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_TNTRODUCTTON

The algebraic theory of sequential machines and
automata is well known through the works of various authors,

such as, Hartmanis and Stearns [23]. Arbib {2], Bootnh L6] and

H

Ginsburghl21]. Generalising the concepf of a complets sequ-
ential machine Ginsburg introcuced the concents of a quasi-
machine and an abstract machine [20, 21] as abstract mathema-
M1cal systems satisfying certain natural amioms and extended ~-
certaln concepts and resiults of the classfcal theory of
sequential machines. Fleck 18] considered automata in the
generality of Ginsburg's quasi-machines except that he did
-not consider outputs andé stucdied some algebraic properties

of auntomata in relation to their strvctures. Ginsburg also
suggested the possibility of introduc.ng topology and defin-
ing the concept of a topological machine which would further
generalise the concept of a quasi-machine or an abstract
machine and, perhaps, could be an appropriate mathematical
model for an anal oz or a continuous machine L25]. Subse-
quently, many authors mentioned about this possibility of
tgpdlogizigg machine theory. 'allace mentioned about topol o~
loab machines which are topologized quasi~machines in a

regent survey article 143] on binary tonological algebras,
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But no wdrk about tovological machines in the sense of
Wallaceiésf has been done so far, Ho'ever, a good ‘deal of
work has been done zhout topological machines without outputs
which are topologized gutomata of Fleck and: more commonly,
referred to as semigroup acts Or, simplys acts {7, 14, 15, 16]
,though some guthors refer o them as uopological automata L29]
or topological machines L4, 5, 36] also, The study of topolo-
gical autometz oOr acts was initiatsd by Day and allace L15,
16] and; as remarked by Arbih in his editorial note in i1,
p.2703, thedr vork ope ned ths possibility of extending the con-
cepts and results of the 2lcebraic theory of macnines to the
topolorical case. LS o matier of fact interests im the topo-
logical theoxv of avbomate and semizroups seem Lo be groving
fasn amongst mathematicians as evidenced by the volume of
recent published works anc several symposiums at the University
of F.orida and elsevhere, In her survey article on semigroup
acts L14]) Day also stressel the possibility of tonolozizing ths
algebraic theory of macaines, uoting the vorks of various
authors, such as, Kalman L261, Yymore 145!, Mesarovic'! L31],
and Balakrishnan i3} to name a few, she furtﬁer remarked.,
tPerhaps topology will play a larger role in system thecry

eventually!',

-

It is also interesting to note that the output function

of a machine satisfies the same algcbraic condition as the
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cocycle‘i24, a9} defined for a group act .in a measure
theoretilc set uprand the thea v of cocycles play important
roles in HWermonic Analvsis, specially, in the study of indu-
ced representations of locally compact second countable

groups Lcf, Varadarajan ¢42]) and the invariant subspaces

of Lz(B)n B beinz the Bonr group wcf. Helson .22]).

In view of all these observations we have ventured to

study topological machines and write the present dissertvation

This Cissertation is divided into threc chapters and is hased

on ‘the author's whrk ¢uring the periecd 1969-1975. Chapter I

is devoted to some ag&pects of semigroun acts and Chapters II1

ant I17I to machines,

Llthough an introduction and a summary are given in the
beginning cf each chapter we give below a brief summary of the

proplems considered and the results vpresented in this thesis.

In Chapter I, our main problem 1s to investigate the
nartitioning cf

various kinds of Ahe state spaces of semigroup acts anc a few
related gquestions, Several results towvards the characterisa-

tion of acts for which manimal orhits (or inverse-orbits 1.1

subsets of the state spaces which are mapped onto a given
point by one or more of the inputs) or orbits partition the
state spaces are presented In Sections 2y 3y 4 and 5, Some

remarks are also madgs in Section 6 concerning quotient acts

¢
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induced by thé apove mentioned partitions of the state spaces.
However, the study of these quotient acts is very much income-
plete., In Section 7, we investigate how a produvet act inherits
from the component acts certain proverty whiéh may be the maxi-
mality of orbits (or inverse-orbits) or the partitioning of the
state space by the maximal orbits (or inverse-orbits) or orbits.
Finally. in Section 8y we 1nvestigate how a homomorvhism carries
over certain propertics mentioned above from a semigroup act

wnto another,

In Chapte? II. our main“problem is to obtain structural
characterisations of the output functions of topological
machines. 1In Scction 2, vwe ohtain a few elementary results for
a few special but fairly general situations, In Section 3, we
obtain characterisations of outnut functions for machines
ﬁhose input spaces are certain frecly generated monoids or
groups, Finally, in Section 4, wec consider machines whose
input semigrouns act on themselves and are certain special
classes Of threads having identity and zero {111 and obtain
results tovards the structure of cutvut functions of such

machines,

In Chopter IB, the primery objective is to eutcnd certain
concepts and results of the algsbraic theory of machines to the
topological case, First, in Section 2, a slichtly general

version of Kelemen's observations 28] concerning the existence
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of certain unique compatible topologies for recursions are
glven, In Sections 3 and 4, ve obtain some sufficilent condi-
tions for the czistence of a unidue reduced form or a unigque
input-reduced form of a machine., Some results are zlso
obtained concerning the topological version of a problem of
Ginsburg .21] on the existcncc of an input~distinguished
machine with a finitc (compact) state space for any given
input semigroup., 1In Section 5, topological versions of the
conecpt of cquivalence of machines and a-few telaBed results
are presented, Finally, in Section 6, a few topological
facts related to somec problems of darlier sections are

proved,
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CHAPTER - 1

PARTITIONS OF THE STATEZ SPACES, QUCTIENTS,
PRODUCTS AND HOMOMORPHISMS OF SZEMIGROUP ACTS.

1. Introduction and Sammary

In this introductory sectiom we explain the basic
concepts relevant to our discussion about semigrcun acts and
give a summary of the results obtained which are presented in

the subsequent sections of this chapter.

1.1 Bemigroup Acts. Let S be & topological semigroup and
X =& nonvoid Hasusdorff space, An ggf+ denoted by the pailr
(X, $)y is a continuous {anonymous) function X z S — X such
that, denoting the value of the (anonymous) function at the
point {x, s) by xs, the associativity condition
x(sysy) = (xs;)s, holds for all sqr s, € 8 ané all x€X.,
We shall refer to this situation as an.zcticp. of. .S..on. X
and say that §__acts on X or use similar terminology. We
shall often refer to X and S of an act (X, 8) as the

state space andéd the input_seminroup respectively.

et e -

We. have used. . Juxtaposiltion to denobe the semigroup

|28, well. as_ the action map and we shall continue to &

operatior
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We shall mean by a

B < . o i T AL W, e E e

oup a topological semigroup and by

A W e A b . g

laus¢orff space throughout our discussion

[ G S

a_space a nonvoid

N v T Y L

Wlessy Of course; stated ofherwise explicitly,

g g P =

Of course what we have called an act should have been
called a righi.ackt: to be more precise: while defining a
iﬁii_aQ$4 denoted by a pair (S:; X),; as a continuous function
§xX =2 X where 8 1is a semigroup and X 1is a space, such
that (sysy)x = s;(s,%) holds for all sye 5,6 S and all x€X.
Howevery there is an obvious duality in these concepts., Ve
formalize this briefly ashgiven by Norris in his Ph.D, thesis
{36]. TFor eny éemigroup (Sy +)1 we define the dual semigroup
to be (Sy *) where s+t = t.s, Let 8' denote the dual of
Sysupprzssing mention of the operation on S, If now (X, 9)
is a (right) act, we define iﬁs dual to be (X S)'= (8', X)
where sx = xs, It follows that (8'y X) 4s a left act, If
we make a similar definition for the dual of a left act then
it follows that (X, S)''= (X, 8) for any act (X, 8), It can
be easily seen that each theorem about (right) acts is |
logically equivalent to a 'dual' theorem for left acts,
Because of this duwality it 1s immaterial whether we study
right or left acts, While in the literature 1t has become
more or less standare to consider left acts we have deviated

from this norm and:in this dlssertation,we shall consider only
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right acts as we find it more convenient for writing, particu~
larly so when we discuss about machines in the next two

chapters,

We may also point out that by an act we are really
meaning topological act and, if we do not consider any topology,

then we may refer to an act by the term algebraic act., However,

an algebraic act can also be regarded as a topological act if
we think that both the input semigroup and the state space are
given discrete topologies ané, therefore, an algebraic act is
also called a ?iégggﬁp;ggj, By an act we shall mean, in the

SeQuei: a topological act unless stated otherwise,

An act (Xy 8) can be viewed as a mathematical model

- 0of a physical system which can be at any moment in one of the
several states (the elements of X) and changes from its
present state x to the state xs upon receiving an input

s (which is an element of 8).

