7. S. Arthanari

/ndian Statistical Institure

Caolcutta
/1974



http://www.cvisiontech.com

On Same Problems Of
SEQUENCING

AND

GRQUPING

T. S. Arthanari

A thesis submitted to

the Indian Statistical Institute
in partial fulfilment of

the reqQuirements for

the degree of Doctor of FPhilosophy

ct Calcutta
b=
oy gevv ! R
Rﬁé.b-!“‘y
k //,—;‘:-ﬂ:__‘\

ZACAL INSTIT,

T 05U

IO ravosssonnsessnr s2e2enas?


http://www.cvisiontech.com

ACKNOWLEDGEMENT

I thank the S3C Division of the Indian Statistical Institute,
for all the facilities extended to me to carry out the research work.
I thank Professor T.V.Hamurav, Dean of Studies and Professor J. Hoy,
Head, Computing Science Unit for allowing me to use the facilities
avallable in thelr offices.

I em partioularly indebted to Dr. A.R«Rao, my thesis supervisor,
who went through the thesls meticulously and offered many = valuable
suggestions. His willingness to read promptly mony drafts of this thegis
greatly enhanced wy progress.

I express my boundless thenks to Professor K.G. Ramamurthy, for
encouraging me to work in this branch of Operations Research and

vermitting me to include the materials from some of our Joint papers.

I thank, my colleague and friend Mr. S.R.Mohan for the stimilating

discussions and for allowing me to include our joint work.
I thenk, Mr, C.H. Sastry for the programming help rendered by him.

I am greatful te all my colleagues and friends at SQC Division
for their ococoperation and ¢cmstant encouragement throughout the work.
Bspeclally, I owe my thanks to Messrs. A.C.Mukhopadhyay, R.K.Chordia,
R.J.Pandey, V.V.Buche, A. Majumdar, J. Sharma, S. Guha and Chitta Babu.

At each stage of preparation of this thesis my friend Acchu
(Mr. N.R.Achithan) rendered such help with affection and interest thab
I cammot possibly express my indebtedness to him in a few words,

He is a gem of a friend.

I thank Mr. Dhruba Roy for designing an impressive cover for
the thesia.

I appreciate and thank Mr. Arun Das for the quick, excellent
and intelligent typing of this thesls.


http://www.cvisiontech.com

Introduction

Chapber = 1

Chapter

1.0
Lol

12

Le3

-2

2.0
2

242

2.3

2.4

2.0

.6

27

-

oe ®@

FLOW SHOP PROBLzMS-I
(tinimization of Total Elapsed

Introduction see

Some Special Cases of the
(n/m/F/F__.) problem -

max
An Extension of the Two
Stage Se uencin§ Problem
(n/(m, 1) /F/F

max L
Some Ohservations on
FLOW SHCP PROBLEMS-II
(General Objectives)
Introduction .
L General Dominance
‘Theorem % s

Minimization of Certailn
Tunctions of Job Tardiness.,.

Some Speclal Cases of
(n/2/F/C,) problem _—

Some Special Cases of
(n/m/F/t)} Problem with

f a Regular Mecasure of
Performance Mo

Minimization of Weighted
Tardiness with a Single
Machine sae

The (n/1/F/T_ ) Problenm
with Common “Bue Date ops

Single Machine Sequencing
with Intermittent Job
Arrivals, to Minimise the
Number of Late Jobs Sheid

CONTENTS

Time)

1

e

30

&7

66

67

71

88

92

107

130

145


http://www.cvisiontech.com

Contents

Chapter - 3 & GROUPING PROBLEMS

3,0 ¢ Introduction PN 152
3,1 ¢ Parallel Scquencing
Problem g 155
3,2 ! Batch Splitting Problem P 176
3,3 % Cluster Analysis P 122
List of Symbols cos %L
References e e

c00000000


http://www.cvisiontech.com

Some people shave before bathing,

And about people who bathe before shaving they are scathing,

While those who bathe hefore shaving,

Well, they imply that those who shave before bathing are mnishehaving.

Suppose you shave before bathing, well the advantage is that you dom't
have to make a special job of washing the lather off afterwards,
it just floats off with the rest of your accumulations in the tub,

" But the disadvantage is that before bathing your skin is hard and dry
and your beard confronts the razor like a grizzly bear defending
its cub.

Well then, suppose you bathe before shaving, well the advantage is
that after bathing your skin is snoft and moist, and your beard
poaitively begs for the blade,

But the disadvantage is that to get the lather off you have to wash
your face all over again at the basin almost immediately after
washing it in the tub, which is a duplication of effort that
leaves me spotless but dismayed.

The referee reports, gentlemen, that Fate has loaded the dice,

Since your only choice is between walking around all day with a
sore chin or washing your face twice,

So I will now go and get a shave from a smug men in a crisp white coat,

And T will disrupt his asmugness by asking him sbout his private life,
does wie bathe before shaving or shave before bathing, and then
I will die either of laughing or of a clean cut throatb.

- Ogden Nash


http://www.cvisiontech.com

I TRODUGCTTIOHN

: The problems of sequencing arise in almost all walks of
life, Theory of scheduling deals with such problems, Usually,
these problems are stated in the literature in terms of jobs,
machines, operations, penalties, due dates et cetera, that is,
in the language of machine = shops, The rezl life problems of
machine = shop job Sequencing are of a complex nature, In
general, we considér processing n i1tems on a certain group of
machines, so as to optimize certain objective, subject to various
constraints on precedence, machine availability, due date and
so on, The job sequencing problems are included in a general
class of problems known as Tresource constrained network
problems, These are the well known CPM/PERT type nctwork

problems with constraints on available resources,

Johnson's (1954) paper initiated work in developing and
analysing mathematical models representing machine - shops which
was continued by Wagner (1959), Bowman (1959), Manne (1960},
Dantzig (1960), Held and Karp (1962), Brown and Lomnicki (1966),
to name a few, In the past nineteen yecars many researchers
have contributed to the growth of the sequencing theory, &
review of the work done upto 1968 is available in Elmaghraby
(1968), Another review has been done by Day and Hottenstein

(1970)., A survey of the methods proposed for the sequencing
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problems with the objective of minimising total elapsed time

is given in Bakshi and Arora (1969).

A

In the recent past several papers have appecared on the
general machine =~ shop problems, Balas (1969) has given a
disjuncetive graph approach to sequencing problems, in which
several critical path subproblemns are solved to find an optimal
solution to the problem using an implicit enumeration method,
Death and Charlton (1970), Nabashima (1971), Florian and others
(1971}, Schrage (1970) have also given procedures for solving
general scheduling problems, Fisher (1973) gives a Lagrangian
approach, to the resource~constrained scheduling problem, in
which he uses Lagrangian multipliers to find bounds and uses

the bounds in a Branch and Bownd algorithm,

»

Even though the general problem has many algorithms, it
is of interest to consider some particular cases with certain
assumptions, as efficient algorithms are then possible exploiting
the simplicity arising out of these assumptions, The Flow-shop
problems under some usual assumptlons have been considered by
many authors with various objectives (see Elmaghraby (1968),
Szwere (1971), Maxwell and others (1967)), Inspite of the
fact the problems studied are very much restrictive under such
assumptions, the study of such problems is no less important .

because the method of attack for simplified systems may be
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usgful in solving more complex ones and these simplified problems

are themselves interesting research problans,

In this work we consider mainly the flow~shop situation

under the following assumptions,

A1

4,2

A3

A4

L.6

A7

A set ¥ of n jobs mast be processed,

A1l the machines and jobs are available for

processing at time O.

At any given instant of time, on any machine,
processing can go on for one and only one Jlob,
Also a job cannot be processed by more than one

machine at any point of time,
F J
No preemption of processing of any job on any machine

ig allowed, that is, an operation once started must

be completed without interruption,

The machines are available continuously for process=—
ing (that is, no break down of machines is considered)

until all the jobs are completed.

A xnown finite time is required to process a job

on a machine, These processing times are independent
of the order of processing.

There ig only onec machine at each 'stage of

processing’,
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" The order in which a job must go through various stages
is geﬁerally;known as the technological ordering., I1f all the
jobs have the same technological ordering the term flow-shop
is used to describe such a situation, We assume there are m
stages and the jobs arc processed first at Stage 1 and then at

Stage 2 and so on,
In addition we make the assumption given below,

A,8 No passing is allowed, This means that if job J
is completed before job k at Stage 1 then job J
is completed before job Xk 1in all the stages,

And so, we need to consider only one ordering among

the jobs for all the stages,

We use Maxwell and others' (1967) four parameter notation

to identify a problem under consideration as follows .
(@) /(2 /7 (3) / (4} )

where,
(1) -- In the first place we give the number of Jobs

under consideration,

(2) ~- Secondly we give, the number of stages of processing.
If we relax the assumption A.,7 we instead give a vector
(kl’kZ""fkm) giving the number of machines at each stage, For

examplie, m denotes that there are n stages with one machine
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at each stage while (m) denotes that there is only one stage

with m machlnes in that stage.

1

(3) == In the third place, we describe the type of shop
under consideration, that is, the technologlcal routing of the
jobs through the machines, We write F for a flow-sghop, For

a randomly routed shop we use R and for job-shop we use J

and so on,

(4) -~ TFinally, the objective function that is minimised
is given in the fourth place. We use Fmax for total elapsed
time, C for average completion time, T, for weighted tardi-
ness, u(T) for any general real valued function of tardiness,

Cu for welghted sum of completion times, T for average

tordiness and f for any general objective,
For example,
(i) (n/(m,l)/F/EmaX) denotes a problem in which n
jobs are to be processed through 2 stages, first in Stage 1
and then in Stage 2, so as to minimize the total elapsed time,
when there are m machines in Stage 1 under the usual assump-

tions excepting 4,7,
(11}  (w/2/F/F_ ) refers to Johnson's two stage problem,

In general we employ the notations used in the book
"Theory of Scheduling! by Maxwell and others (1967), 4 list

of symbols commonly used is given at the end of the thesis,
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We next give an outline of the results of this thesis

chapterwise,

In chapter 1 we consider some specilal cases of the
(n/m/F/Fmax) problem and introduce certain cumulative dominance
conditions, The theorems proved under these conditions are
vseful in reducing the problems to smaller sized problems, Next

we consider (n/(m,1)/F/F___) problem and give a Branch and Bound

max
“algorithm, Branching effort 1s reduced by showing that there
exists an optimal schedule belonging to a subset of all pessible
schedules, called the set of preferred schedules, A near-optimal
rule is given, In section 1,3 we extend Elmaghraby's (1971)
convex graph definition to general switching rules, Also we

show that Rau's (1971) conditions A ‘and B are cquivalent

to some simpler conditions and B dimples A, Chapter 1 cnds
with a 'good! algorithm for finding an optimal scquence when

CBS—rule is applicable,

Chapter 2 deals with the (n/m/F/f) problem, A genecral
dominance theoraem is proved for any f having a certain property,
The Branch and Bound algorithm for the (n/m/F/FmaX) problem given
by Brown and Lomnicki (1966) is modified for the (n/m/F/u(T))
problem with nondecreasing u(T), For some special objective

functions u(T), using the solution to the assignment problem
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with the cost matrix having monotone property, certain simple
lower bounds are obtained for u(T) for any completion of a
partial sequence, UVext we give simple rules to solve two
special cases of the (n/2/F/C,) problem. In section 2.4, we

extend the theorems proved for the (n/m/F/F

max) problem with

the cumulative dominance conditions in section 1,1 to the
(n/m/F/fYy problem with f any regular measure of performance,
The (n/l/F/Tu) problem is considered in section 2,5 and the
results of Hamilton Emmons (1969} are cextended to this case.
The same problem with common due date is discussed in scctlon
2.6. In section 2,7,the (n/1/F/f) problem to minimise the
number of late jobs is considered when the jobs have a commoun
due date and different arrival times, 'It is shown that the
problem can be solved by solving an equivélent (n/1/7/1)

problen to minimise the number of late jobs with differcent

duec dates, the jobs being avallable simultaneously.

In chapter 3, w: consider some grouping problems, two
of them scheduling problems and the third the cluster analysis
problem, We consider the (n/(m)/F/Gu) problen with nonidentical
machines and give a partial enumeration algorithm, & few bounds
are suggested, The algorithm is simplified for the ldentical

machines case. In section 3,2, we consider the problem of
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sequecing 1 Jobs through m different machines to minimise
thg total elapsed time, in the absence of technological cons=-
traints and with the restriction that all the jobs have to be
processed through all the machines once and only once. When
the jobs are identical, the problem is formulated as a problem
of grouping the items into m groups and finding an order of
processing for each group, When n 1s sufficlently large
‘optimal solutions are obtained without resorting to the general
algorithm which recuires partial ecnumeration, In sectlon 3.3,
we apply the algorithm developed in section 3,1 to the cluster

analysis problem,
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CEHAPTER 1

FLOW $H0P PROBLEMS-I (MINIMI&LTION OF TOTAL
' SLLPSEL TINZ)

1.0 Introduction :
1
A flow-thop iz one in waieh all the Jjobz follow assentially

the ssme path from one stage to anotier, Johnson'!s psper (1564 )
in which he considers all jobs having the same technological
ordering A,B through the stages A and B, initiated work in
this direction., Johnson (1954) and Bellman (1056) have used
.'contiguous binary switching! and dynamic programming respectively
for solving (n/z/F/Fmax) problem, Johnson also solves certain
special cases of the (n/S/F/FmaX) problem, Wagner and Story
(1963) have considered an integer programming formulation of

the (n/3/F/F,,,) problem, Lounicki (1965) has given a Branch
and Bound method for solving the three stege flow-shop problemn,
Ignall and Schrage (1965) have also applied Branch and Bound
method to this problem, Also they consider the problem of
minimising mean flow time in a twostage flow-shop, i.e.,
(n/2/7/ F) problen, Jackson (1956) solves (/(3,n,1)/F/F )
problem and shows that the optimal secuence obtained by

Johnson in three stage special cases turns out t0 be optimal

in this problem also, Szawarc (1968 ) considers several specilal
cases of (n/3/F/Fy,,) Problem, Arthanari and Mukhopadyay (1971

have solved two speclal cases of (n/B/F/FmaX) problem,

L4
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Lomnicki and Brown (1966) have given a Branch and Bound
method extending the ideas from Lomnicki (1965) for solving
(n/m/F/Fpay) Problem, with the no passing restriction, Mc Mahon
and 'Burton (1967) also give a partial enumeration method for the

same problem, Nabashima(l1967) has given improved bounds for the

(n/m/F/F

maX) problem making use of Johnson's result for the two

stage problem, Balas (1969) has introduced a disjunctive graph
approach for the sequencing problem, Charlton and Death (1970),
Nabashima (1971) give partial enumeration algorithms considering

the disjunctive graph formulation,

A4 summary of the empirical analysis of certain flow-shop
problems by Eeller (1960) and Nugent (1964) is given in the
book Maxwell and others(1967). Wagner and Giglio (1964), Gupta
(1971a), Ashour (1970) have also used such approaches to flow-shop
problems, Gupta uses experimental analysis for studying different
eriteria used as objectives., Ashour has done a statistical study
to compare complete enumeration against decomposition procedures,

in solving flow-shop problems.
Dudek and Teuton (1964) have initiated the work in finding
lelimination eriteria' for excluding certain sequences from the

search for optimal seguence, ©Smith and Dudek (1967), Bagga and

Chakravarti (1968), Cupta (1971, Ignall and Schrage (1965) and

Szware (L971) have given different elimination criteria, Szwarc

(1973) shows the non-optimality of some of these criteris, and
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shows his eriterion to be stronger than that given by Smith

and Dudek and equivalent to that given by Gupta,

. Elmaghraby (1971) gives a graph theoretic interpretation
of the theorem by Smith (1956) which gives a sufficient condition
for contiguous binary switching to be optimal, Rau (1971) solves
the problem of minimizing a certain function over permutations

of n integers, using contiguous blnary switching,

With this introduction to the work that has been done in
this area, we next explain what is done in this chapter,
Section 1 of this chapter is devoted to results pertaining to
several special cases of the m~stage problem, namely (n/m/F/F )
problem, Under certain dominance conditions, two useful theorems
arc proved, Section 2 discusses a simple hybrid case of the two
stage Johnson's problem, Remamurthy and Arthanari (1971). A
near~optimal~rule is suggested, and 174 problems of different
sizes are solved using the near-optimal-~ruie, It is found that
in over 94 per cent of the cases the total elapsed time found
was within 5 ver cent of the optimum, Incorrecthess of Bagga
and Mittal's (1973) assertions is shown considering two counter
examples given by Ramamurthy (1973)., Section 3 deals with some
miscellaneous observations made regarding CBS-rules, John G, Rau's

paper (1971) and the switching rules in general,
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1,1 Some Special Cases of tThe (n/m/F/Fmax) problem

T this section some speclal cases of the m-stage flow~shop
prdblem are considered, with the 'no passing' restriction, The
objective is to minimize the total elapsed time, The process
order for each job is the same and is MI’MZ""’Mm° Let
byy ™ processing time for job 'J! on machine M;», l<iz<nmg
1<j<n. Let p = (ij...dy) and let g(p) be the idle time
on the last machine, for 5. Cases I and II discussed below
are known for m = 3, Johnson{l954), Case V is known for m = 3,

Szwarc (1968). Cases III and IV for m = 3 are considered

by Arthanari and Mukhopadyay (1971).

m-1
Case I Min p,. 2> Max Z p_.
3 I j r=g 1Y

Let Xi denote the idle time on the last machine immediately
before job j; while using the sequence p. Let t((jl...ji), k)
denote the time Tecuired to complete the jobs (jl...ji) in that
order on the machines Ml""’MK' Then

m-i

= 7 Pos
Xl =1 T1

X, = max[t((j; e T ) pmjl"Xl, 0]

m-1
But t(i.]l-jgnna.]i), I"l“"'l) = t((JloooJi_l),l) +r§1 pr‘]i
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m=-1
(since Min p . >Max Z P j)
i J j =2
: i-1 m—1
= L pqs T & P
s=1 Tds  p=l Ti
So
[ T ]
., = max LPq: + Z P..: = P, - = Q
& i,  p=p Te TR P
Similarly
- C =1 m~1 i-1 Zl X 0]
. ¥ maxl z P ¥+ 2 p.. "2 P " s
e g=1 s =1 rii g=1 My s=1
Therefore
i C i=-1 m=-1 i =1 i-1 1
L X = max Z P + X D - 2 Dus o4 X
s=1 1ig =1 Fli  sm Mg’ g=1
i=~1 m—=1
Adding and subtracting Z X Pri to the first term inside
s=1 =2 35

the square brackets in the above expression for 2 X
=1

we have,
i i [m~l ! 1.[.m §eel
Z X _ = max I ) =7 Z Pn:
=1 ° { s=1 r-l r3 s=1 1=3 Tg > s§l % }

Using thils expression for different values of 1, we get g(g),

the idle time on the last machine as

(“) n [m-l , u-1 C m 1
g(p) =2 X = mnax T - L e
u=1l % l<us<n { =1 Tdg® =1 v=2 Tis }
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Thus to get an optimal solution to the (n/w/F/F_ . ) problem

max
when case I holds, Johnson's two stage rule can be appiied

m=1], m
to the problem (n/2/F/F ) with A.,=& p.. and B. =X p_.
ax J r] J rj?

r=1 r=2

1<j<n,

— —

Example 1.11: The following data gives the pkas for &
(4/5/F/Fmax) problem,

Machines
k

jobs 1 2 3 4 5}
i
1 o 1 2 1 o7
2 7 P 1 1§ 4
3 S 1 1 p &
4 . 1 1 2 1

4
We find Min Py = 4 > Max (X pr.) = 4, So case I holds,
i i r=g T

The corresponding two-stage problem is
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© Using Johnson's rule p = (3,1,2,4) is round to be optimal and
8(5) = g, Thus the optimal total elapsed time is @ + 18 = 27,
gince 18 1s the total time required to progess all the Jjobs

on the 5th machine,

m=-1
Case II. Min pp. 2 Max [2 », l
J J J =2 r]

In this case, we {ind Xi in a slightly different manner,
i
Con31dor Z P

. There are two possibilities.
=1 1dg

Case & & t((jl...ji_l), m-1) > Zl p:L Let Sm,i"l be the

starting time of job jiwl on machine m, Now, 1t is easy to
see
m=1

t((;}loota ) m“l) < t((.]lctt:jl 1), '-1) T 22 Pra

< b5y eeedyn l) m~1) + pmJ by
by Case 1I
= 8g,0-1 T Py,

= t((jl-.-ji"l)’ m),

Hence, under case a,

X3 = 9.
gl
Cass-; 12 . t((:ll'..:li"l)’ In-l) < Sil pqu
Then
‘ 1 m-1
t j ....‘ -l = 2 . + Z -
((Jl Jl)’ Exl) s=1 les r=2 pI'31
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Hence under Case b,

[i—l m=1 i-1 i~1 ]
X, sMax[ & p.. *+ & Dp.. = Z X, - Z P 0
i g=1 l‘]s r=1 r:’i s=]. g g=1 sz’
Thus in both the cases a and b we have

i-1 m-~1 i-1 3wl

X.Max[}lp +Zp-2p.-2){0]
* =1 s =1 I e=1 Mg s

Now it is immediate that the g(p) is same as in Case I, 8o

the same procedure is applicable in this casce alsc,

m-9

Casg IIT Max[ = prJ] < Minp o, g
J r=1 il
We have then
(») L S 5 EE |
g(p) = Max 2 p.. * Z D, 4 = & D -
l<u<n  r=1 91 s=1 M 13, =1 Mg
m-2
Let w(j) = r"-z-l Prs t Py 5~ Py
then,
: ) [ z g
g(p) = w(j,) + Maxlp_. Max (2 po- 4 = 2 D )]
. Ly g<u<n  s=2 mel dg g=o Mg

Let gj denote the set of all scguences with jl = J,
u-1

Let I, = Min [ Max (z S -z B4 O
d 552- 2<u<n  s=2 13 s=2 sz

I. can be easily found using Johnson's sequence of the (n-1)

jobs other than § on the last two machines, Mm-l and Mm.


http://www.cvisiontech.com

ml?ﬂ

Hence,
Min g(p) = Min [w(j) + Max(I., p )] SN | P I
E 1<izn .

L

Let Dj be the expression within square brackets in 1,1.1.
Let Sj be an optimal sequence corresponding to Ij' Then

(il Sjo) is optimal for the (n/m/F/F__.) problem, where j  1is

guch that D. = Min Dj‘
Q l<iz<n

Example 1,1,2:The following data gives the

pkj's for a
(4/6/F/Fy ) problem,
j = 1 2 3 4 5 6
1 - L | 5 2 106 8
2 4 2 ils 1 S 10C
3 2 & 2 il 14 6
4 2 3 2 2 9 12
m-2
We find, Mén Ph i = 9 = M?x El P = 9,80 ‘Case III
holds,

Using Johnson's rule,

I, =10 and 5, = (423)
I, =13 and S, = (413)
1,° 9 and Sy= (421)
1, =15 and §, = (213)
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Ii can be found using the expression for idle tlme on the

tast machine in the two stage problem, Now

et
w(j) = 21 Ppy = Ppj
So
w(l) = 11
w(2) = 7
w(3) = 15

and w(4) = 6
Next Dj = w(j) + Max(Ij, pmj) is found for every Jj. We have

Dy

ll

21, D, =20, Dy=2¢ and D =21

Since D, 1s the minimum over Dj's, (2413) is an optimal

sequence,

m
Case 1V ¢ Max ( Z p..) < Min p..
i r=3 L9 5 el

In this case we fix job j asg the last job and solve a corres-
ponding two machine problem with first two machines and the
(n=1) jobs other than J., Let Sj be & Johnson's seguence
corresponding to that problem with I 8&S the idle time on

the second machine, Then (8 jo) 1s an optimal sequencc vwhere

g8
o! m
i i ; ., = Min b, D, = Max(I., a=b+p,.} + I y
Jo 1s such that DJO 3 j? i %( B ngJ =3 PrJ
n n
witha = Z p,. and b= L p,.. The analysis is similar
j=1 M =1

to that of Case III with slight modifications,
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m k-1
Case Vi Max ( 2 p..y & P..) < min p
Pl j pektl T opep T j K
i forsome k, 2 <k < m-1
Then we have the total elapsed time
G k-1 n m
F p) & E'% s ¥ Z By *+ Z D.a
e r=1 TJ1 s=1 k‘-Js r=k+]1 Tin
Therefore
' - . k~1 m ] n
Min F___{(p} = Min T« L D + Z p.
= A% l<s,qsn  r=1 TS p=ppy TY j= k]
b - .
s#q
oo oo Lalyge
Let Sys 9o be sueh that the minimum on the R,H,S, in 1,1,2
is attained for s, and d., Then, (s, Joeaedyagy 40 18

optimal, where (j2"'jn~1) is any permutation of the (n-2)
jobs other than s, &nd q_.

Now we 1ldentify several other cases in which the
(n/m/F/Fmax) problam can be reduced to that of solving one
or more smaller sized problems,

Definition 1,1,1  Backward Cumulative Dominance(BCD), We say

BC conditions are satisfied for machine M, in case

h~1 - h~1
Min Z p,_ g 2 Max W2 @B = = g C0p
PR k=-r+1, ] P— k-r,]

whenever 2 <h £k
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Lemma 1,1,1 If BCD conditions hold for machine Mk’ then
for any sequence p = (jl”'jn) the time required to process
all the jobs on machines Mp, Mg,.ee,M, 15 given by

k-1

_ n
t(p, k) = Z »p.. + Z D
’ r=1 rJl s=1 kJs

Brogf | Let ij be the completion time of job J on machine

.Mk while using 75, To prove the lemma it is sufficient to show

that
G . . > ( . 2 < 3 <1,
« Sy ™= k*l,JS L4 “— -
But . = Max[ . > . ] + < s 1o
Ce-1, 3, k-2, k1,510 Phel, g .

