ , %; a, b) we note that

CO =J@B ,0; a, b) = ala+l) (#2)/6

and that J( , x; @, b) has stationery values at the points

1 1
w, = Lar2) - (( 2] (5+2))° (b8 ) 21 / { arb+4)
L 1
ahd o = L(ct8) + ((c#2) (b42))% (b ) 2} / {ab+d) ,
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Let

g.=J6 ;= G, b)

77

64 =J(3,m2; a, b)

o C, =JB '1; a, b) = -b(b+1) (b+2)/8

3

It

We alsco note that at most three real roots between ¢ and I of

JEB ¥ a, b) =T (2.5.4)
wnere T = -1/a)

are possible, these rcots, when they exist, lie in regions

< <
) ro .rl

i 1 2
Lo< 1y < 1 (2.5.5)

Using the method of analysis used in section 2.5.1 we have the

following situations.

Case I :+ when a3) >0

(a) If 7] > mac ( ]CII s I%I ), then fS ~1s nom-negative’ throughot

the range and Fg_ =0 . fs is a density function in this case.

(b) 2 “lig < |r] < ICSI > then only the root r, exists, f < g

e, | 2

for x > r, and -FS— =1~ FS (_rg) where F. is the approximation

to the distribution function corresponding to fé’"

(c) If IC&,[ a7 ) < |e then two roots r_and zg exist,

I

fs < 0 for r<ox <y and

}%,_ = FS (I’I) - Fg (r’o).
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Al

() If |17 < lCI I, le | » then all the three roots exist,
f3‘< 0 for r0<x<r1, x> 7 and

F .=F (r) —FS(_PO) + 1 ~F3(P2)

Case II : when af3) < 0

2) » then fg‘ is non-negative throughout the range

and is a density function.

() If T>ma(C, ,C

(b) If T < C_, Cy, then all the three Toots exist, [y< 0 for

23

) i : = - F( .

0 & x < r s Py <z < o7 and %’-. %(ro) +Fé(r3:!. 3(1’1)
(e If Co < T < Cz, then two roots Py oand T3 exist and

e Fiabrg) =05 Ceads
(d) If 6‘2 < T < Co’ then only the root 3:"0 exists, f3< 0

for @ <zx<r and F, =F,{(r)

o 3= 3o

Case III : when ad) =0

Here fs_ = B(x; a, D)

2.5.4 Graph
As illustrations we have plotted |lf:.j, | as a function of

o3) for (1) a=2, b=5 and (ii) a=3, b = 15.
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CHAPTER 3

ROBUSTNESS OF ANALYSIS OF VARIANCE

3.0 Introduction and Summary

In this chapter we study the effects of departure from the standard
assumptions on the performance of the Analysis of Variance (ANOVA) procedure

for testing a set of linear hypotheses under the Gauss-Markoff linear model.

If the other assumptions (normality, independence and homoscedasticity)

are valid but the expectations do not follow the linear model assumed, the
ANOVA test statistic F follows a doubly non-central F distribution.

n
The transform T = (1 + EE-FJ-Z, where g and #», are the numbers of

P 2
degrees of freedom for the 'hypothesis sum of squares' and 'error sum of
squares' vrespectively, follows a doubly non-central beta distribution.
The distribution function of doubly non-central F has been obtained by
Price (1964) in a closed form with finite number of terms when ng and
n, are either both odd or both even. -In,this chapter we suggest two
approximations for the distribution function of T wusing Laguerrec and
Jacobi series expansions., These approximations do not require any restric-
tions on the numbers of degrees of freedom. A computational method 1is
also given for evaluating numerically the exact distribution, to any pre-

determined order of accuracy, by expanding the distribution in a doubly

infinite series.

Next we show that the level of significance (size) of the ANOVA
procedure and its unbiasedness as a test of significance are not affected

by certain types of deviations from the assumed linear method. We also

42
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A

obtain a set of necessary and sufficient conditions on such deviations under
which best linear unbiased estimates (BLUE's) of parametric functions retain
this property of best linear unbiasedness and simultaneously the ANOVA

procedure retains its size and unmbiasedness. These are extensions of results

due to Mitra and Rao (1968).

a
.

We also suggest a procedure for computing the average power of the
ANOVA procedure based on the doubly non-central beta distribution, when
the two non-centrality parameters are assumed to be independent Pearson

type III random variables.

Finally, we obtain approximations for the distribution of T when
one or more of the assumptions of normality, homoscedasticity and independence

are violated.

3.1 General linear hypotheses :

We consider a random vector n = (nI, Mg seve s nn)’ which is

distributed with

expectation E(n) AB, A:nxp, 0:px1,

i G.1.1)

and _dispersion  D(n)

This model will be referred to hercafter as Gauss-Markoff model (4, 021)
or simply as (4, cZI). In addition, it is assumed that each element of
n follows the normal distribution. With this so called fixed effects
normal model, the basic problem of ANOVA is to test a set of linear

hypotheses of the form :

.1.2)
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where we assume that all parametric functions in L6 arc 'estimable'
in the sense that there exists a constant matrix M such that
E(Mn) = 8. We shall denote the rank of the matrix 4 by Rank (4)= »

and that of L , by Rank (L) = 7y wihere of course »p, < P,

1

We make an orthogonal transformation of the =n random variables
n to = new random variables consisting of (n - ¥ random variables

Yz, r, random variables Y2 and (» - 1}) randon variables .Yg such
that the expectation vector of YI is identically zerc, the expectation

vector of- T, 1s of the form< L6 where C is non-singular, and the

expectation vector of .% is linearly independent of L8. To see how

this can be done we proceed as follows.

We call a matrix & : g x i semi-orthogonal if g <% and
GG' = I. Since 4 1is of rank v, there exists a semi-orthogonal

matrix T, : (m - » xn such that T,A = 0. From the general theory

of linear estimation it is known that the BLUE of L6 is provided by

Le where © = (A’A) A'n, (A'4)” being any generalised inverse, as
defined by Rao(1965), of (4’4}, 1t is easy to check that the row space
of the matrix L(A'A) A' 1is a sub-space of (4} - the linear manifold

generated by the columns of 4, and is of rank .

to find a semi-orthogonal matrix T2 Pryxom and a non-singular matrix

¢ ¢z, xr, such that CL (A'4)7A' = Ty. Since (7)) is a sub-space

of u(4) and TIA = (0, we have TzTé = 0. HNext we choosc a semi-

orthogonal matrix I, : (r - r;) x m  with the property LY =

Hence it is possible

JERGE

E==
2Ty = d.
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Now, we submit the random vector n to the following transformation

~ i 1
g Ty
Y= _Y2 = TZ n
* L 5
b, p

1 [ +
( N
YI TIAB 0
g ) | ge]  |nae
DY) = o°I.

Thus we see that the hypothesis specified in (3.1.2)

under the Gauss-Markoff model (4%, 021). The ANOVA

H is @
o

(Y2 - Cx)! (YZ - CK)/rI
YEYI/(n-r)

Reject HO if F =

accept HO otherwise,

(3.1.3)
= A*8 (say),
B3.1.4)
is equivalent to
3.1.5)

procedure for testing

3 .1.6)

where F, is the upper 100c per cent point of the F distribution

with » and (n - r) degrees of freedom and o (0 < a < 1) is a

1

given level of significance.
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The procedure (3.1.6) can alternatively be written as :

| b
Reject Ho if T = < L,
~CE)! N '
(Y2 CK) (Yé CK) + Y1Y1

accept H_ otherwise (3.1.7)

where <, is the lower Il00a perecent point of the beta distribution
. : 1 1

with parameters é{n -7, 3¥q

It is easily seen that the cumulative distribution function of
LR
the statistic T, when the assumed normal fixed effects model is

true, is

Flz) =

'8

1 1 1 .
pj(Eﬂ) B(x; E{n—zﬂ, v, * gl (3.1.6)

j=o

where

A = (CLe - CK)' (CLe ~ CK)/ 02.

The procedure (3.1.7) has the optimum property that among all test
procedures of size a with the property that the power depends on the
parameters only through A, it is uniformly most powerful (UMP). For
details of other optimum properties see Scheffe (1959). Assumption
(3.1.1) with the added condition of normality of the basic variables may

be explicitly split into the following components.
1° The random variables n,, Ng,..,n, are independent.
2° They have a common, but possibly unknown, variance

V(ni) = 02, i W 5 2., e AT

46
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3° They are distributed normally.

4° E’Tni)=c%.’ze + @, 8, F .. # L =1,2,00,7n

1 12 "2 aip ep’

(3.1.9)

We shall study separately the effects of the breakdown of these components.

3.2 Effect of the wrong expectation model

3.2.1 The general case

Suppése the true model is (B, 021‘) and not (4, 02_2') as assumed

by us. Then

"
¥, ) N e.? )
|
- = ; !
E(Y) = E ¥, T, B ® l (3.2.1)
1
5 | T, B o J
If other assumption (1° to 3°) about n are valid, the sampling
distribution of the statistic I is then the same as that of
xg (n - r, )\2)
—3 3 3.2.2)
xl(rl, 7\1) + x2(n -r, 12)
where the non-centrality parameters of the independent non-central
chi-squares are
A\, = (T Beo-Ck'(T,B 6~ Ck)/a"
1 2 o2
and 9 3.2.3)
Ag = (T, B o) (T, Bel/o

respectively.
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Hence the distribution function of the test statistic 7 1is

Plzx, AI’ Ag s Iﬁf n- o
= I I pR) p A Bt -2 4 g, e + 1)
i=0 J=o J g
P 1 1 1 e
= X b Pk ol (2 1) pi(éfxg) Bz ; E{n-- o+ 1, ars k- 1)
k=0 i=0

G.2.49

This can be easily seen by integrating the joint density function of the
variables x? and xg over the region T < x. The expression (3.2.4)

may be called the distribution function of a doubly non-central beta

variable with parameters %ﬁn-zﬂ 4 %1& and non-centrality parameters
\gs Aze If assumptions. ]1° - 4° hold, then Ay =0, and
P = Pﬂra, AI’ 2, g2 N - r) , where x is the lower I100u percent point

of the beta distribution with parameters %{n -y, %T, is the power

function of the size - aANOVA test. A non-zero value of A2 indicates

that the assumption 4° is not-valid, and P, the prdbability of rejection

of Ho’ gives us an idea of the robustness of the ANOVA procedure.

e —

About the behaviour of the function P(x, Al 2: 5 o~ ”‘Iﬂ we have th

following result :

Result 3.1
Pz, 7\1,)«2, I,n-r) > Plx, Al’ 2,r1,n—r)
%
where ll < AI
and
< Pz, Ay, A 2, 7y, n=-0)

%
where A3 <Ky
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which follows from the fact that F(xz, m, A), the distribution function
of a non-central chi-square variable with m degrees of freedom and

non-centrality parameter X 1is a decreasing function of 2.

Given 0 <@, B < I, and positive integers Mys Moo let us

denote by S3( a, B, OF nz) the set of points ( Al’ J\z) for which

P(xa_, Ais hgs g n2) =8
where %, is defined by

SN

P(ma, 0, 0, nys n2) = a

As an illustration, "figure 3.1 gives the graphs of the sets

1=3,4,5 and

10 where as figure: 3.2 gives the graphs of the sets S( a, B, "y _,n2)

S a, B,.nl,nz) for o= 8=20.05, n2=20 and »

9 10, ng = 20 and B8 = 0.05, 0.10, 0.30 and

0.50. Considerations of space do not permit presentation of such

for o= 0.06,n

graphs for all useful ranges of parameters, but the author has developed

computer programmes in FORTRAN which can be used in such cases.

These graphs are useful in studying robustness of the ANOVA
procedure in the context of likely deviations from the assumed linear

model as measured by the parameters Ai,, A

1°

The traditional anaiysis of randomised blocks experiment makes
use of the fundamental assumption that block and treatment effects are
additlive and there is no interactién between them. If there are ¢

treatments and 5 blocks then, writing Z for the response of the

J=th treatment of the i~th block, the assumed model is that the :cij's
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are independent normal variables with a tommdn variance o® and ekpecta-

tions given by

Aq: E(xij)='3$si* T:‘;£=-ﬂ',2;-oh,§, jgii",g, nu,dt

¥y
where o is the general mean, Ei the effeéct of the i-th thgk and
T the effect of the j-th treatment. Now if interactions do oxist, the
expectations womld be jiven by

-

B : E?:y%)' = o# B%*-cﬂ-f- Y5 3R =12 el 3 =12, e t

1

Y.

.
a= % y,.=0
o

£ &0
where ?ij's are interaction parameters. Here ‘the nen-centraligy

paraneters of [ for testing the null hypothesis X (r ST Fe e =T -Of

na 11¢=2i§ Tg/rﬂz
‘ 2 ,2

Here X, measures the deviatiom from the null Kypothesis H and A

1 2
the deviation from the fundamental assumption about expectations (A), the
effect of interactions. For any fixed valuc of the interaction effcct

%o, the test procedure Temalns unbiased if the treatment effect A 1s
- g P 1

at least as large as A; vhere

P(z , t-3, £E=1) (B=13) =a .

Q‘ 2’

For example, in a pandomised Rlocks experiment with five treatments ahd
six blocks 3f kz
in figure 3.1, the ANOVA procedurc of sizd = .85 for testipp the ¢quality

= &6 then, using the graph for =, =4, ny = 2g

of treatment effects will remain unbiased for all deviations 11 of

magnitude at least as large as 2.0
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a1

Apart from beiﬁg useful in the study of robustness of the ANOVA
prbéedure, the function P(x, AI’ AZ,‘m, n) has other applications too.
Price (1964) has shown that P gives the probability of error for a
particular binary signalling system in which the receiver tries to 'learn’
the state of a multiple-parallel-link noise-perturbed channel, It has
also been noticed by Turin (]959), Kailath (1961), Wishner (1962), Sebestyen
(1961) and Braverman (1962) that the doubly non-central beta distribution

has applications in problems of communications, radar and

pattern recognition where quadratic form operationson normal data are involved.

3.2,2 A computational procedure for evaluating P(x, AI’ Ag,rljnnrd.

