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1. GENERAL INTRODUCTION AND SUMMARY
-
The use and importance, in Statistical Experiments, of Incomplet]
Block Designg, particularly, Balanced Incomplete Block (BIB) Designs,
Doubly Bolanced Incomplete Block (DBIB) Designs and Partially Balanced

Incomplete Block (PBIB) Designs are well known. Several combinatorial

arrargements, including the incidence matrices of these Incomplete
Block Designs and association matrices associated with PBIB Designs
are known to be of use in Design of Experiments. In this thesis, we
consider the construction problems pertaining to some of these
combimtorial arrangements and take up the problem of construction

of BIB, LBIB and FBIB Desiguns through them. The combinatorial
arrangements studied in the thesis have, of course, other important
uses besides their relevance in obtaining some BIB, DBIB and PBIB
Designs or proving the non-existence of some of them. But, it is

the construction of Incomplete Block Desigus that has mostly prompted
the author to study the construction of the combimatorial arrangements
included in the thesis. A brief suwmary of the work undertaken in

the thesis is provided below.

Hadamard matrices always give rise to certain BIB and DBRIB
Designs. In Chapter 2, we give methods of construction of some infini
series of Hadamard matrices, based on orthogomil matrices with zero
diagonal and + 1 elsewhere. The results proved are essentially
generalisations and extensions ol the results given by Willjiamson

(1944, '47), Wollis (1969} and Turyn (1972&)-
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In Chapter 3, some results are proved regarding general
ﬁkﬁh@gonal Arfays (GA's) and Orthogonal Arrays of strergth two ond
three« BSystematic methods are developed for constructing OA's of
strength 2 and 3 for different indices, with comparatively large
mmber of constraints in most of the cases. Methods are also given
ébr@ebtaining QA t II 's of strength 2 of Rao (1967a), when the mmber
of levels,s is not a prime powers OA's and OA : II's of strength 2
are utilised for the purpose of constructing series of BIB Designs,
Group Divisible (GD) Designs and PEIB Designs with three associate
closses. Some of the results of chapter 3 about the construction of
BIB Designs through OQA's and OA : II's of strength 2 have been

published (Mukhopadhyny, 19722 ).

A Balanced Orthogonal Design (BOD) is a combinatorial arrangement
first considered by Rao (1966). 1In Chepter 4, we give a method for
constructing en infinite series of BOD's, given any 0dd prime power.

The first two BOD's of this series have been known to exist from
Paley (1933), Fao and Das (1969) and Rao (1970). Exploiting these
BéD‘s, series of BIB and GD Designs can be constructed by applying the

methods of Rao {1970).

A Partially Balanced Array (PBA) is a combinatorial arrangement
introduced by Chokravarty (1956 ) for fractionmal foctorial experiments.

In Chapter 5, is considered the construction of some general and two
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levpl PBA's. PBA's of strength 2 and satisfying certain. properties

arg-ugilisgé'fqr the purpose of constructing PBIB Designs with three

associnte rectangular agsociation scheme. Some of the results of
this chapter giving the construction of PBA's have been published

(Wikhopadhyay, 1971).

(r,A\)- and M systems are certain categories of Incomplete
Block Designs. In Chapter 6, we prove an inequality concerning the
mmber of blocks in such systems and disprove a conjecture of Nullin
and Stemton (1966). (r ,k)—‘systems are utilised to prove the
non-existence of some FBIB Designs. The content of this chapter

nas been published (Mukhopadhyay, 1972Db).

Shrikhonde and Singh (1962) considered the construction of some
series of symmetrical BIB Designs from association matrices of PBIB
ossociation schemes with two classes. Blackwelder (1969) considered a
more general treatment of the problem and we, in chapter 7, generalise
Blackwelder's (1969) method of constructing BIB Designs from the
association motrices of PBIB association schemes. The potentiality
of the general result proved in the chapter is illustrated by obtaining
with its help three BIB Designs, two of which are indicated as unsolved
1n,Sp£ott's (1962) list and one is missing in Rao's {1961b} list. The
BIB Designs constructed from association matrices have got certain

properties which are exploited to obtain further series of BIB, DBIB

and (D Nagdre.
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-

In Chapter 8, we define a new property of-Incomplete Block

Designs, termed 'near resolvability' which is more general than

4 'regolvability's Methods are given for'obtaining new Incomplete

Block Designs with the help of Designs which are 'nearly resolvable'.

in Chapter 9 are given some miscellaneous methods of constructing
PBIB Designs. The existence 0f two series of PRBIB Designs with GD
and rectangular association schemes is proved. Liethods are given
for constructing PBIB Designs with the help of certain types of matrices
with elements O and + 1. The paracyclic association schene of Adhikary
£j969b) is generalised t0 higher associate classes and a method is
given for constructing PBIB Designs with higher associate paracyclic

assoc¢iation schemes.
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2.1

?

2. HADAMARD MATRICES

Introduction 3

Hodomard Motrices, besides being o very important category
of Combinatorial Arrargements, are of immense use in Statistical
Désign of Experiments. The existence of o Hadamard matrix of order
4%, vig., H4t is known to be equivéiént to the existence of a
Balaﬁced Incomplete Block Design with porameters v = b = 4t - 1,
r=k=2t~-% A=t -1 (Fall, 1967). An H _ is also equivalent

4%
to an.Orthogonnl Array with size 4%, constraints 4t-1, strength 2

- and levels 2, denoted by OA_ZF4t, 4t-1, 2, 2;7 and as such is useful

a5 o fractional multifactor experiment (Plackett and Burman, 1946).
If is known that if a Hodoamard matrix Hn exists, it provides an
opbimum weighing Design for the problem of weighing n objects lnn
weighings on a chemical balance. The optimality lies in giving the
minimum variance of each of the estimated weights obitained on n
weighings. Also, Hademord matrices or a more general version of it,
viz., Balanéed Orthogonal Designs have been made use of by Rao (1970)
in obtaining solutions to new Incomplete Block Desigus from kunown

solutions of some Incomplete Block Designs.

It has been conjectured that H exists for all n =0 (iod 4).

Phe conjecture has been neither proved nor disproved. But, conditions
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'hﬁve.been provided by various authors under which an H matrix exists

42

 and'3_mntrices of various orders have been constructed. Many series
of Hadnmard,mqtrices are in this mamer known. An exhaustive list

of available H matriées of orders £ 4000 is to be found in Wallis
(1972).. The main contents of the present chapter consist in providing
improvements on some results by Williamson (1944, 1947), Wellis (1969)
and Turyn (1972a), which prove the existence of infinitely more series

of Haodamard matrices thaon those known so far.

Definitions, Notations and Preliminaries :

For any (not necessarily square) matrix A, A' will denote its
transpose. E o, Will denote an m x n matrix with all elements + 1,
an a mall matrix of type m x n and In an identity matrix of

order n.

: n
If A = (aij) isan mx @ metrix and B = (bij) 15 (@ wp i ng
matrix, %he direct product or kronecker product A éi} B is the

mp x ng matrix given by

r
- a4 B A4s Bl Wrr¥ayends® Ay B i
A(}g’)B = az,{B a22B .‘”.....a2nB [ .. (2520

L N N
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Iet A and C be square matrices of orler m, and B and D be square

'

motrices of order m. Then, it is easy to see that

(4 X B )I = A'(x) B vee ees (2.2.2)

(AxB)(G&® D) - AC (0 BD aabpm fg. (26280

ApHodomard matrix Hn of order n is an n X n matrix of + 1's
and ~ 1's such that H H;1 =0 In. We shall throughout wuse the

notation Hn 40 denote a Hadamard matrix of order n.

It is known that if Hn exists, then n = 2 or necessarily a

~mltiple of 4. IT Hn exists, n will be called an H number.

Following Williamson (1944) we have that:

(8) Ar z=th order syrmoiriec motrix Zoving clerorbs 4 1 off the Jdinronal

and zeves in the diagonnl ie enllod an Sp motriz 18

(1) 5, B = ©

nt ni

e Lo (2.2.4)

and (ii) §_ 8!
n n

it

nel =~5§
n m

It is known that Sn exists for all n, a prime power = 1 (Moa 4).
It can be easily shown that if S exists, then

= . . )
T = ! is o symmetric matrix
n+1 B S

of order mnt+1 with the property
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‘ =] nI s ser e (2.2-5)

(b) An nth order skew syimetric motrix having elements + 1's off

the diagonal and zeros in the diogonal is called En matrix if

(1) 2:n En1 = z:n En1 = On1
i a6y a2
t
' and (ii) B B! =& & = nl -E .
‘ n n .non n nn
% 0 E1n ;
> H _ 1 i
If Zn exists, Tn+‘| = { } 3 SR BlEET
"En'l 2:n J
symmetric matrix of order mn+1 with the property
: * * 1 e . * (
1 L1 T met et T8 L e e (22.7)
An Hn is said to be of skew type if
*
H = I + T e ss s LI ) “ar e (2.2-8)

It Hn is of skew type, it can always be written (upto iscmorphism) as

L i w9,
; (2.2.9)

9 LI ) LI ]

i
n i
| "Pnet,1

whene Q1’1—‘1 = In—- 1 zn—1


http://www.cvisiontech.com

; L
and. Qo1 % = 9

Obviously, the existence of i%;1 implies and is implied by

the exisience of a skew type Hn'

It is known that o skew type H matrix of order n exists for
nll n of the form 2t k1 ersan ks s where each ki = some prime

power + 1 = O (Mod 4) (Ball, 1967). If n is of the form

r,
1

t . ' .
= i = = Y
n=2 kg eoeee k , Where,eitiher k, p;” + 1 O (Mod 4)
u, .
3 1 1 i 3
or k =2 ( p;” o+ 1 )s p,” = 1 (tiod 4), p; standing for a prime

mmber, i =1, 2, e.oss 8, There exists o symmetric H motrix of

order n (Hall, 1967).

A Balanced Incomplete Block (BIB) Design with v treatments,
b blocks, r replications, block size kand X = the yumber of
blocks in ﬁﬁich any pair of treatments occur together will be denoted
by BIB (v; b, r, k,A ) or in short BIB (v, k, X ). ‘Moreover,in
the BIB Design if any triplet of treatments occur together in a
constant mmber, say i , of blocks, it is called o Doubly Balanced
Incomplete Block.(DBIB) Design and the notation used for this will be
DBIB (v, by, T, ¥y N, 4 ). The use of DBIB Designs in Statistical

experiments was first pointed out by Calvin (1954 ).


http://www.cvisiontech.com

- 10=

-

2.3 Improvements on Some Series of H matrices by Williamson (1944, T47) @

The relevant results of Williamson (1944, '47) which are

generalised in this section can be stated neatly in the form of

theorems as @

Theorem 2.3.1 ¢ The existence of a skew type Hn implies the existence

of H(nu1)n .

Theorem 2.3.2 ¢ The existence ol a skew type Hn and a symmetrical

Hn+4 implies the existence of Hn(n+3)'

Theorem 2.3.3 3+ The existence of 5, implies the existerce of

where n, and n, are H numbers.

o

H .
n, n, n{n+1)
Theorem 2.3.4 ¢ The existence of Sn and Sn+4 implies the existence

of Hn where n, and n2 are H mumbers.

1n2(p+1)(n+4) 2 1

Goethals and Seidel {1967) glightly improved the theorems

2&3.3 ard 2.%5.4 as

Theorem 2.%.3' ¢ The sxistence of Sn implies the existence of

H ~where ny is an H-number.

n1n(n+1) 4

Theorem 2+.3.4' ¢ The existence of Sn and Sn+4 implies the existence

where n, is an H-mmber > 2.

of Hn1(n+‘|)(n+4) ? 1
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Before proceeding to enunéiate and prove the generalised versions

of the above ftheorems, we prove two important lemmas from which the

g

required results can be deduced easily.

Iemma 2.3.1 3 Iet L, and I, be two square matrices of order p with

elements + 1 satisfying the conditions

. f
@) o, 5, = I, I
and (ii) T emisteand 4. = I B I £I. G 8 o4
an 1 gt 5 = Ly, X I, ;& T, is an
H - matrix of order pn.
Then, writing
L, = L, & I, + Iy & &,
by i)
and LS - L1 & n-1, n=-1,
7 I /% I+ T, ‘% T, is an H matrix of
s = Is ‘xy I, y X o s an Hmotrix o
"order p(n~1)n, aond
‘ 1 - Ll !
= L. L
4 5 5 4
Procf ¢+ Prom the given conditions,
’ ! ' — v
L, L3 = L,L, X I, + LI, .x (n-1) I
1 ! * t *
/A = L,L and T = -T 7/
= pn Ipn
= n Il I X I .
e n

14 ..

/TP AT T & <\

= -
™ P
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1
L, + (=) L,

= a2

H?nce’ L2 1 p n Ip LI »oe o0
v f ' .
Since, L1 I? = L2 L1 3 S0 obvicusly
L ' L I;f
4 Ils - 5 4 L LN | °,§' LN N ] * a8
1 B 1 '
Now, L, L, = L, L, ()1 _,+ L, L, (%) Z .z,
-‘ E‘
[ G -1 =7 Zn,_-] ._.7
I, 4% 1 L @, & (n-1 1 E
= L dT Lg% by -1 E - n-1,n-1
1 t
and I»,3 L5 = L L1 (x} (n~-1) En—-1, -1
P PN 1 .
oL = LI ) I +L L % (n-1) I
1 2 —
= (n=1) LJI IJ1 @) En—-‘l,n.—‘} X In

_ 1
L, L

1 ¥
- 1 - i
(n=1) { I, L, & I+ @1)1 0L & I,

pu 50

iy = wE En—1,n-1 } = In

) 1

. _ ‘.-\_ f‘.\,

(n=1) {-Lz L, + (n-1) I, 31}-.m.f Thor & 1
- e

(n-1) p n Ip (= T &1
’5—'): - T ,‘\ {'q\'
p (n-1)n j'p X In-1 " In

Hence, IB is a Haodemard matrix and the lemma is proved.

eee (2.3.11)

eee (2.3.12)
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lemma 2.3,2 : Iet L, and L, be two square matrices of order p with

elements + 1, satisfying the followfr—z‘gwéomitions 8

1
(1) LI, = -IL,L,,

and (ii) Tn exists and
L3 = L2 (%) In + L1 Cgﬁ Tn ig an H matrix of order pn.

‘Then, writing

=
L =L @ I+ I @ S5,

2ag 15 = I’1 & n-1,n-1 "’

15 = L5 ’%) I + L4 G T is ani-matrix of order p(uy1)n,
and
‘ t f

L = =L. 5, .

4 U5 5 4

Proof : Similar to that of lemma 2.3.1.

- The following theorems 2.3.17a, 2.3.2a, 2.3.3'a and 2.3.4'a
provide the required improvemenis on the theorems 2.3.1, 2.3.2,
243.3" and 2.3.4'. The twe lemmas deduced already ore made use of in

praving these thecrenms.

Theorem 2.3.7a ¢ The existence of a skew type Hn implies the existence

. s . T .- :
of a series of H matrices or orders (n—i) n, I any positive integer.
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=

Proof :
1 E 2
% Tyn-1 ]
et H = Tt + = ; 3
n n | a ;
:.'En—1,1 n-1 -
LS Qnri = In~1 + z:1’1--1
1
= E = E + . L [ L]
ey En“1,n—1 Qn—1 Qn-1 n-1,n-1 n-1,n-1 (2.3.13)
It is easy to see that
ST - V {" *
L, x I, + L, & T =, wvhere
L1 = Qn-1 and L2 = En~1,n—1 y 1is an E matrix of order
(n-‘])n.
1 1 )
And L, L, = I, L fron (2.3.13).

Hence, by making use of Lemma 2.3.1 repeatedly, H matrices

2 i o J— .
exist for all orders (n-1) n s T any positive integer.

Theorsm 2.3.2a i The existence of Hn of skew type and Hn+ syrmetrical

4

. . . _ . r
implies the existence of o series of H matrices of crders (n-1)" n (m+3
Y 3

where ¥ =0 or any positive integer.

Proof :

Hn+4 after suitably mulitiplying some rows and coiumns by =1,

if necessary, can always be written as
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2 n+3 9 n+3

g )
1,n+3’
. Hn+4 = I B ; 2
‘ l. n+3, 1 n+3 4
where Dn+3 is symmetrical,
. = nd I . - E .\ (2.3.14)
n+3 n+3 n+3 ,n+3
. (2.3.15)
e En+3,n+3 Dn+3 = Dz En+3,n+3 - En+3,n+3
i
* I : Ei,n—-1 ;
Also, Hn = Irl + T = ! ;
L En—?,i Spe1
where  Q_y o= I, o+ I
Tet Fn+3 = 2 In+3 - En+3,n+3 + Then,
clearly
N Dn+3 = Dn+5 Foe3 b e o (2.3.16)
/By (2.3.15) 7
It is easy to show that
e N s *
I? x; In + L, ’I‘n s where
L. = F and L, = D s 1s an H matrix of order n{n+3).
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i Hence, by making use of Iemma 2.3.1 repeatedly, the theorem ig

' proved.

Theorem 2.3.3'a : The existence of Sn implies the existernce of a

. . r ,
series of H matrices of orders n1 bol (n+1), where n1 igs an H number

ond r =0 or any positive integers

Proof :
and P = . E x 0
n, 0 | 1’11/2 3

4
I

Q)
| a1

Iet Hn be the H matrix of order n
1 ]

the generalised permutation matrix defined by Williamson (1944).

Then Pn ig gkew symmetric i1.e.,
1

P = =P (2.3.17)

and P P = il s e a0 vee . s (2-3.18)

The existence of Sn obviousliy implies the existence of Tn+1

Iet us write

- ] =
L, = I, & L, + 5 & 1.,
where L2 = Hn1 (X Enn
and L, = H % 8 + P H &) I -
n S " I
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By (2.3.17) and (2.3.18),

i
(1) LI, = -L, L, ,
T
(1) L, L, ~= n, I111 (x) n E_
- n I I‘\] E
R n, L Epn
1
(iii) L, L, = In1 @ (n In-Enn)
+ n, In (x H g
1
t 1 1 1
So L =
© 3L3 I'2 L2 @ In+1 i L1 L‘i (@ Tn+‘| Tr1+1

C o= I ) 0 X
i A n, @ Dnn $ In-:-l

I3 - %) X
+{n1 In1 %) (n T Em) +n, Ir11 (x) It nl

=1 (%
n1n(n+1) In1 x) I (x) :F

. Thus, 1»3 is a Hadamard matrix.

Henece, by making use of Lemna 2.3.2 repeatedly, the theorem

is proved.

Thecoren ’2.3.4'0. : The existence of Srl and -S.11+4 implies the existence
0of a series of H matrices of orders n, n® (r+1)(n+4), where n, is an

H mmber >2 and r = 0 or any positive integer.
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Procf

Iet H_ Dbe an H motrix of oxder n,” 2 . Let K and T
ny . 1 n, n,

~ be the generalised permutation matrices of Gocthals and Seidel (1967).

= X I = T & ;
In foct, Kn1 4 X n1/ﬁ and Ln1 L4 X n1/4 s where
i; and Eﬁ are the quarternion matrices of order 4 defined by

Williamson (1944).

Then, Kn and Ln are skew and satisfy
1 1

X K. = L L = I 8ol pongm Eer (2B )

amd K L = -1 K cre e eeswes (203.20)
Obviously, S_ implies e

N .
et W, = s & Ter * 4y @ e -

n+1
= H x: (21 - B
where I? an n, (:‘ ( n+4 n+4, n+4)
i . = ;“ /“ -
and Ly Hn1 “é) Sn+4 B Kn1 Hn1 Y In+4

Then, by (2.3.19) and (2.3.20).

i 1
i = =
(1) L1 L1 | In? " (n+4 n+d N+4 , nd
iy In1 > d
1
(i1) L2 L2 = In1 Cg: (4 In+4 ol En+4, n+4 )
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!
(iii) L, L, = =L L

B¢ L3 L3 = M In.I ® In+4 * nEn+4, n+4 ) @ P

=
oy In1 @ (45 In+4 . En+4,n+4) @ n T

= n, (n+1) (n+4) Inj (X Tws & .-
Thus,lz is a Hadamard matrix.

Hence making use of lemma 2.3.2 repeatedly, the theorem is

proved.

One more theorem is proved in this section on similar lines.
4 result given in Hall (1967) is required in the proof of the theorem

and hence is stated below in the form of a lemma.

Lerma 2.3.3 ¢ If there exists mH matrix A of corder Ny there exist
two more H-matrices B and C of order n, such that AB' = - m',
1 Ll
4C' = CA' and BC = CB ,
Theoren 2.3.5a ¢ The existence of En and En+4 implies the

r
existence of a serieg of H matrices of orders ny n (n+1)(n+4),

where 14 is an H number and r = 0 or any positive integer.
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Proof :

As n, is an K number, there exist three H matrices A, B and C

1 1 1 1 1
with the property AB = - BA , AC =CA and BC = CB

1

of order n1

(by Lemmn 2.3.3).
Iet I, = C® I, + B ) 2

emd L, = A @ (21 ~ Eoa, L

Then, LT L1 = n, In1 Gés (In+4 +n+ 4 In+4 - En+4,n+4)'
By In (%b (n+5 In+4 ol bn+4s n+4)’

I'2 LZ &Y In @/\ (4 In+4 Ay En+4,n+4) )

and L, L

|}
1 Lo L, Ly .

It

Yriting 113 = L \&) In+1 + L, Ga T:H ,  we have

t : ]
L &I+ @n1,

UFI
=
[ .
i

Y

n1 In1 6@ (4 In+4 il En+4?n+4} ﬁ%ﬁ In+1

#

- n1 In1 @a (rH5 Inﬁ4 N En+4,n+4) {KJ n In+1
= n, (n+1) (n+4) In1 & T G I.q
H !
Thus L3 isear H notrix of order nj(n+1)(n+4) and ]:.1142 = L2L1

Hence, by making use of Ieuma 2.3.2 repeatedly, the theorem is

profed.
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1

2.4 Improvements on o Series by Wallis (1969) i

-

Wollis {1969) proved that if 8,.1 ond o skew type H exist,

-

there always exists @ H matrix of order 2n(n+1). The purpose of the
present section is t0 improve upon the result cof Waliis (1969) and
provide o proof for the exlstence ¢f two distinet types of infinite

series of H matrices (The results are stated in the form of two

theorems and proved).

Theorem 2.4.1 ¢ The existence of Sn

and a skew type H_ impliss the
+1 n

X . . . r
existence of a series of H matrices of orders 2(n-1)" n {n+1), where

r =0 or any positive integer.

Proof : .
Il = E{
! ﬂ'1.,1'1-—1 B
* ! {
i R S . J ,
| n=1,1 -1
= Z .
HHEre Qn—? In—'i N Py ]

Tet us first show that the matrix P dg2fined as

; A : B ;
P . i : ¥ U_Omg) LY (?-4.1)
L @, s Il
where
*
i '/“‘. I~ i
A En"'?yn'*" € n ¥ (In+1 N Sn+1) X *n
*
. (En“‘19n+1 2 In+1) @ I1’1 * (Inﬂ Qn+1> X Tn
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o

' -5 P - /" - P2 *
¢ - (En+1,n+1 2 In+1) X In o (In+1 Sn+1) & Tn
. *
s En+‘l,n+1 3 In i (In+1 o S'n+‘1) (XB Tn j =8 En

H matrix of order 2n (n+1).
Ve see that

' 1
AL = TD

e
N (< .
(n+1) B +1, 1 Ky In + (I 1 + Sl1+1) X (n ‘l) In

o g (2.4.0)

, = } 2
_{_4 I_n+1 + {n-3) En+?,n+1']3 @) In ” (J'n+‘] - Sn+1)

BB =CC =
.;—-‘\ — e i
xy (n-1) I (2.4.3)
D ' ) E I+ 2 (
R _.AG = (o1 J:‘Jn+‘1,n+“i S En+1,n+1 - In+1 N Sn+1)
* 2 * * 1
x) = - X} T I L i
& Tn (In+? Sn+1 e o Tn (2.4.4)
! 1 ) ! 1
So, AL +BB = CC + ID

i

'4,I'n+1 o In+ 2 (n-1) h'n+1,n-|-1 Q{/ In

2
r- L
+ 2 (In+ + an) ) (n-1) I,

1

/by (2.4.2) & (2.4.3) 7

= 4y, ® T+ 2 (n-1) En+¢,n+1 oL
+ Q(HE?)(I}Q In+? B En+1,n+1) X In

= 2n (n+1) I & I .
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Also AC +BD = 0O, a pull mairix by (2.4.4).

Hence, P isan H matrix of order 2 n (n+1).