BExpanding the R, H.S, of 1,1,3 above by repeated use of the
same relationship, we get

k-1
C = Max (€ we + Z p

-], 3 v
1,Js  1<q<k-1 % Js-1  p=q Tl coeeloled

Thus we have to show that each term in R,H,.S., of 1,1.4 is lessg

than or equal to Ck 3 :
Sl

Consider the term for q = k-1, viz,, Gk—l’js~1 + pk"l,js
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. C
k~1,35"1’

G . = Max[C = 0 3 e
£ oJg-g kJs--ﬁl_

> C

2 %%1,3 0 Y PR, g

g=1
since by the first BCD condition

M%neri > ng pk~l,j

J J
g eees B0 for G = k-2, namely, Ck-f%, js“]_ + Pk-—l’js
We have
Crs B C-m = + Py Bt
by definition and
' j - ; I BCD

condition for h = 3,
Hence,

. @ . el Wt ER
ki g = “k=2,) Pr-1,d, " Pk-2,,

+
g—1 s—1

Proceeding in the same linés, we sec that

C

kj :Gkulbjg ;V 2-‘5’8 _5.1’}.,

s-=1
Thus machine My does not walt for any of the Jobs Jou..d,.

But, anyhow, unlesg the first job jl is done on all the
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machines up to M, -, machine M cannot start processing the
k-1 k K1
sirst job, Thus the idle time on machine M 1s £ Pyj
£ iC= Ty

This proves the lecmna,
The following theorem follows immediately from Lemma 1,1,1.

Theoremﬁl.l.l . If there exists a k such that BCD conditions -

“hold for kﬁh machine then the corresponding (n/m/F/FmaX) problem
reduces to that of solving n, (n/m~k+1/F/FmaX) problems involv-
ing the last m-k+l machines with the restriction that for
1<Jxn, in the jth problem, job j is fixed to be the flrst
job, An optimal sequence for the problem is obtained by select-
ing the 'best! (Jg» 8&3) seguence where Sj is an optimal

sequence of the n~1 jobs other than job j, for the jth problen,

Definition 1,1.2 o Forward Cumulative Dominance (FCD), Similar

to BCD, we define FCIv conditions for machine M, as

h bl
Min & DPra... s ZMex I P - L. 58
5 r=1 ktr—1, ] 3 =1 ktr, J

¥1<h =zunk,

Lomma, 1.1.2 ¢ If FCD conditions hold for machine M, then
for any partial sequence ¢ = (jl.n.jq) and for any Jj & N -0
we have

t(03,7) = t@i, r=1) + Ppj

for all r sush that ktl < T 2m.
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Proof : The result is true for ¢ = ¢, Now we proceed to prove
the result by induction on the number of jobs in o, jAssuming
the result for any ¢ with .9 £ s, we prove the result for

any. ¢ with g =s + 1, 5o let o be any partial sequence
(Jpeeedger?s

Now we observe,

t(oj, k+l)

Mmdﬂmblﬂ,t@,kﬂj]+pMiJ

Max[t(oj, k), t(@,k)+p

0+, 3 Pl § 0

s+l

But t{j, k) = Max{t(@], k-1), t{o,k)] + pkj

’

o t(0d,k) 2 t0,k) + by 2 £O,%) F Dy
Vst

by FCDL condition (**) for hh = 1
_ "y )
Hence t(bjm1)=t®3,k)+pkﬂqj
We now use induction on r,

Assuming the eguality to be true for all r such that

ktl £ v < v, we prove the result for v+l

td, v+l) = Max [t(o], v), ﬂb,vﬂ)]+pw1j
’

But

v
tloj, v) 2 tlo, X))+ Z p

r=k T

by the induction hypothesis on r
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v+1

and tlo, v+l) = tlo,k) + Z

p 3
r=k+] rJ

s+l
by the induction hypothesis on V

From these two we get using the FCD condition (**) for

h=v+1l-k t(@j, vil) = t(dj, v) + Puil, 3
L]

This completes the proof of the lemma,

We have the following theorem when FCD conditions hold
for machine M. The proof of this theorem is immedlate from
Lemma 1l,1,2.

Theorem 1,1,2 « If there exists a k such that FCD conditions
hold for machine M, then the corresponding (n/m/F‘/FmaX)
problem reduces to that of solving n, (n/k/F/F o} Problems

involving the first k machines with the restriction that

for 1 < J <n, in the jtlrl problem the last Job is fixed to be
j. An optimal sequence for the problem is obtained by sclecting
the 'best! (Sjo’ jo) sequence where Sj is an optimal secquence

of the n~1 jobs other than J, for the jth problem,

Remarks
1, Note that when BCD or FCD conditions hold for machine

My, €ach of the n preoblems considered in theorems
Llel,2 and 1,1,2 is in essence a problem with n=l1 jobs,., Further

the reduction in number of machines will certainly reduce the


http://www.cvisiontech.com

-25.«.

number of Lr(d), to be worked out for cach partial ¢ while
using Branch and Bound method, Lomnicki and Brown (1966),
Qf course the additional restriction that either J; = 5 @
b = 5 can be incorporated casily in the Branch and Bound
method,
2, When the problem size reduces considerably efficient
methods to solve mey exist, for example, when is 1 or 2,
This is a great advantage in reducing the computational

effort required,

3. The above theorems 1.,1,1 and 1,1,2 hold good for more
ganeral objective functions as well, 4L study of some interesting

special cases is done in the next chapter.

4, The above theorems are true, ceven if the no passing
restriction is relaxed, Only Sj neced to be taken as an
optimal sequence matrix, which gives one sequence for each
of the machines, for the corresponding jth problem and

(Jor 53 ) or (8 jo) mneed to be similarly interpreted.
o :

e’
Now going back to the special cases I to V considered

earlier in this section, we note Case 1 => TFor machine

My i,e,,k = 1, FCD condition (*%) holds for every h,

1 <h < mk-1 = n-2,
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Proposition 1,1,1 I If for machine M,, FCD condition (¥*)
holds for a2ll h such that 1 < h < m-2, then for any sequence

AE = (jl...jn), the idle time on the last machine 1ls given by

= 0 [m-l . u-l m m
gp) = Max {Z LZ p .. 1=~ 2 L2 p.. |
1<u=<n {s=l r=1 Tg s=1 r=2 TYg }

Proof : Let Xi be the idle time immediately before job jJ
on machine Mm.

m~1
We have, X, = Z Dp_.
R Rt
i-1 i-1
Xy = Max[t((jaeady)y m=1) =~ 2 X =~ Z p
s=1 s=1

mj.’ ol

But from Lemma 1,1.,2, with k=1 and 1 <h < m~2

t((j.loooji), Hl"l) 2 t((jloaoji), m"z) + pm""l,j-
I

We get this by recursively substituting in the R,H.S. of the
above equation for t((j...J;), m-1),

- " [ i Com~l il = i-1
erefore X, =Max[ 2 p,. + Z p,., - Z p. - = X, 0]
* e=1 g p=p I g=1 Mg g=p 8

N n
Now it is immediate that g(p) = 2 X, 1s as given by the
u=1
proposition,
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We note that ¢(p) is same as under casc I, Hence the same
procedure can be used to solve the problen when FCD gondition
(¥*) holds for machine M, for 1 <h <m-2, It is easy to
sec that case II implies tha®t for machine M,, 3CD condition (*)

holds for all h such that 2 X h < n-l,

Proposition 1,1,2 : If for machine M BCD condition (*)

holds for all h such that 2 <h 2 m-L, then for any seguence
1—3== (jl...jn), the idle time on the last machine, g(p), is

as given in proposition 1.,1.1,

Proof ; Let Kr 4 be the idle time on the machine M.,
’
immediately before job ji is done, while using the seguence

5: (51----31'1)' Let r, be the largest r such that Xro,i

is zero and T, 2 2

Case a & There exists such an r_ . We are given

0
h=1 h-1
Min 2 el . > Max Z D
3 =1 & Tl ] 3 ey 7Ty ]

whenever 2 <h < m-l

Now

m-1
t((al.ll;]i), m—l) = t((al.°.3i"l)’ ro) + >-a p

r=r

r .
o 1

since X. >0 forall rz=r

> 2
rl =

0
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mﬁl % ifi th BCDL
p. < ‘ Pl rom 2
[ =T, Tdy =ro+l Tdiaq

But

Condition (¥*) given above corresponding to h = m-r t1,

Therefore, _ .
m-1 ]
t((jl...ji_l), ry) ¥ I Pry = t((j,l...ai_l),ro)
r=r i
0
m

+ P..:
r=ro+l Tdi-3

_f'_ t((jlno-ji_l)’m)
by Gefinition of t((jl...ji_l),m).
Thus Xy = Xm,i = 0.

Case b There does not exist such an ry T,

ol
But Xl,i = 0 for all 1i. Thereforg
g : i .
t((I1e00dy)y m1) = Sil Pyj + rz_-g Py g, » Simoe X4 >0
for all r = 2,
i m-1 i-1 i=-1
Therefore X; = Maxl szl pl.S + riz prji - sél pmjs - sil XS,O)

Combining both case 'al! and case 'b' we Immediately obtain the

required result,
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Case 111 == For machine Mm-'l’ BCD conditions hold.

Case IV => For machine My, k = 2, FPCD conditions hold,
Case V = For some machine I, both, BCLr conditions and

FCD conditions hold,

Thus, the conditions given in cases T to V can be

weakened using these implied CD=conditions,

Remark s We notec that the following conditions (a) to (e)
also imply the same CD~conditions as dimplied by cases I to

respectively., Hence similar procedures are applicable,

(a) M:é.n D _?_M?x Pril, j for all r,
. X% S m=g,

(b)  Minp.y 2 Max p...p for all =,

J J
3 <r <m,

(¢) Minp, 2Max p for all T

- 1 s
3 i j =1y ]
2 <1 < m-L.
i 11 Ma . a
(a) Mg.n Pry > 11'5}: Pri1, for all r,

2 <r <m-i,

(¢) for some 2 <k <mw-l, we have

> M for all =r

i 4

both mj_.n r

aX P L3
. r=1
] 3 »d

2xrk
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1.2 An extension of the two stage sequencing problem

(n/(m, 1)/F/F ).

- L. Introductions The problem considered in this section

is (n/(m,1)/F/F

A=8 cxcepting assumption A~7, This happens to be an extension

max) problem with usual assumptions &=1 through
of Johnson's 2~stage and n jobs problem, There are m 'identi-
cal! machines of type 4 1n stage 1 and one machine of type B ir
stage 2., A Branch and Bound method is developed by Arthanari

and Ramamurthy (1971), for finding a 'plan' which minimises the
total elapsed time in proesssing all the jobs, It has beon

shown that the minimum clapsed time is attained at least for one

member of the set of schedules celled preferred schedules,

First, we glve the results required for the Branch and Bound
algorithm and present the algorithm, & heuristic rule is then
proposed which has been found to be unearly optimal, In the
1ight of this nearly optimal rule, & modified algorithm is
suggested,

Bagga and Mittal (1973) claim that they have developed a

simpler algorithm for the problem with 2 machines of type & and
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1 of type B, K.G.Ramamurthy {1973} in an unpublished note,

has given counter cxamples to show that their clalms arec
incorrect and has also given a correct necessary and sufficient
conditions for optimality of a partition of n Jobs into two
sets, so as to minimisé the total elapsed time, in a single
stage two identical machines probleri, We briefly discuss this

at the end,

1.2,1 Notations and statement of the problem

Since there are only two stages, we deviate from the usual
notation for m stage problem and use as in Johnson's paper(1954).
Here we denote by Aj and Bj the processing time for Jjob
j on a machine of type & and that on the machine of type B
respectively.

The optimization problem considered is to find a plan
which gives a schedule for processing jobs on machines of
type A and a sequence for processing jobs on the machine of
type B, satisfying the assumptions rnade, so as to yleld a
minimm total elapsed time, We assume =n > m, as otherwise the

problem is trivial,

Definition 1.2.L A schedule & = (dl, T oy ""dm) specifies

L] Sl 8 %,
o, = (Ji, sees Jki), i=1,2,...,m where ] represents the

rth job to be taken up on the itﬂ machine of type A,
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Definition 1.2.2 A schedule & is said to be partial(complete)
n

in case 2 k; <n(=n)., ILet § denote the set of all complete
i=1

schedules and P the set of all partial schedules,

Definition 1,.2.3 For any «. & B ()G, we define I, to be the
minimum elapsed time possible among the complete schedules

- whose initial part is &

Therefore the problem is equivalent to finding «* that

minimizes T, over “«e G .
Definition 1,2.,4 TLet t{«) = Min X Aj with convention

1<izm Jeo,

;]E(P Aj =0, Let f, for «e F (_)G, be the vector

f@( = (fl’ fg’ l.l’fn)
Completita time of job J on a machine of
where Iy = stage &, if J & «
() + Aj if § & «

n . . s Bh = . . .
For fe R, f >0, we define J.~ to be the vector (31,32,...,3n)

such that f. < T. =2 4... < 1.

Definition 1.2,5 For a f > 0, we define T(f) to be the
minimum elapsed time possible under the constraint imposed by

L

, i.e., taking fj as the completion time of job J on the

stage A&.
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Definition 1,2.6 4 schedule & ¢ P()C is called a preferred

schedule if the set
—r » T £ — f . > c{ . t
D { il € 1\4/35‘J AJ t( )} is empty
We denote the set of all preferred complete schedules by g¥

and the set of all preferred partial schedules by BEs

1,2,2 Main Results and the algorithm,

emma 1,2 Given any f such thet f e R, £ 20, T(f) is
attained when jobs and processed according to the sequence

Jo on the machine of type B and its value is given by

‘ r—1
T(f) = % B, + Max (f, - Z B.)
jel l<r<n v usl Yy

The proof of this lemma is based on a reasoning similar to that

used in Johnson (1954) and so is omitted,
L)

Lemma 1,2,2 If £* < f then T(£*) < T(L).

Proof, Observe that

=il
T(£y > & B, + Max (£* - I B. )
je l<r<n  9r u=l “‘u

since f’§_§ fj for every J.
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The R,H.S. expression is the elapsed time corresponding to
the sequence Jf on the machine of type B when I* gilves
the completion times for stage A& and sg > T(£¥), This lemma
shows that we nced only consider schedules « ¢ g for which
(1) there is no idle time between any two suceessive jobs
processed on any machine of ¥ype 4, and (2) there 1s no idle
" time between time O and the start of the first job on any
machine of type &,

Lemma 1,2,3 There exists a preferred schedule that is optimeal.

Proof . If <« ¢ G, then the only constraint imposed by < on
processing of the jobs on the machine of type B 1is on the
earliest instants of time at which each job can be taken up
for processing and this is given by foc, By definition of Tc(

and T(fy) it follows

T, = T(£,) if «¢& G

Since g* (_g, if we prove that for any & & G, there exists
at least one o* ¢ G* such that fo(* < f‘Sﬁ then the required
rosult follows from Lemma 1.2.2, Let ¢ § be any schedule

which is not a preferred schedule,

Let the Min ( 2  A. ) = t(«) be attained for the
i<ign  jeoy 7

h** machine, Since « 1s not a preferred schedule, we have
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D={jsN/fj“¢flj>t(°<)}7f¢,

Let £ -& =Msx (£, ~4;). Then allot & j0b o n™

T jeD

machine to cet a new schedule «' and the number of elcments
in D will decrease at least by one. It is obvious that
£ < f since f3 = 15 for all je N, j#zr and

g, ® t(«) + A, <, Since D is finite it is possible to

ry
reach a preferred schedule «* by repeating the above process

and .« = fq. This completes the proof of the lemnma,
Lenmg 1.2,4 If « ¢ P then T 2 T(fg)n

Proof ¢+ Let « ¢ B and let «' be a complete schedule whose
initial part is o and such that T, = T ..

S8ince in schedule &', the jobs  j € & always precede
jobs j & B — «&, we have

f3=fj for J & &

> Aj +t(c4)=fj for j e N ~ «
Therefore,
Dy = B = T(f ) since &' e G
and T(:E‘c{,) > T(fq) since f_, 2 f.

Lemmas 1.2.1 and 1,2,4 give us a simple method of
calculating lower bounds of partial schedules and actual minimom

elapsed time when e & § .
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A Branch and Bound method using these results is given

below,

The Algorithn

We represent the preferred schedules in the form of
nodes of a tree, A node representing a schedule belonging to
P¥(_)C* is said to be of qth order if the cardinality of
the set of jobs considered by the schedule is ¢, The node
- of order zero is denoted by (,). All nodes of order greater than
#aro are denoted by the corresponding <, & node of order of ¢
(0 < g £n-1) is said to be 'active! at any stage of computation
e 1t has no deécendants in the partial tree generated so far
and we have not vet proved conclusively that this partlal
schedule cannot eventually give us a complete schedule better
than the best one known so far, At any stage of computation
1et 7 denote the set of all active nodes, Let T(x*} and
ot represent the minimum total elapsed time obtained so far,
for a complete schedule and the corresponding schedule respect-

ively, Initially we sct

T = -{(.)}, T(et*) = o0 o = Dammy .

Step C i Choose node (,)} for branching and enter step 1,

Step 1 & Let the order of the node selected for branching be

q, Designate this node by « and delcte this node from w,
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If ¢= 0, go to step 2. Otherwise go to step 3.

Step 2 § Generate A = n, descendants of & using the
m

following branching rule,

Branching Rule 1 ¢ Each one of these descendants represcents

the sct of first m Jjobs to be taken up for processing on
machines of type A, The actual allocation of the selected m
jobs to m machines is arbitrary and any one of the mi
possibilities will be sufficient, Let o&i be the ith descen—

dant of & and the order of each one of them is m, Set

g=m and go to step 4.

Step 3 ¢ Genorate A = (n-q) descendants of « using the

following branching rule,

Branching Rule 2 ¢ Find t{«) and suppose the minimum 1is

attained for the hth machine and the number of Jjobs on hth

machine in schedule o 1s k. Allot jobs j & N = o to the
hth machine systematically one by one for the (kh+l )t
position to get all the descendants of &, The number of
descendants will be n - g and eéch one of them will be of
order ¢ + 1. Denote them by c&l, B 5 ocf , Set a=qg+1

for all these nodes and go to step 4,

Step 4 ¢ Calculate the lower bound T(f ,)for 1 = 32, Mne s
Fe—— c(

. i " .
as follows + Tor cach < the vector I ; 15 obtained as per
'y
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definition of f ;. Jf, is found, If Jf = (jl...jn) then

=4 O(l c‘ci
calculate :Z.j using the formula
n,
i
24
e’ = H. K B
qi
and z; = Max(Z; 9£j)+Bj g 2z A< n
JI‘ L o2 64

we have T(f ;) = Z3 If n=-g=1 go to step 5, otherwise
o n

go to step 6,

Step 5 ¢ If T(f ;) < T(«*), put T(«*) = T(f 1) end

e 4
«F = oﬂl. Delete all nodes with lower bound greater than
T{e«c*) from 7 ond go to step 8., Ctherwise go to step 8

direectly.

Step 6 : Let R =« /T(f ;) < T(x*)]
o

If R=§ go to step 8, Otherwise, set = =7 ()R and go
to step 7.
Step 7 : Find « such that T(f, ) = Min [T(f ;)}]. Use
i =4
«"cR
any tie breaking rule, in case of ties, Usc the node &

for branching and go to step 3.
Step 8 ¢ If w7 = ¢ go to step 10, Otherwise, go to step 2,
Step 9 I Choose a node of highest order from the set m, with

smallest lower bound, Designate this node as « and use this

& for branching, Go to step 3,
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Step 10 ! We have obtained an optimal schedule o* with T (t*)
as minimum total elapsed time, TFor the second stage we use

Jf as the optimal sequenc'e. Stop.
«F

Example 1.2,1 Consider a (4/(2,1)/F/F ) problem with the

max

date given below.

3 5 .
3 5 2
2 18 3
3 12 i
4 14 3

The tree obtained by using the algorithm is given in Fig, 1.2.1.
The optimal total elapsed time for this problem is 27, The
optimal schedule for machines of type A is «* = (1,2 ] 4,3)
with Lo = (6,23,26,14), Hence an optimal sequence for the
machine of type B is given by J, . (1,4,2,3). We illustrate

2
the caleulation of T(«) for < = (1;4).

Now t(%) = 5 is attained for machine h =1, So

t, = (6, 23, 17, 14}. Then

15 A1y 4 3y 2l
o
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Therefore Z, = s = Bl = 7

1
Z, = Max(£f,, Z;) + By = 17
Zy = Max(fg, Z,) + By =18

i

and Z Max(f,, Zg) + B, = 26

2

Thus 'T(ﬂq) = Zjn = 22 = 26,

For « = (1 P 4) as tf(«) 1s attained for h = 1 while
branching from & we fix systematically Jjobs 2 and 3 after
1 in machine 1 of type &, In the first branching from (,)
we generate 402 descendants of (,) and calculate the bounds
as illustrated for (1;4)., As the lower bound for (1;2) is

the lowest we choose (1,2} for branching and so on.

1,2,3 A Nearly Optimal Rule

With stages A and B solve the corresponding Johnson's
problem, Let (51,52,...,sn) be an optimal sequence thus obtained,
We consider the schedule in which s;,...,5, are allotted to
the machines of type & at time 0 and aftef S1sseesSy being

allotted to machines of type &, s,;,, is allotted to a machine

il
of type & such that it is completed as ecarly as possible,

An experimental study of 174 randomly genecrated problenms
with different distributions and sizes, was done to find the

efficiency of this rule, The results are given below,
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A set of 50 (4/(2,1)/F/F___ ) problems was generated

max
randomly from each of N(580, 10}, N(50, 20) and 'Uniform (0~99)%,
The randomly generated values were rounded off to the nearest
.integer, A fourth set of 24 problems with n ranging from &

to 20 was also generated randomly from 'Uniform (0~29})!, The

following table gives the details about the results obtained,

Problem No, of No, of problems No, of problems  Max"/,

set problems in which optimal in which the devia-
solved solution was solution was tion
obtained by the within 5 per cent from
near optimal rule of the optimal optimal
value value
I 50 42 49 10,64
il 50 37 47 8,80
ITI 50 34 44 9,80
Iv 24 22 24 3,07
Total 174 135 164
%, 100,00 77 .58 4,25

Eo| oy T e A e e ww B B ) e mu wmr e e s =S e oA S e e o S A WS B

Thus 94,25 per cent of the problems yielded nearly optimal

solutions.

Next we test whether the proportion of problems in which
the near optimal rule gives an optimal solutlon 1s the sane in

sll the populations considered above,
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Let Ho + Py TPy T Pg3 T Py where p, 18 the proportion
of problems in the ith set for which optimal solution waz found
using the Near optimal rule,

We use a XZ~test to test this null hypothesis.,

n=174; nq = n, = g = 50 ; ng = 24
x = 135; % = 42] X, = 37y Xg = 34y X, T 22,
3 [ 4 fﬁ 2
Statistic u = e 2 o
% (n=-x) =1 Dy n

_ 30276 [ 4289 , 484 . 18295 1
135 <30 - 50 24 174

U

6,.,9575

Under H_, u follows & XEHdistribution with 3 degrees of
freedom and the upper 5 percent point of Xg is 7,81, Since
the observed value of u 1is less than 7,81, we conclude that

these proportions are not significantly different.

Similarly the proportions corresponding to problems for
which the solutions were found to be within 5 percent of the
optimum were tested for equality. They are not signiflcantly

different (Obsecrved u = 7.32),

Modified &lgorithm

in the light of %the above experimental study we suggest

the following modification in the algorithm given, We initialize
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in step O, by taking «* g5 the nearly optimal sequenee obtained
using the rule given above, This will result in deleting many

nodes from w, as o* is nearly optimal,

1,2,4 Comments on a paper by DBagga and Mittal

Bagga and Mittal (1973) proposed the followlng method

for solving the (n/(2,l)/F/FmaX) problemn.

Step 1 ¢+ Partition N into subsets Nl and N2 such that

Max[«(Nl), q(Ng)] iz minimised over all possible partitions of

N, where
«@) = % A, if ¢ #D(C W
jen
21 @ if D= ¢,

het N{, N¥ be such a partition of N,

Step 2 { Find a permutation oy of N{ and a permutation J,
of W5 such that the schedule, ¢ = (o, 62) minimises the
total elapsed time for processing the Jjobs on the two stages,

This gives an optimal solution to the problem.

They suggest a procedure for partitioning ¥ into two
subsets in an optimel way as required in step 1, which is found
to be incorrect, Even if we find the optimal partition in

- step 1, there 1S no guarentee of obtaining an optimal solution
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to the problem as it is not sufficient to consider only the
(n¥ 1) (n% 1} schedules, where n¥ = the numbor of jobs in I¥.

To establish that their method does not lead to an optimal
solution to the problem, the following counter cxample is given

in an unpublished note by Ramamurthy (1973).

Example 1,2,2

ng Aj Bj
i i & 4
2 8 3
3 74 .4
4 7 i

Let NY = {1,2} and Wf = {3,4} we have
Xy = ®) = 5
«(N¥) = «(N3) 14 and
14 < Max(«(Ny), «(¥,)]
for any partition Nl, Ng of ‘N, The following table gives the

detalils re_garding the 2! =2! = 4 schedule to be considered in

step 2,
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Completion time of the job

gg: Schedule On stage & On stage B T.E.
1_2 3 4 ! 2 3 4
(1,2 /3,2 6 14 7 14 10 17 11 18 18
B (1,2 /4,3 6 14 14 7 e "~ gt e 18
3 (2,1 / 3,4) 14 8 7 14 i ] 8 19 19
B (2,1 /4,3) 14 8 14 7 18 11 19 8 19

Thus schedules 1 and 2 are optimal according tc Bagga and Mittal's
. method, But for the schedule (1,3/2,4) we have actusally the

total elapsed time = 16, However, it is seen for this schedule
Max[e«(Ny ), ei(Nz)] = 15 which is strictly
greater than the optimal value 14,
Bagga and Mittal assert that a partition Nl’ N2 is
optimal if it satisfies the condition
(@) - «@,)} < Min [4,] e N].
This 1s disproved by the following gounter example,

Example 1,2,3

Censider the data given below.

3 1R 2 3 4 5} 6. 7 8

Aj 7.0 11,5 2,0 3,0 5,0 6,0 2,0 4,0
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Let N; = {3, 4 9 6 } and W, = {1, 2, 7, 8} . We have
«(N) = 23,0 and (V) = 24.5.
lc(tiy) = «(ug) | = 1,6 <2 =Min [4y, J e N].

Hence Nl’ N2 should be an optimal partition according to

Bagga and Mittal (1973). But for the partitien,

M ={1,3 4 5} ad N, ={267, 8]}

we have

oa(Ni) = 24,0, «(NL) = 23.5
and I«(Ni) - ﬂ(N‘z)l SH0 5| = 1o

Hence the condition given by them is not a sufficient condition.