Before proceeling further we now list a few very standard
examples of acts,

1.2, Examples. (1) The classical concept of a gequentia]

achine or aubematon without output [2. 6, 21, 23] provides

examples of a very special class of algebraic acts, In this
casey the input semigroup S is a free monoid generated by a

finite input alphabet, the state space is a finite set X and
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the action map is such that xA % x for all =x€X where A
1s the identity element (null string) of S, The carept of
an algebraic act is more general where S may be any semi-

group and X need not be finite,

(2) Any semigroup acts on itself via its multipli-
cation,

(3) Any semigroup S acts on any space X via the
identity xs = x for all x€X and all s€8',

(4) If X i1is a locally compact space, then it is
well known that the set M(X) of all continuous functions
from X dinto itself is a semigroup under functional composi-
tion in the compact-open topology anc M(%) acts en X wvia
evaluation 1.,e., xf = £f(x) for each pair (x,f)€ X x MX).

(5) Ir I is any right ideal of a semigroup S,
then 8 acts on I by its multiplication,

(6) Ir S 1is a2 compact semigroup and C 1s a

right congfuence on S i;e;, ¢ dis an equivalemce relatian

on S5 and (x; y)EC implies that (xs; ys)€C for all s€S,
then (8/Cy 8) 1s an act defined canonically by the identity
{x]s = {xs] where 8/C dis the quotient space and [x]
denotes the equivalence of x, for xES,

(7) Every topological transformation group (22] is

an acty
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In view of Example 1.2(1) an act is often referred to
as an automatgn (14, 18, 29] or & paghine (5. 36] in both
algebraic and topological literatures, However: we acdopt the
simpler term act and reserve the term machine for a more
complex mathematical system (where we shall consider outputs)
which we introduce and studv in the next two chapters. 4 good

guide to the literature on acts: both alZebraic and topologicals

is the recent excellent survey article by Day {121,

We next introduce a few bhasic concepts concerning acts.
1.3, Definitions. Let (X, S) be an act and A andé T be
nonvoid.subsets of X andéd S respectively, Then we denote
by AT the subset of X which is the image of A x T under

né_ _y = _Xxs for some

- S . ST R S ST Y

the action map i.e.: ézuf;il;i_jﬁﬁi_é

(xs s)EAXTE  If A = §x% . then the set =xT will be referred to
as ?fggpgpﬁgihﬁaexi An S-orbit x5 will be simply called

an orbit. If an act is viewed as a model for a physical system.
then the T~orbit xT of a point =x€X 1is the set of all

states of the svstem into which the system can go starting from

x after receiving one or more inputs from T, We denote by
AT(_l) the set of all points of X whose T-orbits intersect

4 d.eq:

AT(-ll = {y: yvEX and yTﬂﬂ?-[g_%'

R L . T B W S R AR MM U M Mekm R s Ao e AL 8 e e A

Ir A= 3x% ; then the set XT(-l) will be referred to as

T-inverse-orbit of x€X. An S-inverse-orbit will be simply
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called an inverse-orbii. An orbit is maximal if it is not

properly contained in another orbit, An orbit is minimal if
it does not properly contain another orblt. A meximal

(respectively a niniral) inverse-orbit ‘s similarly defined.

For & set X a family {th of gubhsets of X is
called a coyer of X 1if UXt = X and a cover is called a
partition of X if any tvo distinct subsets helonging to it

are disjoint,

An act (X, 8) 1is called ¢is joint (respectively
i-disjointy or quasi-trensitive) 4f the family of maximal

orbits (respectively maximal inverse-orbits: or orbits) forms

a partition of X.

& (continuous) pomomorphism (respectively a fopological
isomorphism OF,simply,an iseomorphism) from an act (X, 8) onto
an act (Y, T) is a pair (£, h) where £ is a continuous map
(respectively a homeomorphism) from X onto ¥ and h 1is a
(continuous) homomorphism (respectively an iseomorphism) from
S onto T gacisfying for all x€X and all s€8,
f(xs) = f(x)h(s), If S =T and hi 8-> 8 is the iden-

e u o, A e e vE L e A, N R . 4R B A R WY e gm e A

tity map then the pair _(f: h) defining a homomorphism

- - ; can -— o o T . S

(respectively: an isgomorphism) may be simply denoted by the

g e e

single map _f  and we shall refer to _fi in that_ casey as a

;- —————

homomorphisu (respectively. ap. iseomorphism). By a homomorphism

- -
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Wwe shall alwavs mean continuous homemorphism unless stated
othervwise,

Suppose { (Zyi 91)§' and '{(Xi* S)E are two families
of acts, If T_r Xi is the procduct space of Xi's and TTSi
is the @artesian procduct semigroup,; then we can define the

product act (TTX ' TTS.) by (xi)(si) =1(%. 5.0 | and ghe

i e = o — ivi
‘-‘..-,.._.. .

product act (l|X ¢+ 3) by (A )s = (XiS) for all (Xi)GTTXi=

A A Sl T A g M B et

(Si)eﬂSi and SBS’,

If (X, S§) dis an act, then an eguivalenece relation C
on X is called a congruence if (x, y)€C implies that
(XS; ys)EC for all s€8, A congruence € on X is called
a ¢losed_congruence on X if C d1is a closec subspace of
X =X, A4 continuous map f from a space X cnto a space Y
is called a EEPFEEEF‘Tﬁﬁ,if a subset A& of Y 1s open iff
f-l(A) is open in X, If C i1s such a congruence that the
quotient space X/C is Hausdorff and the map gxi: X x S —>
X/Cx8y where q : X —> X/C is the canonical quotient map
anc 1% 8§ =—> S is the ifentity map, is a duotient map. then
the canonically induced action of 5 on X/C defined by
Ix]s = lxs] for all Lxle X/C and s€S, ix) being the equiva~-
lence class containing x ¢ defines an act (X/C, S), Sucn an

act (X/Cy 8), whenever; it is defined, will be called a

quotient act of (X, 9).
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An act (Xy 8) is called a compac
S are cOmpaét and it is called an onto act if XS = X, (X, 8)
15 called a unitary act or we shall say that §_ _acts unita-
rity on. X 1f x€xS for all =xEX. The properties of an act
belng unitary and ontp are somewhat reloted which we point out

in the following remark,
i
1.4, Bemark., Let (X, 8) be an act.

(1) Ifr S has an identity 1 and (Xy 8) is onto,
then x1 = x for all x€X, and hence, (X, 8) is unitary.

Conversely. every unitary act is conto,

(2) If 8 4is compact and acts on X normally
(i,exr xtS = x8t for all t€8)y then (X 8) is unitary iff

it is onto,

The proof of (1) is easy and (2) is a result due to

Stadlander [40]

Several aspects of acts have been studied recently fcr.
14] and the situation when the input semigroup is
a group is also well-known {ecf. 9, 22], TFor group actions
the orbits form a partition of the state space but the situa-
tion is different in case of semigroup actions in which case
all kinds of overlapping of orbits can take place. Our objec-
tive is to studéy acts from this peint of view. Some works
have been done by Stadlander 139, 40] and Borrego and De Vinr

L8] which are somewhat similar to our theme of investigation.
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Some of our results are purely algebraic and scme resuwlts-are
purslyaisehratic—amd some results depend on topological theory
of semigroups for which we refer to 4,B,P, Miranda's book
[3?]. We present these results iIn the subsequent sections

an¢ give a summary in the following par~graph.