Let us choose the smallest | ¢ such that: for a kz.i c

o1 k 1 1 kl 7 1
kz z pk-i(-?l) pi(g Ag) + I P i (EAI) pi(é"}‘g) >I- €,0 < g< 1
=0 1=0 =0
(5.2.5)
We then define
Col f AI’ 12, T, M - r)
e ?g (R ) e (e )l ot e e s )
L A (i T AT B bl > 71 '
k=0 i=o0
ki
& P . (Ao () Ble; Linew) +4, %0 + c= 4) (.2.6)
7:=op@“i PR AT 33 2 21

Then, since i) P (%%1) pi(%-hz) > 0 for all =,k

o k
ii) I Py

k=0 i=o0
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and
. 1 T i
24) 0 < Blxz; -Z-(n-r) + 7, 37 * k-1) <1
for all <, %,
we have

0 <P-P<¢g

The first incomplete beta ratio occuring in (3.2.6) namely,
20§32 § %(n—r) " %I’I) can be computed using the following algorithm,
Successive beta ratios are obtained using the following recurrence

relations :

el n ‘
] ‘ Dem g x (I-x) Timtn)
) Bl(x;m,n+tl) = Blx; m, n) + n T(m) T(n)

m n=-1
B B & | x (1-x) I'(m#n)
it)  B(x; m+l , n-1) =B(x; m, n) - m . T(m)T(n)

Algorithm 3.1

x .
Let us write = I(zx;p,q) = [ tp_l(l-t)q_;,:(:dit
o
Yo, 1
I{e; p,q)/I(1;p, q) if @ > 5
Then Blx;p,ql) =
1-I(l-zq,p)/I(l;p,q), 1 =z @ ';'

We have, integrating I(x; p, q) by parts,

q-1 N ¥
(1 - x) g 4= B PHL Ny e,

Iz;pa) = P plp + 1)

(g-1)(g-2)...(g=-[{q] + 1) +{ql+1,,  ,q-[q]
p(p*l) ... (p + [q] - 1) o =z

(g-1)(g-2)...(q -[q]) , _
o(o1) ... (ptiql - 1) 1(®:p *lq]. q - lal)
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93

where [q] 1is the greatest integer not exceeding q. Let us write
u=p+[q] and 1 -F =g - [g]. Then expanding the integrand and

integrating term by term we get

u o f u+l U +2
I(x_:u,l-f)_zﬁ%m +f(f+1) o + ...
oo ouw F1 21 u + 2
r! u Fr r
where
B _f(f +1)e..f + - 1) ;'L'uﬂn[f+r U +r N
r r! UuFgrtr+1u+tr+l
f +2r) F +r+1) u 4+ r 2
2 o F 1) (r + 2 wwrig el
' u+r
. JE_Q“-+1)..’.(1"+1=—1) [m+x2+“]
r! u +r
' u+p
<fﬁ"+1)...’ﬁ"+r-1) x ifa:<l-r
=) r/ U Fr — 2
Let us choose the smallest » satisfying
(g -~ 1)(g-2)...(qg -[g]) Ff(Ff +1) ... € +»r-1) 47T .
plp+1) ... (p + [q] - 1) r! U+

With this choice of r, if we replace I(x;u ,f ) by

FOFf +1) ... (F +4-1) 287

&l (u+j)

r
)
j=o
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error will not exceed & in the computation of I(x; p, q) for =z i% g
The evaluation of . P using the above procedure often involves laborious
computation. Since P is useful in studying the robustness of the ANOVA
procedure when the assumed expectation model is not true it is desirable
to have simple numerical approximations to 2. In the following section
we suggest two heuristic approximations. No attempt is made to estimate
the errors of approximation in these cases, but numerical computation shows

that the agreement between the exact value and the approximation is, in many

cases, not too bad.

3.2.3 Approximation-I P using Jacobi polynomials

Since T is defined over the range (0, 1), one may use methods
described in section 2.2, to derive approximations for

Plx, X J\z, rosmo- r) the distribution function of TI. Using the

1’
first term of (2.2.7) one gets

Fl = Blx; a, b) GB.2.7)

and using the full expression,

F4 = Blx;ab) -B(x;a, b){ dB )J(2 x;arl, b+1) + d(4) JB xz;a+ 1, b + 1)}
3.2.8)
where a, b, d(3), d(4) and the polynomials J are defined in section
2.2 and 6(g) the g-th moment of T is
o k 1

1 1
6(g) = ¢ T [ ¥ p.; (M) P05 A2
k=oc i=0 ;

% B(T; %(n—r) + T, -;—rl +k-1) dr

o4
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| I 1
Let us write n, = 2(n-r), Ny = E(n—rsf-rl),

Then writing

) c-1 k 7 ;. Tn #itg) T(ny+k)
8(g) = Z kB (M) p;(32) Tlng#itg) T(n +1)
kg W (n,+itg) Tlngtec)
LI P G B(32) Tt go gt i

where ¢ and kI are as defined in (3.2.5),

0 < 8(g) - 8(g) <e

In actual computation we use 8(g), instead of

for evaluating (3.2.8).

we have

8lg), g=1,2,3,4,

3.2.4 Approximation-II for P using Laguerre polynomials

The components gg(rl, A,) and xg(n-r, Ay

) of T in (3.2.2) are

independently distributed. Using the fourth order approximation for the

"density function described in section 2.1 and also the method given by

Roy and Mohammed (1964) for approximating the density function of a non-

central chi-square variable, we get,

writing

il

XY
u
Do
"

2 .
X-‘-'Xi/zpi: T

n, + 2hi
Ry ® o
T K4
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36

and ng=n - r,

and further noting that _xi and Xg are independent, as an approximation

to the joint density function of XI and X2

4 4 ' -
qlz, , xy) = I E Ai(mi)Aj(mz)g(wl_: my+t) g(x2; mytj) 3.2.8
J=o0 i=o
where
Ao(m) = 1+bB ,m) +b(4d,m
AI(m) =3bB ,ml - H(4, m)
A2(m) =3bG3 , m) + 6b(4,m
Azfm) =-bS ,m) - 4b(4,m
Aé(m) = b(4d,m)
(n, + 2,0
m. = B e &1L 2
2 2(71?: + 2?\7:) %
BB m) = Nom s, )%, 121,02
> = T % 25 B
and b4, m) = AZm.n, + 40D/ dln, + NP L1 =1,2
P 7 % 4 z 7 v S
Ty _
From (3.2.8) we get, integrating ¢ ' over Tz S%. an approxima-
1 2
XZ
tion for Prob [3'{_-!-_-}(_ <x] as
1 2
* 4 4
Q(x) = J.'-'E-"O 7:20 A?:(ml) AJ.{mg) Blz; my + J,m, + z) (3.2.9)

The corresponding approximation for the distribution function of T at

the point & is
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F, = @y (3.2.10)

P3 @
o 4% + p2(1 - )

where y =

which reduces to

x(rl + 211)/Tr1 + Al)
¥y = x(r1+2kl)_/(1f1+kj) + (I-z) (n-r+2k,) /(n-rtA,)

3.2.11)

It is to be noted that if one uses Patnaik's (1948) approximation
for the non-central chi-square distribution both for x? and xg , one

obtains the single term approximation

ﬁ} = Bly; M ml) (5.2.12)

when y, m, and m, are as defined above. This is the first

incomplete beta ratio occurring in (3.2.9).

3,2.5 Table for comparing the approximations

Table 3.1 gives the exact value of P and the values obtained
from the approximations F,, F ?j and F4 at some selected points.

It appears from a study of this table that :

(i) in most cases Fj and Pl give fairly good restlts

(ii) generally Fl is better than F, and F,

(iii} however, F4 is the best approximation in most cases.
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TABLE 3.1 COMPARISON OF THE:APPROXIMATIONS TO DOUBLY

NON-CENTRAL BETA DISTRIBUTION. -

28

Approximation-I 'prpfokimation-II

Exact
(using Jacobi (using Laguerre
polynomials) pelynomials)
p, (2) A Ay & 1 Fy F Fyq
5,0 20,0° 2,0 7.104 .i6 .0553 .0536 .0526 .0531 ,0528
5.0 20.0 2.0 7.104 .28 .4636 .4597 .4640 .4650 .4433
4.0 20.0 3.0 12,3734 .6 .0299 .0308 .0286 .0287 .0358
4.0 20.0 8.0 28.46 .8 .4375 .4439 .4452 .4602 L4782
10,0 20.0 24.0 2.8464'.4 .4781 .4864 .4925 .4925 .4948
10,0 20,0 24.0 2.8464 .6 ,9648 . 9606 .9602 L9573 9571
10,0 20.0 8.2552 0.0 .4 .1577 | .15?4 .1555 .1565 .1563
10.0 20.0 8.2552 0.0 .6 .7031 L7072 L7115 .7124 L7123
10.0 20,0 8,2552 0.0 .8 .95060 .9924 .9889 .9877 .9870
10,0 20.0 12.0 3.9714 .4 1545 .1532 .1509 .1521 .1519
10.0 20.0 12.0 3.9714 .6 .7198 .7241 .7287 .7275 .7284
10.0 20.0 . 9950 .9930 .9924 .9913 .9906

12.0 3.9714 .8
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3.2.6 A sufficient condition for the ANOVA procedure procedure to

retain its size and unbiasedness

In éection 3.2.1, we have derived the sampling distribution of
T defined in (3.1.7) under the assumed model. It has been found to
have a doubly mon-central beta distribution with non-centrality para-

meters A, and A, defined in (3.2.3).

2 1
If the null hypothesis and the assumed model are true then the
two non-centrality narameters vanish simultaneously. There is, however,

a wider class of models under which A_, 1s always zero and the non-

2
centrality parameter Al vanishes only when the null hypothesis is true.
) )
Whenever the assumed model belongs to this class, the analysis of
variance procedure of course retains its property of unbiasedness and

preassigned size. This class of models is characterised by our theorem

3.1.

Definition 3.1

The analysis of variance test procedure for testing HO(Le = k)
obtained uhder the Gauss-Markoff model (4, 02I) is F-valid under the
model (B, 021), if under (B, 021), the test statistic 7T is
distributed as a doubly non-central beta variable with parameters-

L,
2 2F 7 2 1

wvhere D is a non-negative definite matrix, OQOr, equivalently, in the

1
E(n - )

notation adopted in section 3.1, if E(Ylee) = 0 and E(YZI Bo) = CLe .

29

and non-centrality parameters A, = 0, A, = (L8 - K)'D(L8-K)
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Definition 3.2

u(4) is the estimation space under the Gauss-Markoff model

(4, 0219.

Definition 3.3

The set of all n-vectors orthogonal to u(4) is the érror

space under the model (4, 021).
Theorem 3.1

A necessary and sufficient condition that the ANOVA procedure
under the model (4, 0211 for testing Ho : (Lo = K) is Pevalid under

(B, 021) is that
B = AW 5.2.12)

where ¥ is a (p x p) matrix such that
L(I-JW) =0 | 6.2.13)
and H = (A'4)” (A'A), an idempotent matrix.

Proof :

We use the notation adopted in section 3.1.

Necessity
Since Z(Y, | B6) = 0, the error space under (4, ¢°I) is a
sub-space of the error space under (B, 0211, and this implies that

there exists a matrix ¥ : (p x p) such that

B = AW
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"

we have ¥, = CL(A'A)” A'™m and so

a
(T, | Be) = CLe
='> CL(A'A)”A'AWe= CL8
' or CLale = (LB
i.e. ; CL(I - HW)8 = 0, fof all ©
which means L(I - #W) =0, -« C being non-singular.
Sufficiency

If B = AW then the error space under (4, 021) is. a sub-space

of the error space under (B, 62I) and hence all components of YI have

expectation zero also under (B, 0217. This means

o

E(y, | Be) =0.
Moreover,

E(Y,| Bo) = CL(A'A)" 4B

CLEA'A) 4140 = CLHWS.

fl

CLHWS + CH(I - HW)® because of (3.2.13)
= (L6

It is to be noted that when the conditions of the abd#e theorem
are satisfied though the test procedure constructed under (4, 0217 retains
its size and the property of unbiasedness in (B, ch), it no longer has
fhe-gptimum properties mentionedAin section 3.1. We note in particular

the following deficiencies :
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Ay

z) 22 is not necessarily the BLUE for CLé under (B,ogI)

) YI does not necessarily contain all linear combinations

of n belonging to the error space under the model

(B, 02I).

If in addition to a test procedﬁre‘s being F-valid, we want
the estimates of the parametric functions involved in the null hypothesis
to remain best linear unbiased estimates in the changed model, additional
restrictions will be required.. "B result in this connection is stated
in the following theorem.
Theorem 3.2

A necessary and sufficient condition that for all parametric
functions which are estimable under the model (B,02I),

a) the BLUEs under (4, oZI) will remain BLUEs under

(B, o°I)

b) the test procedures constructed under (4, 02I) will

remain F-valid under (B, 02I)
is A=B+(I-_PB)X B.2.14
where X 1is any matrix such that

w(x')fy wu(B') =20 (3.2.15)

or, equivalently,

A=B+(I-P) FII+(I- p, ool 3.2.16)
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L]

where D and F are arbitrary.

For the proof of this theorem we shall use the following due to

Mitra. and Rao (1968).
Theorem 3.3 (Mitra and Rao)

1f for every estimable parametric function the BLUE under
(Xo, GZI) is also BLUE wunder (X, 021), it is necessary and

sufficient that X is of the form

s

X = Xo + (I - PXOJW 3.2.17)

where W is any matrix such that

ww' )L} u(Xy = @ 3.2.18
or equivalently
D-I-'
X=X0+ (I - PX) FIT + (I-P;Y;)] (3.2.19)
o o

where D and F  are arbitrary.

Proof of the theorem 3.2

Using the theorem 3.3 and further noting that, in the notation
adopted in section 3.1, the condition (3.2.14) or its equivalent (3.2.16)
implies that E(¥, | Be) =0 and E(Y, | Bo) = CLe, the proof of

the theorem immediately follows.

Remafk

The condition (3.2.14) is necessary and sufficient for (a) and

implies (b).

63
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3,2.7 An expression for the average power of the ANOVA procedure

assuming a priori distribution of the non—centrality parameters

Here our object is to obtain a computational procedure for evalua-
ting an expressioh for the average power of the ANOVA test, by introduc-
ing some a priori distributions of the non-centrality parameters. This
average power may be used to study the effect of the deviation of the assumed

expectation model from the true expectation.

-~

For fixed A, and 712, the power of the ANOVA test is given

by Plz, A fi, n - 1) defined in (3.2.4) where =z is the lower

72 Ao
1000 percent point of the beta distribution with parameterj %{n -7, %TI.

Writing Gi = %jii, i =1, 2, we consider the following a priori

marginal distributions of Gi, i=1,2, (0 26, < J

-

b;
exp(-8,/ a b.] &, as .
Fyl80d8; = v t T s f=1,2 3 .2.20)
(a. b HEe. v
C At A BV, T
1z
where g = E{ di)
%

We further assume, for simplicity, that the variables ,61 and 62

are independently distributed. Then the average power, averaging

over 61 and 62, is
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P = £ J; Pz, 28,, 28,, P1’n"P)f1(61)f2(62)d51 d62
. «® 7 1 ) -3
= LI, jgo Blx; Hin-r) + J, v, + 2N S pj(ﬁz)pi(ﬁl)flfﬁz)
x ol 8,) ds; ds,. (3.2.22)
o exp(—&l) 6;:
Now é 77 fl(él) dBl

3 i i
T{i + —E;) (a, by)
i 1 i+(1/b,)
P(i+1) F(EI—){I + o bj)
= c (%;blsi) (say).
Hence from (3.2.21)
P o= jEn, MEne (a,,bys ) e (g, by, §)B(@ En-r)#g oo, + )

%
= I % ela,by ki) c(ay, by.d)Blx; %—(n-r)+j,%r1+k-j)

It

or, writing T( J, k) c (CH., bl" k-3) e (az.a b2.’ Jls

P = § I T(j,k)B(m_;%(n-r)-f-j, %-rl +k - G)
k=o J=o

For numerical evaluation of this average power we use the following

procedure.

65
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3,2,8 Computational procedure for evaluating (3.2.22)

We define
- e-1 k 7 1
2 = . N . s
Pt = L j-—g—o T(§ k) Blz; 5(n r)+3,-2-r1+k Jd
k
1 | s G
+ I T(j,e)B(m;——(n—r)+j,—2-r1+c-j) (3.2.2)
J=o

where ¢ and kl( < ¢) are chosen in such a way that for a given
e(0 < e < 1) we have

k k

e -1 1
B I T(ijk)+ T T(j,d >1-c¢.
k=0 g=o J=o
© k
Since z T T(j, k) =1 and all T(j. k) are positive and
k=0 J=o
0 <B <1, we haveog¢P - P* < ¢ (3.2.249

As an illustrative example consider the evaluation of the average

power when

a = 6.0, a, = 1.98, b, = 0.001, b, = 0.001,
a = .08, r, = 10 md n-r =20,

Here x = .45999 md P* =0.30438
correct to five places of decimals. It is to be noted that

P(.45999, 12.0,3 ,872, 10, 80) = 0. 30.

