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GENERAT, INTRODUCTION AND SUMMARY

In fhis thesis we have considered two optimisation problems -
optimal grouping in inventory comtrol and optimal cutting procedures
for yprioducts which are produced in contimous length. fhe motivation
for these two pieces of research work was actual plant problems
encountered in industry. In part I, we have introduced the approach
of Group Economic Order Quantity (EOQ) in inventory coutrol and
developed optimum grouping procedures. In Part II, we have derived
a statistical distribution which can %e put to use to solve a variety
of 1ndustrial problems. In particular, we have used this distribution
t0 develop opiimum cutiing procedures. A brief summary of the contents

of Parts I and Il is given bhelow.

PART I : GROUP FOQ REFIENISHNENWT POLICY

Iet A be the per order cost of ordering and I the cost of
ordering expressed as rate of interest. We'assume.that A and I are
the same for all the iteﬁé. The Eeonomic Srdef‘Quéntity (ECQ) in
terms of money value for an individual item with money value of

1
S T
e DR

yearly demand equal to y is given by the wel%{square-root formila

Hhen we use the square-roct formuls (1) t0 calculate the order
quantity seperately for each item, we refer t¢ such a situation as

Individual B0Q Replenishment Poliey.
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averoge noney value of yearly demand for the group is y. It is

desired té use o common ordering rule {(either in terms of money value
or of the freguency of orders) for all the items in the group instead
of thé Individu;1 EOQC Replenishment Policy. For example, for every
item in the group an order of Rs.5000/- worth of moterial may be
placed, or every item in the group may be ordered 10 times a vear.
The optimum common group ordering rule in terms of money value is

the-shown t0 be given by

Q" :_/—2&‘& R R T

When we uge a formula of type (2)} %0 caleulate the common group
ordering rule, we refer to the situation as Group EOQ Replenishment
Policy. Use of Group ECQ appreach will always mearn additional cost

as comparéd to Individual EOG approach.

Tet =-oo = Vo KT < ¥y Lavewe Jpoq <¥p = co  be suitably
chosen numbers. We form r groups of items as follows: The ith group
consists of all items whose money value of yearly demand lie in the
rarge ys . to Iy We refer to Yq3 Yoy eeeee Y., 8S grOUp
bourdaries. - Suppose that Group EOQ Replenishment Policy is used for
each of the groups. Using the log normal distribution to describe
the distribution of money value of yearly demand over the items; we
derive an explicit expression for the avernge cost per item (over all

the r groups) for any given group boundéries.'
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We then consider the problem of determining the optimal group
boundsries which mininise the average cost per item. This optimisation
problem is studied in deinil and the existence and uniqueness of the
optimal sclution are established. It is shown that this optimisation
probler is closely related to another optimisation probvlem encountered
by Ozawa in the determinatioﬁ of optimal spacings for the large
sample estimgtion of the mean of a normal distribution (when the
standard deviation is known) by a selected set of sanple guantiles.

The relationship between these two optimisation problems is studied

in detail.

Let cr be the average cost per item when there are r groups
with optisnl group boundaries and when Group EOQ approach is used
for each of the r groups. Iet ‘Ca; be the average cost per iten
when Individual EOCQ Replenishnent policy is used. It is shown that
the ratio Gr / C. depends only on the number of groups r and on
g.— one of the parameters of the log-normal distribution. This ratio
gives an indication of the additional cost incurred when the Group
EOQ approach is ueed instead of Imdividual EQ approach. As such
this ratio provides an objective ¢criferion for determining the rumber
of groups when ¢ is known. The values of the ratios C. /C, and
optimal sroup boundaries have been calculated r = 2 to 10 for
o= 0.2 {042) 440 by programuiing on a computer. Various useful

Approximavions for optimal group bounderies are also given.
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The Group EOQ approach has been successiully used in nany
industrial ofganisations and super-markets. Details of* varicus
steps invol%e& in the détermination of the number of groups, calculaticn
of group bcﬁﬁdaries, calcﬁlation of group BOQ's, eic., are described

with the help ¢f an actual case study.

In cormection with .the above work, we have derived soue new
results abeut truncated nerml digtributions. Thesc results are
¢f interest on their own, and one of then is & generalisation »f a

result due to Sam#ford on single truncation.

¢

PART IT : OPTIMAL CUTTING FROCELURES

We censider a sequence of events whick is a mixture of a
conpletely regular sequence and a Poisson process. Iet S dennie a
syetenatic event occuring at the end of every T time units and R a
randor: event which occurs gecording to a Poisson process of rate s

1 L3, . f; " -_L + A
let the event ~ be defined tc occur when either S or R does. The
equilibrium marginal freguency distribution of the interval between
gaccessive occurences of the event — 1is derived. Thie distribution
5y - : . o .
can be used to sclve a variety of industrial problemsand some specific

arplicaticns ore discussed.

Automatic winding machines in textile industry consist of 200

te 300 spindles; each of which is used to wind yarn from a rélatively
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small supply bobbin to a larger cone. The winding at any spindle,
stops when the yarn on the bdbbiﬁ gets exhousted or when the yorn
breaks. An autcnatic head whichlpatrdlsrthe mochine in fixed time
replaces the empty bobbin Ey a full one or knots the broken yarn.
Under reasomble assumptions"we'can iéenxify the stoppage of the
spindle due to exhaustion of yarn as the occurence of the systematic
event S and stoppage of the spindle due to yarn break as the random
event R, and use the distribu%ion;mentibned earlier for developing
a suitable models. We have derived (i) the distribution of idle timg
of o spindle (ii) the distribirtion 6F busy time, and (iii) the
distribution of the rmumber of patrols of the altomntic head between
two consecutive restartings of the spindle. We have 5130 derived an
expression for machine efficiency. Howie and Shenton have also
ety
derived an expression for machinehusing an entirely different approcach.
In textile industry,;cloth is cut and itaken cut of the lcons
in sone definite lengths - say L units.Weaving and processing defects
cceur at randcm. The money wvalue realised depends on the length of
defectifree cloth scld. By identifyingrthe cut at every L units as
a systematic event S and the occurence ofma deféct as o random event R;

we have developed a suitable nodel for this situation.

Products which are produced in contimous length are scld to

customers in defect-free pieces of some specific length which can be

tak m as unit length without loss of generality.


http://www.cvisiontech.com

-6 -
The cutting procedure is as follows: First, relatively longer pieces
of some predetermined lemgth L are cut out. These are {hen ingpected
and, depending on the pogitions where defects occur, are suitably
cut so ag to get the maximum number of defeci-free pieces of unit
length from eocch of the pieceé of longer pieces of length L. Iet
T (L, >) be the average yield when the initicl out length is T and
» is the average mumber Of defacts .per unit length. Using o
different approach, Sibuya derived expressions for yield when
1¢{L<2 amd 2¢<L<3. Using the distribution mentioned
earlier, we have derived an expression for yield for any initial
cut length L. Iet n be any positive integer. It is shown that there

*
exists a A, fora given n such that for O < h <1

N

. "
Y (ny, ) when XD N,

It

*
Y (n+ &, by X (n; A) when A= Ah

14, .
Y (n, A) when X ¢,

’ “'--.,_____/‘w.,..,/'\ 2
~

+#
It ig also shown hh is the unique solution of

- Ma-1)

; .-(.2\1—1) = 0 vee (3}

i=1
3 *
The aséymptotic properties of hn are then studied and it is shown
that

lim (0 exp (-nX_ }) = &,
n
n—> « =
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and that -% log 2 provides a good approximation fo; A; for n 2 5.
The properties of the yield function ¥ (L, N gztgtudied in detail and
it is indicated that it is not a desirable practice to use fracticmal
initial cut lengths. The yield values Y(u, A) have been computed for
a wide range of n and A, and ftables are given. It is felt that this

table will be useful in practical applications. Fimlly, o suitable

nodel for the determination of opiimum n is suggested:
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PART IT

OPTILAL CUTTING ThOCEDURES


http://www.cvisiontech.com

= 10h%

1o INTHODUCTION

In this part we introduce and develop the concept of Group
EOQ. The use of Bconomic Order Quantity (EOQ) sguare root formila
in practical inventory control in fairly wide spread. In Group EOQ
concept, instead of applying ECQ formule to each and every item, a
common order quantity or a common freguency of order is used for all
the itém&in the group. Obviously this will mean additional cost
as compared to calculation of order duantity seperately for each
item i.e., individual BEOQ approach. The items are grouped as in
classieal ABC analysis on the basis of money value of yearly demand
into cne Or nore groups. For each group o common order quantity
(either in terms of money value or in %erms of rwmber of orders ner
year) ig calculated according to the Group EOQ rule. Using loganormal
distribution to describe the distribution of money value of yearly
demand, expiicit expressions are obtained for the additioml cost
forlany number of groups and given group boundaries. The optimal
group bppndaries which minimise the additional cost for a given rutber
of groups are obtained. Aggrsgate inveniory measures like total
rumber of orde.rs9 average totel inventory investment etc., are obtained
for Group EC) approach with optimal group bounaaries. Timelly an
illugtrative example of Group BOQ approach is given with the helyp of

a cose study.

In gection 2, we briefly state scme of the simnle and well

knovm properties of the two-parameter lognormal distribution. In
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section 3, we briefly review the applicavion of lognormal distribution
due to Brown {( /2 / and / 3_/ ) when individual EOQ approach is used.

‘Bections 4, 5 and the Appendix zre the work done by the author
on Group EOQ appreoach. A brief sumzary of contents of these sections

are ag follows.

Section 4 : Group EOJ Replenmishment Policy

Suppose we have gome group of H items and that the average
money value of yearly demand for the group is y. Suppose the cost
of orderirg is A and cost of carrying inventory expressed as rate of

interest is I. A and I are ocssumed to be the same for all the items

in the group. Suppose we decide to have a common ordering rule for

all the items in & group., The common group ordering rule is either
to order the same money value for oll the items in the group or to
order all the items in the group with the same frequency. The best

conmon group order is then given by the groun BOQ formmulae :
ek
Common order Quantity = Q% = \} 2%1 dk'3 e {(1-1)
( 0d raA™tg-Veli) | |
Common order Quantity = 1 = v I—Al me e ((52)
(0o fveqpency ot oxderd)

Use of group EGQ approach will always mean additional cost as compared

!

N

to individual EOQ approach.
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The distribution of money value of yearly demand over the itens
can often be adequately described by the lognormal distribution.

Iet Yol T8 veerr SV 4 S Vs where yo=0and %, = t= a

4

Consider the grouping procedure where we have r groups and the 50
group consists of all the items whose nioney value of yearly demand
lies in the range Y5 to vy Vie ﬁefiné'%he weighted average cost
per item (over all the r groups) G (yi, teaen yr_1) when the group
boundaries are Yir Yoo weeen ¥4 and Group EOQ approach 1s used for

each group. Using lognorwmal wedel we derive an explicit expression

tor & (yqs eeees yr_1). We define G by

Cr: I‘ﬁln G (y,]’ L ) y 1) see sea (1"3)

-

where the mimimum Is taken over all the y's satisfying yo < Y4 SE

os g < A The values of y's where the minpimuw of (1-5) is attained

are called optimai group boundaries. Define G to be the average cost
per item when Inaividual EO§ approach is‘used. The ratio Cr/q>o then
gives an indication of the additional éost one hos to incur when Group
BOQ appreach is used with optimum group boundaries. It is shown that
the ratig' CJ:,/COo is only o function of r-the mumber of groupé and

g - one of the parameters of the legnormel distribution. The coristrained
non-linear minimisation problen (1—3)‘is then studied and solved.
Extensive tables giving the values of the ratio cr/qm as well optimal

group boundaries are computed and given.
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It ig shown that as Q'(one of the parameters of the lognormal
distribution) tends to O+, o certain simple transfdrmation of optimal
group boundaries tend to some definite values. These turn out-to be
’the optinum spacings for large sample estimate of the mean of a
normal distribution (when gtandard deviation ié known) by a selected
set of (f—?) sample quantiles. The optirum sﬁacings For the estiuation
problem has been worked out by Ogawa.Zf1;7. It is alsc shoWwn that the
optimum spacings worked out by Ogawa for fhe‘estimatinn problen can
be used 10 provide a very good approximaticn t0 the optiral group &
boundaries. Finally expressions for aggregate neasures of sysitens
effectivenééé like total rumbér of orders per year, total inventory

Caversge investment etc., are worked out.

Sectirm 5 ¢ Application

_ ‘ /
In this section we discuss the applicaticinl aspects of the

theory developed in section 4. Details of various steps involved in
the «choice of number of groups, calculation of optimal group boundaries,
. AN

esleulation of Group EOQ's ete. are described. An illustrative case

study is also given.

Appendix i Section 6

Higuehi / 8 / proved the existence and unigueness of the
optimal solution of the optimisation problem encountered by Uzawa in

large sample estimation of the mean of a normal distribution (with known
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standard deviation) by a selected set of sample gquantiles pifori
determination of optimum spacings. .The systern of equatiocns which
the optimal spacings should satisfy (obtained by Ogawa) is the

of
linmiting case of the systemi@quations obinined for the golution of
problem {1-3}. We use Higuchi's approach to prove the existence
and uvniqueness of the optimal solution to problen (1—3). In addition

we obtain o number of interesti regults about the pronerties of the
Es

solution to problen (1-3).

3
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o, TR0 PARAMETER LOGNORMAL DISTRIBUTION

In ﬁhis section, some of the well-known results of the lognormal
distribution are giVen_Zb1;7. We ccusider I essentially positive
variate ¥ (0<¢ v < o) guch that loz y is distributed normally with
mean g and stondard deviation ¢ . ﬁe then say that y has a lognormal
distribution. Its frequency function and distribution funcition are

denoted by f£{ylu, o ) and Fly| &, o) i.e.

3 1 2
£y |0 ] = == ~exp [——3 (log y - )7 50670
. Jengy } 20
I e e (2D
oy o
y
Ply o) = J £lxlue)éx
]

= qj(l—ﬁ—iw‘wi I ()

. 2 X
where @ (X) = /5%; e-x /2 and é%i(x) ;Q g (t) dt .. (2-3)

This distribution is positively skewed and, the greater the value
of o , the greater the skewness. it has also positive kurtosis ard

agoin the kurtosis 1ncreases with ¢ -

1
: . ) . .th
The distribution possesses moments of all orders and the j°

monent about the origin is given by
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- 2
By = J v 2y lue) dy
S o i
y A .;‘_- 2 2 ".:_7 “‘," ::‘-
i V= e‘]!“‘ S J . ‘;r”‘ﬁd"a"';_" e (2'—4)
Hence the mean M is given by
)
+ 0 j2 :
I\I : e‘LL B / == . t’. LI LI ‘\2'—5)
WD 4
a b
If b and ¢ are constanfis, where ¢ >, 0_(say c=e ), shen c y 1is

again lognormally digtributed with poraméters o + by and lolo s In

L TR S e
paiticular, the expecied value of Jfy  is given by

FRugm AL il 08 wyte 12
L - . &2 o
R 2 A R R
E(/y ) = e = e
5 2

-2
4 Ee /8 cer  (2-8)

i

i n : i U :
The j  moment distribution of a loguormal distribution with parameters

L oond o is defined to be

1 -
B(y")

It

v n
¥ (v L) = 2ty q) ax
0 ;

2
= F(yjp,+ jo Lo ) (2-7)

‘ .th —— . X E : : _
i.e., the j moment distiribution is again lognorval with parometers
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1A 302 and 0. It follows from (2-7) that

F, (yT}ho-) P (y] g +o°, o)

2
$(dar- o0
i a

1t

53(%—{7'—4“—-6) e eee (2-9)

The lorenz curve is o plot of 7o (y hl,g) against F(yhz,gj
for different values of y. If we put x = (log ¥y -u )/os then the
Iorenz curve is a plot of q?(x—gj against éé(x) for different
values of x. It is well known that the Iorenz curve is strictly convex
and for the logrormal distribution is sysmetrical aboul the diagomal

(0,1) and (1,0) - see figure 1.

o 30 1

Figure 1 ILorens curve
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%3, INDIVIDUAL EOQ REPLENISHMENT POLICY

In this section, we shall review the work-of srown { / 2/ and
/ %/ ) on the use of the'lognormal.distribution in getting aégregate
measures iike total inveﬁtory investﬁenﬁ, total mumber 0of orders elc.,
whén the eccnowmic order quantity‘(EOQ) rule is used individually in
cagse of each item‘for deteruining the order guantity. The following
notation ié uséd.

A = cost of ordering

I = cost of carrying inventory expressed as yearly rate

of interest.

D = yearly demand (for a given item)
‘¢ = unit cost of the item
y = DC = Loney value of yearly demond for the item.

It is further assumed that A and I are the same for all the items in

all subsequent discussions.

We consider a situation in which a fairly large mumber of
items are corried in stock.. Brown ( /2 7 and /3 / ) bas repeatedly
pointed out that in any homogeneous inventory, the distribution of
noney value of yearly deménd can be adequately represented by o
lognoranl distribution. Specifigally it is assumed that the proportion

of items baving their money valug of yearly demand in the range (y1, yg)
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J2
is given by J
I

function of the lognormal distribution L2 )ke

the average money value of yearly

M eJu'+

Consider a group of items with the money value of ye

the range (y,i, y2). Then it foll

(1)
th_e greun (ay»]? y2)

|

(1i) proportion of money B =
value explained by %
the group (yv yg) =

(1ii) average money value

=M

{D(

(3-3) tha

of yearly demand for

T T T

the group (y1a yz)

1t follows from (3-2) and

£{y lu,o‘) Gy where

proportion of items in E=

£y li,o Y is the frequency
Under this assunpiicn
demand M over all the items is by (2-5).

2
o /e (5-1)

arly demand in

owg from (2-—2) and ‘(2—8) that

F(y,| o) = By, Itz )

log y,=tb ¢ L1088 ¥4~k
&) (—) 6
L C O

72 2
F(Y2 IU"FG' ,O') = F(yd!{ Mo ,0‘)

log ¥, U log y,-H
2 1 .
8,-_,-( 2 o) -.@( - g) (5
108 Y- 1 log y.- M
T 2 ]
3?( -g) - ‘—*”g”—“-d)
— ..{3
log y2 lOg y1’.£’£’

R

2.

v in ABC amnlysis / 4_/ we

are plotting 1 - é*é(x-—g) against 1 - %(x)fox‘ aifferent values of X.
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This is but a minor variation of the Lorex‘lz curve. The extent of

concentration of the -total noney value of yearly demond in a

relatively snall perc,eﬁtage of items' depends oniy on ¢ and the

concentration increases as ¢ increases. In practical situations o

will lie between 0.6 to 2.6 / 2 /. Tor exanple the percentage of

total money value explained by the top 15% of the itenms is

100 (1 = % (1.04 = g )tf and is given in the table below for different
Lt _ .

values of g .

TABIE 3.1
% rioney value explained by
il the top 15% of the itens
0.6 33.0
0.8 40.5%
1.0 48.4
T2 56 44
1e4 ‘ S B4
TG uE L T1e2
1.8 176
2.0 83.2
2.2 7 . 87.7
24 91.3
2.6 94 .1

Incidentally, table 3.1 can be used to obtain a quick and rough

estimnte of ¢. The estinmates of the paraneters /4 and ¢ can be easily
obtained by considering the logarithms of nmoney value of yearly denarnd

for an adequate sample of items.
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If y is the mohEy value of yearly derond for a given iter,
then
Economic order Quantity in Q¥ = /JZAX o) hen 1)
I

terns of money value

Economic order Quantity in o 1% = }é}g il . ‘(5—6)
terms of mumber of orders

per year ' i

Minimum total cost

J 2Aty g ey 150

Even though the square-root formuia ( (3-5) or {3-6) ) arises out of

the simplest determinisfic model, it has wide applicability. The

crder guantities calcuiated fronm this formula often provide surprisingly
good approximationérto the optirma order quaﬁtities of the nore
complicated stochastic models £T5;7. In practice it often suffices

to calculate the order quantity using the square-roct formula and

use that in the calculation of safety stock 1?5;7., If the square-~root
forrula is used to calculate the order quantity separately for each

iten, we refer %o such a situation as Individual BECG Replenishiient

Policy. The word 'cost' for any item refers to the minimun total cost

for the iten given by (3-7).

The average cost {per iten) under the Individual EOQ Replenishuent

Policy is denoted by C_ and is given by
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- 20 = s

. = B (/2ATy ) = /AT E(/7)

c =
_o% /s
= 2AII‘!‘I e LI LI * 80 (3"8)

We use the gymbol G, to denote this average cost, because order

guantities are seperately calculated for each iten using the squore-
LS

root formula ard there are a large munmber of itens. The average nwoney

value of (working) iunventory and the mumber of orders per year Ior an

;24 i
1tenm with money volue of yearly denond y ore % N4 ~E¥- and Eﬁ

regpectively., It follows from (2-6) that

B i

(i) average {working) inventory - 3 vfh%% B( /7 )
investuent per iten :
= 2
-0°/8
2AM '
= ‘%" \/"—i_‘ [S] L) (3-9)
(ii) average mumber of orders _ /_iii E(J5)
Per year per item i
2
w9/
el S "'ﬁ e ) (3—10)

We can algo get the equation for the excharge curve, a useful concept
introduced by Brown. If the total mumber of items is H, then the total

) Wi 2 ) .
: . ) ) 2Al -g
inventory investment (TI) is % -%%l g /8 and the fotal ruiber

HiET i 2
of orders per year (T0) is ™ %% e © /8 . Hence the eguation for
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the exchange curve for the Individual EQQ Replenishiient Policy is

mr?%

=

2
e-d /4

-

7T x T0 = e B [B=id))

The exchange curve indicates how cne can trade of f between TT and %0

" and helps to get an 1mputed value for the ratio 4/I. All the resulus

in this section ave due to Brown ( /27 and /3 7/ ).

FHht
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4, GROUP ECQ REPIENISHMENT POLICY

4.1 IKTRODUCTION

In this section, the items'are intended to be grouped as in
ABC analysisli_4;7 cn the‘basis of noney value of yearly denand.
However, the mumber of groups small not be restricted only to three
as is done in classical ABC amnlysis. A common group ordering rule
is used for all the items in d ET0UD e T@is is expected to simplify the
administrative aspects in purchase. The cowmon group ordering rule

congidered 1s one of the following types.

(i) Common Money value rule :- Under this rule, we place an
order for the same noney value for each item in the group.
Qevy
For example, for aky item in the group an order for Rs« 5000/~

worth of material is always placed.

(ii) Corrion Frequency rule i~ Under bhis rule, all the ltems in
the group are ordered the sane nunmber of times & year. For
exanple each of the iten in a group is crdered 12 tines a

year.

The optinum £Toup orderihg rule whlch mininises the total of ordering
cost and carrying cost over all the items in_ﬁhe group is determined.
The optirum group ordering rule turns’out to be the use of the EOQ
square root formula (3-5) or (3-6) for the hypothetical iten with

noney value of yearly demand egual to average LOLey value of yearly
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demand for the group. This is referred to as Group EOQ Replenishnent

Policy. The use of Group BOQ Replenishnernt Policy 1eans alwoys nore

cost as compared to the use of Individual EOQ replemishient poiicy.

et 7,= 087 &Y oo (g ¥y = ™ be orbitrarily
choseﬁ mmbers in the order showrn. We form r groups as folicws:
The ith groun {1 =1 to r) consists of all the itens whose iCney
rvalues of yearly demand lie in the rarge ¥;_4 to yie The group
bourdaries for the ith group are ¥y 4 and vy For each of the
groups, Group EOQ replenishment policy ig used. We determine the
optimmun group boundaries so that the total cost over all the iteis
(over all the groups) is minimised. ‘The percent additional cost one
has to incur because of Group E0Q Heplenishment Folicy as against
Individual EO0Q Replenishment Folicy is worked out for r = 1 tc 10.
it ig shown that this depends only on r.and o « This provides an
objective criterion for deciding on the number of groups one should
ha?e in a practical situation. 1t ig alsc shown that if one desires
t0 ensure that the sdditional cost due to grouping is tc¢ be less

than 5% in practice, it 1s necessary to have at most six groups.

