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INTRODUCTION

Mackey's theorem on inducvd representation
gives all the systems of imprimitivity for a locally
compact second countable group G, acting in a separable
Hilbert space and based on a transitive G-space X.

These systems of imprimitivity are obtained from the
unitary representatios of the closed subgroup H of

G. defining the transitive G—space X. The main tool for
"thls study is a class’of funetions called %ocycles.
'Mackey showed that the (G , X) systems of imprimitivity
‘are connected in & one-one way to unitary operator
valued cocycles on GXZX. This c¢ocyecle in turn gives

a representatlon of the closed subgroup H, defining X. /
Systems of imprimitivity on non~transitive aetions are
not as well studied. <n this thesis we study the systems
of imprimitivity on some important cases of essentiglly
‘non-transitive actions, and connect them to systems of

imprimitivity on simpler spaces.

Using the notion of cocycles, Gamelin [7]
showed that the systems of imprimitivity on the pair
(R, B) where R is the real line and B is the Bohr

group are related in a one-one way to systems of imprimi-

e
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tivity on the pair (N , K) where N is the integer
group and K 1is the annihilator of a cyclie subsroup
of the dual group B of B, More precisely, he showed
that every (N , K) cocycle extends to an (IR, B)
cocycle aond in the cohomology (an equivalence relation
'deflned in the set of all cocycles) class of every
(R, B) cocycle, there is a cocycle which is extended
from an (N ,-K) cocycle. Gamelin proved the above
result for scalar valued cocycles and it was extended
":to t1e vector valued cas y Muhly [20] and Bagchl [3].
The method Gamelin used :‘\that of a flow built under.

a functién. He views the actiom of B on B as a flow o
bullt under the constant function 1 with base space K.
In chapter II of thls thesis we show that Gamelln s
method of extending cocycles can be used for a general

flow built under a function.

To study the systems of imprimitivity on strlctly
ergodic actions, Mackey [19] introduced the notion of
virtual subgroups. He showed; among other things, that
using this notion one can generalize the notion of a
flow built under a funetion.' We show that Gamelin’s

- method of extending cocycles is applicable to a
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generalized flow built under a constant function. The
action of a locally compact second countable abelian
subgroup H acting continuously on a locally compact
second countable abelian group & by translation, can
be vieﬁed as a generalized flow built under .a constant
function. 1In chapter IIT we consider in detail, this

particular case of group actions. The situation is

similar to that of the pair (I , B).

This thesis is divided into thre¥ chapters. The
first chapter is. mainly introductory. We introduce

the qptionﬂbf a unitary eperator valued cocycle and a

;éystem of imprimitivity. The definitions and results

are taken from Varadarajan [24]. Strict cocycles are

eagsier to handle. and we mention gsome cases where we

need to consider only strict cocycles. We show that

we can take a unitary 0peratorlva1hed cocycle to satisfy
a much stringent condition. This is obtained by gener-
alizing a method of Doob’s in obtaining a measurable
sfoﬁhastic,process from a 'continuous in probability

stechastic brocess. This definition of a cocycle is

_needed for chapters II and III.
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In caapter II we consider flows built under g
function., We show that cocycles on the base space give
rise to cocycles on the flow built under a function,
Every sfrict cocycle on the flow built under g function
is cohomologous to a cocycle extended from a cocycle
on the base space. A proof of Gamelin's is modified
to shew that every cogycle on a flow‘puilt under a
function has a strigt Veghion. Now appealing to a
-generaliéation due to S. G. Dani [5] of a deep theerem
of Ambrosé and Kakutani [2], we are able to shew that
every cocycle on a proper flow on a Lebesgue space has
a strlot Version. Then we show that in most of the
- CasSes gppearing in ghapter III (our main chapter)
cocycles  can be taken to be strict. We also mention
how the results go through for Mackey?sg generalization

of a flow built under g function.

in'chapter iII Wwe consider the main problems
Let R be a locally compact second countzble abelian
group énd [ a dense subgroup of R with another lacally
compact second countable topology such that the inclusion
map of T_ 1ﬂto R 1is continuous. Such systems we call

a 'pair' , and denote it by ( r-, R). Let f; be a

\
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closed subgroup of R such thaf r; C: r . Then r.

ig closed in rA as well, It is easy te see that

. FaS ] VS
(r;r. . R/r ) is also a pair. Let B s | and S = R,
"and let X °be the annihilator ef [, in B. Then we
can show that (S , B) is also a pair. (8§ , B) is csalled

the dual pair of (] , R). The dual pair ef (I} s R

)
/E) |

will be (KNS , K). Given a system ef imprimitivity
on a pair, we-gé% a system of imprimitivity en the dual
péir_by applying Stone’s theorem. Let (V , E) be a
'(Kf\s ; K) system of imprimitivity. ‘We show that

(V, ) gives rise, in a natural fashion, te an (S , B)
system of impriﬁitivity (V,E. Let (v, F) bé the
(Dr , R/.rv ) system of imprimitivity which is the dual
of 6% ,IEf and let (T, F) be the (] » R) system
dual to (V , E). We show that every (r) » B )
system of imprimitivity (U , F) gives rise toa ([° s R)
system (E’,-ﬁ). Thus on ( T', R} we have two systems -
of imprimitivity (T, F) and (E R ?ﬁ starting from the
-same (KNS , K) system (V , E). Under a mild assumption
which is satisfied in many cases, and probably in all
_caées,’we show that (T , F) -and (ﬁ ,.ﬁ) ar® equivalent

systems of imprimitivity. That is, we show that the

\
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following diégram commutes,

‘ (Kns ’ K) . {S N B)‘
| (V, B) ———> (T, B)

oW, ¥ > T,
q;r,%r) ' (" R}
0 (o] :

ﬁhen .R = R, the additive group of real numbers, and

' r?. is a countable dense subgroup ef R, the assumption
-is satisfied. But we give a slightly different methad

50 tﬁat the function which establishes the equivalence

— wr S
of (T, F) and (U, F) is a simple one.

Systems of imprimitivity for the veal line IR
acting through translation on a compact group with
Archemedean ordered dual wefe encountered by Helson and
Lowdenslager [14] in their study of H° on Bohr group.

In it they construcféd.a cocycle which is not a coboundary.
Some of the subsequent papers are due to Helson [10],

- Helson and Kahane [13], Yale [25], Gsmelin [7]. In all

-
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these, thé authors work on the pair (R , B} whare B
ig a discrete, dense subgroup of R and censider ohly
scalar cocycles. In [7, 13, 14, 25] different metheds
. of constructing non-tirvial scalar (IR , B) geeyeles are
given whereas in [10, 11] deep analysis is made of the
analytic étruéture of (R, B) cocycles. A connected
account of these is given in Helson [12]. 1In this Helsen
considers cocycles on a flow also. Muhly [20] and later
'Bagﬁhi [3] generalized some results due to Helson [10]
-using (R , B) systems of imprimitivity. The present
“work is at a more general level; it considers different
pairs of groups, and ties up a general (R s B) system
Sf imprimitivity with others which naturally arise from
It |

Systems of iﬁprimitivity in general éet up Qas
undertaken by‘G. w. Mackey in connection ﬁith the theory
of group répresentations. A connected account of‘tﬁese
is  given in Varadarajan [24]. For all unexplained

terminology we refer to Varadarajan [24].
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CHAPTER I

COCYGLE$ AND SYSTEMS OF IMPRIMITIVITY

1. Basic Function Spaces:
Let X be a standard Borel space and N

a separable complex Hilbert space. A function

F X —> H is said to be (weakly) measurable if

for every n e H, x —> <F(x) s > is measurable,
(<+*,» is the inner product in TH). Let H, and I,
be separable complex-Hilbert,spacés. A funcfion A on
X taking values in (3(H, , H,), the set of all bounded
- linear operators from Eﬁ. to IH2 y 1s said to be

. (weakly) measurable if for any E;EIHl and n € H, ,

X

> <A(X)E, , 0D

"~ is measurable,

Let X be a standard Borel space and a , a
o - finite measure on X and let H be a separable
‘(complex) Hilbert space. By L2(X,IH, ®) we shall mean
the set of all measurable functions (after identifying
functions ﬁhich agree « a, e.) F on X te sudh that

PR 2 alax) <o
X
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Equipped with the inner product,

(P B) = f<RE), RGD alax)
- X

L2(X,LH3 «) becomes a separable Hilbert space, Let

o be another ¢ - finite measure on X equivalent

-{in the sense of having the same null sefs) to .
Let f be a version of %%’ + Then,

Wi F = W?— F
is an isometric isomorphism of L (K,IH, a) onto

I°(X, H, «').

2. Borel . G - spaces,

Let G be a separable Borel group. A standard
Borel space X is said to be a G - space 1if fer each
g & G, there is a Borel automorphism t of X such
that,
(i) Vo, 1s the identity automorphism, where e is the
idenfity element Qf G.
(i1) tglgz = tgl ) th for all 8 1+ & ¢ G

We denote the value of tg at x by gx. X is said te
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be a Borel G - space if the map [g,x} —> gx of

GXX ——> X 1is measurable.

Por any Borel G - space X and any x ¢ X,

GX = {gaG: gx:x}

. 1s a subgroup of G and is calle& the stability subgroup

at x, The set,

Gx = {gx i g ¢ G}

is called the orbit of x. A Borel G - space X is

said to be transitive if there is x € X such that

Gx = X. In this case, for all y e X, Gy = X,

Let X be a standard Berel G - space and «,
a o-finite measure on X. For each g ¢ G, define the

measure x, on X by:
ag(E) = a(gB) , E a Borel subset of X.

« is said to be guasi-invariant with respec¢t to the

action of G if, for each g ¢ G, « and x, are mgtually

absolutely continuous. ¢ 1is gaid to b= invariant if

Gy = O for all g € G, A guasi-invariant measure «

on X 1is said to be ergodic if for each Borel subset

BEof X, a(BAgE) = O for each g £ G, if and only if


http://www.cvisiontech.com

- 11 -

«(E) = 0 or a«(E®) = 0. Bquivalently, any Borel funetien
f on X such that

f(x) = f(gx) o a. e. , for each g e G,
is a constant « a.e. A quasi-invariant measure e«

on X is said to be essentially transitive if there is

X, € X such that a(X - Gxo) = 0. An essentially
transitive measure on X is ergodic. An ergodic measure
which is not essentially transitive is said to be

strictly ergodic.

Notatibg: For simplicity we shall write an ergodic
(essentially transitive etc.) G - space X to mean
a standard G - space X with = guasi-invariant measure
@ on it which is ergodic (essentially transitive ete.)

with respect to the action of G.
Exampl': Let G be a locally compact second countable
group and H a closed subgroup of ¢. Then G/ is,
H
under the natural action of G on G/ y & transitive
JE )

G-space. Conversely, any transitive G-space X (where
G is a locally compact second countable group) is

isomorphic +to the G-space G/ for some closed subgroup

/ﬁm. msrm,
; /c;\‘” P T 028

.....
WUrsroapstlinmss ot iai san s } ?3

;-‘\1.-.9 AN ‘984 Jda
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H of G. Because of this simple nature of transitive
G~spaces, cohomolbgy classes of cocjeles for‘them can
~ be completely described. Thisg in turn permits one to
systematically study and apply systems of imprimitivity
associated with transitive G-spaces., Situation with
strictly ergodic actions is more complicated, (See for
example pages 35 -~ 39 of {24]). Mackey [19] introduced
- the notion of virtual subgroups of groups to study
stric%ly ergodic actions. We do not use this n;tion in
this thesis, although some of the other notiens such as

that of a flow built under a function discussed in [19]

play an important role in this work.

3. Borel sections:

Let H be a closed subgroup of a locally
compact second countable group G. Then there is a Borel
subset C of G which contains exactly one element from
each right coset of H, We call such a Borel subset C

of G, a Borel section of ¢ with respect to H., Each

element g € G can uniquely be written as g = hc
where h e H and c & C. We shall denote by [g] the
part of g which belongs to H and by <g) the part of

- & which is in C. There is a one~one correspondence

y
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between C and G/H , the right coset space of H,
viz., ¢ -—> He, In fact, this is a Borel isomorphism
between the two. Again, g —> (Kg> , [g]) is a Berel

isomorphism between G and CXH.
Let & » 8 ,.g3 g G. Then, -
(3.1) Eglg2g3] = [gng] [ <glg2} 83] .

Por, 818,83 = [818,] <&,8,) &5

il

(818,11 <818,> 851 < <818 35> -

Now, let G be an abelian group. Then G/H also is a
© group., The isomorphism ¢ -~ He makes C also a
group, the group operation in C being the one carried

over from G/ﬁ . It is easy to see that the group

operation + thus defined in ¢ is:
{3.2) c; + ¢y = <oy +102> » ©Cys Oy € C,

\Qe will use the gbove two relations quite often in the

sequel. .

Let G be a locally compact second countable

group and let H be a closed subgroup of G. Tet C
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'be a Borel section of ¢ with respect to H. Let A be
'the daar measure on H and let the Borel isomorphism

between CXH and @ be denoted by &£
(3.3) &fc,h) = hec .

If u is any o-finite measure on C, then

~

(3.4) Eo= (exagloe™

is quasi-invarignt with respect to translation by elements
of H, The following lemma says that any o-finite measure
on G guasi-invariant with respect to translation by

elements of H is equivalent to a measure of the above type.

3.1, Lemma. Let G be a locally compact second countable
group and H a closed subgroup of ¢. Let ;f be a o-finite

. measure dn G, guasi-invariant with respect to translation
by elements of H. Let C be a Borel section of G with
respect to H and &, the Borel isomorphism between CXH
end G defined by (3.3). Then % is equivalent to 1

as defined by (3.4)) for some measure u on C.