Iet us next prove that if

. * ¥ Tl
T x) %) T % " ‘
L Dy X I Ly x0T, ¢ Ipy (2 I+ Iny (X T i
X= i\ L - N o x ceee(24405)
| “Lyy & I+ Ly (DT ¢ DL ol -y, &Y, il

ig apl mtrix of order 2pn  where L:L

elements + 1 with the properties

(1) LJ_‘l i2 112 gy 2 2 F 12 25 3 4.
( ) L1 = L1
IJ b o = LT = 1 2.
- 13 73] Bl 8 ’
1 vl A! 1
and LH L32 + Li? Dy = L21 40 + L22 L41 y
then,
fed L. * - \ e =
: L A R U S ¢ 7 T
; LM ey In N 13 (}: n J"24 X Ln ¥ 23 @ 'Ln :
Y = |j ‘,...\§ = * m ¥ il""(2'4.6)
- T+ I 7 HET I -5 T i
L 1'34 54y 35 Z tn 44 <% n 43 S "n J
= < 2 i = P I
where L= Ly (& Ty +Lgy 3 2 40 Ly = by B By 0

_ hl - - X.\“ T — -— -t-‘-x
ond Ly =L, () I g =Dy & & 40 Iy= Ty BB 00
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ig-onH motrix of order 2p {(n~1)u eand

-

] 1

(1) Tyg Ly, = Iy, s

s 1=1,2,3, 4.

b, = L., L .
Tt ) 2j 43 °?

i

ord (11) I j = 3,4,

1 1

1 1
and  Lyg Lo, + Ly Iy = Ipg Iyy + Dy, Dyg

*

This is so because

1 1

(a) Li‘l Ili2 = Li2 LiT inplies
‘ * * t
:_—-\7 ‘/-\ m - R ey
(Li2 L w i, ) Lo & Inx L X Tn )

' 1

(Li2 Li2 + (n-1) L,11 Liﬁ ) ix 1

and hence we obtain

b * —
i N m x ‘.-"
( 14 \.'2"{, Ini I‘j_3 \,}f:'] “n )( Li4 ) I+ L, X T )

1

: 1
X 3
- (LilL o & (n~1) Ly Iy ) X1 X I

t 1

) L13 14 134 133

Z all these results are obtained easily Irewm a c¢lose scrutingy of
the proof of Lemma 2.3.1_/

(b) X is @ H matrix and so
1 t

[] !
(Lyp Typ + (n=1) Iy LH) + (Tpp Lzz + (n=1) I, L,)
1 1
=(L32 L32+(n-1) L, )+ (Lfl? 4o+ {n-1) T, q Lzm)

H

2 pn Ip‘


http://www.cvisiontech.com

& 25 =

' 1
fe) Iz Ly + Dy L

Famy) L

% i i E
% I ) (L & 01,01

i
—
=

i2

12 s = m\
Ty @B ) O B L -1, @3 )

]

1 t :
oy ' T bt
L12 1‘31 £ En-—‘l,n---'l T L32 (39 En—l,n—1

1

S ' A ;
(B1p Tyy + Dy By ) & By g

Similarly,

1 1

Lyz Dy * oy B3

- fo] % 5
= (I B I+ Ly & 5 )0, @, )

i X < =
i (L21 &3 En«-1,n—1)(L42 @-{' In--1 L41 @ En—‘l)
! ‘ ' A T v
= Dy Ly + Iy Tp) @B oy
_ ' 1 1 L' _ _
and thus, I;A!2 L31 + L11 L32 = L22 L41 + L21 40 implies

| . t
‘L‘IB L34 + LM L35 = L23 ]:,4‘_4 + L24 L43 .

[

1 ' = -
E«':(d) L14 L34 L‘;Q L32 cf‘-' (n—-?) En—'l,n—1

L | 3
i - . :
Tog Uy = Do Lyp & @D E
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= 126 =

) 1
: _ s
-and 80 L12 L32 L L22 L42 implies

= L & I, -5 5, &2  Z

12 L32 =

1 =
+o Ty Ty » By Lyy) D) B

Similarly,
t- t

1 ! py ~
LsLyz = I Lyp @ I =Ty Ly ZF 8

(Tyq Iy + Ip, 41) 2

: 1 LI t - 1 1
-and 8o, L,].] 1132 = L22 L42 r gy L32 = LQ‘] L41

! 1 t
and L1,1 1-32 + I;12 L3‘l = L2‘l LtH + L22 L41 together imply

1 !

Lz 55 Sa a3 s

Stetements (o) through {d) cited ahove prove that, if X is aa B

‘matrix, Y %00 ism H matrix with respective properties stated.
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Now, the matrix (2.4.1) is alresdy of the form (2.4.5) and

-

sotisfies all the properties stated for (2.4.5). Hence, by

mathematical induction, the theorem follows,

1)

Theorem 2+4.2 ¢ The existence of symmetrical H and T (i.e. §
n+2 n I

implies the existence of a series of H matrices of orders

21, (n-1)" n (n+1), where n, 1is an H-mumber and r = 0 or any

" positive integer.

Proof : By ILeuma 2.3.3, if n, is an H-mumber there exist two H

]
matrices A and B of order n1 such that AB = - BA

Hn+2 after multiplying some rows and colusns by -1, if necessary,

can always be written as

|1 2
H L “ Tom1
n+2 i i s where D is
: E D ‘ n+1
- g n+l,1 a+l
s t ic‘il and D2 = 2 I E
yrietrical and  Ypq = a1 n+1, n+? °
As in theorem 2.4.1, we can show easily thot
i s o .“l”“ m s o
& (52 En+‘l,n+1 Sl In o ELE) Dn+1 % in A& (En+1,n+1 —i

S W

| -2 Im—‘]) & in+B X Dn+1 X Tn
P = ’

o

| -A Y (Em“n+1 -2, )& I +3B & D4 & T i
I_ gl En+‘l,,n+1 E In-Bwe D d T, l!

A
eee e (2.4.7)
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is @ H matrix of order 2 n, n (0+1). Aso, it vap Be shown ag In

Ltheorem 2.4,1 that

4

[ % . I i
P T @ Tt D B Ty b Iy B LI, @,

£ X= | I R
e B LI © % v B @ T,-4, @ 1,

i

L

where Lij's are all p x p mavrices Witk glements % 1, is anH mirix

of order 2pn with the properties.

H f F
(i) Lis Ly = =T, Iy s FTwel, 3, % 4
{ 1
13 s = | Dol F w1, 2
and (ii) L1j L}J 25 L3 x F=m 12
! _l ¥ Ei %
and Dyo Ly = Dy Dy = Lyp Ly = By Iy
then,
Bg @ Tl BT, ¢ By B el @1 ] (2.4.9)
Y& = . 3 ) smeZad o9
LT @ Lty @7 8 B, @ 4 - %, @ T,
| ) 3 _ i N
ere Lz T P B Ly v hyy X S g0 Tyg BBy & By

Ms = e ) Tu g By R S Sy ey @ By

for 4= §,, &y
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is an ¥ matrix of order 2p(n-1)n with the properties

1

(1) Lyz Ly = I, T

1
and  (ii) L1j LBj = ij Iﬁj

]
amd Ly Lyg = Iy Iy,

i3

’ i=1,2, 3, 4.

y =3, 4

Loy T4z = Loz Ly

- The matrix (2.4.7) is obviously of the form {2.4.8).

Hence, by mathematical induction, the theorem follows.

2.5 A series of H matrices based on Turyn's result (1972b) :

Witlioamson (1947) showed that if A, B, C and D are symmetric

matrices, each of some order, say 4, with elements + 1

are pairwise commutative, the matrix H defined as

-B A

i
\_-D oy

is a Hadamard matrix of order

A2 + B2 + 02-+ D

2

and if they
c D |
=D Cc
. . (2.5.1)
A -B
B A

4t, provided

— 4-t I_t *» e .o a L Y

(2.5.2)
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The matrix of~the.type (2.5.1) has been used to generate
somé Hadomord matrices. Any H4t which can ioe written in the form
(2.5.1) with A, B, C and D pairwise commutative, symmetric and
satisfying the condition (2.5.2), is said to be of Williamson type.
Boumert and Hall {1965) showed that a H,, ©of Williamson type
implies the existence of H,, . Welch (1970} showed that it also
implies the existenceoi Hyy+ leter, Turyn (1972b) proved that az
H4t of Williamson type implies the existence of H matrices of orders
4bt and 20bt, where DE { i ¢+ i is an odd integer, i & 23 or

i =29 or i = 1+2° 10" 26% , vhere x, y and z are

non-negative integers } .

Turyn (1972a) gave the first infinite series of H matrices

1

of these types. He showed that if ¢ is a prime power 1 (Mod 4),
there always exists an H matrix of Williamson type of order 2(g+1)
and by Baumert and Hall {1965), alsc an H matrix of order 6(q+1).

In the present section, we give methods for ccnstructing a large
mlmbger of such infinite series of H matrices,; based on the result

of Tur};n (1972b) and whot has been proved in secticn 2.3. The series

given in this section provide ecasentially an extension of the series

of H matrices given by Turyn (1872a}.

Now, it is easily seen thait 17 any H‘QJG has 2 t x 4t submatrix

which can be partitioned as /A : B : C :+ D/, where 4, B, C and D are

symmetric and pairwise commutative, there exists an H4t of Williamson type.
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Paley (1933) first gave the method of construction of 5, and
‘ *
by TS 1 . :
& (i.e Toqomd T ) matrices when n is an odd prime power.
Goethals and Seidel (1967) proved the following result regarding
T obtained by following Paley's construction procedure. The

n+1

result is stated below in the form of @ theorenm.

Theorem 2.5.1 ¢ If n+] 2 (Mod 4), n a prime power, then there

P Q]
Q@ P

exists a Tn+1 of the form with square symmetric

eirculant submatrices P and Q.

In the light of Turyn's {1972b) result and theorem 2.5.1,

let us scrutinise the constructicn procedure suggested in theorem

2.3.3'a,

In theorem 2.3.3'a, the final H motrix of order n, a' (n+1)
con always be written in the form
) sy -~
Hn1 & X, & Tt Pn1 Hrl1 8 X &I, ¢+ Hn1 & XS
P 2 H Sy 69
R N Pn1 n, E le (X T o

where X.'s are symmetric matrices with elements + 1 and 0 , and
each Xi can be written as a linear combination of r matrices eanch

of order nx n . We can write in fact

u.
i :

. p N N
L, = & €., Yi:“ \2[} Yi.j2 ® seeees (R Y.i,jI‘ y 1 142,3,4,
i j=1 ij
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] o b

H

-
@

pn]
“

-

.

.

B

for some mmber n, €. = +1 or -1 for j

o coeely
’ . and i= 1,2,3,4.
Any particular Yijk is one of the four matrices Sn, Enn’ In

ond onn o L= ], 2 840 B i, 2, 00 o8 n, and k= 1,2,....T,

Now, I and Onn are all symmetric and pairwise

5’ Biny By
commtative. Hence, X1, X2, X3 and X4 too are gymmetric and

poirwise commutative.

BE5 Q"
J,
Q : =P

- where P and Q are symmetric (and obviously commutative because of the

ey

Iet n, =2 ond by theorem 2.5.1, let us choose The1 =

orthogonality property of Tn+1)' Then, the first n. (ne1)/2 rows

of the H can be written as [A : B.: C: D _/, where A,
2n (n+1)

By, C and D can respectively be written as

[l oA €E ¥ B
1 1 5 Tyt e o I Tnaye
N R
+ € XB' X} P+ €, X4 (x) P
- € ."‘. X
o 1% 2 % gt B & Oy g
2 2 2 ¥ 2

+€1 XB@Q +62 X4:@Q.
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+ € X3@Q+€ X4®Q,Wher‘e €i=+1or—1,

o= 13253,4-

Evidently, I(n+‘| )/2 ! On+1 el P oand Q are pairwise commutative
g™ 2

and symetric. Thus 4, B, ¢ and D are pairwise commutative and

symuetric. IHence, there exists an H matrix of Williamson type of
order 2n’ (n+1) for all r = 0 or ahy positive integer, when n

is o prime power = 1 (Mod 4). Then, by Turyn (1972b), we can prove

the following theorem.

Theorem 2.5.2 : If n ig a prime power = 1 (Fod 4)9 there always
‘ omd 101, AT Cm'*)
T 3
exlsts a series of E matrices of orders 2n1 n (n+‘|21, for =10
- or any positive integer ond ny € {_ 1 ¢+ 31 is an odd integer,

i£23 or i =29 or i:1+2xloy262g where X, ¥y and z are

nen-negative integers } -

We note the existence of the following Hodamard matrices,

indicated as unsolved in the list provided by Wallis (1972).
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(1) Hyon * Hgog * Hig1g * Hzpgp 0N Hyzpp by Turyn (1972p),

the last one because thercexists an H . of Villiamson type.

24

ond (ii) Hinqo H2756 s Hyong and H3636 by theorem 2,.5,2

2,6 Incomplete Block Designs Through Hodamard Matrices 3

It has already been pointed cut in the introduction to this

chapter that the existence of H4t

o BIB Design with parameters v = b = 4t-1, »r = K = 261, A= t=1,
.

By block intersection (Bowe,1939) from the BIB (4t-1, 26-1, t-1)

is equivalent to the existence of

we obtain BIB Design with parameters

(i) v=2k=2t, b=o2r 2(24-1), A= t-1

i
it

I
n
w
il
n
Fame
ct
I
—
N
r“;ﬂl
u
cl
I
n

and (ii) b = 2v = 2 (2t-1), =

]
It

+ We give below two lemmas which are useful in obtaining series of

IBIB Designs from khown H matrices.

Iemma 2,641 1+ If N is the incidence matrix of n BIB Design with

parsmeters v = b = 4t-1, r =-k = 2%=3, A =t-1 and E = Ew - N

is the incidence matrix of its complement, then

M =

{ -
1 q ' is the incidence matrix of a DBIB Design
E

¢
3
]

o =2

NE———

-

v 11}r

Wwith parameters v = 4%, b = 8t-2y r = 4t-1, k = 2t, M= 23=1, L = t-1.

1y
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‘Proof : That M, is o BIB Design bas been proved by Bmat and

_Shrikhande (1970). That it is also a DBIB can be seen easily.

Iemmo: 2.6.2 @ If N is the incidence matrix of a BIB Design with
parameters v =2k = 2t, b= 2r = 2 (2t-1); A = t-1, then

M, = [N : _ﬁj is the incidence matrix of a DBIB Design with

parameters v = 2t, b = 4{2t-1), r =2 (2%-1), k= t, A = 2(t-1),

H o= t-2.
The proof is easy amd sC is omitted.

Hence, all the results on the existence of series of H matrices
proved in secticn 2.3 tc 2.5, can be recast in the following form :
The existence of the series of

(1) BIB (4t-1, 4%-1, 2t-1, 2t-1, +-1)

(i1) BIB (2t, 2(2t-1), 2t-1, t, t-1)

(111} BIB (2%-1, 2(2t-1), 2(t-1), t-1, t-2)

(iv) DBIB (4%, 8t-2, 4t-1, 25, 2t-1, t-1)
and (v) BBIB (2%, 4(2t-1), 2(2t-1), t, 2(t-1), t-2) is always
implies by the existence of

(1) Hn of skew type, for t = n, (n—1)r n, where r =20

or any positive integer and n, = 1 or any H-number.
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(ii) Hn of skew type and Hn+ symmetrical, for

4
't = n.t(n—‘l )r n{n+3), where r =0 or any positive integer and

n, = 1 .or any H mmber.

(iii) S., for t =n, n, v’ {(n+t1), where r = 0 or an
“n 2 i ? J

positive integer, ny = any H number and n, = 1 or any H number.

. -

(iv) 5, and Speq » Tor t=m,n (n+1){n+4) , where
r=0 or any positive integer, n, = any H mmber > 2 and n, = 1

or any H mumber.

(v) 8., ond H of skew type, for t = 2n, (n—‘l)rn(n+1),

where r = 0 or any positive integer, n, = 1 or any H number.

, for t = 2n.n {n-1)"n{n+1),

» L : H
(vi) Sn and symmetrical - oy

-1 +2

where r = 0 or any positive integer, n, any H mmber and hy = i

or any H number.

(vii) En and 211_!_4 , for % =n,mn, i (n+1)(n+4) ,where

r =0 or any positive integer, n, any H mumber and n, = 1 or

~any B rmmber.

(viii) n, a prime power = 1 (Mod 4) for +t = 2112111nr(n+1) and

1,0D2n1nr(n+1), where T = O or any positive integer, n, € {1 i 1 is an
odd integer, 1£1i £23 or i = 29 or i = 1425107262 s where x,y and z

are non-negative integers } and n, = 1 or any H number,
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3. CRTHOBONAL ARRAYS AND COMBINATORIAL ARRANGEMENTS
ANATOGOUS TO CRTHOGONAL ARRAYS

Introduction

Orthogoral Arrays (in short OA's) were first introduced by
Rao (1946). The use of Orthogomal Arrays as fractiomal factorial

experiments is too well known t0 be repeated. Efforts have been

‘made by several authors, including Eac (1946), Bose and Bush (1952},

Bush (1952a,b), Bose (1947), Seiden {1954), Seiden and Zemack( 1966 ),
Addelman and Kempthdﬁé (1961), Shrikhande (1964 ), Bose and Srivastava
(1964), Gulati and Kounias (1970}, and Guiati (1971) - to nome caly
some - to construct CA's of various strengths and indices and to
provide suitable upper and lower bounds to the constraints for an
array with a given index, level and strength. Bose (1960) first
pointed out the interrelationship between Orthogomal Arrays and

error correcting codes. Importance of the study of properties and
construction of OA's has been considerably enhanced because of their

application in error correcting and error detecting codes,

Eao (1961a)introduced the combinaterial arrangenents analogous

tc OA, particularly O4 : II.

In the present chapter, in section 3.3, we prove gome results
regarding general QA's., The results are generalisations of Bush's

results (1952) which were proved when the number of levels is a
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prime power. In the same séction, we also give methods of constructing
Q&'s of strength 2 and 3. The methods are simple and by these methods
OA's with even very large indices can be constructed easily and
gystematically. Although the number of constrainté obtained in these
methods dc not in some cases coincide with any of the existirg upper
bounds, yet the number is gquite considerable and in many cases
appreciably niore than those given by the OA's known so far. The
method of construétion given here has certain additicnal proverties
which will be exploited in chapter 4 in the construction of Balanced
Orthogonal Designs. In section 3.4, we consider the construction
problems of 04 : IX's. In sections 3.5 and 3.6 is considered the
construction of Incomplete Block Designs through CA's and CA : II's.

#
Some definitions and notations vhich will be reguired in

proving the results of this chapter are described in section 3.2,

Definitions and Notations :

The definition of an OA as given by Bose and Bush (1952) is :

A rx N matrix A with entries from 2 set 2 of s 2 2 elements,
is called an Orthogomal Array of strength t, r constraints size N
and s levels if each possible t x N submatrix of A& contains each
possible t x 1 column vector, called t-tuple, with the same
frequency Xx. The array may be denoted by OA zfﬁ, Ty S, t;7. The

mmber » is called the index of the array. Clearly KN = Ast. We
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shall alsc use the notation OA (r, t) to dencte an OA of stremgth
% with r constraints, where from the context N and s are known.
The maximum number of constraints of an OA of size ?»st , levels s

and strength t will be dencted by £( Xs”, s, t).

Extending the definition of completely resolvable array of
strength 2 in Bose and Bush (1952), we define an OA [)\st,r,s,tj
to be completely resolvable, if it is the juxtaposition of s

e BT =
different arrays / Ms  , T, 8, t=1_/, w2 2.

We shall also call an QA Z-?\st, T, Ty t_7, t 2 2 completely

t- .
decomposable, if it is the juxtaposition cf Xs ' aifferent arrays

L5y Ty S, 1_/-
OA : II defined by Rao (1961z)is as follows :

An r x N array with entries from a set 2 of s elements is
"defined to be an Orthogomal Array of type II, strength t, constraints
r and index X and represented by (N, r, s, t} : II, if in every

set of t rows, the N columns contain each of the { ¥ ) combinations

g7

of s elements taken t at a time, with order ignored, A times,

s>t > 2.

Tet M be o finite module of s elements, viz., the mill

“element, e, and other elemenmts .5 €55 sreee € g For t 2 2,

let us consider the sJG distinet t-tuples formed by the elements
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= A (e

of M. They can be divided into S sets, vize, M, Moy euesy

i . each consisting of s distinct t-tuples such that given any

s
t-tuple in a set,; say Mi’ 2ll the s t~tuples in the set can be
obtained by adding successively the elements ys e1, canaey es_1
of -M to each element of the given t~tuple. Suppose that it is
-possible to find g scheme B of r rows and n = L&st-1 columns with
elements belongirg toM such that in every t-rowed submatrix of B,
the rnumber of t-tuples belorging to each Mi is the same and egquals U .
. ' . _ t-1 -
Such an array B will be denoted by S L me Ty, e J,t 22,

Moreover, if the asrray B is also orthogomal of strength t-1, we will

denote it as Sz é?-@stvj , Ty s _/. The shorter notations St(r)
and . S: (r) will also be used where there is n¢ scope for confuéion.
The arrays of the type St(r) and S: (r) have been considered by
Seiden (1954) and Seiden ond Zemach (1966).

de matrix operations which will be freguently used in the

construction of OA's are described below ¢

3 L B B BN I a -ﬂk rb s 8 % 0" b -.::

1111 i ;i .11 :11’12 %'

et . | and B = i y : I
* | [} -

! {

cee B } Lbr21 ceses br nl

11 - e

.be two matrices with elements in the finite module,~j*«.
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i) Iet r, =r, =T. Then we define A +T B asa rx n, 1,

1 2
f %91
matrix where for any column of A, say G& = 1 and any
| 21l
i .
el
i ; )
. \ ri
li’bJ‘.\!‘
column of B, suy B. = ] b 3 , we define o c¢olumn
N e F I
Vi
1 )
v g
,"‘a'lj_.‘_b!;[\‘ lu1 i :
== ] y o0 e 1
© + B = | 821 * P2y 5 , L
b j J= 1y 25 eaans Ny oy
‘\o 1
La + b .f
ri rj

in A GB B.

{ii) The kronecker sum, A (U) B denotes a T, T, bid n1 n2

matrix of the form

\I
-

where A{ij) is obtained by adding the element blj of B to every

j elmel‘lt Of Ag i=1? 29 oossm I‘2 ; j=1, 23 ...--'ng .
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As in chapter 2, BIB (v, b, r, X, * ) or in short BIB(v,k, )
will denote a BIB Design with v treatments, b blocks, r replications,
block size K and X = No. of blocks in which any pair of treatments

occur together.

Bose and Nair {1939) introduced Partially Balanced Incomplete
Block (PBIB) Designs and the related association schemes. The
necessary algebra of association matrices has been considered

extensively by Bose and Mesner (1959).

Association Scheme : Given v treatments 1,2, ..... v, a relation

'satisfying the following conditions is said to be an association

gcheme with m classes.

(i) Any two treatments are either lst, 2nd, ..... or mth
associates, the relation of association being symmetrical; i.e.,
if the treatment 6 is the ith associate of the treaiment qD y Then

¥ is the ith associate of .

(ii) Each treatment ® has n, ith associates, the mmber n,

being independent of & .

{iii) If any two treatments & and P are ith associates of
each other, then the rumber of treatments which are jth associates
of ® and kth associates of ¥ is p?}.'k and is independent of the

pair of ith associates & and ¢ .
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. The mmbers v, n, (i = 1, 2, vv...m) and p;k (i53,k = 1,2,..

esus m) are *called the parameters of the association scheme.

PBIB Desizns ¢ Given an association schewme with m classes for v

treatments, we define a FBIB Design with m associate classes if the

v treatients are arranged into b blocks of size k (< v) such that

(1) Every treatment occurs in exactly r blocks,

) (ii) If two treatments € and q? are ith associates, then they
occur together in Ai blocks, the mmumber }i being independent of

the particular pair of ith associates, © and ¢ .

Ve by Ty Ky Ny (i =1, 2, «.v.. m) are called the parameters

of the design.

Association schemes with two associate classes were studied
extensively by Bose and Shimamcto (1952). Mesner (1964) and Adhikary
'(1969b)showed thaf the association schemes introduced by Bese and
Shimamoto dc not exhaust all association schemes with two associate
classes. However, the availlable FBIB Designs provided by Bose,
Clatworthy and Shrikhande {1954 ) and Clatworthy (1956) may be made
uge of in constructing the generlised PBIB Desiéns with three

associate classes considered in section 3.8.
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The only type of PBIB Design with two associate classes,
whose construction through OA's is faken up in the present chapter
pertains to o particular association schéme, cnlled Group Divisible

(GD) scheme. GD Scheme can be described as @

Suppose, for integers m 2.2 and n 22, there is a set of
v = mn treatments. Iet the treatments be divided into m groups of
n treatments each. Call two treatments which appear together in a
group as first associates; if two treatments are in different groups
they are second associates. Then, the paracmeters of the association

scheme are obviously
¥ = omm n,= n=-1, n, =0 (m - 1)

Fned o Ot f 0 n-1 3

[}

'y oL Pl z
(pjk) - {0 'n(m-ﬁ)} d (pjk) ‘\ -1 n(m--z)f1

A PBIB Design with GD assogiation scheme will be referred to as a
GD Design. A GD Design with parometers v, b, r, kg'>1,'X2 y I
groups of n treatments each will be denoted as GD (v, b, r, Ky ™y

A 5w, n) or GD {m, n, k, A )2).