1.5, Buwimsry. In Section 2, we.obhtain several results
concerning maximal and minimal orbits (respectively inverse-
orbits), We show that for a compact act every orbit (respec-
tively inverse-orbit) is contained in a maximal orbit (respec-
tively inverse~orbit) and: if the act is azlso onto, then the
maximal orbits (respectively inverse~orbits) form a cover of
the state space, We also obtain several results giving
chﬁracterizations of maximal and minimal orbits (respectively

inverse~orbits),

In Bection 3; we firs% show that every compact onto act
1s a homomorphlc image of a disjoint act ard then obtain seve-

ral results echaracterizing disjoint acts and i-disjoint acts,

Section 4 is primarily devoted to the study of gquasi-
transitive acts, Apart from the results about gquasi-transi-
tive acts we alsc make some remarks about point=transitive

ané transitive acts,

In Section 8+ we make two remarks concerning partitions

of a space induced by disjoint or guasi-transitive acts.
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In Section 6, we make 2 few obscrvations concerning
quotient acts corresponding to disjoint or i-disjoint or Quasi-
transitive acis.

ra

Section 7 is devoted to study how a product act inherits
from the component acts a given property such as maximality of
orbits (or inverse orbits)or disjointness (or i-disjointness

or quasi~transitivity) of acts,

Finally: in Section 8: we study how a homomorphism from
“a compact unitary act onto another such an act carries a given

property of act as mentioned above,

We give many illustrative examples and mention a few

problems for further study.
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2, Maximal and Minimel Orbits (respectively Inverse-Orbits)

L L T B e ——— W - - - - g L

In this section we present a few preliminary facts about

orbits and inverse-orbits which will be useful in the sedquel.

We start with some remarks gbout ideals in acts which
are well known lef, 40)], For an act (X, S) a nonvoid svhset
'Y of X is called an Jdep]l if ¥S C ¥ Ideals in acts
have properties similar to those of right ideals in semigroups.
If (X, 8) 1s a compact act,; then every 1deal A properly
contained in X dis contained in a maximal proper 1deal and
every ideal .contains a minimal idesl, Further, if R 1is a
minimal right ideal of 8, then xR is a minimal ideal for

any % in X, A minimel ideal is a minimal orbit,

.

Regarding orbits in an act, the following is a simple
but useful result which also appears in Borrego and De Vun
18], However:; our proof is different and dépends on the con=-

tinuity of the act and an application of Zorn's lemma,

241. Proposition, For a compact act every orbit is contal-

L e

ned in a moeximal orbit,

Proof: Let (X, 8) be a compact act ané xS be an orhit,
Let F be the collection of all orbits containing xS, Let
{ be the partial order on F defined by, for yS and z05
in Fy yS £ z8 ir ys (C zS. TLet F; be a chain in F.

Fl can be token as a directed set to define nets in X, As

g e
et W """"-ug..
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X 1is compact a met fﬁxt%; with xtS ePi has a converging
subnet —ithg wifh xt'SBF . Let %Xt‘% converge to vy, We
shall show that yS 1is an upper bound of Fp» Let XtSGPi

anq Xt's be auny element of Fl corregsponding to an element

X4t Of {xt‘. such that X4 5 . X418,  Then,for any sE€8, Xy 5=
XytSgr for some 5,168, Since S is compact the net {Ft'%
.has a converging subngt ﬁ;st,{% converging to, Says Sy As

the subnet E'Xt”}' corresponding to {Stgi% 2lso converge to

y and the act is continuous it follows that XS T X181 = ¥sy.
Therefore, x5 (U y8. Thus yS 4s an upper bound of F; and

“hencey by Zorn's lemma, the result follows.

The following simple example illustrates the fact that

compactness 1s not necessary in the above proposition,

242, Bxample , Let S = [Cy )Y act on X = Lx, =) ror
any real number xy by usual addition, both S ané¢ X being
givenlthe usuzl topology and © with usual addition as semi-
group operation, MHere, X = lxy =) = x + 8 is the (unique)
maximdal orbit,
However, as the rollowing example shows, in case of a

non-compact act an orbit may not be contained in a maximal

orbit;
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2,3, Example. - Let S = [0y 1), with usual topology and

aprrater R -

usual multiplicationy act on itself by its multiplicatiocn,

As a conseQuence of Proposition 2,1, the following 1is

immediate,

244, Remark. If (X, S) is a compact onto act, then the

family of all maximal orbits form a cover of X and, for any

maximal orbit xS, xExS,.

We next present a few facts characterizing maximal
(minimal) orbits andé inverse-orbits ané showing a kind of

'dual! relations between orbits and 3inverse-orbits,

2,5, Remark. If (X, 8) 1is a unttary act, then, for any

e

Xy Y& Xt
(1) xs C ys irr 38l 1) ¢ xstD | ana
(2) x8 = ys8 irr xstL) s yS(-l).

2468, Proposition, If (X, 8) is a unitary act, then the
following statements are equivalent,
(1) xS is a maximal orbit
(2) x8 = y8 R y@xS(-l)‘
(3) wsl-1) o yS("lg o yexS(—l).
(2) 2" C ys  irr yexs<1),
(5) xstD) C x5
(6) (xs™)s = xs,

(7) XS('I) is a minimal inverse~orbit,
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Proors.
(=1)

(1) = (2). If yexS ', then x = ys for some s€S @&nd

so xS (C yS, Hencey by (1) xS < y8, Again, as the act is |

wnitery, x5 = y$ dmplies that yexS( ~1) '

(2) = (3), Follows from Ramark 2,5 (2).

" (3). = (4), If xS('l) (: ySy then, as the act is unitary,

S(—l) , Bonversely, if-

(-1)‘

x = ys - for some sES and so yEx
yBXS(“l) we shall show that XS(-l) C yS. If z&xS
then, by (3), XS(“]‘) = zS("l) ané hence, £ = yt for sonme
€8,

(4) = (8) = (6). BEasy,

(6) => (7). If, possible., let yS("l) C XS(-]’) for some
yeX . ;Then, ror some s88 ys = x end hences, x5 C yS.
Again yS C'(XS(—]“)) 8 = x8, Hence x8 = yS or, equiva-

tently, xst"L) = gt~

(7) = (1), Ir xs  ys for some yEX, then yS('l) C x;s(’i"l)

{«1) -
and hence: yS° S XS( 1) opy eguivalently, x5 = yS,

The proof of the following proposition 1s also quite

simple and similar. Therefore we state thils without proof,

2.7, Proposition. 1r (X, S) 1is 2 unitary act: then the

following statements are equivalent,
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(1) %8 is a minimal orbit

(2) =x8 = yS | 1 Ff0 EEE 22 e

(3) £t = ys("l) iff yexs
(4) xs (. yS('"l) iff  yExS

(6) (xs)sl=1) o og(-1)

(7) = (-1) 1s a maximal invsrsc-orbit,

The following remsrk will also be Of some usc in the

§&quel .,

2.8, Remark, Ir (X, 8) is a compact unitary act, then

the following statements are true.

(1) For any =xeX, x8 ( w.é s(-1) : xS is a

minimal orbit contained in xS<- .

(2) For any two minimel orbits xS and ¥§ ,

%S ﬂyS(_l) P iff xS = y8 ,

(3) Ir w8 15 ¢ mazdmal orbit and o union of moximal
inverse-orbits { %y S(-l)é ¢ then %xa S Eane in¢eed all the

minimal orbits contoined in xS,

P;PP_I": (1) 7Tr vEXS, Lhen y = xs for some s€8, and so,

vS C zs, Thereforw if X, S 1s 2 minimal orbit contained

in yS, then yoyst™l) Xy g1
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oyl ::S-ﬂ‘yS('l) #Z @, thon, for some s¢t€5, xst = y,

an¢ hence, x5 = yS,

{3) If v2 is ony minimal orbit contained in xS, then

yS ) Xy S(—l) = for somg  « ané SO, by (2), vS = x5,

We nov give tuo examples of non~unitary acts for which

some of the ahove rcsults fail,

2.9, Example, Tet 8 = la, ) be an additive semigroup
0

My

of reals for some a 7 an act on 3itself., Then the orbit

~

of & is »2a,; ©) ond is the (uniqus) maximal orbit but the

Inverse=orbit of a is empty set. Therefore, (6) of Proposi-

2.10, Example., Let X be any nonempty space. Define

multiplicat

Fde
[
=

bd

on as follows, For any =Xy yE€X.+ Xy ™ X4
for some fixed x,EX. Let G be any group and S = &xX be
the €artesian product semigroun with coordinatéwise multipli-
cation, If S acts on itsclf, then G 'x{ xk 1Is the only
orbit which is, thereforc, both moximal ané minimal, Here