Proof: We can assume, without loss of generality, that

the identity e of G belongs to C.

We assume 2»(G) < , (Consider the'meaSure

o = #o& on COXH., Let Vl and Vé be the marginals

4“
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of o on C and H respedfivelﬁgl ”@ is quasimlnvarlant
*_Wlth respect to translatlon by elements ‘of H. Therefore,
v, is equlvqlent to. the Haar measure on H. Henece, it is
enough to show that ¢ is equlvalent to Y, )(
Let o(4) = 0, A& GXH, a Borel set,
Therefore, o(A+(e,h)) = 0, for all'h e H.

4

So, I o(a+(e,h)) cw2(h) = 0.
~H ‘

ieed, T () Tas(e,n) (crh") dc(c,nf)),dwb(h)-a 0
H CXH : :

-~

By Pubini’s theorem,

»

et (£ T (C h —h) av, (h)) dd(ohﬂ ) =
CXH H D

23
- I

So, for ¢ a.e. (c,h') , | IA(c,h'~h)d?2(h) =
& H T J - .

Hence, for o a.e. (c,h'), I I,(c,h) a¥, (h) =
5 5 H - "‘.,‘

Therefore, for 1& Be€s C E c, J IA(c,h) dﬂé(h) =
; H '

ie., (UX%)(4) = o

Conversely, if (V X ¥ )(A) = 0, then for Y, a.e. e G,
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J IA(c,h) d¥%,(h) = 0.
H

Therefore, for o a.e. (c,h'), | IA(c,h'—h) d?b(h) = 0.
H

]

or, I (1 1,(c,d-n) a¥,(n) ) ac(e,n') = 0
= CXH H :
Using Pubini’s thoorem, we get,

' IA(c,h'—h) do(ec,ht) ) dib(h) = Qs
H CXH

So, there exists ho € H such that,

I IA(C’h' —ho)dO'(C,h' ) = O.
CX H
aitsy 1G4 c(A+(e,h0)) = Q. Hence, o(A) = 0.

Q. E, D.

The next lemma will be used in chapter II,

3.2. Lemma: Let H be a closed subgroup of a locally
cdvpact second countable abelian group G. TLet i be a
measure on a Borel seétion C of G with respect to H.
Let ' be defined as in (3.4). Let f be a Borel function
on G such that |

f(h+x) = £(x) A X7 ace. (B,x) e HXG.
Then there exists a Borel function f on G4{ such that

‘o
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f(x) = £ o n(x) L a.e. x e G,

: G
where 7 : G -- > /g{ is the natural homomorphism.
Proof: We have,

f(h+x) = f(x) %XE a.e. (h,x) e HXG,.

- That is, for A, @.€.. h e H,

fofle,mn') = £ of(c,h')  pxa, aee. (o,hr).

0.
Therefore,

f oéi(c,h+h')

B

£ oglc,hy)  (ux xoxxo) a.e. (c,h,h').
Hence, by Pubini’s theorem, there exists hO e H such that,
f o&(c,h+ho) = f o E,(c,ho)' (ux Ko) a.e¢. (c,h).
Since Ko is the Haar measure on H, this means +that
(3.5) f o€ (c,h) = fog(c,ho) (p.‘)()tol ase. (c,h).

~DeTine f‘ on G/H by:

f{He) = £ c;E,(c,hO) y ¢ e Q,
f is a Borel function on- G/H and from (3.5) we have,

f(x) = £ o n(x) \a a.e.. X & G.

Q. E. D,
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4, Unitary operator valued cocycles.

Let U( M) stand for the g:oﬁp of unitary
. operators of a separable (complex) Hilﬁért space H,
give U( H) the smallest topology which makes all the
‘maps U—>Un, ne H, continuous, Then U( H) is
a metrizable topological group satisfying the second
axiom of countability, and the Borel structure on U( H)
- gilven by this topology is standard. Also the Borel
structure on U( H) given by this topology coincides.
with the smallest Borel structure on U( H) which makes
all the maps
' U —=> <ug , N> - gg n e€H , measurable,

Let G be a locally compact second countable
/gnmup; A the Haar measure on G, Let X be a standard
Borel G~space and o a finite guasi-invariant measure

on X. By a (G,X,g(:ﬁj) cocycle relative to a we

 shall mean a Borel function 4 : GXX —» U( M)
such that,

/ .
(4-1) A(glgz H X) = A(gl ’ X) A(g2 L) glx)
for (AX A X a) a.e. (gl,g2,x) e GXGEX X,

Two cocycles are identified if they agree 1% a a.e.
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Two (G,X,U( H)) cocycles A, and 4, (relative

/ to @) are said to be cohomologous if there exists a Borel

\_ function ° : X —> U(T) such that

(4.2) 4 (8,30 = Hx) Ay(g,0) 0 bgx) (A X @) a.e.(g,x).

When we want to emphasize the functien o y We say that

A, and A, are cohomologous (p). It is easy fo see that
the relation "Al and A2 are cohomologous " is an
équivalence relation. The equivalenée classes are called

' cohomology classes. A4 cocycle A is said to be a

coboundary if A 1is cohomologous to the cocycle which

is everywhere equal to I, the identity in UJ( H).
Bguivalently, A is a coboundary if there exists a Borel

function 0: X —> U(HH) such that,

*
(4.3) Algyx) = p(x)P (gx) (AXa) a.e. (g,x)
A /Wé give two instances where all cocycles are coboundaries.

4.1. Lemma: Let G_ and G be locally compact‘second
countable groups, and GO an algebrai¢ subgroup of G.

-lr Let the inclusion map of GO into G be continuous. GO acts
on G by translation, If o is a measure on G, quasi-
invariant with respect to Go such that‘ Go has full

i @easure in G, then every (GO , G) cocycle relative to o

is a coboundary.
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Proof: Let 4 be a (G G) cocycle relative to «.

fo) H
G, is a Borel subset of G. Let A, be the restriction
of'A to de;Go « The measure « restricted to G0 is
equivalent to the Haar measure X on GO. Hence, Aolis
& (Go . Go) éocycle relative to A ‘éhd so A, is a
coboundary. Let ©, be the Borel funection on G, such
that, |

ho(g,x) =0,(x)0, " (gx)  AXA  a.e. (g%)e X G,

Define lp on G by: -
A x) i o, (x) if x e @,
F 'lI ;f X £ G .
0 is a Borel funption on G. Define AJ on G&K G by
A,(g,x) = A5(ﬂ99 if x e G
= I if x £ G 3

A  is a (Go s, G) cocycle which is a coboundary (e ).
Altso, A(g,x) = Aé(g,x) for (AXoa) a.e. (g,x) € G X G.
Hence, A is a coboundary. d

Q. E. D

4.2, Lemma: TLet H be a closed subgroup of a locally

compact second countable abelian group G and let H act


http://www.cvisiontech.com

=

on G by translation. TLet b be a measure on U, a Borel
section of G with respect to H. Then every (H,G) cocycle

relative to p (as defined by (3.4)) is a cdboundary.

Proof: TLet 16 ‘be the Haar measure on H and let E;
be the Borel isomorphism from CXH onto G defined by
(3.3). U= (ax2)ogl . Let 4 bean (H, @)
cocycle relative to . By the cocycle identity,

A(hy+hy , ) = A(hy,g) Alh,,h +g) ( A, X A X u) a.e.
That is, - '
Alb+hy , €(c,h)) = Ak, £(c,0)) Alhy , £(c,h +h)
| | (AKX A XA X W) a.e. (hl,h2;h,c).
‘So there is h e H such that,
A(hy+hy , €(c,h ) = Ak » £(cyh ) A(h » &(c,h,+h )
(' xoi A X uj a.e. '(hl,h2,c).
Let  o(a) = o(&(c,h)) = Aln , £,(c,n ).
° is a Borel funétion on G and '
2 (€ (esny+hy)) = o(&,(c,1))) Alny L& (o,hy+h )
( 2 X xox B) a.e. (hy,hy,c).
Putting g'(c,hl) = g, we get, |

A(h, , h +g)) = 0*(gl) p(gy+h,) ( A XB) a.e. (hyey,
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That is, a translate of A is a coboundary. Hence, A
itself is a'coboundary.

Q‘o E- D.

A (G,X,U( H)) cocycle it said to be a strict
cocycle if the cocycle identity (4.1) holds everywhere.
We say that a cocycle has a strict version if A is almost
everywhere equal to a strict cocycle. If a cocycle A is
cohomologous to a strict cocycle, then A has a strict
version. In particular, every coboundary has a strictr
version. TLemma 8.26 of [24] says that when the G-space
X is transitive, ‘then every (G s X) cogycle has a strict
version. It is easier to handle strict cocycles. But
we do not know whether every (¢,X,U( ®)) cocycle has a
8trict version. If G is a countable group, then every
(G,X,E(JH)) cocycle has a striet version. In chapter IT
we shall exhibit strict versions in some more special

cases.

5. Systems of Imprimitivity.

Let H bve a separable Hilbert space and X g
standard Borel G-space, where G is g locally compact

gecond countable group. By a system of imprimitivity

based on (G , X) and acting in H , we mean & pair (¥, P)

&
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where

00 T représe‘n-tation of G acting in H

(ii) P is a spectral measure on the Borel subsets of o
acting in the same Hilbert space T ok that for

each Borel set D& X and for each g ¢ G,

=
U P(D)U_ = P(&gD).
g E(D) b (gD)
Two systems of imprimitivity (U,P) and (U°, P') based
on (G,X) and acting in H and X' respectively are

said to be equivalent if there exists an isometrie

“isomorphism S of TH onto IH' such that
-sp(p)s~1 = P'(D) and

=% <u_ amm
, SU,S =0,

for each Borel set DCX and each g e G,

5.1, BExample: Let p  be a measure on X, guasi-invariant
I under the action of G, and let A be & (6,%,0( H))
cocycle relative to u. We can define a system of
dmprimitivity (U, ) on (G,X) acting in L2(X, IH,u)

by setting

: d ‘
(v 0 =/ 2B ale,xfeen) o xe x, g ¢ 6

P(D)f = 1D°f
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where 1p 1is the characteristic function of D. (UA y P)

will be called a concrete system of imprimitivity of

multiplicity n, where n (= 9, 1, 2, *++) is the

dimension of the Hilbert space H. If A is cohomologous
to A', then (U4 , P) is equivalent to (UAI, P). Uore
'generally, let s Bys Moy **° be a sequence of
mdfually singular Borel measures on X, each gy quasi=-
~invariant under G ( some u;’s may be zeros)., For each
n, let 4 be a (G,X,g(}Hn)) cocycle relative to p_,
where IH 6 1is a Hilbert épace of dimension n. Then we
can define a system of imprimitivity (U,P) on (G,X)
acting in T L(X, H_, u, :
restriction of (U,B) to IZ(X, H_, p.) be (U™, P

where Pn is the spectral measure on X, acting in

) by reguiring that the
)

n

L2(X,2Hn, u,) and consisting of multiplication by
characteristic functions. Such a system of imprimiti-

vity will be called a concrete system of imprimitivity.

If'(U', P') is another system of imprimitivity acting

i 2 Lg(X,ZMn ' “n;) with associated cocycles 4' ,

Ai , A4y 5 **+ , then (U, P) and (U'y, P') are equivalent
if and only if, for each n, p  and p£ are mutually

absolutely continuous and An is cohomologous: to An'.
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' We refer to Varadarajan [24] for proofs of the
above stated results on systems‘of imprimitivity. In
the sequel, we-shall assume that IHn = Q:n if n is
finite and Ihm¥=,52 .. We will need the following

theorem. This is proved in Varadarajan [24].

5.2. Theorem. Every (G,X) system of imprimitivity
acting in a separable Hilbert space is equivalent to |

a concrete system of imprimitivity.

6. Another definition of a (G,X,U{ H)) cocycle.

A is a (G6,X,U( H)) cocycle relative to a quasi-
invariant miasure aon X, if A is GX X measurable énd

A(glg2 w2 = A(gl . X)A(gg‘,'glx) (A XA X a) a.e.

This is equation (4.1). However, for some purposes, it
is convenient if (4.1) holds'-a‘a.e. for every pair
(gl,gz) € GXG. The purpose of this section is to show
that if we require the cocycle 4 to be only X«
measurable, then this can be accomplished. Further,

if HEG is a closed subgroup of G and ‘o ig the

I

Haar *measure on H, then A is xouia measurable.

|HX X

6.1. Lemma. Let X be a Borel space, S a separable

metric space and f a Borel map of X into S. Then there
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exiéts a sequence {F}l} of Borel maps af X inta §
such that,
(i) each £, takes only countably many values, and

(i1) fn(x) —> f(x) uniformly for x ¢ X, as n —» &,

This is lemma 8.3. of [24] and so the proof is omitted.

6.2, Theorem. Let G and X be standard Borel spaces with

finite measures * and « respectively. ZLet the function

“w ¢ XX ——>{  have the following properties:

(i) For each g e G, x —> w(g,x) is Borel and belongs
to L2(X,a).

(ii) g ——> w(g,+) is a Borel function from G to L2(X,a).
\

" Then there exists a X -null set NC€G and a function

w: GXX —>f such that,
(a) W is Borel on (G-N)X X, and

(b) for every g e G, a({Lx:'ﬁ(g,x) = w(g,x)}.) = o(X).