Given an association scheme Wifh two associate classes,
Adhikary (1066) has considered two types of Generalisations to
three associate classes. Construction of PBIB Designs with three

associate classes of Adhnikary(1086) through OA's is taken up in
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section 35. We describe below the generalised three associate

s

gsgocintion schemes of Adhikary (1966) ¢
. T B

Let G, repregent an Jbelian Group of n elements for which

a two class association scheme is defined with parameters

1 1

. 9 2
v=n, n1=n1, n2=n2, (ka)’(pjk)’

lMoreover, for any element & € G, , let the n} first asscciates

of & be denoted by Ag and the né second associates of © be denoted

. Iet G, represent another Abelian Grour of m elements. Then,

by B ,

e
the direct product G = G, {x) G, defines a group of mn elements.

As O is obtained as the direct product of G1 and G2, for any element
8 € G, let the corresponding elements in G1 and G2 ve respectively
91 and @2. Then, the following two typesrof three class assoclation

schemes were defined by Adhikary (1966) :

{I) First Type of Generalisation @
For any & € G,

the 13t associates of @ are ((}1 - &1}) x) 6,

ond associates .f @ are G1 (x) AQ

3rd asscciates of @ are G1 {x) B9
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rd

The parameters of the association scheme are :

v = mn, n1=m—1, n,=mmn, , n3=mn2,
jm2 0 gy {'ﬁ-1 0 0 \
( p;;) = ; 0 m n% 0 :l s p?; ) = 0 mp:1 rnp}2 ‘!
\ V] 0 m n2' f \ O mpl2 mp;2 j
o R oy
(P?; ) = i 0 mp§1 mp§2 }
\ 2 2

. 0 mp12 mp22 !

(II) Second Type of Generalisation :
For any & ¢ G,

the 1st associates of @ are 01 {x) Ag2

2nd associates of € are 91 (x) Bg
2

3rd associates of @ are (G1 = §_1} Y @ G,

The porameters of the association scheme are :

vV = mn, 1’.1,l = 11% 9 1'!.2 = né 9 1’13 = (m—"]) n,
S 1 i /2 2 Y
i P e e | i Py Py, O 3
b V=i Pl Py O s G =lf, B, o |
Pik 1 F 4 Py Pop 1 Pix N 2 2 E
w ; i
s 0 (z2-1)n/ L0 0 (m-1)n/
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\ ; : o W
GrenL e . Bl s wi
(pjk ) = t 0 C Ty, i
\ §

\ n} n} (-2 )n/

A BIB or PBIB Design is sald to be resolvable, if the blocks in
the design can be divided into r sets of -:_-fD- (an integer) blocks
each, such that in each set each treatment occurs once and only

CNCE »

Construction ¢f Orthogonal Arrays ¢

Tet us start with 3 lemmas which will be needed to prove

the main results of this section.

3

Lemma 3+3.1 ¢ Given an array B with elements of A, s which is
- N . ,

st[ Lis , ry s _J and o vector a'= ( Cqr Gy p weoee am)

with m = qo such that among the elements of &' each element of

M occurs g times,

A = OC' @B gives an OA[q,u,st s Ty Sy t_7.

Proof : The result is obvious from the definition of S,bz,_ustq,r,sj

ond it first appeared in Seilden (1954).
Ierma 3+3+2 ¢+ If A isan OA / Ns , t, s, t_/ and rx':(a1,a2, e
—— oct) is any t-tuple with all elements EM., a & 4 is also

an OA[_xst, t, s, 'b_7.
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Proof ¢+ If all the elements of o are mill, o @ A gives A itself.
Let us suppose thafc only one element of & E say, 0 # e, » all

other elements of O being mull. Then in & & A, all the rows
excepting ith row are some as the corresponding rows of A. Excluding
ith row, in the other (t-1) rows of A, each (t-1)-~tuple occurs X\ s
times. ILet us consider As t-tuples of A with any fixed (t-1)-tuple
obtained by omitting the ith element in the t-tuples. For a given -
(t-1)-tuple given by the other rows, in the ith row each one of

tht'%, elenents e, e1, rease 98_1 occurs A times. When a fixed
mon-null element is ndded 5 the ith row, keeping the other rows
unaltered, these As t-tuples will again give each one of the

elements €gr B4 cerer s e s A times in the ith position. Thus,

g-1
in this case when only one of the elements of ¢ is non-mull,

;x:f{-} A is O (%, t). When more than one elements, say p elements
in o are non-mll, la is the sum of p t-tuples where each t-tuple
has exactly one non-rull element. Iet these componenis be denoted

by By Bos «oeee ,Bp so that o = B. + By *+ weees +Bp ; where

exactly one element in each Bi is non-muzll. Then, writing

LA -
51 = A = A‘l
o' .
and Bi {+) Ai—»1 = Ai R 1= 2, 35 eeaveey Dy

by the argument already explained, each Ai is QA (t, t), 1= 1,250,

... p. Obviously, o &) & = Ap and so is OA (t,t).
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t-

Iemma 34343 ¢+ Iet Abea t xn array (n = ;\,1' 8 1) ‘where first

(t=1)-rows constitute an OA {t-1, t-1) 2nd the tth row is identical
with the (t~1)th row. Iet Bbea t x o array (m = les) the last
two rows of which gonstitute an 82(2). All the elements of the

arrays € JM.. Then,

B & A is 04 (t, %)

Proof 3+ Let us consider any coclumn B of B and let its last two
elements be bt 1and bt' In 8 & A, the first t-1 rows

constitute an OA (t-1, t-1) by Temms 3.3.2 and in all the t-tuples
of B & A the t-th element differs from (t-1)th element by

b + As the last two rows of B constitute an 82 (2), in

t ~ Py
the difference series of the last two rows of B (#h row minus

(t-1)th row), each element of M occurs A\, times. Hence, B & A

2

is an 04 (t, t) in which each t-tuple occurs }\1 )\,2 times.

Yow, we prove some theorems concerning general CA's and OA's

of strength 2 and 3 with the help of the above lemmas.

Theorem 3.3.1 : T (st, s, t) 2 t+1, for t> 2 and any s.

Proof : For any s, let M be the class of residues Mod (s). We

¥now that f (32, s, 2) 2 3. This array with 3 constraints can
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in faet be written as

fo 0., 0 1T 1 wee 1 ees (8=1)  (8=1) vuu (s=1)]
A= fo 1 wee {8=1) 0 1 .is (s=1) ces O 1T ves {5=1)
3..0 i it (e=1) & 1Bl ae’ B oo (5=1) 0 ... (s-2) ]

Tet us assume T (st, s, t) 2 t+1 ond let B, an array of

order (t+1) x o' with elenents ofeM represent @ zTét,t+1,s,t o

Tet us write C = Vi Byt Byt weann Bs~1 _/y where By is 2
(4+1) x s° matrix obtained from B by retaining the first t rows of
B uraltered and adding & Mod (s) to each element of the last row,

e-= 03 1, secsse g (S"“])o

C is obviously an OA (t+1, t+1). Iet us consider By for

any given 8. A t-rowed svbmatrix of B, containing the last row

e

4

and {t-1) rows from the first t rows is an OA (t, t) by Lermn 3.3.2.
The first t rows of By ocertainly constitute on oA {t, t) by

assumptions So, B, is an OA (t+1, t), ¥ 6. Hence, C is completely

o
resolvables 80, we can add cne more row t0 C by writing @ for
each colurmm of BQ , % 8, and the augmented array is GA(t+2, t+1).

Thus, by mathematical induction, the theorem is proved.

It was proved by Bush (1952a).that 2(s°, s, t) ¢ t+1

for s £ t. Combinining this result with theorem 3.3.7, we have
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. Qbrollary 3.3.1 ¢ f (st, s, %) = t+1 for s £t.
From theorem 3.3.1, it obviously follows that
i (st+p, s, t ) 2t+p+1 for p2Z O see ces(3.3.1)

An oA /- }\St+p, T+p, S, t_7 can be obtained from an

t
A/ Ns’y r, s, t/ easily by a successive applicasion of the

following procedure :

An OA [Ns, r+l, 5, t _7 can be obtained from an
OA [N, ry 8, t_/ by juxtaposing s times the r x N array with
elements in the class of residues HMod (s) Tor the latter QA and
adding a row with O for =211 the ¥ colusns of the first array, 1 for
all the columns of the second array, (s-‘l) for all the columns

of the last array.

; . 2
Theorem 3+3.2 : The existence of an A / As”, Ty S, 2 / and

an 82 Zzis, Toy sj implies the existence of an QA Z_?\ ,LésB, r1r2+1,s,2_7.

Proof : Iet the arrays be written with elements from-As . Let the

2 Py
array A with r, rows and m = As columns represent the OA AN 82, Ty

'8y 2 _/ and let the array B with r, rows and n =g s columns

2

represent the So, L s, T,y 8 i
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let ¢ = 4 ‘@) B . Then,

ro(n

¢ = ’0(2) ; , where C(1) = /a(i1) # A(i2) «... 5 A(in) 7,
[Gzré)j i= 1, 2, sessn Zlf'2

A(ij} is obtained from A by addirg By (i.e., the element
in the cell (i, j) of B) to each element of A, i = 1,2,....., %5

jime 152 eue o LS

let o 2-rowed submatrix of C be selected. If both the rows
are from the same C{i) for some i, they cbviously constitute an
oA (2, 2)y If the two rows are from twe different c(i)'s, say,
0(11) and 0(12), i, #1, , let the two rows be J,th row of 0(11)
and j,th Yow of 0(12), Jpp 3y = 1y 2y eees, T,. Now two coses
mey arise, viz., (i) 3y # j, and (ii) Jy = 3,- In case (1) by
lemma 3.3.2 ond in case {ii) by lemma 3.3.3, the two-rowed submatrix

¢hosen is Q4 (2, 2).

Hence, C is an OA (rJI r, 5 2 )« But C is the juxtaposition
of js arroys each of whigh is an O (J:-1 r,, 1-). So, one more row
gan be added to C by writing e, for all the columns of the first gy
arrays, € for all the columns of the 2nd i arrays ond so on, esm1

for all the columns of the last ;; arrays. The resulting array is

oy (= 2o o S @
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Theorem 3.3.3 : The existence of an Oh [‘x\ 33, Tiy S, 3_7 and
an Sx ar sz, sy s_/ implies the existence of an OA " 35, r,r

12!
85 3_-/_01

Proof : All the arrays are written with elements from M., Iet

the array A with r, rows and @ = A 33 columns represent the

1
. OA [)\ 33, Tys 5, 3_7 and B with T, rows and n = (i 52 columng

represent the 83 Z-,u s?, Ty 8 _7 t

et ¢ = 4 () B . Then,

f0(1)i

¢ = l cgz) i , wrere 0(1) = /A(11) 3 A(i2) : . .ee ¢ A(in) 7,
E § ; 1o 1y 2 seres y T
L o,

+and A(ij) is obtained by adding b, 5 (the element in the cell

(i,3) of B) o each element of &, i = 1,2, «aues r, i

j 1,2’ LR RN nn

Iet a 3-rowed submatrix of C be chosen. If all the 3 rows
are from the same C(i) for some i, they obviously constitute an
oA (3, 3)s If the rows are from two different C(i)'s, say 2 rows
from C(i1) and one row from 0(12), il £ iy; let the two rows
fron 0(iy) be J,th and j; th rows (obviously j, # j; ) and the

row selected from C(iz) be jzth row. Now, two cases may arise.
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‘Case (1) 15 # o] # j; . In this cose the submatrix is QA (3, 3)
by lemma 3.3.2. Case (ii) 3'2 is equal to one of ;j,f and jjl ’
say ji» In this case writing j,th row of C(i1 ) and the i th row
of C (12) as respectively the 2nd and 3rd rows of the submatrix, by

lemma 3.3+3 the submatrix is 04 (3, 3).

If the 3 rows of the submatrix are from 3 different C(i)'s,
say, C(iq), C(iz) and 0(13), i,# 1, # izy let the rows selected
be jfth' row of 0(11), jzth row of C(iz) and 3‘3th row of 0(13)° In

this situation, three coses may arise. Case (i) iy = Then

j2 = j3'
by lemma 3.3.1 the submotrix is OA (3, 3). Case (ii), g # i, # Iz
By lemma 3.3.2, the submatrix is OA (3, 3). Case (iii), two of the

. ! + -- E . 3 s . .
Jj & are equal, say 3y # Iy s dp = ;]3 « In this case writing the

I3
and 3rd rows of the 3~-rowed submatrix and applying lemme 3.3.3, the

jpth row of C(iz) and th row of 0(13) as respectively the 2nd

gubmatrix is o (3, 3). Z“Since any SB(r) is also S2 {(r) 7.

- Hence, the resultirg array C is O4 (r1 T, 3).

, -1
» Ty 8 _/y b 21, anstﬁist )

r2+1, s _7 can be obtained by adding one more row to the former

. o 1
Now, given an St [,u,s

with all elements €y" Hence,; we have

2
Corollary 3.3.2 ¢ The existence of an QA Z—}\s » Tyy B 2_7 and an
G . . . 3
5, L s, Tos 5/ implies the existence of an CA Z-}\,Uas : rT(r2+1 )+,

By 2_7._
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Corollary 3.3.3 ¢ The existence of an OA'zri 33, Ty Sy 1J7 and an

* 2 ) , . N ]
83 [,us » Tpy 8_7 implies the existence of an OA Z}\MS ’ r1(r2+1),

9, 5;7.

*
Construction of St 's

elecents of GP (g). In this case we

If s is o prime power > 2, let e, ¢

1, LI ]

can always

* —5
8, /s, s=1, 5/ as follows :

A ) <y
€2 . eO 62 .
es—?. eo es—f

« essae e @

re g € be the

51

congtruct an

(3.3.2)

In general, when s is a prime power, by modifying slightly

the method of comstruction of CA Lrét, s+1, s, ./, s 2t given

' * -t_'] =
in Bush (1952a), we can obtain an 8 /s, s-1, 5 /. The

modification to be done is ag follows ¢

a_t__z X

ha

. t=1
Let us consider s

t-2
+ 'D...+a1X’

polynomials yj(X) =

where the ccoefficients

I TN
£ -1 +

range over the

field GF(s)e. Column suvbscript j ranges from O to,(st‘1- 1) and the

row subseript i ranges from 1 to (s~1).
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i P
An (s-l) by s L array is formed by writing in the ith row

and jth column the integer u, where

The resulting array is obviously S, (s=1). Becouse x e s

by following the line of proof in Bush (1952a), the (s-1) by S
array so constructed can be shown %to be an OA of strength t-1.

.x_
Thus, the array is St {s=1), S0, we have the follewing result :

For s a prime power 2 t » We can always construct

S b=
St-é B 19 s-1,.8_/y t2 2

B .4 65.5.3)

*
The following theorem will be useful in obtaining St ’s

when s is not a prime power.

* -
Theorem 3.3.4 ¢ The existence of 8, zjﬂi s§ h r., si_;7,

* =
i=1,2, «v.e.m implies the existence of St Ziﬂ sJG L

,I',S_-/—,

where U = L&1ﬁ%2 seees fo s = 8, Sy rereeeinse S

bral m
r = Mj_n(r,!g I'2 3 tesww yrm )a
Proof :
- (i) (1) (1) -
‘JD._H 312 (RN a,] n. ,:
ol h inl t-1
et &y = | e B By S E R 8

(i O o %

Y
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* -1
be the array for St Z?Zi SI y Ty si_J7 with elements from the

finite modulezAAi of s, elements. Also, let the elements Df:A&i
be egl), esl), [(EEEEE N es(l) [] i = 1, 2, Terne g M.
i-1

Iet m=2. From A, and A, , we can construct the array B

of r rows and n,n, columns with elements given by the ordered pairs

n (x) (@)
of mumbers of the type (aij y 89 ) ¢

B Z By # By ! enieen. B _/ , where

I

f(a(?) (2)) ey

11 u "‘Si))'i‘

]

B, = }
() @)

g otk * Tri

Y veeenas (a£;: 3 aﬁi)) j

i=1,2, a-o--5n2-

When s¢ constructed,B is of stremgth t-~1 as proved in

Bush (1952b). Sum of any two elements ( eiq) s eie) ) and (e§1), egz))
2 1 2
is defined as usuzl by ( e(1)+ 9(1) R e(1) + e(z) )yw In%, 9%
ip g iy iy et

and :3 defined telow, orderirg of elements is ignored, although the

pairs representing elements have, of course, to be ordered.
(1) @) (1) (@) (1) @)y 5
LEt.g Kk = ereo oY P (31 f“?k Yo veen (681—1 ’.ek ) _/

* k = O, 1’ 2, Teane 82-1-
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'o.ndﬁk=[(e}(c1): e(()2)) ’ (el(cU’ e‘(|2))’ teesn, (e}(c1)-’ 9(2) )_7’ .

32-1
k:o, 1, 2, as g ’51—1¢

Also let

v
1l
AT Y
e
r—
-
.
L)
-
-
LGN
H
—

L B S eeme i 1T

@ <

0 Q

f
s
o
@
-~
o
I
e

?
ordering of elements being totally ignored.

Now, let the SE t-tuples formed from the elements ofJ,.‘,iL be
. , t=1 : L1y (1) (i
divided imto s; sets, viz., MS ), My™ "y eeees 3 M 1);_1 each
P
set consisting of S4 distinet t~tuples such that given any t-tuple
in a set, say Ma(.l) y all the t-tuples in the set can be obtained by

adding successively the elements egl), esl), seses eéi_)_1 ofv%i
i

to each element of the given t~tuple; i = 1, 2,

Now, let us consider a t{ rowed submatrix of B, say
B (t) = [131(*5) foeeaes 3 Bng('t) / and let 4,(t) and 4,(¢) be

the corresponding t-rowed submatrices of A; and 4, giving rise to B(t).

Obviously, considering the first co-ordinates and second

e . .
co-ordinates of elements separately, = U B(t) is an OA(r, t) with
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W
regard to the first co-ordinates of elements and an S‘t (r) with

respect to the second co-ordinates of elements. Hence, 70 B(t) =
110 W /% o @ BG)Y 7 is o (r, t) with regard to both the

first and second co-ordimtes of elements, considered separately.

: *
Agnin, because A1 is an St {r) , 1T 72 is any t-tuple

formed by the elements ofu%-z cceurring p times in A2(t), each

of the s: t-tuples of the elements of M.] will occur in the first

co-ordinates of elements fi4 P times with 72 as the t~tuple of
the second co-ordirctes in € 5 @7 B(‘t). Obviously, the same

result holds if B(t) is replaced by Tto @ B{t) and there are

¢ ul2)

p t-tuples 3 Mj(z) which occur in Az(t), when '1’2 3

. . t--1 . *
for some j, = iR, oL S5 « Now, A2 being SJG y humber of

) 2
t~tuples belonging to Mg ) s which occur in AQ(t) is K, ,

\7,3 = 1y 25 waans y sg-j .« S0, in E@ B(t)

i

% s @ [‘]O @ B(t) _/, each of the s: t-tuples
of the first co-crdimtes of elements occurs Mlﬂz times with any

t
of the s

5 t-tuples of the second co-ordinates of elements.

& *
thus © () B{(t) is & (t, t) i.e. B(t) is s, (8).
*
so, Bis 8 (r).
Once the result is proved for m = 2, it follows easily for

all m 2 2.
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From the result (3.3.3) and theorem 3.%.4, we have $

n By N

if s = Py Py esses Py be the prime power decomposition
n n,
0f 5 and S, = M:i.n(p1 1 Pp oy eeses s Py ), we can always

* -
construct an St‘l-st 1,, s =1, B /s t2 2, vhen so> te aee (3.3.4)

With the help of (3.3.4), the following results can be

derived from theorems 3.3.2 and 3.3.3, Coroldaries 3.3.2 and 3.3.3.

, ) .
Corollary 3.3.4 : The existence of en OA / M s, r, s, 2 _/ implies

3

the existence of OA Z-}\ 8, T so+1, B, 2 _7 and by repeated applica-

p+2
H

tions of the procedure, implies the existence of OA[}\S r sg +

SE-1+.“'°+SO+1’S’2—7’ for all p2 1, wheres2 2

and s, 1is os defined in (3.3.4).

Clearly 8, = 8 if 8 is a prime power. Note that the case
§ = 2 can be included here in the general result by writing

s; (2, 1, 2) = (0, 1).

Gorollary 3.3.5 : The existence of an OA [-}\53, T, 9, 3_7 implies
the existence of an QA ["}\ 85, T 5,y Sy 3 _7 and by successive

applications of the same procedure, implies the existence of an

OA[?\53+2P, r sﬁ ;8,3 _/, 82 3 and s, 1s os defined in

(3.3.4), forall p2 1.
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— . 1 — * —
Obviously, an CA / As ', ry, s, 1 _/ is also SJG D st, Ty Bufw
Buppose there exist QA [}\i 52, riy 8, 2_7, i=1, 2. Treating the

*
first CA as Q4 and the second as 82 and making use of Corollary

3,3.2, we have by writing & for the first array and B for the second

_aITay;
c = & @ B is 0™ A, s, r; (rp+1), s, 2 7.

Some more rows can be added to C in the following manner.

Iet us write

e

I s Wwhere n = }\1 s2

é_ B, isan mxn matrix with all elements 1 and the direct

product of two matrices has already been defined in Chapter 2_7.

D can be easily shown o be OA /A, Ay T, (r+1) (ry+1)-1,8,27.
Hence we have,
— 2 —
Corollary 3.3.6 : The existence of G /A, sy 45 8 2/, 1i=1,2,
implies the existence of OA [}\1 )\.2 s4, r, 8, 2_7, where

el = (r1+‘1) (r2+‘1) -1,

It may be noted that Corollary 3.3.6 is an improvement upon

Theorem 4 of Shrikhande (1964 ).
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Ih the same manner we obtain, by making use of Corollary
3.3.3, the following corollary dealing with OA's of strength 3.

Corollary 3.3.7 ¢ The existence of OA [?\.i 53, T,y 8 B W

i=1, 2, implies the existence of OA [3\12&2 86, Ty By 3_7,

where r = Max ( r, (1j2+1), r, (r1+1) e

If & is o prime power, it is proved in Bose and Bush (1952)

that we can always construct an
2
OA [ 54, S +1’ S, 3 _7 aaa aasa (303-5)
and from Bush (1952a), it is known that

i (sj, s, 3) s+1, if s is odd

i

veo (3.3.6)

= g+2, if s 1is even

Hence, using results (3.3.5) and (3.3.6) and applying corollaries
" 3.3.5 and 3.3.7, we can construct the following OA's for s, a

prime power? 3 and p 2 1.

. 2 2 \p~1 ~
(1) o [S4p, (s7+1) (s +2)p y 85 3_/ }
i
(12) o [*, (B (s%)P  (ev2), 5y 37, |
if s is odd e (3.3.7)

and QA [s4p+2, (52+1)(82+2)p_1(s+5),s,3_7, \1

if s is even i
v

dii) oh /P2, ($2e1) Pe2)P sy s, 57 B
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Theorem' 2.3.5 ¢ The existence of an QA [?\83, Ty Sy 3_7 implies

the existence of OA ["7\-84= 2r, 8, 3_/

Proof : IetWiA be the class of residues Mod (s). Iet A be the array

"for OA [}\53, Ty By 3__7 with elements from JA .

5y

ot

fus)

fl
i
e}
[—

1 " s S—1

=]

Define ¢ = & (@ B.

Then, applying lemma 3.3.2 and 3.3.3 as in theorem 3.3.3,

it is easy to see that C is OA (2r, 3).

From theorem 3.3.5, we get the following results

(i) Prom an OA / A3

s Ty 2, 3_7, it is always possible to
3
construct an OA [}\.. 24, 2TG 25 3_7 ond nere gererally an OAT[-}J oP s
2z r, 2, 3_], for p2 1. .
Trom Ceiden and Cemach (1988), It is kmown kot

f(}u23,2,3) < 4

Incidentally, Seiden (1954) and Seiden and Zemach (1966) give
o simple and elegant method for construction of OA [1.23,1-, 2,3/

from a given OA ['7\. 22, r-t, 2, 2_7.
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=B

4 +

(i1) From ox 04 / A. 33, r, 3, 3_/, we can always construct
an OA /A, 34, 2r, 3, 3_/. It being known from Bose and Bush (1952)
that
-
£ (3", 3, 3) > 10,
by a repeated application of Theorem 3.3.5, we can always construct

an

OA[34+p, 10_2p, 3’ 3_7, pz.. 0 ‘e e Y (3.308)

(iii) If s is a prime power, then applying the result (3.3.5)
along with corollary 3.3.7 and theorem 3.3.5, we find that we can

always construct an

OA[s4p+1, 2(s2+1)(s2+2)p"1, 8y 37  see wse  aee (3.39)

(3.3.9) is the only series missing in (3.3.7).

Existence of GA : II's of Strength Two :

The two theorems in this section give methods for constrvc.‘lmg
4 : II's in the caose when the mumber of levels, s is not a prime
power. In later sections of this chapter, OA's apd QA ¢ II's of
strength 2 have been utilised for constructing Incomplete Block

Designs.