Tet yi-(i = 1 to r-1) be the optimal group bounderies. Iet

log vy, - ot
= - g/2 (i.e.. Mg, & M e 1‘) for 1= 1 to r-1.

., =
0 a

Ve coll t's ‘'transformed! optimal group bounderies. It is shown

that lin ti turn out to be the optimnl spacings for large'sample
G»-—-}Q
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estimation of the mean of a normal disti-ibutiom (with known standard
. s il Al .y [ T L - -1

deviation) by a selected set of (r,1) sonple guantiles. It is further

shown that these limiting values provide a good approximation for the

transforned optimal group boundaries when O < g < 3.

Finally, aggregate inventory neasures like total lmventory
investrnent, total number of oraers etc., are werked out for the group

B0§ Replenishiment Policy.

GROUP EOQ FCORIUTIA

Congider a group of N items and letw yj be the money value of

5

yearly dermand for the jth itenr in the group. et y = '% 3 Y
N + 3:1 d
be the average money value of yearly demand for the group. Suppose
money ’
we use the common Aalue rule of ordering for this group. Tt Q be

the common noney value of an order for this group. The total cost

for an itenm with money value of yearly demand yj will then be

" :
A4 +% 1Q. Since Q is same for all the items in the group, the

Q

average total cost per item will be

Y.
e i A _
NZ(AQ +2m_) = A

- JLEY

The minimum of (4~1) is attained when

* 2A:-
Q = \,/ —Ti 9 aee s NN (4—2)
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and its value 1is

1l

rinimum average total cost per item \/2AI§ o aTere (4-3)

Similarly it can be shown that optimul eomaon freguency of orders per

year is given by

e /Ei ceeees (4-4)

and again the minimum average total cost per item is given by (4—3).
Thus in either cajse the best common Ordering rule for the group is
fouﬁﬁ by calculating the EéQ in terms of nmoney value er muzber of
orders per yeér for the hypothetical itew with monéy value of yearly

demand equal to y. If we use either (4-2) or (4-4) to caleculate the

EOQ of the group, we refer to the situation as Group EQQ Replenishment

Policy. The words "average cost' per item when Group EOQ Replenishment
policy is used is alwoys taken to mean QTEKE§- {(i.e. (4-3)). Croup
BOQ Replenishment policy will result in additional cost as comparqd to
Ingividual BOQ Replenisﬁment policy, since the inequality

§ o —
2 \/ Q'FLI;YJ . e o TR (4-5)
3=1

‘JI 2ATYy 7

= it

~

holds good provided thai y, # ¥y for at least one i and j.
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4.3 OPTIMAL GROUP BOUNDARIES

Iet Yo = 0 and e e and Tqs Tpo eveee Vg be such

e i - e .th
that  y &~ Yy < Yo eeeee kS Jory £ s VWie define the i group
e’ copsj.st of all itens which have their mo_ney' value of yearly

demand in the range / y. 7h ). Thus we have (r-1) group boundaries

:L -1,

and r groups. Iet Py and . be the proportion of itens and the -
5 . - .th
average money value of yearly demand respectively for the 17 group.

If we out

: , _
log y. =i o /2 ot. ot, _
b S —Gl— -6/2 or y = e e T=HMe *, ...(4-6)

We have - = t <t, eeeee (B, KT =+, Further, from

o}

9

{3-2) and {3-4) it follows that

Cop, = @(ti + o/f2) - <§(ti_1 £ 02) e e (4-7)
P, - ) - g{a(t - 9/2)

L, = b = e (4.,...8)
* %(ti +o2) - @ty + 02)

If we use Group EOQ Replenishment policy for each of the r groups,
then the Optinium comrion, group ordering rule 1s given by elther (4-2)

or (4-4) and the aversge cogt per item for the }ith group will be
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J@Almi (oy (4-3)). For r 22 define G (y15 Yoi svees yr_1) by

. . e

G (.Yp y27 sovoe .Yr_1) = /ZAI 12—1 Pi ‘/mi “os (4—9)
Hence G (y1, Tgr ieeee yr_1) is the weighted average cost per ifen
(over all the r groups) when Group BCQ Replenishent policy is used

for ench group and the group boundaries are specified to be Yqr Tpa oo

ceees Fpqt ther define Gr by
c, = J2AIM for T = 1, des see  ees  (4=10)
and 0, = Min Gy e Vpo i-.',.a‘yrq)’for r 2, ...(4=11)

where the minimum is taken over all y's satisfying 0=y, £V LYy, e
cevss Y1 &V T +oo Gr givés the ninirum average oostiper
item under Group BOQ Replenishuent Policy when there are r groups ard
the group boundaries are chosen in an optimal manner. By using (4-7)
and (4-8) we get
S 1
6y ppreeedyq) = VAR 2 [ $(t;-0/2) - $ley i cf/z‘)}

1=

3_ (I)(ti L 0/R) - @(ti_1 +o‘/2)} _7%

= J2ATH H (t,5 By oeere tr_j), SY, ees (4-12)
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where the y's and t's are related by (4-6). By mnking use of (3-8)

we get
a- /8
C‘}/COO = e / s LY s L Y (4"";3)
and for r » 2
- 20 g J \
' BN T u
Gr/%o\ = e / Pkill'l H (b19 b29 se e tr-—1) LY LY (4_14’)

where the miniuum is taken over all the t's satisfying
: i .

& oy ot Ve | s 15

It is noted that the ratio Cr/(',‘oO depends only on r and g + Firther
Cp

( T 1) 100 gives the percent extra cost one hag o incur when

group EOG Replenishment policy is used with optimal choice of group

bourdaries as againgt Individual ECQ'Replenishment policye. Hence the

c
i : S = B

ratio T provides a criterion for deciding on the pumber of groups
o :

in a practical situatinn.

The problem of Ffinding the opfimal group beourndaries isithus

equivalent to the nininmisation problem :

Minimise H (%, Tos eeees Fr-1> e eve eee L4-16)

subJeCt o] - =% it .'o-oo-< t St = + oo
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where EH (t‘l" t2,‘..... tr-—‘l) is given by

: ' g ] g
H(t by peeet, 4) = ;-Eq (}@(tiug)- 53“1-1‘ z)

[P

+ -

TAOREII SRS R

If we put t:‘.L =T .= for i = 1 tor, we note that -*°=1

coomans § B € tr" = + . By paking use of the fact

oH
0
&
I

1 - é (x}, we can easily show that the function

H (t.l, By weeees tr—1) nos the following property of symmetry.
- 2 xt ]
H(tT, By wees tr_1) - H (L1, By eeees tr—l)

= B (=t ~b_pr eee =By <8y) eee (4-18)

We refer to solutiocn of problei (4~16) as transformed optimal group

boundariés. Theoren 1 characterises the.property of ontinal sclution.

THECREM 1 A necessary condition for the minirun of problen (4-16)
to ocour at (%4, Ty eeeee tr_1) is that the t's should satisfy the

systen of egquations

20, —1log O, - 1log 8 4 = 0 for i=1tor-1 ... {4-19)

. - L)~ bk, . -%
where 6. é i 2 é i-1 Z
g
P

17 (@(ti-b%-)— @(ti_i‘-{-

for i=11%cr eed (4-20)
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Procf ;- It is seen from lewna 9 of the Appendix that the inisum
to the problen (4-16) can only oceur at a point where the constraints

are satisfied as strict inequalities le€ey =~co= to < t1 Y t2 ENaTelcne

ceees <B4 < ﬁr = +o. As such the necessary condition ig

_ d (x)
_gf% = O for i =1 +to r-i. By noting that %i; Z (x),
we have

o ] 1 o Y g
291~ = (—= - ) B (b, -5+ (/o -8, ) ot +Z)= 0

At s S i Y Ti41 i 2

= a VO 11

for 4= 14%0 -1 ... (4-21)
Since ti-1 < ti < ti+1 3

that 8, 41 2 Gi . Hence {4-21) reduces to

it ds seen from lemma 4 of the Anpendix
A g3

B ACH %)
g

ﬁ (t g, 12 Mgi i+
z
e O'tl .
or e = ‘/ 9 Qi+_] LI ) L LI /]-—22)
or 20 ti - log Qi - 10g @i+1- = 1@ T e (4—45)

There is a unigue solution to the system of equations (4—19)
and 1t is the global minirm of probler. {4-16). The proof of this is
rather inveolved and long and as such it is postponed to the Appendix.

Only the main results are given in this section.
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THECEEEK 2 The system of equoticns (4-19) has one and only one
sclution of real mubers and it satisfies the constraints of problen
(4~16) with strict inequalities. Iloreover this unique soluticn is

the minimum point of problem (4-16).

Proof See Theorens 5 and 6 of the Appendix.

The following theorem characterises the symmetrical properties

of the unigue optimal soluticn of problem (4~16).

THECREK 3 let (t15 t PFRPROTN ) be the cptingcl solution of problen

2! r-1

(4~16). Then it satisfies the following symmetrical properties

(1) t,=-1 B o Eas B Vg ek Lot (4-24)

r-i e i
: Q.
é (_"tr-i+1+ 2

F
<5(tr m—% é 2 e (a-26)

1]

(12) D - ey - D

(iii) % (t;+ %) - % {t,_+ %)

il

(1v) Oi = T
~i+1
for i = 1 to r.
Proof If tq; tyy eees t,_, is an optimal sclution of problen (4-16),
then -~ tr—1’ _tr~2’ oo -tz, —t1 is also an optinal solution to

problen (4~16), because of (4~18). Because of uniqueness of the
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optinal soluticn, (i) follows. If we use the fact%% (nx) = 1= aé(x)s
(ii) and (iii) fellow fronm (i). t is edsily seen that (iv) Tollows
from (ii) and (iii).

We now make use of Thecorens 1, 2 and 3 to characterise the
properiies of the optirvl soluticn of problen (4-11) i.2., the optimnl

group boundaries.

THEOREM 4 Problen {4-11) nas a unique optimel sclution (y19y23.....

Xap yr_1). We refer to vy (i =1 to r-1) as optimal group boundaries.

Further the optimal group boundaries satisfy the following properties

(1) 0 = yO < y1 /\ y2 1...14 < yr_1 < yr = 40
(i1) yy o= ‘/hi m
il -1
(111) 7V v, = B
! i
i=1

" x

g . . .th ,
(1v) The percentage of items in the 1 group is equal to the
percent money value of yearly demand explained by the
) th I . -
(r~1+1) group, and the percent noney value 0f yearly denand
th
explained by the 1"~ group is egual o the percentage of itens

L

in the (r—i+1)bh £Toup.

Proct Iet (t19 t2’ cenae tf 1) Lbe the unique optimal sclution of

problen (4-16). Then by {(4-6) we have the umique optimal solution
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to problem (4-11) to be

y. = L&e . en so e e (4-""27)

We get (1) by the fact -oo=t <t <ty eeen LT "
get (ii) by mltiplying both the sices of {4-22) by M and making use
of (4-8). We get (iii) from (4-27) and (4-24), Timnlly we get (iv)

by using (3-2), (3-3), (4-25) and '(4—?6).

COMPUTATION OF THE RATIO Cr/Cm

Instend of solving (4_19) muerically, the following approach

was used. The symmetrical property ti = =i of the optimal

r-i

soiution of problew (4-16) was used and a direct search was carried
out on the computer to tind the minirum of the function H(tl’tZ""tr~1)

and the corresponding optimal values of tﬁ,t2, sca tr Tne

=it
following approiimation due to Hastings [ 9_7 for the normal integral

was used in the computer runs.

o X —t2 ‘ .
let (X) - 7_1_{_—.. f e dt - PP wes ('-1-—28)
o]
Then for x Z O
v 1 . i
a (x)= 1 - - : ces (4-29)

- 2 s .. 5 6,156
(1 + B + 8,X + agX 48X Ak + QX )
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where 4y = 0.0705, 2304, &4 ; 8, = 0.0422, 8201, 23
2y = 0.00925. 7052, T2 3 8, = 0.00017, 5201, 43
a5 = 0.0062, 7652, T2 ; 8 = 0.0000, 4306, 38

The moximum poesible error in this approximation is + 0.0000003

For r = 3 to 10, g= 0.2 (0.2) 4.0, the search for the minimum
of O (ﬁq’tz’ cesoe tr 1) was carried out to the nearest 3rd place of
. e
deciral for the t's. Howeverinthe cage of r = 2, we know that the

tﬁfﬁgum of H(ti) occurs when 1t1 =0 and

Coo e

G 2/8 = 2 %
2 - 2% | E{)(a/z)-ii(—s'/z)g (4-30)
L. ‘ :

t

Tables I to X at the end of this part give the resulits of
mmerical evaluation. Table I is an extract of Tables IT to X
and‘givegoﬁhe volues of the ratio Cr/CK) for r=1+1t0 7 and for
g = 0.4 (0.22 3.0. The range of ¢ in practical situations is 0.6
0 2.6. Table II gives the values of 01/0oo and 02/0oo for
g = 0.2 (0.2} 4.0. Tables I;I to X give the values of Gr/Coo and
the optimal values of t1, 1 eese G for the sane range of @
ag in Table II. Tbe optinal group boundaries can be casily calculated
by noking use of transforned optimal group bourdaries given in Tables 111

16 ¥ and the formmuls

y. = Ne B T TR (4-31)
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It is easily seen, that for r=2, the optiﬁal group boundary is yiziﬁ.
A careful look at tables 1 to X reveals, that

(i) We need utmost six groups in practice if we want o keep the
ndditional cost due to grouping less than 5k.

(ii) The +transformed optimaol group boundaries change very slowly
with ¢ in the range studied.’

(141) 4s o =————% b, it apnears that the transformed optimal grouﬁ

i
bohndaries tend to some definite values.

We shall now briefly investigate the limiting nature of

transformed optimal group boundaries as o 5 0. A detailed study
is nostponed to the appendixs For g > 0, the system of equations

(4-19) is equivalent to

. i o
i log 6 -— log &, = @ - X e | e (4-32)
for i1 = 1 %0 r~1. Further, we have,

lim el = 1 for S 1 to “se se e 'R (4—35)
e —>0% ‘

) 1 . g(bl) = g (bl_»]) L
lim 5— log Gi S ‘ Cvas (4-34)

g—> O ) - P,y

Fence the limiting form of (4—32) g e e © is
g (o) - ¢ (5, ) " g (v, ) =4 ()

ch %(ti) - @“‘1-1) "}5 (t3,4) - @(ti)

- W &b e-85)
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In the deternination of Optimui spacings Tor large sanple estiimticn
of the mean of o noreal population {with known standard deviation} by
a selected set of k sample quantiles, Ugawa ZTW;7 obtained the same
system of equations as (4-35). Of course in nur‘notation r-1 = k. He
also noted that if - {1, < t2 o B ho R tk { e 1ig a sclution to

LY
(4‘.__35), then -oo ¢ ..tk< ~t cene ¢ -t1 ¢ e 1is alsc a solution

% k-1
t0 2§%35). Higuchi ZT@{J? proved that the system (4—35) has one and
only one solution and thait this solution satisfies the constraints
of provlem {(4-16) with strict inequalities. Oeawn / 7 / solved

the system of equations (4-35) rumerically and his results are given
in Table XI at the end of this part. We refer to these as (gawa's

optirun spacings.

We shall now investigate how good an approximation the solution
to {4-35) is for the sclution of the systew (4-19). Nuerical evalua-
tion of the function H at the optiwal point and also at Ogawa{s optimur
sﬁacings were done for r = 3 to 10 and ¢ = 0.2 ﬁo 440, It_was
observed that the approximqt%on wag very gooed for ¢ ¢ 3.0. Ve denote
by G; the average cost per iltem Tfor the case of r groups when
Group EOY Replenishment Policy is used and the group boundaries are
based ocn Ogawa's optimum spacings given in Table XI. ‘For example

for r =4, we get from Table XI, t, = - 0.982, t, =0, t3 = 0.982.
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By (4-6) we get the nearly optiuum group boundaries to be

,0.9827 ,0.9820

y1 = M y2 =¥ and y3 =M

\
\3%* and

o, = C (y1s 950 yB)

/2 TH H (-0.982, 0, 0.982)

If

e . H (-0.982, 0, 0.982)

il

1
C 2
4 o/8
C

oo

1
C

The values of the ratio EE ‘for v =3 %0 10 amd ¢ = 0.2{0.2) 4.0
(=]
were‘computed and are given in Tables ILL 3o ¥. It is seen for
: e
g £ 3.0, that Cr/Cm) ig practically sone as Cr/Cm). Since in
practice g < 3.0, we can safely use tgawa's optimun spacings for

caleulating the nearly optimun group boundaries.

The following stéps are used in obtaining the mearly oplimura

group boundaries based on Ogawa's optimal spacings.
(i) For r = 2, the optimun group boundary is y, = I for all

(11) Tor r 2 3, read from table XI, the values t.st s eoe-

.. -E

r-1 .
(1i1) The nearly opticum group poundaries are calculated as

gt gt gt
1 - 2 r-1
y,=Ke y Yy = M e ver Tq = i e vo. {4-36)
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AGGREGATE MEASURES

We now derive expressions for aggregate measures of systen

effectiveness when Group EOQ Replenishment Policy is used with opitimnl

th

group boundaries. The commdmynorney value of an order for the i

group is by (4-2)

Q‘ ] —-I——l- 7... ten LS "o (4-37)

L
Hence the average inventory investment Fer iten for the ibh group
) 1 2A . J_ . .
will be 7 T \/mi « Hence the average inventory invesiment per

item over all the groups is given by % \/_%& Z py JE; s If Wis
total rumber of items in 211 the groups, then the average total

inventory investment (TI) is given by

 [m 3, -

IIII = _2. I .E pi Lli ase [N (4"‘38)
=y
a -
¥y x /zAM

= 2 G_E I ...\ *ew LN ] (4_39)

We get (4-39) from {4-38) ond the definition of Cr and by recalling °
61 = 3/2AIl. Similarly we get the totol mumber of orders per year

{T0) over all the groups o be

e 5% ety Tee (40N
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i
The equation to the exchange cf-rve (5-11) under Group ECQ Henlenishmens
Policy will be

c 2
TI x 70 3]-2- (a;_) M {4-41)

1

H

ml%\D

CrE Coo2
(—C*‘-) (E") P

e 1

2 G 2 2
- (&) eSO w L L (4-42)

since —— = € . We note that (4—-‘;2) is sane as (3-11) except

c_ 2
for the muliiplying factor { _C_r_ |
oo
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5¢ APPLICATION

In this section we discuss the applicational agpects of the
Group EQQ approach developed in section 4.7 Thisg approach has been
successfully used in many industrial organfsations and super-markets.
The validity of the iognormal rnodel for distribution of money value
of yearly demand can be easily verified by plotting the cumulative

percentage of items against money value of yearly demand on a logarithmic

probability paper. A straight line fit indicates the validity of the
assumption. Occassionally such a plot indicates a curvature at one oy
both the ends. This means that .more than one type of inventory is
inciuded in the group of items considered and seperation into homogeneous
groups generally gives good straight line fits, The basic quantity
required for the yse of Group ECQ approach is ¢ - one of fhe parameters
of the lognormal distribution. Brown /2 /uses ¥ = ¢ as an index

of the concentration of money value in a relatively small percentage

Of items and calls 'f ' the stondard ratio. However we prefer to use

o itself an index of extent of concemtration. The value of g encoun-
tered in practice is usually in the range 0.6 to 2460 ;n case of
retail inventories likerl&rge departmental stores etcsy, ¢ is found

10 be in the range of 0.6 to 1.2 and ip case of industrial organisa-

tions ¢ is found to be in the range 1.2 to 2.6.

The average money value of yearly demand 'M' can be very easily

estimated by dividing the total money value of yearly -demand by the


http://www.cvisiontech.com

-41- _ f

total npmber of items. The estimate of g~ the index of concentration
can be obtained from the logarithmic normal probability plot. The
best Tit straight line through the points pletted is drawn by eye.

Let Y16 and YSO be the money valueg of yearly demand corresponding
to 16% and 50% points respectively of the probability plot. Then the
estimate of ¢ is given by

iY;
50
g = log e
e Y16

= 2.3026-(10g10 Ton = 1ogyg e )_
Table I can be used to decide upon the number of groups once

s is estimated. The values of the ratio C /G for that particulax

5 give an indication the extent of additional cost one has to incur
if Group EOQ approach is used with T groups as agoinst individual EOQ

approach, Actually the percent extra cost is given by 100 { ai =4).

The mumber of groups 'r' is so chosen such that the additicnal cost due
- 40 Group EOQ approach is reasonable, say less than 5%. Once the number
of groups 'r' is decided, the nearly optimal group boundgaries are
obtained with the help Table XI. Table XI gives - Ogawe.'s
optimal  spacirgs . For the value of 'r' chosen we read
Ozawa's optimnl - spacinis ' ti’ t2, elelVersnats tr—1
from Table XI. Then the nearly optimal group boundaries are given by

. tﬁﬁ . t26 ‘ tr—1d
b = I e By i e g eeeeeee Yo 4= e :
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All the calculaiions needed Tor Group BOY replenighment approach

are now illustroted with the help of a case-study.

This case study refers to an asutomobile rlanufacturing unit
and the category of items considered‘were 'Ready~Purchase Local Parts'.
There were 2032 items and their total money value of yearly demand
was about £1.89,42,000. The cumulative percent of items (naving their
ooney value of yearly depand less than or equal to a particular value )
was plotted against money value of yearly demand on a logarithmic
probability paper (see figure 1}. As the plotted poinits lie very close
to a straight-line, vhe lognormal model could be adopted. The 16th

h i i B
and 5OJG percentile points are 70 and 500. Hence the estimate of ¢

‘was, g = log_ 500 - loge 70 = 2.0. The average money value of
3 8 2 O

yearly demand M for this category was I = —2;%3399— = 4400.

[} 04 g C .

For ¢ = 2.0 we get from Table I, = = 1.0625, ~2 = 1.0420

COO COO
06 n
and F- = 1.030% . Since it involved only 4.2% additional cost,

o

the monagzment felt that five groups were adequate. From Table Xl
we get Ozawa's optimal spacings: (roundea -off +o
two places of decimal) to be

+ S i = - o : N i = 1.2
b, = = 1,24, 4, 0.38, t;=0.38 and %, 4
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Hence the nearly optimum group bounderies were

b, o

v, = Me | = 4400 e'1'2fLX2’O' = 368
T R

y, = Me? = 4400 e * 20 9058
N 0.38 x 2.0

y5 = Me’ = 4400 & TE0 . gs08
t 0 | j

y, = Met = 400 o FEC o sans0

The proportion of items and proyorfion of money value of yearly demand
for the ith group (1 = 1 to 5) is given by @ (b, +0/2) - @(ti‘_#cr/z)

and §>(tr—i+1 +0/2) - qé(tr—i 450/?) respectively, where = -

and t5 = +o , lenhce we ge%d from the Normal probability integral

table.