CIf w is bounded by a constant K, then W can be so0

chosen that 1t is also bounded by the same constant K,

~ Proof: Since X is a standard Borel space, L2(X,a) is

a*éeparable metric space. So by lemma 6.1, there
exists a sequence {fn}_of Borel maps of G into L2(X,a)
such that,

(1) each f_ takes only ‘countably many values, and
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(2) fn(g) —_—> W uniformly for g e G, as n —» %,

(wg(X)'= wig,x)).

*

Define fn on GX X as follows:

fn*(g,X)' = £ (&) (x).

Because of (1), £r is GX X measurable. Since

£ (g} —> Wy in L2(X,a), uniformly in g,

Sl @ - £.(8) (0] 2 da(x) =

uniformly in g.
Kk
- Sp, by the definition of fn g
* * LI iy
lim [Ty (&) - £ (g,x)]? da(x) dalxs = O.
my1 —* ¢ G X

: N
Thus, fn converges in o« measure, and therefore some

- subgeguence “{fn.*:} of {fnf}converges for a.e. (g,x) to

a GXX measurable limit function f* , defined at the

points of convergence of this subsequence. By Fubini’s
theorem, there is a subset G, of G, of full * -measure

;uch that the sequence of functlons {fn.*fg,.).}
converges to f (g,*) a a.e, if g € G .J

Hence, if g ¢ GO 5

«({x: £ (&%) =wen} ) =a,
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‘Define W on GXX by:

W(g,x) = f*(g,x) if £%(g,x) is defined and g e G_ ,

W(gyx) otherwige.

It

W satisfies all the requirements of the theorem.

’

Q. E. D-

6.%. Remarks and conseguences.

(1) The modified function w may not be Borel on GXIX,
but it is AXa measurable.

(2) The theorem remains valid if the measure % is
o-finite, for we need only replace it by an equi-
‘valent finite measure. |

(3) If g —> w(g,*) is continuous from G td‘Lz(X,a),
then it is Borel and so the theorem 6.2 holds. This

is the situation in the discussion that follows.

Suppose X 1is a Borel G-space where G is a
locally compact second countable group. ILet a1 be fhe
Haar measure on G and ¢ a finite measure on X, quasi-
invariant under the action of G. Then the Radon-Nikodym

derivative,

d
P =~

has a version which is Borel in x, for each fixed g.


http://www.cvisiontech.com

=2 o=

Purther, from the theory of group representation, we know

that
do fdo
8 >/ 71 = T =V °g
is continuous from G to LZ(X,a). Hence, by theorem 6.2,

we can get a A X a measurable version O such that,

for each g ¢ G, cg(x) = og(x) X G.€. Also,

or - ] 1 . .
glgz(x) fagl(x) 0 g2(glx) @ a.e. X £ X,

for each pair 81185 € G.

Now, let 4 : GX X —> U(H) be a function
such that,
(i) for each g, 4(g,*) is Borel on X, and
(ii) g —> <:A(g,-)ei 5 ej:> is continuous from ¢ to
LQ(X,a), where {ei}» is a complete orthonormal set
in IH,
Then, by theorem 6.2, for each g € G, the function
3 5 (g,+) = <A(g,-)ei 5 ej) can be modified on an g-null
set so that aij(-,-) is J\)l(oc,'mer:-z.swu:'able. From this one
can obtzin a function Af(-,-) with values in E(IH)

such that 4' is "X« measurable and for every g £ G,

A‘(g,X) = A(g,X) a a.e, X £ Xu
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If 4 satisfies the cocycle identity a« a.e. for each

pair g81:8, € G , then so does 4',

Next, let 4 : GXX —>U(H) be a function
satisfying (i) and (ii) of the sbove paragraph., Let
H&G be a closed subgroup of G. g —> aij(g,-) is
continuous from H to L2(X;a). Hence, by theorem 6,2,
and the above discussion, for each g e H, A(g,+) can be

" modified on an a~-null set to get a function A' on HXX
so that 4' is A\ X « measurable, where A, is the Haar
measure on H., By the same argument, 4 can be modified

" \for each g e G - H on an a-null set so that the resulting

function 4" on (G-H)X X is iXx« measurable, Thus A

can be so modified to obtain a function A' such that A

18 AXa measurable and A]HXX is KOXOC measurable.
If A satisfies the cocycle identity a a.e. for each pair
8158, € G, then so does 4'.
Now suppose 4 i GXX > U( H) satisfies (4.1),
Fiz.  alee, ,» x) = Alg)y 5 x)a(g, 5 81%) a.e. (8,185,%).

Define the operator Lg on L2(X,]H, «) by:

\d -
(Lgf)(x) = A(g,x) —gg(x) flgx) , ge@, xeX, stQ(X,ZH,a).
i !/ % 7
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From the theory of group representations (see pages 67,68
of [24]}) we know that there is a representation U fgr%bUg)
of G such that,

]ngUg fora.e.gGG- R

Also, there is a function A': GXX —> U( H) such that,

for each g ¢ G, A'(g,*) is Borel on X and,

a
(0,6 (x) = &' (g,%) /-é-‘.fﬂ(x) flgx) , xeX, £ e T2(X, H, q.
(¢4 .

A' satisfies the cocycle identity (for a a.e.) for every

pair 8158y E G. E,s

' d
(1,9 (1) = /- £(g-) , £e12(x, H, o), then
. _da

g§ —» <A (g,.)ei ’ eJ> 5 <UgT-gei ’ ej>
is a continuous function from G %o LZCX,a). So we can
get a modification 4" of A' such that A" is X«

n

measurable, 4 = 4 (X «) a.e. and, for every

gl! gz € GS
A"(glgé y %) = 4'(g) 5 x) i"e, » &)%) a a.e. x £ X,

ilso, if H is a closed subgroup of G, then A" can be so

btained that 4" i
obtained a A“HXX is onoc measurable, where 7\0
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is the Haar measure on H, Thus we have the following

proposition.

[y

6.4, Proposition, Let A : GXX —> U( H) be a Borel
function satisfying ”
Algig, » %) = Alg; » x)Alg, , %) (AX 1 Xa) ase. |

Let H be a closed subgroup of G sand let LN be the
' Haar measure on H. Then we can get a function

A's GXX —> U(H) such that,

(i) A'(g,x) = A(g,x) (KX o) a.e. (g’X) e GXX,
(ii) A" is *» X « measurable,

(iii) AW is A 4% o measurable, and
HXX

(iv) for every 81 g2 e G,

Al (gng y X) = A (8_]_ ’ X)A'(gg ’ glx) a a.e. X € X,

Similarly, two (G,X,U( H)) cocycles A, and
AZ relative to the quasi-invariant measure « on X, are
cohomologous if and only if there exists a Borel function

I U(IH) such that for each g e G,

Al(g,x) = 0(x) A2(g,X) 0(gx) « a.e. x é X.
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CHAPTER II

COCYCLES ON 4 FLOW BUILT UNDER A FUNCTION

1. Flow built under a function,

Let (Q,B, p) be a finite measure spaCe which
is complete and let S :ﬂ -—)Q be a one-one,
bimeasurable map, such that § preserves p-null sets,
8 defines an action of N, the integer group, on () and
4 is quasi-invariant under this action. Let P bYe a
f3 - measurable real-valued function on {J such that

F2c > 0 and J F(w) du(w) <> where ¢ is &

constant, Let ()} denote the subset of Q)(}R underxr

the zraph of F; i.e.,

A = {(w,u) : wve_o_ , 0< u < F(w)}

Bquip IR with the Lebesgue o-algebra and the Lebesgue

measure * , () is a measurable subset of the completed
product oc-algebra on (A\XR. ILet J’S » 1 be the
restrictions %o f)_ of the completed product g-algebra
and the product measure uxX A on{)XIR . Since

Foe Ll(ﬂ,p.), (f)_,dg , &) is again a finite measure .
space, On ﬁ we define a one-parameter family{'l‘t‘: t e JR}

of transformations, i.e., an action of the real line
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v——

3on L) , as followss

T, (wyu) = (wyust), if 0 utt < F{w}

: n-1
(s, wt - 3§ P(sw)),

I

n-1

; k o k
f F t - 3 i * ¢ a
(1.1) 1 kio (87"w) ¢ u+t ¢ kio F{8"w) , n=1l,2,

-1
(S-nw, utt + kE lF(SkW)).’

n -k n-1 il
if = T F(STwicurt ¢ = 3 F(S W), n=1,2e0:
k=1 ; = k=1

*
-

It can be shown that -{Tt T e I{} is a measurable

flow on £) by which we mean that,
(i) {Tt : t o€ IR} makes () a Borel R-space, and
(ii) u is guasi-invariant under the action of R.

We call {T, : t eR } the flow built under the furietion

P, on the transformation S. () is called the bage space,

S the base transformation and F the ceiling function.

iWe note thatf,

(1-2) TF(W)(W,O) = (SW ’ O)s

a relation which will be useful in the seguel.
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Natationt ©Por each t eIRy and w e {) Llet,

[t]w = the integer n, such that

n-1 I n 1
z F(S"w) ¢ t ¢ 3 F(sw) , if 1t 2 0,
n X n+l K
- ¥ F(S™w) ¢ t< - v P(S8w), if t ¢ O.
Ke=wl = k=-1
[t] -1
i k
<y, =% - 3z B(shw) , if [$] > 0,
'3
[t],

t 4+ 3z Ps%w) , if 171 o

Remark: One can vismalise translation on the real line
a8 s flow built under the constant function 1 with base
space () as the integers and S as addition by 1, If
this is done, [t]w is independent of w and eguals the
intigral part of t. For the integral part [t] of %, the

following relation is easily proved.
[tl+t2+t3] = [tl+t2] + [t3+<tl+t2>]

whers <t> is the fractional part of t« (The above

relation is {3.1) of chapter I). The following lemma is a
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generalization of this fact: This lemma was proved

Jointly with M. G. Nadkarni.
1.1. Lemma. For ) , t, , t; ¢ R, and we (),

(1.3) [tl+t2+t3}w = [t+8,] + [t3+<ﬁl+t2>w] [t

l+t2]W(w
Proof: Let ny = [t1+t2]w y g i [t3+<tl+té>w1 [ +t2]w( )

and n = [tl+t +t3] . Consider the case when ny, n, 2 0.

By definition,

nl-l i . nl .
£ PF(STw) < tl+f2 e z F(Sw), and
=0 ' k=0

n,-~1 n
n 2
L, FES T ¢ tpr e, ¢ 2 R(s5(s T,

n1+n2-l : nl-l n1+n

i.e., ¢ F(S%w) < Tzt +t,- T F(STw) < T F(s%w),
nl+n2-l l+n2 .
Therefore, ¥ F(S w) < B+t +t3 < 7 F(5%w).
k= 0 k: O

e el A [t +t 3] +n,

Similarly, we can consider the remaining cases and verify (1.3)\

Q. E. D.
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2. Cocycles on a flow built under a function.

Since N is countable, every (N,fl) cocycle has
a strict version. Let B be a measurable U(H) valued

function on () , and put

B(w)B(Sw)-g(s™w) , m> o0
Yo(2.1) Aﬁ(m,w) = I, m= 0

p(swf (8™,  m ¢ o

$

Then AB is a strict (N,{}) cocycle. Conversely, if A
is an (d,£)) cocycle and g(w) = A(l,w), then A = AB a.e.
Thus (N, {)) cocycles are completely described in terms
of a single U( H) valued measurable function on £1.

'In the rest of this section we establish a relation
between strict (N ,({1l) cocycles and strict (IR,fi) coeycles

and show that every ( R,f{l) cocycle has a strict version.

Let A be a strict (N, {2) cocycle and define A&
on IR)(ﬁ ag follows:

(2.2) E(t , (wyu)) = A([t+u]w , W) .
Then A satisfies the cocycle identity (..1) of chapter I.

This cen be verified by using lemuna 1.1. Further, A is

jointly measurable in view of the following lemma.,
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2.1. Lemnmg. .(t,(w,u)) — ([t+u]w s W) is a measurable

map of RX () into Nx ).

g_y_oofl:l Since (%, (w,u)) ——> w is measurable, it is
enough to show that (t,(w,u)) --—9-~[t+u]w is measurable.

Let n_ be a (positive) integer, and consider

B= {(t,(w,u)) : [t+u], = ng } .
Now,

91 (ty (w,u)) ——> (t+u, (w,u)) is measurable
from RX Q) — Rx 0 (Ambrose [1],p.731), and

Ps ¢ (t,(wyu)) —> (t,w) is measurable from

Exﬁ into Rx ) . Therefore,

9 0 9 (t, (wyu)) %—) (t+1i s W) is measurable

from ]Rxﬁ into mX 2 . Next,

V = {(t,w) : [t]")V ="nO } %
no-l n,
= {.(t_,w) ;¢ F(s%w) <t < 1 F(SKW)}
k=0 k=0

1s a measurable subset of RX (), Hence,
B= (s, () : [t+u], = n,} o= (9, 0 9)7H(W)

is a measurable subset of R X Q.

Q. E. D,
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2 P fheorem, Let B be a strict (R ,{) ) cocycle.
Then B is S't:rictly‘ cohomologous to a cocycle A for
some (W ,{2) cocyele A. Two (K , YY) cocycles A, and
A2 are cohomoloeogous if and onIfr'l if the corresponding

( R,£2) cocycles K-l and 12 are strictly cohomologous.