3.3. Effect on the power function when the assumed dispersion

is wrong

3.3.0 Suppose we compute the test statistic for the HO(L 8= K)
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under the model (4, 0213 whereas the true model is (4, £J, the
nermality conditioh remaining unaffected, Then what will bé the
effect of this deviation on the power function of the test? In the
notation adopted in sectien 3.1, ouxr primary variables, in the

canonical form, are

o -
5/ fftz 3
Y -wm YE, = ;Tg- f ) t3.3.1)
. : 12
| 5 _3 |75 |

and the statistic obtained for testing HE is

L3

L

: -1 - - ,
P =4 e e 25 el
I‘l .Yj, + (1% « CK) IYZZ‘, CK}
] ) n-r 2
It is easy to check that YE Yi is distributed as & Al,xi{lJ
' 1=1

where A, kg,wﬂ.J ku_k are the (a-r) characteristic roots of

Ce = 2 |
he m i = ' )
the matrix ;11 Tl I ‘TI and Xg
are independently distributed chi-square wariables with one degree

(1)4 4 =2, By ane g P,

4

of freedom; and (ié - CE)" Cyg = gy 1is distributed as

%

PV ‘ | | L
‘ iEI UERE % 65) where Bys Bgsess s nra are the 2y
. , . , . 2 2
. . * ,7- Py o & 5 . ,,“ . I . = 7 f‘ 4 75 .
characteristic roots of the matrix Jyp = Ty X Tgs Xy (1, 8;),
t®l,2, ... ,1,, ore independently distributed nen-central

chi-square varigbles, and $¢ is thé {-th component of the vector

¥
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DC(LO - K) vwhere D : (rl x 1) satisfies D I, D! = I.

‘In general, Yi Yl and (Yé - CK)! (Y2 - CX) will not be

independent, They will, of course, be so if Y, and ¥, are

1 2

row space of T, I = CL(A'A)” A' £ 1is a sub-space of w(4).

We consider below an example where Y, and Yg, are non-correlated

uncorrelated, that is, if T, I T} = 0, or equivalently SR EhiE

even though D(n) is different from 021.

Example : Consider the model

n, I
E = | 6 , and the true dispersion
g | 1
F oo T o &2
Tll p
7 ) o o2
n2J P

The statistic for testing & = (6 = 0) under the assumption of

normality, independence and homoscedasticity of n, and N, is

u2
7= 2
ui"f'ug
h . (n, + )
where uim 72— Tll ﬂg
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Here, under the true model

, 2 2
o} po
Cov gs ug) == =
; 2 /2 2 5
g a

We shall now obtain an expression for the exact distribution of

T when YI and 22 are independent.

3,3.1 Distribution of T when Y and Y, are independently

1

distributed.

About the, distribution of a linear function of independent

chi-square variables we have the following theorem due to Robbins

and Pitman (1949).

Theorem 3.4 (Robbins and Pitman)

Let X = xzﬁn) * a4 xzﬁﬂl) F .o o4, xzﬁﬂr)

where i) xgs are independently distributed
and i) 21, % =il By . 6 2

Define ¢ by the identity

? 1 1 _
n —— . 8.4
2" 1 -7 : k
i [ G ol =t 17y = % w’, (k] <1)
R [z - ¢ “1:) u ] )]_f s G e

Then obviously

07{};0 (k=0,1,2,,...),2‘ﬁ(=1.

(3.3.3)

(3.3.4

69
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 Let M =m+m1+m2+..,+m‘r _ SR EES)

Then for every «, the density function of -515( can be written as

flx) = I ‘%(g(x;g+k) { 3.3.8)
k=0 : ‘

- Using the method adopted in Robbins and Pitman (1949) for proving
the above theorem, the following result is easily obtained about the
distribution of a linear function of independeﬁt non-central chi-square

4

variables,

Theorem 3.5

Let o= xz(mz, al) LA xz(mg, 0‘2) e toa xzfmr, ar)

(3.3.7)
where i) the non-central chi-square variables are
independent
and ity ¢ > 1, L= 258 5 . i
Define constants ’ G, by the identity
r 1m -Lan
Tole ? t-pp-igw 207
. 1 a.
=1 1
>
1 -1 1 -1
x exp [-5 I aifl—aiu[-l-(l—%—-)u] )]
=1 :
- |
= i q{u-~,|u[\51,-al=1 (3.3.8
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*

Obviously g = g (!g 20, 1,85 ¢ue)s E g, = &

Let us futrther write

{hen for every &, the density fenction of -g—x can be wpitten as

e r
Flol = % g gassMek) (5.3.10)
k=0

Using the above two theorems; the distribution function ef T, when

' b e D
N =t

(1) ang (7,

p - CK)'(X, - CR) = 2 4y X3 (1,5 83 f/

are independent, is e€asily seen to be }‘5 e

Prdb [ 2 2 ) ‘

)
& ,(iu ci_c%BCz,fg‘én-ﬁﬁz, Zr’lﬂtf@} ( §.3.30)

1
[ I 4

where, writing )
ij u»z: == xi / mﬁn ' LY ¥ é = 1, 2 5 wmEe =1y
1) .= w; /mn Uz f= 2y um- 5B0

gnd iidi)

the tonstants - ¢ and 6% are defingd by identities
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T e u'= 0 [a,°(1-[1-=Tu? 1 ‘ (3.3.13)
. i o
1=0 4= z
and @ »1"1 _l, -1—,
j o B o
g dud= 1 [B, (1-[1-3%71u)"]
. =1 7 Bj
J=¢
1 1 Bt -1 il -
x exp |- 5 “Zl GJ-(I - Bj ul 1 - (1- E—.)u]e )] (3.3.14)
J= J /

where® | u | < 1. i
As regards computation, we observe that if we choose, for @ given

g (0 <g<1),integers p and k, such that

k

p-1 1
kio & dk—i + iig e dp-—‘i > = & (8.3.15)
we have
2 I gl |, 1 o !
Prob¥T £ ) - kz E o, d_. Blz; yn-r) +1,3r, + k- %)
=0 1=0
kl
. 7 .2 .
= {’io e dp—-i Blz; Tz—(n-—r) + 1, ETI +p-1) <e (3.53.16)

When the null hypothesis is .true 5? =0,d=1,2,.00 5%, and
hence in that case the =~ d's of (3.3.10) can be obtained from the

identity

D i o W L e SPUET
=z djut— I ,[Bj (1 -[ 12 B_] ul) "} (3.3.17)
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The expression (3.3.10) is useful in finding the power function of
the test procedure (3.1.7) based on T only when the 'between' and 'within'!

sums of squares are independent.

In many situations this is not case and we require an expression for
- the distribution of T when Yl and Y2 are correlated. Since ah exact
expression is difficult to obtain we suggest the following simple approxima-

tion to the distribution of T.

3.3.2 An approximation to the distribution function of T when

YI and Y2 are correlated

Let us write i (YZ - CE)! (Yé - CX)
B3.3.18

Then we have

2 2
m, = E(U,) = E n.(I1 + &%)
1 1 5 1 1
1=1
n-7
m, = EfU_) = L A,
a 2 i=1 1
P
i I i 2
Moy = V(UI) =2 -Z ui(l + 26i)
=1
n-r
Moo = V(UZ) =2 .Z A
’L:
-1 1 P
Hyg = Cov (UI’ UZ) =2 £ b Ai uj -pij "
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where pij is the coefficient of correlation between the <-th component

of YE and the Jj-th component of Y2.

Now, if we use the method developed in section 2.4, we get the

following approximation to the distribution function

s U,
Pracb _(T i:x:) af T=m
7 = %2
FIN
= % q,2 _Tg+p) .q Y *
P(x) = Blz; q, p) + R(p) Tl T 2 - z)F [-1 +19—a—9z] (3.3.19)

where p,qg., =2 ‘and R are as defined below

r r
: 2,2 s 2
p = [ I uifl + Gi)] 2 I uifl + 26£) (3.3.20)
=i i=1
N1 n-1
¢ =1t 21%/2 A% (3.3.21) U
= 7=
] 1€ 300
5 e
B o= T M mepl /IS x (5 wiez+ 2820017 (3.3.22)
r d 3 d J  Nma oS3y
v qE= gy
Zop(1 483 % T A
7 & d S apd Biw -1
and g [l # J 3 T T, 1 (3.3.23)
T A, x L pd (1+287) ’
; t T J
'{
If U, and UZ are independently distributed .then R = 0, and

1

the approximation (3.3,19) reduces to

F(z) = B(z s, m.
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This in fact is the approximation one would obtain by assuming independence

- of UI and Ué and then approximating each of the distributions of the

variables UI and U2 by the distribution of a variable of the form
2 -

ay (b) where a and b are obtained by equating the first two moments

of the approximator to the corresponding moments of the approximant. This

has been the approach of Patnaik (194%). The term *

1
92 Ip+g) G, _ P 4,80
R(p) F(57 T(q) K (1 z)5 (=1 + q z) 3.3.24)

in {3.3.19) may be thought of as the approximate correction needed because

of dependence of U1 and U?. Other quantities remaining constant, the

75

correction term is directly proportional to R, the coefficient of correlation

between U andUz. For a large R the magnitude of the correction term

7
will be large and may even exceed B(z; ¢, p) -~ specially when we are
trying to use (3.3.19) for approximately finding the power of an ANOVA
procedure, the size of a test usually being small - -making the approxima-

tion highly unreliable. We, therefore, do not recommend the use of the

approximation except when it is known that £ is small.

3.3.3 Accuracy of the approximation (3.3.19)

In order to have an idea about the accuracy of this approximation
we study its performence in twe particular cases when exact results are

computable.

Let Xi’ X2 and ﬁé be three independent random variables with

density functions g(xl,- a),g(xz; b) and g(x,; & respectively.
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!

We define

TV o Xt X,

Iy = Tyl
Then p (4 ,82} = the coefficient of correlation between

&

’llms«

Ef and U, = °

=]

[Catb) (a+ &)]

Using (3.3.19), we get the following approximation to the distribution
Preb (V 2zl ofl V=0U,/ U,
Pi(x) =1 - F(z) (B .3.25)

when

p= @&+b
q = a+ e
B p‘(.ézi_,lzﬁg;)‘

and F(Z) is as in (3$3t1g)‘

Let us now consider the exact expression for the distribution of

¥ in the following cases,

Boja

Case I asxb=s g=1, g=
David and Fix {1960) have shown that the joint density functiegn of

UI dand U2 ~$ given by
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_ 1 2 .
f “(UI’ U2) =e (1 -e ©) if v,
-U 2l
= e 2(1 -e 1) if U,
Therefore, when x is less than I,
Prob( V <« = Prob(U, < U, x)
© [ Ux -U 2
n 2 2 1 Lo
—-Jé e {, (1 ~-e )dUIdUg- i
Similarly when =x 1is greater than I
9 B Y2
Prob(V < ) = Prob { — > =) = 1 - Prob (+— <
- S MNTL = oz u, -
1 1
il

== :Jc(1+x).

1

X,

77
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In the following table (table 3.2) we tabulate the exact distribution

function of V and also its approximation using (3.3.25).

TABLE 3.2 THE DISTRIBUTION FUNCTION OF V (WHEN

a=b = ¢= 1) AND ITS APPROXIMATION

78

/ Prob( V< x) Prab(V < )
g8 Appravimation  Exact 3 Appravimabion Exad
0.1 .0065 .0091 1.3 .6209 .6656
0.2 .0355 .0333 L4 6534 .7024
0.3 ,0843 .0692 1.5 .6826 .7333
0.4 1447 .1143 2.0 7904 .833%
0.5 .2099 1667, 2.5 .8553 .8857
0.6 C L2752 ,2252 3.0 .8965 .9167
0.7 .3380 .2882 3.5 9236 9366
0.8 .3967 .3556 4.0 .9421 .9500
0.9 .4507 L4263 5.0 .9645 . 9667
1.0 .5000 .5000 6.0 9767 ,9762
1.1 .5445 5671 8.0 .9885 9861
1.2 .5846 6212 10.0 .9934 .9909
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Case II a=b 57, ,yc=085 p = (g
The joint density function of UI and U2 in this case

has been ziven by David and Fix (1960) as

= =y

1
£y, UZ) =e¢ ~.[1- (UZ + 1) e

2] i U, < U

-U, :
=e [(U2 - U, # 1) - (U2 + 1) e

The distribution function of V¥, therefore, may be written as

(x - 2) (2 -3)+ Ir + 5 if x < 1.

bt (i)

Prob (V < x)

1
m(1+x)2

=71 ~ if x> 1

in table 3.3 we tabulate the distribution function of V¥V and

present along with it the approximation (3.3.25).

79
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TABLE 3,3 THE DISTRIBUTION FUNCTION OF V
(WHEN a=b =1, ¢= 2) AND ITS

APPROXIMATION
Prob (V < x) Prob(V < xJ

% Approimation  Exact % Approximation Exact
51 .0246 .0255 1.3 .7590 .7939
0.2 .0944 . .0878 1.2 7930 .8278
0.3 .1886 L1707 1.3 .8218 .8546
0.4 .2892 . 2645 1.4 .8461 8760
0.5 .3854 L3611 1.5 . 8669 : .8933
0.6 L4726 .4556 2.0 ,9328 .9444
R .5491 ©,5443 2.5 .9641 .9673
0.8 .6149 L6242 3.0 ,9800 L9792
0.9 .6711 . 6933 4,0 ,9932 .9900

1.0 L7187 . 7500 5.0 L9977 .9944
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If we look at the tables 3.2 and 3.3 we notice that the
performance of the approximation (3.3,19) is not too bad at 1ea§t in
these two particular cases, We may also notice that the performance
of the approximation is better in the secand case where § is oniy

dbout 0,40,

3.3.4 Applications of the approximation (3.3.19)

Let us consider the problem of testing equality of means of &

groups under the assumed model
4 5 E(xij) = N

where the true expectations and variances arg

= Do

3§ E(mij) = Uy VCmij) =0, t=12,..8;f=1,25.0,,

%3 being the J-th observation from the <-th group.

Let us write

8 - i " g .
= B s  Eels ¥ Epiinm g w8 E By Ey g
s T 1 g wWOH gy LT
2 2 & 2
sl -
W= B Ma & o 5 Iml p.-nJt /n and
Bi=g T T =

kri = pr-th cumulant of the <-th group, ¢ =2, 3, 4; 1= 1,2,...s5:

In the general case where the observations may not be normally

distributed the moments of the  'between' sum of squares

81
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& = =2 S n’l: -9
V.= % n, (x.-x)° and 'within' sum of squares U, = [ I (x,.-x.)
1 0 1 1 2 . . 1

=1 i=1 g=

are given by (see David and Johnson (1951a))

] "y 2
E(U.) = £ k. (1 -=—)+nogo
1 - 2% n i
1=1
8
E(U2) = _Z (ni - 1) k2i
1=1
8 % 7. 8 n.
- 44 _Tye 2 %
V(Ul) = .E o (1 - » )"+ 2 .Z k2i (1 - -;;4
=1 "4 =1
P 8 5 -] o @ ni
+ —E-( RIEY k2£) +4 L n, k2i ( - w® + 4 z @gt(ui- w)(1- ;rﬂ
n 1=1 =1 =1
' 2
8 oy v ak..
. 2 , 4z 2T
V_(’UZJ = 2 (ni - 1) (n. o )
i=1 1 A
8 niul ni 8
CON(UI, 02)‘ = .Z = (1 - -r't-) k41: + 2 .Z (ﬂi—-l)(uij—_}l) ]%1’
. i=1 7 =1

When the populations are normal .=k .=0,1=21,28, ... 8;
pop A 44

E(UI)’ E(Uz) remain unaffected, Cov(UI, U2) = 0 and the expressions

for variances reduce to

an 2

i, 2 2 |
(1 - —;rd + n2 (% > kzi) + 43z n k2i( uo - )

2

2T kg

V(Ul)

2
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As an illustration, if in a situation like this there are three
groups and thirteen observations and if E(UI):=3 5 V(Ul) =4,
E(U,) =a i, V(Ug) = 20 then the approximate value of the power of 0

the usual ANOVA test with assumed size = 0.05 is given by -

B(0.46644; 6.05, 2.25) = 0.0577 .

where 0.46644 is our £ as in (3.3.23), 0.54928 being the lower

5 percent point of the beta distribution with parameters 5 and 1.