Group ] . ' Avgl.Money value of

No. Group Boundaries %items % vq}ue yearly demagd (mi) {ra“
(1) Ty ) v )= 4400 3 '
I ¥ < 368 40,52 1.25 135 11,62
II 368  y < 2058  33.22 '7-._13 . 944 ‘ 30.72
III 2058 & y < 9408 17.88 17.88 4400 . 65,32
Iv 9408 £ y < 52542 7.13 33,22 20500 ‘ 140,32
v oy 252542 1.25  40.52 142630 . 377.66

100.00 100,00
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The cost of ordering (A) was R&éé/— per order and the cost of

carrying the inventory (I) expressed as yearly rate of interest was

0.15 for this category of items. Hence the BOQ constant (K) was

: f28 _
I‘\_ = \! I = A 266 07 = 16.33

The group ordering quantities were therefore as follows @

Average money order Qtty.in  order Qtty. in number

Group value of yearly Rupees {@%*) . of orders-per year (1%)
) demand (}11:.L m

@) . (4i) - (3ii)= K Jmy (iv) = v/n /K

=y 135 "190 NCR

II 9%4 - . 502 . . : 1.9

111 4400 T A S .

v 20500 2291 . Beb

v 142630 6167 ' 23,2

Finally, we have for the aggregate jinventory measures, r(by (4-39) and

(4-40)).
| . ¢ /S
Total no. of orders per year (T0) = =2 =— N X JE
. L : Goo 01 , X
_- 1.0416 ' ' x/44OO
= T.easy * 0% X 533
83855  _

Total average inventory investment (T1) = R x5 X X ,/B-![

o0

83855 X 16433

> = 6,85,095 (Rupees).
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6. APPENDIX

INTRCDUCTION

In this appendix, o detailed study of some of the mathematical

aspects of Group BEOQ Replenishment Policy are undertaken. The main
result proved here is that the ninimum cccurs at unique point in
problem {4-16). In additien, a number of interesting results about
the properties of‘the soluticn 0f the system ¢f equatirns (4—19) are
also cbtaineds In sectinns 6.3 and 6.4 we prove certain inequalities
ond related results. These are used in section 6.5 t0 study the

Group EQQ Beplgﬁishment pulicy. 4 briéf summary of the contents of

sections 6.3, 6.4 and 6.5 i1s as follows.

Section 6.3 !
1L E:amﬁ'y'be truncation points of the standard normal
distribution. In theorem 1, we prove that the mean of the truncated

distribution has the same sign as that of x+y. In theorem 2, we
prove that all the odd moments about the mean of the truncated
distribution has the same sign &5 the nean. Theorgm 2 is o generali-
sation of a result to due to Samford.zfi?j7. in tﬁéﬁrem 3, we show
that if the normanl distribution is truncated at two points which are
at o fixed diétance apart, the variance of the truncated distribution
is maxirm wheﬁ the trunéafion'ﬁbints ﬁre placed symmetrically about

the mean. oLt RS s oo
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Sgction 644

The results of section 6.3 are usdéd to establish some
important inequalities and related results. The main result of this
section is theorem 4, wkere we establish certain inequalities which
the partial derivatives of the function 1og_Z_(@5(yu-G/2) —@? (x=c/2))/
( é&(y+wj/@ ) - @é(x +q/2))_/ satisfyi Temmas 10 and 11 which are

Later used in section 6.5 are due t0 Higuchi ZT%L;7.

Section 6.5
In this section, varicus theoretical aspects of the Group EOQ

Replenishment Policy are studied in some detail. We call the optimal

o e e S e e A e ks . e e e e . e e e e S ok . bk e Y S o 2 PO

solution of problem (4-11) by a simple transformation (i.e. (4-6)).
In theorem 5 we show that the system of equations (4-19) has a unique
solution. Theorem 6 shows that the minimm of problem (4-16) is
attained at this point. In theorems 10 and 11 we characterise. a
certain important property of the sclution of (4-=19). 1In theorem 12,
we show that transformed optimal group boundaries which are positive
(negative) strictly incresse (decrease) with ¢ . It was seen in
section 4 that the limiting form of the system of equations {4-19)
s 0 —> 07 is (4-35). The system of equations (4-35) was

obtained by Ogawa / 7 / in determimntion of optimal spacings in an
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estimation problem. e call the solution of the system of equations

(4-%5) as Qﬁ_Yglﬁ,gﬁﬁi@%%_§P§9§§§§' In thedrem 13, we establish a
certain relationship between fransformed optimal group boundaries
and Ogowa's optimal spacings. In theorem 14, we prove that transformed

optimal group boundaries actually tend to Ogawa's optimal spacings

as o—> o',

NOTATION
For easy reference, we list various functions which have elther

been defined earlier, or will be defined later in this appendix.

L bt
(1) -ﬁ-(}lc) = m j
@ P - F W a

= g (y) - ¢ (x) ! . (e, 3)

$G) - ).

i

(3) h(xs Y)

) - x g (2) =86
5@ - S $ G- ¢&)

(4) #, Goor)

]

k2 (Xa Y)

‘ U = M WA v~ g(y) - %iﬁﬁﬁx), e g (y) - g_(&) '

s F@G) - &) Ply) - Qlx)

5 X gly) - x gx) gy) -~ &) _ 5 ¢ gly) - #x)
Ey) - &) Bly) - &) $ () - Plx)

-

3

K3 (Xs N)
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5 (y-0/2) - § (x-0/2)

iﬁ(erg/g) - :{Z(X+G/2)

: (6) < (Xsy{U)

(7) w(z,ylg) = oy -~1log & (x, vlo)

(&) .rnlx, y) = v A(y)

]

'/‘crl log @ (x, y|g) when g# O
(9) n {x, yio) ) :

§

( Az, y) when g¢g=0

,\_
Q jia

Yyix, ylog) when g # 0

(10) w (%, ylo)

Sz, y) when ¢=0

TRUNCATED KORMAL DISTRIBUTION

Iet x and y be such that g QEx < i< o and at least one
of them is finite. We consider x and y ag the trunecation points of
the stondard normal distribution. When -0 (X Yy We have

double truncation and when X = —oco OT j = oo WE have single truncation.

The probability density function of the truncated distribution is

A
$) - d&)

O otherwise

-for .x{u <Ky cee  enel-1)

g (u)

i

i
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We denote the mesn of the truncated distribution by A (x,7), the rob

moment about the mean by & (x,y), ond the r® cusulant by kr(x,y).
To avoid discussing separately the cases where X = % 0r ¥y =%,
we take c%(w) = 1, i\ (~e0 ) = 0 -amd also W #{u) =0 when

u = i'_‘x’.

The moment generating function for the truncated distribution

is given by

tn

¥ ' . .
f u v -
d e g a ] etz/z (E,z (y-t) - %ﬁ(x—t), . (6.2)

E ) - ) P - oo

Hence C—(t}x,y)-, the generating function of the cumulants is given by

: 2 s - = = =
Sobey) = b+ 108 Z(-t) - Hlxt).7-108 & ) - )70 (63)

We then have

a o(tlxay) o ply-t) - ) P, o (6-4)

- . LR s 0o

iy & (5-t) - Pla-t)
a%e(t)x,y) (y=t) B(y-t) - (xmt) Plxet)  Bly=t) = Blx=t) )2

=1
at” 1 P (y-1) = G la=t) R - Pl

vee ee. (6-5)
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d3G tix o -(Yﬁt)Q ﬁ(y-t)‘- (X—t)2 B(x-t) By-t) - Q(Xft)
@ &) - Ble) F (1) -3 (x-t)

5 (y-t) B(y-t) - (x-t) Blz-t) ﬁf('y-t) - ¢ (x-t)
g =t) - Blxt): o Blt) - Fat)

B (yet) - B (xt) ‘
. 2 ( = - =3 - ) M) " an’a (6—6)
T y=t) - Pla-t)

Hence it follows that

A CORN Y |
I, (x,5) = Alx,y) = - i (6-7)

F.(r) - =)
d o(tlx,y) _ 44 k, (xt, y=t) = b+ Mx-t, y-t) (6-8)

4t -

(5g) = # (ry3) = B -xp) AP 2
k,(xyy) = - H,lxy) = T - 56 50 B0 .-

a® ¢ (t)x,y)

- 2 = k2 (X"t, y"t) = uz (X—t, y—t) [N ) s ew (6-10)
s I
d Mx-t, y-t) .
o = M (xet, yov) -t cre eeeees o (B-11)

) = yy) = - LI =X M) S B ) N
XY NN CORE 3C)

5 22y) - xp(x) 5?5 (1) - 8 (x) NG AVIES (X)) .. (6-12)
;L(y) - Eﬁ (x) & = (y) - ’{ (x) \’P(y) - plx)



http://www.cvisiontech.com

g BEL A

dt

3 | | ‘
a th}S_x,xz -k ety yet) = Ho (xmty y-t) cee ees (6-13)

d

&k, (x=ty yot) = G Hp (et y-t) = ks (x=t, y-3) = B (a8, y=t) 40 (6-14)

. T ' 5 .
g f tix ~ will bé some function

In general for r» 2, we have
Nk at

g, (u, v) of the form, where u = X-%t, v =y-te Hence

K, (x,7) = Q__Eifézizl Fli

g, (i=ty y=0)/_, = & (¥)-

Therefore we get

it

QE_ELELELXl ‘ - l | (6—15)

LR e
I

kr(x~t, y-t) = & (x=t, y-t) "

AU e

L , d . n i
Ky (x-t, y=t) = 37 K, (xwty y=b)  eee  ees oo (6-16)

The recurrence relations can be summarised as

%.-'E .?\. (X‘!‘t, y+t) = 1. - ;1’2 (X'l't, y'l't) P ' N ] [ ) (6"‘17)
a N . ] Tl ¥ 2
at #2 (x—"t, y+t) = —[1;3 (X"'t, y+t) K [ “he e : (6 18)
L8 = £ e 1
= b (x+t, y+t) = k. 1 (x+t, y+t) for T ?2  (6-19)

The relations (6-17) and (6-18) interms of moments have been written

because of their subsequent use.
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Temma 1

Iet x and y be such that = { x< y{ ® and at least one of them

is finite., Then O < IJ:2 (x, y} < 1e

Troof :
Since it is obvious that M, (x, y) > 0, it is enough to show that

My (x, y)( 1+ For this purpose it is enough to show that

y8G) -x8 =) 5 g (y) -8 () 2 .
¢ W) -3 . PG~ ¢&

AT {6-20)

Noting that x < }\(}i, y) < y, the left hond mewber of this inequality
can be written as |
[y -2aM) 7 8 (5) « [Mmy) =278 @) | (o)
&G - & (x)

THEOREH 1
Iet x and y be such that -o {x< y¢ © and at least one of them is

finite. Then
(1) M(x,y) has-the same sign as that of x+y ;.
(i1) A(x,y) = 0 when x+ty =0} X (x,:y) < 3%1 when x+y 2> O

and A (X, Y) P X—-EL"Y' when x+y ¢ Qeb o -
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Broof

Phe result (1) and also the first Shr of (i1) are thiviel, We
recall that A(x,y) is finites If -0 (XK y =0 ., then we have

x+ ¥y 0 and A(x,¥y) < Y .o, If -w=x( y{ o, then

2
X+y< 0 anmd }\(x,y)ep 2%}’_ = 0. Hence it is enough to consider
the case where =—oo (X { ¥ (™. Iet a = %Jg‘andz b= -X—;x. It

ig seen that a > 0 and x = ‘- + b =a.f.@l 'y = a + bs Consider the.

function

E.;(t) = t mr)\(- 2 + 1:, a + 1:),
We observe that ?E((o) = 0 and \

Ee) - B ).

s
Further we have from (6-17)

a & (v)

e —

-dt

1=(1-H, (-a+ t, o+ 1) = (-a+t, 8 +t)” 0.
_ W

oy

Hence E(b))O when b> O &nd 5.(b)< 0 when b‘< O._v'

The required result follows.

THEOREM 2
Let x and y be sush that -o ¢ X y (o ond ab least one of them
ig finite., Then all the odd order wmoments about the mean of the

truncated distribution have the same signfs that of the mean.
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Iet =+y
integers
x+y £ O

We have

[C'E(y)'

Bl B

= 0, then A(x,y) =0 and oy (x,y) = 0 for all odad
r. Hence we need consider the case where Xx+y # O. Iet

and r be an odd integer. We also recall that x< AMx,7) < v

- &)/ By y) = o, M= 2\)? g (2) az ~ ees o (6-22)

where we write A for X (x,¥)
cON |
J r ¥=x T i 0 T ’ Y?)\r o
J (z=2) #(zlaz= [ =z #(z+Ndz = [ z B(z+A) dz + [ 2z #z+Naz
X L X=X ] X=X G
as e (6—25)‘

Since r is an odd integer; the transfo:tjmatiorl z = -u -gives

0 4 O : | °

[ 7z #(z+x)dz = J o #au)au = [ uw @ (u- A)du

al B -, AX

X=X\

A-X :

]

] _— S .
:- ; = {)' u ﬁ i(u - }\)du ses see s (6"24)

Canbinivg (6-23) and (6-24) we get for an odd integer T

X -\

y ‘ | i NS
S (z=a) ﬁ(z)dg = - j(; 75 @F(zen)dz + fo 7 g(z+N)az (6-25)

If we put T = 1in (6-25) we get

. ?\.“'X

Y . ' R
J (z=N)@(z)az = 0= - f z@(z=-N)dz + _c[} 7 @ (z+n) dz 0 e (6-26)
X i 0
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Cage (3 8 -

i ——

Let x+y > 0, This implies x > = If y{ oo , then we have from
theorem 1, x < A< 3%1 g and 'j\ > 0. B®ince X < 3_{:_2"1 s We have

0< Mx < y- A This inequality is obvious when y =« . Hence if

x+y > 0, irrespective of whether y = o or y{e, W8 nave 0< A -x< y-A
and OKA< e . §ince A > 0, we observe that g (z-N) > @ (z+x) for

all z > 0. We get Lrom (6-257) for an odd integer e 2“3\

¥ i | Mx X N2
S (z=2) g(z)dz = - Sz #lz-N)dz+ [ = Glz+n)dz + f Zrﬁ(z-t-l\.)dz
X ’ o o _}g-x
=X ’ y=A
= f zr[,’d(z-t-)\)—ﬁ(z-}\)_?dz + [ &8 (z+Ndz
0 J A | :
- r-; % - r-1 I72 |
> (x) [ 2/ Bz - #(z-N/dz+ (ex) '}\f {2+ )i

et - E , y-A 1
s (ex)1 fz‘},@(z—z-}\)-fo’(z-}\)’k az+ T zf(z+Naz7
SR (C) é ‘ P

LS .

Ly e T g 1
> (Ax) T - f gf(z-n)dz+ [ 2f(z+N)dz_/ = 0 . (6-27)
o o
Gaselgii}

Tet x+y < O, This implies ¥ < w, If X > < ; then we have from

theorem 1, % < EC—;-Z< A ¥ and = ¢ AL 0. Since {x+y)/2 < A\ 5

we have 0< y = A < a- x. Thisjinequality also is obvious when xX= -0,
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£
Hence irrespective of whether x = - wor x> -, We have

0 <y =X <2Aex and = o A< G.8ince X CQ, we Observe that
g (z=2) <P (z+N for all =z > 0. Proceeding on similar lines as

in case of (1), we get .

T (e FBla) a5 € 0 «if ‘aee  see  (6-28)

X

In equalities (6-27) and (6-28) along with (6-22) prove the required

result.
4

If we take T = 3 1in theorem 2, we get the result that the
sign of MB (x,y) i.e., of the expression in the right hand member
of (6-12) is same as that of x+y. This is a generalisation’of

result due to Sanford / 10 /. If we put y =° in (6-12), we get

©_(x,%) =iﬁx—) -E— - 3% ( —‘M—)2+ 2( —ﬁﬁ)—)3 >0 ve(6-29)
5 1—@(35) 1—@(}{) _ 1—@(3&) 1*@(3‘2) Pared

for all x€ (- ,o ). This result for truncation of one tail was

conjectured first by Birzbaum and later proved by Samford [10_7.

Corollary to Theorem 288
For 01l u€ (=ooe0 ), -,1142 (u,¢) ‘iz a sﬁri‘ctly-rdecreasing funetion

of u and ,LL,E (=00 u) is a s’tfiétlj— increasing function of u.
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Proof
We have
L op, (-, yrt) = =y (=0, y48)> 0

s ) j

L ﬂz‘(x+t?00) - _'}.;,3 (x+t,9 ) <O
and these prove the required result.

It is seen from (6-7) and (6-9) that A (x,y) = A(y,x) and
oy (x,5) = #, (y,x) and thefe is no need for us to always designote
the lower truncation point by x and the upper sruncation point by ¥
We shnll now state and prove a result in theorem 3 which is later

frequently used in the study of Group ECQ Replenishment policy.

THECREM 3
Consider the non-linear constrained maximisation problem

. Mpximise I {x, y) subject to

(x,y) € R2 and | =Yy | =":2a 7... ere (6-30)

where K, (x,y) is the function defined in {6-9) and ‘g‘ is a given
positive constant. Then (1) the maximum.of‘;L2(x,y) subject to the
constraints is attained when x+y = O (that is at the points (-0,a)
and (a, -a))} (ii) if (£1, yﬁ) and (xz; }5)‘5re two points such that

‘|x1-47y1] = |x, - y2[ = 2a, then [, tx;;‘y1) is equal to or

- - .
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greaﬁg? than or less than ;L2 (KQ, yg) respectively, according as

%y + ¥, | is equal to or less than or grester than |, +'y2,

Proof
Since t, (x, y) = too {(y, x), 1% is enough to consided the maximisa-
tion with the additional constraint x < y. Any point (x,y)E RQ and

satisfying consiraints of the problem (6-30) ard x ¢ y can be

represénted as. X = - a+ % 'and y=a+ t where t € R. It can

be easily verified that

It

l£2 (=@ + ty o+ t) (—Aa -t, a - ity

Hence the function !LQ (h a+t, a-+ t) is symmetrieal about t = O.

Further,; we have from (6-18),

H

T “ (-2 +1t, a+ 1) - f (-a+t, a+t)

By theorem 2, we have

v

O when t2 O

' C when t =0
f . .

(w .0 when t< O
a

i

3 (-a+%,a+t) <

Thig shows tha. ALQ(- a+ t, + t) is strictly increasing with t for

t< 0 and strietly decreasing for 1 > 0. Therefore pﬁz(—a+t, ot )
attaing its maximum at t=0 and this proves the theo;em.‘,lﬁrwe truncate
a normal distribution at two points which are at a {ixed distance apart,

theorem 3 states that tbe variance of the iruncated distribution is

moximum when the truncation points are placed symmetrically around the

menn,
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Lemna. 2

Iet x and y be such that = { X o, oo (T Lo, X £y

and at least one of them is finite. Then 4, {x +g/2, y+ gyz) is

equal to or greater than or less thang, (x ~0/2, y -0c/2) respeciively,

according as x+y = 0 or- x+ty < O or x+y > O for all 4 »OC.

Case {i) 1Iet x and y be both finite. The required result then

t0o theorem 2 that Mz ( -00 4 u) is a strictly increasing function of
u and Me (00, u) is a stricily decreasing funciion of u. This proves’

the required result.

SOME MISCELTANECUS RESULLS

Define the function & (x,y)g) for all {x, yy0 ) € R° by

; (y-a/2) - @(X—O‘/E)
& (yro/2) - Q)(th-cr/?)

1l

&(x,y g ) when x £ y veo (6=31)

i
'

o
= e9% vwhen x =y

It is easily verified that € (x,y|o ) = 1 for alle when x+y = O.
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The following facts are obvious , =

(1) (% 7l0) = 0 (3y x/0)s (11) @ (x, y]0) = 1,

(1i1) o (x, y {o) = &

e as g x, (iv) limits of 6(x, wig)

when = —> _-1_:05 exist and are denoted by @ (_-I;OO, vlo ) and

(V) 8 (o, 7fo) —> 1 a5 y—d e am & (x,0]q) —> ¥

ag X =3 ~oo,

Temma 3

Let ~c ¢ %< ¥ ¢ . Then we have for all g > O.

(1) X< 6 (x, y]¢)< o7
(11) o (wooy % o) < &< 8 (x, @]y )

Proof

Let f(u]g,q) be the log-normal probability density functfon ek

fluly y0) = =~—— exp (- = (log u-£)7), 0 ulw, g5 0
. \fj z.n.' Q_u - 20 | . N

and u, = exp (/,.:,+gz-/2 +gx) & u, = exp ( Lo+ 52/2 +0¥). Since

x4 y, we have U, < u2, It follows -—freuélz (3~ 4) t’hatl
Uy " ; |
I u f("?]ﬂ'z.;@). du
= ' = exp (u+o7/2) 8 (z, ylg) .o (6-32)

2 ' =
J £ {uju,o) du
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= o]
It follows from (6-32) that

exp (}$+0‘2/2+0'X.) < explu+ 0‘2/2) o(x,ylo )< e-Xp(/-L""o“z/?*-o‘.V) _---é6—33)

The two results of the lemma follow from these inequalities, observing
that g - one of the porameters of the log-normel distribution can take

only positive values.

Lerma 4
Iet x, y and z be such that =-oo _<_"jc ™ <.' z { oo. Then we have Tor

=

all ¢ 0, & (x,ylo}< @ (s zlg)e

e

It ig well known that the Loreng curve is Strictly.' convex. For the
log-normal case, the Lorenz curve is a plot of D - 6/2) against

(L" (w + 0 /2) for different u. The required renlt follows.

We shall now consider the partisl derivatives of @ (x, W !'0-).

For x#y and g # 0O, we have

00 (x, y.lo) Blxg/2) - 8(x, vio) B(x + af2) - . (g.3a)

0% = Blx +0/2) - Ply +0/2)
| oX i
o ﬁ (X e /2) € - _9‘(?;3 ¥y ld) . (6-—35)

@(XH/E) - @(y +0/2)

8o (x, ylo) _ #y=-o/2) -9.x, ylg) Bly+o/2) (6.,365
ay - r_{j(y +cs/2)-é(x +0/2)

f


http://www.cvisiontech.com

2162

oY _ _
= g (y +0/2) 8 - (,X’y"” ver  (6-37)
@;(yw/ 2) = @(zw/z )

Since ————-7——'569 (Xa]; ‘—O-l = __(_,_L_lae Xay L0

G 3 it is seen that the above

hold true even when ¢ = 0. Further

. 3¢ ge . _8e c lin 08
1im —_Z = = = = lim
y ——lm> X ay - /y-—-x 0y “y=x g =) 0y
= 02"' eUX LI ;uu LI LI (6—38)

Pinally for x £ ¥y

Yoy (¢(y-d/o) ;ai(x.o/z)+e(x,ylo V[ B(y+ar2)-plxic,/2)7 (6_39)
3o - d @(y +5/2) —cﬁ(x +g/2)

It is easily verified that

88 (x, x|q) ox  _ -lim d6(x, ylo) vo  (6-40)

= X e = .
acf - y..__->x 30 ~
Temma 5

For all o 70, we have

(1) —a% o (xe, xg)> ©

(1ii) 2 5 (x, ylo)> o and —-a—a-y o (x, ylog)> 0 s (6-41)

0x
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Proof

[ S (*w,-xjg“)'
Ef: (x+0/ 2)"

a8 P R
Q(BX: .lfo) - Blerg/2)

> 0 by lemma 3.
The other inequalities of lemmn are proved in o similar manner.