Proof: Define B(w) = B(F(w) , (w,0)) ; and let 4

deno'te the _QN ,£Y) coeycle AB giben by B acetording to
(2.1). Define P on {1 by:
P(;N,u.) = B(u 9 (W’O))v

g

O is measurable on () . For t e R, (w,u) e {2 ;

P (w,w) B(t, (W,u)) 0 (T, (w,u))

% : [ t+u]
B(u, (w;0))B(%, (w,u))B (Kt+wd_ , (8 = ""(w),0))

[ t+u]

W(W) ’ O))

B(u+t,‘(w,.0))B?<t+u)W , (8

= B(P(w)+ »++ + F(S[%uﬂw(w)) , (w,0))

= a([t+u] W) = J(s , (w,uw)

So B\and % are strictly cohomologous. If two (N ,{))
cocycles A, and A, are cohomologous (P, ), then Il and

EZ are cohomologous ( P), where Plw,u) = Do(w). if

A and 'Ii2 are strictly cohomologous (P ), then Ay and
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A, are strictly coHomologous ( DO) where D:}(‘w) =p (w,0),
Q..B. D.

2¢3, Theorem. To every (R ,f}) cocycle A, there corres-

ponds 2 strict (R , D) cocycle A' such that,

At , ®) = A'(t , 7) for ave. (4,7) eRXCY.

Proof: Since liA is an (IR ,0)) cocy*:cle, we have:
(2.3}  A(s+t, (w,u)) = A(s,(w,u))A(t,Ts(w,u))

a.e. (8yt,y (wyu)) EIR)(IRXﬁ !
Since [0,¢)X ) is of p\qsitive measure in ﬁ y there is
u_ , 0< ud < ¢, such that,

(o)

A(stt, (wy,)) = Als, (wyu,))A(S, T (w,u,))
a.e. (s,t,w) e RXRX ().

Define Al on - BRX ) by:

Al(tr(w,uj) =A(t,Tuo(W,u))-

Then 4, is an (R ,5) cocycle, Moreover,
(2.4) 4y (55, (9,0)) = &) (s, (w,0))4, (,T_ (w,0))
| as.e. (s,t,w) e RX ®RX (2.

Let J be a Borel subset of Q ~of measure zero such
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that, if w ¢ J, (2.4) holds for a.e. (s,%) ¢ RXIR .

o0
Replacing J by U s™(J) we can assume S(J) =4
- n=-6o .

and S”lr(J) = J.- Define A, on rx £} by,

I if we J

A2(t!(wbu)) = A];(t,(w,li)) o wﬁ -

Then A, is an (R ,ﬁ) cocycle and A, = A, a.e. Also,
f‘orr each w e Q,
(2.5) Ay(s+%,(w,0)) = Ay(s, (w,0))4,(t,7_(w,0))
a.e. (s,t) e RXR.
Define the meaéu.rable function £ on A by:
P(w,u) = A,(u,(w,0)).
Let A; be the .( R ,ﬁ) cocycle defineé. by:
by (6, (w,0)) =0 (w,u) Ay (5, (wyu)) B (24 (wym)).
A3 is cohpmologous to A2; for each w eﬂ, A3 -gatisfies
(2.6)  A5(s+t,(w,0)) = A5(s, (w,0))4, (5,7 _(w,0))

a.e. (8,t) eRXR .

Mkover,

ABI(u, (w,0)) 19, 0< u <F(w).

T
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Fix we (2. TPor a.e. s, F(w) & 8l F(w) + F(sw),
we have,

(2.7) AB(s—F(W)+t,(Sw,0)) = AB(S;F(W) , (Sw,0))>

AB(t . Ts(w,o)) a.e. t SJR.

= 45(%, 7,(w,0)) a.e. t em.

(2.8) Ag(s+t,(w,0)) = 45(s, (w,0)) A (%,T_(,0))
g.ce t £ R,

Fixing s for which (2.7) and (2.8) hold and putting

u = s+t - F(w), we have,
A3(L1+F(W) 9 (W’O)) = AB(S,(W’O))AB(H! (SW,O))

a.e. ueIR.
Therefore, AB(S , (w,0)) is constant for a.e. s in
- F(w) < 8 < F(w)+PF(Sw). TLet pB(w) be this constant

value. Then B is a Q(]H) valued measurable function

onQ " For each weﬂ,
B(w) = AB(S,(W,O)) a.e. 3, P(w) < 8 < F(w)+F(Sw).

Let Aﬁ. ve the (N,£2) cocycle obtained from B by (2.1).
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For each w aﬂ s

Ty(a, (1,0)) = I = 45(s,(w,00), 0 ¢s <F(w)

(2.9). _
A5 (s, (w,0)) = B(w) = A5(s,(w,0)),
a.e. 8, F(w) <8 < F(w)+F(Sw),
and,
hy(s+t, (9,0)) = As(s, (w,0)) As(t, (w,s))
ga.e. (s,t) € [O,F(w))¥X[0,c)
(2.10)

1l

KB(S+t,(W,O)) \IB(SQ(Wao)) -K-B(ts(w’b))

a.e. (8,t) ¢ [O,F(w))X[0,c).
Applying (2.9) to (2.10) we have, for each w ¢ ()4

a5 (6, (wy8)) = Fg(t, (w,8)) ae. (s,%) e [0,F(w))¥[0,c).

Therefore,

As(t,(w,s)) = AB(t,(w,s)) a.e. (t,(w,s))ra [0,e)x CL .

Since #3 and'ﬁB are cocycles, the cocycle identity now
implies that the equality KB = Az holds for a.e.

(t,w) € BX ). Thus Az has a strict version and so
A2 has a strict versioh, since 1t is cohomologous to AB'
Since Al = A2 Q.Ca4y Al has a strict version. But Al is

a translate of 4 and so A has a strict version. This

proves the theorem.
Q-Q E! :D.
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Remark: The above proof is an adaptation of the proof

of lemma 12.3 of chapter VII of [8].

3. Ambrose-~Kakutani Theorem.

Let {Tt R ]R} and {T% + t e ]R} be measurable
! ’
flows on () ,d3, w) and (1,43, ur) respectively. We
say that {Tt} and {T't} are isomorphic if there are

/
invariant null sets N of Q and N' of {2 ana a one-

/
one, bimeasurable map ¢ of £)- N onto £~ N' such

1

that u'= po™" and T'y = 9790 (on (V- N'). They

are said to be gg.asi:—isomorghic S8 s p.cp-l and
cthcp"l = TrJG . Let the flow {Tt : bt g ZR} on (2,A s H)
be quasi~isomorphic to the flow {T't : toe JR}- on
%(Q',ﬁ/, u'). Suppose every (IR ,Q) cocycle has a
strict version. Then, it is easy to see that, every

(R, ) cocycle also has a strict version.

A measurable f‘low‘ {Tt I 7 EIR} on (.('),,43, i)
is said to be proper if given a set A of positive
u-measure, there is a set B & A of positive p-measure

and t, e R such that p(B ~ Ty B) > 0. It is easy to
0

see that 4if {Tt g % eIR} is ergodic, then it is

proper. A deep theorem of Ambrose and Kakutani [2] says
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that if p is invariant under {T : % eIR} and {T t am}
is proper, then..() can be split up into countable

number of invariant measurable sets N, f)l, sz, e

such that W(N) = 0 and restriction of §T. : ¢ eJR}

to fli is isomorphic to a flow built under a function,
Thus, in view of the results of the last section, when

u is invariant under {Tt : %o IR} and the flow is
proper, every ( R ,f) ) cocycle has a strict version and

we can describe the cohomology classes of (R , (7))

cocycles in terms of (N’,.f)o) cocycles where f¥)is

a different measure gpace.

In [21] Rokhlin gives a new proof of Ambrose -
akutani theorem when (§1,43,p) is a Lebesgue gpace and

b 1s invariant under the flow. In this case, the
condition that: {Tt: t ELR_} is proper is equivalent
to the condition that {w : Ttw =w for all t ¢ ]R}- "
the set of fixed points of the flow, has measure zero.
In [5] Dani has modified Rokhlin’s method to prove that
TE {T HE eimk} is a proper measurable flow on a
Lebesgue space (), dg,u) (p is just quasi-invariant
under {Tt : 4 EJR} ) » then {) can be split up into

invariant measurable sets N, f)l’ 112, **++  such that

/
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L(N) = 0 and {E% : teim.} restricted to Ili is
guasi-isomorphic to a flow built under a function. Thus,
cocycles associated with proper measurable flows on g
Lebesgue space have strict versions and they can be
described in terms of (N , flo) cocycles; where !)o' is

a different measure space.

4, Flows built under a constant function.

Tt G EIB:} be a flow built under a

constant function F, with base transformation S and

Let

base space (fl,iS, p). We assume P = 1. In this case,

1 =0 X[0,1) and T =px1, where % is the Lebesgue

measure on [ 0,1).

%.1. Lemma.

dp du -
(4.1) EZE(W,Q) = ——%ﬁiﬂl(w) ) L a.e. (w,u).
m "

Proof: It is cnough to prove that,

-

d ad
(4.2) § § —S(ww) ap(w) ar(w) = [ 5 Lol o iw)an(a)
AB W Ap @

for every Borel subset of ) X[0,1) of the form BXA.
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Be A e
R.H.8. of (4.2) = d “[t+uJ(B) dx (u)
I :

= 2 (a)u(sB) +oawy)u(sltiety,

where Ay = AN[0, 1~<t))  ana A, = AN[1~<13,1).
LeH8. 0f (4.2) = [ (BX4) = {(2,(BX4))
= 5 (sttlp X (4 +<82)) U, (S[t]+lBK(A2+‘<t)-l)) j

= % (apu(st By 4 2 (ay)u(sl iy |

since the two sets eccurring in the union are disjoint.

Q. E. DD

Let A be an (N-,f).) cocyél‘e taking values in
U( H), the group of unitary operators of a separable
Hilbert space H. (The inner product in T 4s denoted by
¢,*> ). Let I be the (R ,0) eocyele obtained from
4. A defines a unitary operator U on 1°(0) s Hy u) by

(Uf) (w) = a(1l,w) 4 éﬁ-l-(w) f(s’lw s, T 8 I?(Q, Hy p).
fdp

Likewise, 4 defines a one-parameter group of unitary

operators 'Tf't on 152 (Q s Hy, &) by:
N ‘ :
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—
—Bw,u) B(T_, (w,u) ,
du

he (0, =, 0.

(T 1) (w,a) = E(t, (w,u))

Let E and E be the spectral measures associated (by
the Stone’s theorem) with U and '{ﬁt : t e R }
respectively. E is defined on the circle group and B

on the real line. We prove the following:-

4.2, Theorem, Suppose 1 is not an eigenvalue of U,
and E 1is of uniform multiplicity n, lg_ngx:. Then,
E also is of uniform multiplicity n.

B

- Proof: Since is of uniform multiplicity n, there

are functions f, , f, , ««», £ in Lg(fl,ZH, L) such
%ithat,
(1) (kai,fj):o if 147 ,1¢1,§¢n,
(ii) the measures () = (E(-)fi,fi) are same
. for each i = 1,2,¢:-,n, and,
(iii) the closed linear span of ‘{kai : k integer,
i=1,2,-+,n} is arG o A -l T

Define Ti on,fi by:

Ti(w, u) = fi(W).
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Then, T, e 1%(Q), H, §).

| =
DT, T - -&i<(z(t,(w,u)) /=) T ()

i
z, (w,2) > di(w,u)

1 .
=0 R <A([t+u],W) /M(w) .
o0 O du

£ s @) aum ar(w)

1
sy CE A SR

= 0 if 143,
2) If the measures ¥; on R are defined by

\ v; (") = (B()T
then ;i=;73. » 1< i,j< n,

3) Dne closed linear span of {ﬁt Ei :teR, j_=1,2,...',n}

rd

\ is 22(Q), MW, §). For, let h e LT 00 T, 5 | b5 duck: Thaw
(ﬁ,G Ti s h) = 0 for all t”e]R and 1 = 1,2,«+¢,n, Tet
m be an integer; to » 8, real numbers such that

m <P, < S, € m+l.r Then,
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0= ’( (ﬁt - Tjso)?l ’ h)
0

1 L tpu] ~[t +u]

{<A([’G +u],vv)/——-d—-(W)fi(S w), hfw;u)>

Qo K

du & " _- ‘
- da(ls +u) ,,w)/-——[s—"’ﬂ(w)fi( sy atw > 1

dp

ar(uw) au(w).

13 |
= ] u){f[é(mﬂ,\v)/ InHL(W) £, (S“(m+l)w) , h(w,u)>

(atm,w) E—f(w)’fi(s‘ W amwd] e ]

(@™ ey b)) - (U7, b)) B

.

where o = m+l ~ 8 0+ B =ml ~ to and hﬁ is the uth-

section of h., Varying to and 8, this is true for all

«, B with O<a<p<l. Therefore,

(™2, , b)) = (0B, , ) A a.e. e [0,1).

or, (U%f; , b)) = (V%% , b))  x a.e. we [0,1),

This is true for all i=1,2,:+.,n, Therefore,

/
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2 i
h,6 e B(1) (Lz(ﬂ, H, p)) % a.e. e [0,1),
As 1 is not an eigenvalue of U, E(1l) = 0. So

h, =0 * a.e. ue [0,1). That is, h(w,u) = 0 L a.e.

(wyu) € fj. . Therefore, the closed linear span of

{-ﬁt?i s T e IR P i= 1,2,"'91'1}' is Lz(-o., H, ﬁ)o

1), 2) and 3) prove that E is of uniform
multiplicity n,

In [19] Mackey introduces a generslization of
the concept of a flow built under a function. His

generslization of a flow built under a constant function

t as follows:

Let H be a closed subgroup of a locally compact
second countable group G, and let S be an H-gpace,

SX & can be made and HXG-space by:
(h,8) (s,%) = (hs,g™ xh), (h,g) € HXG, (s,x) & SXG.