(1) <=> (2) 1is not truc in Proposition 2.7,

We concluce this sectiom by rzcording {wo more facts
gbout inversc-orbits, Ve omit the detiiled proofs which are

easy by our prcvious ohscrvaticns,
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2,11, Pronosition, If (I, 8) is & comnact act, then the
folloring. statoments are true,

(1) 4ny inverse~orbit is contailned in a maximal inversc-

crbit, |

(2) A4nv inversc-orhit contains a minimel inverse~orbit,

-of

1y
( 1)

l_l

(3) Ir, further, (X, 8) 1s onto, then the fam

b

maximal inverse~-orbite forms a cover of X and, iIf xS

) (1)

is & maximal irversc-orbit,; thxn x€xS

‘Proofi. We prove only (1) and omit the proofs of (2) and (3)
which are similar and quitc easy. If ::S("l) is any tnverse
orbity then, for a minimal orbit yS contained in x5, yS("l)

(-1)

is & mazimal inverse-orhit comtalnirg xS
Finollyy we note the follovring wvhich is slmilar to

Remark 2,0 and omit the easv woroof,

2,12, BRemark. Tf (X, S) dis a compact unitary act, then
the following statemsnts are true.

(1) Por any x€¥, x (-1) C w {x,8 ¢ x, (=1) is &

minimal inverse-orbit contadined in x S( l)} .

{2) For any tiro minimal inverse-orbits ::S('l) and

N NG D - L

'
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. -l ) . \ \ .

(3) 1If ::S( 1) is a maxrimal Inverse~orbit and a
. . 2 o) "l

union of maximal orblts i X, D} v then fx& S( )3 are

indeed all the minimal inversc-orbits containecd in :cS(—l).

3+ Disjoirt Acts an¢ 1-Disjolnt Acts.

S PR Y [ wom o o

Though the family of maximal orbits (or invcrsc-orbits)
of a compact onto act forms a cover of the state space it does

not, in gcneral, form a partition as illustratcd below,

3,1, Bxample. Let S = [0, 1], with usuzal topology and
usual multiplication, act on X = [-a, al, for somc positiwe
real numbcr a and with usual topology, by ustal multiplication
Thers arc two meximal orbits viz., =8 = [-a, O] ang
a§ = [0, a] which intcrscct, and there is a unique minimel
orbit viz,, 08 = ‘0% ana os("l) = X is the omly maximal

inverse-orbit,

5,2, Example. Dot 8 =5(x 0) 3 0<x <154y 3(0, y):
(0, ): 0 < v & 1‘25 ' considercd-as a subspace of the pl:s.he'
and thc multiplication in 8 be dofincd as (%, yi(x'y y")
= {xx'y xy' +y) for 211 (%, v, (x': y')e 8. Let
= §(x 0) ¢+ -1 <x 1, (0 y)i -1 £y <1 % consi-
dcred as a subspacc of the plane, Lot the action of S on X
be dcfincd by, for (x; y)EX and (x', yDes, (x v (x'y y)=

(xx's xy'+ y). Therc arc two maximal orbits, corrcsponding to
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the points (=1, 0) and (1, 0), which contain a common point
(0, 0), For any =1 £y <1y (Of y) is a minimal-orbit as
{0y y)8 = (0, y¥). The meximal inversc-orbits corrcsponding to
the minimal orbits (O, y) arc (0 ) (%, 0) ¢ &y for
0<yg£1, (0 U {_(Xz 0): x Ly } for ~L £ v <0 and
{«1y 1] for y =0, Thc maximal inverseﬂégg?arc also notg
disjoint.

However; we have the following result which alsO appears

in Borrego and Devun isl.

3,5 Proposition. Let (X S) be a compact onto act,
There exists 2 disjoint act (X*y 8) suchthat (X, 8) isa
romomorphic image of (X*y S), If the set Y'zrfxn xS is a
maximal orbit or (X, S) } is closedy then X* 1s compact.
Also the action of S restricted to a maximal orbit of (X, 8)

isiseonorphic to that on a maximal orbit of (x*y 8),

chs . s
Proof:. The proof involves a Castruction of a suitable act

a (R ¢ 8l 5

oL
Let X* = U%%}:ﬂ; x xS ¢ %€ Y% be considered as/(sub-
space of X x X, We first show that, 1f Y is closedy then
¥* is closedy and hence: compact, Let i LA (xa:xasa)i ,
be a net in X* converging to, say, z = (x, v). We shall
show that (xy y)e X*¥, Since Y is closed and S 1s compact.

by the continuity ¢f the act, it follows that x=€Y and ¥y = Xs
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for some s€8, and - soy 2CX¥,

Now define the action of S on X* as follows: For any
(xy Y)EX* and sC8& (xy y)s = (x ys), It is clear that
(X*, 8) 1is a disjoint act whose maximal orbits are {1z} x x8

for any x€ Y,

Finally, let h : X* => X be defined by hix, W = W
ror all (x, y)eX* and 1 : 8 > 8 Dbe the identity map on
S, Then it is easily seen that (hy 1) is a homomorphiém
rrom (X*, §) onto (X, 8) vwhich restricted to any maximal

orbit is an iseomorprhism,

e shal]l now consider the conditions under which the
maximal ofbits (or'inverse—orbits) form a partition of the
state space of an act, Towards this our first result is as

foliows:

3.4, Proposition. Let (Xy 8) De a compact umitary act,

Then the following statements are equivalent.

(1) (X, 8) is disjoint,

LY

(2) For any xi y€X: xSfyS# ¢ dimplies that
YN SRS
(3) Forany # £ a#B (C X, ASABS # ¢ implies that

AS(-l)ﬂ BS(-l) ;é Q i
(4) Bach inverse=orbit contains a unique minimel Iinverse-

orbit,
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(5) Bach orbit is contained in a unique maximal orbit,

(6) Each maximal orbit is the union of the maximal inverse-

orbits corresponding to the minimal orbits contained in it.
(7) Each maximal orbit is a union of maximal inverse-orbits.
(é) Bach maximal orbit is a union of inverse-orbits.
(9) Each inverse-orbit is contained in an orbit.,

(10) There exists a (unique) closed congruence QQ on X such

- ——— g

that each eduivalence class is an orbit.

Proor:. (1) => (2). Supposer for i Y€ Xi xS NyS # #. Then
the maximal orbits containing xS and yS Intersect, and

hence, are equal 1tOy say: 2 S for some %€X; But then

7 € XS(“l)f\ yS(-l).

(2) => (3). For ##A4#B (X, let z€ A4S MBS, Then
for some afd, bEB and st t68,; we have 2 = as = Dbt € asSNbs,
Hence aS(‘l) n bS("l) ;{ Q’ WhiCh implies that AS( 'l)m BS( "'1)?{9’.

5 cl=1)

(3) => (&), Tety if possble: yS("l) and be two-

minimal inverse~orbits contained in soue inverse=orbit XS("l).
Then x£ vy SN 78y and hence, yS(_l)f\ZS(’l) Z ¢ which impliles,

by Proposition 2,6, that yel-1) - 2 gl=1)

() => (5). Tet, if possible, an oxh:it =8 s omtiatned I two

maximal orbits, say, .yS and %38 Then yS(-lkJ ZS('I)C: xs("l)‘

(~1) . ZS(-1)

. Now, by Proposition 2,6¢ yo and are two minimal

inverse~prbits, and hence, are equal,
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(5) => (6), Suppose xS 1s a maximal orbit and 3x,8 iare

all the minimal orbits contained In xS, We claim that

X5 = U Xas(—l) A By Remark 2,8 (l)! xS C U X(xs(-l) : Conversely'
if yexocs('l) for gome «a, then :x.'OCS (: VAS C x5, Therefore,
yexs,

(6) => (7?) => (8). Trivial,

(8) => (9). Let yS('l) be any inverse-orbit and xS be
a maximal orbit containing the point vy Then: by (8),

=1 (=1)

1 and soy  y&€ x5 for some «43 Hence,

‘ he
xaByS and an C: yS;‘ Thus yS(-l) C: me(-l) C: 5 S5

(9) => (6), Let xS be a maximal orbit and_{ﬁxas]g be the
minimal orbits contained in xS, We have tO show that
xS = U X&S(_l). By virtue of Remark 2,8 (1) we need to show
that an("l) C_ xS for each «, HNow, by (9), X&S(-l) is

S('l) . since

contained in a maximal orbit, say, yS DBut xf€ x,
x€ xs(“l) e XGS(-l), for each a, Therefore, x€yS which
means that xS {_ yS: an¢ so, xS = yS.