Ramemurthy (1973} gives a necessary ana sufficient condition for

a partition to be optimal,

1,3 Some Observation on Switching Rules

53,0 Intrbduction

Smith (1956) has given a sufficlent condition on the
objective function for contiguous binary switching (CBS) to
yield an optimal solution, Elmaghraby (1971) defines convex

graphs and shows the equivalence of Smith's theorem with the
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preference graph corresponding to the problem belng convex,

John G, Rau (1971) has used CBS rule to {ind an optimal permuta-
tion that minimizes a function under certain conditions, In
section 1.3,1 we extend the definition of preference graph of

* €BS rule as given by Elmaghraby to general switching rules.

Next we show the eguivalence of Rauls conditions to some simpler
ones and in section 1,3,3 we give & 'good®' algorithm for cases
when CBS Tule 1s applicable but transitivity does not hold for

the function g(-,°) referred to in Smith's (1956) theorem,

1.3.1 Convex Graphs and Switching Rules

We now extend the definition of preference graph of CBS

rile as given by Elmaghraby (1971) to general switching rules,

Definition 1.3.1 ¢ A switching rule 5 1is a function defined

on Q, the set of permutations of (I 2,..n) into the collection

of all subsets of Q.

St — 2 such that, for every xe
=

s(x) # ¢.

[ F )

Definition 1,3,2 ¢ X, Yy &€ § are sald to be adjacent if

y & 8(x) and x & S(y).
et x, y& Q. x 1s sald to be connected to y , 1if
there exist Xy, oo, ¥ & Q such that x € S(x); Xy € S(xi_l)

for all, @8 <i<k and ye S(x).
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In general X 1is connected to y- does not imply y is connected
B X,

A switching rule S 1s sald to be symmetric if

xe 8(y) =ye S(x) for xye Q.

A switching rule S 1is said to be comnected if

¥ x, ye Q, X is connected to y.

Observe that, when a symmetric switching rule is used, if X

is conneeted to y, then y is connected to x,

Let f be a real valued function defined on Q, to be

pinimised over Q. Consider a symmetric, comnected switching

—

rule S,
Let A = .{(x,y) ¢t X ve Qand x andy are adjacent} g

Let r(;:) = {(x, vye &t f£(y) < f(X)}

1

]—(;C‘) = {(X, vy e A £ f(X)}

Gg = (q, A) 1is a connected graph.,

Now ¥ (x, yJ ¢ l—(};) introduce the direction from x to Yy,
¥xe Q. The resultant graph G(S, f) is called the preference

graph corresponding to the function f and the switching rule

5.
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Definition 1,3,3 ¢ G(8, f) is convex iff the set of all nodes

of G(8, £), namely § can be partitioned into two sets B

and R such that
(iy B# ¢ = ¥ x¢e B, I"(X}#tp
(i1 R # ¢

and (iii) f£{x) = constant for all X €& R,

Suppose for some switching rule S eand a function £, the
corresponding preference graph G(8, f) 1s convex, we have

the following simple procedure to get an optimal solution,

Start with any X € E. If T};) is empty, then X
is optimal, Otherwi;e, choose any y € ri;j and
repeat the process, It is easy to see that this
procedure leads to an optimal solution, if
G(S, £) is convex,
Of course switching rules are of interest only when thelr use
reduces the computation recuired, For example S given by,

¥xeq S(x) =@ 1is a switching rule that is symmetric, and

comnected and for any real valued function f on Q, the
corresponding graph G(s, ) is convex, But this only means,

one needs to do complecte enumeration of all the permutations,

Oon the otherhand if for some I, CBS rule gives a convex graph,
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the procedure described above with the CBS rule gives a simple
_ method to get an optimal seduence, Actually & better procedure
can be given in this case (sce section 1.3,4).

Another simple switching rule of interest is the Binary
Switching rule (BS-rule), in which from a given permutation
any two jobs can be interchanged to get another permutation,
The following example shows that for a given £ CBS~rule may

not produce a convex graph, whiie BS~rule may.

Example 1.3,1

Consider f(jl,jz,jg) = for any

C. . + c. .
J1 9o Jo J3
typical permutation (J;, Jo» ig) of (1,2,8) where cij‘s

are given by the table below.

£

3
8 ped 2 4
2 Z 1 = 3
3 3 2 =

The corresponding preference graph for the example using
CBS-rule is given in Fig, 1.3.1 with f(x) above the nodes,
and node number in the baxes along with the corresponding

permutation.
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6 5
2| 132 | >—{ala1 |

5 | ‘
1123 }, Eﬂfﬁﬁ;_
g ol
3213 | 5123t |

Figure 1,3,1

It is easy to sec that this graph is not convex, Now 1f

we use BS-rule, nodes (1) & (6) are adjacent and we introduce
the corresponding arc, Similarly nodes (2) & (8) and (3)

& (4) are adjacent., Thus we get the preference graph given
in Fig, 1,3.2. Now, we observe that the three conditions
given in the definition 1,3.3 are satisfied fcr B ={1,2,3,4,5}

and R = {6}. Thus the preference graph is convex,

. 5]
lase |z | |
] oLz |

Figure 1.3,2

NS

i

3|
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Tt is interesting to note that parameters of the problem,
like processing times, set up costs do play an essential role
in obtaining simple switching fﬁlés for solving the problem.
thnson‘s special cases of the three stage problem are examples
) problem in general CBS-rule need

in which, for the /3/F/F_ . .

not produce a convex graph, whereas 1if %Sn A; 2 Max B, or

g 2L

Min C; 2 Max Bs, CBS—-rule yields a convex graph, John G, Rau's
il i

(1971) result given in the next sub-section is another interest-
ing case, wherc CBS-rule works,

Elmaghraby, in his paper (1871}, makes the following
assertion . If the nodes of a directed graph are partitioned
into two setg B and R such that

(1y if B is not empty then every node in B has at lcast
one arvow out of it in the direction of improvement of f{, 1.,e,

1
¥x¢ B, T—(X) # ¢, then the graph is convex,

However the following example shows that this assertion is wrong,
Example 1,3.2 Consider all permutations with (1,2,3) with

fﬁlngaJB) = cjljz + 03233 for any permutation (jl,jg,JB)

where cij's are as given in the following table,
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J
& 1 2 3
1 ‘= 4 5
2 6 o 5
3 i 4 =

‘The prefercnce graph for this example is given in Fig, 1.3.3.

9 5
o 1sep——— {4 a1z |
l2 132 ﬁ% 312
g T
123 £ 16} 321
‘ \ 11 6

\3] 213] > iﬂ’c‘Bl

Figure 1,3,3

With B = {2,3,6} and R = {1,4,5} , 1t is easily seen that
condition (i} above is satisfied whereas G 1is not convex,
since

fL)=9#£(¢) =5 #£(5) =6
Similarly Assertion 3 in Elmaghraby (1271) is also not correct
as W= {2,3,6}; but £(3) =11 # £(6) = 10 £ £(2) = 9
where W 18 the collection of nodes such that W(::B and

x ¢ W= There does not exist y e Q such that (y,x) is a
directed arc, ™
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' 1,3,2 A Wote on John G, Rau's Result (1971)

Rau (1971} considers the minimization of the function

It
‘o) = «21 h(js) gs(jl...js) over all permutations, ¢ = (jl...jm)

of (1,2,...,n) vwhere h { {1,2,...,0} > R and

g, + B, >R with P, denoting the set of
all permutations of s distinet clements from {1,2,...,n} .

The weighted tardiness problem in a single machine shop
1. o (n/l/F/Tu) has an objective function like f given above,
but 1t is known that in general even BS~-rule doesntt lead to
an optimal solution in this case, Under certain conditions
Rau shows that CBS~rule lecads to an optimal solution of the
problem stated above, We consider his result and show the

equivalence of his conditions to some simpler ones,

Definition 1,3.4 ¢ We say functions g_ are Markovian (or

satisfies condition &) in case,
gs(xlxz. ..XS) = gs(yly2ooeys_lg XS) for all 1 s k2N
and for all permutations (y1y2°'°ys~1) of (X1X2°f‘xs~1)'

Definition 1.3.5 ¢ We say functions g satisfy condition B,

in case, there exists a real valued function G 5 {l,2,..n} -» R
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and positive functions Gl,G2 ees G with Gl = 1 and

G« gsﬂl — R such that for 1 < s <n-~l, for all sets of

distinct integers {xl,:x:2. "Xs-l} end distinct invegers

{yl,yz...ys} which are subscts of 41,2 ... n} with the

property that
{rp XgeeXg} = Ty Vg eee Y5} 7 {751

we have
gs(xloonxs_l VXS) - gs+l (Yl YZ soe YS’ XS)

= G(yj) G (% X5 eea xs_l).

Theorenm 1,3.% ¢ If h is a positive function and gg,lsszn

are functions such that they satisfy condition A and condition

B then the minimum of

n
flo) = 531 h(3,) gg(3y vev Jg)

is attained at (jf,j; | s jl’ii ) such that
ik ok 2% ) %3
GURIMGE) 2 . 2 G(3X¥/m(jk).
Before we procecd to give a proof of thig theorem, we define

conditions ¢ and D and show the relationships between

A, B, C and D,
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Definition 1,3,6 ¢ We say functions g satisfy condition C,

in case, there exist a real valued function G 1 {12 ,,,n}-a-R
and positive functions Gl A0 Gn with G.'L = 1 and

G, B, — R such that for 1L <s <n and for all (yl.,,ys‘)s B

“and X ?'yj ¥ 1 <3Jjxs, wehave
'gs(yl eee Jg-19 Xs) ".gs-l-l(yl cee I Xs) = G(ys) Gs(yl‘"ys—l)

‘Definition 1.3.7 + We say functions g satisfy condition U,

in case,

g (X aeaXs) = 8 (Y eee¥guqy Xy for all 1<s <n

and for all eontiguous binary permutations Cyl T ys_l) of
(%) see Xgq7.
Lomma 1,3.1 . We have,
(I} Condition D <=+ C(Condiltion A
(11} cCondition B => Condition C
(ITI) Condition B => (Condition A
(IV) Condition C # Condition B

(V) Condition € and D together => Condition B,

Proof ¢ (I} A => D is trivial, To prove D == 4 note that

any permutation of (xl...XS_l) can be obtained from (xl...xs_l)

by a series of CB-permutations,
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(II) B => C 1is immediate from the definitions of
Conditicons B and G,
(III) B = 4.

If g.'s satisfy Condition 3B, then
g (Xy eee Xgoqy Xg) 8opp (V7 oos Voo X, )

= G(yj), GS(X —-— Xs_l)

where {73} = {¥y ees Vb T {F oo Xg-1}
1,60 Bgpq (] eve Ygr Fg) = 80X wer XKoo, x.)
- G(yj). Gs(XI - Xs_l)
Now to show that the functions gg satisfy Condition A,
we have to show
Bop1 (T eve Tgs X = 8gpq (Bpeeei x.)

where (z; oee z,) is a permutation of (yl...ys), for 1 <s <n-1,

This is so, because, 1if

P eee Ko} = Vg eoe Y} T{Ts} T {7 ee 2} T ()
then

gs+l(yl v e YS, XS) = gS(Xl ohole Xs_l, XS)

= G(yj) GS(Xl L Xs_l)
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and
Esp1 (21 ees Zgy %) = g (X 44 Xgo1s %g)
= G(YJ) GS(Xl av Xs_l)
Thus Condition A 1is satisfied for sy 2 25 £,

For g; Condition A 1is trivially satisfied,

(IV) C # B, To show this we consider the following

example , Let n = 3

gl(l) = 4 g2(1 2) = 5 g2(2 1) =7

|

]
-~

g1(28) =3 g, (13)=7 g,(31)

g1(8) =5 g, (23)=8 g,(32) =6
g3(123) = 22 g4(231) = 16
g3(132) = 20 g3(321) = 19
g3(213) = 14 g3(312) = 14

For these g.'s we can find G, and G4's as given below
sgtisfying Condition C

G(1) = -2, G(2) = -3 = G(3)
=5

fop!
i
H
e
o)
[N]
P
[_I
S
|

b

= 3

3

[oy
0o
—
oo
ot
|

and  G,(3) = 4,
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Wiﬂ1 X, = 3 and {yl, yz} = {1,2} we require, if Condition B
were to be true, g5(123) = g4(213). But we have,
g5(123) = 22 # g, (213) = 14
Hence C # B,
() Ir g,'s satisfy both Conditions C and D
then B 1is satisfied,
Now,
Bty (TpeeeVgs XI = 8o q(uyaaug, %) cene (1)
for any permutation (ul...us) of (yl...ys) since Condition D
= Condition A.
Let Z1 ees Zgoq be any permutation of Y9 aee Vgaq
then gs+1(yl coe Tor X) = 8 (yq oes V-1 xs)

- G(ys) GS(YI "o Ys,_l)

from Condition C

!

and g {2 eaeBg 13T X)) = 85 (2qe0ezggyX)
= G(yg) G (2z{aeazg q)
from Condition C

Using (1) we have

Gs(yl LA N 2 ys._.lj GS(Zl L ) Zs_l)-
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7 Now consider

gscxl LI XS"":L’ XS)
= G(Yj) GS(Xl s Xs_l)
= gy Ty ee Vgups %) T G0 Gy ey )
Eay1 (V1 oo Vo1 Vo Xo)

= gs+1(yl cos T3 ses Yo XS) fprom Condition A.

This proves Condition B 1is satisfied.
This completes the proof of the lemma,

Thus it is sufficient to verify whether Condition B holds, to
apply Theorem 1.,3,1. Further, ¢ and D can be verified,
instead of verifying B, as it requires less amount of computa-
tion, We now give & proof of the theorem 1,3,1, where ins tead of
Coﬁditions A and B we assume Conditions C and D, We note
that the proof is similar to Rau'’s (1971), Let h and g

be as defined earlier,

Proof ¢ et & = (J5 eeejd, )
n
f(Q) = SEl h(jS) gstjl 'R X ] jS)
s#i, 1+l
+ h(ji) gi(jlonaji)

+ h(ji+l) gi+l(jlotoji ji+l}
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Interchanging Jj and  J;,q Ve have Q' = (jl"'ji+l ji..,jn)

~Now
o} !
£(Qt) = S’El (i ) 85UI7 oes Jg)
s#Ll, 1+1

/= \ ] . . 0
s h\:,li_{.l) gi(3132 X Ji_l Ji+l)

. = = . . .
+ 0350 847 U3qdn 2o 311 di41 FP R

[t}

Let g'(3yy d54) = BU;Y 80 Jg oee i)

h(.:li_i_l) gi+l(31 jg aese jl ji+1)

and g1(ji+l’ ji) = h(ji+l) gi(jljz o ji"l ji+l)
+ h(ji) gi+l(j1j2 L ji_.l ji+l ji)

Therefore

il

because cof Condition D

it

h(ji) G(ji+l) Gi(jl L ji"‘l)

I

h(‘—]i_{.l) G(ji) Gi(al LA jl"'l)
because of Condition G

But Gi(jl cae J:q} >0 Dy Condition ¢
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Therefore

£(Q) = £Q') <0 1ff g'(iyydiep) S 8 Gpgqs 35)

i,e, iff h(3y) G(Ig,q) 20y ) G(J3;)
Hence the theorem 1.,3,1 1s proved,

Corollary 1.3.1 ¢+ If h 1is any real vaived function and

g's satisfy Conditions G and D then
£(Q) - £Q@') £ 0 4ff h(Jy) Gliyuq) < hlgyy) 60y,

Trhus £ as defined here, satisfies the sufficient condition
of Smith's theorem (1956) and g(i,3) = h(i) G(j) ; hence
CBS-rule will produce an optlmal sequence, Of course, this

g(sge) is not transitive, 1.c.
g(1,3) < g(j,1) and g(i,k) < gk, 3) # g(i,k) < gk, 1),
as shown by the example below 3

Example 1,3,3 ¢+ h(l) = 3 G(1) = -5

h(g) = <4 G(2)= 1
h(3) = 2 G(3)

il
(o))
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g(1,2) = h(1) G(2) = 3 <1 = 3
g(2,1) = h(2) G(1) = ~4 ><~5 = 20

2(1,2) < g(2,1) i.,e, 1l<—2

il

Similarly g(2,3) = ~24 < 2 = g(3,2) 1l.,e, 2 <3,

i

But g(1,3) = 3 =6 > g(3,1) = =5 =2 1i,e, 1 <3,

Hence transitivity does not hold,

1,3,3 £ 'good! Algorithm for Non~-transitive Gase

In this section we give a simple !good! algorithm to
find an optimal sequence for the case when f satisfies the
sufficient condition of Smith's theorem, but the coryespond~
ing function g(s,e) is non-transitive. It is often mentioned
that if CBS=rule can produce an optimal sequence then starting
with any sequence we can reach an optimal sequence by repeatedly
using g ,» )'s and the inequalities in them, But this proce~
dure may take a maximum of as many as nt step's.' Hence an
algorithm which is fgood!, in the sense that the maximum
number of steps required is only a polynomial in n [see for
the definition of a fgood! algorithm in Jack Edmonds (1965)],

15 attempted in what follows, This takes at most

4 I;l - 1 steps, where a step is a comparison and calculation
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of g(i,j) and g(j,1) for some i and Jj; Hence it is

a ‘good! algorithm for the non~transitive case, In case of
transitive g(s,s) there arc better algorithms, see Johnson

(1954),Me Naughton (1969),

The Algorithm

Step 1 3 Set r =2, Let p be the sequence of the
first © Jobs such that g(jj,djuq) 2 854, J3) ¥ i=1,2,..r-1,

Go to Step 2.
_E_‘:I_:_@_FQ_%: Set i = 1,

If g(r+l, ji) = g(ji, 1) go to Step 3.

Otherwise go to Step 4.

Set p = (r+l, p). Go to Step 3.a.

Step 3 :
Step 3,a ¢+ If (r+l) <n go to Step 2. Otherwise go
to Step 7.

Stop 4
Step &.

If i1 <1r, go to Step 4,a, Otherwlse go to

Step 4.a § Set 1 =irl. If g(r+l,3;) < glrel, 3,)

go to Step 6.

Otherwise go to Step 4.

L

Step & &

Steg_é .
Step 3.a.

Step 7 &

Set p = (p, r+1). Go to Step 3.a.
Set 5: (jl...ji"‘l 1 Ji can jr), g0 to
5 is optimal, Stop,
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FLOW SHOP PROBL@IS ~ IT (GENERAL OBJECTIVES)

2,0 Introduction

Total elaspsed time minimization in the Flow=shop context
was the topic of discussion in the last chapter, Minimization
problems with general objective functions arce considered in

his chapter, In section 2,1 we seneralize the dominance rule
wnown for the total clapsed time objective (Ignall and Schrage
(1965), Szware (1971)) to more gencral objectives, In section
2.2 we discuss the (n/m/F/u(T)) problem, in which minimization
of c¢ertain non~decreasing functions of job tardiness is required,
This problem has been considered by Gupta (1971), Elmaghraby
(1968% and Hamilton Emmons (1969), to mention a few, The
algorithm given by Brown and Lomnickl (1966) is slightly modified
to solve the problem, In section 2.3 some special cases of
(n/2/F/Qu) problem are considered, Scction 2,4 deals with some
special'bases-of'(n/m/F/f) problem with f, a reguler measure

of performance, In 1968 Elmaghraby considered the'(n/l/F/Tu)
problem, This problem is discussed in section 2.5, We also
extend some results of Eamilton Emmons (1969}, Section 2,6

deais with the minimization of weighted tardiness for single
machine sequencitig problem with common dead line, Finally, in

e 1
g ol
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scetion 2.7 minimizing numper of late jobs with intermittent
job arrivals 1s solvec, for a single stage shop with common

dead line,

2,1 A General Dominance Theorem

Dominance Tule for the minimization of the total elapsed
time is well known (Szwarc (1971), Ignall and Schrage (1965)).
Here we generalize that to more general objective functions
that have the property A defined below,

How, let us consider the (n/m/F/f) problem with
the no passing restriction where the objective functicn is
¢t R = R, Let Gy,Cg ... O be the completion times of

jobs 1,Z2,.ee 1 respectively for a typical sequence, Let

e}

C = (Cy, Cz,...,Cn). Let Gy = (Cy , O3 yeeerCy } for any

1 2 T
A= (il’ 12,._,,ir), an ordered subset of N = {1,2, P n} .

Let A and 4 Dbe any two disjoint, ordered subsets of N

such that Aa( Ju =1, N#¢, o #9.

Definition 2,1.1 ¢ We say f has property & 1in case
(i} There ecxist real valued functicns g, b, for all X

anda binary cperation © on the real line which preserves inequali-

ties such that

£(C) = g}‘_(C}‘) o hu(CM) ¥ AN and u
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(ii) hu(.) is a real valued function such that for

A H -+ -~ 1 3 14
x, X with x; 2x! ¥ 1, I‘LM(X} < hM(X Y ¥ o,

As in chapter 1 let t(N, k) denote the earliest time
at which jobs in XA can be completed on all the machines

upte k.,

Iheorem 2,01 ¢ Let o = (j; .0 §) and o' = (57 ... 5,)
be éwo permutations of the same subset of r jobs, Let
bc any sequence (jr+1’ cosy jn) of the remaining n-r Jobs.
Let the vector of completion times corresponding to ow be

o~ . - ' = 1 1
C= (C eus Cn) and let ¢ (Cl, Cl oes
¢'r. Let £ have property &, If g,(C;) = g, (Cly)

Cr'l) be that of

and
to, k) < t(@', k) for all k, 1 <k <m

then
f{C) < £f(c') and

’

tlont, k) < t(o'r!, k) for all %k, 1 2k

Ia
H

and for any ordered subset w!' of N = o,

Proof . First we note that

t{o, &) < tl@', k) for all k, 1 <k <

A
(=

= t(or', k) 2 tler',k) for all k, 1 <k <m

and for any Tr'(: N=g vew Zela1
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This, actually is the dominance theorem for the total elapsed

tire, For a proof of this sce (Szwarc (1971)).
Now consider,
f(c) = f(cl’ 02, e e Cn)

= g4 (C;) o b _(C)

IA

gG,(C(},) O h?T(CTF)
by property A and the given fact

go»(cg) .5. go"(céi)

Eut from 2,1,1 we have,

p 8O Uiy Jproee dneg)s™ S 80" Gy dpgpeesdnggdem)
i = it
er-t—q
for all g such that 1 < g < n~r
l.e, O 2 (L
Therefore,‘
B (G )-sh (cty
(by property &)
Ang 504 o
£(C) = gy1 (G4y) o h_(C )
S ggr (Cfe) o b (Cl)

il

£(0] «.. ClY=£(C'Y
Tnis completes the proof of the theorcm.
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The property A is satisfied by many of the objectives
considered in the literature.

Example . f = Fmax . Here

(1) £(0 ess G) = Max(Cy ... Gp)

(i1i) a ob = Max(a, b)
and {(iii) ()= Max G
R e
and h (C ) = Max C,
T . J
jew

Hence, f has the property &,

Similarly, we sce that total tardiness, average tardiness,
cost of tardiness as discussed in section 2,2, number of late
4obs and any separable function that is nondeercasing in each

variable, have the property A&,

The above theorem is useful in discarding certain
partial .sequ_ences from further consideration while searching
for a complete sequence, Thus this dominance rule ean be
incorporated in sny Branch and Bound algorithm in which
partial sequences form the nodes of the tree corresponding

to the problem.
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2,2 Minimization of Certaln Functions of Job Tardiness

2.2,0 Introduction .

We consider the problem (n/m/F/u(T)} where u{T} is a
nondecreasing function of T given by

n
u(T) = 2 u.(Tj], where T, 1is the
j=1 9 i

tardiness for Job ' Jw d1sCe, Tj = Max(cj - dj’ 0}, Cj

being the completion time of Job J 1in a seouenec and

dj’ the dead line for job j. The usual assumptions 4,1 to
4.8 are made, This problem has been ¢onsidered by Gupta {1971),
Nabashima (1971) and Elmaghraby (1968%. Gupta (1971) considers
such a problem and develops a partial search procedure in

which no bounds arc used for selecting partial sequences, but

a ?artial sequence is extended as long as the cost of

it is less than the cost of a 'so far best! complete sequence,
Nabashima (1971) gives a genecral algorithm which solves
problems with such objective functions. He illustrates the
algorithm, with a numerical example, for the problem of
minimizing mean tardiness, Elmaghraby (1968") considers
(n/l/F/Tu) problem with different dead lines and gives a

Branch and Bound algorithm,


http://www.cvisiontech.com

, wfee

in section 2.2.1 we find simple bounds for cost of

tardiness for any complete sequence obtained from a partial
sequence, and use them in the algorithm developed for solving
the {(n/m/F/ult)) problem., This algorithm is similar to Brown
and Lomnicki's (1966) for minimizing F .. Certaln special
cases when u(T) satisfies some further conditions are

discussed in section 2,2,2,

2,2,1 Main Results, Lower Bounds and an Algorithm

A sequence ¢ of q jobs is called a partial seguence
if q <n, When g =n it is called a complete sequence,

Let ¢! denote any complete seguence obtained from a

partial ¢ i,e., 0! = (g7) where w 1is a sequence of all

jobs in N - o,
Let p(l) < eee X p(n-q) be the ordered processing

times on the last machine for jobs in 7.

Lemma 2,2.1 Given ™ = (jl Y jn-q) any sequence of

jobs in N ~ o, the completion times satisfy

> ) 1/ (I‘)
Cj > tlo,m) + 2 p

v r=1

for 1S TanTg

vhen o' = (or) is the sequence consldered,
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Moreover,

Cy = t{o!, n) 2 L(o)
n-g

vhere L(@) is a lower bound for total elapsed time for any
completion of O.