The action of {e} XG on 8XG commutes with the acti_on

of HX{e} on SXG. Therefore, we get an action of G
(- :

on the HX{ejorbit space SXG of SXG ., This is
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Mackey’s generalization of a filow built under =a constant

funetion.

Let C Dbe a Borel section of G with respect to the
cloged subgroup H. We assume, without loss of generality,
that the identity e e C. It can be shown that SXG
with the gqudtient Borel structure isHBorel isomorphic to

St

S = 8XC. The action of ¢ on SXG  when taken to §

hecomes:

(4.3) gls,c) = ({egls , <¢cg>). (See section 3 of
chapter I).

Let u bg_a finite measure on S, guasi-invariant under
the actibn of H, and let ¥ be a finite measure on G/H ]
guasi-invariant under the natural action of G on G/H .
gﬁﬁere is a unigue invariant {under this action of G on
G/H ) measure class on'G/H ). ¥ can be considered a
measure on €, since there is a Borel isomorphism between
¢ and G/H . Then g = uX¥ on S is quasi-invariant
under the action (4.%) of G on 8. An analogue of

"lemma 4,1 holds for U

Az d |
(4.4) “%5(8,0) = —ELEEl(S) y B a.e. (s,c).
dp du
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Let A %be an (H,3) cocycle. Define A& on
GXS by: ,
‘ (4-5) E(gs (S,C)) = A([Gg_] ? S)-
A is a (6 , B) cocycle. This can be verified by using
the fact that for &1 ,'gz » 83 € G,
[218085] = [&18,1( @ 855851
Also, any strict (G , T) cocycle is cohomologous to a
(¢ , 8) cocycle extended from an (H , S)'cocycle. For,
let B be a strict (G,3) cocycle. Let A, be the (H , 8)
cocycle defined by: L
A (h,s) = B(h,(s,e)).
‘ﬁfine the Borel function p on'S by:
p(ssc) = B(c ’ (Sse))-

Let A be the (¢ , §) cocycle (cohomologous (©) to B)
defined by: : ;
S? A(g, (s,¢)) = 9(s,c) B(g,(s,c)) p (g(s,c)).

hen, j :

B(c,(s,e))B(g,(s,c))B*(<cg>,([cg]s,e))
B(cg,(s,e))B*(<cg>,([cg]s,e))

A(g, (s,c))

|
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B.([cg] , (s,e)) = AO([Cg] y S)

= %,(g , (sy0)).

Thus, B is cohomologous to Ko :

In chapter III, we shall consider in more detail,
a particular case of a general flow built under a constant

function,

5. Strict versions of cocycles.

Let N act on a space €2 . since ¥® is
countable, every (§™ , {1) cocycle has a strict version.
Let 4 be an (W' ,{)) strict cocycle. A is determined by

‘h_functions £ vee o £ where

l 2
fi(') = A(ei ’ ‘) = A((O,“’,O,lgo,”’,o) ’ ‘)
th

where 1 occurs in the i position, PFurther fi oL

d
satisfy

(5.1) fi(w)fj(eiw) = fj(w)fi(ejw).

Conversely, if we are given n measurable U( H) valued

functions £, , +++ , f, satisfying the equations (5.1),

n
then we can %et an (8%,0)) cocycle by setting

'.A(ei y W) = fi(w).
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[0,1)® is a section of R® with respect to NO.
So, Ey methods described at the end of section 4, an
action of N on a space 0 will give rise to an action
of R™ on ‘fi ={) X[o0,1)", an (@ ,{)) cocycle 4
extends to an ( R® ,Ei) cocycle  ( by formula (4.5))
and every strict ( R®™ , {1 ) cocycle is cohomologous to
a cocycle extended from an (Nn,fl.) cocycle. Tinally,
by methods similar to that of theorem 2.3, one can prove
That every (IR™ ,{)) cocycle has a strict version. Thus,
all ( R% ,ji) cocycles can be described in terms of

(8% ,0)) cocycles.

Now let us consider the special case when IR®
with its usual topology is imbedded continuously and in
a one-one way in a locally compact éecond counfable
abelian group B and that Zéﬁ = B. Then the dual g of
B is dense in RY, Ve can .assume, without loss of
generality, that the subgroup z% of R generated by
{;(2n909'°°,0) s *°* 4 (QCyev+,0,2%) }' is contained in
g. Let K Ybe the annihilator of the closed subgroup
% of B® . then, KNR® =1 and ¥ =K. Also,
one can show that the action of RB® on B is isomorphic

"/ to the action of R® on KX[0,1)? defined by (4.3);
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viz.
(tl-s;"'stn) (X;(ul’b'°’un)) = (‘([tl"“:ll]s“‘s[tn"‘un])x ’

(<tl+ul>,---,<tn+un>) i

Thus, every (R™ , B) cocycle has a Strict version and
they can be described in terms of (N® , K) cocycles. The
next theorem says that in some more cases we can get

Y

strict versions of cocycles,

5.1, Theorem. Let H be a locally compaﬁt second
countable abelian group of the form BR™X K where K
is a compact abelian group. Let H be imbedded conti-
nuously and in a one-one way in a locally compact
second countable abelian group G and let the image of
‘E be dense in G. Then every (H,G,U(H)) cocycle has a

strict version.

Proof: e assume H &G,
Since K is compact in H, K is a compact
\bubgroup of G and so closed in G. Hence by lemma 4.1,

_every (K , &) cocycle is a coboundary. Since H is dense

in G, /g =B is demse in %/ .

/
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Let ¢ be a measure on G, quaéi—invariant under
the action of H., Obviously, o is quasi-invariant under
the action of X on G, Therefore, o is equivalent to a
measure of the form (* X p)o-g'lt., Wl;lére A is the Haar
measure on Ky u is some measure on G/K and Q is the
Borel isomorphism between G and K)(\G/_K defined in
section 3 of chapter I. Since o is quasi-invariant
under IR®, the measure b on G/K is quasi-invariant

under the action of R® on Gy
K

Let 4 be a (H,¢,U(MH)) cocycle relative %o o.
We define a cocycle as in section 6 of chapter I. Then,
\AIK)(G is a (K , G) cocycle and so is a coboundary.
Let this coboundary be given by the measurable function

*
- P : ¢ —> U(H) ,

*
Alk,x) = P(x) o(z+k) , keK, xe G,
\ Define the (H , G) cocycle B as follows:
B((r,k) , x) = o(x) A((r,k) , x)p (x+(r,k)) ,

re}Rn,keK, X e G,

/ -
An easy computation shows that, for fixed r & R® and

i, k € X,

B((I‘,k) ’ X"‘J) = B((r,e) y X) = B(r,x) (saY)
‘ a.e. x & G,
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Therefore, for fixed r e RD y the function B(r,-) on G
satisfies the conditions of lemmé 3.1 of chapter I.
Hence, there is a measurable function B' (r,) on G/K

such that,
B(r,x) = B' (e, nK(x))' Ba B G
(where Ty ¢ G —> G/k is the quotient map). IFrom

the relation: for every Ty s Ty siﬁn,

B(rl+r2 5 S = B(rl . X)B(r2 L x+rl) a. e. X & G,

' wh ‘ bt = v G
B (rl+r2 g =)= B'(rl s X) B'(rg‘, x+rl) a.e. X € /k :
Thus, we get an ( R"™ , G/'K) cocycle B' , and so it has
a strict veérsion, say B,' . Define B, on HXG by:
B,((r,k) , x) = By (& u (%)),

Then B, is a strict (H, @) cocycle which is almost
everywhere equal to B. The given cocycle A is cohomo-

logous to B and so 4 itself has a strict version,

Q. E. D.


http://www.cvisiontech.com

CHAPTER III

SYSTEMS OF IMPRIMITIVITY ON LOCALLY CQMPACT
AEULIAN GROUPS WITH DENSE ACTIONS.

1. Pairs of groups.

By a pair (I , R) we will mean that .
(i) T and R are locally compact second countable abelian
groups, and
(ii) there exists a one-one, continuous homomorphism ¢

of [ into R such that o([) is dense in R.

Given a pair ([, R) there arises another pair in a

natural way. Consider the dual groups r- and R and
A - O
the map @ : R —> | defined by:
N A ' A A
<x, 9(y)> = <o(x) , 5> , xef ,¥eR

: ' A :
It can be shown that ¢ is a one-one, continuous homo-
: ] A £ A )
morphism of R into [ and that $(R) is dense in [ .

' A e -
The pair (R, [ ) is called the dual pair of ([, R).

Remark: It is convenient sometimes to identify [ with
o ( FU and thus regard [ as a dense subgroup of R. The
topology of [ is not the one induced from R, but it is

such that the inclusion map of | into R is continuous.
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1, Example: Take R to be the group R of real
numbers with the usual topology, and f_ to be any

countable dense subgroup of R , w:.th the discrete

topology. Let ¢ be the inclusion map of [ into R

Then ([ , R) is a pair. R is densely imbedded in the
A A

compact group |  and (IR , [" ) is the dual pair.

Let (U, P) be a system of imprimitivity on the
pair ([, R), ( [ acts on R through translation), acting

in a geparable Hilbert space H. Apply Stone’s theorem
”~\
to U to yield a spectral measure Q on r and to P to

Fa ¥
yield a representation V of R :

Ug= [ <-yie>adaly) , ge [,
(1.1) |, A

j‘r‘(X,h) dP(X) ’ h e ﬁ .
R

[ny
il

Since (U,P) .is a ([, R) system of imprimitivity, we have

=
|

| -1
.; <xyn> d(U,""R(x) U,)

1l

I <x,h> aP(x+o(g))
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<-9(8) , by UL

Ty

)3

-
i

1

H

<-g , 2(n)d ﬁg‘

~

where ¢ is the dual map from R into ' « PFrom (1.1)

we have,

n Ug vy, =<y, & d(Vh-‘lq(y)‘ Vh)

1

=1 <y-§(n) , g>daly)

s

=IgY 5 &> dQ(y+3(n)) .

A

Therefore, V, 1q(D) V, = Q(D+§(h)) for each Borel set
A A
DC [ and for each h € R. Hence (V,Q) is a system
A A
of imprimitivity of (R, [) acting' in M . We shall

call (V,q) the dual system of (U,P). We observe that

a subspace of IH reduces (U,P) if and only if it reduces

(V,Q).

Remarks. The above definitions and results are taken
from Bagchi [3]. Dual systems of imprimitivity first
appear in the work of Stone [23] and von Neumann, and

in general group context in the work of Mackey [17].
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Pair, dual pair and dual systems of imprimitivity appear,
somewhat implicitly, in the work of Helson and Lowden-
slager [14]. Dual pairs were explicitly considered by

de Leeuw and Glicksberg {6].

2. The pairs d“/T; ; R/f; ) and ([ , R).

Let (| , R) be a pair where we regard [ as a
dense subgroup of R and the map ¢ i1s the inclusion map
of [ into R, TLet ]_Og_ [~ be & closed subgroup of R.
Then r; is closed in [ as well. Further, (FYT; ,:qu

is a pair which we call the quotient pair. We fix a

‘Borel section Q of R with respect to r;. Then every

element X & R can uniquely be written in the form

XZYO‘*'C’YOE 'O:CEQ-
e denote (see section 3 of chapter I) Yo = [x] ana

¢ =<x>. Further, R is Borel isomorphic to R/r- bt ]B
0

by the map é;: R/riK[; —> R given by:

(2.1)  &@,v) =c+y, , ceq Te £ fo
where ¢ denotes the coset of [o o which ¢ belongs.
As in (3.2) of chapter I, we define a group operation +

on @Q by:
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| cy + Chp = <cl + 02) .
With this operation Q is group isomorphic to R/r
o
the 1somorphlsm being ¢ ~—> 7 ,

2.1. Exemple. Let R =R, [ = a countable dense sub-
group of IR, with discrete topology, and assume that

en e [ . Let r; be the cyclic subgroup generated by

4 N

circle group and r/r~ a countable dense subgroup of it

2n. Then r)r' . /r') is a pair, being the

with discrete t0pology. The interval [0,2n) is a section

of IR . with respect to [; .

If ¢ ie a measure on R/[“ and 10 is the

W
Haar measure on fz; then ¥ gshall denote the measure

(¥ X 2o &™ on R. We will need the following lemmas,

2.2. Lemma. Let ¥ be a finite measure on R/}— gquasi-
o}

wy
1nvar1ant under the action of F}r- Then ¥ is quasi-

1nvar11ﬁt under the action of r on R,
Proof! Let A be a measurable subset of R such that
W
Y(4) = 0. 8o, (¥ X3,)(&71(4)) = 0. Therefore,
- R =
for ¥ a.e. ¢ & /r- (e &a@; xo((éi 1(3))_) =
| O C
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lwhere (Q._l(A))E is the & B section of &'—l(A). ~

Let v ¢ r Then vy = [y] + <y> where [y]e [;

and <y> € Q. Observe that <Y er;r « For any ¢ £ Q,
E h 8] 7

(a‘lmw))a = 1%t o Gvg) et}
= -{yo £ [0 Pooty € A+T}-
z{YOE l_0=<0-<*r>>+vo+[c-v]€A}

{Y’o' - fe-y] ¢ [, ¢ <c =<YD+ € A}.

ft

It

(&) I o= Eamml
£ N [e-v]

Now,

V(ary) = (¥%1) (&L (asy))

1

tl

I (&7 ay)) ) »(a3)
C

R
i

il

;o ( (&7 - [e=y]) (a3
1 2,0 (§ (A))E."W) [e=v]) ¥(a3)

R/Im

0


http://www.cvisiontech.com

65 &

= s l ~1 V(a , - $hi
RJ/ lo((‘i‘_’ (A))c-(y}) ¢ds) s:.nce A, is the
o

Haar measure on  f_ .

it

0 since | 10(({-1(}&))_) Y(a3) = 0 and ¥ is
C J
R
/,-o
quasi-invariant under the action of f/].. .
Q. B. D.