If, however, the true variantes are different even for the
observations belonging to the same group, then Cov(Ul, UZ) will be
non-zero and the full expression (3.3.19) is to be used instead of

the first term alone.

The following table presents the numerical results of a study
when the sums of squares UI and U2 are correlated using the
approximation (3.3.19). The table gives for some selected values of

r,, n-r, p, ¢ and R, the approximate power using (3.3.19) when

1

the assumed level of significance is 0.05. For computation of this
table we have assumed . V(UI) = 21} and V(Uz) = 2(n - r). Because

of the form of the correction term (3.3.24) we consider for the table
only the negative values of &, it being fairly simple to get the value

of power for the corresponding positive values of R from the table.

A computer programme for computing F(x) for given E(Ul)’

E(Ug), V(Ul), Cov(UI, Ug), V(UZ) and x 1is given in the appendix,
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TABLE 3,4 APPSO&IMATE POWER CF THE ANOVA PROCEDURE
WHEN *BETWEEN AND'WITHIN' SUMS OF SQUARES

ARF CORRELATEER

SIZE=0.90

ey i S o Wy W e
R T g e T Y WY TR v o R g, Y B R G o g A O WY A gy B T W O e W
- - .

¥

n-h

b

9

R

Powen.

P Rl L LT -
. TR WS U N gy e DU BN apy W mls ww gep e W agy W ER R T o e me O B S pn S R ol g T oy W -
- v - -

ko3
Hrerrrrrprorrr o000 MMM NNMN NN MMM D NN

10
i0
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
1¢
10
10
1¢
10
10
10
10
10
10
10
10
10
10
10

7,000
2,000
£s000
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2:000
4500

4500
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£.000
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5.000
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54000
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£.050
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5. 000
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E,000
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5,000
5,000
E,000
5,006
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-l

0.0
-0,3
"'!0*2
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0,0
=053
=02
-0l

0.0
«0e3
~0e2
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0,0
ﬁ0;3
uOgZ
0,1

0,0
«0,3
-0,2
£61,1

0,0
-0,3
m0,2
-0l

00
w043
-0«2
-0l

040
=043
-0,2
ﬂOQl

0,0
-0,3
-0,2
=Csl

0,0

0,0758

0,0672
0.0586
0.0500
06,0852
0,0760
0,0668
0.0577
01771
00,1655
N,1539
N.1424
0.3384
De3298
0e3212
0.3128
0,519¢C
0.5182
0,5174
(1.5165
0,075¢
00,0670
G6,0585
0.050C
. 0,0815
0,0447
0.0311
Ne1350
01244
0.1138
0.,1032
n,2212
0,2104
0,199¢
c.1887
00,3260
0,317%
¢, 3090
06,3005
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,035¢
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0,1459
n,0727
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0.,0500
N,0632
00,0562
0.0492
0.0422
0,1828
01714
01601
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00,3873
N,3811
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00,0750
00,0667
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0,060
0.,0627
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0,0402
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02434
C.2322
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3.4 The distribution of the ANOVA statistic when one or more

of the standard assumptions are violated - an approximation

We have seen that the statistic T defined in (3.1.7) for testing

a set of linear hypotheses is of the form

s .40
o P L .4
9y * @

where QI and Q2 are two quadratic forms of the basic variables
n = (nl, Ny s nn)’. If the moments of n exist and are known,
moments of QI and Q2 can be computed. If all moments of n upto

order 2t are available, we can obtain

P g
et = E(QI QZ)’ for »+s <t 3.4.2)

Since QI and Q2 are both positive, one may use the t¢-th order
approximation to the joint density function of YI = ¢ Q and

_Y2= 02 ’
g(yZ; n) as given by (2.4.2). Using the notation adopted in Chapter 2,

Q2 in terms of the standard density functions g(yl; m) and

J . 7
3, Wl s B T (3.4.3)
r=qQ

I, e 2N

where alf,my, ¥ =clj, r;m (—I)T/ rl .

Now, rearranging the terms of (2.4.2) we get, as an approximation

to the density function of YI and YZ’
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r 5
ft= b areg) [ T alr,m, ) g(yll,'m) yé’
r+s<t 1=0 :
8 .
x ¥ als,n, J) g_(yz_; n)] yg
J=o
E r(r}zm
= z adrg) [ T alry,m, ) I.—(m)—-g(y sm+ )
r+s<t 1=0
¢ P(n+7)
x I alg, n,J) ——=d gly,s n+ gl
- T(n) 2
J=o
r S
= ) z z Blrys,myny, i, j)
r+s<t i=o J=o
X glygsm+ 1) glyssn + ) @g. 9
where
Bl(r,s,myn,t,q)
_adre) a(r,m,72) als,n,g) T(m+ ) T(n + j)
Ttm) T(n) G215
‘ If we choose
ph H10
1 2
Yag T Hip
e on
e 2
Hog™ Moz
2
- H10
n 0 2
Moo T - M0
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2

H
_ 01
and n = P

B g
then obviously,

-B(0,0,:ﬂ,n, Byl = @

and BlI,0,m,n,i,4) = B0,1,m,nyi,d)
= B ('2.90j'vman:iéj) = rB(OJ'g;‘s'm.?nioidj}
= =0 ‘ 3.4.6)

With these choicepof the constants cl,'tﬁ,rn and =

Foo= 11+, -m (y, -n)] gly; sm) gly, 37

Bl 8 s e Vs j)g(yz; m+i)

i

sO Jj=o0

x gly,sn +3) ' B.4.7)

The corresponding approximation to the distribution function

Prob (f =< =) of T is given by

Fex) =~ ] f, &, &,
g Qi g, = °
37 B
1 e
= Bz ) + o(H* —T7%§ﬂf§%%7 & (1-a)"(-1 L2 5)
£ r p-r

+ E F I B@,per,m,n,i,J)Blz,ntj, mi) G.48
p=8 . t=0 J=g

88
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cl(l—-x) -1
where z={1+ ————]
b J
2
2
Wy, (M, = w.) :
=t 17 i 10 02 01 *ég_]—l G.4.9)

Y
Hog ( Mgy = 17p)

The approximation { 3.4.8) to the distribution function of T may
be used in studying the effects of different types of deviations

from the standard éssumption on the ANOVA procedure. The essential
difference between Tiku's (1963, 1964) approach and ours is that
unlike Tiku we expand not the joint density function of QI and

Q2 in terms of Laguerre polynomials as such, but that of the scaled

variables Yi = G Ql and Yé = ¢, §, and then choosing the

2 78

parameters 7, n,fca and'c% in a suitable way, we make four of the
terms in the approximation vanish. The use of scaled variables has
another advantage. It has been noticed by Tiku (1965) himself in
obtaining approximations for non-central chi square and F
distributions that the approximations may be quite far from the true
result if the basic variables (in his case no-central chi squares)
are not suitably scaled and only a few terms of the orthogonal series
expansion is used. TFor example, if one tries to approximate the
distribution function of a %—xzfn, A) variable by a fourth order
approximation in termé of the standard density function g(mj'%n)

the result is often disastrous specially when A 1is not small,

whereas even the first term of the corresponding approximation using

!

f

{x;m) —-- here m = 1—£Etlli -- usuall ives a good resualt
gies w T2 (ntEN V8 S '

This has also been noticed by Patnaik (1949}.
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CHAPTER 4

STUDIES ON SOQME TESTS OF INDEPENDENCE

4.0 Introduction and Summary

It is known that tests based on sample correlation coefficient
for testing independence in normal samples i§ uniformly most powerful
unbiased for one sided or two sided aiternatives. #hen the parent
population is non-normal and'we have a large number of observations,
independence between two variables is often tested by forming a two-way
contingency table and using the contingency chi-square statistic.
Properties of chi-square procedures have been studied by Mann and Wald
(1942), Cochran (1952), Eisenhart (1938), Mitra (1955, 1958),

Williams (1950), Hamdan (1963, 1968) and others. In this chapter we
compare the performance of the contingency chi-square procedure with
that of the test based on sample correlation coefficient in normal
samples, by computing the Pitman (1948) asymptotic powers of the two
procedures. Mitra (1955) has shown that in the non-null situation

the contingency chi-square statistic follows a non-central chi-square
distribution asymptotically when alternatives are of certain forms.
Using this result we obtain an explicit expression for the non-centrality
parameter of the asymptotic chi-square distribution when basic observa-
tions are from a bivariate normal population. The asymptotic power of
the contingency chi-square procedure is then compared numerically with

the asymptotic power function, again in Pitman's sense, of the uniformly
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most powerful unbiased (UMPU) procedure based on the sampie coefficient
of correlation. It is found that increasing the number of classes in
each of the two ways of classification does not necessarily increase

the power, a fact that has been noticed by many for the case of tests

of goodness of fit in the univariate case. Though increasing the number
of classes generally increases the non-centrality parameter, the gain
in power due to this increase is often offset by an associated increase
in the number of degrees of freedom. If a (2 x 2) contingency table j\ ?
is used for testing independence in a bivariate normal population how

does one choose the class-limits? It is proved that in this case,

power, in Pitman's sense, is maximised when the two means are chosen

as the division points. Fér this case, the ratio of the non-centrality

parameter of the contingency chi-square test to’ that of the correlation

coefficient test turns out to be only 0.4,

A statistical procedure optimum in some-classical sense may
not be economic when cost of measuring the observations and of
computation are taken into account. Methods based on counting rather
than measurements have sometimes been conveniently used. For example,
to study the correlation between the co-ordinates of error of a gun, it
may be convenient to count, for a round fired, the number of shots falling

within a specified region of a two-dimens$ional plane. Roy (1956) has
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given a general procedure for obtaining the class of binomial‘tests,
based on counting, which contains the most powerful test. In this
chapter we show how to obtain the most powerful binomial test of
independence based on counting against a specified alternative. It
is shown that these tests are much better than the binomial test
based on median dichotomy and their performance is quite satisfactory
even when we compare with the UMPU test based on the coefficient

of correlation.

In order to study the effect of non-normality on the sample
correlation test we require the distribution of the statistic in
non-normal samples. Gayen (1951), by starting with a Gram-Charlier
expansion of the joint probability density function of the population,
has obtained an approximation to the distribution of r», the sample
correlation coefficient, when p - the population coefficient of
correlation is not necessarily zero. An alternative approach is

presented in this thesis. The probability density function of

X = %{r + 1) 1is approximated here in terms of a beta density
function and Jacobi polynomials. The suitability of this approxima-
tion is then studied numerically in the case of bivariate normal
populations with non-zero coefficients of correlation. In two other
situations the performance of this approximation is studied by model
sampling experiments. It is observed in all these three cases the

performance of our approximation is not bad.
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4.1 Pitman powers of the correlation test and the contingency

chi-square test for independence

4,1.1 Contingency chi-square

Let fxi, yi), i=1,2,...,n be n observations drawn

at random from a bivariate population with density function

Flx, y). Let D:’l = (:Jc0= -"w,;f:l,xg, ver s Xg = @) and
Dg = (y@ TP Yy lgareiess yﬂ*—" =) be divisions of the ranges of

2 and y respectively. If the observations are grouped in a

(1 x m) table where J“?:j = number of observations satisfying

we get what i1s called a contingency table,

Let
. Y ey

p;, = Prob (x?:_1<a: ixi)__fm i flGeaan) do e 251,402 sran B

-1
- 9

qu-—-Prob (yj__1<y iyj)=_afa g.;' fle,y) dydes g=1,2, .i: m
J-1

Doy 7 Prob €, , <% 2 =, Y1 ¥ f_yj)

©. yj
f J Fllewg) 'dy drs 25 192 50w, b BS T = Lo Spme. M
Ti-1 Yj5-1
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Here independence of x and y impiies the -hypothesis

B (p,

‘O ‘szp‘?:OOPOJ‘., 1:=1;2.,oo‘o., 23 j=1)2;’05‘;m):§

A procedure for testing the above hypothesis in large samples is :
Ffagl g )2
6.1,3*1'?3) "
Reject A = if )(2 =n I — ’ 2 X,

aceept H'o otherwise (4.2.1)
m [A
where f. =L f.., f 2= % fs.., n= L f..
Z0 =1 5 of o, "t 1.4
and xi satisfies the size restriction

Prob( i’ > i |B) = @

For large n, in the null case, this statistic )iz' asymptotically
follows the chi-square distribution with (7 - 1} (m - 1) degrees of
freedom and therefore 'Xi can be taken as the ﬁpper 1000 percent

point of this distribution.

We want to study the relative efficiency of this procedure with
respect to the UMPU procedure based on ¥ .- the coefficient of
correlatiop, when the population is known to be bivariate normal. In
order to comparé their performances, a simple procedure seems to be

the comparison of their Pitman asymptotic powers. [see Pitman (1948)].
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4.1.2 The asymptotic power function of the contingency chi-square

test of independence

~

- o _ . e
Suppose H_ (pij =Ps; = PioPoj 3 for all <, ) is the

hypothesis we are testing. Denote by Hon the sequence of

alternatives
a e s
Hi (pij =P;y + —"i-), where E g™ g.c%j =0 for all <,j.

The limiting power function of the XZ test of independence

may now be defined as [Pitman (1948)]

2 ) depends.
G = Lt Prob(k% <z-ailﬂon) which of course on the Cg4's

¥

This limiting power is called the *Pitman power' of the chi-square

procedure, Mitra (1955) has proved that
G=1-F&2 ,(1-1) (n-1),D) | (4.1.2)

where F is as defined in section 1.3 and

.2 : .2
waldy, Cs .
LR R R G
Bl o s = [BeED
Pii 2l Brot e
A in3 Pitman power of the chi-square test when the population

is bivariate normal

In the case of a bivariate population where the density function

is
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flx,y,0) =___1_T exp [-

on(1 - BT

d 3 Grz - 2pxy + yz)],
2(1 - p7)

the independence of x and y 1is equivalent to Ho (p =20
The Pitman power of the chi-square procedure in this case may be
defined as the limit of the power as »n -+ « when the séquence of

alternatives is of the form

We prove the following theorem on the Pitman power of the

contingency chi-square test of independence in normal samples.

Theorem 4.1

L
If we neglect terms of order =» ~ in (pij =gz, pcﬁ)’ the
Pitman power of chi-square test of independence when the population

is bivariate normal and the alternatives are of the form

B (p= %%-), is given by

on
1-F(x, (k-1 X (m- 1), D% (4.1.3)
4
where
et - ez, )13 [oy.) - oy, 1%
.2 ¢x1:"¢x1:_1 . q’yj"d’yj_l]
DY = 0" x I oy iz, ) L S5t - oy, )
1 g i-1 J Y; Yj-1

and ¢ and ¢ are, as defined in section 1.3, the density function
and the distribution function respectively of the standard normal

variable.