The proof of this lemma 1s easy and so is omitted,

A bound L{o) can be obtained using the following express-=
ion given in Brown and Lomnicki {1.966).
L(d) = Max Li(d) saa 2l2.l
1<ism
~ vhers,
(5) = t(7,1) + [ 2 p,.
L. @) = t@, 1) + Z Dp,. Min T
; ’ jel=o 337 jeNws  pelel TY

Henceforth we use L{g) as defined above,

Lomma 2.2.2 For any completion o! of the partial sequence

o we have

¢lo'y >T) = clo) + Z  u. (T +u, (TL')
jeN-¢ 4 9 /PR
70
vhere C(T) == ji U, (Tj) and TS = Max[t({o,m) + Ppy "~ d.j,o)

and T;]‘ = Max[L(o) - 43, 0] and 3, is such that,
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w, (T1) = wu, (T! ) = Min [u (Tt!) -~ u,{T1}]
7 S Pl Mo T o e

Proof + We have
Cy 2 t(o,m) + Ppy » I8 N

And. u.!'s are nondecreasing since u{T} is nondecreasing,

Therefore,
BN CIRe)- Ee= 3 e )
jeN~o 9 4 jeN—o 4
Since Cj = t{or, m) > L(0) for any completion of o,
n—q
we have
T, ERiL = Max(L(g) -~ d, , 0)
dn-q In-q Jn-q
> 7t (S8ince t(o,m) + p_. <L {9))
Jn__q 4 man_q Lm

Thus by the choice of jo as given in the lemma, the result
follows,

The above lemma gives a lower bound for the total cost
of tardiness for any o', This lower bound is used in an

algorithm given below for solving the (n/m/F/u(T)) problem,

An Algorithm !

The set of all partial seduences can be repnresented as

the nodes of a tree with root at the partial sequence (.)


http://www.cvisiontech.com

u’75-

eorresponding to g = O, & pair of nodes ¢ and o‘l are

comected by an edge in case, O % (¢3) for some J & N~o,

fhere are n=g descendants for a partial sequence ¢ with
q “jobs, The lower bound associated with any node i1s non-
decreasing as we move away from the root and aleo gives the
pinimum possible actual cost for a terminal node corresponding
to a complete scquence.

This algorithm is same as that given in Brown and
Lomnicki (1966), except for certain additional computations

made while calculating the bounds,

Step 1 Start with node (,) with q = O,

e

Let o=(.), Go to Step 2.

- 9tep 2 & Generate the n = g descendants of ¢ by
fixing § din the q+lSt position, one by one systematically
for j e N-0, Let 7 for 1 <1 <n-g be the nodes thus

generated, Go to Step 3,

Step 3 ¢ For ecach 71, workout the lower bound © (ri)

ke

glven by Lemma 2.2.2 calculating L(x) given by 2.2.1.
Store (ti, E(ri), g+l) for each . Go to Step 4,


http://www.cvisiontech.com

.-‘76-

Step 4 ¢ Choose 2 node from among all nodes avallable
for branching with the smallest %élue of G, Let ¢ Dbe the
node so chosen with g Jobs, If g < n-l1 go to Step 2,
Otherwise go to Step O.

Step 5 . g% = (0j) is optimal with cost E(G), where
j is the only Jjob not in o, Stop.

We illustrate the use of this algorithm by solving the

following problem.

Bxample 2,2,] The following table gives the necessary data

on processing times and dead lines, The cost functions are

*given below,

‘Machine Processing time
Total Dead
Job il 2 3 4 5 line
k) 4 3 Vs 2 8 24 28
) 3 7} 2 8 5 25 33
3 1 2 4 3 7 57 17
4 3 4 5 7 2 e 20

Total P R 1 16 20 PP
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Ug (x) = ox”

u, (%) = X2+2X, x>0

We are interested in minimising total c¢ost of tardiness, The
functions given are obviously nondecreasing functions, With
-the node ¢ =(,) we enter Step 2 and generate the four nodes
corresponding o 1y = (i), T (2), Ty = (3) and Ty = (4),
The table below gives the details of the calculations required

to find L(Ti) as given by 2.2.1.

- tlo,k) o 9 6 B g
k 1 2 B 4 & . -5 & 4 5 L(Ti)
il t(”’isv k} Ly
(1) £ 711 18 22 o7 32 32 36 38 38
(2) S e (2o 25 27 31 35 34 42 42
(3} ¢ 8 7,00 iy o7 29 928 29 32 32
(4) = L7 SNl iR 27 33 33 35 39 39

We calculate T T;j! for Jj e I\I-Ti for different | Sl

Consider T4 = (1Y, We have t( Ty m) = 24 and L(Tl) = 38
from the above table, The following table gives TB. and ’i‘é‘
for Tqn
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j TJ’. TS.T Uj (Tﬁ) Uj (Té')
73 0 5 0 15
3 14 21 58 34
4 6 18 48 360
Total | 104

We have E('sl) = 0+ 104 + 15 = 119,

Similarly we fird G(7) = 213, T( 75) = 0 and
6(14) = 54, 5o we branch, taking ¢ = (3), We find the nodes

66, C(32) = 208

1]

created are (31), (32), (34) with C(31)

H

and C(34) = 0, And so we branch from o = (34), Nodes (342)
and (341) arc generated with C(342) = 242 and C(34l) = O,
As g =n~1 we stop here, A&n optimal sequence ig (3412) with
cost 0, The tree generated for the problan is given in

Fig. 2.2;10

Remarks

1, At any stage while choosing a node ¢ for branching,
if C(0) << T for aliotheravailable nodes for branching,
then while calculating E(Ii),instead of L{0) we can use
Lm(cr), This reduces the computation considerably, In the

above example C(31) = 66, but we get using I (¢) the modified


http://www.cvisiontech.com

....80-

jower bound for (31) to be

IB(31y =0+ 63+ 0 = 63,

i n
2 Lm(o')‘ coincides with L(0) and is equal to 2 Dby
g=d

for the single machine casec.
3, The dominance theorem proved in section 2,1 1s applicable
in this case, The theorcm when applied to this objective
function goes as follows ¢

The segquences starting with o' can be discarded while
searching for an optimal segquence in case Gloy < C{o') and
£(0,k) < t(o!,k) for all k such that 1 <k £ m where 0

and 0! are two different permutations of the seme subset of

jobs.,

2,2,2 Some Special Cases of the Objective Function u(T)

In this section we consider uj’s satisfying in addition
to nondecreasing property, the following conditions (after
renaming the Jjobs 1if rnecessaryy.

(i) uj(x) < uj+1(x§ for j = 1,2 +.e n=1, x € [0, el

where p 1s sufficliently large.
and (ii) Given y 2 x>0 and @ 20

uj+1(y + W) - uj+l(y) > uj(x + w) - uj(x)

for j = 1,2 ’.g’ n-l- l-o!2l2.2
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These two assumptions only mean the penalty functions behave
11ike! linear penalty functions, for which these are satisfied.
In cases where uf{T) has the above properties we can improve
the lower bound for the total penalty cost for any complete
sequence obtained from a partial sequence., To achieve this,

we need the following lemma 2,2.3 which gives an optimal

solution for a special type of assignment problems,

Definition 2.2,1 + We say matrix € has non-decreasing rows
in case ©C.. < C, . ¥ i 1d 3
in case Cj5 < i, 3+1 ax 58

" Definition 2,2.2 + Matrix ¢ has monotonc property in case

Bo= ((dij)) has non-decreasing rows where
Ciy ~ Ci—l,j if 1L 2 2
1]
0 if 1 =1
We now consider the assignment problem with the cost matrix
¢ having monotone property and prove the following result,

Lemria 2 3 When the cost matrix C of the assignment
r>r

problem has monotone property then X* gilven below, minimizes
the total cost of assignment,

1 if i+j = r+l
Xk = ((x%.)) with x¥., =
J J O otherwise
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Proof ! Let X Dbe an assignment different from X*, Suppose
{ and X* have the first A-1 columns identical, 1 % A< mn

and A is the largest such, We have then X -
r+l-A, £ e

Now consider Xil’/( anad Xr+l~,(, 3 where j‘l’ i, are such

that Xil"( = Xr+l—,( 131 =1,
Regssign them as follows

Xpp1-4, A #l= xil’ i and

X = 0 =

iy, £ rr1-A 31

with the remaining xij‘s unaltered, et the new assignhment

pe X', Now,

[

c(X) - c(X! ¢ , e = B
(X) - c(X") ilpAT Crp~A )31 Copi-f 4 01131

= (CI"i"l"'/(,jl “Cil,jl} iy (Gr+l~/(,,( I Cil,K ).

Observe, jl has to be greater than A, as otherwise our assumpt-

jon that X and X* agree upto A -1 St olumn will be contra-

dicted, as x§+1_/(’ 3 = {0 ané xr+l*/(,jl = 1, ©8imilarly,

i; has to be less than T + 1 - A . Since € has monotone
property,
. 2 Cria-g 4 7 C1q,4

Crvi=A, 37 7 Vig,ip T
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] . . - th
mus C(X') < C(X) and X' agrees with X* upto the A

column, Repeating this argument X* is shown to be optimal,

Hence the lemma follows,
Coming back to the tardiness problen,

i
@ & 2 p(S) for, ‘& &l ln,r=1

g=1

1 L{o) for &4 '9 &,

1}

With r =n-q and p (x)

S e 2P , the ordered processing
times on the last machine for jobs in N-0, where 0 is g

partial sequence with q Jobs,

Let (4] «.. @), bc a sequence of the jobs in N -0,

> > d

such that d_ = p > e 2 -~ .
4 nay Op 1,

Let (Sl s+ S.) be a scquence of the jobs in N =0,

such that ug (X} 2 4oe < U (x) for all xe [0, B8],
: 1 T

Let (ty ves t.) be a sequence of the jobs in K -0,

such that dtl 2 eee 2dp
r

Let Ty = Max[ci Faidig s G
3

- d ,0]

= % ey
and %l MaXLCi_l + pmqj a

4]

First we observe that for any sequence (jl S jr) of the

jobs in N - 0,
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Ty, 2w for £ such that t,=.J,

for L svxr,

also T. 22, for k such that q, = |

Jy v
form M <47 < Ng
Let'r>fr = ((aij)) where — ay4 = usjfyil)’
r>§r = ((bij)) vhere by = usl(yij),
err = ((eij)) vhere ¢y = utj (yij)
-and err = ((eij)) where  e; s = qu(zij).

We have, from the definition of y;. and =z,

(1) ¥ij 2 Viger A0 Vi S Vi

| g V. 3 as e a 20203
and (il) 235 2 35441 and 235 2 2341, 3
Moreover, if wu, 1s convex, then
1
usl(yi+1,j) - usl(yij) = usl(yi+l,j+1) ) usl(yi,j+l)

because of the monotonicity property of convex functions,

in general, the matrix ¢, may not be monotone. The

matrix B 1is monotone if U is convex. The matrix A is
%
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monotone as uj‘s satisfy additional assumptions 2,2,2, Similar’y.
in general, the matrx E may not be monotone, However, we nave

the following proposition, Let C and E be as defined above,

il

Proposition 2,2,1 ¢ (a) 1If tj S5 for all J, then the

matrix C i1s monotone,

it

(b) If q4 = sy for 21l J, then the

matrizx E 1is monotonec,

The proof of the proposition follows from 2,2,3 and the
additional properties of uj’s namely assumptions £.2.2,

| Let Uy, Upy Ug and Ug be the optimal cost of assign-
ment with the cost matrix 4&,B,C and E respectively,

Thus, we have Uy, Ug, U, and up as lower bounds for

the cost of tardiness for any sequence of the Jobs in N -~ 0,

We have,
i
e S 2 s (Miaee o5 'and iF w, ' A8 convex
A j=1 Sj rhlE gl 8q
g
then Wy = B (o8
B =1 o TEERE A

using the monotone property of the matrix and lemma e e e

If an earliest duc date (EDD) sequence is also a largest

| penalty rate (LPR) sequence then using the proposition 2.2.1,
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we obtain another lower bound

)

ol
i
s

u & o
By pas (yr+1-3,3

Similarly if a sequence (sl - Sr) is guah that

Uy S ees 2 U and ,
X T

d =P Z eus z, d = g then uSiILg
Sl Sl ST Sr

the proposition 2.2,1, we have the lower bound,

)

r
By B Wy iz 08 .
il i rl=d, ]
Moreover, when m = 1, we get using the proposition 2,2,1,
the following lemma, which is a generalization of a result

noted by Hamilton Emmons (1969},

Consider the (n/1/F/u(T)) problem with nondecreasing
functions uj‘s satisfying the additional assumptions 2,2,2,
mede in the beginning of this section, Then we have the

following lemma.
Lemma 2,2.4 & A shortest processing time (SPT} sequence is

optimal in case it is identical with an earliest due date(EDD)

sequence and a largest penalty rate (LPR} sequence,

Remarks
(1) Note that, if a SPT sequence is such that

d then the SPT segquenge is ldentical

dl B pl S ees r pr

with an EDD sequence,
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(2) Shwimer (19272) has proved the lemma for linear penalty
functions, But his claim about the non-linear uj’s is not
correct in the light of the special cases of u(T) discussed

in this section and the following example,

f
Exarmple 2,2.2

: d.
J Py 3
1 3 2
2 4 S
3 S 2
Jith u(x) = 10x, L >2x >0
o R ICIS SE - |
{ ex, 5 2x 20
ug(x) = 110 102>x25
and ug(x) = %y, A0 = 0= 6

It is easy to sce that the LPR seguence is (1,2,3) as

IHKX) > uz(x) > u3(x) for every x such that 0 < x < 10,

But these uj'S do not satisfy the assumption (ii) in 2,2.2.
Further,the LPR sequence, the SPI sequence and the EDD sequence
are the same, namely (1,2,3)., But (1,2,3) is not optimal,

since,

i

¢(1,2,3) = u (1) + uy(2) + ug(s)

19
u2(0) T ug(2) + ul(lo)

12.

1

and C€(2,3,1)

1
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2,3 Some Special Cases of (n/2/F/Cy) problem

E.3.1 Introduction
Ignall and Schrage (1865) discuss the problem (n/2/F/C)

and give a Branch and Bound algorithm to solve the problem.

They make use of two special cases of the problem to develop

- a lower bound, We give algorithms to solve the (n/2/F/C,)

problem when the processing times satisf{y either

R ] j
an assertion made by Ignall and Schrage (1965) in this connec~-

Max 4, < Min B. or Min Aj > Max Bj. Tt 1s shown that

tion 1s incorrect., We take Aj‘s and Bj’s to denote the

processing times for machines A and B vrespectively.

2.3.2 Notations and the Special Cases

As earlier, let X; be the idle time on the last machine,
namely B, immediately before processing the Job ji, when the

sequence considered is p = (jl s jn).

Now
e il
s &= ,8 K. =12 Eat¥ o 1= mp
i p=1 Y =1 dr

From Johnson's (1954) paper, we have

¥ X = Max K where
r=1 l<r<i
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e e~
K = 3 A - B
a s=1 9g s=1 Jg
n
T'¢ problem is to minimise C(p) = Z u; O over the set
‘ i=1 J1 i

of all permutations of (1 2 .,. njy,

. Gagse I Max 4. < Min B,
A

In this case, we have

Ki 2 K1 for all 1 <1 <n~1
i i
Therefore, Cji =Kt ril Bjr = Ajl o) ril Bjr
n n n all
and Z u. C., = Z A u + Z Uu. 2 B

so1 95 95 421 091 91 i=1 4 op=1 p

n( I i
= ¥ (A. ¥B. ) u, + Z u. R
i=1 37 917 T3 =g i =g r

o} i
Mc Naughton (1959) has shown that P o B pu
i=1 i r=1 Jr

ig minimum when (sl o Sq) is such that

< Dy /B, eee 2Py /m 5o BluStl

B L3
- | 2 "2 ! q

Using this sequence called Mc Naughton's sequence, with

n i
p; = B; we can minimise 2 mz B Bg ¢ Let B, Dbe
i i=g Ji reg r :
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. the set of all permutations with iy = J. For Pe gj ;

n
I (A, + B. ) u., is a constant, Let the Mc Naughtonis
- PR SR

sequence of the (n~1) Jjobs other than J, corresponding to

(fixing job J; F J pe Sje Let

n
D.= ¥ (A. + B.) u;, + R,
¢ = a0y W [ J
where Rj is the cost corresponding to Sj'

Then Min C{p) = Min { Min c(p}}

p 1<isn ° pe Ej
= Min D, .
lsizn 9
Let j, be such that D. = Min D.. Then an optimal
o l<jsn J
sequence for the problem is given by (jo, Sj } with optimal
o
cost D. ,
I

We note that the assertion made by Ignall and Schrage

Wges)) Hat 'Ciy Pk J. ) soeh. that WE.L " & oo < B 1| Hig
1, n ']l Jn

optinal for (n/2/F/C,) problem with u, = = for all j, is

inecorrect, A counter example is given helow,

Example 2,3,1 ¢ Consider the (4/2/F/ C) with the data given

in the following table,
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Ry R I W

-0 -

R
1 3 2
2 & 38
3 3 4
4 2 2]

1

-3:(2+5+9+14) + 24 (3 <4

4o
4

We have, C(1,2,3,4)

It

The sequence (1,2,3,4) is optimal according to the assertion

made by Ignall and Schrage (1965), But we find

G(2,1,3,4) = $(3+5+9+14) + 5(2 < 4)
39 _ = B
= 2 < T(1,2,3,4) = L&
dage AL ¢ Min A. > Max B,
1. j -

Under this assumption, we have

Ki < Ki+l Ry @l i BN s
Therefore, 5
En Bg. wE 3 BE
d1 & r=1 Jp
i S i
w2 A= B OE: § E B
=1 o r=] 9p =il Ip

I
™M
r'r_-:
+
=


http://www.cvisiontech.com

f

|
]
|
i

i=1 Ji J1
satisfying 2,3,1 with

to minimise C(p).
Thus, & sequence

A

3./ <
i -
34

is an optimal seguence

j=1  Ji = =1 ir=1 Jr i=1 J1 J%
j i al
B Thus. C(p) is minimised when Z u; Z A, 1s minimised as
i=1 i r=1 &
n
g B. u. is a constant, We find a Mc Naughton's sequence

p; = h; for all j, 127 <n,

(31 ees ) satisfying

A A

J J
2, Five B Ve

32 ']n

for the problem,

2.4 Some Special Cases of (n/m/F/f} problem with £ =

Regular Measure of Performance

2.4,17 Introduction

In chapter 1, we mentioned that the theorems 1,1.1 and

1,1.2, assuming BCD

and FCD conditions can be proved for

more general objectives as well, That task is taken up in

this section, In this

section we meke the usual assumptions

A, through Ag, We consider the (n/m/F/f) problem with f a

regular measure of performance, Maxwell and others (1957)

define a regular measure of performance as follows,
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4 function f ¢ B*—> R 1is said to be a regular measure
of performance in case for G, C' ¢ it C; £ ¢} for all
i, then we have f(C) < £(C'). Almost all objective functions
commonly considered in sequencing literature are regular

C,» number of

measures of performance, For example, T, .,
late jobs, u(T) as given in section 2,2 are regular measures
of performance, Further, under the usual assumptions, while
solving a (n/m/F/f) problem with a regular measure of perfor-
mance, it is sufficlent to consider permutation schedules,
Therefore one can restrict one!s search for an optimal schedule
to the set of all permutations of (1 2 ,,, n) [See Maxwell

and others (1967)1. As only this property of a regular

measure of performance is used in the proofs of the theorems

2,4,1 and 2.,4,2, the theorems hold good for any f with this
property.

2,4.2 Main Theorems .

We need the following definition in theorem 2.4,1.

Define f3 (x)y = £(x'} where xl = X; + 3y with

la=i
a. = Z D
J =i

, n
rj ? for =z e R .
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 Theorem 2.4.1 : I there exists a2 k such that the BCD
conditions of chapter 1 hold for machine Mk then the corres-
ponding (n/m/F/f) problem with £ a regular measure of

- performance, reduces to that of solving n, (n/n=k+1/F/L)
problems involving the last m-k+l machines with the
restriction that Job j 1s fixed to be the first job in the
| jth problem, and then selecting the 'best! (jo, Sj } sequence

(8]
wher (3, Sj) is an optimal sequence for the jth problem,

Proof ¢ From Lemma L1,1,1 we have for a p = (jl jn)

k=1 gl
j s s j s = . + . 1 < <
t((J4 :]l), k) rzl prJl szl pk.]s’ gl TR

Let gj be the set of sequences in vhich J; = J. Let
M; < Mygeq for 1 < i <m~ktl, Consider the problem
with the m-k+l machines M5 and the sequences belonging
to gj. Let G, be the completion time of job s on the

machine Mm"k%-l‘
Then for p € -‘Ej’
k-1

3 = j L ] q L = C‘ + J
Cai t((3; 3 ), m &5, 13-1 Pry

for all 1 <1 £n,
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From the definition of fj it is clear that an optimal solution
2 (n/m/F/f) problem over ,_Ej can be found by finding an

optimal solution to the (n/m—k+l/F/fj) problem with machines

ﬂiﬁovel.’ ;’j.
How,
Min f = Min {Min .
p 1<jzn ngj g

and the theoren foliows.
Next we consider the case when FCD condlitions hold for
machine Mk"

Let f1(x) = £(x + a) where a = (&7 .o an) with

m
a, = Z P
d pekil

rj? for x g R .

Theorem 2:4.,2 + If there exists a k such that FCD conditions

hold for machine M, then the corresponding (n/m/F/f) problem

with f a regular measure of performance, reduces to that of
solving a (n/k/F/f') problem, involving the first k machines,

where the objective function f' is as defined above,

Proof . From Lemma 1,1,2 for any sccuence D = (] +.. jn),

we have,

E((Jq eee 35, ) = 80 .. 39, mil g Prj,
1

for all &= stuch that kil <r <n
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Using this repeatedly, we get

m
C: = t((J1eaedyd, m) = 2({J1aaadg)rk) + 2

P, =
1 reicel LY

i
Let Qj be the completion time of job j on the maghine

My in the problem with the machines Ml s Mk'
From the definition of £', we get

f(Gl I GD.) = f(gl + a‘l “ew g_“n. + a‘n)

C.)

e 1
i (_G_l vea e

i

Thus Min £ = Min f!' and the theorem is proved,

Remarks °
1. Both tae functions fj and f' defined above arc

regular measures of performance when f 1s a regular

measure of performance,

2, In theorem 1,1,2 for F .., we solve n, (n/A&/F/F )
problems fixing job Jj as the last job in the jth problem,
yhereas in theorem 2,4,2 we say the original problem is
cquivalent to a (n/k/F/f') problem. 4s F, .. 1s a regular
measure of performance, one may wonder why not solve a
(0/%/F/f') problem instead of n, (n/k/F/FmaX) problems, In

fact solving those n problems is equivalent to solving a

probler with f!' =Max (C; + a;), since when job j is
L
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fixed as the last job, £ = (Max Gy) + a; = Gy * 24,
| i

- 2.,4,3 Some Special Objective Functlons

We now consider some objective functions where the
apﬁlication of the above theorems will lead to solving one
or more problems with a single machine, In these cases

efficient procedures for solving the reduced problans exist,

First we consider (n/m/F/f) problems with BCD conditions

holding good for machine M .

(L) Weighted sum of completion times.

n
Let f(C)} = jil Cj U vhere C = (Cl - Cn)

Wesﬁmll show that the following procedure solves the problem

1, Find a Mc Naughton's sequence (sy «e. s,) for the

(n/1/F/C,) problem with machine M.

2, Calculate for each ],

n =il alL =t
. ril Ur ¥ P ril usr B ril “ms
m=1
with 8 = % prj

and find jo for which Dj is minimised,
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3. Then (J_, 57 «es Sio-l’sio+l eee 5,) is an optimal sequence
for‘@msproblem vhere Jo, = 54 A1so the optimum value of
Q
f is W+ Dy when W 1is the welghted sum of completion
o
time corresponding to (Sq s« sn).

hbecording to theorem 2.,4,1, the problem 1is solved by

solving n, (n/l/F/fj) problems with machine M = and

jl = j in the jth problem,

Now,
ijg} = £(Q) where Gl = 8; + & and a4 = iii Py
n
= iél u; (€ aj)
n n
= lil u; 85+ iil Uy 8

: n
So minimising fj is eguivalent to minimising X u; G;

fixing J; = J. Consider any p = (31 ooe igd ek

J
n n n [ i ]
Z Us | e = e W Pk T Za Ua SV
i=1 i 9% =1 91 ) gZp i ome M

Thus, minimlsing fj is the same as minimising

n al n
2 W 2 o M as ¥ Us Pos is a constant,
j=g Y1 p=2 OVr 1= 91 ™
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And we know that Mc Naughton's sequence of the jobs other
n i
than § wminimises Z

. Let the minimum
it 2 Jj_ T = 2

Bnj,

here be Rj and the corresponding sequence Sj‘

Therefore, an optimal sequence for the problem is given
by the 'pest! (j, Sjo) sequence, Further, suppose sy ... S
is the Mc Naughton's sequence (given by 2,3,1) for all the
n- jobs on the machine Mm. If job 3 = Sis then the minimum
weighted cost for the problém involving the jobs other than
j is given by

15! + B g Ul

1
R.=W=~ (2 p. .
mJ Sq r=1 T

J r=1i

wiere W is the weighted cost corresponding to (s .. S,).
AlSO Sj = (Sl e ae Si""l Si+1 ¢ a5 a sn) L]

Thus the optimal value of fj is

Simplifying we find, the 'best' (j,, Sj ) seguence is same as
o

(jol Sl""’si —-J}Si +l’oo», Sn) Whel’o
(@] Q

D, = Min D.,
Jo 1<jz<n J
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(B) Number of late jobs

n
£{c) = = =X where

A if Ci = di >0
i doug) otherwise

By theorem 2,4,1, the problem is solved by solving n,

(n/l/F/fj) problems with machine M ~—and j; = j in the
jth problem,
Now m~1
£.(C) = t : T o= (. ; i : = .
| J(ﬁ) £(g') where &! =C; + a, with a rilpra

I gi+aj~di >0

1 0 otherwise

Thue solving the jth problem is same as solving a

(n/1/F/f) problem, over p e Py with machine 1 and due

date d; - a, for job 1., Moore (1968} has given a simple
rule for solving the (n/1/7/f) problam with £ = number of
late jobs, This appears in section 2,7, Let Sj be a
sequence of the n-1 jobs other than Jj obtained using
Moore's rule for the jth problem, Then f 1s minimised

over all permutations, dien jo is chosen such that

‘Q%,Sj ) is the '‘best'! among (Jj, Sj) for all J,
0
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th

We note that one needs to consider the ] problem, only

(o + aj < 4.,

mJ = ]

(CY Maximun ui(Ti)

£{C) = Max ui(Ti) where
1=<i<n

Ti = MaX(Ci - di, Q)

with u; a nondecreasing function of Ti for every 1.