It is seen that ©(x, ylg) and @ (j—_oo, vlg ) are positive

for all x and y. We now define the function W (x, y|g) for all

-

(x, ¥y 0) € B 1y =
W(X, ylé‘) = oy - lOg e (X, yiﬂ‘) “ow ;o- (6"42)

The following observations can be easily verified

o for all (x, y)«

it

(1) W (x, yl0)

(i1} W (x, yle) 0 for allg when x =y

i

(iii) Por ¢ > 0, W(x, ylg)—> += as y—> o

(iv) limits of W(x, ylg) when x —> 4% exist and are

denoted by W Cj-_‘x;, .V]O‘)

(v) Por o> O, W(-OO, yf'o') > © gs y—>% ard

W (=, ylog)—> w0 as y—> -
Further we have far x # y.

dW(x,7lg) _ _% __ Bxeg/2) - 8Gylo) Blxrg/2 )

v X ditdomanel evalulion eopy 2l
. »:t R '\1-. Yl ELgy

(@3]
©

ees  (6~43)

I

=
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de 1P ﬁ(y—o‘/?) = 9(:{,3f’0’) Hy+a/z)
& (y-o/2) - P (z-0/2)

oo (6-44)

3 ' |
.W(ax;y'fd) +3W(ax§qu) =l B(y-c/2) - #(x=0/2) . B(y+o/2) - #(x+a/2)
LP(Y"O'/Q) —@(X—-’J'/ﬂ %)(y+0'/2) —@(}GU/Q)

= g+ Mx-0/2, y-6/2) . Mx+o/2, y+0/2) toves (6~45$

It is easily seen that

oW (x, ylo)

3% — ~-g/2 when x — y or y— x

oW (X’ y,O’ )
oy

— g /2 When x —— y or y-—> x

Tlondly we ‘nove

dg . 28

Olog olx,ylg) _ _ 1 ( Ply-o/2) - Blx-o/2) + & (Bly+ o/2) - ﬁ(X+<?@)?/)
(1) (y+0/2) - 4) (x+ 0/2)

o f Blo/2) - BGeof2) | Elro/2) - B (xx/2) )
2 (ff'}(y-oﬂ) -Plamor2)  Blyrara) - Pluosz)

= 3 [ Mz-a/2, y-0/2) + Maxwo/2, y+0/2) 7 eu. (6-46)

where we have written @ for & (x, yig) for the scke of simplicity.
‘It is easily verified that

d10g & (x, ylo) ‘> x  when x>y e

dc
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Lerma 6
.For a1l & > 0, we have

(1) W(-w, ylg)> 0 and W(+e, ylg)< C for all yE(—ogoo).\

-

(ii) For o11 (x, y) €&

} o i 2=
Wiz, ylo ) ; it oy =
' ( < 0 if y < x
\

Proof
We prove orly the second result and the proof for the first one is

ginilar. We have ffom lemma 3 for any u and v such that w ool 11 { VKoo

e™ ¢ 8 (w, v]g) < €Y

Purther when x = y, we have
£ = e (x ylo)

and this proves the lemma.

We shall how state and prove an important result in theorem 4.

This result is later used freguently.

THECREM 4
For all ¢ » 0O, we have

(1) aw(g; V{G)f aw(ngﬁi——l > 0 when x # y for 211 (x,y) €R®,
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(11) aWF + 0, 5"‘2}0“)

3y >0 ?qr all y € (- e, oo),

Proof : \\

We have from (6-45)

aW(}g},{le) i aW(JaC:;Yv]'G) = g+ AMx-g/2, y6/2)- Mx+o/2, y+6/2) ...(6-48)

Consider for given x and y, (6-48) as a function of ¢ i.e.,
6lo) = 0 + Mxo/2, y-0/2) - Mx+ /2, y+0/2) ... (6-49)

It is seen that G(0) = 0. Purther, we have from (6-11) and (6-17).

L0) L g [l (x0 2, y- /-1 7= & [ V-t (x40/2, yr 6/2) T
= % [B(x~ @2, y-0/2) + 1, (x+0/2, y+0/2) 7 ese  (6-50)
L2 © when x £y

This proves the first part of the theorem. We shall now prove the
second parts It is easily verified that (6-44) holds true even when

X = + % ¥e have

8W (-, yla) _ ,_ BG-9/2) , B (y+0/2)
= B Pi-0/2)  Plyeorz)

o+ (- e Y"O'/z) = -?\-("ms y+ 0'/2) ,
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L

W+ ylo) _ o BGe-of) | Elyrofe),

0y - q)(y-q/ﬂ— ¢(V”/2)'1 \

o+ A .;V-—-cﬁ) = M, y+a/2)

The rest of the proof is same as before.

- u ' - -
Note: This theorem can be proved directly by Cawcky Schwarz's inequality.

Corollarv $0 Theorem 4

For all o > O, x € / -, o/ ond Yy €(- %, +«), we have

av_ (%, vlo ) w El iy
ay - ) O A EETE ) o LI (6""51)

Proof

- It has beén nlready shown.in the theorem that

3w (x> vlo)

a ¥ -l aew [N (6'52)

Hence we need prove the result when X is finites

——(—1—11—9—)- S g forall g > O

It woe seen in lenma 5 ths.t

Hence we have

_a_._(_:_.‘z:L_l .1 28 0 forall 070 eee? (6-53)

: gav

Since
'3-‘-'1 (x, vlo) 8w (x, ylo)'s o
e S i > 0 when X #£Y



http://www.cvisiontech.com

- 68 -

Tt follows thot

i

oW _(x, .V.IO'_) 0 P,
37 ? for x ﬁ'y

Further since

WG, ylag) y o ogp

08 x=y

a 1
we have 1 (_xa,yv’ o) > 0 forall o> 0 and (x,y) € R%,
Temma 7

-

Let x and y be such that '-oog_x_g_oo, = Ly £ %, x#y and at

least one of them is finite. = Then fc')r‘.qll gy O we have that -

log & (x,-ylo) - % [A'(x-'a{2,.,, y=0/2) + ) (x+0/2, y+0/2)7..(6-54)

igs equal to zero or greater than zero or less than zero respectively

according as x+y = 0 or x+y <O or x+y > 0.

Proof
When x+y = O, we have @ (x, ylg) = 1 and also
Nx-06/2, ¥y~ a/2) = =r(x+a/2, y+o/2). ‘'his proves the’ required

result for the case x+y = O.
Tet x+y £ 0, and congider for given x anq yy the expression

(6=54) as a functioﬁ of o 1.8,

6) = Log 8,y o) - & /2 (x-0/2, y-o/2) + Nx+o/2, y+0/2)7
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It 18 easily verified that {6-46) holds true even when X = #

Thus we have from (6-46), (6-11) and _(6-—17)

d 6(g g ‘ ,
_(ﬁ(_) = 5 L 1y (x40/2, y+0/2) = I, (x.-'- o/2, y-0/2) 7
By lemma 2, we have for G > O

dG[o‘] . 2> .0 when x+y <0
dg 0

when X+y >0

gince G{0) = 0, the reguired result follows.

Temmo 8

Tet X, y, 2 be such that -= { x< ¥ {z $_°'°‘ and at leost one of )

x &% is finite., Then we have for all g > 0, that
log © (x,yla) + log © (y,zlc - gZ'?x(x-—cf/z, y= cr/z) + ?»(x+c/2, y+cr/2)
+ Ny-0/2, z—o’/2) + .?\(y+ @2, ot 0/2U ves (6-54)

is equal to or greater than or less than zero respectively according

as xbz =0, y=0 or y+zg 0 or xy2 0.

Proof

Cage (1) Iet x+z =0 and y = 0, then we have

e (xs .Yl s) = 1/8 (y, z| o)

- }\(y+0/2,' 2+0/2)

-3\-(37-6/2: 2-f2)

A (x- .0"2,: y~0/2)
A (x+ o2, 3+ o2

and thig proves the required result.
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Case (ii) Iet x+z £ O. If y+z <O, then x+y o Similarly

if x+y > 0, then y+z > 0. The reguired result follows from lemmn 7.

Lemma 9

Iet x, y and z be such that == {(x< y< 2 & . Then we hove for

all o # 0.

[ é@(zﬂo‘/a - (E(x-—o‘/.z)é ?(P(Z{’_g/z) _ @(xfﬁ/gt)}? %
> 4 3‘?‘2-0/” "(P(y""/g)} Plarar2) - (;Y+0/2)}_7%
L {aP(y‘m) g (X*o/?-)} @(yw/e) - @(xm/z)} ot

Proof

The result is a direct consequence of Cauchy's inequality.

We shall state now lemma 10 and lemma 11 which are due to

Higuchi [8_7. . The results of these two lemmas are used later.

-~

Temma 10
Iet f£(y) be o one-valued and differentiable function defined over .
( =% ,0 ), with the properties

(1) im  }£(y) <o, (@) unc flyice, (1) |32 dy l <1
=3 F Yy >0

Let g(x, z) be o one valued and continuous function {as a function

of two varisbles) defined over the whole x, z - plane, whose partial
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derivatives exist every where, and which has the following properties;

(iv) g (x,2) = g{z,x), (v) for any fixed z, lim | g(x z) [ < i
' X—> 3 ®
(vi) 1lim lg(x,2)| ¢ = where x and z tend to infinities
7 — oo p y _
X = 0
dg (s =, 2z)
———t e |

independently, (vii) | ¢ 1 and (viii) | , ] '

dz

Then there exists uniquely a function h{z) defined over (- oo, o0)
such that the relation y - n(z) 1mplles relations x = f(y) and
v = g(x, z) ond vice versn. Horeover h(z) is dlfferentlable in the

whole interval and satisfies

(ix) lim | n(z)] <o, (x) linm "hiz) <® and (xl)i l 1.
Z m=poo : B3 o~ @S

‘Note: The condition (viii) can be relaxed to ] ]+I afil <

. 8 .

if ax ?{ 0.

Temma 11

A matrix ((aij)) of real numbers having the following properties is
positive definite.
(i) It is symmetric
(i) A1l elements except the dingonal ones and those adjacent to

any disgonal one, are zero.
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(1i1) Every diagomal element is greater than the row - sum of the
abgolute values of the elements adjacent to it; hence the

diagonal €lements are positive.

Por proofs of lemmas 10 and 11, see Higuchi /8 /.

6.5 FURTHER THECRETICAL STUDY OF GROUP EOQ REPLENISHMEWT POLICY

In this section we ghall further study some of the theoretical
aspects of Group EOQ Replenighment approach. In gection 4, we
encountered the system of equations (4-19) which the transformed

optimal group boundaries soatisfy. In the notation of this append;‘;x,
. ' . - ‘
- the system of equations (4-19) is the same as

it B
w(ti_

R : - ..
g til ) + J(ti+1’ tij(;) 0 for i'= 1 to re}

¥

We shall now state and pr,o‘ve. an impbr‘tant theorem o.b‘mi't the existence

and uniqueness of the solution to the above system of equations.

s

THECREM 5 . ' B s T
For any given positive constant ¢ , the system of equations

e

8] ) =0y d=1%0 r=l 5. ues . (6=55)

Wty g B30 o)+ Wty

where t = o and %, =, has one and only one solution of real numbers,
5 A - T L} ."‘e-u'.:.»., i .

and its constituents satisfy the order condition.

- = tq < t.l <-t2 j_f-b--nA < -tr-,] <" tr _=' oo $asa (6—56)
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\

Since W(x,y] g) ~—> + «© as y—-é + o and M)O for. ¢ >0

it follows that for given .(x, z) Q:R"-, there exists one and only one

real valued funetion.
vy = g (x, z) LT pew | eae aes et (6-57)
which satisfies the Veqruation U
W ‘(Xl,‘y] o) + W zy ylg) = © Cees eee (B-58)

identically. This holds true also for the case when x or z = + oo

This is seen from the additional facts that W(-%, yjg) —> «

as y—>w , W (o, .Y]o")"——}_oo as ¥y — > .oand 39 (xe, o) N
‘ ' [

for all y. It is noted that g(x, z) is a symmetric function of x and

s ieee gl 2) = g(z, ). sice LTl (o 45 zo110m ot
2g . "yle) ,( dWxrle), 8Wial ), o
3x e jg= . : Y - oy .

Similaxrly we. have —g—i— >0. Hence g(x, z) is monotone incréz;sing with

_Tregpect to each argument. Further, by theorem 4, we have

fo,z_[_g_)_ Wgz,x [D}
| g&'j +'["'gﬁ = Wx gwgz,xlﬂ) S

Actually it can be shown that | g—i- | +] g—%] is equal to unity
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when x = z and strictly less than unity when x # z. It is easily

seen that g{ ~cope0) = 0, lim  glecoy 2) = =0 and
2 ----> =0

¢ 8g (-, z) X . .
0 < T < 1. 8ince any x,y,z which donot satisfy (6-58)

evidently donot satisfy (6-57), the system of equations
ty = glaw, t5), t, = g(t,, t3) cever 4= g(tr~2,03) oo (6-59)

rand the system of equations (6—55) are one and the same., Consequently,

we con prove the existence and uniqﬁeness of the solution of (6-59),
Further g(~e, y) satisfies all the conditions imposed on £(y) of
lemma 10 and g(x, z) satisfies all the conditions imposed on g{x,z)

of the same lemmz.

Now consider the system of equations

) eee (6=60)

ty =gl t5), %, =gty t5), ceue b, o = glt, o t,

where we take tr to be a variable instead of the usual convention

tr = o+ We obtain by applying lemma 10 successively, a class of

one - valued continuous functions

't_1 = h1(t2)’ tz = h2(t3)’ *+ 00w tr—1 =] hr—1 (tr) o-cl L ] (6"61)

which satisfy the system (6-60) simultaneously. As no other v b

than those which satisfy t, ,=h (tr) satisfy the system (6-60)
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and Lin k., (tr) exists, the contimuity properties of h__,
t ——>oo
b x .
and g(tr_z, tr) nssert the existence and unigueness of the solution

of (6-59).

That the unique solution of (6-59) satisfies the order
condition (6-56) is proved as follows. From.lemma 6, we know for

O.ll G‘ > Oc A
(1) W(-=, ylg) >0 and W(*+x, y)< O coe ¥ awd (6-62)

> 0 if y > x
if y=x fuwﬂl(Ly)Eﬁz--Jﬁéw
¢ 0 if y < x

[
o

(ii) Ww(=x, yle) 5{)

For any y and z which satisfy y = g{=o0s, z), the relation -y < 2

holds. Suppose y 2 z , then we have from (6-62) and {6~63)
W ( -0 yl(j' ) + ‘I:J(Zg y]r_‘j) >0 c;- X (6-64)

which contradicts that y and z satisfy (6-64) with equality. Similarly
it oan be shown that for any %, y, 2z, which satisfy y = g(x, z)

and x <y, then x <y < z. ©Since in the system of equations

ty = gl=co, tz), we have -« (%, <t,. Agoin since b, by 15 ave

such that t, = g(t1, t3) and t, < t,, we have t, <%, <t; and so on|

THEOREM 6
The minimum of problen (4~16)'is attained at the unigue solution of

the system of egquations (4~19).
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Proof
We recall that the unique solutlon of (4-19) satisfies the order

H_,condltlon (6-56) and also satisfies (see (4-22)).

A

g (t;~0/2)
@—m ey n Ife(th, 1‘0)9(t’tl+1f )
: S = /e, e, , for $ 51 o pud N )

where we write 6, for 6 (ti_1, tilg )+ We have from (4-21)

2 lgifi - (e ) slaEe )+ (S50 Bty 0/2)

i “i+

for i = 1+to r~ls It is enough to prove that the Hessian matrix
I T o | -
(( 2—=—)) 1is positive definite at the unique solution of (4-19),
3t.3t. - -
p e

We note

3%y

== = 0 for | i-j) > 2
"'Bti ab:j =

and the matrix is symmetric. Further we have

a 2H 1/9. —

i+ /Q_ )
2 —a;i— = T (~t.+0/2) plt,-0/2) + ( /9 - V8 1+1)(—ti-o/2) X
DALY /5 ST 3
pls;+0/2) + & St (-o, Bs-o/2) + 0 B(t,+0/2))

Qi+

=

i

_5/2
0,4 At]~ c;/z)_@1+1 (b+g/2)) eee ae (6-66)
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60
i 1. N i
= ( /@ V-— ) ,(?5('1: va/2) [ -, +0/2 + t +0/2 - 5 5, O,
. é@
1 gl i+1
- % - vees  (B-67)
Qi+1 ot
; - B : ] . d log Qi 2 glog 1
= { /59 - '/Gi ) ﬂ(ui'*'o'/?)[cr- z T - & TJ .. (6-68)
We get (6-67) from (6-66) by making use of (6-65) .
2 -3/2 @6, -+ 30,
9 " H 1 i+ s L0 it+1
2 =———ttem = 6, — 2 B(t.-0/2) - % 9.4 AT ﬁ(t +6/2)
0ty,4 0%y % Siet 3ty 4 i Civtogt g
(_6_69)
1 —_ g 1 aOi+‘i
= =g ( gl“l"i-. gl) ,@("Gi+0’/2) G aJG 'R (6—70)
i+ i+
1 Nl d1og Qi+1 (
= 72 ( /-G-;_*_-l—'/g;) g(bl'}ﬁ‘/z) a _tl+1 <O ave 6-—71)
AT L. SRR - TS
2 = -5 O, : , =T + 5 e, .40
at, 4 0% 4 ati_1 i i gy
i vee  (6-72)
. U=
i S - (v +0/2) — 0 -T:
L -3 (/G /5y Ble4/2) ol T (6-73)
L e ) A /Saloggi | (6-14)
o 6, +0/2) Bt KOs o 6-T4
= =% ( /9, -1

we get {6-70) and (6-73) from {6-69) and (6-72) respectively alter
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mrking use of (6-65). Since ¢ > 0, we have oii1“> 6, ond (6-71) ‘

and (6—74) follow from lemma 5. Hence

o1 2% | _2%n | _8°H /f
s ¥ ‘ ' - “at. . At
, € 0 3 i alog L:a‘log19i+1 dlog @, ,
= (/B - V8y) Blye0/2) Y% 8 t. ¢ @t bl
. : | sl i i+1
Blog 6. l
~ % ,1J . (6-75)
1 1

av . o oy
oy, Bilo) oWl tild)

=%- (l/ei+1 g(t +G/2) €T ~ + ;
v 8 t.
Z, Tis i
3 Wit o, b fo) aw(-tiﬂg 5, o)
+ a t + a -t T '] (6"76)
i i+
We obtain (6-76) from (6-75) by noting that
W (ti_h t.lo) = ot -1l 6,
Vi (ti_‘_“ tijo- ) = ¢ t, - log &, |
We get from (6-76) and theorem 4, that for all g > O
8°u |- 8°m | 39 1 s
g = 1 = 1 o
3 +° MR | 9%, 8%
L

Hence the elements of the Hessian motrix evaluated at the unique solution
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of (4-19) satisfy all the conditions imvosed in lemma 11, ' The Hessgian

is positive definite at that point. This proves thHe theorem.

Define the function L (x, y) for all (x, y) € e by

) oy B =g
R T 1

H

= X(x, ) coeeee eew (6-77)

The limits of Mi(x, y) as x — 4+ o exist and they are denoted

by JL( + 0y y)e Purther in section 4, we saw ((4-33) and (4-34)).

- ¥,
lim (-3- Wix,ylo) = lim §y - 28 Oéx’ykﬁs
‘- O [- .
a3 e LT |
= —n. (X, y) oo e aes (6—78)

If we out k = (r-1) in (6-55), we get the equivalent system of

equations for ¢ >C.

1 = g = = z -
- W(t, tdo) =0 i=1to & ... (6 79).

=1,

N
sle) v 2 Wty

Hence the system of equotions
> + = i=1. L XY . e 6""8
FACHER AL(t,,, b)) =0, i=1 to k (6-80)

is the limiting form of the system (6-79) as  g—> O + In both(6-79)]
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and (6-80) we adbpt the - convention that to = -~ and tk+1 = co ,

A}

In the determination of optimum spaciﬁés for large sample estiﬁation‘
of the mean of a normal population (with known standard deviation)

by a selected set of k sample gurantiles, Cgawa 17147 ,obtaingd the
system of equations (6-79). He also noted that if wee < t, < Ty ecens
cee <t (0 isa solution of (6-80),lthen .—m>< -t,.< b1 eeeees
sre ¢ = by is algo'“d “solution of (6-80).. Iaber Higuchi -4
showed that (6-80) has a uniqué solution which satisfies the order
condition (6-56). We shall now study in some detail the equations

of type (6-79) and their relationship with equations of type (6-80).

THEOREM 7
et x and z be such that -~ ¢ x ¢'eo and ~0 { 2 (v . Further

for a given ¢ 2 0, let y be such that

W(x, ylo) + ¥ (z, yio) = 0 eee wee (6-81)

Then we have, y=x when x=z and X (y < z when X < z. Further if
at least one of x and z is finite and x # 2, then y=0 when X+z= O,

%
¥y <0 when x+z {0 ‘and y >0 when x+z > O.

Proof
We saw in theorem 5y that for given X and z, there exists a unique y
which.satisfies (6-81). Actually the first part of the present theorem

has already been proved in theorem 5. Hence we prove the second part only.
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Case (i) Iet x+z = 0, it is easily seen that

8 (x,5lg) = 1/6(zyy |a) when x+z = O and

W(x, 0a)+ W(z, 0lg) = 0 for all g

Case (ii) Iet x+z # O. In this rcasé,: we can take without loss of

generality that x < z. We recall that

0% (x, ¥y]0) (o gna 27 (3:,_;;!0‘) 5 0

0x 3y
for all ¢ > 0.
Tet x = -oo, It can be easily verified that for ail ¢
W —w,0l0) +W {w, 0j0) = 0 «cc oo (6-82)

For ¢ > 0, we rave W(z, 6lg)> W(s, 0|y) forall z €&,
Hence (6-82) dmplies that for ¢ > O
W (=, Ojg) + W(z, 0Jo) > O ese  wes  (6-B3)

which in turn implies y < O. Similorly we can prove y > O when zZ=oo.
Iet --co<X<Z<;;£)." If x+z ¢ 0, we have ¥ <O and -X > Z.
It is easily verified that

W (z, 0]g) + W(=, 0fg) = O egzera s H(EaEt)

Since o > 0 and -x> z, we have W(z, Olg) > W{-x, Olg Js
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Hence (6-84) implies
W x, 0lg)+ w(;,.o!o') >0 AL (6-85)

which in turn implies ¥y < O, The required result for the case

3

i ]
X+2 > 0 can be proved in a similar wmanner.