Theoren 3.4.1 : The existence of (}\i s; (si-1 )2, tiy 8y 2) : IT

) 1
and OA[}i si ybis 8y 5 2/, i=1,2, cioeo.p, implier the
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P '
existence of ( Xs{e-1)/2, %, s, 2) ¢ II, where A= TV (}\i }\.i),

i=1
p _ ' 1
85 = .!—T Si’ t = min (t1’ teese g tp, t17 casany 'tp )o'
i=1
Proof ¢

SRCONN Oy a(i)l
N et

11 m
Let the array A, = '

s 0.
-
o

(1 ;(i) :(i |
L a*51) Y JlcBs % _!

1
represent QA [)\i si » Ty 8y 2 _7

bg%) bgg) b%)l.\

and the array Bi =

s ae & 9

o el et e bty

(0 (1) (:
btl1 b5 btln)i ]

n, o= A -1
2y i 83 (s-0)/2
represent ( A; 8 (81—1)/2, ty 855 2) : II: For both the arrays

the elements dencting the 85 levels are taken to be 0, 1; 2, «ve.-
8=l 1=1,2, ciooop. First let p = 2 and t = min (%,

L]
tys 1, ot e
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[ ]

Define C = Z-—Ai (1) H A.1 (2) :. sesssvens A‘l (112) J.'
OB (1) (@1
(6, s b1j) (um1 ) 033 )
where A, (i) = '
()" @) (1) (@)
(at1 ’ b'b;j ) ..... (atm1 o b'tj ) |
j= 1, 2, [ ENEN X n2 .
and D = [B1 (O) H B1 (1) I kesenense B1 (82—1)_7,
S (1) (1) :
i (b” s 3 o T - (b1n1 s 3 )
where B, (3) = |1 ‘
) 1y .
KO RPORees SYEED
i o= 0, 1, 2y o *e 52"1
Iet C* = [C G s wee « ¢ C __7 be the juxtaposition of
o I 1
)\1 J\:? ! C'S
D = /[, D:D: .. : D_/ be the juxtaposition of
t [
}\1 }s22\2 D's
¥ e
and E = [C D_/-
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1
Then, E is an array with t rows and Ms(s-1)/2 columns,

e Wl I N AT R (e

= g Ay Dy A @z.TheelementsofE are the

s = s, s, ordered pairs of mmbers (i, j) , =0, 1, . s.-1;

2 1

350 D lly” wae s 1y s2-1. Iet us denote the set of 8, S, elements

formed in this manner by X.

Let a two-rowed submatrix of E be chosen. In the part of
the submatrix obtained from C*, each unordered poir of elements
of Z with second co-ordinates unequal occurs X times. In the vart
of the submotyrix obtained from D*, each unordered pair of elements

of 3 with second co-ordimntes same occurs M times.
Hence, ¥ is an OA : II of strengtl 2.

, ~ ' 2

Obviously, by Bush's result (1952b), O4 Z}\i siv By By, 2_7,
A ‘ ! 1 2 -—
i=1, 2, implies OA[J\_] }\2 s™, t, s, 2/ which implies
oA [3\32, t, s, 2_7. S0, the theorem is proved for p = 2, Hence,
by repeated application of the result, the theorem is true for
all p 2 2.

Now, the existence of GF (s) implies G /~ 2, 641, s, 2.y
and by theorem 1 of Rao (1961a).
The existence of GF(s) implies the existence of (s(s-1}/2, s,

5y 2) : II, when s ig odd. Hence, we obtain the following corollary

t0 theorem 304- 1e
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L

n n

Gorollary 3.4.1 : If 5 is an odd mumber > 1 and s = p11 X p,
n 2

eoes X pmé is the prime power decomposition of s, then we can

X o0

n
always counstruct (s (s-1)/2, 8,1 95 2 )+ II with 5o * min (p11 5

o

e m)
p2 9 ssocsas » pm a

Oh 3 II's con be obtoined from pairwise balanced desighns
alsol Deds et ,so_ b ot eriae LHeolomeed J-Uﬁ-%nn. o W T ek
.St af cheplen S

Theorem 3.4.2 : The existence of a pairwise balanced design with

1, asasaas kl ;‘ b1’

/i , implies the existence of (Av (v=1)/2, t, v, 2 } 3 11,

parometers (v: x casan gy bl i A ) with ki odd,

n n
. ‘s . _ i1 i2
where the prime power decomposition of ki is ki = pi1 X pi2 X aus
nim. r
senes X pml ’ i = 1, 2, sesan 3 1 and t - min ( pi?ja )‘
i 18141
‘Ig_;}_g_.mi
_Proof : The existence is proved by comstructing an OA : II from

each block of the pairwise balanced design.

Construction of BIB and GD Designs Through Q4 and QA : II of Stremgth Twn-

Theorem 3.5.71 : The existence of ( As(s-1)/2, ry s, 2 ) ¢ II implies

the existence of the series of BIB (s, X, Ak(k-1)/2), k (min(r, s-t).

Proof : Given (As(s-1)/2, r, s, 2 )} : II , o k-rowed submatrix of

the, a¥way apn ha ckasen., k <r and < s. An Incomplete Block Design
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can be constructed by treating each column of the submatrix as o
block. The Incomplete Block Design so constructed is obviously a

BIB (s, k, M k (k-1)/2 ).

The serres of BIB (s, kK, k {k~1)/2) will be hereafter,
referred 10 as (S,A ) - series (This is for the purpose of reference

only).

Trom Corollary 3.4.1, we immedintely obtain as a particular
case of theorem 3.5.1, the result of Ramomuja Charyulu (1966) which

may be restated in the following lines -

g N n, n
If & is ony cdd rumber 2 1 and s = Py X Py X eeex I

is the prime power decomposition of g, then we can always construct
n n

a (s, 1)—series with k,i S, and { s, where 8, = min ( p11, p22?
m
; 3
‘.oou 3 pm J e

Tt is to be noted that the existence of (s, 1)-series wos
first proved by Gassner (1965) for k< p ond { s, where p is
the minimum prime which divides s. Gassner's result was generalised
by Ramameja Charyulu (1966) in the form given above. But, our
theorem 3.5.1 is more genernl than the result of Ramomuja Charyulu
(1966), because an OA : II may have wore constraints than are
implied by the Corollary 3.4.1 of the preceding section e.g&.,

BIB (21, 5, 1) in-lies(210, 5, 21, 2):%T mdby theorem 3.4.2 implies
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(21, 1) - series with k <5, whereas by Gassner's (1965) and
Ramanu;";a Charyulu's (1966) results, the existence is known for

k _<_3 Only-. ]

The following Theorem is similar to Theorsm 2A of Shrikhande

.and Bose (1960) with the conditions of the theorem slightly relaxed.

)
X, N,

Theorem 3.5.2 : The existence of BIB (v., k, N )y BIB (v,, k, X g

: o 2 -
and OA / A, v, , &y v,y 2/, implies the existence of BIB (v vy,

where A ig divisible by }\1 }\2 and )\3 .

Proof : ILet the numbers of blocks in (i) BIB (VT’ K, )\1) and

(i1) BIB (v,, k, A be b, and b

1 5 respectively.

2r %9 Xg)

Iet the b, blocks of (1) be written as

(ai1 $ Bip g seees 3 B Ny

j. = 1, 2, ser e b.i y

and the b, blocks of (i1) as

(b,

119 Pip s seeer s by )

i= 1’ 2, seseane oy b2 4

where in (i) the treatments are denoted by the v, symbols 0, 1, 2, ...

Ve v1-1 and in (ii) the treatments are dencted by O,1,2,....,v2-—1.
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Let OA [ )\2 vg s Kk, AP 2_7 be represented by the array

- ..........'c1n1\
¥ ,
i y n=2\272,

e st et
seaesdE s O
—t
ok
(o]

,.
(2]

b5

—

Cgo trrorereee Oy

. where Vo levels are the numbers Oy, 1), 2y iveni v2-1.

Let the following sets of blocks be constructed with vy v,

treatments, a treatment being represented by an ordered pair of

mmbers, say {i, j);, 1 =0, 1, ceuen vl i =

O’ 1, desesy V2"'1-
2 _
(a) Py A, v, b, blocks, where p, =X /)\1 N .
The blocks are
( (al-]l CIJ) b ( a

i B 1, 2’ Ber e g b

N

it

—
&

n

2
-o--o'n.oo’n(=h-2 'V'2 )',

ecach block repeated Py = N Ay X, times.

(b) Py V4 b2 blocks, where Py = A/ }\5 .

The blocks are

Gy oy s (3 Do)y eevennanney (G bik)_ )

i = 1’ 2, .oo-i.f ’-b

J

2
O, 1, A e e aeny V1—1 ’

U

each block repeated p, = )\/;&.3 times.
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The two sets of blocks (a) and {b) together obviously constitute

o BIB (VT st kS '}\' )' I

In the theorem 3.5.2, if v, = k, BIB (v,, k,‘>\3) can be
replaced by a single block design {0y 1, 2, +.ess 5 k=1). Theorem

3.5.2 1is then reduced to the following corcllary.

Corollary 3.5.2a : The existence of BIB (v1, X, h1) and
2 - .
o/} 1—3\2 k™, ky k, 2_7 implies the existence of BIB (v1k s Ky A,
where Nis divisible by both ?\1 and M. .
] - 2
Dut, the existence of o completely resolvable CA Z_.I: ,1:,1:,2_7

is alvays cngured when k is a prime power. Thus, we have,

Corollary 3.5.2b : The existence of BIB (v, k,\), where k is a
prime power,implies the existence of BIB {vk, k, A ) and by repeated
application of the sa.meﬂ procedure, implies the existence of a series
of BIB (vk, k, N\ ), n any positive inmteger. And, if BIB(v, k, \)
is resolvable, BIB (vk", k, A ) constructed with the help of
completely resolvable Ch Z-‘ kz, k, K, 2_7, is resoclvable, for n amy

positive integer.

By Ramanmuja Charyulu's result (1966), the existence of (s, 1 )-
series is not known for any even s. By following Theorem 3.5.2 and
Corollaries 3.5.2a and 3.5.2b, the existence can be established for

some selective k's when s is even; €.8., (i) (5,1)—series exists for
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k<4 and so (20, 1)-series exists for k = 4 by Corollary 345.2b.

(ii) (5, 1)-series exists for k £ 4 and BIB (8, 4, 3) is known
to exist. Hence, by Corollary 3.5.2a, the (40, 1)-series exists

for k = 4de

Let us have a close look at the conditions of theorem 3.5.2
.and_'the method of construction of the design described in the proof.
In the proof of the theorem, suppose the series of blocks (a) is
congidered without repeating each block Py times when Py > 1 as
is done there. Thus,each block considered once, the series of
“blocks (a) will obviously constitute a GD (v1, Vs ¥y 0y 2, >\2).
Moreover, if the BIB (v,, k, A;) 1s resolvable and the QA ,{_}?vg y
k, Voo 2_7 is completely decomposable, the resulting GD constructed_

as explained will be resolvable. We can state the result in the

form of a theorem as :

. 2
Theorem 3.5.3 ¢+ The existence of BIB (v1, k, }“1) and GA [}\2 Voo k,
\’Y 2_7, implies the existence of GD (v,], VE’ k, O, }\1 2\2). Moreover,

if the given BIB is resolvable and the given OA completely decomposable,

the resulting GD will be resolvable.

Now the following result is known @

2 )
For & a prime power, f (s°y 8,2 ) = s + 1 (3.5.1)

D -
and there exists a completely decomposable QA [s s By B, 2 7,
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So, we have,

orollary 3.5.3a t The existence of BIB (v,, k, )\1). implies the
existence of GD (v1, s, k, 0, ?\1), if s is a prime power 2 k-1,
And, the existence of a resolvable BIB (v1, k, }~1) and s, o prime

power 2 k , implies the existence of a resolvable GD (v1, sy kK, 0, 3\1).

In case v, = kK and Aq= 1, i.e. BIB (v1, k,3\1) is
replaced by a single complete block design (0, 1, 2, ceen. o =50

the theorem 3.5.3 reduces to

Corollary 3.5.3b : The existence of QA [5\21"2 s K, \PY, 2_7 3

implies the existence of GD (x, Voo X, 0,1\2). Moregver, if the

04 is completely decomposable, the resultirg GD is resolvable.

-Let us closely scrutinise the method of constructing CA's of

strength 2 explained in section 3.3 of ecoapier 3.

The method of constructicn employed in the proof of theorem
%,%,2 shows that if A giving the OA ZF?\. 32, Tys Sy 2_7 is completely
decomposable and B is the array for 82 [M Sy Tphy sj, then
¢ = A(D) B giving the Ch /A 83, TyTy 9 Sy 2 7 will also

be completely deccmposable.

If s is a prime power, there always exists a completely

decomposable OA [sz, Sy S, 2_/— and an S, [ Sy 8y 8 J. Hence, a
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repeated application of the same construction procedure as employed

in the proof of theorem 3.3.2 ensures the existence of a completely
T p+2 +1 -~

decomposable 04 / e, 7T s, 2/ for p=0 or any positive

integer, when s is a prime power. Hence, with the help of Corollary

345.3b, we have,

p+2

Oorollary 3.5.3c : There always exists a resolvable GD (ts, s -,

p+1 p p+1

s 2t3 A;=0, A,=58, m=t, n=s) forall % s

cand -p = 0 or any positive integer, when s is a prime power.

Again, theorem 3.5.2 will still hold, if BIB(v,, Ik, A,)
is replaced by a single complete block (0, 1, ve.e. 4 k=1) wilhk
teeatments, i.e. BIB (v1, k, 31) with v',l =k and }\1 =1 &

Hence, we obitain

Theorem 3.5.4 : The existence of BIB (vz, k, }\3) and QA [}\2v§ .

-

k, Vos 2__7, implies the existence of BIB (kx Vo Ky A ), where A

is divisible by hoth .?\2 and }\.3 .

Now, because of (3.5.1), the following Corollary is immedicte

from thecrem 3:5.4.

'Gorollary 3.5+.4 : The existence of BIB(v, k,}x), implies the eristewce

of BIB(kv, k, A ) for v a prime power. Moreover, if the given

- BIB(v, k,A ) is resolvable, the resulting BIB(kv‘, K, A) is also

resplvable.
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5.6 Construetion of PBIB Desigus with Three Associate (lasses of Adhikary's

Association ®chemes (196 6) 8

In this section we show how PBIB Designs, with three associate
closses, of the first and second types of generalisations of Adhikary

(1966) can be constructed through suitable OA's of strength 2.

Theorem 35.6,1 ¢ The existence of a PEIR Design with two associate
: t : L ] t
: 9 A
classes with parameters vi, byy Xy, k, ?\1 12 By s By s Py
2 . — ) 2 —
and Pig j, =12, an OAZ)\SvZ,k,E,Z_/ and a

"
BIB Design with parameters ALY b2, Tys k, )\.2 , implies the existence

. of o PBIB Desgign, with three associate classes, of the first type
of generalisation of Adhikary with parameters v = v, vé g

r=r1)\3V2+r2, K )\1=3\ ’

1 1
. n1=v2—1,n2=n1v2,n=nv2.

Proof ¢+ Iet the given PBIB Design be written with symbols O, 1, 2, ...

seees g v1—1 y the given OA and BIB Design with symbols 0O, 1, 2, ...

LI} V2_10

Iet the v, v2 treatments of the derived design be written

as the Ordered p?liI‘S (i, j)s l = O, 1, 2, tre e g V1-1 ’

0’ 1, 2, LN X | V2-1 L]

e
]
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Suppose the blocks of the given PBIB Design are (ai1, Bigs wees

By ,%XL 1= 1y 2y eeevens; by , the blocks of the given BIB
are (bi1, Diyy eeeee s bik) y 1=1,2, veees , b, ond the ith

1
column of the given CA is (°i1’ Ciny *** 3 cik) s 1= 192:---:-ﬂ3 Ve

Now, let us construct the following sets of blocks with vy v,

treatments

@) Clagpr ogq) s (@gpr opp) o veven s (age o) ),

31
121? 2’ s m e ’b1
b2

1’ 2’ LR B B ] ,P\SVZ

LS
H

and  (i1) ( (4, bj1) el bj2 Y i B ee e amey (ig bjk) ) o

i:O, 1, LR ] V1-1

J= 1y 2y seeeeny by

It is easy to see that the two sets of blocks (i) and (ii)
together constitute the reguired PBIB Design, with three associate

classes, of the first type of generalisation of Adhikary.

The non-existence of any BIB Design with the parometers

1
vys Doy Ty Ky Ay in the theorem 3.6.1 makes A1 = 0. Also, we

2
can see that if k is 2 prime power, OA zf'k y &y K, 2;7 always
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o in the

exists and the BIB with parameters V9 b2, r.; KyA

2
theorem 3.6.71 can be replaced by a single complete block (0, 1, 2, ..

1
seens o k-1)l In'thiS'Ca.se, l3= }\-2 = 1 [l h2=1‘2= 1 am
v, = k. Thus,we have the following corollary.

Corollary 3.6.1 3 The existence of o PBIB Design with two asgociate

! 4 1 ! 1 )
clagses with porameters Vs b19 r‘l’ kr>\1 ;)\2 * 1’11 ) n2 ) ij and

2
Pig s js 8 =1, 2, where k is a prime power, implies the exigtence
of & PRIB Design, with three associote classes, of the first type of

2
v,’k, b=b1k + Vs

k-1 ]

i

gengralisation of Adhikary with parometers v

&
i
I

1
pex, k41, k; Mo=1, 2, =2, A

il 3 2 !

Theorem 3.6.2 : The existence of a BIB Design with parameters

i

1
vy bys Ty Ky Ay, an0a [ Ay v2 , k, v,y 2.7 aud a PBIB Design

. . 1 L] t ! 1 2
with parometers Vs bz, T, k% )\.1 ,AQ y By s 1y g p;}! and pjE ’

i, &= 1,2, implies the existence of a PBIB Design, with three

associate classes, of the second type of gemeralisation of Adhikary

t 2 t
with porameters v =V, 7V, b=)~.3v2b1+v1b2, r=}\3r1+r2,

.I _I "n o1 ' ]
1580 Ry =hy oy Mg=Aadg, my =0y
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Proof ¢ As in theorem 3.6.1, let the symbols used for the given

BIB Design be 0O, 1, 2y «iuves v.i—‘l. Iet the symbols used for the
given QA and PBIB Design be O; 1, 2, sesee v2-1. Then, suppose
the blocks of the given BIB Design are written as (aiT’ 8. vees aik)’

i=1, 2, eaeeey b1 y the blocks of the given PBIB Design are

(b.

11, bi2 § s sasnes gy bik)a i = 1’ 2,,----- b aﬁd the ith COlumn

2

of'theA given OA is
( Ciq# Cyp oy teree s Cik) ;A= 1 2 eeeen g A VG .
The two sets of blocks
(1) ({oyy 031) y (a0 032) TR C ) )

i=1, 2, ses e ,b1

. 2
J = 1, 2, YRR ’)\3 V2

by R bjk) ),

-

and  (ii) ( ( 1, bj.]),(i
i = O, 1, AR EE ] ] v1“1

j = 1’ 2’ s acprass 9 b2

constitute the required PBIB Pesign, with three associate classes, of

the gecond type of generalisation of Adhikary.
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Again, in case T & k , the given BIB in theorem 3.6.2 can bhe

f1
reploced by o single compleie block (O,?, etes 5 k-1) and hence A1 = 1.

2
Let v, be a prime power SO that on / Vo g Ky Vs 2 7 exists for all

k gvé+1. Sc, in that case, theorem 3.6.2 can be modified as

forollary 3.6.2 : The existence of a PBIB Design with parameters

1 ' 1 t

. 1 1 2 .
Vor Byy Ty Kyhyq shp 5 Ny s By g Pig and Pig ’ isk = 1,2, where

v. is a prime power, implies the existence of a PBIB Design, with

2
three nssociate classes, of the second type of generalisation of

: 2
Adnikory with porameters v = v, k, b =V, + bk, T = r2+1 s KOG

1 1 1 t

)\::}\ ,.7\ :}\ ,}\ :1’n=n,n:n

5 5 0 n3 = (k-1) Voo

Theorems 5.6.1 and 3.6.2 , and Corollaries 3.6.71 and 3.6.2
can be exploited to construct inmmumerable PBIB Designs with three
associate classes from known PBIB Designs with two associate classes.
Adnikary (1969 ) hns given a number of methods for constructing
PBIB Designs ﬁith three nssociate classes. In this section, we have
given o new approach, that of obtaining solutions through known QA's

of strength 2 and known PBIB Designs with two associate classes.
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4, BATANCED CRTHOGONAL DESIGNS

Introduction :

Bolanced Orthogomal Design (BOD) is an extension of Hodamard
matrix. BOD's were introduced by Roo {1966) and were exploited to
give methods of construction of some families of BIB and GD Designs
by Rao (1966, 1970). Also, BOD's can be looked upon as Incomplete
Veighing Designs admitting orthogonal estimation of all the weights.
Rao and Dag {1969) and Rao (1970) have given methods for constructing
o BOD with parameters (32 + 8 + 1? sz, 52 - s), when s is an odd
prime power, In the present chapter, we prove the existence of an
D2 mald

infinite series of BOD's with parameters ( (sp+§-1)/(a-1),sP+2,s

for all p2 -1, when s is an odd prime power.

Definitions and Notations @

The definition of a BOD is as follows

A matrix of order v x b with entries +1, -1, 0, 1is said
40 be o BOD if it satisfies the following conditions -

(i) inner product of any two rows is zero.

(i1) when all -1's in the matrix are changed to 1's, it becones

the incidence matrix of a BIR Desigh.
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Iet X be a BOD of order v X b. Iet N be the incildence matrix
of the BIB Desigh obtained from X , by replacing =1's by 1's in X,

Let (v, b, r, k, A) be the parameters of the BIB Design. Then,

1
I = rIV. Wthen b = v =1 , the BOD becomes a Hadamard

matrix of order v. A BOD with the parameters of the corresponding
BIS Design (obtained by changing =-1's to 1's in the BOD) as v, b,

r, k, N will be denoted by BOD (v, k, A).

*
Ty and Tn considered in chapter 2 are obviously BOD's. Z and
§ matrices have been introduced in chapter 2. We continue t0 use the

notaticns and definitions introduced in chapters 2 and 3.

Conetruction of BOD's :

Corollary 3.5.3 ¢ in the preceding chapter ensures the

- 2 2 +1 +1
existence of a resolvable GD (sp+ ’ sp+ s sp v Sp : .?\1 = @
?\2: sp, m=sp+1 , n=2g5 ), forall p2 O, whens is a prime

power. Let N(p+2) be the incidence motrix of thie resolvable GD

Design. We can always write N(p+2) as
[ N [ § N N
1 x ] ‘!1 1l2 "800 a 1 p+1
N, 9
; N21 N22 L] . Ng p+1 l
glp2) _ : b = By & E
N - N N e b N ;

g
+
=

—
o

i}
+
—

~

o]
¥
—

L2
n

=
+
iy

=1
+
)


http://www.cvisiontech.com

2 85 &

where every Nij is an s x s matrix with 2 single unisy in

each row and column and the remaining elements O 3 1,j = 1,2, v,

gp+1. The inner product of any two rows of Ni is zeroy 1 = 1,2540044

sp+1 and the immer product of any row of Ni and any row Ni1

is sP 144" o Yp 3% Vg 25 0enee 4 B =

It has been observed in chaopter 2 that when s is an cdd
prime power there aclways exists an g x s matrix, 8(1) with

diagonsl elements O and off diagonnl elements +1 or -1 such that

(3(1)) ( 8(1) )' . 8(1)

s I -E
S SS

it

is obvigusly either ZS or

S, accordirg as s = 3 (Mod 4) or 1 (Mod 4).

' = +
Let S, be obtained from Wi, , 1,3 = 1,2) «eeue P of

N(p+2) in the following mamner @

If the (f9 g)th cell of Nij contains unity, fth row cf Nij

(1)

is to replaced by gth row of S '

Iet us write

11# 12 1, Pt i
S S = ‘B
21 22 2, Sp+1 |
b/ i
sler2) _ g 1
| £ \
{ i
E S o1 S P T TR oel pd {
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Then, it is easy to see that

(sm2)y (sler2dyt g Isp+1 BT 0, Re=ce (e 5e)

S(p+2) matrix with the property (4.3.1) always

(p+2)  S(p+2)

Thus, an

exists corresponding to an W matrices so obtained

p+2 < Sp+2

are s matrices with mumber of 1's ( + or - ) in each

1
s

row and column equal to (s-1) and exist for all p) -1,

- when s is an odd prime power,

let us congider the matrix

+(p*2)
p+2

( (el
+2
X P ) sy Wwhere

O ——

X(p+2) ;l
! i
(p+2) |

O -:

X

. gli=)

(p+2) (i) = . = :

= & - X 2 A

Xj ;S %) E1 sp+2 J X Es Sp+ J
(0) . . -, . = . =y

aorere B S e ESJ Sp+2*3 : OSJ Sp+1-3 : OSJ Pt eeeeen

(0)

et 03 /s 320,142 seees , p¥2 and S

scalar 1.
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x(” is obviously a BOD (s+1, s, s=1). Rao (1970) has
(2)

proved thot X is a BOD (52+s+1, 52, 82_8). " The purpose of the

present chapter is to prove that X(p¢2) g a BOD for all py -1.