By theorem 2.4.1, the problem is solved by solving n

(n/l/F/fj) problems with machine M and Jj; = in the

jth problem.
Now =1,
= I e ' = i =
fj(g) £(C') where G! =G, + ay with ay ;51 Dy
= Max u,(T}) and T! = Max(C.+ta; ~d,;,0),
1<i<n 1 Al i 7 i

Thus solving the jth problem is same as solving a (n/1/F/f)
problem with machine M and due date di"aj for Job 1, over

pE gj. Lawler (1973) has developed a simple algorithm for

i

solving (n/1/F/f) problem where £ = Max u;(T;). TLet

n
e 2 Py * We find an optimal sequence for the jth problem
r=1

as follows, Set J =N =~ {j} e uj(T)

where T = Max (pmj+a3~dj,0), Also set r = n,
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Step 1 ! Find J, such that w, (Tf ) =Min wu,(T})
T A

AT E ' = M -
vhere T} Max (t di+aj, 0)

Set f£* = Max[u.

: (T;] 3, £*]

14 r

Set T =J =~ {jr} . Go to Step 2.

If J =4 go to Step 3,

T »

Otherwise, set t = t - Py
s

ané r = r~1, go to Step 1,

Step 3 ¢ Sjiﬂ (Jg ves %ﬁ) and (J, Sj) gives an

cptimal 8equence for the jth provlem, with f* as the
optimal f value. Stop,

th

Using this algorithm the j problam can be solved for

cach j and the f'best!'! (jo, Sj } is an optimal sequence

o}
for the problem,

(D) Sum of the absolute deviations of completion times

£(c) = ié/( ey - oy |

It is easy to see that this objective function is not

& reenlar measure of verformance. But $till we can usae the
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theorem 2,4.1 as permutation schedules are sufficient to
consider, in this case,

Thus the problem reduces to that of solving n, (n/1/F/1;)

problens with machine M_ and j; = j in the 3" problem.

Now
: m-1
= i T ‘z 0 1 l’ -
ijQ) T(C') where Cl=g; + ay with ay rEl Py
21 @y I =ee | =¥ (C)
i< T A

So, the jth problem can be solved by solving a (n/1/F/f)

problem on the machine M_. Further, since fj(g) does not

depend on J, solving (n/m/F/f) problem boils down to solving
a (n/1/F/£)y problem on the machine M  over all permutations,

Elmaghraby (1968a) has considered this problem of minimising
sum of the absolute deviations of completion times and gives

the following rule to obtain an optimal sgequence,
Step 1 7 Rename the jobs such that
Pl = Ppo = eee Z Py
Step 2. Fix sq = 1.
P2 d-1) for ml Zxl s ]
3+2(n~-i~1) for n ~ [Q%l] <1i<n-1

If n is odd go to Step 3., Otherwise fix s

= 7l
Go to Step 3. [g’z']"]J’z
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Step 3 . (s1 Ser sn) is -optimal, Stop,

Now we consider some applications of the theorem 2,4,2,

From now on we consider (n/m/F/f) problems with FCD condi-

tions holding good for machine M.

(B) Weighted sum of completion times

I

£(C) = u

C
=1 * 2
The problem reduces to that of solving a (n/1/F/f?) problem

with machine Ml' We have

t

m
£r(2) £{¢ + &)} where a = (al...anJ and ay =r§2 Pry
n
= 121 'l}_i(_qi T ai)
n n
= iy e

t

i

£(g) + constant,

Hence, we nced to solve a (n/1/F/f) problem with machine M.

Mc Naughton's rule gilves an optimal solution,

(F) Number of late jobs

£(C) is as defined in (B).
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The problem is solved by solving a (n/1/F/f') problem with

machine Mj. Now

n
t Y= i = (=& a =
£r(g) = £(C + a) with = (ul...un) and 8y ‘_2.- Prj
=g
n I ir G +.a; =dy >0
= I %, where X; = + = l
=E ' 0 otherwise.

Thus we need to solve a (n/1/F/f) problem with due dates

d; = 2y and machine M. Moorel!s rule (1968) yields an
optimal solution to the problem,

(G)  Maximum uy (Til

o —

£(C) = ¥ax uy (T;) with T; = Max(C; - dy, el

The problem is equivalent to a (n/1/F/f') problem with machine

Ml and

]

£1(C)

m
(¢ + a) with a = (al...an), and a, uri Py

= Max(G; + a4 ~ di,o)

It

Max -(Ti) e B T

1
1<i<n N

Then solving the problems is same as solving a {(n/1/F/f} problem

with dy ~ 83 as due dates and machine Ml.
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Remarks

1, When £ is as 1n case D {(and FCD econditions hold for
machine Ml) the problem reduces to that of solving a

(n/1/F/£') problem with machine M; and

f1(¢) = £(¢ + a) with a = (a;...2. ) and ay = e Py

. :iéxi.gi'l'ai"g/("a(]

There is no simple rule available to get an optimal solution

in this case,

2, 1t might be possible to use repeatedly the theorems
2,4,1 and 2,4,2 and reduce the number of machines in the
problems to be solved considerably. ¥or example, 1f for
machine M, FCD conditions hold, then we have a (n/k/F/f')

problem to be solved with first k machines and f' (x) = £({x+a)

m
AT E a, = 2 . anc
where oA Ppy

82 (8. . oa . New, further 1if
* r=k+1 1 S = 3

BCD conditions hold for machine M,, then it reduces to solving

n, (n/]_/}"a‘/f%) problems with machine M, and f;.l(x) = f!'(x')

' k-1
I = =~ = ' P=) 3 1 -
where  x! Ai+bj and bj § Prje That is, fj (x) = f(x + wj)
r=1
where Wy = (al + bj, a + bj, veegdy t bjﬁ. Thus solving
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(n/w/F/f) problem reduces to that of solving n, (11/1/F/f3)
problems with machine M,
3. The cases 1 and 2 considered in section 2,3 are particular

¢ases of cases A and E respectively with m = 2,

9,5 Minimisation of Weighted Tardiness with a Single Machine

5.0 Intcedyction &

Elmaghraby (1968") has considered the (n/l/F/TU_) problem
and has given a partisl search method after converting the
problem into that of determining the shortest path in a directed
geyclic network, The branching for optimal seguence is done
by fixing the last job at any stage, from among the remaining
jobs, He also gives a simple lower bound for the cost of
tardiness for the remaining jobs, Hamilton Emmons (1969) has
considered the (n/1/F/T) problem and has proved theorems that
establish the relative order in which a pair of jobs 1s processed

in an optimal schedule, ©OSrinivasan (1971) has uscd these results
of Hamilton Emmons (1969) along with the dynamic programming

pethod to get & hybrid algorithm for solving (n/1/F/ T ) problem,
Shwimer (1972) gives a Branch and Bound procedure for the

(n/1/7/T,)) problom,
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In this section, we consider the (n/1/F/T,) problem under
usual assumptions, The results of Hamilton Emmons (1969} are
extended to this problem in section 2,5,1.

In section 2.5.2 we specialize the algorithm given in
section 2,2 to the (n/l/F/Tu) problem and incorporate the
résults of section 2.5.,1 along with the improved bound discussed

in section 2,2, for the case of the lincar penalty function

1,

5,1 The Relative Order of Jobsg in an Optimal Sequence

The method of precedences introduced by Hamilton Emmons
(1969) is as follows, Initially there are no prececdence
relations known among jobs, At any stage supposc it 1s known
that ip precedes jp (ip o jp) for P = 1,00, 1a€s,
there is an optimal sequence in which ip appears before jp
for p = 1,...,4 « It is clear that this precedence relation
between jobs is transitive, Let Bk be the set of Jjobs which
precede k, 1l.e, B T {ip § 1 <p= L 5 g k} and A, De

the set of Jjobs which succeed k 1,e,

;Akf' {jp o1 = I ip =2 k], . At any stage we define the

precedence matrix ;
T '1 1 if i precedes
M= ({m,. with Mg =
= +J | 0 otherwise.
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en by definition Ay = {J/mkj =1} and By = {j/mjk =1} .
e denote N=A by 4%, Let the jobs be numbered such that

P S eve £ Ppye Without loss of generality let p;, ¥y be

i
psitive for a1l i.[ Note that we are assuming, D, Uj Z 0

for all 1]

Let p(A) = Z p; for any subset 4 of N,
ied

Let p(A‘j’) = pt,

Definition 2.6.1 ¢ Let &5 = Min f(x, y) subject to
X,¥

y+pj+pk§_x_§p' and p(B) 27,

yhere

x =~ Max(y + Pis dj)

f(x, ¥) =

x = Max(y + Pys dk)

Without loss of generallty let di < p(N) for all 1, We now

prove & theorem which gives a precedence relation j <—k under
certain conditions,

Theoren 2,9 * Tor sny two job J and k with J < k, if

(1)  d; < Max[p(B) + py, 4]

and (i) uy 2y or 1< uk/uj S Oy

then ' < Ke
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oo? ¢ Concider any two jobs j and k which satisfy the
asssumptions made by the theorem and any sedquence S in which
jobs in B; appear before 1 for all 1 and job k appears

Sy and Cj be the starting time of Jjob k

snd conpletion time of Jjob J, respectively, in S,

before job J. Let
Consider

8 ohtained from S by interchanging jobs and k, We
shall show thot the weighted tardiness for S' 18 less than

st of 8, It is sufficlent to consider the net change in the

| welghted tardiness for jobs j and k, since the tardiness of

esch job occuring between and k in S is more than the

eorresponding tardiness in 3! and the tardiness of all other

jobs remzins the same. Let Ay denote the resulting change

in the weighted tardiness for job i,
How Condition (i) of the theorem implies

dj < Max (S + Py, Ay ) since p(B) < Sy
and 5 F ps & S ¥ P @ Py = Py

30

H

Max(Sy + py, dj) < Max(8y + Py, d, ) Vs 2R Tadl

. Gage dj =< dk and dk < Cj

How

it

/ . R . 1. — -
A= uy [Max (8 + Dy, aa) CJ]

B = Uy [Cj - MaX(Sk T Dis dk)]
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Therefore
ﬂ;} + Ak ="u;k[cj - 'Max(Sk-l-pk,dk)] - “‘;]fcj - Max(sj-l‘-pj, dj)]

By hypothesis, clther u; 2w, or 1 < uk-fuj < Oy Pirs%
that the interchange of j and Xk 1cads to a decrease in
the weighted tardiness;

Next et % < uk/uj < Sy

We note that
b+ 4, =<0 if

Oy Max(Skl + Py dk,)

'uk/ﬂj =

Also we have,
1Y pByY 28,
and (1) § ¥ Pt Py G5 S PUY.

"Nt)w; from the definition of 5kj we Se0,

Cy = Max(Sy + pyy dy)

Opy S =
Since k/u;y = kj’ it folloys that® Ay ¥ By 2 0, Hence

the interchatige of § and & leads to a deerease in the
welghted tardiness,
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fase 2 a., <
LASC & 3 = dk and Cj < d’k
Now
AJ. = U, [Max (S, + Pss dj) - Max(cj, dj)]
= W
since Max(cj, dj) > Max(s, + Pys dj)

i

uk[Max(CJ., d.) ~ Max(S, + p. 4 4]

And Ak

I

0 (since d 2Cy 28, + ;)

Therefore L Ak < 0,
3 b
Case 3 d) < dj' Then by hypothesis, dj < p(B) + D)o

In this case Cj > dj“ We have

A & = ) — I
.t u, [C5 Max(8, + p, d)]

. uj[cj - Max(§, + Pis dj)]

Now it follows that Aj + A <0 cxactly as in Case (13,

Thus if & 1s optimal then S' is also optimal and

precedes k in 8', This completes the proof of the theorem,

The author proved the above theorem in 1971 and later
discovered that Shwimer has proved a weaker theorem in 1972

yhich is applicable only when Uy 2wy and condition (i) of

Hie ~reve thaorer 9.5,7 helds, The following Taorma colwes
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the problem of minimising f(x, y) subject to the cons traints

given in definition 2.5.1.

lemma 2,5,1 ¢ Let condition (i) of the theorem 2,5,1 hold
ESfo:f' some pair of jobs j and k such that § < k., Let
(x*, ¥*) mininise r{x, y) subject to the constraints given

in the definition of &y together with x 2 dy. When

J
d. 2 pt, 1if 4 =P dj =~ Pj then (x*, y*) 1is given by
2
(',p' = py " py) If PP =Py <
(x*, v*) = -{ (p*, p(By)) if 4, < p(B) + py
(p*, d) = py) otherwise,
k_

if  dp =P £ dj = Dy then
(x*, y*) = (', (B,

If 4 > p! there is no feasible solution to the prodlem,

Proof From the constraints in the definition of akj

and condition (1) of theorem 2.5,1, we gel
Max(y + Dy 4 ) 2 Max(y + Pjs dj).

Using x 2 dy, we also get x 2z Max(y + P dl«:)'
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Now,

x = Max{y + Pys d.)

J

(x, y) =

x =~ Max(y + Py» dk)

y - M
Max(y + Py, dk) Max(y + Dss dj)

=1+

X

21
- Max(y + Dy d,)

Consider the probiem : Min f(x, y)

XY

subject to p(B) =¥

Y'*'Pj'*'pkfxﬁpg

and d 2 X

Note that in this problem, for a fixed y, f(x, y) 1s

minimum when x =

Bd,

So we consider the minimization of

flp', ¥) subject to p(Bk) XYV 2Dp' - DPs T P

Cagsec A dk
Now
£lp¥, ¥) =

|
> d. = p.
j =P
I ' o dj
T, if y 24y~ Dy
ol () PR
p! - dk 1f j pj ..<. Y ..'S dk-pk
p‘ =Yy T pj . ar
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1t is easy to sec that (1) f(p!', y) is a constant when ygdj-pj,
(2) f£(p!', y) decreases as y increases from dj - Dy to

¢, = p, and (3) f(p', y) increases as y increases when

Y.fdk"Pko

We consider three cases A,l, A,2 and A,3.

Casg A,] dy < p(Bk) + p, . In this case, ¥ * di. = Py

end it is casy to see that f£(p', y) 1is minimised when

y = p(Bk) and
| B e 5

£(p!, p(B )= .
T pr = p(B) = By

Case £a2 p(B,) + p, 2 dp 2P " Py
The unconstrained minimum of f(p*, ¥) is attained at

and (dk o pk) € [P(Bk), p' = Pj “_Pk]
' wd D, -
p dk pk pj

y=dp = Py

which is the domain of ¥y, We get £(pt,d,~p;) =
’ 7k Yk pt - d
k

Case A,.3 4, > pY = Ps o

In this case, ¥y £ p' - Py ” Py < dy. = P So it is easy to

see that f£(p', ¥y) 1is minimised at ¥ = p! - Py = Py and
pit =gl
f(P" p"‘pj"pk) 3 p't o d.kl il S = dj 2 Py
Py .
otherwise,
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Thus the lemma is proved in Case A,

Case B dj-pjzdkh‘pk.
In this case
L
. : £ d
L ¥y 2 8 T Py
P dk
p'_d—-;
. ifg~p, <y<d.=~p
kK Yk -
(', M= o A Al Y J J
p‘-y-pj
if Y.?.dj“pj
Bt = =Py

e
It is easy to see that (1) f£(p’, y) 1s a constant for
¥y 2 G = p and (2y f(p', y) increases as y increases
for y 2 d, ~ p.. Hence, the minimum of f£(p', y) is
attained at y = p(BJ).
Thus the proof of the lerma is complete.

The following corollaries are immediate,

Corollary 2,5,1 ; If job 1 has the property

(i) dl 5_Max(pi, di)
and (ii) u; 2u; or 1< ui/u:L 2639 for all 1i>1

then job 1 <— 1 for all i > 1 and the problem rcduces

to finding an optimal sSedquence in El‘
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Corollary 2.5,2 1 IT job n has the property

(1) Max(p,, d ) 2 4,

] o 2 < , <
end (i1) uy zu, or 1 <wu/u <8

ni
oM FEMILl e ]
then job 1 <—n for all 1 <n and again the problem

reduces to one with n~1 jobs,

Corollary 2.5.3 % The SPT sequence is optimal if it is

identical with the LPR  secequence and
j+1
d‘ + pj -E _2 pi IJ j . l’ v 0y Il“lo
1=1

This corollary can be proved by repcated use of corollary 2.5.1.

Definition 2,5,2 ¢ Let Bjk = Min g(x)
X

subject to D(BL) + b + Py < % p(Af:)

.
dJ <X
i ~ Mavw({ = 1
% ~ Max(x Ps ck)
where g(x) = .
B Gy
4
Theorem 2,5,2 & For any two jobs 1 and k with
j <k 1if

(1) dy > Max({p(B) + py, dy]
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- e
(ii) dj t py 2 p{a)

and (iii) Uy £u,  or 1< uj/uk = B

then k <—j, where ﬁjk is a8 defined in definition
RinDaLn

Proof :+ Consider any two jobs satisfying the assumptions

nade by the theorem and any schedule S in which jobs in

Bi appear before 1 for all 1, and job J appears

before jobh k. Let Sj and Ck be the starting time of

job J and completion time of job k, respectively, in S,
Consider S' obtained from 8 by advancing all jobs occuring
in 8 after job § and upto job X by pj and starting

job J at time Cy. = Py the remaining jobs belng unaffected,
(see fig. 2.5.1).

Py P

3 N T W O e

SR  VITTTIANY
0 8, Cipy G, p(D)

Figure 2,5,1
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We shall show that the weighted tardiness for S' is

less than that of 8, We consider 4. and 4, (as defined

J
in the proof of theorem 2,5,1) and show that by oy 2 O
We have
c Cy . B
Ck = P(Ak) and Sj = P(Ak) pj Pl
Cage 1 Ck > dj
Now,
b = uk[Max(Ck = Py dk) -~ Ck]
and A, = u,lC,. - Max(S; + p., 4.
an : uJ[ ” (85 + pys J)]
But from Condition (i1) dy + p, 2 p(A;)
= 4, 2 p(AJ) ~ p,
j = p(A;) Py
and Sj T pj = p(A]S:) e pk
NCT Bs 5
2 pla) = py. So dy 284+ p..

Therefore l% = uj[Ck - dj] and so

A+ 4 = uylC = 4yl - wyly - Max( - py,d))

Note that, d, 2 Max(Cy. - Pis d,.J  because

dj > dk from Condition (1)

and d

iv

p(Aﬁ) % g 12 (O P, from Condition (2),

J
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Gase 1,8 uj S Uy In this case
Case 1.D 1 < uj/uk 5 By
Cpe ~ Max(ck ™ P, dk)
Now, Ay 4 20 i 1< uj/uk < ey
J

The last inegquality follows from the definition of Bjk'

o +1 i 4o =
Cagse 2 C, 2 dj. In this case Aj 0 and Ak-i 0

and hence Aj g Qk = B -
The proof of the theorem is complete.

Now consider the function g(x) given by definition
2.5.2, under the Conditions (i) and (ii) of the theorem,
We see that g(x) decrcases as x increases and so g(x)

attains its minimum, subject to

p(Bk) t Py t P 2 X2 p(Ai) and x > dj,

at ok =p(A§) if dj =< p(Ai). Using this x¥*, ﬁjk can be

caleulated, If dj > p(Ai) there is no feasible solution to

the problem,

Remarks &
(i) By taking 4 = 9, in theorem 2,5.2, some corollaries

gimilar to corollaries 2,5.1 through 2,5,.,3 can be proved,
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(1i) Theorem 3 in Hamil ton Emmons (1969) holds without

‘ any cohdition on uj's and we State i1t here without proof |
For any two Jjobs J and k with J <k,
if a2 p(Ag), then J <—k,
We illustrate how these results can be used to find
precedence relatlons among jobs, '

Example 2,5,1 & Consider the (10/1/F/T) problem for the

data, given in the following table, which 1is obtained by

adding the us;  row to an example given in Hamilton Emmons

(1969).
k2 1 2 3 4 5 6 7 8 9 10
py 6 1z 16 23 32 40 61 66 80 97
4 25 73 31 67 32 31 657 64 15 55
ug 25,1 20,4 25.3 22,0 22,0 18,0 18,5 19,0 19,2 19,8
d;= Py 19 61 15 44 0 =18 =4 =2 <65 42

[ - T T T N R R e

Max(d,,p;) 2 73 31 67 32 49 61 66 80 a7

10
We have = p; = 2.
i=1

We apply the theorems 2,5.1 and 2,5,2 ag often as possible

to eliminate the last job at every stage, When this is no
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more fesible we try and remove the first job. In this process
if we are able to order all the jobs, branching is not resorted
to; Otherwise we use the Branch and Bound algorithm developed
in section 2.2 specialized to the single machine wolghted
tardiness problem, It 1s possible to get new precedence rela-=
tions while branching froﬁ a partial o, In this example we
are able to find a complete optimal sequence without going in

for branching., Also we note that by using u, Z 4 alone in

J
Condition (ii) of the theorem 2.5,1 no job gets fixed as either

the first or the last,
Stage 1 i For job 10 we have (1) Max(pqgs dlo)= 97 > 4y
for all 1 < 10 and (i1} wu; 2 uqy ¥ 19,8 Tor i=1,2,3,4 and

5., For 1 =6,7, 8 and 9, using lama 2,5,1 we have

L Uy o/t 10 1
6 1,100 1,139
7 1,070 1,104
8 1,042 1,089
o 1,62 1,049

Thus, using corollary 2.5,1, Jjob 10 is last, Remove

job 10 and repeat the process,
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Stage 2 3 Now, job 9 1s last since (1) Max(pg,d9)=80 24
gor all 1 <9 and (i1) uy 2 ug = 19,2 for 1= 1,2,3,4 and

5, For 1i=2¢6,7 and 8, we have

i u.g/ui 6y
6 1,087 1,118
7 1,038 1,071

8 1,011 1,052

Remove job @ and repeat,

Stage 3 We have for Jjob 8, Max(pé,dgj =66 > di for

i=1,3,5,6 and 7 and uy 2 ug = 19,0 for 1= 1,3,5 and
ug/u7 = 1,027 > Ggy = 1,025 and ug/a6 = 1,056 £ 855 = 1,085
using corollary 2.5,1, we have Bg = {1,3,5,6} . With this Bg

we have d; 5 Max (p(Bg) + pg, dg) = 169 and uy >ug for

5. = 65 ~ Max(103+61,5
87 = 265 = MaxElOB T 66,64)

1,082 > u8/u7 =il 0275

i = 2 and 4 and

Il

Thus, Bg = {1,2,3,4,5,6,7} o S0 8 1is last, Remove

job 8 and repeat,
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Stage 4 . We have Max(p7, d7) =61 2d; for 1=1,35
and 6 and u; 2 Uy = 18,5 for i=1,2,3,4 and 5, A4lso

= @] = [ = .
 bpg 7 1,086 > us/ug = 1,039, Thu By = {1,3,5,6]}

With this B,, d; < Max (103 + 61, 67) = 16¢ for i = 2 and 4,
So By = {1,2,3,4,5,6}, Hence 7 is lash.
Stage & | S8Similarly for job 6, initially we get

Bg = {1,3,5}. Then d; = Max{b4 + 49, 81} = 103 for i = 2 and

4, S0 6 1is last,

Stage 6 ¢ For job 5, initially we get Bs = {1, 3} ]
But then Max(p(Bz) + ps, dz) = 64 < d, and 5§ cannot be
removed, Thus we have the reduced problem with jobg 1 through
5 snd the data obtained by omitting the last 5 oclumns of the
given table,

Now, we try to remove the Jjob that can precede all other
jobs, We find job 1 has d; = 25 < Max(py, di) for all i > 1

and u; 2u; for 1= 2,4 and 5.

- = G — 5
Now, with Aj - {2,4,5}, p(Aj) 22 < 31 = dg. Applying
theorem 3 of Hamilton BEmmons (1969 1 <— 3, Hence job 1 is
the first job, Removing it from the problem, we up date the

due dates for job 2,3,4 and & as 67,25,61 and 26 respectively,
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Stage 7 ; For job Z 4, = 67 2 dz for I = 5,4 and &

A A 2

™ Gut dz & v, = 79 < 83, 8o theorem 2,5,2 does not yield any

result, For Jjcb 3, d3 _ff{ax(di, pi) for 7 =4 and & and

Uy 2 Uy and  Ug. S0, Aq = .{4,5}. Now among jobs 2 and 3,
L] = '\C = ~ = =
i, > dgy 3 dg T Py =792 p(hy) = 28 and uy, Lug so 3 <2,

Thus, hy = {2,4,5}. Remove 3 from further consideration. Up

date d2, d4 and d5 as 51,45 and 10 respectively.

Stage 8 ¢ Now jobs 5 and 4 when compared yileld,

4, .y = G8l = p(AE) = 67, and u4 = ug = 22,0, We have

= {4} d 63 > p(A ) = and u, = 20.4 < ug.