THECREM 8
Let 0, >0 and x, 2 ‘i)e such that =0 X (2 ° and at least

one of them is finite, Further, let y = Y, be the unique solution of
Wy yjg) + Wz ylo) = 0 ceo (6-86)

Then we have

N

QO . for all ¢ > G, vheny +z (O

0. for all o when x+z = O

i

W(x, yola) + Wiz v, lo)
¢ 0 for all ¢ > o when xX+y, >0

Proof

-

The required ré'suit for the case vvhéh X+z = 0 is trivial. Hence
we consider the case whem x+z # O. .We know that x ( Yo < 2s

For fixed x, y,, and z, let us denote by G(o) the function of g

6o )= 20y, -1 & (x,5,a) - 1og 6 (v, 2]a)  «ve (6-87)
We have by (6-46), (6-11) and (6-17)

dggﬂo‘) % YL - % Z_)\.(X—'o‘/a YO-G/Q) + Mx+o/2, y0+0‘/2) 5 )\(yo_o-/g9 Zmg/2)

+}\(y;+0'/2, z2+0/2}/ .. (6-88)
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a°g@) _

i § [, (x40/2, g 40/2) = thy(x-0/2, 3 -0/2) + Ky (3 4972, 2+0/2)
- By /2, 2-6/2) 7 ... (6-89)
Since To+? £ 0 dmplies x-tiyo <0 and x +y,»> O implies Ytz > Oy

We have for all ¢ »0 by lemma 2, that

g ~
d2 e(a) : 2 > & when yC+ZSO
d 52 Z‘ < 0 when X + ¥, L0

Since ¥y satisfies (6-86). we have

20,3, = log® (x, yotdo)h + log @ (y& zlgo)
Therefore it follows that

aG 1. | |
T /0-:0-O A [1og © (x, y lo,) + Loz @ (v, zlo,)_/

b [Mx-0y/2, ¥,775/2) +2 (xva /2 Yo*oy/2)

+

My =0 /2, z-0,/2) + My *o/2, z+g,/2) 7
Since x < Vil ¢ z 5 we have by lemma 8, for all o‘g} o

aG 5 > 0 when T + z <0

& | o=0,
' _ < O when yo+x?_0

1 7aN

Since G 04 ) = 0, the vequired result follows.
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THEOREM 9

Iet x and y be such that ~® X, apd - £y =, X £y
and at least one of them is finite. Then we have for all g > O.
"\ .
O if x+y < 0
= 0 if x4y =

L
e :
L( 0 if x+y>0

1% is easily verified that W(x, ylc) = o JYx, y) when x+y = O.

W (x, ylo) - odAx, ¥)

Proof

Hence we need consider the case x+y £ O.

We note that W(x, y[0) = 0 amd

i

D0arled Ly SR Gaeofe, oof2) (e, yeg2) 7

2 v :

37w ; . _ : -

Bubeaglo) _ 5 [y wase, yror2) - ptemcs2, g-o/2)7
For fixed x and y, we can consider W(x, y|g) as a function of 4
and expanding W(x, v o‘) as a Taylor's s«;ries about g = O,‘ we get

. T N B '2 _ R I .
W(nylﬁ') =0 _é 5y = -?\(x9Y)_./ +: %“11102(}54‘&0'/29 y‘.f.OCo'/Q)
- M (x-00/2, y-co/2) ] e (6-90)

where 0< o < ‘l.- The”i‘equiréc’t'result follows 'immediately from

lemma 2,
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THECREIM 10

For any given positive constant ¢ , consider the system of eguations

CA tilo) + W(ti_+1 tild) = 0, i=1 to 2n eeo (6-91)

) b

where t = =-°°, %

o]

T and n is gsome given positive integer.

1
Let gi( 8), i =1 to 2n be the unique solution of {6-91). Let LI

) ’ 1 1 t
for i =1 to 2n and
= 1 ! 3 ! 4_‘ ) s . 1
W(ui_1’ 9ila) + W(ti+1, uild >0 fori=1tn
' 3 . oo (6-92)
1 1 ! 1
W(tip1? ti]d) + ﬁ(ti+1’ tils) {0 fori=n+t to 2n

- Bk ! .
where for notationnl convenience we again take _to = - % gnd

1

1 ' 7 Y
t,, 1 =c ¢+ Then we have gi(o') <t for i=1+tomn an? gi(g) >t

for i = n+l1 to Zn. -

Proof
For simplifying the notation, we shall write g, for gi(c); We reecall
that g; are such that - co <51 < ese < 8, < 0 and Bonsig = B4

-
1 to 2ns Iet 'gi E ti + 61 for i = 1 %0 2n. We have

for i =
. L 1 )
gn+1 L —gn o —tn = 61’1 - 'tn+1 - 61’19 1.8., 61‘1‘*1 = K 6na Il’l fact we
i = - H it i rh © h that . < 0 for
hnve 62n¢1—i 61 Hence 1t_1s enough to show 61 <

i=1+10 n., We recall from theorem 4 that for o > O.
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¥ix 'l_“<o, _(_:_z,_2>0

Ix .

ng, xi 1 aw(x, zL_) > g

We sball now prove a simplélresﬁlt'which is later usged to

prove the theorem; that is,

841200 8, 4> 0, dimplies 8,58, TOr izl £ n-1 1..(6-93)

i+l =~ 77 i+

. ST , , th :
To prove (6-93) consider the(i+1)inequality‘of (6-92)

L ¥

T ‘| ' "I, .
W(ti’ tiq 1 o)+ W(ti+2’ ti+1[ o) >0 ese  eee(6-94)

Since 6i+1 20 and & > &, (6~94) implies

/

ot 1, g ey B g
w(ti'+6i’ ti+1 o +1l0 )+ W(°i+2 +.0; i+1? t1+1+ 1+1IO) >0
1 7 [ e
or W(gi, gi+1,G ) + W(ui+ 5 +1 g l-d} >0 g B gt (6—95)
. 2.( B a ) : >
It is seen that™ (6~95) implies 8440 % ti+2”+ bi+1~ or & . '6i+1

and this proves (6-+93).

We shall now show thot 5{2<-0; Suppbse 61 2 0, and consider

the first inequality of (6-92)

- g " Mo
W(-coy £, lo) + Wity :t, 4, Jo YR B e | J6-26)
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Since 51 0 (§»96) implies

F o . . ‘"»'-*'l y i -
W(- 0 v+ bylo ) + W (s, + 8y, By ¢ 6 la)> 0

g ‘ : )
or W{= ooy &1 | &~ )+ W ("b2 + &1 ,j;g1fo’) 20w orilie B ne (6—97)

We see that (6-97) implies g,> Tt D

: 1 or 62 > 61 . HNow using

the implication result (6-9 3) successively, we see that

61 2.0 implies 6n+1> 6n> o pne 61}_0 1 ok (6-—98)

We note that 6n+1 = = 6n and as such it ds imposgible to have

&6 > 0 and b > & . Hence the assumption 8. 2 C leads to a
& L n+ n 5

1

contradiction. Therefore we mist have 61 0

#e shall now show that 6, < O. Suppose 6,2 0, then since
5.] < 0, we have 52 2 0 and 62 L ¢, « Again using the implication

result (6-93) successively, we get

6, <0, &,2 0 dimplies By 2 8, ceeeen 8,20

which leads to a contradiction. Hence we nust have 52 4§ (Of

Similarly we can prove &_< 05 es... and ﬁﬂ < 0.

3
THEOREM 11
For a given positive constant o , consider the system of equations

(. ! 'biio') + W(ti-ﬂ, ti] g) = 0 for 1.21 to 2n+1 00 -(6——9‘9)
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where to = =00 t2n+2 =co and n is some given positive integer.

Let gi (G) y 1 =1 %0 2n+1 be the unique-solﬁtion of (6-99). Iet

L] { T

1
ti’ i=1+%0 2n+1 be such thnt -~ <t1 4 t2 ...‘< t2n+1 { oo
t H

ons2-i 7 7 %y %4
(s, )+ Wity tilo) TR
w(ti“1s til ) + ti+13 uilg' >0 for i=1+t%0on
'l 1 _!' i 0
w(tn,'tn-i-‘l ld)‘+ w(tn-:—Q, °n+?l0') y
"(1 ¥ 1 _L! ) .
LA t o)+ W(tiﬂ9 b, Jo ) <O for i=n+2 to 2n+

where for notational convenience, we agoin take to = —co gnd ¥ o
. 1 t
Then we have gi((f) <t, for i=1ton; gn+1(d) =1 = 0 and

1
g (o)> 3, for i =m+2 to 2n+l.
Procf : Similar to that of theorem 10.

THECREM 12

Congider the system of equatilons

w(t,

e ti]d ) + W(ti+1, @i[ g) =0, 1= T to k... (6-100)

¥

Let gi(d) , i =1 %o k be the unigue solution ofl(6-130):for any

given o » 0. Then it follows that

531 for all O > C.

(1) gi(o') = (0 when 1 =
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]

(1) gi( o) strictly decreases (increases) with o when i- (k+1)/2

is negative (positive) for all o > O.

Proof ‘
We shall prove the theorem only for thé case where k i1s an even
integer, the proof the for the case where k is odd being similar.
Let k=2n omd g; (og) 1=1t0 2n be the unique solution of
(6= 100} for sqme. given g_»>0. It is known thét
-?<gﬁdo)< g,(0g)  seeeed gﬁdg)<o

and g2n+1—i('o‘°) = = gi(o'_0 )}« Hence it follows from theprem 8

that for all o > ‘O‘o
Wlgy (Q;:), g, (o) B * (g, 0,), 800, {o-) AR % n
W(gi-_r1 (cro), gi(do) fo) 4 W(giﬂ(o'o)-g gi(cro)] gl < O for i=n+1 to 2n.
From théorem 10, we gét gi(o) < gi(do ) for i= } ton and

gi(.cr) > gi(o*o) for i = o+l o 2n for all ¢> g

THECREM ‘1.5 &

let g, (o), i =1%ok be the unique solution of

iV = ) ‘:1 . s LN o
LG tlo) + Wt ot do) = 0 i to k o (6-101)
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for any given ¢ » 0. ILet ti s 1= 11%0 k be the unique solution of

D_(ti_1’ 1) + .ﬂ_(ti“, t,) = 0, i=1tok .. (6-1C2)

In both (6-191) and (6-102), we ndopt the convention that & = - <

-~

and t,_ 4 =. Then it follows that
i IO O . k1l
(l) gi(o ) = ti when 1 -3 = 0
5 : : & .o k+1 Ly
(i1) gi((T) is less (greater) than tj when i - =~ is less
{grenter) than zero. .
Proof

We shall prove the theorew only for the case where k Is an even
positive integer and the proof for the case where k is odd is similar.

Tet k = 2n and in this case we know (Ogawa K?W_?;and Higuchi Zfz§7),

that - b < o AR <-tn {0 and t2n+1—i 2= by & By theorem 9,

we have for all o >0

* * * * s * % * * —
1 ) i [+ I * LA JL + .
.'J('ti_“ b, | )+ w(lbiﬂ’ t [6)> 0/ q(,“iuh ti) + (ti+,l’ L,i)/_ 0
for 1= 1 to n.

* * * * * %* * *
w . or + . I aWEs + FaNEy + =
g,(ti_19 ti!o) + w(°i+1g uifo')< o [- (Uié1391)+ (“i+1,bil;7 0

for i = n+1 to 2n.

The required result then follows from theorenm 1C.
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We shall now slightly generalise lema 11 for subsequent use @

Iemmo 12
A square mairix ((aij)) of real mubers having the following properties

is positive definite.

(1) All elements except diagomal ones and those adjacent to any

diagonal one, are %zero, -

5

(i) Every diagonnl element is greater than the row sum of the

absolute values of the elements adjacent to it.

Iet n be the oérder of the ﬁatrix and Am be the determinant of the
submatrix ((aij)); i = T to mand j = ! to m. We have from the
hypothesis of the lemma :

ap? togp
ay > ]aiai” |+ | ai,i+1cl for i =2 to n-1 {6-'1035
S’ lﬂ'i’k,n»ﬂl
“
It is easily verified that
Am = a_ Am_1 - am,m—‘l .am—1,m Am—2 o 4k P (6-—‘104)

-

for 3 {m {n. We shall now show that for 2 {m . {n-2, A >0
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and A > |a A i i ' ‘ _
o | m,m+1‘ e implies that Am+1> lam+1,m+2' Am'

Su 3 L} . '
ppoge Am—1> 0 and Am> | am’m”[ Am—T, then we get from (6-104)

b

and (6-103)

A =, a =
m+ 1 m+1, m+t Am crlm+1,m am,,m+1 Am—-1

A

2s am+1,m+1 m I am+1,m'1' ; & am,m+‘l | Am-1
D'm+1,m+‘l Am - am+1,m} Am s Amcam+1,m+1_ J‘:1111-1-19111" )
> A J am+1,m+é[ 2. 0 S L (6-105)
We note that
A= a7 aizj 20
4 =‘a11 o2 T %29 8gp
2By B ??21?_ ?a12?
7244 855 7 B4y fegg) 211 \Bga = 12y ) >0
7 ayy bagg |
Hence we see that the result Arﬁ-1 > O. and A > i LH—— | A

holds true for m=2. Hence we get by mathemntical induction

.A.1 > O? A2 > Oy e ¢aa An_1 >O &nd An“1> ’an—T,n’,An—Q 6-.(6"106)
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Finally we get by

Ay = an,n An-—-‘l s an,n-fl %n-1 s0 An-—?
7
2 % o Ia’n,n-—‘i | ‘311-1,n P oApo
? ®pm Apct ™ 'I'an‘,‘n-ﬂ oy, B An—T(an,n - ]an,n-1| )> 0

and this: pi;{)veé the required result.

. We recaii_l._—wfrom theoren 5, that there exists a unique solution
of the system of equations (6-55) or, equivalently of the system (6-79).
For a Ag:iive’n g 20, 1let (g,l(o‘ ), gz(o‘), cosne gi{(o’) ).be the unique

golution of (6-79). We shall now show thot gi(o‘), i= 1%k are

*
1im g.(o0) = %, where
e O T +

* * %*
(t1, tyy eeese By } is the unigue solution of (6-20)s This is

equivalent to the statement that the transformed optimal group

differentiable functions of O and also

acings

poundsries (see section 4.4) tend to Ogawa's optimal p

ag 0 —> o

For this purpose defiﬁe thé funciion h(x,ylo') by

g-. g,— log © (x, y|0') when © # O

=

& M(x, y) when o= 0

‘n(x, ylo) =
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N _ - : ' : ! £ 1 - .
It is easily verified that h(x, y|[g) ———> X (x, y) as .g—> 0.

"~ It can also be verified that

T
L

8 ._h,(x,qu}.) — —@— Ax,y) as o—> 0
x - 8 _

9

5a n(x,ylg) —> 9

~ h ' ; 2= @
5 (x,qu)_/qw ol 02 ‘> 0

Hence it is noted that the function h(x,y |¢) has contimuous partisl

derivatives. Define w (x,y g ) by

w {,5l0) = ¥ -nh(xy|g .. . (6-1075

It is easily seen that

&lW(x,ylc) when g# O
wx,ylo) = I,
’ L (x,y) ‘when g=0

By theorem 4, we have for g > ©

ang,x;d) Iy ma&mz >0 for x#y
x . y .

‘ Higuchi [8_7 has proved similar results for N (x,y) i.e.,

0x 4

a—f'L(X, y) <o 0 “{;-ygxzxz.> o
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3 Nley) o
‘a}(cxs’Vl + & a:frx’”’—l P2 Ie) gon me

Hence it is seen that for o. 2 O, we have

angx,x | o) 20w M_%LLQ) )_':_Q cee.  <.2(6-108)

aw(x,_ylcr) o dw(x,y. ia) SUQ L fior mE P =
o0x . dy T

we con now represent (6—79) and (6-80) together as

W(ti_1 ti]g)+ W(t:.L+12 by o) = O 1=1%0k ... (6-109)

?

where the functions w(x,7) o) posess continuous partial derivatives.

-
S

THECREM 14

let gi(c); i = 1 to k be the Unique solution of the system of

~

equations

W(ti_1, tilo )+ W(ti+1, g, lor=0, 1=1%0K » (6-110)

for o 2 O« Then gi(cr}, i=11t0ok qre' diff_erentié;ble functions

of o for o 2 0«

Proof

We know that for any g » O, there exists a unique solution gi('o') Y

i=11t0k to (6-110)- Purther we have

—oo < gqlo) <plo)  eeen (g o) < Y (6-111)
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I.Ie F * v e = ! .
t P (%, ¢, tk‘f‘ o) w(ti_h_ tlo ) + w(ti_l_,l, t,lo ). Then

it is enough to show that the Jacobian

a(F1, Foy weeee F) i
a(tq, ths eenes tk)_

at the solution of (6-110)} for any o > 0+ The required result then
follows from the well known theoren of Implicit Punctions (Goursot AR

By the definition of the functions Fi? it follows.

BFT

) , o
0%, T & wl=oo,y 5 o) + 35, w(tys %4 ]0)
ot & ol el
= wit t, i) s - = 0 for j»?2
3t 8t "z T 3%, =
0F ) d
_ = e
Tty T Bg e, W)
oF, ' :
. 2@ e g e
5%, " B, w(tl_h t, lo) + >E w(tiﬂstiic) Zor i=2 to kel
0F.
i ) (
= wlt, . fG')
0t .1 9%y Lol
aF '
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2 | ,
B, sr— Wty tlo )

SR - e S aedis i .
AT wty o, byl )+ 3 B, M1, byl o)

Purther it follows fromA(6u108) that at any point satisfying'

- <ty < t2 ceven & tk ¢ ooy that

8%, \ dt, %+ , j’d 3ty at,
OF, dF, or

2 _ ___;__.j 1 ! et o M
8t, 1 9ty 4 at

i+1 !

- W(ti—19 ti[(ﬂ + o 1 w(ti+1, ti]d) + ——;ﬁ——* w(ti_, t IU)

| Bti ati ati,q 0 i‘
3 | I
) Tiv W(ti+1, tild) >0 for i = 2 to k-1

Similarly it can be verified that

0%y 0ty 4
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Q(F1,F2,...Fk)

Therefore it follows from lemma 12, that the Jacobian

B(t1,t29...tk)

evaluated at any point such that -« ¢ Ty < t2" cocce <tk< o ig

non-zero. It there-fore follows from (6-111) that the Jacobian

»]

evaluated at the solution of (6-110) for any ¢ > O is non-zero.

By definition’ gi(o) = ti ~for i=11t0ok and theorem 14
tells that gi(o')_ are contimuous functions of ¢ for ¢ 2 O.

(Actually gi( ¢ ) is comtinuous in some open interval (=h o0 ) where

5 5.0). It follows therefore that lim _+_g_i(o') = gi(O) =1,

g—> 0

for i =1 to k. That is the transformed optimal group boundaries

tend to Ogawas optimal spacings as o 7 -O+.
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We recall that 'r' is used to denbte the number of groups in
Group EQJ approach; k {(=r-1) is used to dencte the number of group
boundaries and 'i' is a subscript used for identifying a pariicular
group boundary for a giyen T The.values of gi(d) (dees transformed
optimal group boundaries) are given in tables II to X for i=1 t0 r-1;
r =2 to 10 and for o = 0.2 +to 4.0 in steps of 0.2. The values of
tz = gi(O) (i.e. Ozawa's optimnl spacings) as conmputed by Ogawa are
given in table XI. A look at the rate of - change of gi(o) with ©
in tables IITI to X dindicates that tz mst be very nearly same as
gi(0.2). A comparison of wvalues of tz as computed by Ozawe with

g (0.2) is given in the table beiow.

*
COMPARIBON OF ti AS COLPUTED

BY OGAWA WITH gi(o.e)

1 =0.613 -0.982 -1.243 -1.447  -1.598  -1.751 -1.866  -1.977
~0.612 0,982 -1.244 ~1.447 -1.611 -1.748  -1.0865 -1.969

s ek e it TR RS it e e e . e e . e e i i sk o e o e b i T st T o o e e o b e T Tt S i S e e e e

Note: The first figure is Ogawa's computetion of ti and the second figure

is gﬁ( 0.2). Because of symmetry only negative values are given.
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It is seen from the above table éhat gi(0.2) differs slightly
from Ogawa's computation of ti in some cases. Imitially i1t was
thought that these differences mny be due to the particular form of
aprcoximation used in this thesis to evaluate the normal probability
integral in the computation of gi(o). However later palculatiOHS
indicated that Ogawa's computations are siightly in érrorQin these
cases and gi(O.E)'s are nearer the correct values. Since these
differenges are of no practicalrsignificance, Ogawa's values for

*

ti are given in table XI as they are published Tigures readily

available.

‘ \ _ * _
We saw in section 4.4 -that ti's are fairly good approximations
for gi(ﬁ) when ¢ £ 3. We shall now derive a much better approxima-

tion to g.(g) which give almost the exact values when o . e
tion to g, (o) which g imost th ol h 4. Th

arguement used in this derivation is mostly heuristic. For o given k
and i, a plot of gi(gJ against 52 indicated a surprisingly good
linear relationship with intercept ti;(sge for example figure il
Hence it was felt that gi(oj can be well represented by ﬁ: + b.g
where bi is some suitable constant. If we put ti = t: + bic'2 in

(6-55) we get

% o 3 o ey B o
. 247 . 5 6l g
2c3(ti + by 0 } - log & (ti_‘1 +b, 407, b+ 0 I o)
* 5 % 2
=B . 1 + ' = - e . e 6"-312
log © (ti b 0%, by bi+9 ! c) =. 9_- ¢ )

for i =110k
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We shall now try to find bi‘s which satisfy (6~112) approximately

for all 0 L0 £4., Since ‘ti‘s and bi’s are constants,

2 * :
e 1:—0’ -1 T big o4 0t bi 62 o) can be considered as a function
: *® W B * 2
of 0 . Expandlng (t + b1_1 g ti + b o“i o ) as Taylor series

about ¢ = 0, we get after omlttlng terms of fourth order oY more

1 - e L 2 ]
* o % - D . @\(ti-‘-bid “0/2)*@(ti-1+bi-10 -a/2)
log O(t, 4 + by 0% £ + b0 | o) = log

\;'_..1 | % -

! 2 * 2
: (o} y = i i
&(‘tiﬂoi < /2) @ (ti_1+pi_1o o/2)

PELICELIOSNE L -Abl i tL ps.)
, é@(tz) r-@(t*i*”) e | ?g(tj) e
b, B j) o ﬁ'(t§_1'-)“ 7 (tj) - 5 (ti—‘l)
R Y RIS
BN A YOS YO @(tf) ] @t
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ﬁ (tz) - ﬂf (t L3 { b t sz(t ) :;1.¢(t’.e-'
* ..
14

Cde
@(t ) - aé(t @(t e

by B(£) - b 4 Bt J‘,ﬁ(tj) LI m}.
* +3T i-1, 4

ﬁ/@t @tm & )c‘é(“) =

)

vee(6~113)

Substituting (6-113) in (6-112_‘) and noting that ¥, satisfy (6-80), we

get for ¢ > O, the system of equations.

e

ob. - bi t: ﬁ(t:),- b.i-‘l t:-1 ﬁ(t:—1) 3 b:i.+1 t;+1 o 1+1) bi ﬁ(t:)_
; $ (t:) 2 ‘?:L(t:n) . $h 1+1) - $(tl)

b #(s) - b _gt, ) g (t) - 2 (¢, )
e -6l Fah - P
1+1 g ( 1+1) L‘bi'g (t:) s (tl 1) N ﬁ (¢, )::

ISR T T )

% * i * * M s
-215 [,uj (ti_h ti) + iy (ti ; ti+1)_7 bee ens  ees {6=112)

for i =1 to k. We can rewrite the system (6- 114) as

2bi-b.11 ,uz(t 9t.)+1-,u,2 (t. e Dl

J | g(t ) ”t* (tf)-—ﬁ(t )
- b, ; *
: é(t ) - — [ = i(tl i(ti 1
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B o g(m) [* ﬁgt" ﬁ(t)

T G, - § ). F§<tl+1)-@w

1e. - * * *

= -—-—[,u,i (ti‘_1‘, ti)"f'“"’3 (tigs;"tiﬁ‘!) 7 e e (6-115)

for' i=1tok In (6-115), we have b_ =0 and b Ou

K+l .