36
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Proof

Expanding f(x, %, 7%9 about e =10,
8 iy -1
flxsy, 7;;=f(-'ﬂ:y: 0)+7;l'f‘(‘?:y: 0) + 0(n ")

=¢(x) ¢ly) + 7%—[x¢(x)X‘ yoly)] + O(nfl)-

Therefore
= Y, T Y. _
i g 2 3 4
R = f I o(x)o(y) dy dx + 7%. ! I wyd (y)o(x)dy de + 0(n =)
Ti.1 Yg-1 T 3 Yiq
9 -4
= it 75‘[¢Cxi_1) - ¢lx.)] [§(yj_l) - ¢(yj)] + 0 ")

Pio'Poj

Neglecting terms of order AT

6 ,

J

Also

8 78: [4’(531:_1) = ¢{x1:)] [¢(yj._1) - ¢(yj)]

= 0.

Hence using (4.1.2) the Pitman power of the contingency chi-square test,

defined in (4.1.1), of independence is

7 - F( Xzo L(1-1) (m-17,D%

97
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where
[6x.) - ¢z, )]
D% = e2 X T . T 1-1
1 Pio

[60ys) - 8y, 1017

. 'yg', - & ijL

1 [e€x.) - olz. J12  m [e(y.) - oCy, I1°

. 82 5 1 -1 % T ] Y -1 .
i=1 ofz,) - oz, ;) J=1 oly)) - oy, )

5

4,1,4 Pitman power of the UMPU procedure based on the sample

correlation coefficient

The statistic vn », where » is the coefficient of
correlation computed from 7 independent observations drawn
from a bivariate normal population N(0, 0,1,1,p) is
asymptotically distributed as N(0, 1) when Hb(p = () is
true. Hence in large samples the following procedure for

testing independence may be used for two-sided alternatives.

! 2 2
j £ >
Reject Ho if (/n »v) X, s
accept  H otherwise (4.1.5)
where xi is the upper I100o percent point of the chi-square

distribution with I degree of freedom. Our result about the

Pitman power of the procedure (4,1.5) when alternatives are of

;] . g
the form H@n { o0 = 7%-) is stated in theorem 4.2,
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Lemma 4.1

-

PERRE

distributed variables with E(z) =m_ and V(a) = ci,, AR

If x,,x »&, are n independent but identically

the limits

and : 'Ltc=c

exist, then vx %, where % = i* I x,, asymptotically follows a

normal distribution with mean m and standard deviation o.

Proof :

= \/n(:'f:-mn)
e = ——", o +nm
T, n . n

7 7

-—-71;1:__2_1 yixcn-l-/nmn,

. xi-’-mn :
Wwheae yi=—c‘—,i-—-1,2,...,n

n

are independently identically distributed with mean zero and standard

deviation unity. Hence using the Lindeberg-Levy central limit theorem

n ‘
[Cramer (1962)], %— I y, asymptotically follows a (0, 1)
noogog Ut
distribution. Moreover, Lt o, =0 and Lt Vn m, = m and

¥ M=

therefore v x asymptotically follows a normal distribution

with mean m and standard deviation o,
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Using lemma 4.1 it immediately follows that +# »r when pf?:i%

+

asymptotically follows o. normal distribution with mean © and

standard deviation unity. Hence we have

Theorem 4.2
Pitman power of a size -o ! procedure based on sample coefficient
of correlation for testing independence when the population is bivariate

. o e 2 :
normal and alternatives are of the form Hon(p = 7%9 is given by

2. 12 - 2 2
Lt Prob (nr" > x_ l B = 1= Fl 53,8 (4.1.6)

Y mad
where xi is the upper 1000 percent point of the chi-square distribution

with one degree of freedom.

4,1.5 Numerical comparison of the Pitman powers of contingency

chi-square and sample correlation coefficient tests

The following table gives the Pitman power of the chi-square test
as compared with the Pitman power of the test based on the coefficient of
correlation. The computations have been done, in the case of chi-square

tests, by forming classes so that

L

Prob (x f-xi) T/l s o TR B e 5 O

and Prob (y.j_yj) =i & S B Bsans s

The table shows that the increase in the number of classes does not
increase the asymptotic power of the chi-square tests. This happens
because though in many cases an increase in the nuﬁber of classes
increases the non-centrality paraﬁete; D* in (4.1.3), the number of

degrees of . freedom is also increased in the process.
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TABLE 4.1 COMPARISON OF THE PITMAN POWERS OF CHI-SQUARE
AND CORRELATION COEFRICIENT PROCEDURES

. 76037

Size = ,05
Pit.man Power <
. 2 x 2 " B 5 E B Goss Lesedwn

XA table table table‘ T
0.1 ,05047 ,05023 .05015 ,05114
0.2 05187 ,05090 05057 ,05459
0.3 ,05419 .05294 .05130 06037
0.4 © ,05746 ,05367 ,05235 .06852
0.5 06169 .05575 .05364 .07909
0.6 .06688 .05838 ,05530 .09215
0.7 .07304 .06155 ,05727 .10774
d.s .08021 .06527 05961 .12591
0.9 .08838 406963 .06234 .14669
1.0 .09757 .07466 . 06545 .17008
2.0 . 24674, .17190 .12611 51601
3.0 48007 37944 .26798 .85084
4,0 72123 65726 ,50419 .97933
5.0 .88936 .87650 .99882
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In table 4.1 we notice that for all & the power for the (2x 2)

table is maximum. In general, however, the Pitman power will depend
on the manner in which classes are formed and alsoc on the number of
classes, In the nexf section we show that the effect of dividing any
existing class in any of the two ways of classification is to increase
the non-centrality parameter D*, But since the number of degrees of
freedom is also increased in the pfocess this may not result in an

increase in the power.

4.1.6  Effect of dividing an existing class interval on the

non-centrality parameter D*

Lemma 4,2

If, w >0,

SR T S,
then, W T Eoet 5e equality holding when
e =2
A T 1=
Proof :
We have

2 2 2
€ (1 - N + a2y A" > Zpgm, A1 -X)
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Dividing both sides by A(l - M)

a1 . .
x (- 1)+ xch:x = 1) 2 2wy
x2 -mg
g P .
or 5 + 7o > xl + x2 + ZxIxZ =X
2 2
A x 2
or Ay 3 s £
M (1-2)w W -

Theorem 4.3

If an already existing class interval, in any of the two ways
of classification, is divided into two mon-trivial class intervals

then the non-centrality parameter D* in (4.1.3) increases.

Proof 1

Suppose we divide the existing class interval «x. ,< r < x

into two class intervals . , < z < ¢ and e<x < x, vhere

XL

B o < e < e From (4.1,3) the contribution of the class

x, , < & < x, to the non-centrality parameter D* is through

=1

2
@(xi) - ¢(x£_1)

-

v

After the division the contribution would be through

[t - ofe, )17 ]

e - @(xi_l) ‘ @(xi) - 3(¢g

[o(z,) - s(e)1?
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From the lemma 4.2 i

Ly ol 2
[o(a) - ¢(x7:_1)]‘ L [Mxi) - ¢(d]
o(c) -8lz, ,) olx.) - alc)
2
=
ole,) - &lx, )
i -1
Here the condition for equality is
¢Cxi_1) - ¢(c) B dle) - ¢Cx£)
ole) - Q{xi—I) @(xi) - @fc )

which is clearly impossiple, Hence the theorem.

4.1.7 Optimum points of division in a (2 x 2) table

When the population is bivariate normal the Pitman power of the
contingency chi-square procedure is an increasing function of D%
defined in (4.1.3). The division points at which the -power will have

a stationary value are given by the solutions of the equations

-0 $=1,8,.0,0-1
5
*

%5—-= 0 2 1y By eiwe 5 WL
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These equations are rather difficult to solve except by tridl

and error when & and M are large. We shall consider the case

when 2=m = 2, |

Let D 4

of the ranges of x and y vrespectively. Here the non-centrality

parameter in the power function is

o @ Em)

BX)(1 - (X)) D(L(T ~0(¥))

;_;:F

consider the term

o2 (x)
8(x) (1 -(X))

W =

Differentiating ¥ twice with respect to X, we get

where 4 = 20(1 - B) ¢ 67,

and
L8k =T . Wt Yot
WrT = @—C?ri 3‘.‘2} . (uj _.ué v‘”
b B
_ ) , AR &
wherd L= {306+ 4° -~ 88°)%

®
[y
Il

= (=, X,e} and Py = (- , ¥,» J be the divisions

2001 ~ 8¢ " + 2¢2£ $(L - 20) + Fo (1 ~8) (% {}25 .

105
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2¢ 4\\

i

and u % =3 ¢2 ¢! (1 - 29)
3

At the point "X = 0, @o(X) = %— and W' =0, Thus W has a stationary

value at X = 0, We further note that at this point Ug-ug= 0,0 :

is positive and

; BN R
(2‘1 —245) T T 4n *
a1
| = ( j
-_—_—2- 2—-—'|T)<0_, and
-

hence W< 0,

This shows that W has a maximum at X = ¢, Similarly

2 (x)
5(7) (1 (7))

also has a maximum at Y = 0, Hence we get the following theorem

Theoren 4.4

Pitman power of a (2 % 2) contingency chi-square test of
independence in the normal case has a maximum when the division

points are X =0, Y = 0.

4,1.8  Asymptotic efficiency of the:(2 x 2) contingency chi-square
procedure

We have seen that both the (2 x 2) COntingency chi-square statistic
and the statistic (vn r)2 are asymptoéically distributed as non-central
chi-square each one degreé of freedom. A measure of redative efficiency
of the (2 x 2) chi-square statistic may be defined [Hannan (1956)], with

respect to the UMPU test based on », as
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non-centrality parameter of chi-square distribution

non-centrality parameter of the distribution of nrg

of o2(xy ¥twm -

8% e(x) (1 ~0(X)) 8(¥) (1 -o(¥))

o2(x) i)

o(X)(1 - &(X)) (YY) (1 - a(Y))

for the division points x =X, y = 1.

From theorem 4.4 the relative efficiency is maximum when X = 0,

Y =0, and this maximum value is

2
. 8°(0) g 4 .
max = | s0) (1 %007)7 =L 2 lepprerd)
4.2 Binomial procedures for testing independence

Methods based on counting rather than measurements have sometimes
been used conveniently in industrial problems when counting is cheaper
than measurement. In this chapter we shall discuss such procedures for

testing independence when the population is bivariate normal.

4.2,1 Binomial test procedures based on counting

Let x be a p-dimensional random variable with a continuous
probability density function f. The problem is to test Hb.:‘f =j’0
against the simple alternative X, 3 ==f1 on the basis of a random

sample Ly x of size n. Suppose w 1is a sub-space of the

2_,0-.:
p-dimensional Euclidean space pich ‘that

107
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where m, = Prob (x ¢ w[Hi), D% l0g 1 (4.2.1)

Let us define a variable

Y; = gl o X. €
= 0 otherwise (4.2.2)
Further, let
_ 7
d= I y, (4.2.3)
1=]
Then Prob( d=mlH,) = (7) i (1 )T =0, 1 (2.2.4)

The statistic & can be used to test the hypothesis HO against

the alternative Hz in the following manner :
"Let ¢ be the smallest integer satisfying

n . .
. (It (1 - no)”‘t < o (4.2.5)

i=c +1
Then the test procedure is :
Reject H if . de e,

accept  H otherwise (2.2.6)

~The procedure (4.2.6) for testing X = may be called the binomial

test procedure for Ho based on the sub-set w.

Obviously, the power of this test is given by
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7l . = .
B=pProb (d >el#) = T () ow (1- m ) (4.2.7)

i=¢ +1 i

It can be easily checked that 8 1s increasing in ™ and hence
the test procedure (4.2.6) is unbiased, and uniformly so for alternatives

# for which
Prob (X e tp {l‘: q) > T
The power of the procedure {(4.2.6), however, depends on the choice of w.

The question 'what is the best choice of w ?Y naturally arises. Roy

(1956) in this connection has proved the following theorem.

Theorem 4.5 (Roy)

Let w be a given sub-set of the p-dimension Buclidean space
satisfying (4.2.1). Then under certain simple condition, it is possible

to find a sub-set w, belonging to the class

inside w_ ¢ J"O (x) < kf}(sc) (4.2, 8

such that for the same sample size the binomial test based on ®,

is at least as powerful as that based on w.

Because of this theorem the most powerful binomial test for Ho

against a fixed alternative /4, is based on a subset of the type

(4.2.8) and therefore our search for the most powerful binomial procedure

reduces to that of finding an optimum value .for k. No general method,
however, is available for determining this optimum value of k and the

best region w, may be found only by numerical methods.

109


http://www.cvisiontech.com

110

4,2,2 Most powerful binomial prOc:edures"fof‘t‘esting‘ independence

Let (:ch:, :027:) 1=1,82,...,n be n pairs of random observations
from the bivariate normal population XN(0, 0, 1, 1,p). Theorem 4.5 says
that the region w, on which the most powerful binomial test (MPBT)

procedure,for testing HO :(p = 0) | against the alternative Hl : (p= pl), 15 ba:_«,c,

Aokisfies
H
—é-lTFexp I- ;2-(m§+x§)] < 'k 2 % exp [~ (:c +f\2-2p1\
o L - o 2(1 -0,)
1 N Ay iy,
m,jrlxside wo.

sl 8B N : '

or V= Py %7 + py Ty - 2p1 xy Ly < k, inside 0 | (4.2.9)

For a given value of %k to find out the probabilities and Tl'l we

proceed in the following manner.

We ‘have (k) Prob(V < k|p =

Since the characteristic roots of the associated matrix of the quadratic

form V are given by :
f A

Py = A

2

therefore, the distribﬁtion of V is same as that of

;,Z 1= (4. 2.10)
F

e

2 2
Ay Y7 = rp ¥y
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; e

where 11 = pqt Py
Ay o= 5(p1 Jy) if gi. is positive

; ; o g0

or 11 # ‘gl Ry !
I . i 4 4 \ =1
Xy =-lolt p;J if p,  is negative ot >i))}?

and y, and y, are independently distributed as N(0. 1). A o ptik

Following Bhattacharya (1943), it can be easily shown that the

density function of Z at any point 2z is given by

Fz) =2, expl- a(}, - A By A KOI 80 2, H,)/ 42, xle 14.2.11)

where Kh is the Bessel function of order m -of the second kind

as defined by Watson (1922).

For determining w, (k) = Prob (V < k| p = py! we note that

the coefficient matrix of the quadratic form ¥ is

(4.2.12)
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Since A 1is symmetric and B is positive definite by using a suitable

transformation 7V reduces to the form

2 2
V= Ay ¥y m g

where 4, and y, are independently_distributed as N0, 1), XI

and Ag are both positive and AI and. vkg are the roots of the

determinantal equation

la - =0

= " 2
Therefore hi = 12 = Ip11(1~ pi)a Hence
(k) = Probyt -y & —E
1 0 T 2

The power of the binomial procedure based on wy is given by

1 . .
P o= & () r%k) (1 -w,(R))"
i=g +1 ¢ 1 1

where ¢ 1is the smallest integer satisfying

n A >

T ) wt(k) (1 -7 ()T <a,

uf e o =
i=c +1

a being the level of significance,

or in large samples, using a normal approximation for the arcsin

transformation of the square root of the proportion, .