-

(6) => (1). Supposc %18 and x,8 are two maximal orbits
vhich intersect, Then there exists a minimal orbit
vs C xS N %5, Let zS('l) be a minimal Inverse orbit con-

«-1)

tained in xls r\xzs as z€rz ancy therefore,

79 = xlS = X'ZS(’
(1) = (10). Derine Cg (L X x X by ineluding a point

(x¢ v) in Gy if x and y are contained in the same maximal
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orbit, It 1s clear that Cd is then a comgruence an X such
that each equivalence class is an orbit (infact, a maximal
orbi%t), e now shov that Cg 1s a closed subspace of 0 x BY,
For that, let §(xa1 ya)} he a net in Cé converging to

[ ..
(xy v). Then, for each o, there exist 2 ,CX and s,v t,E5
Now; by compactness of

such that x, = 2,5, and y, = 2

¥ and S and continuity of the act: we can conclude that there

S
alo”

exist ze€X ané sy t€S such that x = zs ané y = 2t and

soy (zs y)8C;. Therefore, Cg 1is closed,

(10) => (1), 1If €, is such a closed congruence on X, then
we claim that each equivalence class 1s indeed a maximal orbit.
.For, let Lx] be an equivalence class containing x and
supvose Lx] = xS, Let yS be a maximal orbit containing x8,
Further, for any &&X, 73S C: tzds because, if (2] = wsg,
then #e€w & dimplies that 8 (C [rl. Therefore:
x2x8 . vs C [yl which impries that [x] = [y] and so

xS = v8, Thus the maximal orbits form a partition of X,

An immediate result giving similar characterizations of
i=disjoint acts is glven belowv. We omit the details of the
proof which are easy and follow the same rattern as that of
Proposition 3.4. However, we incluce the nroof of the part
(1) = (10).

3,5, Proposition. Let (X, 8) be a compact unitary act.

Then the following statements are equivalent.
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(2)
(5)

(6)

(7)
(8)
(9)

(1.0)

(X, 8) is i-aisjoint
For any xy y8% XS('I){W yS("l) # £ implies that
x8 N y8# &,

For any $ # 4 #B C: b AS(“l)f\BS(—l) £ ¢ implies
that AS MBS # 4.

Each orpbit contains a unidue minimal orbit,
Bach inverse«orpit i1s contained in a unidue maximal

inverge-orbit,

EBach maximal inverse-orbhit is the union of the maximal
orhits corresponding to the minimal inverse~orbits

contaired in 1it.

Bach maimael inverse~orbit is a union of maximal orbits,
Each maximal inverse=orbit is a union of orbits,

Each orbit is contained in an inverse-=orhit,

There exists o (unigue) closed congruence €, on X such

oy T & e msam v W W ATk Y WG LR e W e dem

tha’ ecach equivalence class 1s an inverse-orbit,

Progf: (1) =» (10), Derine Cy (O X =X by including a point

(xy y) in ¢y If x and y are in the same maximal Inverse-

orbit, That ¢C. 1g a closgsed equivalence can he seen as in the

1

proof of Proposition 3,4, We nowy shor that ¢€; 1s Indeed a

(~1)

congruence on X. Let (x, y)c C;» Then x, ye€78 for

orbif

some maximal inverse=-ges ZS(-I). That isy 28 . x5 M y5,

ani soy xS(_l%J yﬁgul)C; ES(ul). Fotrg For any s€5; it is
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olear that (xs) 8 C x5 apa (ys)s C x5 and (ys)s T yS:

and sO; eslm1) C (xs) st=1) ana yﬁg-l) C (ys)s('l). oW s
e e ! v (e al=1) (=1)
py (5) which is equivalent to (1) both (xs)S and (ys)8

S(-l)'

are contained in the same maximal inverse-orhit @ Hence,

(xs, ys)& Cq4. Thus Cj 1s a conjrucnce on X, TFurther, each
equjvalence class is clearly an inverse-orhit (in fact; a

maximal inverse-orhit),

We now give an example of a compact act which is hoth

disjoint and i=-disjoint,

5,6. BExample. Let T = [C, 1}y the usual muliiplicative

P T

semigroup, and ¥ - L0y 1] with min multiplication i,e..

xy = min {'x, y¥ for all x: yéE, Then X = Bx7T 1s a
gets on X by multiplication, The maximal orbits are arcs,
(e, 1) which are pairwise disjoint. The minimal orbits

are the points (ey 0). ZBach maximal orbit (e, 1)S is a
naimal inverse-orbit correspondini to a minimel orbit (e 0).

This act is, theresfore, disjoint and i-disjoint,

Howevery 1f the Jdeal E X %ﬁo;ﬁ is shrunk to a point
to get X' and a guotient act (X', §). the maximael orpits are

ne 1orzer disjoint althouzl: the quotient act is still i-dis joint
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as there is only one maximal inverse-orbit,

A suitable sub-act of the act given in Zxample 3,2
gives an example of an act which is disjoint (in fact, with
only one maximal orbit) which ig not 1-disjoint as desecribed

helow,

3.7, Example: ler, Example 3.2]., Let S be as in

-

3,2 and X = % (ot B8 1108 Bu S 13&:}}01 v

Example

& g S 2

o

Finally, Example 3,8 motivates us %0 staite the rollow-
ing result characterising acts which are both disjoint and

i~disjoint,

3,8, Proposition, Let (X, S} be a compact mitary act.
Thé following 10 statements are edulivalent,
(a) (Xi S) is both disjoint and i~d¢isjoint,
(b) Bach maximal orbit is a maximal Iverse-orbit and

vice~versa,

Proof: (a) => (»), Let xS be a maximal orbit, Then as
(Xy 8) is i-disjoint, by Proposition 3,5 (4), if ¥S is the
unidue minimal orbit contained iIn xS, we claim that

X5 = yS('l). If 26xS, then 25 (C xS and %S5 contains a
(-1)

unique minimal orbit which must be yS; and hence. z2CyS

Conversely, 4f szS('l), then S (_ 28 anC hence, as (X, B)

[ 22

s ¢igsjoint, by Proposition 3,4(5), the unigue maximal orbit
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In whiech 28 1s contained in must be xS, Therefore, z£xS,

To prove that each maximal inverse-orbit is a maximal

Oorbit we can apply similar arguments,

(p) = (a), Suppose two maximal orbits X 8 and x28 inter=

sect and suppose yis("l) and ygs(_l) are two maximal inversee
orbits which equal xls and  x,% respectively, Then there

exists a minimal orbit £8 ( x; 8N %5 50 that

o (=1) (=1) . '
28 O 38870 8 vhich implies that both y; and ¥,
.are in" 28, anc¢ therefore, equivalently, ylS B y28 =285 ag
z8 1s minimal, Therefore, by Proposition 2,86, xS = %55y and
hence, (X! S) is diSjoint.

Similarly, it can be shown that (Xy 8) is i-disjoimt,
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Let (X: S) be an act. We say that 8 acts on X

point-transitively #f x8 = X for some x€X, transitively if

= X for all x€X, and, quasi-transitively if X8 =X angd.
for any =xy y€ X{ either xS =_yS or %8 NyS=#g. A transi-
tive act is clearlyquagi-transitiva and a quasi~transitive act
-1s transitive iff it is point-transitive, In this section we
shall present some results towardés the characterizatién of
quasi=transitive acts and mention some facts about point-

transitive and transitive acts which will be of some use in the

sequel.,

To start with we mention a few examples of quasi~transie

tive acts,

4,1, ZFxample. Let a topological group £ act an a space
X such that X8 =X, or eéuivalently, lcf., Remark 1,41 =xl=x
for a1l x6X where 1 1s the identity of S, ©Such an tet
(X: S)y called a topological transformation group [22], is

alvays quasi-transitive.