X(p+2) iz a ( ap+2 + sp+1 ceere + 8+1) X (sp+2 + sp+1--. + S+1)

‘matrix and the mumber of 1's (+ or -) in each row and each column

of X(p+2) is obviously sp+2.

Let us agsume

(m‘ (m-1) oy 5 (1) « (O) Ss )
[V s @ Byqieeee 18 @B SR BT
5 5 ,1
(m) (m-1) . (1) (o) = _
7B S @ Bgqteeeee s 88 ®E o 8V EE
s y 1 5,1
= B e geif0r B PR S s, ferer e e (4.3.2)
S
Then,

{p+2) (p+2) +!
( X‘;+2 ) (X g+2 )

(S(p+2)) (S(P+2) )' +[S(P+1) : s(p) @ Byt oeeeeiiiia s

sm@ B, s(9) ¢z

571 s ’ N 8

JZ-S(P"'U : S(P) D E .
1 .

: 8(1) ¥ B . % @ & _7' @ E_ E
LI BN B Y L] - b p L @J p+1 = 31 81
s° 1 s s 1

P+t p+1

H

J:Sp+1 @ (s I,~E_)+s Isp+1 @ B,

Jtron (4.3.1) and (4.3.2) 7

- L I - LR LRCREY o e +r oo SR O ‘(41??)
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and

i

( X§p+2)) (Xgp.,,z))l for § < p+i

~ (i) - (1) -
S !X E 0 P s ese e H S lf ; E . I
-Z “‘-) 1sp+2—3 b &, sJ—‘i . Sp-!-2._3

(0) - = o(3) =
s tgg} Esj sp+2-j _71 S ‘-‘5 E1Sp+2~‘] . L EUEL B B .

S(1> @ E . sl0) (%) ‘

83-1 Sp+2—a

7

E .
+2=7
SJ SP J

A 54, 501 @ By eeeeee st1) @ E .

s'j 1 5
N INN (0) : '
5 % B . 5 RE, _/ ®E, . B .
e 4 R 3 1gP+e-d 1gP+e=d
1. ® M g
J = 1
S
[from (4.3.2)_7
+2 '
sp Ij * 0 LI * R * S * e * B L Y ) . (4.3.4)
8

{ S(‘j) ARl S(j"k) @ E = ) for any k < j and any m

0 e e s 0. e (40305)

. L ls
o, m o (3K

from the property

$0 5 - o,
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Hence, by (4.3.5)

(xlpr2) ) (x0))

— 0 N :[‘Or j }!k y j,ki p+2 & e ') [ ) (4.3.6)

So, -assuming (4.3.2) we get

(X(P'*’?) VI X(IH'Q) )'

. p+2
= 8 In’ *a e LY R e .o (4-3.7)
+3
P2 n+1 AR
Where n = S + 5 [ B I A +S+ 1 = '—S—_1_

Thus, assuming (4.3.2) to be true for all m £ p+l , it is
found 1o be true for all =n < p+t2 . Bui (4.3.2) ig known to be
true for .m <2 from Rao's result (1970). Hence, by mathematical
induction (4.3.2) is true for all m. And (4.3.6) is true for all

p 2 0. Hence, (4.3.7) is true for all p 2 -1.

It is easy to see that if ~1's are all replaced by 1's in

X(p+2) , the resulting matrix will be the incidence matrix of a BID

Design with parameters v = b = (sp{j - 1)/s-1) y, re=k= sp+2

and M= =3p+2 - sp"1 . Hence, we have the following theorer.
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Theorem 4.3.1 3 If & is an odd prime power, there always exists a

T |
geries of BOD's ( (sp+§ - 1)/(5—1) 5 sp+2 . sp+2 - sp+ y , for

all p 2 ~1.

Moreover, as a consequence of theorem 4,3.1, Theorem 4.1 of

Rao (197C) can be easily extended to

Theorem 4.%.2 : The existence of BOD { (sp+3 = 1) /{8-1) 5 grie ;
sp+2 - sp+1 ) and BIB (s+1, 2s, s, (s+1)/2 , (s-1)/2 }, 1mplies
the existence of BIB { (s+1)(sP - 1)/(s=1) , 28{eP*> = 1)/(s-1) ,

3 P (sat)2, &P (s-1)/2 ).

Thus, the series of BIB Designs 1in Theorem 4.%5.2 is ensured
for all pp =1, when g is an odd prime power and BIB(s+1, 28, s,

(s+1)/2, (s=1)/2 ) exists.
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5. PARTIALLY BATANCED ARRAY

51 Introduction :

Partially Balanced Array (PBA) was first introduced by
Chekravarty (1956) as a substitute for OA, both servirg the purpose
ef fractionel replicates of faoctorial experiments. It has been
shown by Chakraverty (1956) that by considering a PBA in place of
an CA, iv may be possible to reduce the size without sacrifycing
the essential orthogomnlity property of the estimates of factorial
effects satisfied by the corresponding Q4, although estimation uay
be 2 bit more complicated. The definition of a PBA as ccocurring in
Chakravarty (1956) i as follows ¢

APBA/ W, k, s, 4/ of strength d, size N with k constraints
or factors and s levels for each factor is a subset of N treatment
combinations from an sk factorial experiment.with the property that
for any group of d factors (@ < k), o combination of the levels of
¢ factors ( iy 1y eeees 5 iy ) [1j = 0515 weves 521, iy i

occurs A_ . ... . (>0) times, where A, | . remains
1,4, oildg iy iy eeees iy

the same for all permutations of a given set (11, 1y seres s id)
and for any group of d factors. If in the definition of PRA,

A, : is a constant, not depending on the levels 1i,, 1,54+
11 12 tes e ld 1 2

ssevey 1, the resulting array is an Q4.
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Some more arrangements considered in this seetion are

described here for the sake of completeness.
i o Imeormplide Olotk Derigm wn

Pairwise balanced design : ;
which cach o o, Tmesdmcds o touna B o conatondt Macanlion 'ﬂam'f’ﬁg?\,
cheptexr—3. It is called eguireplicate, if each treatment occcurs in
a ¢cnstant mumber of blocks, say r. The parametric notation we
shall use for an eguireplicate pairwise balanced design is ( v k1,
Kyy eevee k5 bys byy eeeen b 3T, A ), where the design has
by blocks of size ki each, 1= 1,2, ..... 1. The total number

1

of blocks b= X bi . An equireplicate triple-wise balanced
i=1

design is an equireplicate pairwise balanced design where any three
treatments occur together in a constant number, say 4 of blocks
and may be represented as the design (v; k1, seeee o kl > b1, hoTe.o

cee 9 by s Ty A, 4 ).

JGeneral PBA's of Strength 3 :

Temna 5.2.1 ¢ The existence of an eguireplicate pairwise balanced
design with parameters (V;kV cere y Ky bi,.“.,@l;r,h .
implies the existence of another pairwise balanced design with
parameters (v 3 vekyy seees V=K 5 Doy eeeis by 3 b -1,
b - 2r +nk) such that the two sets of blocks given by the two
designs together eonstitute a itriple wise balanced design of v
treatments in 2b blocks, with each pair of treatients occurring in

(b = 2r + 2X) blocks and each triplet occurring in {b- 3r+ 3 A ) blocks.
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Proof ¢+ The second design is obtained from the first as follows.

To each block of the first design, there corresponds ao block of the

second design consisting of all the treatmgnts absent in the former.
The parometers of the second design are obvious and hence the number
of times o pair of treatments occurs together in the combined design
is {b - 2r + 2X\). HNow, let # be the mumber of times a given triplet
of trectment occurs together in the first design. Then, the number
of times, the triplet ocecurs togetrer in the second design is

:(b -3r + 3h-{ ). So, in the combined design the triplet occurs

(b - 3r + 3 A) times.

Thecrem 5.2.1 : The existence of an equireplicate triplewise

balanced design with parameters (v; k’, cavea kl 3 b13 sene bl d

~ .3 1
ry Xy ) ond Oh's [pki,y bk, 3/, i=1,2, ciieel,
ol . ol -
" implies the existence of PBA / b3 k?_ b, s %y vy 3/, where
i=1
= mi ®a2o0m® t o -?\ = V. 5 ; 2‘ =
t = min (t1, t2, , bl) nd {id rr, i K Aiij Aiji
A = pAy, Y ifd i A, =8, Fi£ifk.

Jii ijk
Proof : Similar to that of theorem 4.1 of Chakravarty (1961).

Theoren 5.2.2 ¢ The existence of an equireplicate pairwise balanced

design with parameters (v ; k?, ceee kl g b19 sase g bl HEE AT S ),

3 — ¥
or's /p ki s t.s k., 3/ and Q's /p (v - L;i)3, b, (v-k ), 357

€ 1
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: 1
i=1,2, «sovs 1, implies the existence of a PBA [p .2:1&;{ kz +
1z

3 : 1 !
(v - k) 3- y ty v, 3 _/, where t = min (t1, eeer By, By e, t )

and )\iii =pb,i; }\ii;j:}\iji = )\Jiizp(b-2r+22\),
Voidis M=o -3re3h), idiL4x,

ij
Proof : The result follows from lemma 5.2.1 and theorem 5,2,.1,

The following corollary follows obviously from theorem 5.242,

Corollary 5.2.2 The existence of BIB (v, by, ¥y kyA ), A [p ks,
— — ¥ —
tyk, 3/ ond QA /p (v - k)3, t, (v-k), 3/, implies the

existence of a PBA / pb {lé + (v-k)> } y t, v, 3/, where

t = min (t, ‘t' ) and A ~-parameters some as in theoren 5,2,2.

- w0 Level PBA'g i

Iet x and y be two t x 1 column vectors with x' = (x1, o

Sty xt) y ¥' = (y1, sesee yt), where xi ;!yi and xi's and yi's
ere elements in the class of residues MNod 2, Wi. Then, y mny be

called complement of x.

From the definition of PRA, in any t x N submotrix of the
matrix of a PBA /N, k, 2, t_/, the mmber of times & t x 1 columm
vector X occurs depends only on the mmber of 's in the vector and

PR - * 5 A ) 1 B
Oimpressipiie Q8 Renr o rSiueg ¢
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Iemma 5.3.1 ¢ Iet ina t x N matrix with elements in the class

of residues mod 2, which is a PBA of strength t-1, 2 t x 1 column

vector X occur /A times. Then its complement y occurs ¢ + (--l)t M

times, where ¢ depends only on the number of 1's in x.

Proof : The mumber of times y occurs is evidently ¢ + (-1)1: oy

cee (54341)

where
t t
C = N— z N. F o z N, . es tpg s e s
. S i PR S
11-1 1 11,12_1 172
" 1;<5
t-1 N, . .
+ ("‘1) z i 1, eeece 1
i,,i =L SR -1
priprreety 0 ®
11< i, Covw iy,
Where Ni_‘li2 - ik (l1< 12 < XEEE) < lk 9 k = 19290...«, ‘t-1)

Zienotes the number of columns in the matrix with :iLj th element

same as that of x, viz., x W 1m ) ) 25 | aEEsEEN & .

J
The motrix being a PBA of strenmgth (t-1), N

j_,‘iznnoo lk

depends only on the number of X, 's equal to 1, ¥ ij .

3
¢ depends only on the rnumber of 1's in X.

in (5.3.1)

Thus,

Theorem 5.3.1 : The existence of = PBA / N, k, 2, 2p_/, implies the

existence of a PBA _/_—21\15 k, 24 2p+1_7, for any positive integer p.
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Proof : Iet A., a k x N matrix, give the PEA /W, k, 2, 2p /

fnm1A1 by writing 1 for each 0 and O for each 1 in A1. Then,
L = z?h1 : A2_;7 gives the required PBA of strength 2p+1 = %.

The number of times a t x 1 column vector x occurs in any t x 2N
submatrix of A is from lerma 5.3.7, ¢ + (--1_)t B+ po= ¢,

which depends only on the number of 1's in x.

Corollary 5.3.1 : The existence of a PBA / N, k, 2, 2 / with

= N_, one of x; and x, = 1 and the other O,

implies the existence of a PBA /2N, k, 2, 3/ with

~
i
it
]
"
P
I
O

¥N~-3XA,, X

x1x2x 3 1 2 3

oF X, = Xy =3 £

" P G V. |
= N o

3 one of x's is 1,

3 '

others O

or ene of x's is 0O,

others 1.
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Theorem 5.3.2 ¢ An equireplicate pairwise balanced design with v
treatuents, b blocks and r replications, in which each pair of

treatnents occurs together in A blocks; is equivalent to g

¥8A /b, v, 2, 27 with

i

b~2r+X , x, =X, =0

r -~ X, oneof x's is 1, other 0.

Proof : Given the equireplicate pairwise balanced design, suppose
M is its incidence matrix. It is easy to see that M is PBA with

A - parameters given in the theorem. Conversely, let M, written
with elements 0 and 1 give the PBA with the s ~parameters given in
the theorem. It can be gasily shown that M is the incidence natrix
.of an equireplicate pairwise balanced desién with v treatments in

D blocks.

By dint of theorem 5,3.2 and the result b 2 v, already known
regarding pairwise balanced designs, we can state that for a
PBA,Z'E, k, 2, 2;7 with none of the A parameters zero, N 2 k.
APBA /W, N, 2, 2/ is the incidence matrix of a symmetrical

BIEB Design.
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From o PBA of strength 2 with two levels, obtained as the
incidence matrix of a pairwise balanced design, o PBA of strength 3
with two levels can be obtained by virtue of theorem 5.3.1. In

general, theorem 2.1 of Chakravarty (1961) can be improved to include

the following result ¢

The existence of a Tactical configuration in which every

subset of X +reatments occurs together in a constant number of

‘blogks, implies the existence of a PBA of strength t + 1 with 2

levels under the conditions of theorem 2.1 of Chakravarty (1961),

provided 4 i1s an even rumber.

PBIB Design Th®ough PBA :

In this section, the use of a certain type of FBA's of

"strength 2 is indicated in constructing PBIB Designs with three

agsociate classes belonging to a particular type of association
scheme, known as rectangular association scheme. For the sake of

completeness, we describe below this association scheme which was

Tirst introduced by Vartak (1959).

Suppose we have a set of v = mn elements for some integers
n, nn 2.2. Then, we can arrange the v elements in a rectangular

array with m rows and n columns. If two elements appear in the

NG ressio RDCRL h onlimlzatic Ayl arlcia el p el o e ro o TS .
SOAS TOwy Clidko wabll LiX00 Ll H2 WaRITHared eyaltiguen CoEhIon LIS ISoiae!
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column, call them second agsoclates; otherwise, c¢all them third

associates. Then, we have o three class association scheme, with

paraneters

1 ) { i
(pjk) = 0 0 m=1 , (pjk) = L 0 m-2 0O :

!
0 m-1 (a-1){n-2) \n-1 0 (m-2)(n—1),/

'[’ O ‘i n"‘2 \“'.

3 i ]

(pjk) Sl § 0 m-2 }

i

\n2 w2 (w-2)(n-2) /

Theorem 5.4.1 ¢ The existence of two BIB Designs with parameters

1t
vy b1, T k, )\.fl and Vo b2, Ty k, 3\2 respectively and a

FPBA Z_N, Ky Vg 2_7, every two-rowed submatrix of which contains

) 3 i ] 1 -
_an ordered pair (J) v+ A, times, ¥ i=j and }\3 s T4 A,

implles the existence of a PBIB Design with three associote

rectangular association scheme with parameters v = v, v

1 d = ; LA |
S Do e B ;A= AL
A I N PSS I T B R

A 1] [ 1
Ay = )\2 ) >\)3 = }‘.11\.3 ; ny=ve-l, n,=v,el, ngos (vy=1)(v,-1).

-
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Proof : Similar to those of theorems 3.6.1 and 3.6.2.

Non-existence of o BIB Design with parameters Voo b2, Tss
H

k,hz

in Theorem 6.4.1 makes -7\2 = 0 when oy #£ k. When v, = K,

the mentioned BIB con be replaced by a single block design (0, 1, vu..

cees gy k-1) +to make }\2 = 1 in the resuliting design. Other

manipulations as in theorems 3.6.1 and 3.6.2 are also possible in

the case of the theorem b5 4.1,
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. 6. N AND (r, N) - SYSTEMS

6.1 Introduction :

Definitions of A and (r, A)- systems occur in Mullin and
Stanton (1966). A A -System is an Incomplete Block Design in which
each block size is » 1 and each pair of treatments occurs together
in A blocks. Thus, A-system is a pairwise bnlanced design considered
in chapters.B and 5 with the condition added that each block size
is 7 1. An Incomplete Block Design is called an (r,)\) - System if
each ftreatment occurs in » blocks and each pair of treatments
cecurs together in A blocks. An (r,)\)-system is the same as the

equireplicate pairwise balanced design of chapter 5.

A =gystems do not include (r, k)«systems as blqcks congisting
of a single treatment are not permitted in the former, while they
are pernitted in the latter. Iet us consider a larger class of
systeus covering both A - and (r,P\)—systems of Mullin and Stanton

(1966). Let us defire an (n *A) systen as follows :

A collection of b subsets (called blocks) of a set V of v
treatments is said to form a (n *)- system, when the following
axions are satisiied :

I : every pair of treatmenits occurs in precisely 2 blccks

and there is at least one block with block size <{ v.
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I : sum of the block siges giving the total rumber of

design points is ne

Associated with every (n * A )- system there is a sequence
of non-negative in‘teéers B = (b1, bg‘*’ b3, AP ), where bi is
the number of blocks containing exactly i treatments i 2 1 ,¢
bi's being all zero after a cgrtain stage. Also nssocinted is a
sequence oF nop-negative integers (rT, r2, seaeny rv), where ri is
the nuniber Of blocks which contain ith treatment (also called the
replication of the ith treatment), r, 2 XA i=12,0.0.. v, the

ireguality being strict for at least one i.

Cbviously for a {n * A )- system with v treatments

v
2 O, S B odm, e om e oIes (6. Jkd)

il b (;)b.,,. SR & ) S (6.1:2)

An (n * A)- system becomes an (r, A)- system of Stanton and

tullin (1966), when Ty =T, eeses =T =1 . Foran (n * A)- systenm

let us define average replication per treatment as
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5,2 Results on A - and (r, X\ )- systems :

Theorem 6.2.1 : Inan (n *\ )= system with v treactments, the total

no. of blocks,b satisfies the inequality, % 2 -E-* y where

o
o = —(—H 1"-1 + 1 .
x

k Equality implies the system is a BIB Design

with parometers vy by, r=T, k=k_ , A,

« Proof : For an (n ¥\ )- system with v treatments, we hnve

P Bl (6.2.1)

Z i bi = n = v ; o w *ea sas (6.2-2)
i=1
- 15
2 i"b, = Av{v-t)+v T
d 1
i=1
= v T (kom1)+vr
— vi: ko ao LAY + e (6-2-3)

By Ca}ﬁchy - Schwartz dinequality ,

OO
2 2
(= B, F e S E BRI
; i
i=1 i=1 i=1
which on simplificaticn gives
v T n
b _>_ T = k s s PR ) ] (6.2-4—)
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iv/b,
Equality in (6.2.4) implies — 2 - i is comstant Tor all

b,
i

i 2 1, whick is impossible unless 1 takes only one voalue, say ke

In that case b, = 0 for all i Z ¥k and b, =b i.e. kb, =vr

and k2 b, = vrk . Hence, k =5k « This implies that Kk
k 0 § 0 o

mst be a positive integer. The resulting {n * A\)- system with v
treatments is such that there are b blocks, each of same size ko
and each pair of treatments occurs together in precisely A blocks.
Then, by theorem 2 of Mullin and Stanton (1966), the system is a
BIB Design with replication for each treatment T . This implies

aguin that T is a positive integer.

It is to be noted that we did not ossume T and ko to bé
positive integers, but the equality in (6.2.4) implies that they

are S0

Corollary 6.2.1 : Non-existence of a BIB Design with porameters
v, b, r and A, implies the non- existence of a (vr ¥ X\)- system,
with v treatments in b blocks and in particular, the non-existence

of an (r, \)- system with v treatments and b blocks.

Following Mullin and Stanton (1966), we can define an {n * h)»
system to be elliptic, parabolic or hyperbolic according as the

expression M (v-1) -« T { T - 1 ) is negative, zero or positive.
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Thecrem 6.2.2 : A mon- hyperbolic {(n * M)~ system with v treatments

and b blocks is a symmetrical BIB Design if b = v,

Proof ¢ As the (n ¥ A)- systenm is non-hyperbalie,

r(r-1)2 Av-1) cenee veeee (Ba245)

&

b

H
&

oPi‘

11
t
\ <

1

+

3
I~
Hi

St (6.2.6)

Again, the result (6.2.4) with b = v implies

(6.2.7)

H1
-
:
[]
»
L]
L]

k2
o -

From {6.2:6) and (6.2.7), k= T. This implies equality im {6.2.4).
. ! ) ' [
So, the system is a BIB Design by theorem 6.2.1 and it is symmetrical

because b = v,

6:3 lNon- Existence of Some PBIB Desiéns 3

The following result has been proved in Mullin and Stanton(1966):

An (z,N )~ system with b = v is olways o symmetrical BIB

Design e =EaE oy B ENE BleE =6l | BaSe)
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(6.3.1) can be exploited to prove the non existence of certain

PBIB Designs. The procedure is illustrated with o few examples.

Exomples
(1) GD Design with parameters v = 16, b =12, r =6, k=28

A=z, k2 =3, m=n=4 is non existent, because if it exists,

then by considering each group as a blcck and adding 4 such blocks
obtained from the 4 groups to the design, we would have‘got an

(r, A )- systen with 1 =T, AN =3 amd b=v=16. By (6-341)4

the resulting design should be a BIB. Bubt it is not so as there are
+wo distinct block sizes, 8 and 4. Thus, we arrive at a contradiction

and as such the GD Design with the given parameters cannot exist.

By similar arguments the nen-existence of the &D Designs in

{(ii) and (iii) can be established.

12, b

It
{99
o]
fl
NN
=

1§
L)

H]

(i1) ©D Design with parameters V

}\:1,}\ = 2, m= 4, n= 3.

1 2
(1ii) GD Design with parcmeters v =20, b = 6, r =28, k= 10;
A =3, *,=4, m=4, n=5

(iv) L, Design with parometers Vv = 25, b=1, r=6, k=10,
A= i N _ = 4 does not exist, because if it exists then by

1 2

considering each row ns o block and each column ag a block and adding
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these 10 blocks ogtained from rows and columns to the I? Design,
we would have got an (r,)\)— system with r =8, A= 4 and
b =v = 25. Then, by (6.3.1), the resulting design should be a

BIB. But it is not so, because there are two distinct block sizes,

1C and 5 and gs such the I? Design with given parameters cammot exist.

Non-existence of several such PBIB Designs can thus be

established with the help of {6.3.1).

falsity of a Conjecture by ¥Mullin and Stanton :

A counter - example is provided to conjecture 1 in Mullin
and Stanton {1966), in this section. The conjecture states
'"For » £ 2 (and perhaps all A), A (v-1) = r(r-1) implies

v = b if the corresponding design is irreducible’,

Here by 'design' is meant an (r,}\)u system. In Mullin
and Stanton (1966), a design hos been termed irreducible if it
contnins neither a complete block consisting of all v treatments

nor a set of v single treatment blocks whose unicn is V.

The following counter example disproves the conjecture for
A= 2. The example gives an lrreducible (r,l.)m system with r = 4,

A=2 and v=7, 80 that A (v-1)} = r{r~1), but b = 8 . Blocks
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in the system are
(1 2 3 4)
(1 2 5 6)
(s, B A
(1 4 6 7)

(2 34 56 7)), (2 7, (3 6), (4 5).

Similar counter examples can be provided for (r, J\.)- systens

with A > 2. Hence, it ¢an be asserted that the condition
AM{v-1) = r(r~1) is sufficient for an irreducible (r,A )~

system to be a symmetrical BIE Design only when A = 1,
-

-~
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7. ASSOCIATION MATRTCES OF PBIB ASSOCIATION SCHEMES

7.1 Introduction :

The concept of using one or more known Incomplete Block
Designs for the purpose of obtaining a solution to a neﬁ Incomplete
Block.Design is pretty q&é and in particular, the idea oflconstructing
BIBR Designs from Association Matrices of PBIB association schemeg
is originally due to Shrikhande and Singh (1962). Shrikhande and
Singh (1962) cansidered the construction of some series of symmetrical
BIB Designs and all their designs are obtained from associotion
matrices of association schemes cf’two classes. Blackwelder (196§)
considers a more general treatment of the problem and with the help
of his theorem 3.1 which is same as theorem 1 of Shrikhande and
Singh (1962) and theorem 4.1, gives a systematic procqdurve for
sonstructing some more series of BIB Designs from association
natrices fof’association schemeé of two and three classes. 1In the
present chapter, we prove a further generalised version of theorems
3.1 and 4.1 of Blackwelder {1969) and the genernlised theorem is
utilised for constructing some BIB Designs through association
matrices of the available association schemes. It is shown that
some more series can be added to the list of such designs provided
by Blackwelder. The different two an& higher associate association
schemes exploited for the purpose have been listed and described in

section 2 of the present chapter. To illustrate the potentiality
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of the general theorem proved in this chapter, a few BIB Designs

are comstructed from the Righer associate cyclical associantion schemes
of Adhikary (1967), which cover as particular cases the sghemes
propesed by Nandi and Adhikary (1965), and Roghavwn rao

and Chandrasekhorarao (1964). Of the designs so constructed three

are unstlved cases as indicated in the lists of BIB Designs given

by Rao (1961b)and Sprott (1962). Some of the series of BIB Designs
constructed from associaticn matrices have certain additional

properties which can be exploited tc construct suitable series of

IBIE and GD Designs.