Pr=1- 0&)

where wue=1t - v{g1) (arcsin (/ﬁl(k)) - arcsin wao(k))),

112

(4.2,13)

& h«ii?

(4.2.14}

(4.2.15)

. (4.2.18)

(4.2,17)
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ta being the upper 700w percent point of the standardised normal

distribution.

The optimum choice of w, is provided by that value of: k which
maximises the power. In general, the value of % will be a function
of the sample size n. The problem becomes somewhat simpler when sample
is large so that the power is clven, at least approximately, by (4.2.17).

=it

In this case optimum value of % 1is independent of =n and is that

A

value of %k  which maximises the difference

A(k) = arcsin( Jﬂl(k))m arcsin ( Vﬁo(k)).

After evaluating A(k) for different values of %k for different
alternative valuspof p, we determine, at least approximately the
optimum valuepof k. These are presented, along with the correspond-

ing values of T Ty and the difference. A(k), in table-4.2.
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TABLE 4,2

OPTIMUM VALUES OF % FOR THE MPBT
FOR INDEPENDENCE I NORMAL SAMPLES

Alternative value

of o L Lg A
0.1 ~0.05 ;?iEEEZ  _ 02985 * 03200
0.2 0.00 0.4358 0.5000 06426
0.3 0.00 0.4029 0.5000 .09760
0.4 0.25 0.6144 0.7525  .14924
0.5 0.50 0.6637 0.8577  .20392
0.6 0.80 0.6019 0.9009 .26308
0.7 0.95 0.6703 0.9309 .34570
0.8 0.95 0.6164 0.9531 44961
0.9 0.95 0.5633 0.9873 .60908

114



http://www.cvisiontech.com

4.2.%3 Performance of the most powerful binomial test for independence

We now Tompare the performance of MPBT for independence as
obtained in the previous section for a v(o, 0, 1, 1, p) population
with that of the binomial test ‘procedure based on median dichotomy

i.e. on the subset

W o= (-= <z, <0, <&y < 0) U <e, <=, 0zz, <)

2

The binomial procedure for Ho(p = () against all Hl(p > () based

on w will have the power

N ‘
P = z Ch A = el (4.2.18
m b 1 1
x=c +1
o
o o |
vwhere T, = d =2 % Flx,y,p) de dy (4.2.19)

f being the density function of WN(0, 0, I, 1, p) variable and

e, satisfies the size restriction

n

t () @" < o (4.2.20)
x 2 -

¢ +1 .

o
This test procedure will be referred to as median dichotomy binomial

test (MDBT).

In table 4.3 we compare the performance of the MPBT fogj%%%%EEEizé
alternative and MDPT for = = 25, The levels of significance exactly
attaineé differ for two tests because of the discreteness of the test
statistics. We have taken in either case the size which is nearest to

0.05.

115
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COIPARISON OF TIHEC POWCR OF THE MPBT FOR

TABLE 4.3
INDCPENDENCE WITH THAT OF MDBT
=85 d
Alternative MPBT for the MDBT

6 fixed alternative

k size power size power
0.1 0.0638 0.1146 0.0539 0.0987
p.2 0,0736 0.212Q ' 0.1670
0,3 0,0368 0.2120 ki 0.2034
0v4 0.0524 0.,4345 o 0.3887
0.5 Q.0505 0.6390 y D.5376
.6 0.0455 0.8383 U 0.,6961
0.7 0.0499 0.9739 1 0.8415
0.8 0.0421 0,999L ol 0.9465
0.9 0.0347 1.6009 " 0.9940

From this table theugh it is difficult to judge how geod is tlie

HPBT as compared to the HDBE for all p, the former is definitely

mach better than the later for f > 0.4,

Power of the size-a UMPU proccdure for the _Ho_(p = 0) against

the class of alternative H_zfp > 0) baed on the sample coecfficient

of correlation » is given by

116
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Prob{ r > Pu] | C{4,2,21)
where B is defined by
Prob[ » > o ln,0] = a (4.2.22)

In order to compare the performance of the three tests namely,

MPBT, MDBT and the test based on », we present in table 4.4, for
n = 25, the exact powers of the w»r-test and the MDBT for « = 0.0539
and the large sample expression for the power of the MPBT for the same

o using (4.2.17).

For given a, (4.2.21} is obtained for different p from

David (1938) and ™ (4.2.19) 1is computed using the table of the

Department of Commerce, US National Bureau of standards.

TABLE 4.4 COMPARISON OF THE POWER OF THE MPBT FOR INDEPENDENCE
WITH THAT OF THE BINOMIAL TEST BASED ON MEDIAN DICHOTOMY
AND ALSQO THE UMPU TEST BASED ON ~»
n = 25, size = .0539

Power
p MPBT for fixed Test based on median r-test
alternative (f) dichotomy
0.1 L0988 L0987 .1280
0.2 .1671 .1670 .2584
0.3 L2636 L2634 L4457
0.4 .4456 . 3887 .6596
0.5 5667 .5376 L8442
0.6 . 8583 .6961 L9545
0.7 .9676 - 8415 .9936
0.8 .9981 .9465 .9998

.9 1.00060 .9940 1.0000
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It may be noted that whereas in the case of MDBT and the test
based on =» ‘we use the same procedure for all alternatives of the
form Hj{p > 0}, the MPBT procedure is obtained for a fixed alternative
hypothesis and the 5ubset- w changes with change in the alternative
hypothesis. This, however, is not a serious drawBack. . When our
objective is to test Ho(p = () against the class of alternatives
Hl(ﬁ > 2}, even if we use the MPBT constructed for Hl{p = 0.3 ) we

donot lose much as can be seen by looking at its power function.

The following table is constructed using the large sample

expression (4.2.17).

TABLE 4.5 POWER FUNCTION OF MPBT FOR INDEPENDENCE
AGAINST HI(D = 0.3)

o ) Power 0 Power
0.0 .0539 0.5 .5504
0.1 .0976 0.6 .7162
0.2 .1656 0.7 .8625
0.3 .2636 0.8 .9592
0.4 » 3937 0.9 - . .9963

One method of determining the efficiency of the size-a MPET
will be to find out the increase in the sample size required so
that it will have the same power as the size-a UMPU test based

on  r,
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Let B be the power of the size-a test of independence based on

r when sample size is n. Suppose the MPBT will require a sampie

of size n, to attain the power. Then, using normal approximation

for arcsin transformation of the square root ofa proportion,

1-9 (ta - VU nﬂ(arcsin Vﬁi - arcsin V%O )) = B

or

1 t - tB 2
2= - L N ] (4.2.3)
(arcsin Vhi - arcsin /wd)

where ta is the upper I00a percent point of the standardised

normal distribution.

If the ratio of the cost per item sampled for the classical test
to that for the binomial test is greater than nz/ »n the MPBT

should prove more economic.

4.2.4 The following table gives values of n, so that MPBT would

be as powerful as the correlation test with a sample size(n) 25.

TABLE 4.6 SAMPLE SIZE REQUIRED (nz) FOR MPBT SO THAT
IT IS AS POWERFUL AS »-TEST WITH SAMPLE SIZE = 25

Level of significance = 0.0539

Svecedi K3

P gﬁhLaumhhnpower n1 p Power nz
0.1 .1280 55 0.6 .9545 38
0.2 .2584 56 0.7 .9936 36
0.3 .4457 _ 57 0.8 ‘ .9998 33
0.4 .6596 46 0.9 1.0000 27

0.5 .8442 42
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4.2.5 It may be noted that the KPBT for independence as derived
in section 4.2.2 can be used only if the means and standard deviations
of %4 and %, are known. One method of using this procedure when

these are unknown will be to estimate them from independent large samples

and use these as the true values.

4.3 An approximation to the distribution of the sample coefficient

of correlation when the population is non-normal

It is known that when the population is bivariate normal, r the
sample coefficient of correlation provides an UMPU procedure for
testing independence for both one-sided and two-sided alternatives.
In order to study the performance of this procedure in non-normal cases,
we require the distribution of » when the population is non-normal.
In this section we discuss an approximation to the distribution of
in the general non-normal situation and study its accuracy by numerical
methods and model sampling experiments. Some of the results discussed here

have already been published {Dasgupta (1968c)].

4,3.1 An approximation to the distribution of »

Let (mi, yi), 2=1,2,...,n be n pairs of observations drawn
at random from a bivariate population. Let us denote by f (x) yhe

probability density function of X = %{P + 1) where

Do)k

( - - N - S -.2
(. - 2) (y.-y)/ [ E(x, -x)" x I (y.-y)]
i=1 ° et i=1 * i=1 °
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Using the me4bkdf developed in section 2,2, we have the following fourth
order approximation to the cumulative distribution function of »r

in terms of B(x; a,b) at the point

F4=B(:c,; a, b) - B(xs a+ 1,Db + 1)

x [ df3) Jd(2,%; a+ 1,b+ 1) +d(4)J(5,x; a+r1,b+1)
(4.3.1)

where

ug = g-th moment of r, g=1,2, s..

2(1 + u1)2 S (T F Buy # uy)

a:.."
2
201 + 2111 + “2) - 2(1 + ul)

(1 - uy) (1-uy)

D= : :
n & (4.3.2)
2(1 + 2u1 + uz) - 2(1 + ul)

il

and, d@), d(4) and the Jacobi polyno'miais Jlr, x; a, b) are as

defined in section 2.Z. 6(g)'s occurring in the expressions for

d{ 3) and d(4) are given by

8(g) = g-th moment of X = -15(1 £ 2)

I

-y
[ [ R

@) u..
o L

0
The expressionjfor My (k =1,2,3, 4 have been obtained in
terms of the population cumulants to order n"?‘{ by Cook (1951) and

are not reproduced here. Thus knowing the first four moments of
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r the expression (4.3.1) can be evaluated numerically for any .
It is to be noted that in order to use Cook's (1951) results we

require the kinowledge of the population cumulants.

4.3.2 Performance of the approximatidn (4.3.1) when the population

is bivariate normal

When the population is bivariate normal N(0, 0, 1,1, p), the
expressions for the first four moments of r, to order Jndz,

reduce to (see Cook (1951)

4
u1=p[1-§—n~—§—§+p2(§%—%)+p—§—2—]
an=, & En
Pt ad o 28 Nigmg a8 8 s et
Hyi® Pl g 30 £ 1 - Fe gt 0'( S 25 ) F R = g
H i1 i n
5 .4 .5 8 15 | 261 2, 9 225 225 4
=8 [l -—gPtl-gy t 0 (g 5+ —5pl
p Zn &n 4dn n
4.1 3 . .1,6 38 14,129 , 4,8 168, . 72 4
wy=0 [ oy -TP -t e 5t 5]
0" m p n n n n

We present below a few values of the distribution function of r at
the point u « as given in David's (1938) table and the corresponding.
approximaté values using (4.3.1), when the parent population is
bivariate normal and alsc the approximétion one would obtain using

Fisher's transformation 2z = tanh_1r< tmdl, aAﬁuammﬁ% 'haamaﬂlg &wzk'

122
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5

TABLE 4.7  COMPARISON OF THE APPROXIMATION WITH THE EXACT
DISTRIBUTION OF 1 WWEN THE PARENT POPULATION
1S BIVARIATE NORMAL '

Prob(r <9 | o)

n p U ' exact approximation  Fisher's z
(4.3.1) approximation
10 0.2 0.2 _ .4859 © .5091 .5000
10 0.2 0.6 .9011 .8905 .9028
10 0.4 0.2 .2494 .2550 .2796
10 0.4 0.6 L7480 .7607 .7611
25 0.2 0.2 .4917 5040 .5000
25 0.2 0.6 9882 9826 .9893
25 0.4 0.2 .1386 .1205 .1501
25 0.4 0.6 . .8910 .8823 .8969
50 0.2 0.2 .4942 .5025 .5000
50 0.2 0.6 .9995 .9989 9996
100 0.2 0.2 .4959 .5017 .5000

Table 4.7 shows that fhe agreement between the approximation and
the exact distribution is not too bad. Fisher's =z turns out to be better
in most cases considered here. This of course is expected because Fisher's
z is spécifically meant for bivariate normal populations whereas our
approximation is a general one and can be used in the case of any

bivariate population for which cumulants are known.
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We may note in passing that the approximation (4,3.1) coincides

with the exact distribution if the population is bivariate normal with

zero correlation coefficient.

4.3.3 Performance of the approximation in two non-normal situations

In order to judge the accuracy of Jacobi approximation (4.3.1)
in non-normal situations we consider two cases - one with population
correlation coefficient equal to zero and the other with a non-zero

coefficient of correlation.

Case 1 : x and y are independently and uniformly distributed over

the unit interval 0 to 1.

Here, for a sample of size =, the moments of » to order

2 1 =
n are, ignoring parent cumulants of order 4 or more,

ulfr) =0
1 1
v, (r) ==+ =
2 1 n2
5 {7 =29
3: o
114(1”) ="—2-
n

When = = 100, the expressions are

111(1") =0, 112(1’) =.0101, 113(:1’) =0 u4(r) = L0038 .

Using the above moments of » and the approximation (4.3.1),
third column of the table 4.8 is obtained. In order to see the
suitability of the approximation in this case the following model sampling

experiment is performed.
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1000 sets of 100 pairs of random numbers are chosen. For each
set a correlation between the random numbers of a pair is computed. The
" second column of the following table gives the cumulative frequency

ratio as obtained from this experiment.

TABLE 4.8 RESULTS OF A MODEL SAMPLING EXPERIMENT AND THE
JACOBI APPROXIMATION FOR THE DISTRIBUTION OF =r
IN THE CASE OF INDEPENDENTLY DISTRIBUTED VARIABLES

Prob(r< u )

u | ~ model sampling result Jacobi approximation
-0.2 .020 .023
-0.1 .154 .161
0.0 .488 .500
0.1 . 846 . 839
0.2 .974 ©.977
0.3 .998 .999
0.4 1:000 1.000

In evaluating the Jacobi approximation in the above case, it is
noticed that the contribution due to the third and fourth moments of
r are negligible.. In a situation like this a simple beta approximation
where the parameters of the distribution are chosen to agree with the
first two moments of the variable %{1 + v} is good enough in large

\samples.
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Lase 2 : Let us define

:L"-‘-"Zi

g T

Y 0.2 =z

where 2., and 2z, are independently and uniformly distributed over

1 4
the range 0 ‘to I.

Then the first two moments of r$y, to order n-l, taking g =.100

are (using Cook's (1951} result)

uI(PJ = 0.194?7636
uzﬁr)- = 0.04739163
Hence from (4.3;2)7
a = 59,9435
b =

40,4076

Ignoring the other terms, an approximation to the distribution function

of X =‘§¥1 + r) at the point « is obtained as

P(x) = B(x ; 59.9435, 40.4076) (4.3.3)
column (3) of the following table gives the cumulative distribution
function of r at different points using the approximation (4.3.3).

In order to have an idea of the exact distribution of » in

this case the following model sampling experiment is performed.
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1000 sets of 100 pairs of 4 digit random numers are chosen,

From each pair (31, 22) we construct a pair (x, y) by

a1
X =z
i

= 0,2 ?1 + 22

e
l

For each’'set of 100 pairs, the coefficient of correlation between
the variables (x, y) is computed. The results of this experiment

is presented in second column of the following table.

TABLE 4.9. BETA APPROXIMATION AND THE RESULTS OF A MODEL
SAMPLING EXPERIMENT FOR THE DISTRIBUTION OF

7 + 22) WHERE 84 AND z, ARB

iﬁﬁEPENDENTLY UNIFORMLY DISTRIBUTED OVER (0.1).

r(zl, 0.2 =

Prob(r < u ).