442+ Exgmple: Let (X; S) be a compact unitary act., Then
S acts pointeitransitively on each orbit, transitively on each
minimal orbit and quasi-transitively on each ideal which is a

union of minimal orbits,
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4,3 Bxample., Let (X, 8) be an onto act where S isa
right simple semigroup, Then, as S is the only right 1deal
of S, every orbit is minimal, and hence: (X, ) is quasi-

transitive,
Before proceeding further let us fix some notational
conventions to be followec through~ut the rest of this section

as_well as in the sequel.

4.4
S

=

otations. Let (X, 8) be an act, TFor an x€X we
denote by 9, the map 8¢ g ——> X defined by QX(S) = g
for sll s€S, Similarly, for an s€5 we denote by 9 the
map ¢4 X > X defined by ¢ (x) = xs for all x€X.
Finally, we denote by Cy the right congruence onp S dJdefined

by 9, l.eear Cp = {(s. t) QX(S) =9X(t)j

We now state a simple but useful characterization of
point-transitive acts which is well-known Lef. 27, 29, 38J.

We write the proof for completeness,

4,5 Proposition., Let a compact or discrete semigroup S
act on a space X. Then (X, 8) 1s point—transitive-iff for
some x€X, the right congruerca C on S induced by QX is
closed and satisfies (1) there exists an e€S5 such that
(esy s)e ¢, for all s€S; and (ii) the canonical act
(8/C.r 8 1s issonorphic to (X s) through an issonorphism
(ny, i) where h : S/cX ~> ¥ is a homeomOrphism andé 1:5 = 8

1s the identity map such that hle] = x vhere e 1s the
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elemont of 8 mentioned in (i), and Lel denotes the equiva~

lence class cortaining e,

Proor: Let x8 =X, That €, 1s closed can be shown by a net
ergument, If @68 be such that xe = x, then clearly (es, S)@CX
Tor all s€8, AlsO, the map h S/CX ~7 X defined by

nlsl = xs is clearly a homeomorphism, and hence, (h, 1) is the

requirec izeomorphisn .

'Coﬁversely|hif (1) and (1i) hold, then L[els = S/Cx and

via the iseomorphisn (h, i), xS = X.
The following remark is then immediate,

_e Remark, Let X be a nonvoid compact (or éiscrete)
semigroup & acting on X point-trénsitively such that for
some  x€xy 9,3 8§ —> X is a homzomorphism iff we can define a
mﬂtlpllc%tion in X so as to make it a left unitail semigroup
isemorphic to 8,

e rext prescnt a few results ¢concerning quasi-transitive
acts. Our first proposition is very simple and we omit the

proof,

€7 Proposition. Let (X, S) be an act. Then the following

statements arc equivalent

(1) $ acts quasitransitively on X,

(2) xs and 1fy for any =x. ytX,; v6x& then xCyS,

(3) 3 acts unitarily on X and each orbit is minimal as well

as mamimal .
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(4) xS = xS(ﬁl) for all x€X.

(5) 48 = as\"D) pop a1 FAAC X
(8) S acts unitarilv on ¥ and 4 = AS("I) for any
iceal 4 ( X,

(7) 1Ir AC X is any lideal, then xS{V A # ¢ implies that
XE4 for any xCX,

It is clear that a quasi-transitive act is both ¢is joint
anc¢ 1~disjointi but the converse is not true as secn in

Example 3,6,

L]

If 4 (C X 1is an iceal, then let us call 4 & prime
Jdeal ifs for any x€X, xS A #¢ implies that x6A. Then
Proposition 4,7 (7) says that an act is qQuasi-transitive irf
every ideal 1s a prime ideal. The following remark characte-

rizes all prime ideals,

448 Remark. Let (X, 8) bpe a unitary act, Then an ideal
A C X dis prime iff for any x€A, xS is a minimal orbit, or

in other wordsy S acts quasi=-transitively on A,

For the next few results we shall need some results from
the theory‘Of compact semigroups, particularly the results con~
cerning the structure or the minimal iceal of a‘compact semigroup,
le refer to 4, B, P, Miranda's book [37] for these results and

folloy_the notations given there which we record below,
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24,9, Vorations. TLet S be a compact semigroup, Then K
is the minimal iceal of S, R &tands for any minimal right
ideal of Sy E is the set of icempotents of S and 1(e) 1is
the maximal subgroup of & containing eC€E, We also let
K! =KMN E an¢ R'! = RN B, Further, we use the symbol TG
for the term topological transformatioﬁ groun which will oOccur

f#equently.

Then our next result about quasi-transitive acts can be

stated as follovs,

4,10, Proposition. Tet a compact semigroup S act on a

.

space X, Then the following statements are équivalent.

{1) 8 acts on X Qquasi-transitively.

(2) R acts on X wunitarily.

(3) Tor ecach e€K'y (Xey H(e)) i1s alG and
U{Xe:eeR'gz}{.

(£) Tor each x€X there exists an e€R' such that X = xe
(5) Tor each %£X therc exists an efXK' such that x = xe,

(8) K acts on X wunitarily.
(7) There exisis a (unique) closed congruence C, on X

gl P S T Sy © SR

such that each equivalence class Is a ninimal orbit.

Proor:. (1) => (2). By Pronosition 2,7 (3), for any. xcX,
w©xS and xS is a minimal orbit, low as R 1is a minimal
right idealy xR 1is a minimal orbit for any xtX . Therefore,

as xR C: x3, 1t follows that =xExR = xS, '
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(2) => (3). TFor any e€K', XeH(e) = XeeSe = XeSe = XRe = Xe,
So (Xey T(e)) is a TG, Alsc note that XH(e) = Xe. lov

X = %R = X (yiale): ¢eR'{ )
Ugzi(e) ¢ eeR' § = UyXe: eeR'S.

(3) =»> (2), 8ince for any xtX, xfXe for some ceR! it

follows that x = xe for some eER'.
(2) = (5) = (8). Trivial,

(6) => (1). Since K = \JyR, for any x€X, x€xK implies that
xCxR for some Ry and X is a minimal orbit, and hence,

xR = x8 since =x€xR implies that x5 (.. xRS (C xR. Thus
each orbit xS ig minimal and S acts on A unitarily,

Hence (1) follows,

(1) => (7)., Define c. C X »x X by including a point (xy y)

o]

in ¢, if =8 =yS, Clearly, C, is a congruence on X, To
show that C, 1s a closed subspace Of L x Xy let -{(xa| ya)s
be a net in Cj conveféing to (%, y). Then, by definition

of Cy1 there exist s, and %, in S such that x, = YoSy
and y, = Xyt, for cach o, As %, =7 % Yy "7 ¥y and by
comnactness of §y we can assume s, "> s and t, 7 t
(othervisc, there exist converging subncts of By and ta *s
by continuity of the act 1t follows that xz =ys and ¥y = xt,
Therefore, x5 = yS8 and (xy y)€ Cy- 80 C, 1s a closed con-
sfuence such that each cquivalence class is a minimal orblt,

(7Y => (1), Trivial.
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As an immédiate corollary of the above result the

following fact 1s true,

4.11. Remark. Lef. Lemma 7,2, [7]], Let S be a right
simple (or simple) compact semigroup acting on a space o,

Then the following statcoments are cquivalent.

(1) 8 acts on X Jquasi-transitively.
(2) & acts on X wunitarily
(3) X8 =X,
Notc that S =R or S = K according as S is right

simple or simple,

1ith some morc rcstrictions on S or on the act-we can
have the following result somc parts of which are similar to

some results of Stadlander Lef. 381,

4,12, Proposition, TLet a compact semigroup S act on a
space X, If either 5 1is lert simple (%,e.: Ss = 8 for
all s€S) or the act is normal (i.e,, =xSs = xs§ for all x€X
and all s€8), then the following statcments are equivalent.
(1) 8 acts on ¥ duasi~transitively.
(2) TFor cach €K' and cach x€X, (xS, H(c)) is a TG and

XS = X, A

(3) For cach €K', (X, H(e)) is a TG,
(4) 8, % X => X 1is a homcomorphism for all s€K,

= xe for all X and all c€K'.

x
(6) $,t X => X is a homeomorphism ror som¢ sEK.
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(7) x = xe for all x€ X and for some e€k!