Definiti~ng and Notations :

BIB, DBIB and General PBIB Designs along with some associnticn
schemes have already heen introduced in previcus chapters. The
purpose ¢f the present chapter is to give metheds for qEnstructing

Incomplete Block Designs through asscciotion matrices. The association

. schemes éxploited for the purpose are listed and described in the

present section. The list is cobvicusly not exhaustive,

7.2,1 Association Schemes of Two classes :

Association Schemes with two associate classes were studied
extensively by Bose and Shimamoto (1952). Mesner's (1964) 'Negative
Iatin Square Design' and Adhikary's (1969b) 'Paracyclic Association

Scheme! vindicate that the association schemes intrcduced by Bose and
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Shimamoto do not exhaust all association schemes with two agsoeiate

classes.

(a) Group Divisible {(GD) Scheme ™ 4

Already explained in section 3,2 of chapter 3. The same

motations will be used in the present chapter.

(b) Triangular Assccintin Scheme :

Supposey; for some positive integer n, there is o set of
Q = 2 ) elements. Arrange the v elements inann x n array as
follows ¢ TIeave theleoading diagonal positions blank, and fill the
n{n-1)/2 positions above the diagomal with the elemgnts; now Fill
the remaining pesitions so as to make the arroy symmetric with respect
to the disgonale. Define first associates as two elements which appear
in the samg row (eqﬁiValently, the same column) of the resulting
p¥ray; if two elements do not appear in the same row, they are second

associates.

Such an array is an association scheme, called a Triangular

~agsociation scheme. The parameters of the association scheme are:
v = n(n-1)/2, ng= 2n-4, mn,s= (n-2) (n-3)/2 ,

7 n-2 n-3 r / 4 2n-8 \
| |
{ i

\ 2nes (n-4)(n-5)/2 /

s e m o

(pl) = |
ik \n-3  (n-3)(n-4)/2
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From the parametric values, we see that n2 4. The parameters
of the triangular association scheme uniquely determine the association

scheme when n # 8 (Comnor, 1958 and.Shrikhande, 1959 a).

(c) Singly Linked Block (SIB) Association Scheme :

Suppose N' is an incidence matrix for a BIB Design with b
treatments, v blocks, k replications, r block size ard A = 1, Then,
bk 5 vr and b-1 =%k (r-1). This gives v = k(rk - k + 1)/r and

b:l"k—k+1.

It has been shown that in this case N is the incidence matrix
of o PBIB Design with v treatments, b blocks, r replications, k plots
per block, A1 = 1 and ?\2 = 0. Definiting, first associotes as
two treotments which appear together in some block of the derived
PBIB Design, we have o two-class association scheme, colled a singly

linked block (SIB) association scheme, with the following porameters:
]
v = k(rk - k + 1)}/r, n, = r(k-1), n, = (k) (x=1)(x-1)/T ,

/f k-2 + (r—1)2 (r=-1){k-r)

(p;k) = | | |
\‘(r-1)(k-r) (r=1){k-r)(k-r-1)/T/

/' _ "3 T (ke = 1P \\

|

2
(pjk) =K "
rk =r = 1) (k=) + 2(x-1) - k(k-1)/T /


http://www.cvisiontech.com

- 111 -

Por r = 2, the SIB scheme is the sume as Triangular scheme

with n = k+1.

{(a) Iotin Squore and Pseudo - Latin Square (Lg (n)) Associntion Scheme:

Suppose, we have a set of v = n2 elements,; arranged in an
nxn array. Ietting two elements whic'h appear in the same row or
the same column be first associates and two elements which do not
appear together in a row or column be second associates, we can

define an I, (n) or in short L, association scheme.

For 3 { g £ n+l, if a set of (g-2) mitually or‘bhogorlnl nxn
Iatin Squares exists, we can define g Lg(n) association scheme from
the 1 x n array of the v elements in the following mamner. It two
elements appear in the same row or column of the array, or if they
correspond tc the same symbol in one of the (g-2) Iotin sguares,
‘they are first associates; otherwise the two elements are second

associhtes.
For 2 ¢ g { n+l, the Iatin square association scheme Lg(n)

hag the following parometers.

v o= n2, n, = g(n-1), n, = (n—g+1) (n-1) ,

2
1 'f (g=1)(g=2)+n -2 (n-g+1)(g-1) \
\Pix ‘\\(n-g+1)(g-1) (n-g+1){n-g)’ '
4 g. (g-1) g {n-g) \
w2 ) = | —
T K\ g (n-g) (n-g)2+g-2)
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Any association scheme with the porameters of an I.g (n)
association scheme will be called a Pseudo - Intin Sq_uare association
scheme, whether or mot it is obtoined from a set of (g-2) :ﬁuttw.lly
orthogonal Iatin Squares, Shrikhande (1959b) proved that the parameters
of a L, asscciation scheme uniquely determine the L2 agssociation scheme

when n £ 4,

(e) Fegative Iantin Square (NLg(n)) Association Scheme

It has been found that in many cases negative values of g and
n will result in non-negative integers for the Lg(n) parameters.
Mesner (1964) first showed the existence of such ngsocintion schemes.
Substitu‘bing ~g for g and -n for n in the parameters of Lg(n) associs

scheme, we obtain the set of parameters :

v=un, n, = glat1) , n, = (n-g-1) (n+1),
\ / (g+1){g+2)-n - 2 (n-g~1){g+1) \)
(p;k) = L /
\ (n~g~1)(g+1) (n-g-1) (n-g) .
i {;"" g (g+1) - g (ng) \
(%) = |
SR (g% (g2)

Any associstion scheme with the above porameters is called

Fegative Iatin Square (NLg(n)) Association Scheme,
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(£) Oyclic and Pseudo - Cyclic Association Scheme :

Consider o set of v elements, denoted by the integers 0,1,2,...

ceees v=1. Suppcse there is a set D of integers (61,d2,.....,dn )
.

satisfying the following conditicns

(i) the d's are distinet and 0¢dy<v, §= 1925 000ey 1.

(ii) Amorg the n1(n1—1) differences of the form 4, -d, (i #3F;

iy3 = 1y2,00000y ny) reduced (mod v), each of the mmbers d,,d,se.,

occurs @ times and each of the numbere €5 €3 sec-ey € OCOULS g
2

3 91, ©py ewescey €, OFE all the
2

integers 1,254.444, v=1. Clearly, n, o+ 1125 = n, (n,i-?).

times, where d1,d2,....., dn1

(111) The set D = (diydy,eeneny dn1) is such that D = (—d1, ~d, .-

o300 --d.n ) (mod v).
; i

Given the element & (& = 0,1, ¢4sss, v=1}, define its first

associates as the elements @ + d1, 6+ d2 y seves 3 O+ dn1 (mod v},

the remaining (v- n, - 1) elements are the 2nd associates of @. Then

we have an association scheme, called Cyclic Association Scheme, wit.

the following parameters ¢

V, n,]-; n2 - V - n1 CJ 1 3
. A I
/ooa n,~0o-1 % B W - B
' / i \ . / (
I i
.\n‘!-a-‘l nz—n1+oc +1 4 "\n1— B n?—n1+ﬁ -1 7
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Conditions (i) and (ii) only were included in the definition
given by Bose and Shimemoto (1952). Nondi and Adhikary (1966)
.realised the necessity of condition (iii) in order to make it an

asscciation scheme.

It can be shown that GD andmf;mﬁssociation schemes are only
particular cases of cyclical association scheme. Any association
scheme with the parameters of the Cyclic association scheme will be

called a Pseudo - Cyclic Association Scheme.

-

(g) Pora Cyclic Association Scheme of Adhikary (1969p) :

The concept of Cyclic Scheme is generalised to paracyclic

gcheme as follows

Conslider the class of residues Mod v. Call this Abelian
Group G. Iet the v elements of G be divided into t disjoint sets

So’ S1, sreee y By g such that

-
U 5. = G
i=10 +

Let it be possible to select t gsets of elements AO, A1, J0c At-\

fram 1y, 24 esess 3 V=1 where

A, = (d01 s Aop s wesesese g don1 )
A, = (d11 3 Gip 3 eeesanen dm1 )
‘%-1=(%-u1,%-u2,'”'”’ %-unﬂ’
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having the properties,

{i) dij's (3m1,25000us n1) are all distinet for a fixed i ;

i=031g L LB | t"‘"’to

(i1)zz €€5, rna 8+ d,, € Sj(j=3,1, vesey t=1), then -4, € Aj .

(iii) 1If for any element @ € Si (1 ] 6,1, creee 4, t=1), ©+ dike,Sj,

.(j—.—O,?, cvena g t-1), then among the ordered differences that arise
-

by taking the difference of all elements of Aj from every element of

k

Ay (i.e. all possibdle d,

-4, ,), the element d.. should be

31 1
repeated @ times. If for any element € € S5, , 0+ eik€ S;} :
where . x ig any non-zerc element of G - Ai s then among the
ordered differences that arise by taking the differences of all

elements of Aj from every element of Ai, the element eik should be

repeated P times.

(iv) @ and § should be such that

n 0 +n,f = n, (n1-1).

Then, an association scheme can be defined thus: if @ € Si’
the set of first ocssociotes of 6 are & + Ai and the remoining
elements are second acssocintes. Such an associantion scheme has been
termed Paracyclic by Adhikary (1969b). Its parameters are

v n n
) 1? 2
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a n "a — 1 I %,
1 / 1 \\ ;P By~ ® N
e 2 ]
i = - i
n,l 1 ].’]‘2 n1+06+1/ \\ n‘]-ﬁ 112_n1+B _1/
§ PRV &
The observation that any set of\Si's, i %= 057 c000a0ay Bl
t-1 \
with 'Uﬂ 5, = 6 serves the purpose of the association
=

scheme has prompted us tc make this slight modification in the

defimition given by Adhikary {1969b).

It has been shown by Adhikary that Cyclic and Triangular
association schemes are particular cases of paracyclic association

scheme .

Association Schemes of Three or more Classes 3

Rectangular Association Scheme of Vartax {1959) and Generalised
Three Class Association Schemes of Adhikary {196¢ ) have been introduced
in secticn 3.2 of Chapter 3. The higher associate associatlon schemes

relevant for this chapter only are described below 3

(a) Association Schemes from an Orthogonal Array

-1

2 m

Suppose we have an OA [ n, 3 Bi s 0y 2 _7, when n and
i=1

5.'5 (i = 132y weeos n-1) are positive inmtegers such that N 2 o

> Bi< n, n » 2. Consider the n2 columns of the array constituting
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2 : !

n treatments, The n rows of the array are split intc m-1 groups,
the 1st group consisting of the Iirst 51 rows, 2nd group consisting
of the next 52, rowstand s0 on,; the (m—1)th group consisting of the

last B rows. Now, define two treatments ¢ and qD as ith

m-1
associates,; if the cclumne correspending to 6 and 5}9 coincide in
exactly one posiiion in the ith group of Si rows; 1 = 1,2500s00 01,
"The twe treatments are mth associates of each other; if the two
columﬁs do not coincide in any position in any of the (m-1) groups

‘of rowse. Since the orray has strength 2 and index 1, we see that

the definiticn ¢f the associaticn scheme is unambiguous, for two

cclumns of the array can be alike in at most one positione. Then,

we have an m=- class association scheme with v = n2, n, = Bi (n-1),
m-1
j.: 1’2, svedt g m § Where ﬁm = n -+ 1 - z Bi ']
i=1
i :
pii S n-2+(ﬁi-1) (Bi*‘z), l=1’2, LALEL I Me
i ) . ] o
o, o= B, (B, -1 i C = 142) eneeeeay Ml
233 j ( 3 ) ’ ?g d 3 sd <y 3

H
]

i,j 1,2, ssesnn -y My

-

s = By (By-1), 14

l#j#k ; i,j’kz 1,2,..9..., Tle

1l

1
, B, P

k ¥

This association scheme for three classes was given by singh

and Shuxla (1963). The extension to m- classes is obvious.


http://www.cvisiontech.com

- 118 -

(v) Higher Associate Cyclical Association Scheme (Adhikary, 1967) :

Consider an Abelian Group, G. Iet it be possible to decompose
the non unit elements of G into m disjoint sets A1, Az,......, Am
guch that

(1) 6 - {,13 = ) Ai . where A31 = A, , Y j.
: - i=1

(11) A, consists of n, distinct elements, i = 1,2, ..... m,

(iii) Among the By (nj~1) ratios arising out of the elements of Aj’

each element of Ai oceurs aji times; 1 = 1,2,400000, MEB; G=1,2, .00 Mo,
n , :
So, 3 moa,, = n (n -1)

{(iv) Amorg the ny By elements of~Aj % A, the elements of A, are

repeated O §;) times each; J # kK, Jyk = 1,29ee0, m=1; i=1,2,4.0 m.

Identify tﬁe jth associates of any element © as & Aj. Then,

we shall have an association scheme of m classes having the parameters

Vo By 59 o o 0 30 n
/- " s
/ h a&z) a%) a(l)
| ' (1) (4 )
() = ( a12) i 0.523; “;2m) |
\ : ,

Nog G <1> L (5)

LK B BN BN B3N BN a .
\ 1m 2m 3m mi /

s = 1927 ssssvs s Mo
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The elements in the last row and column are obtained from

the boundery conditions relating p;k parameters,

B
Moin Theorem ¢

The following theorem is a generalisation of theorems 341

and 441 of Blackwelder (1969).

Theorem 74341 ¢ Suppose we have an m-class association gcheme with

v treatments, with assoclation matrices Bo = Iv’ B1, B2, sese ey Bm'

Suppose, we have p non-identical sete of indices

Si = -% 1.1, 12, For o l_tl} ’ s 5= 1’2, sesnse Doy

where 11, 12, seses i are ti distinet integers such that

LT

iJ E {1051,2, vsoeelll 2 for :j = 1,2, (R tls m ’ i=1,2’o.o-0 P

L]

-

Then, the necessary and sufficient conditions for € = [fb1= 023 teces

senes | Cp _7 with Cl = :811 + Bi2 seeve Blt y 1= 1,2,...’.0 j¢ N
i

to be the incidence matrix of a BIB Design with parameters v, b, r,

k, N , where obviously b = pv and hence r = pky is that

t. %,
P & 5
,, ik il
) = {.2 Pyi *2 & P i.,} =x> 0
i=1 b j=1 5 %) | & J
Jadt=1

Tor 1 = 1,2; eetsens Mo
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and (ii) A f{v-1) = r (x - 1),
. %
b i

where r = 3 x n,

i=1 j=1 J

Proof : Cisa v xpv matrix with elements Q and 1, where the

columns correspond to blocks and rows to treatments.

Replication for a particular treatment

=  The number of ones in the corresponding row of C.

Now, the mmber of one's in any given row of Ci =0 bn 4.
1

sesee + nit = 1‘11 9 Say, i = 1’ 29 ssnnssse p'.
i

P
S50, the mugber of ones in any given row of C = 2 n =rs=

the replication for each treatment.

Number of times two treatments occur together in the same block
1 . .
= The mumber of times the pair ( 1 ) occur in the two correspondirg
rows of C. Suppose two treatments are 1lth associates of each other,

L =142y, ssese m« Let us consider the two corresponding rows of C

and obtain the two rowed submotrix of C.

Number of times the pair ( 1 ) occurs in the part of the two

rowed submatrix of C obtained from Ci is clearly ,


http://www.cvisiontech.com

1270

Ty t,
i il i 1
DI . o+ 2 X P . = A sa 1= 1.2
. L O = i, 1. + # J = - R P
:_]:1 J J JQ' l.] J; il
\ jsj'=1

Hence the number of times the pair ( 1 ) occurs in the full

two rowed submatrix of C
P
= 3 }\il = Mgy sS4y
=

Thus the necessary part of the theorem is obvious. For the

sufficiency part

condition (i)immiies )\‘ = }\2 cessean = }\m = A

= The number of blocks of C containing any pair of treatments
together, as two treatments in any pair must be ith associates of

each other for some 1.
Se, condition (i) implies C is the incidence matrix of an (ryN)-

system with v varieties and b = pv blocks. Now, in addition,

——“CV”U + 1.
r

condition (ii)implics b = 1}::-1-‘- , Wwhere k =

Hence, by thecrem 6.2.7, the system is a BIB Design with parameters

vy, L = DV, r = pk, ky N\
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It may be noted that equality of block sizes has not been |
assuied in the conditions of the theorem and is implied automatieally
by the conditions, (i) and (ii) of the theorem. So, the theorem
establishes that in any PBIB Design with m associate classi? the

1
conditions (i) and (ii) as stated in Theorem 7.3.1 implics S n =k,
' o 3
=1 7

same, constant for i = 1,2, s.eees Do

In particular, if %, = t2 = seees = tp = 1, then n11 = n21=

S 0 = np and as suchrthe conditions (i) and (ii) of theorem 7«3.1

1
of this scetion implice conditions (i), (ii) and (iii) of theorem
4.7 of Blmckwelder (1969). The other particular case considered in
Theorem 3.1 of Blackwelder ds p= 1. In this case Cis vx v
matrixe 8o, considering the sufficiency part of Theorem 7.3.1,
condition (i) implies that C is the incidence matrix of an (r, A)-
system with b = v. Any such design has been proved to be a symmetrical
BIE Design by Mullin and Stanton (1966). Sc, when p = 1, the condition

(ii) of Theorem 7.3.1 is redundant and is implied by condition (i).

Construction of BIB Designs from Association Matrices ¢

The following BIB Designs which can be constructed with the

heln of Theorem T.35.1 from association matrices c¢f the schemes listed

by Blackwelder are not included in the list of designs provided by him.
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(i) Triangular Scheme : TFor n=4, [-BO + B, _/ is on incidence

matrix of BIB (65 6, 5, 5, 4 )

(ii) Pseudo .~ Cyclic Scheme : For « =P ' 331 i® an inecidence

metrix of BIB (v, v, Ny Ny & L

(i1i) Rectorgular Scheme : For l1=n=4, /B, +B, i B, /
igs an incidence matrix of BIB (9, 18, 8, 4, 3).

{iv} Three - class Scheme ‘frcm an OA ¢ TFor 51 =52 =ﬁ3 = .1_1.3".‘.1
where n £ 2 (dod 3), [Bo + 3B, s Bo + .'32 P B+ B3 _7/ is an incidence

2 2
matrix of BIB ( n2, 3n2, n2+2, 2 ;2' , = ;2 )

And, in general for an m-class asgociation scheme obtained

n+1 . _—
from an OA, when, |31 = ﬁ2 sesss = Bm = =,  1s an integer, say, B .

Vi B, ¢ Byt seess t B _7 is an incidence matrix of BIB (n2, mnz,
-1, B (n-1), B(n-1) ~ 1), Also, £By+By t B +B, 1 cuiinn
B + B _7 is an incidence matrix of BIB (n2, mnz, n +me1 ﬁ (n— )

B (n-1) + 1)4

(v) Bquivalence of a Pseudo-Cyclic association scheme with
1 2
parameters v = 4u + 1, ny =B, = 2u, Pqq = u-1, P4 =1 and

8,41 Dos been established by Shrikhande (1962), 1In fact, for any

< 1 ... -2

asaesintharoechosomitatbosiseoniataaRlassusinns Pof-LCVISION PE Eonijié
<
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be easily shown that writting X = B1 - B2, the inpner product of
any two rows of X is v = 2 ~ 4 p32 + Now for an SIB association
R and consequertly v = (2r-1)° + 1, the imner
product of army two rows of X = By - B, is zero. Hence X becomes
a BOD.» As X is symmetrical, by multiplying the rows and columns of

X by -1 wherever necessary, it can be written as

70 E, .\
f 1y=1 1

X = i i s where Y ig & symmetrical
\ B TR gl

(v=1) x (v-1) matrix with diogonal elements O and off diagomal

elements + 1, satisfying the property

Ty (
= (1) Tean = Ev—1, v-i *

Hence, Y= S(2r-1)2 v+ Now, the egxistence of § o is
(2r-1)
equivalent to a Pseudo cyclic association scheme with parameters
2 1 2
v = (2r-1)%, n, =mn, = 2r(r-1), Piq = r(r-1)-1, Piq = r{r-1) ,
*
which in its turn gives o BIB Design with parameters v = (2r-1)2,

b* = 2(2r—1)2, r* = 4r(r-1), k¥ = 2r(r-1), N = 2r(r=1) - 1 :

as is evident from Blackwelder {1969). Thus, the existence of a

Singly liriked Blodk ossocinkion scheme with ¥ = 2¢ milicsdhe e¥istence
2 2

0f B(pp_1)2 fPlics the existerco of t((2r-1), 2(2r-1)", 4r(r-1),

ovlrat)  2x(pat) - 1),
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Now, we ;ZSSE the following lemma to construct many more
BIB Designs from the associstion motrices of the schemes listed by

Blackwelder (1969).

7 . 7 . i
Temms Te4d.1 Ifl 0(21{-—1) x (21:-_1) : D(zk_,') . (2k-1) _/be the
incidence matrix of an (ryM )= system with r = 2k-1, where each
row of C contains A 1's, each column of ¢ contains (k-1) 1's
hd )o! D ' .
ahd each column of k 1's, then C(2k-1)x(2k-1) 2 D(2k—1)x(2k-1)

: O

E1,(2k—1) 1,(2k-1)

ig en incidence matrix of BIB (2k, 2(2k-1), 2k-1, k, X).

Making use of the Iemma 7.4,1 in addition t0 theorem 7.3.1,

the following series of BIB Designs can be constructed through the

association schemes listed by Blackwelder (1969).

(i) Pseudo-Cyclic Scheme : For v = 4u+l, n, = 2u, p:1 = u=1,

2 f B1 ; Bo " B1 1

p.”u, - 0
1, (qus1) ° 71, (4u+)

incidence matrix of BIB {4u+2, 8u+2, 4u+l, 2u+l, 2u).

(1) Lg(n) Scheme ¢ For n = 2g-~1,

: B + B

1 o 1 is an incidence matrix of
, B 2 + 0 2
1, n 1, n

B ( (29-13%41. 2022108, 1 (221, 2elz.1)s1, 2glea1) ),
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(1i4) ng(n) Scheme : For n = 2g+1, | B : B +3B 1

s 1,1’1 1,1’1 -
is an incidence matrix of BIB ( (2g+1)2+ 1, 2(2g+1)2, (2g + 1)2,

2g(g+1) + 1, 2g(g+1) ).

(iv) Three class Association Scheme from an O4 : For 51 = E%l
B : B B
when n is an odd integer, { 1 o ¥ is an incidence
v B o 0 5
. L 1, n 1y no 2
2 P 2 n2+1 n2 1 8 B n+ 1
motrix of BIB (n +1, 2n, n, 5 s 5 ). For " + poFl S5
. . B1 + B2 B BO + 31 + 82 '
when n is an odd integer E . 0 is a
1, n2 W n2

golution of the same design.

It appe&rs the method of constructing BIB Designs
from Assoclotion matrices described in this section can also be
successfuily applied to the two associate paraéyclic agsociation
schemes (19691)and higher associate cyclical associantion schemes (1967)
proposed by Adhikary. Adhikory's (1969: Jexample of paracyclic associa-

2
tion schepe with v = 16, n, = 6, pg1 = Py = 2 readily provides

a BIB (16, 16, 6, 6, 2) in the incidence matrix B,. But no systematic

1.

attempt has been made in the present thezig to exploit this
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scheme for constructing new BIB Designs. To illustrate the further
pofentiality of the procedure suggested by theorem 7.3.1 and Lemma
7.{.1, some BIB Designs are constructed from higher associate cyclical
association schemes of Adhikary (1967). Three of these Designs were

ungolved as yet, as indicated in the lists of Rao (19611Qand Sprott

(1962).