2v3. Lemma. Any measure on R quasi-invariant under [
' Ve
is equivalent to g measure of the form ¥ for some measure

Y on /r quasi~-invariant under r/r— .
5 _

_ &Proof Let p be a measure on R quas:l.—lnvariant under [~ ,

Let n ¢+ R —> /r- be the natural homomorphism and
o

put ¥ = pon'l. Then % on R/," is quasi-invariant
o
under the action of r/r and by lemma 3,1 of Chapter I,
. . > T
is equivalent to = 2= (¥ X o
Qc E- Do_
Let 2 be a measure on /r— quasi-invariant
- whder the action of r/r » and let 4 be a r_/I-»- /,——,U( H))

0
cocycle relative to Y . Define & on I_XR by:
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(2.2) Xy, 0 =atvT,, x ).

v

W i ‘ :
"Then A isa (] , R . g(iﬂ)) cocycle relative to ¥ .

2.4, Theorem. Bvery ([ , R s U(MH)) cocycle relative

X -
to is cohomologous to a cocycle A for some
(',

Iy

g /’r » U( H)) cocycle A relative to ¥ Two
0

o1 X

r , /Im . E(:H)) cocycles 4 and A2 are cohomolo-

gous if and only if the corresponding (r- R) cocycles Al

and A2 are cohomolOgous.

Proof: Let Bbe a ([ , R, U(MH)) cocycle relative to

;? « By our definition of g cocycle, B| will be

a { 'o » R) cocycle relative to % .. Since [; ig closed

in Ry by lemma 4.2 of chapter I, Bl )( is a coboundary,
R | _

Hence B’ can be taken to be strict; i.e.,
[0 XR '

B(Y01+Y02 y X) = B(Yol y X) B(YO2 ’ X+Yol)_ for all
- 2
X e R,ﬂwyﬁl y Y,© € [; 3
Define the %? — measurable map o on R by:

©(x) = B([x] , <x)).
Let By be the ([, B) cocycle defined by:

Bi(Y » X) = o(x) B(y , x)o*(Y+X)-
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By is cohomologous (P ) to B. If h, h' ¢ l-; and vy e [

L

, . |
Bl(y+h s ¥+h') =P (x+h ")B(y+h , x+h') P (y+x+h+h?)

B([x]+h! ,<X))B(y+h,x+h')B*([Y+X]+h+h ‘,<¥+x>)

il

B([x], <o) B0 ,x)B(y+h,x+0')B (hwh', yox )3 ([yex], cysxs)

= B([x], <x»)B(y+h+h, x)B*(h+h', y+x)B*([~(+x] y <Y+xD)

27 8. €+ X € R,
= B([x] ,<x>) B(y , %) B*([y+xJ y <Y+XD) y a.e. x ¢ R,

= Bl(y , X) 3 a.e. X € R.

So there igs a cocycle 4 on (f—/ iy R/ ) relative to ¥

| B m”
such that for each Y Er

H

Bl(Y y X) = A(Yy , X)) 2 a.e. x & R.
Hence, the gziven cocyecle B and Eare cohomologous.
Let two'(r/ . R/r y U( H)) cocycles Al and A,
I_O 0 wy wr
Then A; and A, are cohomologous( p)
where P (x) = po(xl'o) » X &€ R, Tow, let the ([T, R, U( H))
cocycles 1\1 and Iz be cohomologous (P). Soy, for each

Yﬁr:

“a A % -y
By, x) = P(x) 4,(v 4 )0 (x+y) ¥ ace. x ¢ R.

be cohomologous (00).

ik
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In particular, for Yo € 'f; , wWe have,
v *
T = B(x)p (x-wo) 'p a.0¢ X £ R,
= % vy
Or, for each 7y &€ |0 s, plx) = p(x+y0) 13/ a.e. X € R.

So, by lemma 3.2 of chapter I, there is a measursble

function P, on R/,; such that p(x) = po(x]'o)
1\? 8., X £ R. Al and A2 are cohomologous ( Po).

Qc Ec :Dc

Let (U,F) be a system of imprimitivity based on
(F]r ] R/l—) acting in a separable Hilbert space H.
» 0

Then there exists invariant measure classes foo 5 61 ’

‘62 y s and g( .Tﬂn) cocycles An relative to Zgn -

n = OC, l, 2, trey, (Where IHn =¢n if n = l,2,oco and

H, = .32) such that (U,Fj is equivalent to the concrete
system of imprimitivity given by €OG ,‘él, '@2, ses and

cocycles A Ay Ay, 00 By (TI‘-,‘E?) we shall mean the

(I", R) system of imprimitivity given by ¥ , )Jl, Ve, cee
b [

(ﬁ)ns nt = % 1,2, «++ )} and cocycles 4 A

(¥l

A

oy **C . In view of theorem 5;2 of chapter I and
theorem 2.4, we see that any (]| , R) system of imprimiti-
vity acting in a separable Hilbert space is equivalent

to a ([, R) system of imprimitivity (ﬁf%) for some

(r/roy R/r'

) system of imprimitivity (U,F).
p |
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3. The pairs dual to (r}r- - R/r) and ([ , R),
o 0 :

Now, let us consider the dual pairs ( (‘/T-) - /[-) )
A A o o

A 2 A
and ( R ,[ ). Let us put R = S, and [ =B and

N

(I'/I_ )Az K , the annihilator of f_o in B. Then (R/r) = KN s,
0 0

the annihilator.of r; in S. Thus the pair dual to

( r/IB 3 R/T;) is (KNS , K) and the pair dual to (F, B)

is (S , B).

3.1. Lemma. Any Borel section of S with respect to K{1§

is also a Borel section of B with respect to K.

Proof: TLet C be a Borel section of S with respect to
Kf1s. By Kuratowski’s theorem‘(p. 139 [18]) ¢ is a

Borel subset of B. Each coset of X can contain atmost
-1

. 1%2

and so ¢ = ¢, . Now, the relative topology of rb in

one element from €, for if clK = 02K s Then c £ Kf\S,

" is the same as the relative topology of r; in R.
So, B/K and S/K()S are topoleogically isomorphic, both

being :the dual of ]; . So, given b € B, there is ¢ & C

such that

(bK , v,) = (c(kAs) , y ) for all Yo € .

0 o
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That is, (b, y,) = (¢, v,) or (v7lc , Y,) =1 for

Lo ¢ K' or ‘¢ £ bK. So every

all v, e ro . Hence, b
coset of K contains an element of Q, Therefere, (§ is
& Borel section of B with respect to K.

Qe E. D,

Throughout the rest of this chapter, ¢ will stand
for a fixed Borel section of S with respect to KNS. The
natural one-one correspondence « : ¢ —> ¢ between
and S/Kf\S is a Borel isomorphism, and a measure on.
S/K(}S can be considered a measure on C and vice-verss.
If u is a finite measure on /k(\s » its Pourier
transform [ is a function on S/k(WS) T; o
However, when considered as a measure on C, its Pourier
transform is a function on R which when regtricted to

7N

LA . ~
[ is p, d.e., o af = | . Haar measure m on
‘ B |
S/kf\s is carried over into a measure on C which we denote

by dc. This measure is invariant under the group
operation on C defined by ¢ + ¢, = <c:L + 02) . If
g € 12 ( /YIIS s m), then g has a Fourler—Plancherel
transform & defined on r; . If we regard g as a

function on C, i.e., if we 1look at h = g o a, then
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h has a Fourier-Plancherel ‘transform ﬁ defined on R, which
when restricted to ]'O coincides with Q a.Cq ?1 ié
defined hy: _
(341) Q(Xﬂro) = J <z, e h(c)‘ de , x ¢ Q, Yo € ro'
c F |
= | <Yy s 0) <X 5 C) h(‘ﬁ de,
c

( Q is a section of R with respect to r ).

Let % be a complex-valucd measure en R/r' and
let ¥= (¥ x ) o& -1 (as defined in seection 2). Let
heL?(c, de) and put |

(3.2)  f(xty) = ﬁ(Xﬂ'O) = <Xy, c> B(a) de,
- c

xeQ, voel
Let ge | , g=u+[g] where u = <g>¢q Define the
funetion F_ on R by: l Ll

— [7¢]

(3.3) F

o (XY, ) = f(x+yo) i‘(x-wo - &) .

Let us caloulate the Fourier transform of the measure ng;?.

5.2, Lemma. TFor each % e S,

N

ngz?(t) = IP([tre]) <a, <trexd h(<t+e>)B(e) dge
¢ ' |
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Proof:

A
Iy
C

Il

=1 70 e

([t+c]) <&, t+od hic t+c3) R(c)de

) { J <x,[t+c])7’(dx)} <8y &Lt+ed)y h{ct+ed)hle)de
g R

/T - —
= J <X f<x,oh(e) <x, ~(t+dd <g,<t+oedd> -
R/!_ @ h(<t+ed) de ¥ (dx)
0
= I <x,t<x,ep he) <x~g , <t+d) R G+ed) de Y(dx)
R/ C
r;
= &I L) vy, =<D> fxrymg) s () ¥ax)
R/I_ I,

Il

|

(by Plancherel theorem)

) 4‘<X+Y0 , B f(x+yo) f(x+yo—g) dlo(yo) ¥ (dx)
R/r_o[o

“M
Jo<xtY, t > Fg(x+yo) dﬂ’(x+y0)
R
N

v
Fg av ().

Q. E' D.
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Remark: The author is indebted to Professor M, G, Nadkarni
for discussions in provihg the above lemma, In partieular,

the idea of using Plancherel theorem is due to him,

Suppose h & L (C de) is such that hlr is -
non—vanlsh:l.ng 10 a.e. Then by Wiener's theorem,
{h(<-+c>): C £ C}- spans e (C,dc). Let ¥ be a measure

on R/r. . ¥ can be considered a measure on Q. Suppose

‘ A we
h e L2(C,ch is such that the function h is ¥ a.e.

non-zero on R. Then by Fubini'’s theorem, for ¥ s.e.

o]

¥ € Q, (<ys*> h(e ))h— is non-vanishing A a.e, on [ _ .
Hence, for ¥ a.e. y e Q, {<y, &+8ed)y h(< “+8)): s € S}

spans LZ(C de). Thus we have:

' A
3.3, Proposition. -Suppose h ¢ L2(C,dc) is such that h

defined on R by,
A
h(X—i—’YO) = p xty, » ¢> h(c) de, x e Q, Tl 1B ro :
c
is non-vanishing ¥ a.e, on R. Then for ¥ a.e. ¥y e Q,

the collect:l.on {<y,< +8¥> h(<e+sd): s ¢ S} spans
(Usdc)

B is Borel isomorphic to B/KX K, the isomor-

phisu being n: °/p XK —» B defined  by:
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/

== TANS

(3.4) nfec, y)=c+y , ceC, yeKk.

In the same way, § and S/Kr‘SXEKf]S) are Borel isomorphie.

Let u be a complei;valued measure (finite) on K,

and let ) be the Haar measure on B/K « Then by n

i

we shall mean the measure (bux 2)on™™ on B.

5.4. Lemma., ILet . be a finite complex-valued measure on
&, qQuasi-invariant under the action of XNS. Then o is

quasi-invariant under the action of S on B. Morecover,

d d
(3.5) -—_‘f~§(y+c) = _ﬂ§10_l(y) for (ux1*) a.e. (y,C) & KXB/K'.
du du

Proof: Let D be a Borel subset of B and let 3 ¢ S,

.ﬂHTES) {(mE)er%&: yH:eDm}

Il

i

{(Y+[s+c] sy 8+ ): y+c e D }
{(yelsve] , GTB): (7,8) ¢ o}

n

Therefore, (n‘l(D+s)) = (n_l(D))_ + [s+c] .
: c

<8+C)

Now,

Hg(D) = p(D+s) = (px) (n L (p+s))

i ™ oes)) ) aa@)
B C
/x
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i
[ -

u((n'l(rws)) ) ax(@) , since 1 is the
a+cd

Haar measure on B/K N

= 1 w7+ [s+e]) @A (3)

/s &
= I uere1 (7@ & (3)
B C )
/x
d
i —Lerel (4) au(y) ar(3)
B = @
/g (nTT(D)) _
: " C
= 9(y,3) a(ux1)(y,3)
17 (D)
where cp(&,a) = i‘ﬁ.?:t?_l(y)
du
= J ¢ on M=) di(x) ( x = y+c ),
D
i /
Hence, —-‘i—g(x) = @ 0 n’l(x),‘___ﬁ., a.e. X.
du

by dy ‘

Q. Eo Do
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Let 4 be a (KNS , k) cocycle relative to Wy
a measure on XK quasi-invariant under the aetion of KNs,
Define 4 on SXB by:
(3.6) A(s , y+c) = 4([s+c] , y), s e85, yek, cc¢ C.
Clearly, & is measurable on SX B. Now, for fixed
81 v+ S, € S, and ¢ e C,
Alsyrsy  yte) = A([sy+spre] , y)
= i([eg+e] + [syrw@y+ed] , 3)  (by (3.1) of ch, )

= A([sl+c],y)A([s2+<sl+c>] : y+[sl+c]), U ae¢2e yeK.