Proori. (1) => (2), Let =xCX and e€K', Ir & 1s left simple,
then xSe = xS, Again, if the act is normal, then

x8e = xe5 ({ xS which implies, by (1), that xSe = xS, Further,
xSH(e) = xSeSe = xSSe = xS, Also; by-(l), Xs = X,

(2) = (5). Let eck'. Then Xi(e)

C= (U8 s xex$) He) =y §xs - xexd = X,

-

I

Therefore, (X, H(e)) 1s a TG,
(3) => (4). 4s K = L}{H(e) t eeK'§ and (X, H(e)) is a TG

for all eeK', QS is a homeomorphism for all s€K,

(2) => (5), Tet eekK'! and sth(e). Then ¢, 1is a homeomor-
‘phism means that (X, H(e)) is a TG and sO x = xXe for all

xEX, .
(5) =»> (1). This follows from Proposition 4,10,

(4) => (8), Trivial
(6) => (7)., Let stH(e) for some €K', Then ¢ is a

nhomeomorphism vhich implies that x = Xe for all x€X,
(7) => (1). This follows from Proposition 4,10,

In conreetion with the above result we like to record the
following remarkwhiech is clear from the abOve proof,

4,13, Berark, The statement ' 8, is a homeomorphism' can
be replaced by ', 1is onto! in (&) anc (8) of Proposition 4,12,

In case, S is left simple, then S = K, TFurther, to prove the
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equivalence of (4) and (6) the hypotresis & 1s left simple Or
the act 1s normal is superfluous as seen below, Also we note
that any normal semigroup S acts on X normally and any com-

mutative semigroup is normal.

4,14, Proposition, Let a compact semigroup S act on a
space X, If ¢, + X => X is onto for some s€EK,; then 93 is
onto for all sES and 9 is, infact, a homeomorphism for all

sCK,

Proofi. TLetifor some s¢BK, 9 be onto. Then, if slGH(e)
‘for eek', Xs; =X dimplies that (X, H(e)) is a TG and so
¥ = xe for all x€X, If s€S, then Xs = Xes = Xese = X as

ese cHle) .
7

e next show that QS is a homeomorphism for all s€K.
Note thet, if feX' and f # e, then there exists an iseomor-
phism (i, #) from (X, E(#)) onte (X, H(e)), where i : X =X
is the identity map and £ : H(f) = 1(e), Befined by F(s)=es
for all sEH(r), is an isvomorphism lef, Theorem 1,2.6 in (3711,
because xs = xes = x@(s) for all x€X and all seH(f) .
Hence, as (X, H(e)) is a TG, (Xy E(£)) 1s a TG for all féK';

and sO; 98 is a homeomorphism for all sCK.

Tn Proposition 4,12 we have proved equlvalence of Quasi-
transitive acts and acts where each transition map P X2 X
15 onto (which is equivalent to saying that 84 1s onto for

some s€K) under some bypothesis. The implication from the


http://www.cvisiontech.com

—5}?—

At

onto-ness of 9 Vto quasi~-transitivity of the acts does not
demand all these hypothesis., However, the asamption of onto-
ness of some QS is sufficiently strong and has some implication.
tovards the algebraic structure of the input semigroup. This

is the content of the following propositjon which is a somewhat

improved version of a result of Day L14],

1415, gpgpggigjgp. Let a compact semigroup S act on a
‘space X ﬁifﬁ£$iyﬁlx (i,e,y for &:tES; s £t dmplies that

for some x6Xy xs # xt). If.for some s€K, 95 * X > X s
onto, then (X, 8) is a TG,

Proofi. By Proposition 4,14, we have 9. ¢ X =>X 1s onto for
all s£S8, Now if e € E, then xe =X and so x = xe for all
xcX, Fory if x€¥X, x = ye for somé yCX and sO xe = yee = ye=x,
'S0 xs = xese for all x€X an¢ all s€8 which impliles, by
the effectiveness of the act, that ese = s for all s€S,
Therefore, e acts as the identity of S and, in fact, the
only idempotent of §. Fory if fE€E and f # ey then Xff?X
implies that for anv =x€X, x = yf for some y€X, and s0y

Xf = yff = yf = yfe = xe, But the effectiveness of the act
implies that f = e, As e 1s the only idempotent, which is
the identity of S and S is compact, K = H(e) = eSe = &,
Therefore, S 1s a group. Finally, ¢, 1s onto implies that
Xy 8) 1s a TG,

Closely parallel to the above result we have the following

proposition.
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4,16, Proposition. Let a compact semigroup S act on a

space X effectively, If for some sEK, 98 t X=X 1s 1-1
ttren (X, 8) 1s a TG,

Froor: TLetifor s€Ky 9, be 1 - 1, Then,if s€H(e)s e€K',as
€s = s an¢ for any x€X, xs = xes, by the 1~ 1=~ ness of Qs:
1t follows that =x = xe for all x€X. So 98 ~1s ontoy and

hericey by Proposition 4,15, (X, S) is a TG,

If h i1s a homomorphism from a semigrcup 8
onto a geaigroup T and T acts on a space X,
t%en we can extend this action ¢f T on X +to an action of S
on X by letting xs = xh(s) for all x6X and all s€S such
that x5 = xT for all =x€X, Let us call the act (X, 8) a homo=
worphic (more precisely h-homomorphic) extension of the. act
(Xy 'T), The following proposition says (among other things) that
for a large class of acts eve}y Guasi~transitive act i1s a homo=

morphic extension of a TG,

€417, Proposltion. TLet a compact semigroup 'S act on a space

X, Then the following statements are true.

(1) If X8 =X ané S 1is left simple, then S acts on X
quasi—transifively an{ normally, But the converse is noct
true, 7 |

(2) If XS =X and S acts on % normally: then 8 acts
on X Quasi~-transitively.

(3) Let either & be left simple or S act on X' normally,
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If 8 acts on X quasi-transitively, then (X, 8) is a

7

homomorphic extension of a TG,

Eroof: (1). A4s 4n the proof of (1) => (2) in Proposition 2,12
1t is easily seen that (xS, H(e)) is a TG for all xeX and
a1l ecK! and, therefore, S acts on X quasi-transitively,
Further, as xS8s = xS and =xsS C: x5 for all x€X and all
s€3y by quasi-tragsitivity_Of the acty it follows that xSs =

X35 = xsS = x5, So S acts on X normally,

To see that the converse 1s false we note that, if C is
& compact group and S = Gx G is given the multiplication
Tslg 82)(tlt t2) = Qsltlg 1) for all (Sl {;52)1 (tl' tg)es
where 1 is the identity of Gy then S acts on G quasi=

transitively and normally but S is not left simple,
(2) The proor of this is gimilar to that of (1),

(3) Let £ be the congruepce on Sl(i,e.. £ is an

equivalence relation on S such that (x, y)é E implies

(zsy ys)e & and (sxy sy)€ £ for a}l s€S), the 'affectivencss
congruence! [14], defined by (s, t)€ £ 4if xs = xt for all
x€X, & 1s closed and,by compactness of 8, the canonical
_quotient semigroup S/F is indeed a compact semigroup., Tet
the quotient semigroup 8/ act canonically on X i.e.

xls] = xs for all =xex and all s€S, §s] veing the equiva-
lence class containing s, Then, by Propositions 4,12 and 4,15,
it follows that (X4 S/ ) is a TG and (X, S) is clearly a

homomorphic extersion of (X, S/& )v?a the homomorphism
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wd O

n: 8= 8/ 4 his) = [s] ror all ses,

The following is yet another simple fact ahout quasi=-

transitive acts,

4,18, Proposition: TLet a compact semigroup S act on a
space X, If QK 2@ = X Jis 1 -1 for all x€yS,for some
veX, then 8 acts on X effectively ané. S 1is a right simple
éemigroup. If, further, X8 = X, then 8 acts on X duasi=-

transitively,

Proof: That S acts on X effectively is clear, To prove
that S 1s right simple we show that S is left~cancellative.
For any s» ty t28 Sy If sty = stzp then ysty = ysts. Now,

by 1 = l=ness of ¢ t; = ty. Therefore, as S iz compacts

yst "1

S 1s right simple,
e next record a few facts about transitive acts, The
following is similar to Proposition 4,7 an¢ the easy proof is

ocmitted.