127

model sampling result beta approximation
- .15 .000 .000
- .10 \ .001 .002
- .05 .003 .007
.00 .018 .024
.05 - .054 .071
.10 . 165 .167
.15 .321 321
.20 .550 .516
.25 .731 .710
.30 , .871 .860
.35 .959 ’ .947
.40 .988 .985

.45 .998 .997
.50 1.000 1.000



http://www.cvisiontech.com

128

CHAPTER 5

EFFECT OF DEVIATIONS FROM SIMPLE SAMPLING
ON SOME STATISTICAL TESTS

5.0 Introduction and summary

Most of the studies on robustness of test procedures have been
made with respect to departures of parent populations from normality
anad/or homoscedasticity of the basic variables. Not much secems to
have been done to study the effect of deviations from simple random
sampling, A notable exception is Anderson's (1940) paper which deals
with the distribution of some statistics when stratified sampling

scheme is used for different types of populatioms.

Situationjare not infrequent when a statistician has no control
over the collection of data, but has to analyse a set of data already
collected. Under such situation, he is often forced to make a plausible
assumption about the chance mechanism through which the data were
generated. An assumption very often made is that the data arose out
of a process of simple random sampling from the population under
study. If this assumption is not valid, the statistical inferences
‘drawn may or may not remain valid, depending whether the inference

procedure is or is not robust in respect of deviations from the

sampling mechanism assumed.

In section 5.1 we examine this issue in the context of the
t-test of significance of the mean value based on a sample from a

normal population, on the assumption that sampling is simple random.
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If instead the sample arose out of ; process of stratified simple
‘random sampling with propdrtionate allocation, how might it have
éffected the operating characteristics or the power function of
the test? This is answered by calculating the asymptotic Pitman
power of the test. It turns out that this power decreases if

any stratum is split up.

A similar question for non-normal populations is considered

in sections 5.2 and 5.3.

Finally, we discuss an approximation to the distribution of

student's ¢ in a 'probability proportional to size' sampling

scheme. This scheme, similar to the one discussed in Lahiri(1951),

is defined for drawing a sample from a population with continuous
density function, and the fact that the sample mean in this case

provides an unbiased estimate of the population mean is proved.

All summations in this chapter unless otherwise indicated are

over distinct terms only.

5.1 Pitman power of the student's ¢ test when sampling is

stratified

5.1.1 Let us consider a normal population with the density function

fiz) = exp [- é{x - m)2]

Y
ACTEN

(2w)
i

Suppose this population is divided into % strata, the Z-th stratum

consisting of the set of values

129

{5.2.1)
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5, ¢ xlxﬁ-l fxsm] s P=1.2,..0,k

where
xoz_oo
xkz.-i-eo
and x., < 2, for all <
zfl 7

Suppose 7 observations have been drawn from this stratified population.
Let ng be the number of observations from the 7-th stratum using

proportional allocation under the assumption that m= 0 i.e.

n, = n ei = TS 1s s e i
L. |
where 8., = i ¢(x) dx
-
-1

An user not knowing the way the sample has been chosen will obviously
use for testing HO(m = o), when he does not have any knowledge about

the population variance, the student's statistic

- iz (5.1.2)
g
where z = the mean of all the observations
= I Bi xi
n.
- i 2 .
x., = S I %.., x.. being the j-th observation from the
7 7. - 5] ]
. g=1
i-th stratum
2 il 2
8 = S b {x’l:,j - x)


http://www.cvisiontech.com

131

In order to find out the effect of stratification on the
procedure using student's ¢ we compute its Pitman power for
U

alternatives‘of the fornm H1 (m = 7T > (). The result in this

connection is stated in the following theoren.

Theorem 5.1

The Pitman power of the istudent's ¢ test, when the sample has
been drawn using the stratified sampling scheme discussed above, for

the null hypothesis 4 (m = 0) against the alternatives

H, (m = 7% > 0) is given by

1
t -
1-9(= - ) (5.1.3)
where tu = upper 100o percent point of the standardised
normal distribution
02 =7 - L 8. m%
T io
and My, = Elx) S;, HO) = [¢Cxi_1) - ¢Cxi)]/ [@Cxi) - @ﬁmi_l)]
Proof :

Then

Therefore:
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mE=ve % o0 3 =t I (zy-m,)
v %
= Vo Vhi Ys
o
'W-
= 1 5
where Yoo = Xoa = M, and Yy, = -— B k.
g g 10 3 Ny ga (]
We have
E( yi|31) £ JHl milﬂl) - My,
20k
i
[ zélx - m) dzx
X
= 1-1 X o
z0
2.
Z
otz - m dx
-
iy ¢(xi_1 -m) - ?(xi - m) o=
B @(xi -m) - @(xi_z - m) to

Expanding  $(z;_, - m) - ¢(w, - m) and @(x; - m) - B(x; 5 - m)

about m = 5%- = § and neglecting terms of order nﬁr, r> 1,
we get
o'z, L) - ' (x)
. = . _ M - 1~-1 T d 2
E( inHI) = W [1 o )— o m’l:O mt.O]
-1 7
= [ - m. - m.&]
. 10 2

.Jﬁi $lx, J) - ¢(x,)
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8. = Lt ., EBE(y.)
i o B 1 Yi
7
, ¢’(xi_1) - ¢'Cxi) . |
= ‘/ei pll - m, 3o, ) - ew - m ] (5.1.5)
2 | .
cil(n)‘w V(yijlﬂl) = V(xileI)
€. - _
Z i o
S (y +m)” ¢(y)
L. l—m 6i 2
= ko [ie) ‘_/"" +m1:0) ]
@(xi -m) - ¢(xi-1 - m) n
&£ .
“ e
Iy ely) dy
2 *iz1
Fherefore, Lt 0y (n) = = -
o 1z
i
= Vix, |H) = o2 (saqy) (5.1.6)
id'" o io0

Hence, using lemma 4.1 , Jhi aij asymptotically follows a normal

. 1 4 . : 2 2
distribution with mean &, and variance J. where &. and o.
7%, 10 A 10

are as defined in (5.1.5) and (5.1.6) respectively. This shows that

Ynx = I /ei Jﬁi_gi asymptotically follows a normal distribution
1=1 ‘
with mean D =L v6. &, and variance 02 =1 0, G% . Again,
i 1z i 1o

noting that E(82] Hl) converges in probability to the constant
- ;
2 . =4 _ =
///////2 6, 9, + X eé(mia -m)® =1, vwhere m=1L8,m, ., the

student's ratio asymptotically follows a normal distribution with

mean [ and standard deviation o. After simplification,
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N 2
and
2 2 "

Hence, the Pitman power of the students' ¢ test in stratified samples

J

for the null hypothesis B, (m = o) against the alternatives

H, (m= 7&- > 0) is given by

Lt Prob (¢t > | H,)
il 1

no> e

t - D
1- o(—2—)
g

¢
1-0(2 -no (5.1.9)

As we have noted in theorem 4.3 the quantity I ei mﬁo increases
if we split up any stratum. This shows that the effect of increasing
stratification by splitting up any stratum is to increase the quantity

t ;
= pw ¢ and hence to reduce the Pitman power (5.1.9). It may be noted

o
that the maximum value of o is I which is attained when there is no
stratification, and the entire population consists of only one stratum,
In this case the Pitman power will be

1-e(t, -u) " (5.1.10)
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The comparison of (5.1.9) with (5.1.10) will give us an idea about
the loss of power due to stratification.
5.1.2 Table

The following table gives the Pitman power (5.1.9) when
there are two strata. The division point o is chosen in

such a way that

The column which gives the Pitman power for 6 =0

presents the values obtained using (5.1.10)}.

2

135
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PITMAN POWER OF THE STUDENT'S ¢ TEST

TABLE 5.1
IN STRATIFIED SAMPLES
size .05
. ¢ .00 ~.,005 .01 .025 .05
0.0 .050 .046 .044 .038 .031
0.1 .061 .057 .053 .046 .037
0.2 .074 .069 .065 .056 .045
0.3 .089 .083 .078 .067 .054
0.4 .107 .099 .093 .080 . 065
0.5 .126 117 .110 .095 .077
0.6 .149 .137 .130 .112 .090
0.7 .172 .160 .151 .131 .106
0.8 .199 .185 .175 .151 .123
0.9 .228 .212 .200 .174 .142
1.0 .259 .241 .228 .199 .162
1.2 .328 .306 .291 .254 .209
1.4 .403 .378 .360 .317 .263
1.6 .482 .455 .434 .386 .323
1.8 .561 .532 .511 .459 .389
2.0 .639 .609 .587 .532 .458
2.2 711 .682 .660 .605 .528
2.4 775 .748 .728 .674 .598
2.6 .830 .806 .787 .738 .664
2.8 .876 .855 .839 .794 .726
3.0 912 .895 .881 .843 .781
3.4 .961 .950 .942 .916 .870
3.8 .984 .979 .974 .960 .931
4.2 .995 .992 .990 .983 .967
4.6 .998 .997 .997 .994 .986
5.0 .999 .999 .999 .998 .994

contd.

136
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TABLE 5.1 (Contd.)
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. .00 .10 .15 .20 .25
0.0 .050 .021 .015 .011 .008
0.1 .061 .026 .018 .013 .009
0.2 .074. .031 .021 .015 .011
0.3 .089 .037 .026 .018 .013
0.4 .107 .044 .031 .022 .016
0.5 .126 .052 .036 ©.025 .019
0.6 .149 .061 .043 .030 .022
0.7 172 .072 .050 .035 .026
0.8 .199 .084 .059 .041 .030
0.9 .228 .097 .068 .048 .035
1.0 .259 112 .079 .056 .041
1.2 .328 .146 .103 .074 .054
1.4 .403 .186 .133 .096 .071
1.6 .482 .232 .169 .123 .091
1.8 .561 .285 .209 .154 .116
2.0 .639 .342 .255 .191 .144
2.2 711 .404 .306 .232 177
2.4 .775 .468 .361 .278 .214
2.6 .830 .532 .420 .328 .256
2.8 .876 .596 .480 .381 .301
3.0 912 .657 .540 .436 .350
3.4 .961 .767 .657 .550 .456
3.8 .984 .854 .760 .660 .563
4.2 995 .916 .943 757 667
4.6 .998 .956 .905 .837 .759
5.0 .999 .979 .947 .897 .835

Contd.
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TABLE 5.1 (Contd.)
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. 0.0 .30 .35 . .40 .50
0.0 .050 .006 .005 .004 .003
0.1 .061 .007 .006 .005 .004
0.2 .074 .008 .007 .006 .005
0.3 .089 .010 .008 .007 .006
0.4 .107 .012 .009 .008 007
0.5 .126 .014 .011 009" 7,008
0.6 .149 .016 .013 .011 .009
0.7 .172 .019 .015 .012 .011
0.8 .199 .022 .017 .014 .012
0.9 .228 .026 .020 .017 .014
1.0 .259 2030 .024 .020 .017
1.2 .328 .040 .032 .026 .022
1.4 .403 .053 .042 .035 .030
1.6 .482 .069 .054 .045 .039
1.8 .561 . 088 .070 .058 .050
2.0 .639 .111 .088 .074 .064
) .711 .137 .11 .093 . 080
2.4 .775 .168 .136 .115 .100
2.6 .203 .165 .141 .123
2.8 .242 .199 .170 .149
3.0 .284 235 .203 179
3.4 .378 .319 .279 .248
3.8 .480 .414 .367 .330
4.2 .583 .514 .463 .422
4.6 .682 .613 .561 .517
5.0 .999 .768 .705 .655 .612
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5.2 Effect of sfratification‘on the power function of Student's

t_test - general non-normal situation

Let f (x) be the density function of a population with mean m.
We assume that the population is divided into p strata. Suppose
L;1s $£2’ cees &y, AT My observations drawn at random from the
i~th stratum. We want to study the effect of stratification on the
power function of the student's t test for testing ‘Ho(m =-mc¥

which one uses when the assumptions of normality of the population

and simple randomness of the nature of sampling dre valid,

The square of the student’s statistic is

5 nl & - m‘)2
I S T (5.2.1)
8 :
&
h 7 :t = 7 Z‘; -
where X, = — SBiss B B n, &£
T Ry ot i1 nog tt
p -'V ==
n = I n and 5 {n-1) 4 b (::cﬁ - ;r:‘-‘)z
t=1 i st
e Kne = %
and K., = (n, - 1) - J;t (x,. - = )‘2
; a2t a2 s=1 ti t

be the first two K-statistics computed from the sample observations

from the t-th stratum.
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Then
= 1
T by o
Let us write
= 2
Then
1 2 .2 Sy 2
X= "[;'é’ (L n, Ky, + 2% ntnt'KltKIt')_ T(Z ntht) + mo]
and

L 4_ 4 :—
Xz-nz (L ntKIt) -n(z 1/;2,’_111‘”13 m,

2 2 . 3 . 2 4
+ 6(L ntKIt) m, - mo (L ntKIt) +nm

146

(5.2.2)

(5.2.3)

(5.2.4)

o 4 4 3 3 22 .2 2
F (2 7y Kyp # ST A Ky K, + 6 ne K1 Kg
+ 198 nin o, KE K K, o+ 245 man, gy iR Ko K K]
e eri 1K K yan ety Ky K 1 K gk
4m ;
o 33" 2
- 2Ly, 481 ngny Ky Kyyr + 63 Mytyittnky Kyp K yynl
2 2,8
+ om { L n K, + 2E no ity Ky Koy ]
2 4
- 4dm nZntK1t+nm0
Let us write
n
p 13 2
=1 =1
s Ezp: (%, - %)%
= n XL, -
0=y
n
p t 2
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Then S~=-SI + SZ and 92 ={n - 1)_15

Let

where %k

rt’ P=1,2,ood,

-and

R

=1

Then following David and Johnson (1951a) we write

&5, =L n K2

I t1t  n t 1t 1

and sé = z(nt - I)Két

For the product XS we have
=2

- = L, = o = 2 ] .
*& Sy -2m (w5 +x5,) + m, (S, # Sz}}

=5
XS =n[ x Sl 7

Let us define

a, (s,t) = E(K )

and % o (u v , t) é E(%ft Ki,t)

It is easy to see that [David, Kendall and Barton (1966)]

T 2
£ 2K - ZE g Ky KoL, + 5 O+ o

141

¥5.2.5)

(5.2.6)

(5.2.7)

(5.2,8)

(5.2.9)
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aI(s, t) = kst

k
_ ot
a(l t)-n—-—— +k

t

I1(31‘: 2t 1t+

nt 17‘:

a il &) =
2 2

k,, 3k + & 6k, k
0 (1, 1) = 2, ot 1t ot *ie
¢

3 n2 n
t t

% ¢

(1,2,1:)——— +k,, k

®1,2 1t ot

and
k k
—4—t-+7< (21" +k2

(1,2,¢) = 2 2t' n 1t

% 1 )

Then

- 1 2
u! E(X) = m [Zn

10 (1t)+22nnkk

ttIt 1t

2 2
- 2m_on z ntklt +n mo]

2
I -

4

ta4(1 t)+4znn,03(1 t)a(l t’)

1
= T
n

2 2 )
+ 6L RO a2(1, t)azfl, &%)

+122nn

£ t’nt" a, (1, t) @, (1,¢') al(l., t")

+ 24 Zntnt,nt,,nt,,f; al(l,_,f:) a,(1,t') a1(1, &) al(l, t")]

+ k

4
1t
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(5.2.10)
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_i“ig[z_nst {(1,t) +312 non a,(1 t)§(1 t')
7 't % g, he (LA GZ S S

t't!