= A(sl , y+c) 'A'(s2 » y+s1+€), u a.e. y € K.
Hence, by Fubini’s theorem, for each fixed Sy » 85 € S,

E(sl+s2 ; X) = K(s:L , X) K(s2 » X+5.), b a.es X € B,

Therefore, A is an (8,B) cocycle relative to L

If two (KNS , K) cocycles Ay and A2 (relative
to u) are cohomologous ( oo), then the corresponding (S;B)

cocycles 31 and E2 are cohomologous ( #) where Ox) = 06([x]).

Remark: For the special case when B is compact and
~
[[= B is a dense subgroup of R, the method of obtaining

4 from a (Kf}s , K) cocycle A was given by Gamelin in [7].
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He considers only scalar cocycles relative to the Haayr

measure on k.

Notation: Given a (Kf1S , K) cocycle A we shall call

A the Gamelin cocycle obtained from A.

Let (V,E) be a system of imprimitivity on (k(}¥s,K)
acting in a separable Hilbert space ]I-I Then there exists
invariant measure classes 600,'61; g =+e  and J( ]Hn)
valued cocycles 4, relative to p ( M, € 'g y D=8, 1 2,-.-)
such that (V,E) is equivalent to the concrete system of
imprimitivity given by G’OG, -él’ '@ y *°° and A
Aoy 00 (V , B) will stand for the (8,B) system of
imprimitivity given by [ __, [Il, Ez, ++¢+ and cogycles

iz, Il’ 12, °r+ . We call (V , E) the Gamelin system .of

imprimitivity obtained from (V , E).

4, The'Main Theoren.

Let (V,E) be a system of imprimitivity on (Xf)S , K); .
(v,, E) be the Gamelin system of imprimitivity on (S,B)
extended from (V,E). ITet (U,F) and (U,F) be the duals of
(V,E) and (V, E)respectively. Let (E ‘f‘) be the ([
system of imprimitivity extended from the (r/,— , /|— )
system (U,F).
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(Kﬂs . K) : (S M B)
v, B) > 7, 3
7
(v, F) > (T, 7
('“/l_. ) | (r, B).
) |

Thus on ( r » R) we have obtained two systems of imprimi-~
tivity (U,F) and (ﬁ,F), starting from the same (KNS , k)
system (V,E). We now prove, under a mild assumption, that

TowN
(T,F) ana (U,f) are equivalent. The assumption is:

Assumption (A): There is a function h ¢ L2(C,dc)

‘ A
such that for all y € Q, (<-,y> h(-)) is non-vanishing

e

A a.¢, on

o ]0. In many cases, we can choose the

section C in such a way that assumption (4A) is satisfied.
In the appendix we shoﬁ that‘ if S = Z[Rn)( LXD , where 1
is compact and D is discrete, and KfS = Hl)('Isl)(D y
where Hl’ Ll, Dl are closed subgroups of ]Rn, L, D
respectively, then we can get a Borel section ¢ of

S/Kns such that assumption (A) is satisfied.
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We can assume, without loss of generality,.that.
P is lhomogeneous -ofﬂmultiplicity n, l<{mn <{X. Let tg;)
be the measure class of P. Then (U,F) is equivalent
to a concrete system of imprimitivity ;ésociated with %

and a ('| 4” 3 R/r- . g(:ﬁh)) cocycle D relative to ¥.
O 0 '

We will show that ? is also homogeneous of multiplicity
n, with associated measure class‘é%ﬁ and that the cocyéle
associated with (ﬁ,?) is cohdmologous to tﬁe (r-,'R)
cocycle D extended from D. For simplicity, we assume
that (V,E) is also homogeneous. (The proof for the

general case is gimilar). ZLet t%n be the measure class

associated with E and A be the (Kf¥s , K, U(H))

cocycle corresponding to (V,E).

We fix h € L2(C,dc) such that for each y € Q
(q is a sectioh of R with respect to r;), the Fourier

coefficients 6f the function
c —» <y, ~cy h(c)

is non-vanishing ‘o A.. ON r; . Por this h, we
define the function f on R by (3.2) and for each.

g € rl s the functions F

g OB R by (3.3):
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A ‘
£ly+v,) = Blyevy) = <yey, 5 € E(e) de
c.
Pa(ytvy) = £(y+y,) f(y+y, -&)

yeQ, voe {4
Let h; e L%(K, H, p), i =1,2. Define
B; e 1%(8, ®, §) by: ' | !
Ei(x+c) = hi(x) h(e) , xeK, ce @, i=1,2.

Let g | , g = u+ Yo s Where u = <g» e QAf

and y_ = [g] ¢ ,o‘ Define the measures v;l,2 on
. , u
R/r* and i?l”z "on R %Pas follows:
0 & : :
'P_l’z(X) = (P(X) jﬁ--hl o hz) y X a Borel subset
u u R

Ry
of /ro,

5;1’2(x‘) = (F(x" u;g H , E), X' a Borel
subset of R,

where % 9( are the characters on K and B
a g : ,
respectively defined by & and g.

1,2 and .ﬁ 1,2
2 g

the translates of the messures ;11’2 (:'?01’2)

Remarks: 1. The measures P/ are not
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2. For measures appearing without superseripts,
subscripts to them mean their translates.

4.1, Lenmma: :u*gl’z is absolutely continuous with.

respect to 77“1’2

and,
a
- 1,2
dwr —?
(4'-1) _'—'g'ﬂ - Fg .
ay 112
u
Y
(Here and in the sequel ¢ ' peans V_i"l ).
u u

= Iy X, B 5 By(r)> dily) ,  where
% L <'-,') is the inner product in H,

T
;1 {At,y) -d-gi(y) Xg(y+t)?11(y+t) » By(y)> ai(y)
B H

= J‘<A([t+c],x)/®_d—ﬁ‘+—c—l(x)Xg(x"'[t"'c])'
c X | =

Xg(<t+c))hl(x+[t+c])h(<t+c;), h, (x)h(c)>

Qu (x) de.

(by the definition of X and by lemma 3.4)
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ane] Xghy » Bp) Ng(Coro2Inl ded)n(o) o

1l
Q

- o
= 5w E([we]) X { t+e>)n{<tradInfe) de
¢ . . =

= (7, dz‘i‘_l'z)A(t) (by lemma 3.2).

u
| =1,2 - a1,
Thus the two measures d‘% and ng$L ** are same,
i
becauge their Fourier coefficients are same., So
av 1,2
PET SYSE-2 R, - N
d;_l,zr g
u

Qo E. .Do

4.2, Gbro;larxz Taking g to be the identity in [" y We get
gt

ayl:2
So by the choice of the function h in Lz(c,dc) we get

(4.2) (y+y ) = | £(y+v )| & b Y E 'Q,_ To € [of

that the two measures are mutually

absolutely continuous.

Since F is homogeneous of multiplicity n, there

are n functions hyy hy, v+, b e‘I.'?‘(K,I{-I', u) such that

the following are satisfied.


http://www.cvisiontech.com

- 83.~

(1) (Vshi ’ hj) =0 if 1 #J, 1<i,J ¢(n, s e KNS,

(ii) If q/i(--) = (F(')hi', hi), 1< ig n, then -vi = 1»3.
for all i,j, 1<i,j {n. Let 'Vi =P .

(iii) The closed linear span of_- {Vshi : 8 g KNS, iul,a,-t,n}
is T°(K , H, p).

4.3. Theorem. ¥ is also homogeneous of'multiplicity n.
Proof: Conaider 'El, 'Ez, cee, Kn . 1-‘2(3‘_"1.{‘ 5). Then:

(1) (VHy » By) =0 if 3£, 1<i,j¢n; 8¢ S
(2) If the measures i’i on R are definéd by'

| '{Ji(-)‘: (F(- )'Ei B Ei); then ‘;i = 'Dj for ls is3 <
(3) The closed linear span of {TISE:L: g € 8, i=1,2,r: ,n} :

—— s

is L°(B, H, §).

(1) and (2) are easily proved., To prove (3}, let

¢ € L°(B, H, §) be such that,

(V

.sﬁ'j_! ¢) = 0 for all s € S and i=1,2,-++,n.

We show that ¢ = 0. Now,

o ao ' '
0= <1'(s,x+c) /'E‘%-S-(x+c)_ﬁi (x+c+s-) A cp(x-}-c)) ‘rdﬁ(x-i-é')

B
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lCorol ) [2Loe LGy, (aalosolnlcorer)
PO

C ¥ |
| @(X+§);> aux) de.

li

= I (Vv h(<s+c)) de,  where ¢ {x) =.cp(x+c).

[S+C]hi ’ CPC)

= | ] <y,[s+c]> Bi(y,c)h(<8+0>) d¥(y)de,
lo

where Bi(-,c) is the derivative of the measure (F(-)hi,rpc)
with respect to ¥ . For each c ¢ C, the function

y —> ﬁi(.VsC) ig in Ll(R/I“ ;¥ ) and for V a.e. ye R/r- ;
0 0

the function ¢ —> Bi(y,c) is in L2(C,dc). Further, |
the function (y,c) —> ﬁi(y,c) h({s+¢c)) is in

Ll(R/rX C , d¥Xdc). Hence by Fubini’s theorem,
o .

0

li

Io<yslelxi <y, b+ el Bi(y,cjh(<s+c>) de a¥(y).
R
A C

0
This is true for all s & S. So for % a.e. y ¢ R/]— ’
. 0

I <y, [<e>+c]d g, (y,c)h(<e+e)) de = O.
C
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Por such a vy ¢ R/ ,
Mo

J‘{i<y,c> Bi(y,é)}u{<y, ~-<s+eh) h(<s+c>)} de = 0.
c

By the choice of the function h in Lz(c,dc) and by‘

Proposition 3.3, we get
<y,c> Bi(YsC) =0 for a.e. ¢ & C,
~Sine <y,c> £ O, Bi(y,c) =0 for s.e. ¢ g C,

Thus, ﬁi(y,c) = 0, for (¥ Xac) a.e. (y,c) ¢ R/r~ X Car
3 o

and this is true for all " i = 1,2,+:-,n. By property (iii)

of hl’ h2, toe hn, this means that ¢ = 0 a.e. ST

(1), (2) and (3) imply that T is homogensous of
multiplicity n. |
Q- Eo D-

. Let T Yve the isometric isomorphism between
1°(K, H, u) and L2(R/r' , H , ¥) defined by:
. 0
T F(X) hy = (0,4++,0,14,0,+++,0), X a Borel subset
of R/r- (lX » the indicator function of X, is at the ith'
0 ,

position). For every Borel subset X of R/I-‘ we have:
: )
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‘V_i"j(X) = (F(X)Xﬁhl ? hJ) ’ u € r n Q

u

= (F(X)Xahi y F(O)hy)

fl

(2 P(x) T4 2 g rt Th, , T P(x) 71 T, )
u

D T
= 1PV Sy (on) g (Thy) (1) a¥(y)
X dy
dv _
[y (-4,y) / —=(5) any)
X dv

where D(Q,y) = (dij(a,y))-

ay 1+ ‘
B . av R
So 4, (G,y) = —2—(3) /-2 (y) ¥ a.e. y & :
130 av ay. £y
u

Similarly, proceeding with El’ E2’ RN En we get:

dl':’ i3 7
T (gyx) = —E—(x) /2L (x) P ae. xR,
J av az,

for each g e [, where D(g,x) = (Eij (g,x)) is the (4 R)
cocycle corresponding to the ([ , R) system of imprimi-

vity (T,F), Hence,
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o 1] o
4(ax) = —HBpme B (). fA¥. AV, Gy,
d- ay dw dy dv 4v_ avy

= A5 e iy
d dV_ 1’3 y _l:,' o LW )
E - = s (x)- du-. ! ”u(x)' dij(gyx)r
P _1,3 do AV dvg
~-L

_ - .
where Bkg,x) = (dﬁj(g’X)) is the ([, R) cocycle

extended from the ('4— : R/]—-) cocycle D. Now,
0 0 '
= i, :
dv_—? . —
—E—(x) = P (x) = £(x):£(x~8) , x¢ R,
av_1sJ ‘ :
a
(by Lemma 4.1)
and gg?(x) = ]f(x)]2 (by corollary 4.2.).
a»
Therefore,
ay
N Ay (x) T(g+x) A
dij(g’x) &g ‘ ¢ : dlj(g’x)‘
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N | .
or, dij(g,X) = p(x) dij(g,X)p(g+X) 1, where

V %%;(X) o Y]f(x) 2._ _LEEN O,

p(x) = ———— .=

T (x)

a function of modulus 1, on R.

= v '
Hence, D and D are cohomologous. Therefore,

W Ly
(U,F) and (U,F) are equivalent.

Thus, we have proved, under the assumption A, the

following theorem.

4.4. Theorem. Let (V,E) be a (KNS , K) system of impri-
mitivity; (U,F) its dual on (ro— ; R/ ). Let (V,ﬁ) be
(o]

[o

the Gamelin system of imprimitivity on (S, B) obtained
from (V,E)}, and (U,F) be its dual on (|7, R). Let (U,F)
be the (rﬂ, R) system of imprimitivity obtained from the

r‘ R ‘ v A

( 4— y °/ = )} system (U,F), Then (U,F) and (U,F) are
> lo

equivalent systems of imprimitivity.

4,5, Corollary. Every (S,B) system of imprimitivity is

equivalent to a Gamelin system of imprimitivity obtained

from a (KNS , K) system of imprimitivity.
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5. The Bohr groups.

In this section, we consider a special class of
pairs which appear in the theory of harmonic analysis on
compact groups with ordered duals. For these pairé, the
assumpbion (A) is satisfied. We qonsider them separately
because, for these pairs we can get a simple function
which establishes the equivalence of the systems of

imprimitivity.