Thus Ag = {2,4}. So & is the first, Up dating d, and

d, we have 19 and 13 respectively. We find d, < Max (23, 13),

4
_ _ 45 - 19 . .
ué/ug = 1,078 and 64, T 22 1,18, So 2 <—4,

Thus an optimal seouence is given by (1,3,5,2,4,6,7,8,9,10),

Hext we consider an example in which branching 1is
needed for obtaining an cptimal sequence, The Branch and
Bound algorithm given in section 2,2 is modified here to suit
the single machine case, We fix the jobs in the reverse order,
namely, the last position in a sequence is fixed in the first
stage and the last but first position is fixed next and sc on,

Lower bounds wu; and up discussed under special cases of u(T)
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are applicable here, But Ci needs to be redefined since we
are fixing the jobs in the reversec order, We have

(s)

P For 2 = 1yl cwesd

i B3

i ==
Ci

s=1.

vhersa p(l) < p<2) < e S p(r) are the ordered processing

times of the set of all jobs in N-R,

This fixing of jobs in the reverse crder is of much use waen
i, =d for all j. This will be discussed in detail In

section 2.6. The dominance theorem given 1n section 2,1, when
pedificd, is applicable in this case and has the following

simple form *

Let B and R! be two reverse sequences cf the same
set of jobs with weighted tardiness h(R) aond h(R'")
respectively, and h(R} < h(R'). Then for any reverse sequence
R'' of all the jobs in 1 - R, we have T,[R'R''] > T, [RR' ']
BRI Tu(RR“) are the weighted tardiness

]
vhere iu(

corresponding to (R'R'!') and (RR'') respectively,

Wwe now solve a (7/1/F/T,) problen given, in Elmaghraby
UB6§),as deseribed above, The following table gives the
necesgary data (The jobs are renunbered according to the non-

decrcasing order of p;'s).
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Example 2,8.,2

i 1 2 3 4 5 6 7
Py 1 B 3 3 4 4 )
dy 8 6 2 5 15 17 10
Uy il 4 1 3 3 1.5 2
d, = 1y 7 4 =1 2 11 13 5
Max(d:,p;) 8 6 3 5 15 17 10

Applying the theorems 2.5.1 and 2,5,2 we get the follow-

ing precedence matrix, This is done as in the previous example,

g = 3 2 3 4 5 6 7
1 i
2 1 B 1,3
3
1 1 T S |
5 i
5
%

Ve find jobs 3, 6 and 7 can be last jobs, We Tix them one by

me as the last job and caleulate the bounds using uB given
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in section 2,2 with Ci' defined as above. The tree generated
corresponding to the problem is given in fig, 2,5.2. The optimal

sequence is (2417563} with weighted tardiness 25,

We may use the precedence theorems at any node R to get
further precedence relations among jobs in N~R, We note that
a precedence relation 1 <—J in N - R means that there exists
8 conpletion of R in which 1 1is processed before J and
which has the least weilghted tardiness possible among all

completions of R,

We get the following precedence among the jobs in N-R
corresponding to various reversSe sequences R, Note that as
we are considering reverse sequences, if we have 1 <— j, then

we fix j Dbefore 1 1is fixed,

Node number Jid Precedence
4 (6 1) 5 44— 7
Y (6 7) 8 #—5; 1 <=5
5L (3 6) 7 «—5; 1 <=5
13 (36 5) I == 7%
17 {617 128 3 <1
19 EREAD] 2 <4
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Further, using the dominance theorem we sec that the reverse
sequence (6 3) is dominated by the reverse Seguence (3 6) as

the weighted tardiness for (6 3) is greater than that of (3 86).
Thus we generate only 19 nodes out of the 8660 possible nodes
to obtain the optimal sclution, Elmaghraby (1968) has reported

that 88 nodes were generated to obtain the optimal seguence

using his method,

2,6 The (n/1/F/T ) problem with common due date

2,6,0 Iatroduction -

In this section we consider the single machine seguenc™
ing problem to minimise weighted tardiness when the due dates
for the jobs are the same. The general procedures mnentioned
in the last section do not exploit the simplifications arising
out of the jobs having a common duec date, DLawler and Moore
(1969) have considered a general functional eduation which

they have applied to this problanm,

Scction 2.6,1 deals with some results on optimal prece~
dence among Jjobs. In section 2.6.2, we define a preferred
sequence and note that it is sufficient to consider the set of
all preferred sequences, while searching for an optimal sequence,
A Braneh and Bound algorithm is also given, While branching,

the jobs are fixed in the reverse order, namely, the last
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position in a sequence 1s fixed in the first stage and the last
put first position is fixed next and so on, The bound UC
discussed in section 2,2 under special cases is applicable as
the matrix C turns out to be monotone, with common due dates,
fpplication of a lemma proved (lemma 2.6,6) reduces considerably
the nmumber of nodes to be created at any stage, Thus an algori-
thm incorporating these results is expected to do better than

the general algorithms for the (n/l/F/Tu) problem.

9.6,1 Optimal precedence among jobs
The problem considered is as 1n section 2,3, with
d.=d for all j., Without loss of generality we assume

P >0 and @& < pN) where p(A} = % py; for any subset
ie &

A of 1, We follow the nctations introduced in the section

2,5 regarding precedence among Jobs,

We observe that in theorem 2,5.1 with dq = d, Condition
(1) is always satisfied for any two jobs J and k with
j <k, Also, we have (x*, y*) given by lomma 2,5,1 as (p',p(Bk})
. c . i ol .
wvhen d < pf = p(Aj) since 4, dj =0 2P = Pje Thus, we
nave the following lemma,

Lemma 2.6.1 3 For any two jobs ] and k with pj = Py if

2 iy, or L < uk/uj 5 Oy
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p(Ag) - Max(p\_(Bkﬁ + pj,d)

where ij' = =
p(Aj) E Ma}c(p(Bk) + pk’d)

then J k.
Next we observe that theorem 2,5.2 is not applicable
in this ecase as Condition (i)} of the theorem is never satisfied,

However, we prove the following lcmma,

* Tor any two jobs j and k with P = Py

Lemms 2,042 .

i

(1) w2 Uy
| p(&;)-d
and  (ii) —e— < uk/u. then k <—j.
pj = J

Proof i Let jobs J and k be such that P 2 Py and

satisfy Conditions (i) and (ii) of the lemma. Let S be a
gsequence in which Bi sppears before i for all 1 and

job ] oppears before job k., Let 35 and C, be the starting
time of job j and completion time of job k respectively,

Let 8! be a sequence obtained from § by advancing all the
jobs after J upto k by P and completing job J at

Ck‘ It is sufficient %o show that A o 2 0 where A
and A arc as defined in the proof of theorem 2.5.1.

k

Now,

Aj =y (Max(Cy, &) - MaX(Sj + Dys dy]
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~and Ay = U, (Hax (G - Bjs d) .~ Hax(Cy, 911,

Case 1., Cp 2 de  Then Ay = Ay = ¢, So A + Ay = 0.
base 2. G = 4o

We have Gy 2 p(ﬁi). Now Ay + A £ 0 if

[C) - MaX(Sj t Py, d)1/0¢, - Max(Cy ~ Py, ay] = uk/uj.

Now either C, = py >4 or G =Py = d. First let Cy-py < d%

Then, S; t Py SO " P 20 ~ Py =
Therefore, [Ck o MaX(d, SJ“*'IJS)]/[(CR"MG-X(d, Cknp,])]
= 1 < uk/uj
by hypothesis (i),

Then, A, + b, <0,

i k

Toxt le O - The
Next let Ok pj > d, Then

[c, - Max(d, §; + pj)]/[ck ~ Max(d, Cp - pj)]

G =dl
o< .,_,liw < ul(/u'

: g ; \ C
by hypothesis (il) since Cp < p(ak}. So Aj 4 5‘0,

Thus Aj t 4, 2 0 in all cases and the lemma is proved,
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Given any seguence, N can be partitioned into three sets

Ty Mgy Tg @S follows %

T =41 ieH C; 54}
Trzz{i[ial\], t; <d and Ci>d}
and 1T3={in]iaN, ty 2 d}

vhere ti is the starting time of job i,

P

The Tollowing lemma gives a necessary condition for a
sequence with mo # ® to be optimal,
Lems 2,6.3 ¢ A necessary condition for a sequence 3 with

T B {k} tc be optimal is

r/'
i ol § pjgck-d
uj/uk 4 J -
| pj/[Ck"'d]lf pj<CK-d
s

for every J € T
Proof ¢ Let 8 Dbe an optimal sequence inwhich job k & 7g

and j € m;. Now either p, 2 ¢, = d or pjy < O — 4o

Case 1. Py > Ck X ds

Suppose Uy > Uy Consider &' obtained from S by inter-

changing j and k, It is casy %o sce that 8' has weighted
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tardiness less than that of S, a contradiction, S50 W 2 Uy

for J € T and pj £ Cm B d, if 8 were to be optimal.

Case 2, P <Ck-d,
In this case, consider the Sequence obtained from 8 by advanc-—
ing all the jobs after J wupto k& by pj and completing ]

at Ck’ with the remaining jobs unaffected,
low, we have
J J
and fy B uk[MaX(Ck - p

Therefore % T Oy - uj(Ck - d) - Uy Pse

Since S 1is optimal we have Aj + 4 20,

SO uj/uk > pj/(Ckl -~ d),
This completes the proof of the lemma,
The above lamma shows that an assertion made by Lawler
and Moore (1969) regarding T, jobs is incorrect, They assert

that the job k in T must possess an U, 1no greater than

that of any job in e Their assertion will be correct when

there is no j & w; Such that P <Gy - a,
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2,6,2 Reverse Sequences, Lower Bounds and Branching

In this section we will be dealing with ''reverse sequences'',
Corresponding to a permutation schedule, we define a reverse
sequence tc be R = [jl’ j2,...,jq] where job J; 1is processed
last, job j2 is processed immediately before jl and so on,
As in scetion 2,6,1 let tj denote the starting time of Jjob
5, We call R a partial reverse sequence (PRS) if g <n ~ 1
and t. > d, Otherwise R 1is called a complete reverse
sequencg (CRS)., The motivation for this definition is that if
R is & CRS +then it determines T and T and thus the
weighted tardiness,

Let W(R) be the minimum weighted tardiness possible
with the restriction imposed by R, If R 1is complete with
Ty = [jl o jq], then W(R) is given by

W(R) = % ws B & Char e d) o -

i=1 i Y3 Iq Jg+l
where Tji is the tardiness corresponding to job Jj.
The following lemma provides a lower bound for W(R)

when R is a PRS,

Lammo 2.6,4 + Let R = [31 ...'jq] be any PRS and

q
I B) = B uy(C.=dj) + dty = dYwu cee 2.6.2
1 s=1 9 Js Jq i
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ieR

Then L, (R) < W(R).

Proof ¢+ We recall that q <n - 1 and t} >d as R 1is a
, B a '
PRS, For any complete reverse sequence R' = [jl,'..., jn]

obtained by adding to R Jjobs in N-B in an optimal manner,

Ry n atl
W@R)Y= 2 u, T, 2 2 u; T. ,

s=1 Js Js~ s=1 Js Is

But Ty = Max(Cy -4, 0)
Ja+1 Q¥+l
=_Max(tj -4, 0) =t; =~d since
a a

R is a PRS, By definition ug 2 ujq+1r as jq+1 e N-R, and

Cj >d for 1 <s<q as R 1s a PRS, Hence

CWE@R) > 2 ou, (0. =a)+ ug(t. - 4d)
s R s .Js = Jq

il

Ll(R).
This proves the lemma,

This lemma provides a good lower bound if there exlsts

an 1 e N-R such that p; 2 tj - d, In case there is no
q

such 1 & N-R, then we can improve the lower bound by using
the lemma 2,2,4 specialized for the casc of linear penalty,

rates with common due dates, Let R = [jl - jq] be a PRS,

- 4 P =3
Lg ession;-OCR
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Consider the (r/i/F/Tu) problem with common due dates,
et W¥ be the welghted tardiness for amn optimal seguence,

bet (87 ... s.) be a sequence of the r Jobs such that

ot (11 ees A} be a sequence of the r jobs such that

s d. =d for all i any sequence is an EDD sequence, So

lema 2,2.4 reduces to | An SPT sequence is optimal in case
Flt 1s same as an LPR scquence, Moreover, the matrix C in
ﬁjmmosition 2e2.1 is monotone as an EDD sequence coincides with
ﬂm1LPR sequence, Thus we have the lower bound corresponding to

1“0 defined in secticn 2.2,
+  Let (8] wes 5.) and (£ ... A) be as defined

T

fabove and y. = Max[ X Py dliy, Ol

: J =7

. r

Rfhen 2 y. u, =< W¥, Further, if s, =A. for all i,
j:l J 13 j l 1

™ thern (sl SHxl Sr) gives an optimal reverse seguence and

In the 1ight of this lemma, we get a better lower bound L(R)

as ziven below,
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: q \
WR) >2L(RYy= % (C; =-4d}u; + C(R) s 12,658
i=1  Ji Ji
n-q
where C(R) = Z u, vy, where u, , ¥, are as defined above
k=1 k- k

corresponding to the jobs in N-R, L(R) given by 2.6,3 coincides
with Ll(R} given by 2,6.,2 in case there exists an 1 & N~-R such

tat p; 2ty ~ d. Otherwise, L(R) > L;(R) for any R, a PRS,
-d

From now on we assume the jobs are numbered suchn that

ufﬁd S eee S un/pIl i.e. (n, n~1,..,.,1) 1is a Mc Naughton's

sequence,

Definition 2.6,.1 ¢ Let R = (jl’ Jos ...,jk§ be any CRS.

et the corresponding w5 be {i; .. Jq}. Then R is said
tc be a preferred reverse sequence if either g <1 or g = 2
and

<j2<o|- <jq-

I
The way jobs are numbered, it can be easily scen that any CRS
cen be converted to a preferred reverse sequence by rearranging
jobs in Ty without increasing the weighted tardiness, Thus

we may confine our search for an optimal CRS, only to the set

)f a1l preferred reverse sequences, denoted by B '

lema 2,6,6 ¢ Let R = [iy, Ig .. Jg) be a PRS. Wnile

searching for an optimal completion of R it is sufficient
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to consider Jjobs in A( B for the q+1th position, where

il

5

{i[ieN-R, i>jq,pi<tj —d}
q .

D if F =90

R =
¢ if F#9¢
vith e
F= {i | 1 e D, 1 < Jgp P1 = by - d}
q
D= 4i | i¢e ¢, u, = Min u,
{ , uy = e )
and T = {1 | 1e¢e NR, pif_tjq-d}.

Further, when J ¢ A, the resulting reverse sequence is a

g+l

PRS ; when J.,; € B it is a CRS, If B # ¢, it is sufficient

to consider any one 1 & B as Jg+1e

Proof ¢ It is easy to sce that when e A the resulting

Jq+1
reverse sequence [jl""ﬁjq+11 is a PRS since for 1 & A,

py < tjq - d, Similarly when jQ+1 e D, the resulting reverse
sequence is a CRS and for all J .4 € D, the weighted tardiness
ol < dmas s ) s o ] is the same because U and the

1“2 svgrvatl G+l

—— . _ - g o=
tardiness for 3q+1 are constant for all choices of Jq+1 from

D, So it is sufficient to consider any one 1 & D as 3q+1'

Thus, it remains to show that it is sufficient to consider

Sl © A()B,
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Suppose j ¢ A, Then either (i) j ¢ C or

ii) g Sabe =0 & iy (<

(ii) P tJLi and i < j .

First, let J be such that (ii) is satisfied, Clearly, then
Rj = [§;, jz,...,jq,j] will not give rise to a preferred

sequence, Henoe R need not be considered, Next let J e C.

Then the tardiness is the same for any jq+1 € C and

W(Rj) > W(RL) for any i € D, and so it is sufficient to consider

jobs in D for q-i-lth position,

So let j e D, Now if F # {, then thersc exists an

q and p; = tjq -~ d, This implies
that Ri is not a preferred reverse sequence, Let R!

i¢e D such that 1 < }
be a

rearrangement of R1 such that RY is a preferred reverse
sequence,

We know that WQRL) > W(R’) and W(RF) = W(RI) as
i,je D. So when je D and F # ¢, Rj nced not be considered,
Tlhus, vhen J & A,jis to be considered only when J & D and
F=0 i,e, vhen Jj € B,

Hence it is sufficient to- consider j € A (B, for the
q-klth position In any completion of R,

This completes the proof,

Example 2,8,1 ¢ Consider the (6/1/F/Tu) problem given below

with d = 10,
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L 1 2 3 4 S 6
Dy 5 3 4 4 6 )
u; i il 3 4 e} 2
We have p() = 23, Consider R = (3,5). Since tj2 = tg; = 13

and N-R = {1,2,4,6}, we have

A= {6} since 6 > 5, pg = 1 < 13,7 e B =

¢ = {1,2,4} since p; 23, i=1,24
D= {1,2} as Uy T u, = 1= %ég Uy
F={2} as py=3

Tus B =0 as F # ¢,

S0 we need o consgider only [3,5,6] as the descendant of R,
It is easy to verify, on the other hand that for R = (2,6)

both & and B are cmpty.

An algorithm

A Branch and Bound algorithm incorporating the results
cbtained in section 2.6.1 and in this section, is given below.
The nodes of the tree repreSenf the PRS's, Let [§] répreSent
the root of the tree corresponding to the empty reverse sedquence,

Initially let H = {[®1}.
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Step 0 . Use the precedence lemmas and get the correspond-

ing precedence matrix, If all the Jobs are ordered, leb R¥ be
the CRS thus obtained with W* as weighted tardiness and go to
Step 7. Otherwise, discard all the Jobs that are shown to be in
some definite positions, Renumber the remaining Jjobs as in
reverse Mc Naughton's sequence, Let n  be the number of Jjobs

remaining, Go to Step 1,

Step 1 | Take R* = (1,2,.,.,n) and calculate W* =W (R*)

using 2.6,1., Choose the node [§] for branching and go to Step 2.

Step 2 ¢ Let R = [jl’jZ""’jq] be the node chosen for
branching. Drop R from H,., Find sets A and B as given
in lemma 2,6.6. If & (.)B® {, then go to Step &, Otherwise,
vranch with Ri = (jl,,,jq i) for each i e A (JB such that
there does not exist any j € N=R with 1 <—j (with the

restriction that R 1is fixed). Include such Ri in H and go
to Step 3,
Step 3 ¢ If Ri is partial, i,e, 1 ¢ A, calculate

L(Ri) = C(Ri) + (tj - d) uy + L' (R)
g "

q
where L'(R) = % T. Ui and C{Ri)
s=1 Ig Is

is as given in lemma 2.6,5, with the Jjobs in the set N-Ri,
Set g = g+l. BStore [L(Ri), L'(Ri), £ ~d] for each PRS

a
along with g, Go to Step 4.
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If Ri is complete 1,e. 1 & B, then calculate for any

one 1¢ B,

W(Ri) = L'(R) +(t. - d) u.
g L

| and go to Step 6.
Step 4 + Discard from H all R such that L(R) > W*,
Go to Step O,
Step 5 . Find R such that L{(R) is the least for
Re H, In casc of ties choose an R with maximum g, Go to
Step 2. If H = ¢, then go to Step 7.
Step 6 + If W(Ri1) <W¥ for 1e B then store
W* = W(RL)
R* = RI, Go to Step 4.
0thervise discard Ri, 1 & B from further consideration,
Go to Step 5.
Step 7 ¢ An optimal CRS has been reached, W* is
the optimal weighted tardiness and R* 1is the corresponding

CR3, Stop.
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2,7 Single Machine sequencing, with Intermittent Job

Arrivals. to Minimise the Number of Late Jobs

7.0 Introduction &

We congider the {n/1/F/f) problem with £, number of late
jobs, under the usual assumptions but for assumption A.Z, In
all earlier sections the jobs were assumed to be available at
the same time (Assumption 4,2), This assumption is referred

to as simultaneity of job arrivals, If the jobs are available

for processing at different time points, then we say, it is a

case of intermittent Job arrivals.

If preemption is allowed at the time a new job arrives,
there are two priority rules available, namely preemptive
repeat and preemptive resume, In the non-preemptive case a
job taken up for processing on a machine has to be completed before
" another job can be taken up, Here, we consider the problem in
which the job arrivals are known apriori and there 1s a common
due date;, our objective is to minimise the number of late jobs.
The problem is solved by showing that it corresponds to the
problem of sequencing through a single machine to minimise the
nmber of late jobs, with different due dates for jobs which
are available for processing at the same time, Moore (1968)
gives an algoritim for solving the later problem, An Example

is worked out,
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| 2.7.1 Main Theorem and Example

There are n Jobs to be processed through a machine, But
the jobs arrive at different times, known apriori, There is a
common due date, for all the jobs, The problem considered is
thet of finding a sequence that minimises the number of late
jobs.,

Let rs be the time at which job J arrives., Let 4d

be the common due date.

Let p = (il 1o ves in) be & sequence of jobs in W,

Then,

S = 1. + p.

| tog 1

a = Max(r:. + p; T, ) + P

i, 11 11’ i, 15

3 n=-1J. n~1 )

G4 = Max(r, + Z p; Te: % 3 DPs yeangle JFDu

in o =1 lj’ 1o j=2 lj, ’ 1n 1n

v
Let =y W 2 P2
Ku,v g s=u lj

Now

Ehe = Max [I ]
= lzux=v iu,v
We will call the above problem as Problem 1 and consider

ancther problem called Problem 8 given as follows |

Let di = I = ry


http://www.cvisiontech.com

~147~

Lot di be the due date for job I, i=l,,,.,n, and let the Jjobs be
available at time zero, for processing, The prcblem is to
naximise the number of early jobs. To sélve problem 1, we use
the following theorem, which relates the solutions of problem 1
and problem 2.

Theorem 2,7.1 + For any optimal sequence S for problem 1
there exists an optimal sequence S! for problem 2, in which,
the carly jobs of 8 are early and appear in the reverse order

and vice versa,

Proof + Let S

E and SL be the ordered set of early Jlobs
and the ordered set of late jobs in S, respectively, Let
e = number of elements in SE and let Gy be the completion

tine of job 4 in 4,
Let 8 = (13,15 eus i)

How, define &' as follows ..

Si & (ie io_l L3I j—l ] SL)e

et C! be the completion time of job i 1in ' for the

problem 2,

In 8, we have,. C. > C. + ps " for all J.
’ g TR 141

Sc d - Gy Z de i T Dy 3 for all J«

J i+l j+1
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Now consider, &8,

e
Gl = Z e l<xj=<e
tios=j s’
and C]!_ =Pz" =24 =0 T Dy since 1, is early in S
e e e e
ci S Py -3 Dy = {d=€, Hpy ) H B
e~1 to Te-1 s " Ta Tem1
<d - C; +p
- 3 R L
‘and so on, e-1 e-l
Thus, C:{';gd"ci_-l-pi_, 1<3jxe.
J J J
We require, C] 2d; , lxizxe
J J
Now
Gl £-d = 1+ 0p
.- o s
* j ]
= a - Max t Dy
IS~ J
< d = Kn = + pag
ik J gd le
=d = (r, + p; )+ py
. . .
= ]
=d=1r; =4, il Y=
1 i

Thus every Jjob which is early in S is early in S8' also,

From the way &' 1s constructed it is clear that
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gt = <R(SE)’ SL) where R(SE) ig the reverse

sequence of SE. Conversely if 8' is any optimal secauence
for problem 2 and $ 1s obtained from S’ by reversing the
sarly jobs of 8', it can be similarly proved that any job
whieh is early in 8' is early in 8 alsc, Thus in fact the
sets of ecarly jobs in S and 8! are the same, This completes

the proof of the theorem,

From the above discussion it is clear that, solving
problem 1 1s equivalent to solving problem 2, Problem 2
can be solved easily using Moore's Rule (1968}, We give below
Moorets Rule to find an optimal sequence for the (/1/F/f)

problem with f as the number of late jobs, under usual assump=

tions,

~Step 1§ Arrange the jobs according to the non-decreasing

crder of dj‘s,

Laew d, =< d; < ,,, 5 d.
i, i, i

i

Set k 1, Go to Step 2,
Step 2 ¢+ Find a positive integer s <1 such that

u
Z py 244 # A <u < s-l

and Eonpe  PoEE
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ake job i a late joby wvhere p. = Max p. , Remove that
a P 1< il
4 | = Sl

from further consideration, Consider the reduced problem and

go to Step 1 with n=n~1 and k = k + 1,

If no such s exists, i.e.,

Dy s ¥ s =<n
il J 8

We have got an optimal solution with the number

™M

J
then stop.
of late jobs equal to kK - 1,

We have the followlng proposition from Mocret!s Rule,

Ppoposition 2l LSS There exists an optimal seguence for

Problem 1 in which the early jobs are processed in the non-
decreasing order of rj‘s.,

We illustrate the method with the data given below,

Example 2,7.1

d = 15
g a Py d1
2 12 2 3
2 10 6 &
3 & 4 7
4 5 3 10
15) 2 4 13
6 1 3 14
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The jobs are

order of dj’

We have, k

k

2l +
2+ 4+

2+ 4+ 3+

k

already

5.

I

2

2 2
2+ 4 =%
4 + 3 <
3+ 4 <

4 4+ 3 >

-151~-

numbered according to the non-decreasing

6 >5, S0 s =2 and job 2 is late.

3
i
10
13
14, So s =5 apd Job 5 1is late.

= 3, Then & does not exist, so the optimal

mumber of late jobs is 2 and the carly jobs are (1,3,4,6)

for problem 2.

Therefore, (6,4,3,1,2,5) is an optimal sequence for

problem 1,

P i
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CHAPTER 3

GROUPING PROBLEMS

3,0 Introduction

In this chapter we consider the parallel sequencing probleun,
the batch splitting problem and the cluster analysis problem,
The former two are scheduling problems, while the latter has a

wider application outside scheduling context,

The parallel sequencing problem is the (n/(m)/F/f) problem,
with a single stage having m parallel machines for processing.
Bach job has to be processed only once and this can be done on
any one of these m machines, The problem is to find a schedule
which is equivalent to a partition of the set of jobs, , into
m ordercd subsets so as to minimize f, This problem with ¢
as weighted sum of completion times has been considered by
Mc Naughton (1959) and he has also given a simple rule to get
the optimal sequence when m=1 and T 1is the weighted sum of
completion times, Fastman and others (1964) have derived lower
and upper bounds on the optimal weighted sum of completion times
in the m identical machines case, Lawler (1964) has considered
the dynamic programming approach for the (n/1/F/u{(C)) problem
and suggests that it can be extended to m parallel machines
case as well, Lawler has also given a transportation problem

equivalent to the m parallel machines problem when the
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n
processing times for all the jobs are same, with u(C) =-Zluj(CjJ
J.-_'-»

and uj's are nondecreasing functions of Cj. Whan processing
times are different he gives an equivalentrestricted transporta-

tion problem,

Root (1965) has considered the (n/@m)/F/ T yproblem with
common due date and identical machines, Rothkopf (1966) has
applied the dynamic programming approach %o the general m
machine problem. Gupta and Walvekar (1969) have formulated this
problem as a O0O~1 mixed integer programming problem, Arthanari
and Remamurthy (1970) have given a Branch and Bound algorithm
for the (n/(m)/F/Cu) problem, Nabashima (1971) has described

a method for solving parallel sequencing problems using his
general algorithm based on the disjunctive graph formulation of

the problem,

In section 3,1 we discuss the (n/(m)/F/Cu) problem and
give a few lower bounds on the weighted sum of completion times
of schedules with the restriction that certain subset of jobs
1s to be processed on some specific machines in a given order,
An algorithm given in Arthanari and Ramamurthy (1970) is stated

incorporating some of these bounds, When the machines are

- ildentical further simplifications are achieved in the algorithm,
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In section 3,2 we consider the (n/m/R/FmaX) problem and
give a disjunctive graph formulation of the problem. When the
jobs are identical the problem of grouping them into m batches
and processing them through the machines so as to minimize the
total elapsed time under the restriction that the batches once
formed are not allowed to be split further or grouped together,
is called the batch splitting problem. A& simple rule for
finding an optimal solution to the problem is given when n is

divisible by m or n is sufficiently large,

Section 3.3 considers the well known cluster analysis
problem, The problem of cluster analysis can be stated as
follows ¢ A set of n items is to be partitioned into m
nonempty subsets in such a manner that the combined within
groups sums of squares is minimised, This problem has been
considered by Rao (1952), Ward (1963), Edward and Cavalli-Sforza
(1965), Jenson (1969), Vinod (1969) and Ruspini (1969) to
mention & few., An extensive bibliography of the work done 1is
found in Jenson (1962). Such problems are encountered in

Taxonomy, Sociology, Anthropometry and Industry.