+ 8% ntnt_,n.t,,;

2 2
- ,6mo [T g a2(1, t) + 2% 7

311 ' 2 4
-4mon[2: ntal(l,t)]-i-n m
_ i 12
Uy, = Var (X) = u' -y
' 20 10
I = 2 ] q—-lu—

- A IS
= [z kg15 nt(l -n), +ncc]/(n- 1)

David and Johnson (1951a) have computed WSI) H V(Sz) and

Cov (SI 3 5‘2). Using these

Hyy = VIS)/ (n-1)°

(n-1)2

1]

(n-1) t
n

s an k)t an, o1 -8

'n

k

+ 4z, Ky, 21 + {xtn, - 1) N

n,-1 n

rolet— (1 -0k, + 20y - 1) C, KL

t

_a.1(1_, t) 0.1(1_, t!) al(l., t")] .

,nf"' a1(1_, t) aI(I_, t')]

I
[V(SI) + V(Sz) + 2 Cov (Sl’ .5‘2)]

k n
1 4t t,2 2
2[[21‘1 (I‘T) +22k2t(1--—"

2(.15.4.
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(5.2.11)

{(5.2.12)

(5.2.8)
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2 7 2
I = o m—— i . ' .
My, = E(X g") = " [Al + A2 Zm (31 + BZ) + (n-1)m “01] (5.2,14)

where

=2
‘41 =E( x 51)

7 n!

@, g, 27 £
=n—§znt(l—n)a4(l,t)+ I n.n (l—n )ugfl,t) a, (1, ¢')

g e
n

a,_ 2 ¥ &_ r "
- z L {1, i3 ul(l‘, By = 3L n Ty 0!.2(1 _,t)uz(l St )“1(1;’3 g)

3
n n
+§--En2 (1, ) C +§-—Enn a (1,%t) a (1,t') ¢
2 t %o t T2 ther Ygleo g 2 t!
&2 n
e 2 Sy W ;
+ nzntag(l,t)+n28nt(l n)%.‘.(l-‘t) al(l_,f;)‘
+2—Z n, 7 (1 fjf-t) (1, %) (1, ¢") (1, ")
2 Plptftgn UL = == ) a1, t) o (1, Gglids

4 2 2 f 2 ; r )
- n—g~ [Z nn otg(l,f:)otz(l ')+ 22 ntnﬁ,nt,,ugfi _,t)ul(l‘ LET) al(l,f; )

+ 2% RN T 0;1(1_, ) ul(.‘!_, t!) al(l_, t") OLJ(.I, t"')]

4 2 ' 4_
H By a1 t) a(1,87) 0, + Iy Cy ay(1, 8)
: 7 rn
chl(l_,t)al(l,t)
+ 2-02 rnn,, a1, ¢') o (1, %)
B e e T g~ TR
Cap 2
Agzﬂ{x 82}

B | 1.2 2
= ;2— B nt(nt-l) % 7 (1,2, t) + n2 B nt(nt,-l‘) oag(l, t) a1(2, t?)
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et

2
o e, = iR, S
+§-En7/z (v, - 1) o (1, ¢t) a.(1
n2 tf .tH 1‘ 3 I 3
= ﬂ,[;cSI}

2

_‘23
7

+ %Zn a {1, t)C +-2—Zn

= E[ =

=K
-_nznt

us write

p —4

¥

2
T 2

n
2
e R e A

5’2}

1
(nt-l) % 1 (452 BV + T ”tmt’

r

Hip 7 Mg
[ 4

N IRAYT
2

r .

¥ip / Mgy

2
[
Yoz / Wpg

1

2
! ! [

1 2 t .
nZnt(l-n)ug(_I,t)+ZE ntnt,(l—

nnt,u(lt)a(l t')—-z-——Znn

t

fl_stsy: ) al(l,t’)

i54)) 0.1-(2_, AL

I

-1) cxl(l,

)
-i) al(l‘,

t) oe2(1, A

Z
1
nt,cxl(l‘,i:) ulfl,t ) + o, I ntal(l}t),

£) o (2, t'),
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Then using (2.4.6), an approximation to the power function of the
size-o student's ¢t test for Ho(m = mcg for two sided alternmatives

is given by

1
o 4,7 Tlg+p) g _ . Prg L
P(a) = Blz;q, p) + p(p) rlq) T(p) zt(1 - z)F[-1 +—a—— z]
(5.2.15)
e, (1 - x)
where 2= [1 +1‘—] A R
cy

1
1+ t2( %ﬁ, n-1)

e

and #( o, n) is the upper 100a percent point of the ¢ distribution

with n degrees of freedom.

5.3 Effect of stratification on Fisher's ¢ and one-way

classification F tests

5.3.0 In this section we give an outline of the procedure which may
be useful in studying the effects of stratification on Fisher's ¢ and

-

one-way classification F tests.

.

5.3.1 Effect on Fisher's © test

Under assumptions of normality, homoscedasticity and simple
random sampling, the statistic known as Fisher's ¢ wused for testing
the equality of means of two populations Pl and P2 when samples

from the populations have been drawn independently is
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/(nl + n,) ( x(1) -%(2))
i = (5.3 1)
(1) + 5(3) '

n1 + nz -2

where n:s Z(Z) and S(i) are the sample size, sample mean and
total sum of squares for the sample drawn from Pi’ i=1,2. Let
us suppose that the populations are stratified - P& is divided

into q; strata and Pé into q, strata, and we draw a sample

of size nij from the j-th stratum of the population Pi’ =L i 1o

J=1,2, ..., 9

n. = L n.., B |1 el (5.3 .2)

Let us write sz_(i) = Jl-th observation of the j-th stratum of the

population
s i=1,2, (5.3 .3)
Then
_ o i ey
x(i) = = b bX x.z(i) (5.3 .4)
i g=1 1 9 _
1 %] 1 P
S(i) = % bX (x.z - x(Z)) (5.3 .5)
EE I Y

We define = = nz + Mo

X =nl B5(1) - 52))°

= nl T2(1) + 72(2) - %3(1) 5(2)), (5.3.6)
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Y et [5(1) + 8231, (5.3.7%
AGi, 5) = EC B (3)), (55328
and Bli, §) = E(S(1) 5 (1)) (5.3.9)
Then E(X) =n [A(1, 2) + A(2, 2) < 24(1, 1) A(2, 1J} : (5.3 wich
Bx%) = ng{.il(l‘._, 4) # A(Z, ‘4) - 4[(3,3)4(2, 1) %Afe,sm{z, 1)
.+ 6A(1,2) Al2; 2)] £5.3 . 11)
B(Y) = = {B(I; 07 +32,01 (5.3.12)
vy) =—L— (s + v(s(2))] (5.3 .13
(n-2)
E(xy) = L= [B(1, 2) # Af1, 2) B(2, 0) + AT2, 3 B(1,0)

+B(2,2) - 2B(1, 1) A(2, 1) - 2B(8, 1) A(1, 1))
{5.3.14)

The expectations 4 and B and the variances of S(1) and 5(2)
can be obtained as in section 5.2. Knowing (5.3.10) - ({5.3.14),
an approximation of the type (5.2.15) may be used as an approxima-
tion to the power function of Fisher's ¢ test for two sided

alternatives.

5.3.2 Effect on one-way classification F tests

In a standard situation, the statistic used for testing the

equality of means for I different populations is
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- =8
Don (&, - w1 - 1)

i

F=

- ,&
T (z., - x2.0°/(n - 1)
tels 9 %
where
Tp; = j-th observation of the <-th population
M (3 size of the sample drawn from £-th population
5?‘: = sample mean for the <-th population
-t i
(2] .
J
n = I n.
. 1
7
& = I n xi/ 7

Let us denote the populaticms by PI h P2, Srde s PZ’ Suppese the
population Pi is divided into 9 strata, and a sample nig’
is drawn from the J-th stratum of Pi'

Let us further write

xij-'u = u-th observation from Jj-th stratum of
of the population P'.i
n s
_ 7 d - 1 -
Ly = B 5 Loz and L, = o Xni.x?:
d i3 u=l JU i g WY

In terms of the observations miju , when the observations
are drawn from the populations after stratification, the statistic

F in (5.3.16) reduces to

149

(5.3 .18)
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Let us

Then writing

computed from the sample chosen from the .j-th stratum of Pi’

we get
X= £ qsnl, K2, 5) +2 T m..m.., K (i, 3) K (i, 3")]
7. e Lyl AP s B Bd &g @ o il
T T Jd & »d
Loy W2 B, g -2 z n, .
2,9 Y ORI AN AP I
- .2
¥= £ £ E (x,, = 23 )
S ZJu :
7 J u
=z [zni.(aij-‘:‘c,.)’2+ £ tags 7;J.)?}
g gtk
Now if we write
kr(i, j) = nth cumulant of the j-th stratum of the
population E%
k. (i) =L sk (i, 4)
i 7 g 1 77

- =8,
Z ni( a, - 2} /(1 - 1)

F= —F
i i
I il o 2 ) e X
Taf s ¢
define
X=3n.(%, -5
T
A (.. =~z )2
3 v iju 7
Tad st
b
Kf(i, j) for the

7

r-th K-statistic

{6.3.17)

P K (2 ,3) K (2,57)

150

(5.8 .16)
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ng = szt, 3} - kj(t)
02 - L in cg
ol(i) ng T S@ag
- e
then
N 2 L8 ey L N
I'= 1 iz nij Kl(t, Jl) - i (z nij Kl(z, gl
i i
e 8. ..
+2% nij Kl(z,a) Cij o, ﬁi)] + E Z (nij - 1) Kz(l,J)
C (5.3 .19)

The moments E(X), E(Y), V(X), V(¥) and Cov(X,r) can be
computed using (5.3.18) and (5.3.19) and the tables of symmetric
functions [David, Kendall and Burton (1966)}]. Since X and ¥ are

both positive, an approximation to the distribution function of

4 = f%f is obtained using (2.4.6). This may then be used for

approximating the power function of the F test.

5.4 Effect on the student's ¢ when 'probability proportional

to size' sampling scheme is used

5.4.1 The scheme

Suppose f (x, y) 1is the density function of two random variables
z and y. We draw a random observation (x, y) from the population.
This observation is selected if r < g(x) where r has uniform distribu-
tion in the two sided closed interval ¢ to 1, and g(x) is some
function of & satisfying the condition 0 < g(x) < 1. If a drawn
observation fails to‘be selected, we make a second attempt and go on
attempting until an observation is selected. This is an extension in

the case of continuous populations of Lahiri's (1951) scheme.
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Result 5.1

If the above scheme is used to include # independent observations

Y; E(g(x)]

(acl, yl), % B (xn_, yn) in the sample, and if Z?: = g(xi) G
. - G
i=1,2,..0,n, then Z = y L Z’i is an unbiased estimate of
i=1
Ely) = nu, .
AR
Proof :

The probability that a drawn observation will be selected is
S foglz)f(xy) dy de = E[g(z)] (5.4.1)
Therefore, the density function of the selected observations is

Plzy) = gl@) f @) + [1 - Eg(x))] gla) F (wg) + 1 - Eg@))og(z) £ (@ g)+...

Since 0 <g(x) < 1, so is FE[g(x)] and hence

g(z) f (xsy)

Plaz, y) = —— .4,
. Elg(x)] _ (5.4.2)

Therefore
é

E(Z) = E(Zi)

Elg(z)] g(x)

I Y @ mgEn v B

il

Fryf (w,y)dx@=uyo
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If the observations }1, Y2, 500 & yﬁ are used as basic

observations and if the student's ¢ is used for testing

Ho( uy =m, ), then

m/n(y-mo)

t = (5.4.3)

8

2

hets B 1AL = (=TI (y; - y)° .

1=1

Noting that the density function of the selected observation is

glx) f (x, y)

Plz, y) = Elg(z)] , it is possible to compute the expectations
, - 2
wjp = En( y - mo) ]
_u2'0 = E’[nzf y - mo)é]
wl, = E(s)
uéz = E(s4)
and  uj, = E[szn( y - mo)zi.

‘Then using these moments a simple approximation to the distribution

Fumctionlloe™ =3 , can be obtained using (2.4.6).
1+¢
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PROGRAM FOR CCMPUTING APPROXIMATE POWER OF ANOvA PROCEDURE
USIKG APPROXIMATION (3.3,19),

INPUT === PUNCH FE(yl)+E(UZ) ey (U1)av{U2)sCOVIyLsU2) AND X
ON A CARD wWITH FORMAT 6F12.4

OUTPUT ==== P4QsR AND FI(X) AS IN (3+3.19)
REAT 100+ X1aXZeXK114X224X12.7
FORMAT(6F12,4)

ROW =X12/SQRT(X11)/8QRT(X22)

Cl=X1/X11

Ce=sXz2/Xe?

Az=XZule

PeXleCi

X=1al +C18{(1a0mZ)/7(C2%7)

X=la0/X

CALL BETAB(AsBaXeR1C)

PROB=SGRT(A)# (=140 +(A+B)#X/A)/SQRT(R)
PROP= FPROB#X$#4AL (1, =~X)28B/C

CORZROWHPROR

RESLT=K+COR

PRINT 300+ AeBsROWSRESLT

300 FORMAT(S5X24F2048)

GO T0 1

ExD

SUBRQUTINE RETADtABeXeP4CRB)

I1=1

~ e S YO

[
—

» ™, |
~\n
ft
-

o
1
-

-1
W)22+224+10
/U
TaF#(Y##U) 5 (1o 0aY)#8( Vel a0}
15 s=5+7T
WEW=1.0 .
JIF(WIZBa25420
€0 CG=(he+l,0)/ (UtVar-1,0)
FeFag
T=sTHGEHR

o
M N <

TR oo on

A
e
0
Y
0
v
(
1

ic
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GO TO &7

F:F'“‘(W*’}.O)

Hsl+V=p=1,0

Wael

C=0-ﬂ

T=F#{ysel) /U

S=5+T

C=C+1.0

TETH (W C=1a0) % (U+C=1,0y/(Co{U+C) )XY
IF(T=-.00C00008%) 35436,30
GO TD {(400454554865) 47

w ol ]

AV - ¢
w

=CR+S
Xw{145}50+50060C

MGy

W > D P —~

0 ¢
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»
QD
1
e
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PROGRAM FOR CCMPUTING APPROXIMATE POWER OF ANOvA PROCEDURE
USIKG APPROXIMATION (3.3,19),

INPUT === PUNCH FE(yl)+E(UZ) ey (U1)av{U2)sCOVIyLsU2) AND X
ON A CARD wWITH FORMAT 6F12.4

OUTPUT ==== P4QsR AND FI(X) AS IN (3+3.19)
REAT 100+ X1aXZeXK114X224X12.7
FORMAT(6F12,4)

ROW =X12/SQRT(X11)/8QRT(X22)

Cl=X1/X11

Ce=sXz2/Xe?

Az=XZule

PeXleCi

X=1al +C18{(1a0mZ)/7(C2%7)

X=la0/X

CALL BETAB(AsBaXeR1C)

PROB=SGRT(A)# (=140 +(A+B)#X/A)/SQRT(R)
PROP= FPROB#X$#4AL (1, =~X)28B/C

CORZROWHPROR

RESLT=K+COR

PRINT 300+ AeBsROWSRESLT

300 FORMAT(S5X24F2048)

GO T0 1
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