A Bohr group B is a compact gbelian group whose

discrete dual [ = B is a subgroup of the zdditive

group R of real numbers, dense in the usual topology

of R. If | is countable, then B and [ are second
countable. We consider only those Bohr groups for whibq
B = [, is countable. The inclusion map from [T into IR
is continuous and we get the pair ([, R). TIts dual
pair is (R , B). VThe continuous homdmorphism from R

into B will be denoted by t -——> e » The elements

e in B are identified by the relation

ey s 6 = exp(itd), t eR, & ¢ T .
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Let B be a Bohr group with T couhtable.
Assume, without loss of gemerality, that 27 € . Let
= {ZEﬁ-n s nelN } be thé subgfoup generated by 2xm.
Let K be the annihilator of r;. K is a compact subgroup
of B. An element et belongs to K if and only if t is
an integer. Also {et : 0<t< 1} is a Borel section of

B with respect to K.

Ebw— is the cirecle group T. We shall regard
0 ‘

T as the interval [0,2n) with addition module 2m. rh—
~ O
is the dual K of K. Thus, the pair (rh_ , B%/r. ) is
: o

(% , 1. Its dual pair is (N , K). Thus, the four pairs
of groups are (ﬁ , ™) and (T, R), and, (N , K) and (R , B).
A (E , T) cocycle extends to a ([ , R) cocycle and in
the cohomology class of a ( . R cocycle, there is a
cocycle which is extended from a (K , T) cocycle. Two
(ﬁ , T) cocycles are cohomologous if énd oﬁly if the
extended (] , R) cocycles are cohomologous. The action
of IR on B is guasi-isomorphic to the flow built on K
under the constant function 1, with base transformation
as translation by e, on K. So by théorem 2.3 of

chapter I1II, every ( R , B) cocycle has a strict version.
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Every (N , K) cocycle extends to an (IR s B) cocycle and
in the cohomology class of an (IR , B) cocycle, there is

one which is extended from an (N , K) cocycle.,

Let (V,E) be an (N ,K) system of imprimitivity;
(V,E) the associated Gamelin system of imprimitivity on
(R, B). (U,F) is the dual of (V,E) and (U,F) is the
dual of (V,E). Let (\ﬁ,‘ﬁ) be the ([, R) system of
imprimitivity which is extended from the (ﬁ , T) system
(U,F). We assume, as before, that P is homogeneous of
maltiplicity n, 1 <(n <, with measure class t§1; « So
(U,F) is given by a (ﬁ,T,g{;@ﬁ)) cocycle D. We also
assume that (V,E) ig hombgeneous. Let A be the asso-

clated cocycle and p the measure corresponding to (V,E).

Instead of a function h in L2([O,l)) satisfying
assumption (A), we take the function h = 1 on [0,1).
Then the functions f and Fg (g e[ ) on TR, defined
by (3.2) and (3.3) take the simple form

f(i) _ 1.- exp(ix)
X
Fg(x) _f1 ~ exp(ix))(1 - exp(-i(x-g))) ]

x(x-g)
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When g = §s we have

Po(x) = ( SEE2H2. *

Theofem.4.2 of chapter II says that ﬁﬁen 1’({0}-) = 0,
then T is homogeneous of multiplicity n. So, when

¥ ( {O} ) = 0, (U,F) is given by a ([ , R, U JHn)) cocycle
D . Proceeding as in section 4, we can show that D

and D are cochomologous (P ) where 0 is the function

on R defined by:

p(x) = LEE _ 11 - exp(-ix)]
- F(x) 1 - exp(-ix)

If ¥(30}) # 0, then ¥ can be decomposed into
- two quasi-invariant measures YV, and ¥, ‘such that W& ,
V, are mutually singular and Y, 1is concentrated on
KO w iy s equivalent to the Haar measure on ﬁ. A1l
(X , T) cocycles relative to V, and all ([ , R)
cocycles relative to {a are coboundaries, Observe that
F(%) reduces the system (U,F) and hence it reduces (V,E)
also. Let (U', F')be the restriction of (U,F) to F(ﬁ),
and (V',E') that of (V,E) to F(K). Then (U',F) and

(V',E') are duals of each other. Clearly, P' is homo-
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geneous of multiplicity n, with measure class 6311 and
hence cocycle of (U',F') is a coboundary. It is easy to
see that E' is also homogeneous of rwultiplicity n, the

measure ciass of iy’

is the Haar measure class on K

and that the cocycle associated with (V',E') is a coboundary.
Hence the multiplicity of E' is n with measure class

same as the [aar measure class on B and the cocycle

of (V',E') is a coboundary. It follows that the dual
system (T',F') of (V,E') is of uniform multiplicity n

with associated measure class tgi; . Hence the cocycle
!

associated with (U',F') is a coboundary. Thus (U',F')

and (U',F') are equivalent.

Thus we have the theorem:

5.1. Theorem. Let (V,E) be an (N , K) system of imﬁrimi-
tivity; (U,¥) its dual. ILet (?,E) be the Gamelin
extension of (V,E) and (U,F) be the dual of (V,%).

Let (E,?) be the ([ , R) system of imprimitivity extended
from the (ﬁ , T) system (ﬁ,F).~ Then (E,;) and (T,F) are

equivalent systems of imprimitivity.
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6. An example.

Let [ be the following subgroup of R,
= {Zﬁm-i-n 71 my, o integers} [ is dense in R.
[ can be identified with NXN and its dual T  can
be written =as TQ:: [0,1)X{8,2n), where elements

(xl,yl) and. (x2,y2) are added.according to
(x1597) + (25,55) = (x+x,(med 1) , yy+y,(mod 2n)).

We have:

exp(2ri-nx)exp(iny),

i

2nmn , (X,¥))
= : 2
for 2nm+n € | , and (x,y) € 7° . For t e IR,
<2rmtn , €.> = cexp(it(2nm+n)).

This describes the pair ( R , T2).. The annihilator of
the subgroup |_0 = {21tm : me N} is K = {O}X [0,2%),

and the pair (W , K) is described by

n—> e = (0, n(mod 27) ) . '

Thus, in this case, (N , K) can be identified with (¥ , T).
~
Hence, the dual pair (K, T) can also be identified with

(m, .

Let g be a non~constant inner function on the

circle. DLet Aq be the cocycle defined by:
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q(z)q(z+el) cos q(z+en_l) y, n>O0
Aq(n, g) = 8 , y nh=20

-1

q(z+e_l) ‘oo q(z+en)-l , n <O,

Let (V,E) be the system of imprimitivity given by A
Let HQ(T) ve the Hardy space. Then,

T Hy(0) = §q(c) £(4e) ¢ fe H2(T)}- = @ Hy(T) € Hy(T).
Let (fl 2 PEPEERE ) (this set may be finite) be a
complete orthonormal system of vectors in . Hy(T) (@ q-Hy(T).
Then the cyclic subspaces -{Vn fi tne N:}- y i=1l,2,--
are mutually orthogonal, and together span L2(T). Also,
(v, £, > ff) = '50n for each i. Thus, if F is the
spectral measure coriesponding to V, then F is homogeneous
with multiplicity same as the dimension of HQ(T)(:)q-HZ(T)p
and the measure class associated with P is the Haar
measure class on T. Since (V,E) is irreducible, (U,F),
the dusl system of (V,E), is an irreducible system of

imprimitivity based on (N , T).

L]

i) If g has infinitely many zeros in the disc,
then H2(T)(:)q-H2(T) is infinite dimensional. So we have
an irreducible system of imprimitivity based on (N , T)

and acting in L2(T ,.62).
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2) If qg(z) = explpz), p a positive integer,
then HQ(T)(:)q-H2(T) is p-dimensional. In this case we
shall calculate the cocycle D associated with (U,F).

For each k, 0L{k<{p=1l, 1let h, be the function

h,(z) = exp(ikz) , z € 7. Then h_, hy, +++, h have

1’ p-1

the properties:

(1) (Vb hj)

0, if i # j, 1i,j = 0,1,2,+++,p-1,
n e N.
(ii) Por each i = 0,1,¢¢+,p=1, (F(-)hi , hi) is the
Haar measure on T. |
(iii) The closed linear span of ‘{Vnhi : i=0,1,+++,p-1, neN}
is L(T). |
S0, let S be the isometric isomorphism from L2(T) onto

L2 (% ,@P) defined by:

S F(X) hk = (0,0,"',0,1 O,"',O) ’

X’

(lX appcars at the (k+l)th position), where X is a
Borel sﬁbset of T; Lk = O,l,---,le. Then,

S(Vnhk) = (O,oo',O,exp(inz),o,---,O), k=0,1,°¢°,p-1.
#c have,

(Unh)(z) = exp(inz)h(z) , h e L2(T), and
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(S_Un gL E)(z) = D(n,z) ‘ﬁ(z+en) . ﬁ £ L2‘(T, a®).

Hence, taking h to be (1,0,--+,0), (0,1,0,:++,0), cee,
(0,0,¢4¢,0,1) we get,

i 0, 0, ==« 0, eXP(iZ)—
1, 0, ¢+« 0, 0O
D(l,Z) e o &9 “vae * 00 : Z £ T‘

O, O, O 1, 0
. —

The cocycle D can be written in terms of D(1,z). Thus,

in this case we can calculate all the four cocycles.

Remark: The above example is the completion of an example
- &iven in Bagechi [3]. Bagchi uses the example to exhibit
an (N , T) irreducible system of imprimitivity acting in
Lz(T,(gp) where p is any positive integer. However, he
does not calculate the dual cocycle. [16] contains a
construction, due to A. M. Gleason, of an (N , T) cocyole
having values in 2X 2 unltary matrices g1v1ng rise to
1rroduc1ble systems of imprimitivity of dimension 2. In
[20] Muhly uses Gleason’s example together with Gamelin’sg
method of obtaining an (IR , B) cocycle, to exhibit an

irreducible (IR , B) system of imprimitivity of ~ultiplieity 2,
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ABPPENDIX

In this appendix, we show that in many cases,

assumption {A) is satisfied.

I. If G =1, the real line, then any closed sub-
group H of G 1s a cyclic group and so, without loss of
generality, we can assume that H =N, the integer
group. Take C = [0,1) for a section of G with regpect
to H, and define I on C by:

f(x) = exp(x) , ©0< x <1,
For any t ¢ IR,

1 |

A . . =

£(8) =, | eI Fgx - & _ -1 4o
0 it+1

So, tunc above choice of C and'f satisfies assumption (4).

I1. . Suppose G 1is a locally compact second countable
abelian group ‘and H 1is an open subgroup of G. Then G/H
is discrete.f Let C be any section of G with respect to H
such that C contains the identity e of G. Define f
on C by:
f(e)
£{ec)

1,
0, if c# e, ¢ e C.

1
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Then, for y e G,

?(Y) = <y ‘, c» f(e) dc = 1.

J
C
1T Let 'Hl and H2 be closed sung;oups of locally compact
second countabie abelian groups Gl and G2 regpectively,
Suppose .that we can get a Borel section O of Gl with
respect to Hl, and a function fl bn Gl satisfying
assumption (4). Similarly, suppose C,, f, can be found
satisfying assumption (4) for G, and H,. Then ¢ = G, X C

2

is a Borel section of Gy X G, with respect to H X H2 ,

and the function f on C defined by:
f(cl’.cz) i fl(cl)'fz(cz) ’ Cl £ Gl, 02 £ 02 ’

satisfies assumption (4).

Iv. Take G =R® and let H be a closed subgroup of
G of the form IRm-x Nk s 0 <mk {n, mtk < n. Then by
I, II and III, we can get é Borel section C of G with
respect to I and a Borel function f on C satisfying
assumption (4). By theorem 9,11 of [15] we can, without
loss of generality, take any closed subgroup H of P

to be of the forn R"XN°, 0 ¢ mk ¢ n, mk¢ n. Thus,
assumption (4) is valid if ¢6=]R" and H is any closed

subgroup of G.
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V. Let G be a compact second countable abelian group
and H a closed subgroup of G. Then the assumption (A) holds
for G and H. This follows from the foilbwing mbre general

lermma,

Lerma. Let ¥ be a finite measure on a compact group G.

Then there is a continuous function f on G such that
A

(f d¥) is always non-zero.

Proof:  Tet A= [0,1]X[0 , ]X[0 ,~1]% «+e.
S 2 2
2

' A
and give A the product topology. ILet G = {'Yo’ Y10 Yor ...}’
Y, being the identity in G.  Put, '

A )
MO {‘53 (ao,al,a2,"') e A : ?_ aiV('Yi) = 0 }

v A
My = {aeA P2 aiv(yi+yl):0}

it

o }

L A
M, = { ae A B ,ail)(Yi+Yn)

It is easy to sec that each Mn is closed, nowhere dense

. )
subset of A. Hence, by Baire category theorem, |J M # A.
- n=0

Let o = (ao,al,az,---) e A be such that a ¢ M, for any n,
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and take f(:) = % 85 <*yY;> .+ Then f is g
i
continuous function on ¢ and for each ¥ e s
: A A
(£ dv) (v) = £ & ¥(yv;+y) # o,
i _ :
Q. E- Dﬂ

VI. ILet & = R"X KX D, where K 1is g compact second
countable abelian group and D is é discrete abelian
group. Let H be a closed subgroup of G of the form
HiX Ky XD,  where Hi, Ky Dy are closed subgroups of
)iige » K, D respectively. Then by the above steps, we
can get a Borel section C of G with respect to H and
a Borel function f on C such that,

A A
£(y) = T <r,ed £(c) dc  # o0, for all vy e G.
C
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