An integer programning formulation of the problem is
given by Vinod (1969), A dynemic programming algorithm for
clustering is given by Jenson (1269), These procedures assure

an optimal solution while there are other partial search
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procedures which do not assure optimality, for example, Edward
and Cavalli~Sforza (1965), An implicit enumeration method is
given for this problem in séction 3.3 applying the algorithm
given in section 3,1 with bounds obtained by solving certain
less restricted problems, An exsmple is given to illustrate

the algorithm,

Sl Parallel Scquencing Problem

3,1,1 Main Results on the (n/(m)/F/Gu) problen

There are n jobs to be processed and m machines are
available for processing, Bach job has to be processed only
once and this can be done on any of the m machines, The
processing ftime required for job J on machine 1 is pij
(assumed to be greater than zero)} and uj is the penalty rate
(assumed to be greater than zero) for job j.

Tet A Cnx snd £ be the number of jobs in A, Let
Wi(A) be the optimal weighted sum of completion times for
the (K/l/F/Cu) problem where the jobs are those in A and
the machine considered is the ith machine, We know that Wi(ﬁ)
is attained for a Mc Naughton's sequence of the jobs in A,

that 1is,
¥ v
wi(A) = I - el P ees Selgl

when & # §
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where

p"/u' .S,o-o.ip" /U“'
13773 5 g

il

If A =10 we take Wi(A) 0,

In this secction we use the following notation,

p. = Min p.. p*(A) = Min p..
J I<i<m L% 1<i<m 147
jeh
and u*(d) = Min u.,
jeh J

* For any two disjoint subsets Al and A‘Z of

Lenma 3.1,1 .

N, we have

wo(ay QA 2 Wy Ay + Wy (A) for all i =1,2...m.

Proof 3 Let ¢ and dq be the number of jobs in Al and
AZ respectively, Consider ¢ = (Jl —y qu+q2), a Mc Naughton
. sequence corresponding to the jobs in Al ) .ﬁ\.z and the ith
maChinG. LCt Ul = (jllglo.,jlql\) & 012 = (jzl, . -¢,32q2) be the Ordel‘
of jobs in Al and ‘(-‘;2 as they appear in o, respectively. It is

gasy to see that 04 and 62 are Mc Naughton sequences correspond-

ing %o jobs in Al and Az respectively, Consider any
ji & A () hoe It Dbelongs to one and only one of the sets

Al and Ag. Suppose jl{ = jls € Al.
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Th@n, {j]_!'"’jk} :) {jllano-,jls}a

Hence, the job jk is completed in ¢ later than in Ul and
so the weighted completion time of the job in o is greater
than or equal to that of the job in o4, Similarly for a job

in A2 this holds, The lemma follows immediately,

Lemma 3,1.2 ¢+ DLet A Ag,,,.,Am be any m disjoint subscts

1

of N, (_) Ai and let the number of jobs in A be L .
i=1
Then we have,

m
ZW () 2 pF(A). u¥(A). (ebl) [r + DX
il =4l

where k=LA /n] and r= L~ nk

Proof ; Let d; be the number of jobs in e

5.
Then q N
W, (4.,) = Z 2 Ty B
177 =1 =1 v M
(q 1)
> u*(A), pr) ]
by substituting P*{i) instead of le for all & and B
and u*(A) instead of Uy for il _
&
So (
m  a.(g.+1)
z U (Ay) 2 u*ay.p*ay [ 2 . '—g )

i=1 i=1
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But the minimum of

-

mo gy (g; + 1)
l:

7 2

m

subject to X q, = A with q; nonnegative integers, is
i=1

given by (k+1) [r + 255] with k¥ and r a8 defined in

the lemma,

This proves the lemmz,

In what follows, by a partition of a set A CHu we
mean an ordered partition of A into m subsets.

Definition 3,.1,1 .

Let B = {Bi’ - I S, m} be any partition of a
subset of job in N, Any partition D = {Di’ i= l,2,...,m}
of the set of all the n jobs is said to be a completion of
B in case By (I D; for every 1, By the weighied sum of
completion times of the partition D, we mean 2 W,;(D.),

i=1

Defindtion 318 o

Let W(B) be the minimum possible weighted sum of

completion times for any completion of B,

Theorem 3,1,1 & Let B = {Bi"i = l,2,...,m} be a partition

of a subset, N , of g Jjobs. Let I\J'q =N - N, Then we have,

W(B) 2 g Wy (By) + p*@g) L wrC N ((er1) Cr + uky)

i=1
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where k = [(n-q)/m] and r = n-g-mk,

Proof , Let D = {Di’ i = l,2,,,,,m} be a completion of B,
Then By (L D; for all i, Let G =Dy - B;s It 1is easily:

m
seen that () G; = I, and the number of jobs in N, is n-q,
i=1 ¢ q

Now the weighted sum of completion times for D is

m m
TOW. 0.y = & OwW.(B, () G)
j=1 1L s =1 1% i
m m )
> L W.(B.)Y + T W, (G,
=1 L j=p 101
by lemma 3,1,1
m ¥ T 1k
* *
> iil W.(B;) +p ( Nq) uk( Nq){(k+l)(r+ 5 )}
by lemma 3,1,2
The proof i1s complete since W is any arbitrary completion

of B,

This theorem provides a lower bound for W(B), which 1s
used in a Branch and Bound algorithm developed in Arthanari and
Ramamurthy (1970), This algorithm incorporating some lower

bounds obtained in section 3,1,2 is given there,
Since an optimal order of processing any Subset of jobs
in a machine is given by a Mc Naughton's sequence, it is enough

to ¢pecify the machine where a job is to be processed, Such
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a specification is called an assigmment and ¢ = (il,iz,...;iq)
denotes an assignment of the first ¢ Jobs, where 1, denotes
the machine to which job v 1is allotted, We call ¢ partial
or complete according as g <n or g=n and g 1is called
the order of that assignment, Thus with a partitibn B we
asssociate a ¢ by specifying that the Jobs in the 1™ set or

B will be processed on machine 1 and vice versa,

3,1.2 Some More Lower Bounds on W(B) and an algorithm

Eastman and others (1964) have given a lower bound for

the weighted sum of completion times when the machines are

a—

identical, Using that bound for the Jjobs in Nq we can get

the following lower bound for W(B} %

m ro—
WEy zoLow (B + E('Nq)

i=1
where )
n-q v
E(N ) = “QTg:m—““ R 2 Pa
! mn~q+l) 1 Iy s=1 s

and (jl,,..,jn_q) is a Mc Naughton's sedquence of Jjobs in
N_.

]

Next, we note that the lower bound given by theorem
3,1,1 can be improved easily by observing the fact that the
completion time of a Job is a sum of its walting time and

its processing time.,
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We have,

W({B > - WL (BLY + N

(B) > iEI 1( 1) B( q)
where
Ny = . p. +p*(N k(T
A ._i:;-_u']p&*'p(q)u(ﬁq)h
J€ q |
mlktl) g
and h=kin ~q ~ > 1 with k= [—E*] ees 31,2

When we have a partial assignment with each of the

machines having at least one job we have the following result ¢

Lemmg 3,1.,3 3 Let B = {Bi’ i ='1,2,,,,,m} be any partition
of a subset N, of q Jobs with B, # 0 for all i, Let

N =N~-n_, 5 :
q g Thenwe have
W(B) > Z W; (B;) + v( Nq)
i=1
where
N ) = 8. + 1. D.
U(Nq) | % it § Uy Dy
IV I
8. = Min [u. 2 p,_ +7p.. 2 u.]
J 1<i<m J g <] L8 1J j<=s S

where the first summation is over jobs that precede J and
the second summation is over jobs that succecd J in a

Me Naughton's sequence of the jobs in By () {j}o

Proof ¢ Any job i e ﬁq can be assigned to any one of the

m machines., Let W'(B; (1) {j}) be the inerement in the
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weighted sum of waiting times when job J 1s assigned to the

ith machine, Then eclearly

W (B (_) ,] ) = - 2 P + i Z 1 o 30108
S0

8, = ll\éigm Wiy (L) {3P]

gives the minimum possible increase when J 1s assigned.
Thus, Z Sj gives the minimum possible increase in
jsﬁq
the welghted sum of waiting times when all the Jjobs are assigned,

with the restriction imposed by BE,

The result follows immediately by adding b W, B.

i}
alld 2_ Sj to 'El Iqi (Bi ).
. i=1
JENq
ote that u( ﬁqY given by the above lemma takes
into account the actual assignment of Jjobs in Nq while
e(-ﬁq) and E( ﬁq) depend only on the set W,
We now consider two special cases of the (n/(m)/F/Gu)
problem and develop another lower bound using the optimal

solutions of these cases, Let A (_N and [{ be the number

of jobs in A,
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Gase % Y. =wk(A) for'aill ' j & &, and 1] for alli 1

and J.

5 _ B

Let (jl,pac,jK ) be an ordering of the jobs in 4

such that p: <p. =< ,,, 2 p: .
1T A

In this case an optimal sclution tc the problem with the
jobs in A 1s obtained by simply assigning jobs to the machines

in rotation as follows ¢

job d1 J2 s jm jm+l jm+2"'38m S S jkm+l"'jkm+r

Machine 1 2 ,.,. n i & ke or 1L oo L seso B

vhere k= [ L / m] and r = A - nmk.

This result is immediate from Theorem 5 proved in. Root (1965),

This is also given in Maxwell and others (1967).

flere we have the optimal welghted sum of waiting times

given by
A) = u*(8) & I T Gemy (3 )
8. (A) = u*(A Z . .Dg F313 k=h) { ‘I ©p;
1 { s=1 Js n=1 s=1  J(h~1)mtr+s i
sss Seled
Cage ii Piy = p*(A) “for all 1 and for all j.

Let  (jq, j2""?jIJ be an ordering of the jobs in A
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such that, [ .3 [ _>. s e e _>, u . .

In this case an optimal solution to the problem is obtained,

bty assigning jobs to the machines in rotation as in Case 1,

Tho proof of optimality of this solution can be given on
the same lines as in Case 1. We have the optimal weighted sum
of waiting times given by

0p(8) = pr&) § z (h-1)( g uy )
=1 Y(h~1)m+l
r

+ k X u.

L N N 3.1.5
i=1 ka+1}

Now consider a partition-- B of a subset Nq of a Jjobs,
We have

W(By

tv

2 W, (B Y HEt W)
i=1 g’

AT @ N = Mg i it ' .
where 5( Nq) M x[ﬁi( Nq) &2( N )] + % Py Uy ees Felsh
381

with 6 ( ﬁq) and &, ( ﬁé) given by 3,1.4 and 3,1,5 respectively,

The above inequality follows from the fact that for any

partition of the jobs in ﬁq, the welghted sum of walting times
decreases when the processing times pij or the penalty rates

11j are decreased,
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1., B(N ) < 6(W ) since 8¢ ﬁq) =~ I pju; is

- N J

£
I8
obtained by replacing all ujfs by u*( Nq) in 32( ﬁq5.

2, 48¢( ﬁq) also does not depend on the actual assignment of

Jobs to machines given by B.

3. In 680 problems considered for comparing &( ﬁq) with
E( ﬁq), we find that in about forty cases 8¢ ﬁq) dominates

E( Nq).

An algorithm

The set of all assignments formg the set of nodes of a
‘ree with root at the empty assigmment denoted by (¢), A pair
of nodes, one of qth order and the other of (q+l)th order, are
connected by an are when the assignment of the first d Jobs
in the (q+1)™ order node is identical with that of the oof
order node and the (q+l)th order node is called a descendant
of the q order node, Let ¢ denote any node (il,...,iq)
or (+) selected for branching. Let T15 Toyceeydy be the m
descendants of ¢ obtained by assigning job o+l to machines
1,2,40.,;0 Tespectively. Let B = [ByyesssB ) be the partition

corresponding to o, Let B =—[B§, ..,,\Bﬁ] be the partition
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correzponding to Gk’ le@c,

.
1 By for all 1 # k
Bf = | ,
(J fa+ i}, 1=k
Let
«(0,) = 3_21 Wy (By) + W, (B) + Max[ v ( Nqﬂ_), a( Nq-i-]__)]_
l?!k su e 8‘-1-.?
where v ( q+l) is ziven by lemma 3,13 and & Nq+1) ig given
by 3,1.6.

il

Let L{(+)) = «{(+)) initially, and let

Lo, ) = Max{L{o), «(g,)] con BelyB

5( ﬁq) can be tabulated in the beginning and used at any stage

of computation, u( N ) needs to be calculated at each node,

Step 0 Mind &( ﬁg) for g = 0,1,2,...,0"1. Set
L((s)) = &(()) = W), 7 = {(9)} and Z  =co or the weighted
sum of completion times of any complete assignment O . Choose

(+) for branching and go to Step 1,

.{_
Step 1 & Let 0 Dbe the q“ﬁ order node selected for
branching. Deleté this node from w. Generate its descendants

dl""’dm and go to Step 2.
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Step 2 ¢ Calculate L{o,) using 3,1,8 and go to
Step 3,
Note that

=) |
B = W B ) + [ugy 2 Pt Pigyn 3 z ugl

g<=] <-8
winere the first summation is over Jjobs that precede J and
the sccond summation is over Jobs that succeed J in a

Mc Naughton’s sequence of the jobs in By -, {q+1}.

Step 3. Find 8 = {GK[L(GKB < zo},

If 8 = ¢ then go to Step 7. Otherwise go to Step 4.

Step 4 ; Find 0* such that L(6*) = Min L{s,).

i o, &Y

k
In case of ties choose one with ieast, actual weighted sum

of completion times for jobs in o*, If the order of o * is

1 then go to Step 5. COtherwise, go to Step 6.
Step 5 ¢ Set 7w =7 () 8, Choose 0* for branching
and go to Step 1,
Step 6 ¢ Set Z = L(o¥)
iy . 0¥ and delete all nodes ¢ with
L(o) > 2, from w7 and go %o Etep 7,

Step 7 ¢+ If m= 0 then go to Step 8. Otherwise,

chocse a node ¢ of highest order from = for branching
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and go to Step 1. In case of ties choose one such node ¢

with the smallest value of L{c).

Step 8 L is optimal with weighted sum of completion

times, ZO. In cach machine the jobs are processed according

to Mc Naughtonts rule, Stop.

Remarks
1, When the order of the node 0, chosen for branching is
n-1, we necd to generate only one descendant dh of ¢ vwhere

~h is such that §_ = W' (B, (L) {n})with Wt given by 3,1.3,.

2, L@} is defined so as to have progressively nondecreasing
lower bounds for the nodes, as more and more jobs are assigned,
For a complete assigmment ¢, L{(0) coincides with the actual
welghted sum of completion times for o,

3, This algorithm is applied to the cluster analysis problem
in section 3,3 with appropriate lower bounds, An example
illustrating the use of the algorithm i1s also worked out in the

same section,

3,1,3 Identical Machines Problem

The (n/(m)/F/C_,) problem with the machines being identical,
i.e. pij = pj for all i, is considered in this section, We
assume here the jobs are numbered such that (1,2,..,,0) is a

Mc MNaughton's sequence,.
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Theorem 3,1,2 5 Let B = {Bj, i= 1,2,3,.,m} be a partition

of the set N_ of first q Jobs, Let tB = Min ZXZ Dy
& L<i<m keBy

Let W(B) be as given by the definitionh 3.1,2, Then we have

T =]

W) >

. Wi(Bi) + tg Z Uy + &( Nq)

HE AL
=
gsiq

nere ¥)= % p,u, +Ma ¥.) N
where  8( N,) % opyouy + M x[8,C 1, 8, ( Nq)]

e J
JE a

and Si( ﬁq), i = 1,2 are given by 3,1.,4 and 3,1,5 Trespectively.

Proof. ¢ Consider the ({/ (m)/F/C_) problem with set of jobs

4 (N when all the jobs are available for processing at time
t » 0, We observe that the weighted sum of completion times
for a partition {Al, Az, oo B Am} of A for this problem is
~given by,

m
£t L u.+ T W)
jea 4 g=1 1%

vhere Wi(Ai) is given by 3,L.1l.

We also know 6( ﬁg) is a lower bound for the welghted
sur of completion times corresponding to any partition of joos
in ﬁq* Also note that tB ia the ecarliest instant any Job
3 ik ﬁq can be taken up for processing since, the jobs are
numbered according to Me Naughton's sequence, Combining these

facts we get the required result.
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Remarks
1, Note that ty Z U is nothing but Z sj in U('I\T'q)
.‘ﬁ ..N..
55 1

defined earlier, But we couid only take Max( o(ﬁq), 6¢( ﬁq))
as a component of the lower bound in the nonidentical machines

case,

2. In the nonidentical machihes case we cannot assert that
tp 1s the earliest instant of time at which any job in ﬁq can
be taken up for processing. However, we can do so if dhe jobs

can be numbered such that

ple Bl =<8 D.
2 < S8 < < =M ror a1l 1,
i n

Proposition 3,1,1 ¢ If B 1s an optimal completec partition

then By # § for all 1 <1 <m,.
Proof 1s trivial, Or

H

Proof 3 Suppose B 1is optimal but Bk is,empty, Let BK

be such tha*t it has at least 2 jobs (there exists such a B
as n >m), Let Jj, se¢ BA\ and j > s, Then consider B*
obtained from B as follows
fBi, A#1#k
B¥ = {j}, i=k
R

'l
P
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Now the weighted completion time of j dis reduced by
at least Us Py > 0, end the weighted completion time of no
job 1s increased, a contradiction which proves the result.

This result is not true in the case of nonidentical
machines,

Using these results we modify the algorithm given for the
nonidentical machines problem, Both the Iower bounds and the

branching rules are different,

An algorithm for the (n/(m)/F/C ) problem with identical

machines

All partitions are represented by the node of a tree
with root at the empty partition denoted by (o). Any node in
the tree is called & node of order (g, s) if the number of
jobs assigned is q and the number of nonempty Bifs is s,
in tMe corresponding partition B ﬁ'{Bin i= l,2,,,.,m}, We.
take the ¢ nonempty Bifs to be Bl,Bg,w,,BS without loss

of generality,

A node ¢ of order (g, s), 0 < q < n-mts, 0 < s <m
1s connected by an arc to a node & of order (q+1, s+l) if
the assignment of first g Jjobs in g is identieal with that
of o and the q+lst job is assigned to S-!-lSt machnine, Also

a node ¢ of order (g, s), 0 <q <n-m+s, 0 < s <m is
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eomnected by an arc to each of the 8 nodes 4 of order
(atl, s), wherc the assigmment of the first g jobs in u

Z job is assigned

is identical with that of ¢ and the q+1°
to one of the first s machines, If g =n-mts and 0 <s <m,
then a (q, s) order node ¢ is connected by an arc to a node
of order (n, m) which represents a complete assignment, wherc

the first g Jobs are assigned as in 0 and the remaining m—-s

jobs are assigned one each to the (m~s) remaining machines,

Let ¢ denote any node (il,.,,,iq) or (e} sclected
for branching, Let 0 denote the descendant of ¢ obtained
by assigning the (q-l-l}st job to machine k, Let B and Bk

be the partitions corresponding to ¢ and 0, Tespectively,

Let B .
o= 7. (B, ) .
(0, ) ifl W, (B, ) + uqﬂ(-z . pj)n'- tB(_Z__ uJ)
JgBk J8Nq-i-l
+ 8¢( Nq+l)
ane Oeligd

Step 0 ; 7Find &¢( ﬁq} for q = 0,1,2,,,.,0~L, . Set
L)) = «((-)) = a(N), = = {(:)} and Z =co or the
weighted sum of completion times of any complete assignment

do‘ Choose node (s} for branching and go to Step 1,
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Step 1 § Let the order of the node ¢ selected for
branching be (g, &) eand delete this node from w. If
02 q <n-mts and O 2 s <n, use branching rule 1, If
q = nmts and s < m, then use branching rule 2, Otherwise,
use branching rule 3.

Branching Rule 1 ; Generate the s+l descendants 61962,,.Q,US+1

of o, We get s deccndants of order (g+l,s) and one of order
(atl, s+l), Go to Step 2,

Branching Rule 2 ; Generate the descendant 7 of 0 by

t yob to the s+i™® machine, for 1 < i <m-s,

assigning the qg+i

¢ is a node of order (n, m) which is a complete assignment.

1
Go to Step 3 with L(o,} = L(d}.

Branching Rule 3 ; Generate the m descendants of ¢, EHach

of them is of order (g+l, m), Go to Step 2.
Step 2 2 Calculate L(dk) by &

Lo, ) = Max[L{o), «(0o} )]

1)
and go to Step 3,
The remaining steps (3+8) of the algorithm arc same as
those in the algorithm given for the nonidentical machines problem

in section 3,1,2.
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We now illustrate the calculation of the lower bound

L{c) with an example,

Example 3,1,1 Consider the (5/(2)/F/cu) problem with the

following date taken from Rothkopf (1966}, The jobs are

numbered according to Me Naughton's rule,

job P U pj/uj Py Uy
1 1 5 175 5
2 2 7 2/7 14
3 3 6 3/6 18
4 B 3 2/3 6
5 4 4 1 15

The following table gives &¢ ﬁq) for 0 <4 <5,

g 5¢( ﬁq) % uj
jeNOI

0 77 25

- 68 20
2 46 13
3 22

4 16 4
5 0
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We give the calculation of 6 ( ﬁq) and & ( ﬁq) for q=0,
The other values are similarly calculated, We have

uk{N) = 3 and p*(H) = 1,

Arrange pj‘s in the nondecreasing order i,e.,

1,2,2,3,4
We have k = [6/2] = 2 and r =1,
So 87(N) = 3[2 <1 + 1(2+2)] = 18
Arrange uj‘s in nonincreasing'brder 1eCay
7464,5,4,3

We get
62(N) = 1[2 =3 + 1(4+5)] = 15

i1

Therefore,  6(N) Z uy py + Max (6, (M), 6,(0))

JeN

i

59 + Max(18, 15) = 77,

Next we 1llustrate the caleulation of L(Uk) for oy

with B% = {1,8} and Bg = {E}Q We have ¢ given by
B, = {1} and B, = {2}, also
2
2 wi(Bi) =19 and L(g) = 78,
iji=r].
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Now

« (o 19 + 6(1+3) + 2 <7 + 22

i

1)
:.-'79

And so L(9,) = Max(78, 79) = 79,

thus, after generating 12 nodes, we get the optigal
solution as (1,3,4; 2,5) with 85 as weighted sum of

completion times,

3.2 Batch Splitting Problem

3.2.,0 Introduction :

In this section we consider the (n/m/R/F___) problem,

max
411 the jobs have to be processed through all the machines

once and only once and there are no technological restrictions,

A general formulation and a solution method based on Balas® (1969)
disjunctive graph approach are suggested,When the jobs are
identical, izes, pij = D3 for all J, the problem is formulated
as a problem of grouping the jobs into m batches and finding

an order of processing for ecach batech so as to minimise the

total elapsed time, We then defihe Latin square arrangement

of batches on machines, For any Latin square arrangement we

find an optimal partition of the N Jobs into m ‘batches., We
also prove that by considering only Latin square arrangements

we get solutions which sre in fact optimal over the set of all
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possible schedules, when n 1is sufficiently large or when n
1s divisible by m, In addition, we find optimal solutions
under the restriction that we use rotation arrangements, when

n 1is not large enough and is not divisible by m,

3,2,1 A general formulation of the (n/m/R/FmaX) problem

There are n Jjobs to be processed through m machines,
Besides making the usual assumptions A,1 through A7, we
assume that

(1) all the n jobs have to be processed through the

m machines, once and only once through each machine

(i1) there are no constraints on the order in which a

job is to be processed through the machines

and (iii) there are no constraints on the order in which the

jobs have to be processed on a machine,

The problem is to find a schedule satisfying the above

requirements and minimising the totzl elapsed time.

Balas (1966, 19692, 1970) gives a disjunctive graph
formulation to the job shop Sequencing problem (n/h/J/EmaX).
The problem given above is same as the (n/m/J/FmaX} problan,

excepting that there are no technological ordering restrictions
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in the randomly routed shop, This implies that there 1s freedom
of choice in not only the sequence of operations done on a
machine but also the sequence cf machines through which each job
is processed, Balac (1966, 1969) shows that the (n/m/J/F )
problem is egquivalent to finding a minimaximal path in a disjunc-
tive graph, We give below a corresponding disjunctive graph

for the (nAnfﬂ/Fmax) problem,

Definition 3.2.1 ¢
A disjunctive graph D = (N,4,B) is a (directed) graph
(N,A) together with a specified subset B of arcs called

disjunctive arcs such that if (i,j) ¢ B then (j,1} ¢ B,

A path in the disjunctive graph D = (N,A,B) is a path
# in (N A) such that if (1,J) ¢ B and (i,]) e ¢ then
(J,1) & .

The notation we use for a disjunctive graph is slightly
different from that of Balas,

Consider the disjunctive graph B = (N, E (_) B, B)
defined as follows,

T 20 $ O )

where Zziﬁij:l,ﬁijm’ljj.ﬁn}’
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4 being the operation of processing job J on machine i

1]
and S5 and F are nodes corresponding to two dummy operations

"Start! and '"Finish! as in CPM formulation,

The set of ordinary arcs E and the sct of disjunctive
arcs B are defined as follows.
E = {(s, o) e z} (M)_{(q, F) 2 «¢ z}

and

B = {(x, By ' «, B e Z and if « = %3 and B8 e g
“( }.'

"

then either i=k or j

The disjunctive are (&, p) expresses the condition that one
of the operations «, B must be finished before the other

is started.