Exomple 7.4.1 : Consider the group formed by different powers of a

17

when a | = 1,

Let A

(%]

o
~5

o

1

n1 = n2 = n3 = n4 = 4
& 0 2 1 O‘.\ ’.‘,’ 2 O 1 1‘.\
. / . ! / \
i ) 8] O 2 1 :
(p‘! ) = l 2 . L 1 ¥ (P 'k) 3 i i 9
Jk : 101 1 J 12 0 1 /
\'\O 1 1 2/ \1 1 1 1/'
A o B jo 1 2\
\ f ‘ | ‘
i 1 1 1 1 %
. {12 0 1 (Y - 2 \
(?jk) Sl T I ’ pY'd T )
\\ 1 o AR 35 \ 2 1 6 ©
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'I‘l;e distinet solutions obtained gre

(1)

(i1)

(i1i)

(iv)

Example 7.

when n13

Let

17h1 t By 3 By B4_;7 is an ineidence matrix of

BIB (17, 68, 16, 4, 3 ).

Z-B,l +B; : B, +3B, _/ 1is an incidence matrix of

BIB (17, 34, 16, 8, 7 ).

ZTBO + B1 v B+ B, ¢ B0 + B3 ! BO + B4.;7 is an inecidence

matrix of BIB (17, 68, 20, 5, 5 ).

I . "’I
i B2 + B-4 H BO + B2 + B4 ;
| 'f is an incidence maotrix
LBy, 47 %, 17

of BLB'(18, 34, 17, 9, 8). This is indicated as an ungolved

case in Sprott's list (1962).

4.2 : Consider the group formed by diiferent powers of a

=1,

Ay 1 oa, 12
A, a2, a”
A3 . a_?;., é]t10
A4 i a, ag
A5 H a5, a8
AL 0 a.6, aT.
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Then the parameters of the 6-clags association scheme are

\

70

S - O
- O O
o O O
o o T«
S~ O
]
P
2
o ™
2y
g
o O O
o O
o ~— O

1/

o O O O — O
- O O O O
o - O O O
o QO - O = O

I

—~——

o

<3 T

o

p—
e
O O - = O O
S e OO - O
- O O O O
S O O O O e
- O O O ~ O©
o~ O ~ O C
,..:..,rrlll.ls...\\\\

1

P

A

[Aa Wik

=1

p—

32 + B5 + B6 __7 is on incidence matrix of

(i) /B, + By + 3B,

BIB (13, 26, 12, 6, 5).
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2 2

E ' is an incidence

L r .
(11) | B, +By +Bg i B, +B,+B +B ]
!
|
L 1; 13 'l

9, 13

matrix of BIB (14, 26, 13, 7, 6). This design is missing in

Rao's list (1961p)of BIB Designs with r = 11 to 15.

Exomple 7.4.3 ¢ Consider the group formed by different powers of a

when an =, 3

10
et A1 t  a, a A4 : a.4, a7
2
A, ¢ 2y a9 A5 : a5, a6
Ag ¢ a3, a8

Then the parameters of the 5 class association scheme are

4

= 1e 2 n3 = B, = n5 = 2
g % @ © 0% Z1 o om0\
[t o 1 0 0 f 0= et o= B dg W
1 2 B 11
(pjk) \ B 1 0 | (pjk) |10 0 0 1
Vo 0 1 0 1 / '\'O il @ | O i
o o0 @ F 7 // @ B gy
[fa & o6y i a \ ‘000 1 0 1\\
{1 0 o o 1) / 6 ® 0o © %
)= 0o 0 o o 1 ; Gr)= 11 0 o 1 o
pjk = .‘:‘ L ¥ pjk ‘: {
\\ d8 8,0 =0 L0 0 1 0 o0 }
0 1 1 0 0 A g E e dy
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e o B B oaN

{ 0 o 1wt o |

5 =k ;
py) = {0 1 1 0 0§ .

V1 1 0 o o/

\ .

‘1 0 o o of

(1) th1 + B3 t B+ B4 B, + B3 t B, + B5 : B4 + 35_;7
is an incidence matrix of BIB (11, 55, 20, 4, 6). This design

is indicated os en unsolved case in Sprott's list (1962),
(11) /B, + B, + By + By+By+B & By +3B,+ Bjﬂvz
By + By +B; : By + B, + 35_d/ is an incidence matrix
of BIB (11, 55, 25, 5, 10).

Construction of PFurther Series of BIB, DIBIB ard GD Designs

The series of BIB Designs obtained with the help of theorem

7+3.1 (in some cases alorng with lemma 7.4.1) from association motrices
have got certain properties which can be exploited to construct
further series of BIB Designs, series of DBIB Designs and GD Degigns.
We first state and prove some lemmafs from which series of BIB and
IBIB's would follow. Of the lemmas that follow, 7.5.1 and T.5.4
have already appeared as lemmns 2.6.71 and 2.6.2 respectively in
Chabter 2. Here, they are restaved along with the other related

lermns only for completeness.
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Lemma 7.5¢1 ¢ If N is the incidence matrix of a BIB Design with

parameters v = b = 4t-~7, r =k =2t, A=t andi ¥ = Evv - N
is the incidence motrix of its complement, then

-

=

N
M, = 0

is the incidence matrix of

e

I
0
i
i
i

e

v 1v |

a DBIB Design with porameters v = 4t, b = 8t-2, r = 4t-1,

k=2t, A=2t-1, g=t-1s

Proof : at M, is a BIB Design was proved by Bhat and Shrikhande

(1970). That it is also a DBIB can be seen easily.

Iemmo 7.5+2 ¢+ If N and N are as defined in lemmn 7¢5.1, then

1 e = 1
] . . H
WMeg = i) : N t 0, | is the incidence matrix
2 ‘V‘1 'i
{
| Byy 8 Oy ¢+ O 1

of a symmetrical BIB Design with parameters v = b = 8t-1, r = k = 4t-1,

A= 2t-1. This result was proved by Bhat and Shrikhamde (1970).

Arguing in a manner similar to that of Bhat and Shrikhande (1970),

we have the following lermas.
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Temma T+5.3 ¢ If N is the incidence matrix of a BIB Design with

parameters v = 2t+2, b = 4t+2, r = 2t+1, k = t+1, A=1t;, then

.

is the incidence

matrix of a BIB Design with perameters v = 2t'+2, b = 4t'+2,

r=2t'+1, k= t'+1, A =1t' where t' =2

" By repeated applications of the some lemma, the existence of
a BIB (2t+2, 4t+2, 2t+1, t+1, t}, implies the existence of a series
~of BIB (2t'+2, 4t'+2, 2t'+1, t'+1, t! ), where t' = 2pt+(2p—1)

for p = O or any positive integer.

Temmna T«5.4 If ¥ is the incidence matrix of a BIB Design with

as

porameters v = 2842, b = 4142, r = 2t+1, k = t+1, A= %, then
B, = /N T _/ is the incidence matrix of a DBIB Design with

parameters v = 2642, b = 8t+d, T = 4t+2, k= t+1, A = 2t, 4 ==l

Hence by utilising lemma 7.5.3 along with lemma T5.4, the
existence of o BIB (2t+2, 4t+2, 2t+1, t+1, t), implies the
' 2t
existence of o series of DBIR (2t'42, 8t'+4, 4t'+2, t'+1,) t%1),

where t' = 2Pt + (2p_ 1) for p =0 or any positive integer.
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Lemma 7.5.5 ¢ If N is the incidence matrix of o BIB Design with

parameters b = 2v = 2 (2t+3), r =2k = 2 (t+1), A = t, then

i }
f N N Ev1 : EVT}
MS = N i1 N . Ov1 8 Ov1 is the
|
By b TR 0.

incidence matrix of o BIB Design with parameters b = 2v = 2(2t'43),

r=2k=2 ($'+1), AN =1t' with t' = 2t+2.

By repeated applications of the same iemma, the existence of
o BIB (243, 4t+6, 2t+2, +t+1, t), implies the existence of =
series of BIB (2t'+3, 4t'+6, 2t'+2, +t'#1, t'), where %' = 2Pt +

2(2p—1) for p = 0 or any positive integer.

Lemma 7.5.6 ¢+ If N is the incidence matrix of o BIB Design with

parameters b = 2v = 2 (2t+3), r = 2k = 2 {t+1), A = t, then

=

is the incidence maotrix

¥l
|

|
3 |
LB ¢ Ol

of o DBIB Design with parameters v = 2t+4, b = 4(2t+3), r = 2(2+3),

k= t42, A= 2t42, 4 = t.
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Hence by utilising Iemma TaS;SW“EEPeatediy along with Iemma
7.5.6, the existence of a BIB (2t+3, 2(2t+3), 2(t+1), t+1, t),
implies the existence of a series of IBIB (2t'+4, 4(2t'+3), 2(2t'+3),
t142, 2t'+2, t'), where t' = 2Pt +2(2P-1) for p =0 or any

pogitive integer.

A. Serieg of BIB and IBIB Designs from Association Matrices

(a) From Blackwelder (1969) and Shrikhande and Singh (1962), it
is known that if a Singly ILinked Block Scheme exists for k = 2r+1,
the matrix B1 for the scheme is an incidence matrix for a
BIB (4r2— 1, 4r2_1, 2r2, 2r2, r2). Hence, applying lemma 7.5.1

and 7.5.2 repeatedly, the exisience of a linked block scheme Ifor

2 2
k = 2r+1, implies the existence of a series of DBIB {2°7F. r%,
2 7 1 2 Mg 2 2
SR, Fum TP i 2 TR, gty BVE !ﬁ1, 2P, ru 1)
: 1 2
and a series of BIB (22+p. r2»1, 22+p_ r2-1, 21+p_ r2, 2P 5

oF, r2) for p =0 or any positive integer. That these two series
2 2 2 2 2

are implied by the existence of BIB (4r =1, 4r -1, 2r°, 2r°, r7)

is quite well known from the property of H matrices and particularlty

from Bhat and Shrikhande (197C). The purpose of mentioning them

here is only to indicate their construction from Association Scheme
matrices.

(b) Blackwelder (1969} has shown that for a number of two-class

associstion schemes under certain conditions, /B, : B, _/ 1is on
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ineidence matrix of a BIB Design with parametérs of the form
b= 2v = 2(2t+3), r =2k =2 (t+1), A= t.

The result also follows from the generalised theorem 7-3.1 of this
chapter. From this result we get the following additiomnl series,
usirg lemmns 7.5.5 and 7.5.6. The existence of o series of BIB(2t'+3,
46'46, 2t'+2, t'+1, t' ) and a series of DBIB (2t'+4, 4(2t'+3),
2(2t'43), t'+2, 2t'+2, t') with ' = 2Pt + 2(2P-1) for p =0

or any positive integer, is implied by the existence of any of the

following

(i) a Pseudo-Cyclic scheme with parameters v = 4u+iy n,= 2u,

p:1 = u-1, p§1 =u, for % =2u-l.
2
(ii) Ié(n) Scheme with n = 2g~1, for #‘t 2g° - 2g - 1,

' 2
(1ii) NIg(n) Scheme with n = 2g+1,for t =28 + 2g = 1,

(¢) By utilising Lemmn 7.4.1, it hos been shown in section 7.4
that for a rumber of two-clasgs associntion schemes under certain

B1 : BO + B1

conditions {_E1v . o

is the incidence matrix of a BIB
v

Design with parameters of the form Vv = 2142, b= 4t+2, 1 = 2%+1,
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¥ = t+t, A= t.: From them we get the following series, using
lermas  7+5.3 and 7.5.4. The existence of a series of BIB {(2%'+2,
442, 2t'H1, 4'+1, tY) ané o series of DBIB (2t'+2, s8t'+,
4t'+2, t'+1, 28', tL) with t' = 2Pt + (2P-1) for p =0 or
ahy positive integer is implied by the existence of any of the

following

(i) Pseudo = Cyclic Scheme with parameters v = 4u+l, n

1

Pay =u, for t = 2u.

2
= Uil Pagg

(ii) Ié(n) Scheme with =n = 2g-1, for 1t = 2g(g-1).

(i1i) NIg(n) Scheme with n = 2g+1, for t = 2g(g+1).

-

B. Series of GD Designs from Association Matrices @

Obviously by omitting same particular blocks in the series
seetion .
of BIB Designs obtained in the present/through lemmas 7.5.1 to 7.5.6,
we get some series of correspondirg GD Designs. But the procedure
can be generalised and we can construct infinitely many GD Designs
from association matrices of the known PBIB schemes. For constructing
series of GD Designs from the same association motrices as used in

the construction of the series of BIB and DBIB Designs already

considered, the following lemmas may be made use of.
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Lemma 7.5.7 ¢ Let there exist OA_Zfb. 22, Sy 2, 2 ;7 and let N

be an incidence motrix of o BIB Design with parameters v = b = 4t-1,
[ =

r=k=2t, A=t, Writing N, = | =.
; * O1v%

and M7 as the matrix
obtained from the CA be replacing each 1 in the array by the matrix
N, and each O in the orray by ¥, M, is the incidence matrix of

o GD Design with parameters v = 4st, b = 4p(4t-1), r = 2p(4t-1),
k=2ts; M =2p(2t-1), A, = p(at-1), m_—;-s, n = 4t,

Lemma 7.5.8 t+ Let there exist an 04 / p. 2 s, 2, 2 7 and

let N be the incidence matrix of a BIB Design with parameters
v o

b =2v=2(26+43), T =2k =2 (t+1), A= 4. Writing N, =
E
1

BT

b
and Mé as the mairix obtained from the OA by replacing each 1 in
the array by the matrix N, and each O in the array by ﬁ1, M, is

the incidence matrix of a GD Design with parsmeters v = s(2t+4),

Hi

b= 8 (2t43), 1 = 4p(2t+3), k = s(t+3), ?\1 = 2p(2t+2),

A = 2p(2t+3), m

2 Sg n= 2t+4o

il

The proofs of the lemmas are easy and hence omitted. These
lenmas can be utilised for obtaining a large mumber of series of GD
Designs from the some association matrices for the association schemes
under the same conditions as utilised already in the conmstructicn of

the series of BIB and DBIB Designs in this section,
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Construction of series of GD Designs with the help of the
incidence matrix of o BIB Design with parameters v = 2142,
b = 4t+2, r = 2t+1, k = t+1; A = t; has been considered

extensively by Rao {1970) and hence is omitted here
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8, PROPERTY OF NEAR RESOLVABILITY

8.1 Introduction :

In th?s chapter, we give a method for constructing Incomplete
Block Designs with the help of a known solution of some other
Incomplete Block Design, which satisfies a certain property termed
by us as mear resolvability'. The method of construction given in
this chapter is a generanlisation of the procedures suggested by
Shrikhande and Raghava rao (1963) in connection with resolvable
incomplete Block Designs. The required properiy of 'near resolvability!

can be defined thus :

An equireplicate Incomplete Block Design with v treatments
and b blocks will be called nearly resolvable, if the b blocks of

the design can be divided into a number, say s of sets such that
(i) the treatments in any particular set of blocks are all
distinct,
(i1) each set of blocks contains a constant number of treatments,
and (iii) for each pair of treatments, the number of sets of blocks

in which at least one is absent is a constant, say p.

A near resolvable design becomes resolvable if p = O. Thus,

nea~-resolvability includes resolvability.
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e

¥oin Results ¢

The main results of this chapter are c¢ontained in the following

theorem and the subsequent corollaries.

Theorem 8.2.1 ¢+ Let there exist a 'near-resolvable' PBIB Design
with 1 associate classes with parameters v, b = ms, Ty k1; n1,n2,...

i =
2 e n Ill ] A.A]’ )\.2 b L ) ,}\,1 and (pjk) ¥ 1,J,k = 1,2,.-0.., 1

such that the b blocks can he divided into s sets, each set consisting
of m blocks and contalning mk, distinet treatments and the mmber of
sets of blocks in which at least cne of any pair of {reatments is
absent is p. Suppose, a GD Design also exists with parameters mk1,
b2, Tos k2 : A% ,'xé s Iy k1. Then, there always existé a PBIB

Design with 1 associate classes with parameters v, b = b_s; T = r,r

2 127

pul . 1 i - 1 - ¢
k= k,5 1, Aik1+(s A p)}\z, i= 1,2, veees 1 and

i A r
(pjk y 1sdsk = 1,2, sviee 1o

Proof : Prom the conditions of the given PBIB Design, a set of n
blocks out of the & sets as indicated in the theorem gives a division
of mk1 distinet treatments into m groups of k1 treatnents each.
Hence, & GD Design with the given parameters can be obtained from

ony such set, where (i) if two treatments occur together within a

1
block of the set, they will be occuring together in K1 blocks of

the GD Design obtained from the set, (ii) if two treatments are both
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present in the set, but occur in different blocks, they will be

occurring together in )\é blocks of the GD Design, and

(iii) if at least one of the two trééfments is absent in the set,
the pair dces not cccur together in any block of the GD Design

obtained from the set.

Now, let such a GD Design with the given parameters be
constructed for each of the s sets of the given PBIE Design. If
two treatments are ith assocciates of each other in the given PBIB,
they occur together in a block in Ki of the s sets of blocks, in
p sets at least one of the treatments is absent and in the remaining
(s - Ki - p) sets, both the treatments are present, but in separate
blocks. Thus, when all the s GD Designs obtained from the s sets
of blocks cre considered together, any two treatments which are ith
associates of each other in the given PBIB, occur together in a
block }\'1 times in X, Of them, )\'2 times in (s - }\i - p) of them
and in the remaining p GD Designs, they do not occur together at all.

- + 3 YL - - o Tl
So, the two treatments occur together in A, A} + {s N p) A
blocks of the Incomplete Block Design obtained by the juxtaposition

of s GD Designs already explained, i = 1,2; «eeee y L.

Moreover, each treatment occurs in exactly Ty sets of the s
sets of blocks cbtained from the given PBIB Design ard hence in r1r2
blocks of the resulting Incomplete Block Design, obtained by a juxtapo-

L LA T R s . 3
scbriotessidh. UER sveliihResisnashs Srddaiaess
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Hence, the resulting Incomplete Block Design is the required

TRIE as described in the emunciation of the theorem.

The theorem 8.2.1 will remain true when 33 = 12 eene = Al =N

and any association scheme is redundant there. Thus, we have

Corollary 8.2.1 : Let there exist a near -~ resolvable BIB Design
with parameters v, b = ms, T k1, A such that the b blocks can

be divided into s sets, each set consisting of m blocks and conteginyg
m ky distinct treatwents and the mumber of sets of blocks in which
ot least one of any pair of treatments is abéent iz p. Suppose, a
GD Design also exists with parameters mk1, b2, oy k2 ; A% . ké g
my kg o Then there alwoys exists a BIB Design with parameters

t
- = = X = ! %
v, b=bysy, T=r, T, k=k,> AlT (g -2 p).hz

2

Certainly the theorem 8.2.1 and Corollary 8.2.1 are true
when the given PBIE or BIB is resolvable. In those cases p =0

and 8 = Ty

A very well known result in the construction of GD Designes

ig stated in the form of a lemma as follows.

I
A

Iemmg 8.2.1 ¢ If o BIB Desgign with parameters v = m, b2, Ty k2,zn
exists, replacing each treatment in the Design by a group of k1

treatments, o GD Design is obtained with parameters v = mk1, b2, T
t 1

1 3
k2 Bk k1 k? H }\.1 = I‘,), J\.? = }\, Hl, k_!o
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Hence, by Iemmo S.2.1 and the fact thot near resolvability
includes resolvability, the two theorems of Shrikhande and Raghavarao
(1963) can be cbtained as particular cases of the theorem 8.2.1 and
Corollary 8.271. But the GD Designs in theorem 8.2.1 and Corollary
8.2.1 can exist in various other ways than the one suggested by
Temms, 8.2.%1. Also, there. exist near-resolvable designs which are
not resolvable. So, the results of this section are more general
than those of Shrikhonde and Raghavarao (1963). To illustrate the
use of theorem 8.2.7 and Corollary 8.2.1, the problem of construeting
scme series of BIB and GD Designs through them is taken up in the

following section.

Congtruction of BIB and GD Degigng :

8.3.1 BIB Designs 3-
(i) The problem of construction of BIB Designs from Association
liatrices of the known PBIB Association schemes has been extensively

-~

considered in chapter 7. Tor the i class asscciation scheme obtained

11

from an QA, it has been observed that if 51 = 52 = sees = 6t ST B

an integer, say B, /B, t B, t «.... t B/ is the incidence

motrix of o BIB Design with porameters v = n°, b =t no, * = no=1,

k= B(n-1), 2= g{n-1).~ 1. The t . blocks of the BIB so
2
constructed can be divided inte n sets of 1 blocks each such that

the t8 (n-1) = n2- 1 treatments in any set of blocks are all distinct
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2
and for any two out of n treatments, the number of sets in which at
least one is absent is a constant, viz. 2. So, the BIB so-constructed

is 'mearly resolvable'.

Now, suppose a GD Design also exists with parameters v = t.B(n-1)
=n -1, by Ty Ky 5 A SN, 5, B (n=1)s By Corollary 8.2.1, we
can then always construct a BIB Design with porameters v = n?,‘

2

b=b,n, r=r, (n2-1), k = Ky }\,:(ﬁ(n-1)-—1)N1+(n2—

B (net) - 1) M .+ In particular, the existence of a BIB Design with

1 4
arameters v = t, b,y r,y, k. , A along with the BIB Design given
P 27 T27 2

by /By t By ¢ weee. t By 7 will in accordance with lemma 8.2.1
imply the existence of a BIB Design with parameters v = n2,

b = b, n? y I =T, (1‘12- 1), k= k, = B (n-1). ké y M= (ﬁ(n—-1)-1)r2

+-(112 - B{n=1)-1) N

Example : For v =9, taking B, =B, =P 1 in 4-associate

ST -

association scheme obtained from an O, 1B, By s B, : B, 7 is
the incidence matrix of-BIB Design with parometers v = 9, b = 36,
r=8, k=2, A= 1. Now, there exists a GD Design with parameters
v=8, b=6, r=3, k=4, N =23 }“2=19 m=4, n=2
{Bose, Clatworthy and Shrikhande, 1954 ), Hence, we can construct a

BIB Design with parometers v =9, b =54, r =24, k=4, A= 9.
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(1i) If th+! dis a prime power and x is a primitive root of GF(th+1),

then the t initial sets

144 i+2t i+ih-1)%
(X gy X ’ xl+ Py ssdsnansn g X ( ) ),

i=0, 1, 2, L ’t-.‘,
Torm a difference set for a BIB Design with parameters

v = th+l, b=t (tht1), r =th, k=h, A= h-1s

From the construction method, it is clear the BIB Design is
neor resolvables. The b =t (th+1) blocks of the Design can be
divided into (th+1) sets of t blocks each such that each set
contains th distinct treatments and the number of sets of blocks
in which at least one of any pair of treatments is absent is 2.

S0, if in addition to th+! being a vrime power, a GD Design with
parameters v = th, by, Iy X, 3 A; ’ A; y t, h exists or in
particular a BIB Design with porometers v = t, b,y T,y ké, 5 exists,

there will exist a BIB Design with parameters v = th+1, b = bz(th+1),
'

1
1t h (t'1))§ (in the second case

r=r, thy k=k,, A= (h-1) A

t ¢ 1 v
k2=k2h, }\-1=1‘2&1‘1d }‘-2=-}\-)-
(1i1) From Bose (1959), it is known that if s is a prime power, there
always exists a resolvable BIB (ss+1, s+1, 1)» FHence, by ccrollary

3.5.2b, if 5 and s+1 are both prime powers, there exist a series of
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resolvable BIB's ( (s3+1)(s+1)n, s+Ty 1), n =0 or any positive
integer. Then, series of BIB Designs can be obtained from these

resolvable BIB's, exploiting Corollary 8.2.1.

(iv) From Bose and Shrikhande (1959), it is known that there always

m-1

exists a resolvable BIB (27! (2%-1), ™7, 1), =2 2. Hence, by

Corollury 3.5.2b, there always exists a series of resolvable BIB's
n{m=-1 -1 8
(2 (z-1) (2"-1), 2", 1), m2 2, n> 1. Kow, series of BIB

Designs can be obtained from these resclvable BIB's, exploiting

corollary 8.2.1.

Be3.2 GD Designs :-

We give below methods of obtaining some series of GD Designs
with the help of theorem 8.2.1, These Designs cannot be constructed

by the method suggested in §hrikhande and Raghavarao (1963).

(1) A resolvable GD Design with parameters v = s{s-1), b = s2,

r=s, k=s-13 h1 =0, A =1, m=s-1, n=s always exists

when s is o prime power. If, moreover ﬁs—i) als¢ is o prime power,
there exists an GA éT(s—1)2, s, s-1, 2.;7 and hence a GD Design

with parameters v = s(s-1), b = (s-1)2, r=s-1, k=s; 11 = 0,

Az =7, m=3s5, n= 81 exists by Corcllary 3.5.3b., Hence, applying
theorem 8.2.1, the GD Design with parameters v = s(s-1), b = s(s-1)%,
r = s(s-1), k = s A1 = g, 32 =g~-1, m=s~1, n=s8 always exists

when both s and (s—1) are prime powers.
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(1) If (s+1) is a prime power; there alwoys exists a resolvable
6D Design with porameters v = (52—1), b = (s+1)2, r s s+l,
k=s-1 N=0, X =1, m=s-1," n=s+l by Corollary 3.5.3b .
Now, if s is a prime power, the series of GD Designs with parameters

v=b=g8g-1, r=k= 858; A = 0, 32 =1, m=8+1, n= g-1

.always exists (Raghavarao, 1971). Hence, a GD Design with parameters

2
s -1, b = (S+1) =} -1), T o= S(S+1), k = 83 }H = 5+1, }2 = S,

i

v
m=s-1, n= s+l always exists when s and (s+1) are both prime

powers, by theorem 8.2.1.