-b.q

Becouse of the symmetrical propertles of g (o), we have b, .=-b,

Solving of (6 115 for b, 's, we get the required apprOX1mat10n. Ve
now solve (6~115) in particular casess

(iJ‘ Threé-groups

e e g Sy

. - = S
In this case we have gi(c) = ti + bi g for 4 =1 t02;

t2 = - t1 and b2 = -b1- where bﬁ is the solution of

2 b, < by L1

: N g * 5 >
by (=25 8)) + 1 - 4y (t, ? t,) 7/ .‘

R ; : ™
Plp)ty © 4 u eyt we (6-16)

&) - day

or equivalently
'2b1 S b1 (1 -”2(— 9 -t.])) = §-4T MB (-m’ tT) sas l.l(6-1‘i7)
* e Fonn - e o - i
Further t, = —0.512., t, = -1:1 : 3 ‘“2 (-, t1) = 0.749093,
“ (-<m, t ) _‘-O 151336 and substltuting these in (6 117) and solving

for b1 we get b1 = =0 005041. Thus ‘the requlred approximtions are

-~


http://www.cvisiontech.com

= 104 "-.'

-0.612 = 0,00504 g s

gy (o)

(il

g, () = 0.612 + 0,00504 0'2

(1% Pour Groups

. *- 2 *
In this case we have & (g) = t,+b, 05, gz( g) = t, = 0,
(¢) = t. +b,q2 wh e ., b i -
&3 il 3 o where t3 =-t,, e = —b1 and b1 is the

solution of

% ' % % o
26, = b, /1 ~Hpl=y 1) 4 1 iy (8475 %) &

b ple) g (t:) - (])
K A0S b (8;) - P (5]

+

\

1 * * * ) . - Ay V
EZ. [/.53 (._(?0’ t}) +f.53 (t,] [] tz) _7 see LN ] LY (6—118)

¥

Purther we have +. = -0.982, t, = 0, b (=0, 1;,1) = ~0.1183645,

1 2
R %
- Hg (84 %,) = -0,0034083, 1 sby(~2, ) = 0.7987849,
* % §§ DA ‘
1-H, (£, t,) = 0.9250366 and
7 (t,) g (1) -2 (s,)
- 0.5362665

b (1) -7 (e - DT

Substituting these in (6-118) and solving we get b, = -0,0062298.

Hence the required approximations are

0.982+0,00623 g2

]

g1(c) = -0,982 ~ 0.00623 io?—, gé_(_rg ) = 0 and gB(U)
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~

(111) Five Groups

hod
——— e e

- - 2
In this case we have gi(o') = 'ti + bi g° for 1= 1104,

* .
tg . o= =B s Pg = b, and where (b1, b2) is the solution of

R n g (4,) » g (63) - 8 (5) ]
- ~ X £ - x m
27 By - By 2 &) - P )

1 ' * o * ‘
= oI L Hy (= ooy B,) +#5 (t, t2)_/ ver e (6-119)

] * * * *l._.‘
2b, - by VA -,u,2(t,.!, t2) £ 1 =ity ts)_/

Ly T ~ 8 (63) - @ (5)
- {b,=-D T * * + ¥ ¥
T2 By - S‘ VD (5y) - B

‘ ¥*
g (t;) ¢ s = -
.. : 1 I
3 120 T — = 35 M :(t1,'-t ) ees (6-120)
TR AC TR
#* *
gince t, = - %y (6-120) is equivalent to
' ¥ ¥* *
P (e B Gy)-80)

o (s 80T b)) At TR T
a T & ()= | Play)- loy)

1 *- *.
= ‘2-&'\.“)'.,13 (t1 L tz) s e (6"’121)
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* * ‘
Further we have t1 = - 1.244, b, = 0.382, t.==1%, ,

] . * : ool - I ' !
g (=5 %)) = -0.0990353 , Ly (ﬁj_, t,) = -0.0033564 ,

0.9409895 and

112; (- t*) = 0 5271957 ol '(t* t*)‘
' 2 ol il ey - TF St S

g (+)) e B s D ;
- ! e 1 e — — = 0.5798997
) =) | 2 Pl -]

Pty) - Hsy) ;t1 *. B (sy) - & (3)

Substituting these in (6-119) and (6-121) and solving for b, and b,
. 7

we get b1 = =0.0065084 and b, = -0.0017556.

Hence the reguired approximations are

i

- 1.244 - 0,00651 0%, g,(0) = -0.382 - 0.00176 ¢°

g, (o)

i

0.382 + 0.00176 62, g4( o) = -1.244 + 0.00651 g°

g3 (0")

¥ 2 i
In this cose we hove gi( g) = ti + big- fgr i=11%05,

] % ] o )
t =-t 5 b = - b".’i t3 5 0O, by=0, ond whgre (b1, b2)

is the solution of


http://www.cvisiontech.com

o 6T v

T

* * *
2b, = by /1 - by =, 5,) + 1 ”“2("1’ 5,) o

F

@( )_@u) 2T ) - § )

5@3 (~eo. t.,) +M3;- (t1,_t:) Tt s N e {gate2)

g (5) . B(5) -4 (t*j)]

== el [ R ko
2b, - b, /1 ~ by (B t,) + 1 — Hry (s 1;3) I

L s By L2 (t5) - 8 (v))
@(t )..a;(t) ‘ cﬁ(té)f'@(t?)

[\

* - * s %
g (s;) 8 (55) - 8 (%)
+ b
2 ) + : +*
B (s5) -@(t ) ey - Blsy)
1 ko=
hs -2—4_- Z. !‘ 3 (t-l, -t ) +l‘u’3(t2? 3) _/ '°f "N ] (6'—123)
' | * ' * *
Further we have t1 = .~1.447, t2 = ~0.659, t3 =0 4
B . ® ¥
s (E t_1) - '=0.0862092,. ,u,3(t1, _t2) =‘.~o-.003025‘1,

-* * 1 V
’”3 (tz, ts) = - 0,0004952 , 1 _/,&2(_00, ‘t,l) = 0.8459641,

‘ * L-x- ’ (-)(- *) 2
1= oy (b €5) = 049509520, 1 -y (85, T3) = 0.9644130 and

g (t)) L 2 (ty) - # (5,) | B
. s s A3 e 2
S0 g | 2T T -5
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e [jt* i ) 0.3456766
] k ' a i * * -0.24
C}—S”(tz) -83(? (t,) 1 %(tz) = @(t1)
BT g e5) -8 ()

=+ 0,5173037

P -Pt)  F6D -l

Substituting these in (6-122) and (6-123) and solving for b

17 Py
we gét,
T b, = -0.0064869 and ‘52 = ~0.0025209, Hence the required
approximations are | 5 . &
g,00 ) = -1.447 - 0.00649 0‘2, g,(a) = ~0.659 - 0.50252 o2
§4(‘0\” ). =5 oI5 + 5,00252 2, g5(g') = 1.447 + 0.00649 ¢°

g5z (o) =0

Here we note that g3(o‘) = 0 is the exact value.

Thesé approximations.dre also given as foot-notes in tables
111 to VI, Similar approximation;;can also be obtained for r = 7 to 10,
We shall now compare the exaci values of g4 (o) with those given
by these approximations for the case r = 6 iu the table below for

defferent g .
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EXACT. m’APPRQS(mME.VALUEs OF g,(c)

FOR SIX GROUPS

el o ® T 5y Bkl
o Exact Approximation Exact Approximstion
0.4 ~1.448 14448 0,659 20,659
1.0 -1.453 -1.453 | ~0.661 ~0.662
1e4 ~1.460 . =1.460 -0.,664 -0.664
2.0 Al ati75* -1.473 ~0.669 ~0.669
2.4 -1.485 1484 -0.674 -0.674
3.0 ~14506 ~1.505 ~0.682 . -0.682
3.4 ~14523 -1.522  -0.688  -0.683
4.0 -1.551" ~1.551 . 0,699 -0.699

It is seen from the above table that the approximation
developed is really very good. Similar resulis were obtained for
r =3 to 5. Since the qéproximations derived on partly heuristic
bogis agrees very well with the numericel results, the author feels
that o more r‘ig,oréus justification of t}zerapprbximation should be

possible.
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TABIE - I
VALUES OF THE RATIO C_/Gy
o O/ N s o g Gy C5/C,,  C/C, C./C,
0ud  1.0202  1.0073  1.,0038  1.0024 1.0016  1,0012  1,0009
0.6 1.0460 1.0165 1.0086 1,0053 1.0036 1.0026  1.0020
0.8 1,0835 1.02% 1.0154 1.0095 1.0064  1.0047 1,0035
1,0 1.1331 . 1,0468 1.0242  1,0149  1.0101  1.0075  1.0055
1.2 141972 1.0682  1.0351 1,0215 1.0146  1.0106  1.0080
14 0 12776 1.-9943 1,0483  1.0295  1.0200 “1.0144  1.0109
16 13771 141255 1,063 1,039 1.0262 1 .0189 1,0143
1.8 1.4995  1.1621  1.0818  1.0496  1.0334 1.0241  1.0182
2.0 1.6487 ° 1.2047 1.,1024  1.6619 1.0416  1.0299  1.0226
2.2 18313 1.2542  1.1259  1.0757  1.0508 1.0365  1.0275
2.4 2.0544 1,312 1.1524  1.0912  1.0610  1.0437  1.0329
2.6 2.3280 13767 1.1823  1.1085 1.0725  1.0517  1.0389
2.8 2.6645  1.4513  1.2158 mé77 120847 f.1.0605 140454
340 3.0802 1.1489  1,0984  1.0701  1.0525

145382

142533
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TABLE ~ II

VALUES OF G1/€n- ATD G, /G,

Note ¢

o C./C ‘02/'(30c>
S (@ 2 1;005013 1.001819
0.4 .~ 1.020201 1.007302
046 1.046028 1.016526
0.8 1.085287 1,029622
1.0 1,133148 1,046779
1,2 1.197217 1.068246
1.4 1.277621 1,094340
1.6 1.377128 14125452
1.8 1.49930% 1, 162059
2.0 1.648721 1,204735
U 1.831252 1.254165
24 2.054433 1.311164
2.6 2,327978 1.376700
2.8 2.664456 14451920
3.0 3,080217 1.538184
5.2 3.596640 1.637104
3.4 4.,241852 1.750593
3.6 5., 053090 1.830928
3.8 6.079971 2,030821
4.0 7 339056 2.20%510

The transformed optimal group boundary for the

cnse of two groups is always

t

1

= 0.000
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TABIE - IIT

VALUES OF TRANSFORMED OPTIMAL-GROUP BOUNDARIES

D /e, 4 e s .

- g C5/C %mm
0.2 ~0.612 1,000952 1.000952
04 ~0.613 1,003815 1.003815
0.6 —0.614 1.0086 15 1,0086 15
0.8 -0.615 1.015394 1,015394
1,0 ~0.617 1.024212 1,024213
1.2 ~0.619 1.035149 1.035153
14 ~0.622 1.048504 1.048314
1.6° 04625 1,063797 . 1.063821
1.8 ~0.628 1,081771 - 1.081824
2,0 ~0.632 1,102396 1,102499
M3, 04636 1.125868. . . 1,126058
2.4 ~0.641 14152416 14152748
2.6 -0.646 14182301  1.182857
2.8 ~0.652 1.215824 1,216723
3.0 -0.658 1.253330 - 1,254741
3.2 <GLEE0, L8 1.295213 1,297570
3.4 —0.670 1.341922 14345148
346 ~0.678 1.393970 1.398701
3.8 0685 ° 10451945 1,458766
440: ~0.693 1.516516 14526205
Wote : (1) Uy EE b

C(31) b m ~0u612 - 0.00504 o
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' TABIE - IV

&

VATUES OF TRANSFCRMED OPPIMAL GROUP BCUNDARIES
. ] b “
AWD C,/G,, AND C,/C  FOR FOUR GROUES.

& t, 0,/C,, = 0} /C,,
0.2 0,982 1.000588 1,000588
Cub —0.983 1.002354 1.002354
0.6 . -0.984 1.005311 1.005311
0.8 . -0.986 1.009477 1.009477 .
e 0,988  1.OWETT  1.014878.
1.2 =0.991° 1.021547 1.021550
1.4 0.9% 1,029528 1.029536
1.6 ~0.998 T 1.0%8872 1.038889
1.8 - -1.002 1.049639 1.049675
2.0 ~1.007  1.061899  1.067969
2.2 _1.012 - 1.CT5734 1.075860
2.4 ~1.018 ©1.091235 1,091453
2.6 ~1.024 1.108508 1.108868
2.8 ~1.031 14 127670 1.128248
Fa0 " =036 1,148856 1. 149754
5.2 -1.046 1.172215 1,173575
344 ~1.054 1.197915 1.199930
3.6 ~1.063 1.226145 1,229073"
3,8 -1.073 1.257113 14261297
4.0 ~1.082 1.291057 1,296946
Note : (i) %, = 0,000 and t, = = b,

efndked SeRBlicrcst

’(.‘
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TABLE -~ V

VALUES OF TRANSFORMED OPTIMAL GROUP BOUNDARTES

AID /0 AND,Cé}U POR FIVE GROUPS
oo o0 B

1

B

e _
. iy %, 0./ 65/,
0.2 -1.244 ~0.382 1.000400 1.000400
0.4 14246 ~04383 1.001601 1,001601
0.6 ~Te2477 -0.383 1,003610 1.003610
0.8 -1.248 ~0.383 ©1.006436 1.006436

1,0 -1.257 =0.384 1,010092 1.010093
1.2 ~1,254 ~0.385 1.014597 1.014599
1.4 -1.257 0,386 ' .1.019971 1.019977
146 -1.261 ~04387 1,02624 1 1.026254
1.8 14266 ~0.388 1.033438 © 1.033463
240 ~1.270 -0,389 1,041596 1.041644
2,2 21,276 ~0.391 1,050757 - 1.050841
2.4 1,282 04392 14060967 1.061109:
2.6 ~1.289 ~0.3% ' 1,072276 1.072508
2.8 - =1.296  ~0.395 1,084744 1.085109
3.0 .=1.303  -0.,398 1,098433 1,098994
302 -T,312 04400 1,113417. 1.114258
3.4 ~1.321 ~04403 14129775 £ 1,131009
3.6 C=1.330 ~0.405 1147596 14149374
3.8 ~1.340 ~0,408 1, 166979 1.169498
440 ~1.550 ~0+411 1.188031 1.191549

Note (;) t3 u‘té;_apﬁ t4 = --t1

(i) t

T 1,244~ 0,00651 o° &nd t, = =0.382 = 0.00176 o2,
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TABIE — VI

VATUES OF TRANSPORMED OPTIMAL GROUP BOUNDARIES

1 '
fa] T
AND 06/0. AND u6/C FOR S%X GROUPS..

t

o 1 %y 0/Cos Ce/Cs
0.2 ~1.447 ~04659 -1,000290 1.000290
W 11.448 ~04659 1.001161 1011161
0.6 .« =1.449 ~0.560  1.002617 15002617 ;
0.8 =1.451 ~0.661 1.004662 1,004662
1,0 ~1.453 ~0.661 1,007305 . 1,007305. >
1.2 ~1.457 0,663 1,010556 1.010557
144 1460 ~0,664 1014428 1.014430
1.6 ~1.463 ~0.665 1.018934 1,018941
1.8 1,468 ~0.667  1.02409 1.024108
240 =14473 -0.669 14029927 _ 1.029953
2.2 ~1.478 ~0.671 . 1.036455 1,036502
2.4 -1.485 ~0.674 1,043706 1,043787
2.6  =1.491 ~0.676 1,051707 . 1.051840
o8 " -1.498 04679 1,060492 11060704,
340 -1.506 —0.682 1,070096 1.070423
L " g ABIRE ~0.685 1.080559 1,081052
34 -1.523 -0.688 1.091926 1,092650
3.6 ~1.532 -0.692 1.104246 1.105290
348 =14542 =0.696 1. 117577 14119052
4.0 ~14551 -0.699 1+134032

1.131963

Note: (i) té_=-t2, *E=o,ooo and g

(11) b, = =14447 = 0.00649 o? and b, = =0.659 = 0.00252 85

= -3

1
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TABIE - VIL - -

VAIUES OF TRANSFORMED OPTINMAL GROUP BOUMDARIES
t
AND Go/C, AND C./C, FOR SEVEN GROUES.

o t, t, 5 C,/C_ 'c;,/'coo
002 =1.671 -0.875 ~0.281 1.000220  1,000220
0.4 ~1:612 -0.875 0,281 1,000881 1,000882
0.6 ~1.614 ~0.876 -0.281 1.001985 1.001987
0.8 ~1.615 ~0.876 -0.281 1.003535 14003539
1.0 ~1.617 ~0.877 . -0.281 1.005536 1.005544
1.2 21,620 ~0.879  -0.282 - 1.007995 1.008007
144 ~1.623 ~0.,880 ~0,282 1,010920 1.010038
106 =1.627° 0,882 | -0.283  1.014319  1.014347
1.8 -1.632 ~0.884° -0.283 1.018203 1.018245
2,0 1,636 0,886 -0.284  1.022586  1.022647
2.2 ~1.642 ~0.889 ~0.285 1.027481 1.027570
2.4 1648 —0.891 -0.285  1.052904 1.,033034
2.6 -1.654 ~0aB89 -0.286 1.038874 - 1.039059
2.8 -1.661 ~0.897 ~0.287 1.045409 1.045673
3.0 ~1.668 -0,900 -0.288 1.052533 1.052905
3.2 ~1.677 -04904 ~0.289 1.060270 1.060789
3.4 -1.685 -0.908 ~0.290  1.068647 .  1.069564
3.6 ~1.694 ~0.912 -0.292 1.077694 1.078675
3.8 ~1.705 -0.917 ~0.293 1.087444 1.088775
4.0 =1.715 ~0.521 ~0.294 1097933 1.099724

otas

———
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TABIE -~ VIII

VATUES OF TRANSFORMED OPTINMAL GROUP BOUNDARIES
! -
ATD 08/ba>AND OB/CQJFOR BIGHT GROURS.

o . t, b Co/C., Cg/Css
0.2 ~1.748 -1.050 ~04500 1,00017% 1,000173
04 ~1.749 ~1.051 -0:507 1.000692 1.000692
0.6 281l B0 -1,051 ~0.501 14001558 1,001558
0.8 ~1.752 ~1.052 ~0.501 1.002774 1.002774
5,001y, =21.754 ~1,055  -0.502 1.004343. 1,004343
1.2 1,757 -1.055 ~0.503 1,006269 14006269
1.4 ~1,760 S1.056 . ~0.50%  1.008557 1,008558
16 o764 =1.058  -0.504 1011214 1011216
1.8 1,768 =1.060  =0.505 1.014246 1.014251
2.0 -1.773 ~1.062 ~0.506 1.017662 1.017672
2.2 1,778 ~1.065 -0.507 1.021472 1,021490
2.4 —1.786  -1.068 ©  -0.508  1.025685  1.025716
2.6 1790 -1.071 0,510 « 1.030315  1.030366
o8 —1.797  =1.074  ~0.511  1.035373 . 1.035455
3.0 =1.805 -1.078 . =0.513 1.0408T74 1.941003 :
3.2 =1,811 1,081 L0.514  1.046836  1.047031
3.4 1,821 ~1,086 - -0.516 1053275 1.053563
346 -1.829 -1,690' -0.518 1.060212 1,060630
5.8 —1.838  -1.094  -0.520  1.067670  1.068264
4.0 _1.849  —1.099 0,522 1.075671 1.076503

Note: %, = 0, t, = by, g = -ty and G =
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TABIE _ IX

- t T 2T TRy
ANPVCQ/GQTAND GQ/GWLPOR.MIHL GROURS.

o %, v, g - t 0478, IV
0.2 »1.865  -1,197  «0.681  -0.222  $.000139  1.000139
0.4  =1.866 . =-1.198  -0.6B1 ' -0.222  1.,000558  1.000558
006 =1.868  -1,199 -=0.682  -0.222  1.001256 -  1.001256
0.8  -1.869 , -1.199  -0.682 ~ -0.222  1.002235  1.002235
1.0 %1.872  -1.201  -0.685  -0.222  1.C03498  1.003499
1.2 =1.875  -1.203  -0.684  =0.223  1.005048 1.005049
1.4 1,878 ~1.204 - -0.685  ~0.223  1.006888 . 1,006889
146 -1.880 13205 = -04685 . =0.223 1.009023 1.009025
1.8 1,885 -1.208  =0i687  -=0.224  1.011457  1,011461
2.0 -1.890 = ~1.210 : =0.688 " =0,224 1.014196 - 1.014204
2.2 -1.895 ©  -1.21%  =0.689 - .-0.224  1.017247  1.017262°
2.4 =1,901  "-1.216  -0:691  -0.225  1.020617 - 1.020642
206 -1.907  -1.219  =03692 . -0.225  1.024315 - 1.024355°
2.8  -1.913 1,222 -0.694 | -0.226 . 1.028349  1.028412
3.0 -1.920  -1.226  -0.,696  -0.226  1,032730  1.032827
3.2 21,928 -1.250  -0.698  -0.227  <1.037469 - . 1.037615 -
3.4 -1.936 %15234 -0:700  -0.228 - 1.042580 1.042793
5.6 —1.946 - =%.239 . =04703 . —0.229 ' 1.048075  1.048382
5.8 '=1,952  =1,243. . .=02705:% 20,229 1.053971 . 1.054405
40 "=1.962  -1,248  -0.707  -0.230 ' 1.060286 . 1.060890
Note by =ty g = -ty  b,=-t, and  bg= -t
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TABIE - X

. L
gmb C1O/Q$AND 010/003FOR TEN GROUPS.

; ot ‘ oA
X ©1 *2 *3 "4 €1o/%s %1%
0.2 ¢ -1.969 = ~1.325  =0.834  -0.,405 . 1.000115  1.000115
04 - —1.969 ~ =1.325  «0.834  =0.405  1.000459 . 1.000453
0.6  =1.970 =1.325  <0.834  =0.405 1,001034 1,001034
0.8 -1.972  =1.327 ~ =0.835 Z0.405  1.001840  1,001840
1.0 . =1.974 =B = ~O.836q_:_—o.106 . 1.002879 1,002879
12 1977 ~1.320 <0.836 0 ~0.406  1.004154 1,00 154
14 —1.980  ~1.331.  -0.837  -0.406  1.005666 = 1.005660
1.6+ =1.981  =1.333  =0.839. - -0.407  1.,0074%9  1.007413
1.8 * -1.986  =1.334 ~0.859  ~0.407  .1.009417 1,009418
2.0 -1.992 - -1.337  -0.841 -0.408  .1,019663 -+ 1,011666
2.2 . -1.997  ~1,340 -0.843  =0.409 1,014162  1.014168
0.4 -2.002  -1.343  -0.844  -=0.409.  1,016921  1.016931
2,6  -2.008  -1.346  =0,846  -0:410 1,019944  1.019962
2.8  ~2.014 ~1.349  =0.848  =0:411 1,023238  1.023269
3,0 -2021 =1.353  -0.850  -0.412  1,0208% 1.026862
3.2 2,029 —1.357  ~0.852  =0.413  1.030672 7 1.030750
3.4 2,057 -1.362  -0.855 . =044 1.034830  1.034948
5.6  -2.045  -1.366  ~0.857  ~0.475 1.039295  1.039470
lNote : -t5 = 0.000, t6 -t = --‘c.a, g = —t2 and tg =t .
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BemEog

- CGAWA'S . OPTINUM SPACINGS

RS o T T R R

10

C.000 =-0.613 0,982 -1.24%
©0.613  0.000 -0.383

0.982

0.383

o 1.243

~0.659

0.000

' 0.659

1.447

-1.598

_=0.860

~0.266
04266
0.860.