Now proceeding in the same lines as in Balas (1970) we
can show that the (n/m/R/FmaX) problem is equivalent to the
problem of finding a minimaximal path in the disjunctive graph
b= (@, BE (L) B, B). Methods for solving this problem are
available [see Balas (1969), Nabashima (1971), Krishnamurthy

(19693 ],

Next we consider some special cases of the problenm.
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3,2,2 Identical Jobs and Batch Splitting

Consider the problem stated in sceetion 3.2,1 with the
jobs being identicsl, Let by ¢ be the processing time
for any job on machine 1., Call this (n/m/R/FmaX) problem
with identical jobs as problem Pl, We now consider a related

problem,

} and nm permutations

Problem P2 [ Find (ny,ngy...,ny,
(T1sToyeee,mp) OFf the numbers 1,2,...,m such that
s

(1) n; 20, £ n. =n

n A i s Dy integer
i=1

th

(ii)y the k bateh with processing time mny, p; on

the ith machine follows the order of processing

thfough the m machines given by ™4

and (iii) the total elapsed time is minimised,

Problem P2 is problem PL with further restrictions, because
(1) we require that the n items have to be grouped

intc 1©m batches only
and (ii) the batches once formed are not to be altered,

We shall show below that these are not really restrictive
by exhibiting optimal solutions to Pl which satisfy the restric-—

tions imposed by problem P2,
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Consider the following schedule of processing the batches
on the machines, Let T, ToseesyTy be m permutations of
(1}23.It,m); and let L = (Trl"."ﬂ_m) be the m >=n matrix w_ith

7., as the jth column, HRach row (il,.,.,im) of L gives an

J
assigmment of the batches to the machines where the ikth batch

-

is assigned to machine k, The processing for all asslgnments
specified by & given row of L 1s taken up at the same time,
Also the set of assignments specified by the ith rofy o .Je LIS
taken up only after the set of assignments specified by rows

1,2,,44,1"1 are completed,

Definition 3,2,2 3
If L is a latin square, the above schedule of processing

is called a Latin square arrangement (LSA),

Let S be the Latin square

Then the LSA corresponding to S 1is called a rotation

arrangement,
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If we restrict our solutions to Latin square arrangements

only, we restrict problem P2 further in that;

(1} we require that the order of processing followed

by the batches forms a Latin sguare

(11) a row of assignments is taken up for processing

only when all the previous rows arc completed

and (iii) A1l assignments specified by a row are taken up

at the same time,
Consider now two more problems given below,

Problem P3 * Find a Latin square L = ((Aij)} and

(nl,n2, [ ’Ilrn) S'U.Ch that

m

(1) '§1 ny =n, n; 20

(11) by mng Py 20 for 1,§=1,2.,., n
m )

and (iii)} T ti is minimised,
1=1

Problen P4 1s same as Problen P3 wilith the restriction that

ni's arc integers.

Note that problem P4 1is same as problem P2 with the

restriction that only LSAfs are considered,

Lemma 3,2,1 If [Ll; (nl,,.,,nm)] is a solution to problenm

P3 then [La; (nl,...,nm)] is also a solution to the problem
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when Ly 1s obtained from L; by a row permutation,

Further if Le is obtained from L; by a column permuta-
tion then L2 with the corresponding permutation of

(M1y00s,n) 1is a solution to the problem,

The proof is trivial and so is omitted,

Lheorem 3,2.1 ¢ Any Latin square L and (ni,.,.,nm) wlhiere
n; = n/m for all i, solve problem P3 with t = np' where

p' = Max Do
J

Proof ; Take,
ny =(n/m) for all i

and let

t; = n/m ><pt,

Then the constraints of P3 are satisfied and

m
Z t, =t = npt,
i=1

Consider any Latin square L, Let p' = Pp. Since L is a

Latin square, (Lyy, AgpseesyLy) 1S a permutation of (1,,,.,u).

Now for any feasible solution to the problem,
Z b, >Zn P, = npt,
i 175 Ay n

This completes the proof of the theorem,

Corollary 3.,2,1 If n = mk for some integer kg 11 then for

any Latin square L, [L ;(k,.,,,k)] solves problems P4 and P2,
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when L2 is obtained from L, by a row permutation,

Further if L2 is obtained from Ll by a column permuta-
tion then L2 with the corresponding permutation of
(N1,.0s,0,) is a solution to the problem,

The proof is trivial and so 1s omitted,

Theorem 3,2.1 ¢ Any Latin square L and (ni,...,nm) where
n, = n/m for all 1, solve problem P3 with t = np' where

p! = Max p.,
i J

Proof . -Takey
n. =(n/m) for all i

and let

t; = n/m ~pt,

Then the constraints of P3 are satisfied and

m

yd, t, =t = ap ¥

1=1
Consider sny Latin square L, Let »' = p,. Since L 1is a
Latin square, (L Aopseess&yy) is @ permutation of (1,...,m).

Now for any feasible solution to the problem,
ZA N Ty > p,, = npt.
i 175 Ay h

This completes the proof of the theorem,

Corollary 3,.2..1 If n =mk for some integer k, then for

2

any Latin square L, [L ;(k,...,k)] solves problems P4 and PZ,
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This corollary follows from theorem 2,2,1 and the fact
that the total elapsed time for any schedule for problem Pl
is at least np' since each job has to go through the machine

for which the processing time is p'.

Theorem 3,2.2 ¢ Suppose n = mktr, 0 < r <m-l1 and
D1 2Py S wee S Pyq <Py. Let Q be the smallest integer
such that
Pr-1 < &= .
Py Q
If k >Q-1 then [L} (Ny,msy n,)] is a solution to P4 and

P2 for any Latin square L with

wigoe kbl Af d g w

n; =k i I i 1

Llso the corresponding total elapsed time
t = np, .

Proof i Consider the solution

n; = kt+1 if 4

ia
]

U

n. k if 1 oy .

1

tv

Note that
(kt1} p, = (k+1) py 2 k py ,
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and since k> Q=L we have,
k p, 2(k+l)p; Tfor 1 Zm

Thus t; equals (k+1) p, if m occurs in the first r places of

the ith row of L and ti equals k Py, otherwise,

Therefore, t; equals (kx+1) p, exactly r times and

t; equals k p exactly (m - r) times,

Thus -

t = 1-51 t; = (mk + r) p, = np_.

Hence the theorem is proved,

The above results show that the additional restrictions
imposed on problem Pl to get problems P2, P3 or P4 are not
really restrictive when n is divisible by m or n 1is
suffleiently large,

We now solve problem P4 fixing L = S, when the hypothesis
of theorem 3,2,2 does not hold, Let P4 with L fixed as

5 be designated as problem P5, Let
(1) n=nktr, 0 <71 <mn-l
(ii) P1 S Po S ees 2Py
and (iii) h be the maximum integer, 1 < h < m-1 for which

e . TR
kt+l = Py
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Then we have

Lemma 3 5 * Suppose r < m-h, Then for any solution

(nl,...,nm) to problem PS5,

h
t > (ktl) Z_ o

Proof ! Let n, = Max(nl,...,nm), then n, > ktl,

Let s be the number of n.'s greater than k. Evidently

-
s > 1,
Case 1 m= ez hs
Let P= Jiln < kl .
{Uim }
Define = Min {3 ng zktl, ng <k for all w >}

1leP
sand let the above minimum be attained for v e P, If g <m-h

then since qu = it follows that for

Aﬁ~h~q+v+i,m~h+i’
1= 0,1,.0.,(h-1), in row m=h~gtv+i a batch of aize > ktl
is assigned@ to machine m=h+l, If a row number exceeds m,

its residue modulo m 1s considered,

Therefore,

& > (k1) £ = 0,1, .05, 00,

~h~q+v+1 = Pr~n+i?

Also in these rows machine m is assigned to a batch of size
< k., Therefore there are at least (n-hk) jobs to be processed

through machine m in the other row assignments,
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h-1
Thus t > (ktl) Z p

j=g EBrhtl

+ (n-hk) p, .

If g > m~h, since Av = A it follows that

a wi, gl
for A = @ l.p0 ke, B0 regt vil; @ bateh of giwe = HL

is assigned to machine qt+i,

Therefore,

typg 2 OFD) Puyg, 1= 0,1, ...,mm1q,

Consider now the other m=s~{(m~q) = gq~s > g-u+h rows in
P, In each of them, & batch of size > ktl 1is assigned to a
machine with index at least ¢, Thus the contribution to ¢t
from any q-mth of these rows > (ktl) (p . + «uu + pq_l).

We thus obtain

lay=ik
t > (k+1) Z

+ (n“hk)pm 2
i=o

Pr—h+i

Case 2

n-s < h,

Let q, v, be as defined befoye. Note that q cannot be less
than m-h, because m-s < h and that g > s, So by the
definition of ¢q, in each of the rows of P, a batch of

gize > (ktl) is assigned to a machine with index at least 4,
Mlisiel i mowsl | ThHly foF 38 & @ 1 son, eIty 28 babch of size

> k+l is assigned to the machine g+i, Observe that there are
s rows in which a batch of size > ktl 1s assigned to machine

m,
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Thus at least s(k+l) jobs are to be processed on the
machine m in the rows not in P, So

m-s

> (k+1) Z p
i=1
mn-g

= (ktl) Z p__
i=1 AT

ct
v

p-y T 8(ctl)p

t (n-hk)p, - (n-hk)p, + s(ktl)p_.

Now using n = mktr, we get

m=s
t > (ktl) % p

+ (n—hk)pm + [(hts~m)k + (s*rj]pm
i=1

m=i
m-g
(k+1) =
=]

Iv

Pp-i T (n~hi)p. + [h~(m-s}] C(ktl)p,

since s-r > hts-m by hypothesis

h
2 (ktl) 2 p

+ (n~hk)pm.
i=1

me-i
This completes the proof of lemma 3,2,2.

Lemma 3,2,3 . Let r > m~h where r,m,h are as defined
in (1), (i1i) and (iii) preceding lemma 3,2,2, Then for any

solution (nl,...,nm) to problem PS5,

m-r
B e Cebl) -3 B

+ v{k+1)p. .
i RO .

Proof { Let P,s,q,v be as defined in the proof of lemma

3.2,2.
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.

Gase (i m-s > h,

In this case we have as in Case 1 of the proof of

lemma 3,2.2,

h
t > (ktly Z p,_y

+ (n=khjp
i=o %

m-=r
> (k+1) Z

+ (h-mtr) kp, + (n-kh)Pm
i=1

pm--i

since (k+ljpm“i 2 kp, wvhen i <h

m=r

= (k+1) Z p

.+ r{ktl)p
i=1 m=1 m

as required,
Case (di m-s <h and s <r,

We get as in Case 2 of the proof of lemma 3,2,2, in each
of the rows of P a batch of size > ktl assigned to a
machine A with A > q. Also inrows v+i, for ‘
i=0,1,,..,m"1~q, & batch of size 2 k+1 1s assigned to the

machine ¢+i.

Now at most (m—=g)k items are processed on machine m
in all the rows in P, Thercfore there are at least (n-(m-s)k)
jobs to be processed through machine m 1in the other rows of

assigmments,


http://www.cvisiontech.com

=120~

Thus .
t > (ktl) £ p__. + (n-(m~s)k)p
i .
m-T \
> (ktl) iil P T (r—s)kpm + (r+sk)pm
since (k+1) Ppoq = EPy when 1 <h
m=r
= (ktl) 2 p.4 t rlktldp,
i=1 '
as required,
Case (iii) m=g8<h and g>r

As in Case 2 of the proof of lemma 3,2,2, we get

m=-g
t 2 (ktl) % p, .. * slktl)p
1=1
(1) £ (HD)p, = (b)) E (52 (1ct1)
= (ktl) Z p,._. * r{k+l)p,_ - (ktl) Z p._. tls=r)(ktl)p
o M N i=m-s+1 T .

Now the required inequality follows as Ppei < Ppe

This completes the proof of the lemna.

Theorem 3,2,3 ¢ If n=nkir, 1 <7 <m-1l and L =5, the

rotation arrangement,then L and (nl,.c.,nm) such that

ng BRIy S 1 2 F

e+l

= s I g il

Solve the problem P5,
Proof: By theorem 3.2.2 and the lemmas 3,2,2 and 3,2,3 and noting
the fact that the lower bounds given by the lemmas are actually

attained for this solution the result 1s Immediate,
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Next, we show that rotation arrangements are not in genecral
optimal solutions even for problem P4,by the (lO/é/R/FmaX)

problem with the data given below,

Example 3,2,1 % Consider the (10/4/R/F___ ) problem with

max

pq = Lg Po = 2, Py = 14, Py = 15 ag processing times for
any job on machines 1,2,3 and 4 respectively. Note that k = 2,

=T = 5§ < B, Ts and £ > 5, ~ 15 7 so h = 1, Hence
theorem 3,2,3 is applicable and L =38 and n; = 3, n, = 3,

= 2 and = 2 give an optimal solution under the restrice

n3 114

tion L= 5,

Now t; = 30, t, = 42, t5= t, = 45,

SO T = 162,

Now consider the Latin saquare arrangement given by

(1 2 3 a)
2 13 " #41 3
s 8, 4 1T . =2
4 3 2 1

S
and nq,n,ng and n, as given above,We then have

tl = 30 = % and t3 = 4%, = 45, Hence t = 150 < 162,

2 4
So L =5 1is not optimal for problem P4,
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Bl Clus ter Analysis

3.3,0- Inkrodyction .

In this section we deal with the cluster analysis problem

which may be formulated as follows,

Let N = {1,2,...,n} as usual, Suppose we are given for

cach 1 e N, a vector Xy = (Xy4, XoiyaeesX,y) € R
= 2%5
Let dij = 1Xi ~ x31 = [gl(xki - ij) 1 and for any A (__: N,
define
1 2
P >
r iEj 13 for A > 2
T(A) = i, jed
o otherwise

where A 18 the number of elements in A4,
The cluster analysis problem is to find a partition

J = (Jl""7Jm) of N such that

') =
i

IGE.) is minimised,

R nil=:

2l
An extensive survey of work done on this problem up to

1969 is available in Jenson (1969}.

In section 3,3,1 we derive the main results and in section
3.3.2 we give an example to iliustrate how the algorithm

developed in section 3e¢le3 can be used for this problem,
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3.,3.,1 Main Results

First we state the following well lmown lemma,

Lemma 3,3,1 ¢ Let X & R%, then

n n

2 == 2 = ik 2
> X ~X%l92 =2 [ X-Xx|%= Z J XK ]
i=1" 4 =1 = - P 1gi<isn B

—-z l
where X n(xl T Xyt e t X

Lemma 3,.3.2 % For any two disjoint subsets Ay and A2
of N we have,

A, () Ay 2 T(h) + TAg),

This lemma is easy to prove using lemma S Sl

Before proceeding further with the main problem, we

consider the following problem, TFor convenience we denote

n A

(5) by n.
A

Let I = {1,2,...,n }c In what follows, G denotes

(GyyoeesCy) where Gy C1I forall i and G () G; =9

if 1 # j.

Problem 2. Given n, m and nonnegative real numbers

A
n
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find nq,Ngyesaslly and G such that

m
(1) = n; = n
i=1

(i1) n; are positive integers

i
(i11) G; has n; eclements for 11 m

and c(a) = ﬁ%- 3 a. 1is minimized,

. . J
i=1 71 JEGi

i MEB

Definition 3,3.1

An alternative denoted by P 1s a vector (nl,nz,,,.,nm)
of positivé integers such that

‘m

i n; = n and Ny 2 N5 2 aee S e

i=1

Let B, ,={P:¢ P isan alternative corresponding

]

to n and m }.

Definition 3.3.2
¢ 1is called a Grouping induced by Pe B . 1IF the
]

A
number of elements in Gi is n. for all i

1 , Wwhere

P: (nl, 112, [ EEN) nm)l
Let G (P) = JG§ G is induced by P}

T ive €
or a given P gn’m.
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Clearly Problem 2 is equivalent to

Min [ Min C(G)]
PPy, GeG(P)

First we consider Min C(G) and give an optimal solution

Ge G(P)
for a given P and then consider Problem 2,
In the following we write £ for B .
Lemma 3,3,3 5 Given P e P, G¥(P) defined by’
Cdi=1 A i a
G%(P) = {j t 2 n +1<2j<2 Z n } for 1 <1iz<m
C k=1 k=1 -

minimizes C(G) over G(P),

The lemma follows trivially from the fact §; Given
S k

. a _ ¢ i : *
819805000, 8 Al bl’bE? »oayby nonnegative, 151 8.'3':1; bJj_

is minimised when jl,...,jk is such that ajl 2 aes g;ajk
] . > > b
an b;ll - O ka'

Lemma 3,3,4. Let P = (n,ngM.,n ) and P' = (nf,nl....n))

be alternatives such that

3 - 14 ~
(1) 1=n 2n} = Nygp and

né 2Ny 4 for some k and s with Ilgk<s<m

for s # j # k.

]
=

and (ii) n&
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Then we have

C@G*(PY) 2 c(ax(PL)].

Proof ! Let A = ng = By = n, - n!,

Consider G e G(P!'), defined as follows

— * ‘ s :
Gy = GE(P) if s # i ;{1{,

U

Gp = GE(PY (L) H

i
where H = the set of first A + . £ terms from

61 (P)

A ' ,
and G_ = the set of first né terms from G;(P) - H,

S

Note that this i1s possible by the properties of Dy g ni; h

and né: given in the hypothesis,

Let, E S GXHP) »(E, (_%H),:

Now C(G¥(P))= C(G) = == 3 .- z -
= ‘ e je GELP) * I%}‘; jeG *
¥ k
Y
né JEG aj
= (-_ -4y 5 F (e ~ e

; ;
D g JEG*(P) 5 g Oy

+ (éh 4L0 I oa, + é%- Z a
s g JjeGg J s JeF

Let  Max a, = a', Then we have Min a, > a! >

. ] = J had
JEGS JeF

J

)

2
jeH

Max a.
jeH

a

J*

J
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Thus as the first term is zero in the expression for
C(G*(P)) ~ c(@), we get

CEH(PY) - 0@ 2 (- L) [ R4 n 4] a

lv

Dg By
+ (g: J:) né a'

A
AL g - ml ~C Aty £)] a

‘K (&ﬂ+a1)
n +R

= 0 after simplification,
Thus  C(G*(P)) > (@),
By definition  C(g* (P;;) X C(G) for any G e G(p'y,
Hence the result follows.
Bomark . This lemsa shows that when n > om, if any
P e P has some n, equal to one then there exists a
P' ¢ B such that C(G*(P')) < C(G*(P)), Further when

n<zam, P* 15 given by

= I-]l ] -
ng =[] for 1<i<mes

= % J+1 for mestl <i <m
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where s =n = [ 2 Jm is such that G*(P*) is optimal for
problem 2.

Going back to the main problem, consider any subset
A (C N having at least m ¢lements, Consider dgj for
i, j ¢ A, 1 <j, Arrange them in nondecreasing order and
rename them és |

a l1ece, @y ='di

al,

2, [ N
for some i, and J e A for k= 1,2,.sey A where
A is the number @f elements in A (A 2 m).

Let P* be such that

c(G*R(P*)) < C(G*(P)) for all P e EK il

Then we have the following two lemmas,

Lemma 3,3.5 & gv(J*) > ¢(G*(P*)) for any optimal

partition J* of A,

Proof 2 We have

CH(J*) = 3 gh ( = d%.)
k- o222 k1<) J
- LY *
il J&‘,Jk

where mn, 1s the number of elements in Jﬁ.
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Also without loss of generality we assume

Ny 205 2 0ee S0y

Note that we can choose J* such that no

ny = 0 (by lemma 3.3,2).
Let P = (nq, Noyuee,ny) € gA,m* Let G e G(P)

be defined by putting r in Gk iff i,j ¢ Jﬁ Where

— 22
a, = dij'
Then, CH(I*y = C(Q),
But C{G*(P*}) < c(g*(P)) = C(G) and the lemma follows
w
immediately,
m
Lama 3,3.6 ; C(G*(P*)) > (-b—l)( 5 a) + @ 2 ey
i=1 i=m~r+l
where b =[ éﬁ‘], = A~ [ IAn"]m.

Proof; First let A > 2n we may take that no ng is

equal to 1 in P*¥ since otherwise we can get an optimal
P' satisfying this condition, Therefore, Gj"f(P*) will

have at least one element, for all i,

(n, -~ 1)
Now  C{G*(P*)) > % ritds a, e

i=1 2ni +

(since all elements in Gf(P*¥) > i)
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, L ®
R,H.S, of (¥*) = 5 Z (ni - 1) ay.
1=1
m . m -
Since Z ny a, is minimised subject to 2 n, = A
d=r ¢ , i=1

and Ny <Ny < ... 51, vhen niﬁs differ by at most 1
(note that: a; <85 % ses 5 8y); We have the required
result, '

Now let A< 2m, From-'the remark following lemma 3,3,4
we have the required result and in faet equality holds,.

Let G(A)'éggfthe lower bound for: C{G*(P*)): given
by the lemma 3,%,6,

Call any partition J of the set N, =-{1,2,,.,,q}'(2ﬂ N

a partial partition when ¢q < n,

Let a completion of a partial partition be as given by

definition 3,1.1,

Lemma 3,3,7 ¢ Let J be a partition of the set Nq of the
first q elements of N, Let C(J) be the minimum over all

completions of J, Then

C(TY > c1(T) + 8¢ ﬁq)-
where 8( ﬁq) is as given by lemma 3,3,6.

This result follows easily from lemmas 3,3,2, 3.3,5
and 3.3,6. |
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Lemma 3,3,8 ¢ Let J = (Jl""’Jﬁ) be a partial partition

of N with the number of elements in Jk = Oy Let

a
8(7) = q +(3) and S(J 3 ) = = dfj.
16Jk
S(J,. i) + S(Jk) SCJk)}_
Let @, = lax {0, Min e -y
and u( Nq) :.Zﬁ uj
J€ q
Then C(IT) 2 CT(Ty + o ﬁq).

Proof: Observe sdat #; 1is the minimum contribution from

j to C' of any completion of J (when j is grouped with
any of the JiJ).
SO, v( Nq) = Z_ Mj
jaNq
contribution to C!' from the elements in ﬁq in any

gives a lower bound on the

completion of J, Therefore, using lemma 3,3,2 we get,
C(IY > ¢ Ty + o( '1\Tq)
as required,
Combining lemmas 3,3,7 and 3,3.8, we have the following
theoren,

Theorem 3,3,1. C(I) > CY(J) + Max[8( ﬁq)’ v ( ﬁq)],
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We get an algorithm for solving the cluster analysls
problem by using the algorithm glven for the (n/(m)/F/Gu)
problem with identical machines in section 3,1 with the lower

pound given by the above theorem,

We now work out an example to illustrate the use of

this algorithm,

©

Example 3,3,1

The fgﬁiowing table gives the dfj for 1 <i<Jjxn

- 1 2 3 4 5 6
1 - 8 9 4 7 7
2 - 3 7 4 5
3 - 8 3 5
4 -~ 7 6
5 - 6
6 =

—

We are interested in grouping these 6 items into 2 groups
so as to minimize the combined within groups sums of squares.
The tree generated is given in Fig, 3,3.1. Optimal clustering

is given by (1, 4) and (2,3,5 and 6) with combined within

groups sums of squares, 8,5,
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1;234
0 18 , ‘
8,00 8,80 8,50
o) »
13203 ///// 147235
0, 3 8,00 4, 10
5,60 N\\\\\ 14;23 | 8,50
i 4, 3 8
7.08 (14;236)0PTIMAL
, 10758 10,33
13324 145,23
_ - 18, 3
_“ 8,00 Eg.58 10,33
9’ 0 .
7,50 9,80
_ 3 .
8,00 13432
| 21,0 '
12
9,80
g, 0 .
8,00 8,00 10,75
1273 | 12134
8,0 el 8,8
7,08 10,75
L(J) 12 ‘ 14
J 9,66 ! 18,0
23" o i dfE
5(37), 8(3,) |
< (J) | 20,0 . 18,0
9,66 | 8,90
NODE NO, ' -

11 i3

Tigure 3,3,1
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The caleulation of B ﬁq) is shown for gq = 2, WNow,
ﬁq = {8,4,5,6}. Arranging the corresponding d?j in non-
decreaging order we get aj’s as &

3,5,6,6,7,8.
. n-q 4
As b = Ej;“] = [ > 1= ? and f 0,
8T = %(3 + 5) = 4,0,

Similarly O(,ﬁq) is ecalculated for other wvalues of q and

L 2

they are given below %

8¢( 'ﬁq)-

8,00

4,00

q
0

” A B
2
3 3,00
5

5,6 0,00

Next we show how v ( ﬁq) is calculated for the partial
partition J = ({1,3}, {2,4}).
We find, 8(J;) =9 and 8(J,) =7
C1(TY = 4,5 + 3.5 = 8,6

Now
»

u(‘ﬁq) = pg * By 1s obtained as follows &
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- .

g =Mex[o § Min( ALE2 - a5 5 ML - 3.5)]

i

1,83

:

and Max{0 ; Min( 28E2 - 4.5 ; - 3,5)]

=
(o}
|

= 0,75
Thus, v ( ’ﬁq) = 2,58,

So
T(Jy > 8,0 + Max[0,2,58]

= 8,0 + 2,58 = 10,58,

~, Using the algorithm, 14 nodes were generated to obtain

G-

an optimal complete partition,
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LIST OF SYMBOLS

Symbol : Stands for
N the set of jobs (finite)
n ; number of elements in N
Nq the set of first q Jobs of N
= -
Nq Nq
m number of stages (with one machine

in easch stage) (m finite)

(m) number of machines in one stage
E; Flow Shop
Ew&' Randomly routed shop
5 Job Shop
Wax total elapsed time
T mean flow time
[6! average completion time
Tu . welghted tardiness
u(T)y a real valued function of job tardiness
Gu weighted sum of completion times
b | average completion time
£ general objective function
D,0, I ,A permutations of (1,2,,..,0) OF

permutations of any subset of N
with distinct elements
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symbol . Stands for
CBS~rule contiguous binary switching rule
BS=~rule binary switching rule

Cj « . completion time of job

Py processing time for job J on

machine 1 (> 0)
Uy penalty rate for job j (> 0)
dy due date for job J (= 0)

tardiness for job J = Max(0, Gy = dj)-
set operatibn, union

set operation, intersection

set inclusion

job i 'precedes! job J

n
Co
¥ for every
ire , if and only if

- such that
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