(1ii) A GD Design with parometers v = b = 54—5, r=k= 52;

Aﬁ = O, 3? =1 m= 32+s+1, n = 32-8‘ exists for s a prime power

(Raghavarao, 1971). Now, if (s2f5+1) too is a prime power, there
exists a resolvable GD Design with parameters v = (sz—s)(32+s+1) =
54'35 b = (32+S+1)2: r = 52+s+1, k= 32-3; }ﬁ = Ok Kz = 4%
m=g -8, = s2+s+1 by Corollary 3.5.3b. Hence, by theorem 8.2.1,

there always exists o GD Design with parameters V = s -s, L “(s -s)

2 2
(52+s+1) , T = 32(s2+s+1), k=8; h1 = 5 +8+1, AQ = 52+s,

2 2 2
m=s-s, n=s+s+l, when s and (s"+s+1) are both prime powers.

-

s2(sz+s+1), r=K =

[

(iv) A GD Design with parometers v = b

1 2

2 . '
power (Roghavarao, 1971). Now, if (s” + s + 1) is a prime power,

2 . .
s(s+1); A= Sy A = 1, m= 82+s+1, n=gs8 exists for s, a prime

the-e exists a resolvable GD Design with parameters v = 82(52+s+1),
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2 2
={g+s+1), k=83 k1 = O W, i,

o’
"
—
/7]
+
n
+
—
~—
]
-
H

m + 1 by Corollary 3.5.3b. Hence, a GD Design

i
153
fa
i
w
+
0

with parameters v 32 (32 +s8+ 1), b= 52(52 o 15Ms 1)2,

i

r =135 (s+1) (s2+ s+1), k=85 (s+1); kT = s2_+ s + 1,

Az = 52 + 28, W= sz, n= s2 + 8 + 1 exists, when both s and

(52 + 8 + 1) aore prime powers, by theorem Be2as
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9« MISCELLANEOUS METHODS FOR CONSTRUCTING INCOMPLETE RLOCK DESIGNS

Introduction :

In all the chapters so far, we have considered methods for
constructing Incomplete Block Designs. In the present chapter we give
sorie more methods. In the section 9.2, is given a method for
constructing two series of PBIB Designs with (i) D and (ii) Rectangular
associntion scheme. In the section 9.3, is considered a method of
constructing Incomplete Block Designs through S, ¥ and allied matrices.
In the section 9.4, the paracyclic asscciction scheme of Adhikary
(1969b) is generalised to three or more associate classes and a method
is given for constructing PBIB Desgigns with higher assoclate paracyclic

association schenes.

9.2 Two Series of PBIB Designs with (i) GD and (ii) Rectangular Association

_Schemes. ?}

In this section, we prove the existence of

(i) a series of GD Designs with parameters v = s(s=1)/2,

b = 32/?, r=gs, k= s8-1; A1 = 0, lg =2, m=g=-1, n=s/2;,

when s = 2pj P e

and (ii) a series of PBIB Designs with rectangular association

scheme with parameters v = b = s{s-1)/2, r = k = a-1; l1 = 0,

A

gl = 0, AB =2, n, = s—1, n, = (s—3)/2, n3 ES (s-1)(5—3)/2, when

& is an odd prime power.
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Scme preliminary results which will be required in the proof
of the main results are considered first.

Iet s be a prime power and GO =0, ¢, =1,0
be the s elements of GF(s).

Let s(e~1)/2 treatments be denoted by the unordered pairs

(Oc 7O£y )9 X?‘(Yv

XY = 01,2, aenee , (s-1) eoo (9.2.1)

.
- --"--\,\lr“ i S

and (axyay)-: (ayyax): X £y J

It is eogy to see that the following lenmas hold for the

EIememS O‘,‘O, (x.]g sesne g 028_1 Of GF(S).

zoc|+05.on,,
x iy

Temma 9.2.1 @ If for any o, £1, @+ o ay

then either ax = mx, and ay = ay' or Ot ay) £ ( ax,,cxy, )
where the pairs represent the treatments defined in (9.2.1)

Iemma S.2.2 ¢+ @+, & = o , + 0 o  implics O+ a'1 o, =
X 10y x! iyt ¥ i x

-1
o o a .
tag o, forall « # O

g

-1

Lemma 9.2.3 : For all &, £ +1, o«

£ oo # 21,

Lenma 9.2.4 3 For any fixed O, # +1 and O, there exist (s=1)
distinct treatments ( s ay) as defined in (9.2.1) satisfying the

ion a_ + O, « = i e
equatio - 5 ¥ i
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Proof of Iemma 9.2.4 follows obviously from the lemma 9.2.1

«

and the fact ai Z wli

Case 1. s = p > 1.

s elements of GF(s) can algo be written as ao =

Os CC—’],

- -1 -1
BT’ 32, srensas 5(5_2)/2 ] ﬁ1 ? Bz g essas B(S—Z)/Q .

Let the treatments be as defined in (9.2.1). Iet s/2 sets

of 8 blocks each be constructed as follows ¢

(a) jth block in the ith set consists of all the treatments

( ax’ ay) satisfying the equation

Y

aX+Bi ay = (xa 1 i—_- 1,2, sersey (8*2)/2

330,1, svasay (8'1)

(B) jth block in the s/2 th set consists of all the

treatments ( L ay) sotisfying the equation

O +0Q O = &, , 3=0,1, eassey (3=1)

|
i

{(9.2.2&)
!

?

i (9.2.2b)

L

Theorem 9.2.1 ¢ The blocks in (9.2.28 cxd b} give & €U Design with

porometers v = s(s-1)/2, b= 32/2, r =gy k= s-1;

A, =2, m=sg-1, n=s/2, when s = 2p9 p 2 te

A, = 0,


http://www.cvisiontech.com

- 153 =

Proof : By lemma 9.2.4, each block in (9.2.2) contains (s-1)

treatments all distinet and by lemma 9.2.3 no block is repeated.

(i) Iet us consider any swo distinct treatments ( a1 a,) and

s where %, % , &

o (/3 (th & a «
y,)with x+¢,‘{ L g ¢y

<t ? y!
and ay, are all distinct elements of GF(s). Then, by lemma 9.2.2,
there are two distinct Bi's and hence two sets in A such that

the two treatments occur together in a block once in each of these
two sets. These two treatments cannot obviously occur together in

any block of the get in B.

(i1) Iet us consider two distinct treatments ( oy ay) and

( Bz 18 oy ) with @ + ccy £ Ot + Uy s where exactly one of

xt

®_ and @ is identical with exactly one of & _, and & , .
x y x ¥

Suppose, without any loss of generality, & = ax' and cxy # ay' s
then becsuse neither of the equalities o+ B, ¢ = a_ + B, o
x iy x iy
a4 o4 = o i i
and & + Bi o i B, &, is possible for any Bi and only

=, +B, &, and & +P o

. 5 4 04 &
either of the equalities % + B, ¥ i x ¥ i X

Nl

= 0 + Bi @_, is possible for exactly one E’i y it is proved that

the treatment poir occurs exactly once together in a block in the
sets of block contained in A« In the set of blocks contained in B,

the trestmcnt poivr ohvicuely ocoure tagether awngtly onre.
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Hence, when.A and B are both included, any two treatments

x a o o i o a o o
( B y)and( Lt ! y’) W:L-‘th ‘x+y.¥ Jg’+y' occur
together exactly twice and if a, + ocy = 0, +'ocyl s Tthe two

treatments occur together in neither the blocks of A nor the blocks

of B,

S0, the design is GD with (s-1) groups, ith group defined as
consisting of all treatments ( % s ony) satisfying the egquation
@ Oy = % 1= 12, siiiesy (s-1). Each group obviously

consigls of exactly s/2 distinct treatments.

Hence, the theorem follows -
Case 2 : S. is an odg prime power. The s elements of GF(s) can be
writtenas «, = 0, a, = {, L, = -1, 61, Bg 5(5_3)/2,:)_.
5-1-19 B; 3 srdeen 52;_3)/2 .

Let the treatments be written as in (9.2.1).

Tet (s~1)/2 sets of s blocks each be constructed as follows :

(C)  jth block in the ith set consists of all the treatments

I
i
i

(ch, ay) satisfying the equation ',

14525 eeansy (3“3)/2 \r‘ (9.2.3?,)

i

Rl &
aX+Biay 3 =

j,z 091, teoepg (5—1) J
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(D) jth block in the (s-1)/2 th set comsists of nll the )

treatments ( ﬁx y &_) satisfying the equation i '
v 7 (942430)

SN % FTEW 1F papslsy Mgt |
Theorem 9.2.2 : The blocks in (9.2.38 & b) give a rectangular FBIB
Design with paremeters v = b = s(s-1)/2, r = k = s=1; A1 = 0,

2 =0 M=2, mimsel, omy = (s3)/2, = (s-1)(s-3)2,

when s is an odd prime power,

Proof ¢ The proof in essence is similar to that of theorem 9.2,1.

There are twe forms of grouping. In one form of grduping
there are s groups of (s-1)/2 treatments each, ith group being

given by all the treatments satisfying

[ i=0,1,2, LENER 3 (S""])o

The other form of grouping gives (s-1)/2 groups of s
treatments each, jth group consisting of all the treatments

satisfying

(IX - (Xy = Xj y j"—"' 1’2, LI (8-1)/2

where the non-null elements of GF(s) are written as'(1 , f(;, =, e

Ceeaes gy {(5-1)/2 ’ -\[1 ’ -\(2 3 veerase 3 = (S-1)/2 .
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Following the line of proof as for theorem 9.2.1, two distinet

treatments ( ax B o ) and ( & 1 9 o4 ] )’ where O:X + ay # ax! + ayl

J x ¥
and ax — ay A ax, —~ ay, occur together exnctly twice and if
at least one of :the equalities Gx + &y = ax! + ay‘ and
A~ 0O = L_, ~ « , holds, the two treatments do not occur
b'e ¥y b'd 5y

together at all.

New, the asscciation scheme will be rectangular provided
ith group in the first fomm of grouping has exactly one treatment.
common With jth group in the second form of grouping, %/ i,j, i.e.

there should be 2 unique treatment ( A,y « ) satisfying the

N
equations &
o4 + = o,
X ¥y i ‘ 3 .
% & - Y. (10.244)
x y J ‘
fDI" El.ll i = O, 1’ 29 [N ] H S".]

j: 1, 2’ IERERER R NN (8“1)/2

That it is s0 can be seen easily. Hence, the theorem follows.

Inccmplete Block Designs Through 3, % and Allied Matrices

Let prq be a matrix with elements + 1 and O. TLet N1 and N2

be incidence matrices of two Incomplete Block Designs with v treatments

and b blocks. TLet X (*) be the vp x bqg matrix obtained from X, by

replacing each 1 in X by N1, each -1 by N? and each O by va .
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Congidering two different rows, say ith row and jth row of
X, 1let us assune that the mumber of times the pairs ( : ), (_l ),

: |

= -1
( : ) and ( e ) occur between them are respectively 1 myy 1,

and my. Then, if X, and Xj denote the submatrices of X {*) obtained

from the ith and jth rows of X respectively,

H ]
Xi .ILJ- = 1 .N1N1 + 1

L | ! t '
] NN, 4 1L, F N 4+ m NN vee (9.3.1)

1 27272

‘and if the ith row of X containg 1 1's and m -1's,

1 1
Xi Xi = l * N‘i N1 + m - N2 N2 "o W e (903.2)

4t+1,implies e

Theorem 9.3.1 ¢ The exigtence of th_1 and S
existence of a GD Design with parameters v = b = 16 t2 -1,

P =k =4t (28-1); A =4t (321), A = (26-1)8,  m= 4t

Ll

n 4t-1,

1l

Proof : Iet = N, =N, , where N1 and N2 are incidence

2441 1702

matrices (i.e. matrices with elements O and 1).

! !
Then N, Ny =N, Ny = t. I .+ (t-1). Bitat, 451
d \ N (2t=1). E
amd N, N, + W, N, = -(2t-1). I, 4 + (2t-1), 261, 4t-1

Writing X = S44,1 » the parameters used in (9.3.1) and (9.3,2) can

be givenas 1 +m = 4t for any ith row

l1 +m, = 2t-1, 12 =m, = t for any two rows

iamd 3, 1# 3.
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Hence, (9.3.1) and (9.3.2) give,

1 ( 2 . .
X =S 25-1)" g Bet-1, 4t o 1 #7
X, X, = 4t 1, .+ at(t-1) E 74
e 441 S el R S = B

« o X (*) is the incidence matrix of the required GD Design.

3.2 1 i impli Hh
Theorem 9.3.2 The existence of S4JG_|__I and Eht+3,1rp ics e

existence of a GD Design with porameters v = b = (4t+1) (4%+3),

r =k = 4t(2t+1); }H = 4t2- 1, 35 = 4t2, m = 4t+3, n = 4t+1.

Proof ¢ Writing S4t+‘l = I\T1 - N2 y Where N1 and N2 are incidence

matrices and X = 24 $43 the proof follows immediately.

Theorem 9.3.3 : The existence of 24* 1,11"&1‘«15-03'5119 existence of a

PBIB Design with I‘Z association scheme with parameters v = (4t-1)2,

b =12 (4t—1)2, r = 4(2t-1)2, K = 2(2t—1)2, )H = 4(t=1)(2t-1),

)\2= 2\-1+1.

Proof 1 Iet 241:-1 = N, -N,, where N, ond N, are incidence

maotrices.

Writing X = / I B 21 7y (9.3.1)and (9.3.2) give

X X = + (8t%- 12t + 5). E

3%y = T 451,451,

= Ty v (als=1)(28=1)4 1), Biy1apo1 3 ¥ B A3
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+ 4{t-1){2%-1) E v i

t
and X, X, = 4t (2t-1) I 4t-1,4tm1,

4t-1

Hence, X(¥) is the incidence matrix of the required L, Design.

Theorem %.3.4 : The existence of S4t+1,ir@lies the existence of a

PBIB Design with I, associantion scheme with parameters v = (4t+1)2_,

2 2 N

b=2(4t+1)2, r=6t°, k=4t = 48(28-1), A, = M+ 1,

i

. - P - y
Proof : Writing S,,. 4 = N, N, , where 1\T,I and N, are incidencs

matrices
amd X = [ St - Sy S

The result follows immediately as in the case of theorem F.3.3.

For the three class agsocistion scheme obtcined from QA with

ﬁ1 = 32 =f53 = -I-%l , where n = 2 (Mod 3), let us write

X = /B -B, 13.2--13§ =—B3-B1_/,

Then, the parameters defined for the relations (9.3.1) and (9.3.7

are as
1 - m = 112-- *1 ] v:_:" i
2 ' 2
= — n - 4 - — n - 1 o :
1, = m, = 3 ami l, =m, = 5 w/ 1 G e

Hence, we obtain the following thecrem.
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3n+5__ 2

Theorem 3.5.5 : The existence of & or S, » where 5 P,

P a prime power of the form 2 (Mod 3),inplies the existence of o GD

2
Design with porameters v = p2n, bw 3v, =3k, & = _15 =l R
2
3in+t){n- n=1 2
}\1 = 4 3) [ )b = ( > b m=p y 1
Froof : EEL%%Ji = pz, P a prime power of the form 2{(Mod 3),implics

the existence of n three ciass agsociation scheme obtained from OA

with ﬁ,J:B:B:P-ﬂ.Let

X = [ B -3, : B, ~B, + By-3B, 7

and Zn or Sn 2s the case may be can be written as N1 -5,

where N,1 and N2 are incidence motrices.

Then, it canle proved easily that X (¥) is the incidence

matrix of the required design.

For the 4 class association scheme cbtained from OA with

- - TR i = .
61 ” [32 = 63 = 54 = 1 y where n =3 (Mod 4), writing

X= [/ B, -B, : B, - B, _/y the parameters in (9.3.1)
and (9.3.2} can be given as

n2 i
1 FS hii = ; y V 1
n2 5 n2 1

and 11+II12= —r, 12=m1= ——g—-‘, ’(7/1]4“}.
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Theorem 10.3+6 : The existence of 2%

Pa primé power of the form 3 {(Mod 4)

Design with parameters v = p2 (4t=-1),

o (p2_1)§2t-1) : }H = 8t (t-1),

Proof ¢+ Az p is o prime power of the

*

£oq ! where 8t+1 = p2,
»
implies the existence of GD

b=2V, r=2k,

7\2 = (2t-1)2, m = p2, n= 4%-1.

form 3 (Mod 4), there exists

a 4 class association scheme obtained from OA with B1 = ﬁ2 = B3 =

B, = %1 . Writing

X = [ B, =B, : 133-54_7

3 - . et .
and 241 N1 N2 y  where N1 and N2 are incidence matrices,

X (*) is the incidence matrix of the required GD Design.

Higher Associate Para Cyclic Association Scheme @

Paracyclic Association Scheme

described in section 7.2 of chapter 7.

of Adhikary (1969b) has been

In the present section we

extend it to more than two associate classes and the procedure is

similar to that employed by Adhikary (
associate cyclieal association scheme.

as follows @

1967) in obtaining Higher

The procedure can be described
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Iet G be a module of v elements. ILet us divide this set of
-1
v elements into t disjoint sets 'SO, 81, ensas St-1’ iEB Si = G

For each set Si’ the non-null elements of G are divided into m disjoint
gsets AiT, Ai2, ey Aim. Aij = {dij 9 dij 3 Sesragy dij } y
1 2 n:j

A, = G-ip},“di, with the

’212 ERET R h
J 124 m wit ; 43

t gB

following properties :

9.4.1 If & € 8, and Z= 6+ dijle sk s then = dijz_e Akj .

9.4.,2 If @ € S, ond g=8+ dij € S, » then among the differences
3 :

that arise by taking the differences of all elements of 4 _  from

3

all the elements of A. , d.. occurs pd_= p’ times,
is i3, rs sr
for T, 8 = 132, ssess y m=1 and J = 1,2y ecens M Then,

Theorem 9.4.1 ¢ Defining the association scheme as ¢ If @ € Si ’

then the set of jth associates of & is taken to be & + Aij y

j = 1429 eenae I we have an m associate PBIB association scheme
J 7< 3 9

with parameters

V, 1’11, nzy i-,--oco—n- nm ]

( ot

) 9 i, j, k - 1, 2,, [EEEKX] m-
ik
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The last row and column of any ( p;k ) matrix for a fixed i are

tc be obtained from boundary conditions of the matrices,

Proof : Let @ € §,. If # is a jth associate of O, there exists

an element dij € Aij sugh that Z£= @ + dij . If g€ sk i

1 L

jth associates of £ will be £ + Akj = @+ dijl + Akj » But

-4,, € . e . & is the jth agsocinte of £ .
iy by $ g

Again, let 9 € 8,  and g= 8+ dij € S, « Then, the
L

set of sth associates of & consists of elements € + dis y O+ d.
1

crsengrees ; 84 4, . Similarly, the set of rth associates of #
sn
<
consists of elements & + dkr y B+ dkr s sevesy, F+ akr i.es

i 2 n
T

8 4+ d. - ¥ e % 4. . L 4 g sesaey O+d', + .
131 dkr1 131 dkr2 T ajl dkrnr
Let J o &, say,elements be common between the

pST

two sets ond let ( €+ 4. , 044, B ea B @
18(1) 18(2)

be the some set as ( 6 + A+ 4 s, @+ d, . +d i e
! (1)
sevey o +d,. + ‘ ). Then,
131 dkr(a )

9+d. = G+d'.. + [} P: 1’2, veseses X a
131 dkr(p)

iS(&)

d_. - d = d,_ y p$1,2, o wessapfs & .
*(p) T (p) !


http://www.cvisiontech.com

-164"

ieese the element 4, . is repeated pJ = O times among the
13, s

differences obitained by taking the differences of all the elements

of Akr from all the elements of Ais .

Hence, from the given conditions for any two treatments
which are jth associates of each other, the nurber of elements

common between the rth associates of one and sth associates of the

other is a constant denoted by pgs s J= 1,2y 4eieasa m

I‘,S 1’2, n.u-.-,-m'—‘]o

it

« » TFrom the boundary conditions of ( pg ) matrices, the same

5

is true for all j, Ty 8 = 1,2y secoces Me
Hence, the theorem is proved.

Examples of higher associate pgracyqlic association scheme

Example 9.4.1 Association Scheme with three agsociate classes.

Consider the class of residues mod 1i0.

Let SO = (03 2, 4, 6, 8),
31 = (1’ 3y 5y Ty 9)’
AQ-I = (1" 3y 59 75 9}, AO2 = (4, 6}, AOB = (2, 8)
A11 = (1’ 3, 5’ 7, 9), A.,|2 = (2, 8), A13 = (4, 6).
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Then; we have the association scheme with parameters

v = 10, ng = 5 n, = 2, n, = 2
0 2 2 /5 0 0 /5 0 0
)& 2 6B %)= {0 o0 1 (p°.) = | 0 1 1
Pk 1 Pk L P T |
2 ¢ 0 o 1 1t/ o 1 o/

Example 9.4.2 ¢t Association Scheme with four associate classes.

Consider the class of residues mod 4.

Iet 8§, = (o, 2, 4, 6, 8, 10, 12)
s, = (1,3, 5,7, 9, 11, 13)
hoy = (1,3,5,7,914,13), Ay = (2,12),  Ayz = (4,10), 4, = (6,8)
Ayy = (1,3,5,7,9,11,13), A, = (4,10), A, = (6,8), Ay = (2,12)
Then, we have the association scheme with parameters
v o= 14, n,‘::?, n2=n3=n4= 2
o 2 2 2y /1 0 0 0\
' ' o
61 - 2 1PL O O f o e o o 1 0!
Pax 2 0 0 o ’ jk o 1t 0 1}
2 0 o of . o 0 1
{1 0 0 0\ T 0 0 0%
3 {0 o 1! 4 6 o t 1]
o) = \ o o 1] ’ (b gy g 1 1 0 }
\ et Y


http://www.cvisiontech.com

- 166 -

Higher associate cyclical association scheme of Adhikary

(1967) is a particular case of higher associate paracyclic association

scheme, viz., when AO. = A, = wesee = A i 3 s the paracyclic

J 13 =1,

associat ion scheme reduces to o cyclical association scheme.

Method of difference for comstructing PBIB Designs with higher

agsociate paracyelic association schemes 3

The method is an obvious extension of the one given by
Adhixary (1969 b) for PBIB Designs with two associate paracyclic

aggocliation scheme -

Consider the module of residue classes mod Vv = phe ILet us

divide the v elements into h disjoint sets as

(0y by 28y weuue 5 (p-1) h)

[ 223
i}

(1, b1y 2B+1, eeveny, {p=1)h + 1)

4]
—_—
i

&4 = (h-1, 2b-1, 3h~1, vceeeee , ph-1 ).

Tet it be possible to select Aij's, i=0y15256c004y h=1,
J=125¢0....m satisfying the conditions of the theorem 9.4.1

and properties 9.4.1 and 9.4.2 preceding the theorem.
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Iet it be possible to select a set of t blocks sotisfying

L

the conditions ¢

(i) 7The blocks are of constant size, k.
(ii) Among the kt treatments occurrirg in the 1 blocks, the total
mumber of elements appearing from Sj’ J=0,1,2, assss h=1 is a

constant equal to r« 8o k&t = hr,

(iii) A1l possible differences arising within blocks can be classified

in the followlng manner i

Consider the elements within blocks which belong to Sj. Iet
%34 be any such element occurring in the lsth block. Form the

differenges a - 8 where a is any element other than Sju occurring

ju
in the 1-th block. In this manner obtain differences from the t

blocks for all s,

sulls belonging to Sj. Let the differences sc

obtained coontain each element of Aji’ ki times, for i = 1,2,eu4s.

wcsee [s The same is true for all j.

Obviously, tk{k-1) = h {.n1 Ayt my Ay eeeee +mo a0k

Next develop the initial blocks by adding O, h, 2h, +eee., (x-1)n
in successgion, when o = v/, The resulting design is a PBIB with

m-clags association scheme as given in theorem 9.4.1,

Example 9.4.3 ¢ Consider the class of residues mod 10. Treating

(1, 3, 5) and {0, 4, 8) as initial blocks, we get o solution of
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PBIB Design with parameters

I‘=k=3, )\-:-.O’ }\=2, )\:1,

“
H
o
i
—

=

n, = 3y By = 2, n.5 = 2 and association scheme as given in

example 9.4.1

Example 9.4.4 : Consider the class of residues mod 14. Treating
initial blocks as (1, 3, 5, 7) and (0, 4, 8, 12), we get a solution

of PBIB Design with parameters

v = b = 14, r = k = 4, }\1 = 0, )\.2 = 3,
= 2\‘ = = = = =
3\-3 = 2, y = 1, n, Ty n, o, = B 2 and

the associntion scheme as given in the example 9+4.2.

seloiek ) Aol
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