1.598

~1.751 ~1,866

-1.049 -1.200

«0.502 -0.6:4

rd

0,000 -0.222

0,502 0,222
1,089 0.684

751 1.200

1,866

~1.997
~-1.329
~0.834
~0.404
Q.ooo
0.404
-0.834
14329

1 . 9‘77.

' (i) ‘r = no. of groups v -

(1i) Ogawa's computations are slightly -in error in some cases

'(Seé‘dﬁpenﬁiﬁ3%¢ ;

Ry
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Te INTRODUCTION -

In this part, we der,Aive a certain statistical distribution
which can be put %o use t¢ solve a voriety of industrial problems.
For purpose of illustration,-we indicate the use of this distribution
in textile Wiﬁding3 cloth cutting and also cutting procedures for
producets produced in g continuous length. The motivation Ffor this

the author in his consultancy work in a cotton textile mill.

Por the purpose of developing a suitable model, we consider o
sequence of events which is o mixture of a completely regular seguence
and & Poisson's process. et S dencte a systematic event ocouring
at tﬂé end of every T time units and R a random event which occurs
according tQ a Poisson procéss of rate A . Iet the event g be defined
to occur when either S or R does, The equilibrium morgiml frequency
distribution of the time interval between successive occurences of
the eventﬁi ig derived in section 2.1, This distribution can be used
under variefy of situations, for example, in the case of the products
which are profuced in a conbinuous length (like clotl, extrusion

+

products etc.) and are cut in definite lengths and $oken out of the
machine, we can take the point of the initial cut as an occurence of S
and tee existence of o defect , which cccurs in a random fashion, as

an occurence of R. Here we are interested in the distribution of

defect free lengths.
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In section 2.2 we consider the appiication of this distribution
to textile winding. Automotic windimg_machines used in textile
industry consist of 200 to 300 spindles; each of which is used to

hebbin
wind yorn from o relatively small sqpplxion t0 a larger cone., The
winding at any Spindle stops. when the yarn on the bobbin gets exhousted
or when tﬁe yarn breaks. An automatic head patrols the machine in a
fixed time and spends fizxed time in servicing each spindle; i.s.
replacing an exhausted bobbin by o full one and starting it, or
knotting an yorn which has broken and starting the spindle again.
Under reasonable assumptions, we can identifj the stoppage of a
spindle due to exhaustion of yarn as the occurence of the systematic
event § and the stoppage of the spindle due to yarn break as the
ocourence of. the random event E. Ve derive the distributioms of
1) idle time of o spindle, -ii) busy time of a spindle and 1ii) the
number of patrols of the automatic head between two consecutive
restartings of o spindle, We also derive an expression for Machine

Bfficiency., Howie and Shenton_i Zi/ have also derived an

expression for Mochine Efficiency and their approach was entirely

different.

In seciion 2.%; we consider the application of the hasic
digstribution of section 2.1 for proklems of cutting of cloth in textile
industry. To analyse this problem, it is enough to consider the

cutting of the cloth in definite lengths while toking it out of a
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loom as a systematic event S and the occurence of weaving Or processing

defects as the random event. A suitable model is bhen developed.

In section 2.4, we generalise some of Sibuya's Z?B_?’work on
cuﬁting procedures by using the basic distribution of section 2.1.
Products which are produced in contimous length are generally sold
to final customers in defect free pieces of some given specific length,
say unit length. The cutiing procedure followed is that first,
relatively longer pieces of some definite length L are cut out. These
ore then inspecied and, depending on the positions where defects
occur? are suitably cut into pieces of unit length so as tc get the
ma;imum number of defect free pieces of unit length from each of the
longer pieces of length L. We call the procedure when L = 1 as
simple cutting and when L= w as sequential cutting. We denote by
Y (L,N ) the yield when the initial cut length is L and A is the
average mumber of defects per unit length. Using a different approach
Sibuya 173;7 derived expressions for yield when 1< L< 2 and
2< L< 3. Using the basic distribution of section 2.1, we derive
on expressicn for any initial cut length L. Let n be any positive

integer. It is then shown that for O ¢ § ¢ 1 that

( > Y (n,n) when x> }:
Y (n+ 8,2 / = Y (n,n) 'when X = A?

5}

1 5
L( Y (n,A) when X < A
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% of
where %ﬂ is called the critical valug{}\for a given n and is the

solution of

n - A(i~1)
Z (M~1)e = 0
i=1
i
—1A 1
It is also shown that lim (n e ) =#% and = log 2n provides

n oo

o very good approximation for hz « It is glso indicated that it is
not a desirable practice to have froctional volues for initial cut
lengths. The yield values Y(n,)\) have been computed for a wide
range of n and A and given in Tablelll (at the end of this part).
It is felt that this table will be useful iIn practical applications.

Pinelly o suitable model for determimation of optimum n is suggested.

2., OPTIMAL CUTTING PROCEDURES

Supnose that a sequence of events is o mixture of a completely
regular secuence and a Poisson process. The distribution of the interval
between successive events in the combined process is obtained. The

use of this distribution in various industrizcl situstions is discussed.

DERIVATICN CF THE MODEL

Let S be a systemntic event occuring every T time units and R
a rondom event occuring in a Poisson process of rate A . Let?% be

defined to occur whenever either S or R does. ILet f(x) be the
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successive occurences ofEi + The rigofous definition of this
distribution is that it is the limit 05 1 w— o Of the frequency
distribution f (x) of the interval between the ntB and {(n+1)st

occurence of‘%‘ ;3 given, say, that the first event is an S (or an R).

The argument in this thesis is, however, heuristic.
o ] H

Let X be the interval between two successive occurences ofF% ‘

et B(x) = Pr$ X2 =x} ama Plx)= 2r % X< x} . We define P
N

and F seperately in this manner for reasons which will become clenr
later. It is obvious that the maximum value which X can take is T.
Define the recurrence time y of‘f% ag the time interval from o

randomly chosen point‘of time toc the next occurence of ﬁL The maximum
value possible for réourreﬁce time is Ts Iet ¢ (y) be its probability
density function and qé(y) its distribution function. ‘The probability
that the requrrenée time is greater thon or equal to y is given by

the probability that neither S nor R occur in a randomly chosen interval

of length y i.e.

JAwa - 1230 = N (-F) . (1)
¥

LI% . =AY
o B = L., e @)

It is well Known ( Cox 1?37) that d-aad . o .

ﬁw_,_,: i P (y)

g {y) = L. = 8- | (3
ﬁzfr"fijﬂx E (x)
C
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where B (X) is the expected value of X. Sinceg ocCUrs On an aversge
(AT + 1) times in an interval of time T, it follows that

E (X) = __?\‘_TT_-}-_1 LI ‘o - ee L ] (4)

Hence we get by (2), (3) and (4)

Ax “AE
P(x) = '(1"TT_+_1—)'6 for 0 <x <&@ cae eee (5
= 1 when x {0
= 0 when x> T
If we put x =7 in (5) we getb
1 o =AT
P (T) = m_‘l e > O . .o ® a e s 80 (6)

¢

This is because the probability of an interval between two successives
E's being exactly equal to T is

1 - AT

B ‘(X::T) = T+ e aee sea (7)

and since the moximum possible length of an interval is T, we have

] Y 7 i I 1 - AT
Br (X2 7) = P\T)=.Pr(x='r)= nTe © «ro (8)
Further
: - X
Plx) = 1-(1——)}%_"—1—) e for 04 x< T ves (9)

.= 1. when x_>_T

0 when X< )
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It follows from (5) that the frequency function of x can be obtained

by differentiating -P(x) for x < T M.en

\ AT €2 - -
f(x) = -—E_ﬁ—z—i+)\(1=—%)’%e i for 0 x< T mee {10)
-~ ,1 -}\.T i
£(?) = Hix:ml{: 5T © (11)
f{x) = 0 when x< 0 or x> T  wu. ... o {12)

t can be easily verified that

7
[ w2 axs 7 r(n) - S et eee . (13)

In sections 2.2, 2.3 & 2.4 we shall discuss the application of this

distribution in industry.

2.2 TEXTILE WINDING

Automatic.winding-machines used in the Textile indusiry consist
of 20C to 300 spihdles, each of which is used to wind yarn from a
relatively small supply bobbin on to o larger cone. An avtomatic
head patrols the machine in a fixed time and spends o fixed ©ime
servicing each spindle, i.e. replacing an exhausted supply bobbin by
a full one and stafting it or knotting o yarn which has broken and
re-starting it. We define Machine Efficiency (ME) as the ratio of

time spent on actusl unwinding to total running time of the machine.
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The périod of time for which the unwinding goes on un-interupted at a

which a spindle waits for either replacing an empty bobbin or for
knotting a broken yarn by the automatic paﬁrolling head is called

i) busylperioq; ii) idle period and iii) tkhe nwiber of patrols
between two consecutive restartings of a spindle are derived. The
patrolling time, i.e. the time between consecutive arrivals of the
automatic head at a particular spindle, can be varied within certain
limits, and is set at a vaiue which gives maximum efficiency. This
problem has been considered by Howie & Shenton_ZP2;7 and they have
also derived an expression for Mochine Efficiency using a different
approach. It is shown here that the expression for M¥achine Bfficiency
can be obtained in o very simple manner by the use of the distribution

derived in section 2.1.

Iet T be the constant time required to unwind a bobbin completely
in the absence of any breaks, A the average number Of breaks per unit
spindle running time and d be constant patrolling time. Iet m be

non-negative
the smallest/integer, such that

m < < mo+ 1 e BB TH Bl Bomm B ()

|3

It is seen that m-= 0 when dZ} T.  Parther let

- T+n
h = (m+1)d"'T Qr d: o+ _] . s o ae (15)
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and it is seen that 0 {h <d . The physical interpretation of (14)

is that

in the absence of breaks (m+1) patrols are required to

unwind & bobbin and start a new one.

We consider the stoppage of o spindle for the exhoustion of

yarn on a bobbin as a systematic event and the stoppage due to yarn

break as a random event. Hence the distribution derived in section

2.1 can be used for an amlysis of this problem. The following

notdation is used.

£(z} = “frequency function of the busy pericd distribution

-

g(y) = n # 1 idle period "

-~
P(x) = Probability }_busy period > 1;;
4

G(y) = Probability i.idle period < y-%

o

He

= Average duration of a busy period

= Average duration of an idle period

It is obvicus that the probability P(x) that o busy period is

greater than or equal to X is given by (5) Le€e

Lx S (16)
ey X 4 T # a0
P = - 5557) e for 0 ¢ % ¢
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Thus the frequency function for the busy period distribution is given

by
z : -AX
ar € 2 X\ 0
f(x) = hT+1i}3+h(1“T)§ e for 0 £x KT
v 1 e~AT
£(T) = Prob i busy period :‘ T_j = P(T) = T sl (E7)
f(x) = 0 for x <0 . or x 2T

The average duration My of busy period is given by (13) i.e.

I

e een  (18)

O, 2

x f(x) dx + T P (D) =

Py =

Tet us consider the idle period and note that busy periods and
idle periocds alternaté. It is seen that a busy period for a particular
spindle can stort only at the instant of time when the automotic head
visits that particular spindle. For a givén spindle, cdnsidér a

busy period which is takén for convenience to start at time 0. It

is observed that the gutomatic head visits the spindle again at
insfants of time d; 2d, 3d, and so on, and the maximum value for the

busy period is T. It is easy to visualise the situation with the

help of Tigure 1.

v3
k
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It is also noted that the moximum value idle period can toke is d
and the idie period immediately after the busy period under consideration
has to end either at d of 2d vvvs.0ee oOr at (mrt) d. The probabiiity

G(y) that the idle period is less than or cqunl to y is given by

G(y) = P(a-y)-P(a)+P(2d-y)-P(d)+ +.. +P(nd-y)-P(md)+P( mr1 dey)
w1 m
= 3 Pld-y) - 3 Pd) for 0¢y<a
i=1% i=1
= 0 for y ¢ O (19)

"= 1 for y> d

Wernote-that ny) is discontinmous at y=h because P(x) i=s s0 a%
£

" x=T. 1In fact we have, since P (m+1 d-y) = 0 for y< h

m . m

¢(y) = 3 Plidey) - 2 P(id) for y <h
i=1 i=1
m+1 m )
= % P(id-y) - X P(id) for y2 b
i=1 i=1

Hence the frequency function of the idle time distribution is given by

m
g(y) = 3 f(id—y) for 03X ¥ <n "o L (20)
i=1
g(h) = Prob ii&le period = h-i = P (m+t d -h)
‘ 1 ~ AT
= P () oo © B oo ‘o Non (21)
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n+1

g {y) = ¥ f(id-y) for n<y<ad bveo g enm  (E2)
i=1 o
g (y) = 0 for y<O and y2d

. gt Bt BE el

The average '.'duraltion ,LL_I of an idle period is given by

h d
n = J veWay+ngh)+ J yely)dy
o h
h m n T a m+1
= f ¥y ( 2 f-(id—y))dy + SN e " +‘f y( p f(id—y))dy
o] i=1 h i=1
m )+1 d‘ d
= 2 ( f y f(id—y)dy + f y f(id-y)dy) + f Ni £ {(m+1 d—y)dy
i=1 C h i B , h .
h - A
* AT 4
£S 2 . “AT
S %y oy f(id-—y)dy + J oy flm+] G-y)dy + h e /(xn T+1)
i=1 Q h
mo id {m+1)d-h 0
= B S (id-z) £(z)dz + J = (m+1 a-z)f(z)dz+h e T /(20+1),
i=1 (i-1)d nd ;

a %:ﬂ i [P(.i_:l‘-d) = p(ia) 7+ (m+1)a /P(ma) - B(meT d-h) 7

i=1
I 2 }T
- J zf(a)dz.+ ke T/(NT41).
(o]
m Y\ T
- a I p(id) - (m)a B(T) + he” T /(2m41) - S 2z £(z)dz
i=0 - - B ’ o]

- 12(T) + TR(T).
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m (m+1)a e - AT ~AT
= d B Pa) - T2 B T
Lot AT+ (ANT+1) 7 AT+1 7 AT £
m O RAT L
= dq : A - maY = \
:Eo P(id)+ T ( (;nﬁ)d +h+ 17) T (23}
. I ' 7 i

In arriving at (24), we make use of (18), (17) and (15)
- Hence we have Mechine Efiiciency (ME) to be

IIE

il

o sl o ot il el W)
(Ap+1)a 3 P(id)

~ i=o. ;
Howie and Shenton ZT2;7‘ Obtained essentially the same expression
as (25) for M.E. Their approach was entirely différent and they used
-integroﬂdifference equations. and generating functions. The proof that
the expression (25) for Machine efficiency is same as that obiained by
Howie and Shanton zr2{;7 is g@ven'in the appendix.

We now consider the probability distribution of the number of

pa?fgls between two dénsécutiﬁe"festartings of a spindie. Iet D(n)

denote the probability that the number of patrols between two donsecuﬁive
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regtartings of & spindle is n, then

_D (n) = B (;;:i-d)-—?(nd) for O(n_(_m .
D(m+1) = P (m a) h e T @26)
m+1 m
Eln) = a n D{n) = = P (ud) vee Zews  (27)
= il e ;1; P(nad)
n=1

Iet 0,9 T,y eesee nk be the rnumber of patrols between k successive
re—startings of a spindle and let 't1, t,5 <eeee & be the corresponding
busy periods. Then the Average Number of Patrols (ANP) required o

unwind .a bobbin completely and start the next one is given by

ANP

il
H
H
=]

T (n, + eovee + nk)/k

Lim
k —-———3}00 (t'i T+ evsenwuae + tk)/k

. LEm) 2" 2 (AT + 1) B(n)

/( ANI+1)

(28)

Hence the Avercge Number of patrols required to unwind a bobbin
conpletely is agqual to the prbdu_c‘t of average rumber of stoppages per
bobbin { AT + 1) and the average number of patrols between two

= consecutive restartings ( E(n) )« BSince the average machine running


http://www.cvisiontech.com

3

- 137 -

time in d x ANP units of time is T, the machine efficiencj is given by

r
ME = g (29) .

1
d (AT 4+ 1) E(n)

T

I . m
d'(AT + 1) 3 P(nd)
n=0

ond this is same as (25).

.

GLOTH CUPTING

Suppose that ¢loth is cut and taken ou{ of the looms in definite
lengths - say L yardss Suppose also that the weaving and processing
defects occuf af random at a Tate A per unit length, and the cloth
ils cut again'wherever a defect occurs to get defect free lengths.

We coan comsider a cut at every L units~of length as a systematic
event and precessing and weaving defects as a random event, Then the
freguency function of the distributioﬁ of length of defect free cloth

is given by (10) and (11) i.es,

£(x) = )\)\Li SL%MU —%)} o M5 0 £x <L

(L) = Prob (defect free length = L) = (1) = ?\gﬂ s ..{30)

£{x) = 0 otherwise
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The value realised by selling the cloth depends on the length of
defect freée cloth sold. Iet r(x) denote the monetary realisation
from selling a contimuous length x of defect free cloth. Step Tunctions

for realisations are gquite common in textile industry. ILet

e (2]

iees N gives the maximum realisation per unit length. Ye define
yield as the ratioc of actual realisation to the maximum possible

realisation. Then the yield Y (L, }n) which is a function of A and

L is given by

L. 2 -x$ 2 X g 2
T il r(}c) e ii-+)\.(1-i)}dx+r(lj)-m

T 3 =1
AL 2 x - XX e
n )\Iﬁ-‘lf X{Lf)l\(‘l—L)}e dx +n L

] AL+
)

}\x —
AL, fo r(x) { oo AT )} o+ 2(1) Ry

- ,.;(31)
"RL/ (AL + 1)

Expression (31), can be used to study the increase in yield as L
increases. The cost of inspection at finnl inspection increases as
the initial cut length L increases and the optimum initial cut length

can be found using (31).
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CUTTING PROGEDURES FOR MATERIAL WITH POISSON DEFECTS

Products like wire, extrusions etc., produced in = contimous
length are eventually cut intc pieces of some specified length for
shipment to consumers. We consider the situation where a finnl piece
18 acceptable if and only if it is defect free. Without loss of
generality we can assume that the final piece is of unit length. It
1s further assumed that defects occur ot random with rate A. Ve
define yield as the accepntable proportion.of:the total throughput.

Ve can visualise two exireme procedures for cﬁtting the product into

final pieces of unit length.

Simple cutting : As the product comes out of the machine, it is
straight away cut into pleces of unit length. 8ince the proportion
of defect free pieces will be e—}‘, we have the yield,® , for this

procedure to be
[ = e ) LA .z LR} (32)

§§gggg§§§;“ggﬁggjg R From the starting point we measure an interval
Oof unit length and if it does not contoin o defect, we cut out an
interval of unit‘length, otherwise we move the origin to the defect
and repeat the procedure. Theoretically moximum yield, B can be
obtained from fhis procedure. The frequency function of the defect
free length of the material (interval between two consecutive defects)

is Kebkx il.es mnegative exponential., Ve get i acceptable pleces
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from o defect free length of x when i Sx ¢ i+l. Hence the yield, B

" for this procedure is given by

oo A+1
A e-}\xdx
i=1 i
R By
5 Wi =UE * ax
o
o0 f‘
A s
% 3 {e‘ kl-_—_e (1+1)}
- =1 '
1/A
-2 i :
A e : A o :
1 -e e =1 :

in ac‘cual proctice the sequential cu‘ttingAp:c:ocedﬁre is often impracti-
cable to adopt for example in case of high speed automtlc Process.
On the other hand the yield will be low for gimple cutting procedure
for relatively high }\ The volues & and B are given in table 1 below

for selected values of A«
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Table - 1

Yields for simple and sequential cuttihg proceGures

Perpent yield for

A Simple cutying Sequential cuttigg
{100 a) (100 B)

0.05 95,1299 97,5208

0.1 90,4837 95,0833

0.2 81,6731 90.3%331 i
0.3 74.0818 85,7489

Ovd 67.0320 81,3298

0.5 60.6531 TT7.0747

0.6 54 .8872 T2.9822

0.7 £9.6585 6940504

0.8 44,9329 65.2733

0.9 40.6570 " 6146606

150 36,7679 " s8.1977

It is seen from the above table that coratderable scope for potential
improvement in yield ekists 05 & resudt of sophistification in cutting
procedure for 0.1 { X< 1.0,

in practice, we can follow a cutting procedure which may he
in-between the asbove twe extremes., Pirst, relatively longer pleces
of some definite lengfh % are cut out. These are inspected and deperxiing
on the positions where defects occur, are suitably cut into pieces of
unit length so as to get meximum mumber of accepbable pieces of unit
length from egch of the longer pieces of length L. It is noted that
L s 1 copresponds to simple gjtting and L.= °e corresponds to

sequential cutting, Under some conditions, the yield increases as L
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increases and at the some time the cost of the cuttir rogedure also
p

increases. The problem is then one of finding an optimum value of L.

sibuya / 3_/ (using o different approach) derived expressions
for yield when L = 1+ 5 end L =2+ § where O ¢ § < 1. We shail
now derive wn expression for yield fo? any cut-length L and also
generalise some of Sibuya'g fesu1ts. For this purpose it is enough
to substitute in (31) £ =. and r(x) =1 when i ¢ x i+l IF
we denote by 1?2;7, the integral partrof L, then we get the yield

Y(L,)\)tobe g

]
Y, A) & = 1 i [B(1) = p(1+1)_/+ [ L/ ®( [L__/_)
ALY AL 1 —3-’—7(1 Ad -ai
T i.—_21: P =g " Z N TR A&
- Ty At = b T M 5L ) [6)

1 we restrict the value of T in the ramge 1 (L <2 and 2< L¢3

in (33) we get

(}\+1"L}‘) TR | | = for 4 ¢LiK2
(L) = 4 eee (34)

(A4 i)‘) S (xﬂ“i:’*) e 2  for 2<1.<3
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which are due to Sibuya. If we carryout the summation in (33) and

A
1~ 0

-2
put @ = e and B = , we gel

. | =1L | o
i L1£J+£-1- é;/_ A d- {'@7_1_1_1/ a
hie € I 1-o L(]_a)Z' 1 -

§£+ﬁ[§ o{-g
L

T - o

Y(L, \)

LY 1-6@/“.@1
i

AR o

-/ [Y ﬁ-ﬁ 1 - &1_17
_-—L——S(x -

.1—0, L L BN ) LN ] (35)

g

H

If L tokes an integral value, say n, then L = [L_7 =n and

oo 1 o7

FER (36)

Y (n,)\)‘.:ﬁ :-—

e shall now study the properties of the yield funmction Y(n, A)
in some detail. For this nurpose, we digress for the moment and
establish some inequalities and related resultss For all 0 { A

the following inegualities hold good,

X

.)\.‘-"] +e-. >O sas s (37)

T - 2A en}\-eh2}">0 L (38)

The proofs for these are guite simple. It is well known that e* > tux

for x £ 0. If we put x = -A we get (37)¢ ; To establish (38) it is
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A
enough to show that e2>\- 2xe =12 0 for all N> 0 . Iet

8 (3\); 82}\ - 2}\e}\ -1, and we have © (0) = ¢ and

ae
A

for A » 0. The in equali_\ty {37) can be used to establish the intuitively

=2e}\(e}‘— 1 -A)>0 for A> O. Hence e22\~2}~e}\-—1>0

o]

" obvious fact that B ~ the yield or the sequential cutting procedure
is greater than o - the yield for the simple cutting procedure. In
fact

Ao ' X -
B-a = T o ~ = '_ji_ffi_ =5

Bl e LB
. he "-e e 59 for ADO

(1 Lam)

Further we have for N> O, <from the snequality (37)

2 (aaen) oD LR o
i=1 (1= i 3 (s g

-2
_ At +e 50 for A> O ... (39)

(1 )°

Similerly for A > O, we haove by inequality (38) that

S e DN i-1) 2 2 At 1
24 Aili-1)-1 e = e -
1513\ Al f | (12 M2 (1" (1Y

2(1a—e"’\) - 2}\e—}\; (1-e"}\)_2_
(1-e72)°
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; -A ~2A
= ?’23‘8'."9 >0 for 220 ... {40)
(1 -e—‘)\)3 ),

Finally, for any positive integer n, we deiine the functionE (n,x)

for 0 ¢x <1 by

T Jox cereen e ees {41)
g n(!-x)

If we denote the forward difference operator with respect to n by ,\

then

1l

d% (1’19 x) E (n+1, x) —E (1’1, x)

O n

1 = x 1 -x

i n - mcm-1 - £_11+1) + (n+1) Xn
(=% BT
_o_oMx 1 - (n+‘l)xn + n xn-”
. _ (n+1) (1—}:)2

(‘k-x) ' dg (n+1, x) (22)
=..- 1.1 djc LI ] L e & 4

or equivalently, we have
—X) J.lﬁi_l N . (43)

n g (n,X') = n \g (n+‘i$:x:) +

Defferentiating dboth sides of (43) with respect to x and replacing n
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by (n+1) we get

-

f ﬁ : ~r . d2 .-2‘ -
(n+1) d(j (l’l‘!’?’ X) — d % dxgn +2!4.) % (1—};) édxm o+ Xi = (44)

ax

Purther, we have from (42) and (42)

ﬁgg (n,x) =A\€ (n+1,%) -AE (n, x)
3 (1-:&)3 11 dg(n+2 Xl__}_ €§n+1,x}%

it

dx i

u %—%%i _g_ﬁzli%x_)_ (s1) §n+12 )}

(_1)2 (1-32) a 5 (n+2 ;51

n(n+1) e

In general we have

£ C & | r+1 J
oy bl St g Stz

T dE(n+rx_l ... (46)

dx

(1 - x)

AIE (ny x) = (-1)" anrl) .. (ner=1)

For example, we have

AE (o) = () L= 8 (erla)

1

n+ 1
=y o ?&(ﬁﬁ 0 3y (2

i-—‘i)
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A =

n+1

o lex gy L2 L ; ‘
= (ﬁ1)m iz_:2 (i 1 , x <0 when 0 <x<1 .... {47)

2 _tx %, 1™
1) sy T2 ¢ e T

2
A § (n’x)

il

W (1—1)(1 2) Xl 3) 0 when 0 <z <1..(48)

We shall now moke use of the above results to study the prowerties
of the yield function. If L = n +5 where 0 < §<1, and n is a positive

integer, then we have /L / = n_and get from (33)

~Ai
Y (n+ b, A) = 151( n“.,) e
n y g .
Y (a,2) = 3 (;\+l'-;—ii\4) "M
g i=1
6 n LA V__}\i 4
Y (n+d,2) - Y(n, A) & T ‘E‘-(J\.:L»U e ses eee (49)

Thus when we increase the initial cut length L from n to n+ § (where

0<§ < 1), the yield izerensse or remnins constant or decreases

. - A(i-1) :

dependirg on whether 3 {2 - 1) e is pogitive or zero or
1=1 A @ ¢

negative. The value of A for which Y{(n#,%) = Y (n, A) for all &

such that 0 < § < 1 is called the critical value of A and is denoted
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i

*
by ?\.n . It is seen that ?\.P ig the solution of the equation

§ (2\1-1) e'Mi”q) = 0 an Eees 1050)

i=1
Sibuya [3_7 got the particular cases of (50} for n=1&2 and
* *
also }\1 and }\2 . We shall now-annlytically establish for any n what
Hibuya Z_BJ numerically verified for n = 2, This is done in the

following theorem.

' *
THEOREM 1 : For any given positive integer n, there exists a A

greater than .zero such that

X *
> ¥ (n,A) for AP A

Y (n+dy N)

3 sk
T (n’}\.) fOr }\.-"—' A-r\ e Y (51)

*
< Y(n,}\) for G()&()\n

g

for all & € (0, 1)+ Further ()N = 1, (ii) A< end

1

* ‘
lm -l = Ol
S

: N —)\(1—1) |
Proof ¢ Iet £ (A = T (A~l)e . To prove (51) it is
i=1

* B >
enough to show the existence of A, such that 7 (n, }\)% = 0 when
) <

< 1

the cage n = 1. Hence we congider the case where n 2 2. Since

2 * ;
?\% = }\p . Since % (1,n) = A~ 1, this is trivially true for
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' ) (i-1)
B (n, 0)=-n and & (n, 1) = 'Z (i-1) 7 M7V > 0, it is

i=1
. ¢ g (n, M) bs -
enough if we can show that T >0 forall A€ (0,). We

have
d n A) ;;l SL 24 - M (1_1)_1} ~ a{i-1)
i=1
. Iflg. ($+55 -0 1 @0 2D (e

We shall consider the case where O <A< -g; + —n—i-{ first and then the

case where A 14__1_ When O <?\<l+'—l—, we have"?-+*:-1—->}\
= n n-1 ! n n-1 i i1
for i =2 +o n and hence M)o, When 2 > l+_1_,
d A = n n-
we have A D -l+—l- for i2 n+l. Hence
i i1
n
d g (n, 2) _ , a1 Mi-1)
TR = 14 B (fegh-Nade
[+
> 1+ ¥ %l'F”T']"'-;\'}l(l 1) e }\(1—1)
] i i=1
i=2 " _
oo ’ . X
>z _21-.-2\1(1-1)-1’% e'}‘(l‘”
i=i i ‘
-A =2 A
s d=2> "-e > 0 (53)
(1 - 2\3
we
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where (53) follows from the inequaiity {38). Hence for all X\ E(O,CO),

i g (n,2) : : : *
we have dr.l?\)\ 2> 0. This proves the existence of }\n »  Since
. 1 i = 0 ‘.'_1‘" j
& (n, 4 ) = D3 (E- 1) e n(l ) < 0 for np2 2, it follows
=
* 1
}\n 2 = fen n2 2. PFurther
Blort, X)) = B o, A) + L (1) N -1/ e
g j % : ' % 1
- * — . =0 N:- O since -
= Z(n—i-'l) }\.ﬂ-"l_/ T }\’n> n
¥ *
This implies 2 . <X, . Fimlily consider an arbitrarily small

. : 1
posivive }\o . let n, be the smnllest integer such that no> 5 e

&)

Then £ {(n, }\O) <o for mn < n, andis strictly increasing with n
for y o pan . By (39) we have since A, >0
- Wt B X

lim £ (n, }) = 2 — >0 w0 g BN
1'1—> (1-—9 0)2

Hence there should exist an n, > LN guch that

& (n, }\G) >0 forall n 2 n,

, *
This implies that A < }\0 for all n 2 n, and this proves the
- -d
required result that 1im A o= 0.
B
n—> & *

We shall now investigate the as%ympto‘uic,behaviow of ?\n in Thecrem 2.
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*
TEECREM 2  Iet }\1 be the unigue positive solution cf

E (Ni-1) e_)\'(iq) = 0

=1
%
. - e . * . '-1'1}\- 1
for any given positive integer ne Then 11}\3 —co and noe By 3
as N e oo,
\ n
—A(q-
Proof : As before let Z (n,2) = X (Ai-1) e (i-1) . Corrying

i=1

out the summation we get

B(n,) ;_1__“: T S (’f-e-z\)} - (="M (127 L L (55)

Since the function log x -~ x + 1 has one maxirum at x = 1, we have

log x<x -1 for x>0 and x# 1. If we put x:n/n, then we get

1
n
Ei—n <n -1 Rowy B2 1 cee ase (56)
N il
If we now put A =% log n or equivalently e_n)"=-1]1~ and e“:,'\z n®in
(55), we get, by using (56), for n > 1
il ' 3 1
2 : T “n
(1n ™ )" ¢ (u, ZER) - 2D (n 2Ly (]
W . UL | i d
AN, o 1y _ n N 2
¢l -Dl -0 T)-2) =-=={(-n )® <o .. (57)

. .
“Since we know by theorem 1, that 48 (a,2) > 0 for A> 0; (57)

. A B 1
implies thot }\n >. - log n.
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Hence we get

n:,\ﬂ —3y oo 0,8 ’11 .—-»-) oo “ao s #lee. (58)

g ¥
We kxnow that for any given n, ;\’n is such that

* * % * % !
-31}\‘.’ -1l )\"—\ n

* !
A l-1¢ o n e h(1-— e § {f s h1 = B n}(1 - € B i B

* *
* —n)\n "—.?\11 -1 )\n & = ;\11
or nh, e (1-e )y = {1 -¢ ){_)xl-(ﬁ—e )}
*
* * * -‘\'1‘
- - A A - (Trass =)
or ne = (1-e 11,}) e s p—_ (59)
- T
_/\.n (’I - e )
i - * .
We know by theorem 1, that I1im J\n =0, and by (58) we have
1 ———>%
%
n ?\n —7>x ag n —> « . Hence
* ‘
-1} -
1im noe B 1im (T—G"X) 1im .Eiz_l_i_§3:
1 > x —>0 M0 A{1-e )
= » LN ewes (60)

|
v
-
.
-
-
-
[
-
.

*
We can use (60) to get on approximation for A when n is
lorge,; Le8ey

P log on SR PP R (61)

r-.rd‘

ol

Lk
AN
n

Equation (50) wons solved mumerically for n=1 +%c 200 in steps of 1

and 1 = 200 to 1000 in steps of 50. The procedure used was to
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%
find A such that

2 (n, A Y20 and ¢ (n, A - 0.001) ¢ 0 vev oes (B82)

and ag such these values may be slightly higher than the correct
values. To study the extent to which the approxication (61) for
. . * : '
is good, the values of Aﬁ anﬂ)-% log 2 are given in Table 2 for

some selected n,

Table- 2

S

* ¢
Values of )\.n and = log 2n

K 1 *

n "z\n 1% 2n »n ?\E "‘l:l'l'log 2n N .}:; *11; log 2n
1 1.000  0.6931 6 0.418 0,4142 20 0.185 0.1844

2 0.759  0.6931 7 0.379 03770 30 0.137  0.1365

3 0.621  0.5973 8. 0.348  0.3466 40 0,110 0,109

4 0.531 0.5195 9 0.322  0.3212

5 0.467  0.4005 10 0300 C.299%6

i E
Considering the possibility that the values of 3\'21 given in Table 2

mey be larger than the correct values by 0.001, we can conclude that
1 . . ) . %k

3 log 2n gives a very good approximation ol .?\n for n2 5. EBEven
'thﬂugh (5‘0)"was solved numerically for a very wide range of n, these

are not given because of this.
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We see by theorem 1, that, when we increase the ini‘tial cut.
length from n to n+ § {(where 0 < & <1 ), the yield may increase or
remain same or decrease depending on whether the defect rate Alis
greoter than or equal tc-' or léss than the corresponding critical
value }\z. Y¥e sholl now show that ¥ (n+_‘i, 3> Y(n, 2) for all A>0
and also study the properties of the yield function for integral vaiues

At

of I. e have from (36), (41), {47), (48) & (46) Tor n¢ (0, =)

5_23-"06 1;@:‘ = B—(ﬁw@)g(n,(z)

¥(n, A)

Il

A Y(n, A) - (B~ Of‘,ﬁ\ g (n, c’)

n+l .
a2

(B-a) ﬁi% 2 (1-1) ¢ > 0 ... oo (63)

1l

]

[f Y(n, A - ([3-.& ) Ag‘g (n,_otj | )

- Sl 2. v o .
(1 —oc)' 142 .3

-(B-® TETERT () 23 (1—1)\1—2) a7 <0 ... (64)

il

A TmA) = - (Ba JATE (:r.,é)

r+1 N1 i-r-1
(B-Oﬁ)C ) R -
= (.'“1) n(n+‘i)...(n+r) i§r+.?{. (1-1)..(ir) & _ -+ (65)

In (63), (64)-311& (65} we recall that ﬁ-> o 2 Ofor X €l0,00) Hence

for any finite defect rate A, the yield increases at o decreasing rate
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with n. It is also seen that

lim Ary(n,)\) = 0 forall T 21  ver ... (66)

Finally, we have Trom (33) for BoE (0, Mj

n+1 n .
Y+, A) = 5 (A+ L —AJ;) e_;\l
i=1 it

n
1T =wAd -1
1§1 S ti-§ )e

]

Y{nstd, M)

Y(n+i,k) -~ lim Y (n+g§, X) = —l?- e”(n+1)}\> 0 ... (67)
A i+

We shall use the above results to show that generally it is
not desirable to have fractional values for L, especiadly so when ).
is small. For example, when X = O, the yield decreases from 100% to
66.7% wnen L is chenged from 1 t0 1.5. We have from {(51) that
Y (n+ §, A) > or = or < Y(n, A) according to whether A > or =

* %
or < Ah for 0 < & < 1. We have seen in theorem 1, *hat }h decreases
with n. Hence when we change the initial cut length from n to n+§ ,
there is a risk of decreade ip yield for small A, unless n is suificientl;

i1 o L =] v T 7 w - “
large. ¥e have from table 2, 0.3. The defect rates (i) of

&
W
10
mognitude more than 0.3 for the final product length are unecononical
in an industrial prccess. Similarly initial cut lengths above 10 cre

impracticable in practice. Hence exact multiples of the final product

length are sensible values for the initial cut length in practicol
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situntions. An added resscn for using integral values of L is (67)
where it is shown that ¥ {n+1,N ) > lim Y (n+&,N) for all A,
§ —>1"

1
The yield values Y{(n, ) when the initial cut length I is
an integer n, has been computed ﬁor a wide range of nﬁgﬁd A by
progromaing on a cemputer. TableiII at the end of this part gives
the value of é(n,A.) for n = 1(1) 10(5) 50(10) 100 and o=,
A= 0.02 (0.02) 0.10(0.05) 1.0, It is felt that this table will be

useful in practical application of the model.

The cost of inspection and the cutting procedure increnses as
the initial cut length n increases. For convenience we can denote this
cost by C (n) Tor some definite volume of production, say o lot of
N pieces. In geﬁeral _0<(n) and, C (n+1) - C(n) will be increasing
with ne If we get more number of acceptable pieces from a lot through
scphistication in cutiting procedure‘there;will be diréct savings by
way of vrofit, reduction in material consumed, IEductioﬁ in rework and
the corresponding reduction in production costs etc.l The indirect
benefit will be greater production rate.’ Hencg in general itlwill be
possible either to estimate (or impuﬁe) in terms of meney value of
the above. Letl & (r) denote the monetory.benefit if r more good pieces
are obtained from a lot of N pieces. Hence the optimal value of n

gatisfiles.
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A (0¥ (n, 2)) - AET(e-1, 1)) 2 c(n) - C(n=1)
(68)

A(mdnﬂ,h))diﬂmﬁuk))<0@wﬂ - ¢{n)

This con be found easily with the help of Table IIfonce the savings

and the costs are estimated.
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" APPENDIX

*

In this apoendlx, we show thau the gxpression (25) for inchine
Efficiency is essentially the same as the one obtained by Howie and

Shenton [_2__7. If we put
k = @ — c=Ah and b= 2Ad

then by (15), we have

(a1+1) = }\'?'(mﬂ)d-h} #1 = (@b —c+1 ... (A1)
i piad
2 P (1’1{1) = E (1 - i; ? ) = And L] v sa e (AE)
=0 n=0 B :
m m
n - Ad n
2 % K - 55- I nk i pEe (R
=0 n=1
no P % '
k = ﬁ‘— LN LN ] > » = (A4)
=0 5 . :
m m m+1
g n s e 2 {(1-k)} (m+1) X .+_ 1=k - e s @)
\n=1 (1»k)2 '

y N+
& = (m+1) R (26)
- (1-x)° |
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A (e ) m km+2¢z

(20+1) Z P(nd) = (AT+1) 1kk

. AT+ ; (1 N k)?
— . = I+
_ {m+3 )b+ £ (er1)bmod1_/k . k - {m+1)k Sy
= — - - -
m+1
_ (mr2)b-cst b [(m+1)b-0+1_/ Eo_,m o lme1) B
e (1-x)? (1 - %) ; (1-k)?
¢
_ (m+2 ) bec+1 o B . km[L(mH)b—csz . mbl{2 - (m+1)bk j
(1-k) (1-1{)2 — {1=k (14;)2
(m+2 )b~c+1 b O U mbkabeotd | mbio=(me1)bk
= T — - K —{b-c+1) + €N + ;
- {(1-k) (1)
' 2
(m+2 )b—c+ 1 b b-c+i |, mbk-b _ mbk —(m+1 )bk
= - = —o+1 it
(1-—1{) (1-1{)2 [ (b C+ )+ 1 K-) -r_)-‘]""k -+ (1—k)2
(m+2 )b=c+1 b

2bect , mble=D mbkz-mbk—blﬁ—b-b]

=" (k) (1_1{)? B [(b'(}”h (o) G-k © (1)

(+2)b_ 1 b, m 2b-c+1 b ¥
s e Y G [" (b-cs1) + Troy - (ﬂ_k)zj

3 (m+2)b;c+1 b

' m o, .. 2b=ct] b N
Cr) o et '3 [(b-cHJ = Taps (1-k)2_7 o 67D

+

m
If we substitute (A7) for (AT+1) X P(nd) in (25) we get the
n=0Cc i

expression of Howie & Shanton [2_/ for Machine efficlency.
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TABIH = IIT

VALUES OF Y(n, X )

\‘}‘ 0.02 0.04 - G.06 0.08 0410
1 0.980199  0.960789  0.941765 . 0.923116  0.904837
2 £ 980296 961169 . 942595 4924555 907026
5 .980392 (961538 L943394  .925919 ,909076
4 . 980487 L961898  L944162 927215 .910996
5 4980581 .962248 944900 928444 .912797
6 980673 ~ 962589 £945610 929612 914487
7 980764 4962982 948293 930722 4916073
8 2980854  .963246  .946950 LOSITTT 4917563
9 980943 1963562 947583 4932780 4918963
10 .981030  .963869 .948192 .933734  .920280
15 981452 965264 ,950915 937861 ".925800
20 981846 .966550  .953179. .941113 .929937
25 .582216 4967660 955073 943701 4933087
30 982564 .968642 - J956667 .945783 . 935524
35 . 982890 (969514 L958014 | LOAT4T4 £937441
40 983196 J970290 955161 ¢ .948863 .938971
45 .983484 .970983 .960143 .950014 940212
50 .983754  .971602 ' .960988 .950978 941232
60  .984249  .972657 . .962357 ' .952489 - .942798
70 984688 L973514 963405 4953607 4943935
80 .985079 974218 T .964225 .954460 .9447%
30 985427  .974802 ' .964880 .955130 . 945463
100" .985739 - 4975290 . 965412 ° J955668 - 946000

> .990034 © .980134 . .970300 - .960533 . .950833
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(Gontd. Table IIT)

;ﬁl 0.15 0.20 0.25 0.30 0.35
1 0.860708 0.818731 , 0.778801 0.740818 0.704688
2 865316 826398 ~790016 155938 723957
3 869497 .B33140°  .T99577 . 168445 739433
4 873294 (839080 807759 778847 751955
5 B76747 | .B44328 816787 T LI8754T - J162165
6 879893 848974 820847 LT94865 . W770556
7 882761 .853099 826095 801057 777506
8 885381 W856771 830655 . .806325 . .T783309
9 887777 - 860046 834636 810834 788191
10 .889972 862976 . .838124 LB14715 792332
15 . JB9BS4A | WBT3TE6  JB50360  .B27812 - .B05882
20 904345 880423 857436 835037 © 4813113
25 " .908%20 854788 .861902 T .B39493 817514
30 ©.911216 LBE7813 1 4864931 842486 820458
35 913374 .390009 867107 844628 822562
40 915028 - BO166T .868743f 846235 .824 140
45 916331 - 892361 870016 B4T485 825367
50 917379 .893997 871035 848486 826349
60, .518958 .89555% L87256% 0 W849986 0 .827823
O, .920089: 896664 873654 .851058. .828875
80 . 920937 897497 874477 851862 . 829664
9% .921596 (898145 .875109 852487 .830278
10Q .922124 898664 875619 852087 . WB30769

o0 . 926874 .90333 1 380203 857489 835188
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(TableIII Contd.)

N 0.40  0.45 0.50 0.60 0,70
1 0.670520  0.637628  0.606531 .  0.548812 0.496585
2 698889 .665565  .638838  .589646 \545396
3 712277 686753  .662670 4618198 577825
4 T26766 . 703026 .680529 638624 600058
5 738299 JT15687 . .694128 653974 615789
6 JTATSTL | JT25667  JTO465T  .664784 627265
7 755110 733637 WT12925  .673369 .635884
8 761297 740084 719533 .680086 642531
9 766427 JT45364  -.T24889 4685447 1647782
10 70724 LT49TAY. 729293 .689803 652018
15 784457 | 4163485 742939 .703079 .664824
20 .791621 770546 .749880 4709762 671243
25 \795951 TT4T8 L754053 713774 675095
30 798842 JTTT635  .756835 716449 677664
35 \£00907 LTT966 1 758823 718359 .675498
40 J802456 781181 760313 .T719792 680874
45 803660 782363 J16472 720906 581044
50 804624 783308 JT62400 © ,721798 682800
60 806070 JT8472T 763791 723135 684084
70 .807102 785740 764785 724090 685001
80 807877 786500 . .765530  +724807 685689
90 .808479 787091 766110 725364 .686224
100 . 80596 1 JT8T565  JT66570. 725810, 686652

= .513298 791818 770747 729822 690504
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(Table III Contd.)

;\? 0.80 0.90 .00
1 0.449329  0.406570  0.367879
2 +505344 468891 435547
3 .540796 +506556 474699
4 .564176 .530540 .458853
5 .560257 .546605 .514694
6 591705 .557883 525664
7 .600190 .566 137 .533636
8 606669 572397 .539654
9 4611754 577292 .5443485
10 615841 581217 .548109
15 628143 .593010 .559397
20 .634301 .598909 .565042
25 637995 502449 .568429
30 .640458 .604808 570657
35 642217 606494 572300
40 V643537 607758 +573509
45 644563 608741 .574450
50 .645384 .609527 .575203
L60 646616 .610707 576332
70 .647495 611550 577138
80 648155 612182 577743
" 90 648668 612673 .578213
£ 100 .649079 613067 578590

w 652773 +616606 581977
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/1.7 ocox {1962) : Renewnl Theory; Lothuen, Tondon.

/2 / Howie and Shenton (1959) : The efficiency of Automatic
Winding Machines with constant patrolling time; Journal

of Royal Statistical Society, Ser.B, Vol.21.

/ 3/ Sibuya (1960) : Cutting out procedures for msterial with
Poisson defects; Anmals of Institute of Statistical
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