4,19, Proposition: TLet (X, 8) pe an act., Then the follow-
ing statements are equivalent,
(1) S acts on X transitively

(2) There is no ideal properly contained in X,
(3) x601) = x ror a1l xex

(o) ast™1) = x rora11 #44C X

We also have the following some parts of which are:

howevery well=known Ler, 27, 381,
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4,20, Proposition. Tet a compact semisroup S act on X,

Then the. folloving statements are equivalent.

(1) 8 acts on X transitively

(2) R aets on X point~transitively.

(3) For each e€K'); (Xey E(e)) is a TG which is transi-
tive, xH(e) = Ke for all =x€X andiJéXe : eeRi? =X,

(4) K aets on X point-transitively.

‘ (5) There exists an %X such that the right congruence GK

on & 1Induced by the map' QX ¢ 82X is closed and

satisfies (1) an¢ (ii) of Pronosition 4,5 and (1ii1) rfor

each pair s; t€ S there exists an f€8 so that
( Sf! t) 6 an

Proof. ;
(1) => (2). For any x€X, xR is a minimal orbit and so¢ by (1)«
xR = X, |

(2) = (1). 1If, for soume T TR W whieﬁ is a minimal orbit,
then yS =X for all yeX,

(1) =>(3), By Proposition 4,10 (3), for any e€K',(Xe, H(e))

is a TG andrg,%‘Xe : e6R'$ =X, Now, if vy = xe €Xey then
yH(e) = xeeSe = xRe = Xe, Hence, H(e) acts transitively on Xe

such that xH(e) = Xe for all xe€X,

(3) => (4), TFor any =x€X, xK = U I xH(e): eeK'é'
= U{Xe : geK' { = X,

PR
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(4) => (2). TLet, for some x€X, zK = X, Then, as K = UR,
x€xR for some I, But xR 1is a minimal orbit and so,

¥R = xS = x¥ = X, )

(1) =» (5), 7Por any x&X, x5 =X and so, by Proposition 4.5,
the right congruence C, on S induced by 9X= S =~ X satis-
fics (1) and (ii). We now show that C, satisfies also (131) .
By (1) and (i1), [s]l8 = g/c for all [sles/c, . Therefore, for
any [t]BS/CXt there exists f€8 such that [slf = [t] i,e..

(8T, t)chs

(5) => (1). ™We shall onlyshow that (5/Cy S) is transitive,
¢ [s]s ané [tls are any two orbits, then, by (iii), there
exist fyq f2€ 8 such that [s]fl = [t] and [t]fz = [s]y ang
soy [sls = [t]s. fThercfore, as [els = s/C, where e is an

}

element of § satisfying (i), (S/CX: 8) is transitive,

Foz an act (X, 8), let © he the ‘'effectiveness congru-
ence! on & [er. 14] i.e.y (s; t)EE if =xs = xt for all xe€X,
Te say that (X, §) satisfies the property (P) if there exists
a point yEX such i’ for s, t€S, (sy t)£F implies that

‘ys # yt. Then the following Is é restatement of a result of
Lin {29] which also appears in Day and Wallace [corollary

1.31, 151,

4,21, Proposition, Let X be a nonvoid space., Then there
exists .2 compact (or discrete) semigroup acting on X transi-

tively such that (P) is satisfied iff a multiplication *a X
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can be defined which makes X a compact (or discrete), left

v

unitval and right simplc semigroup,
Furthermoiey, analogous to Proposition 4,12, we have the
following,

- Propogition, Tet a compact semigroup 8§ act on X

= o -

oy
4,22

sucli that S/F 1s isfomorphic to K/& . If & is left simple
or S acts on X normally, then the followving gtatements are

equivalent,

(1) 8 acts on X transitively satisfying (P)
-~ (2) For each eek'; (X, H(e)/g ) is a TG which is transi-
tive and effective on X satisfying (P). Furthermore, X

L]
is a compact group iéEmorphic to H(e)/r .

(3) rFor some eSK', the statement mace in (2) holds,

e omit the easy proof. However, we remark that if g
acts commutatively, then & aects normally and as in this case
(P) is trivially satisfied we can omit the phrase 'satisfying
(P)' in (1) - (3) above, Also the equivalence of (2) and (3)

docs not demand all the assumptions of the proposition,
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Ov Partition of a Space induced by a Disjoint or Quasi-
transitive. Semigroup. Act.

Wren can we say that a given partition ofa space X is
incuced by a disjolnt or quasitransitive action of some semi-
garcup 5 7 Of course, the trivial partitioﬂ Of a space X formed
by the points of X is Induced by a disjoint or duasi-transitive
action of a semigroup § 3ifr 8 acts on X trivially i,e.y
Xs = x for ell xEX and s€S8, We present below a few simple

resulis concerning non-trivial partition that follow via

Remark 4,6 anc Pronosition 4,21,

931. Proposition, Let X be a nonvoid space. If a compact
(or ¢iscrete) semigroup § acts on X disjointly such that for
each maximal Orbit xS the map 9% ¢ §=> X 1is a homeomorphism,
then X is partiticned by lcfi-unital semigroups {th,vﬁmre
each X4 is a maximal orhit isﬁmorphic to 8,

Converscly, if 3 X. 3 is a partition of X srh that each
Xy, is clopen in X and a left-unital semigroupy then there
exlsts a semigroup S (which is commet if each Xy is compact)

acting cn X disjointly such that each Xt is a maximal orbit.

Proof: The first part follows from Remark 4,6, Conversely, let
= TT'Kt v the @artesian product of Xt‘s with coordinatewise

multiplication, TLet ft : Xt X 8 == Xt be defined as, for

(xt)e X SGS‘.ft(Xt t 5) = X, Py (s) where P, 1s the projec-

tion from S onto’ Xy« Since each Xt is clopen in X and
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f.xt} forms a partition of X the map f : Xx S > X deflned
asy for x€X, s€S8y f{x, s) = ft(X, s) if %€ X, v is contis-
nuous by virtue of the continuity of ft's. It is also clear

that f 1s an action map as each fy 1is so.

The hypothesis that {$X, %} forms a clopen partition of X
made in the sécond part of Proposition 5,1 is net always satis-
fied, TIn Example 3.6 we have described a disjoint éct (Xy 8)
where X 1s the unit square and' 8§ is the usval unit interval

semigroup, where maximal orbits do not form a clopen partition,

Analogous to Proposition 5.1 the following fact can be

stated for quasi-transitive acts.

5.2, Proposition. TLet a compact or ¢iscrcte szemigroup S
act on space X gquasi-transitively such that the action of 8
restricted to each orbit satisfies (P), Then each orbit is a
left-unital, risht simple semigroup iseomornhic to §/¢ for

some ¢loO0sed congruence € on S,

Conversely, if -iXt}; y where cach Xt is a l&ft-unital,
right simple semigroun, is a clopen partition of a space X, then
there exists a semigroup 8 (which is compact if each Xy 1is
compaet) namelY‘TTXtA' acting on X Qquasi-transitively such
that each X 1s an orbit and the action of 8 om each Xt

satisfies (P).
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In this connection it mav be worthwhile to mention the

fellowing problems. Howevar, we ¢0 not know any answer,

543, Problems. (1) "hen can we say that a given partitior

Of a space 1s induccd by an i-dls joint action of a semigwoup ?

(2) Let (X, 8) be an act. Define the pcelation 8 on
X by (x¢ 7€ 8 if $x% J x8= $y% U yS, 8 induces a parti-
tion of X ler. 39, 41]. Vhen can we say that a given partition

O0f a space X 1is dnduced by the d-relation on X for an action

on X of a semigroup S 7

)

- Quotiont Acts of Disjolnt (respectivelys i-Disjiotat
or Quasw—tran51tﬂvb) Ac s

P T

It ¢ is a congruence on the state space X of an act
(I7y 8)¢ then we have seen in Section 1.3 how we can define
canonically an act (%/C: 8)¢ called the quctient act of’ (X, 9).
Ir this section ve make a fev observatilons concerning the
quoticnt act (L/Cy S) vhere ¢ is Cq {respectively ¢y or ¢ )
which is the congraence on X 1induced by a disjolnt (respec=

vely an i-disjoint or a quasi-transitive) act (X, 8) comsi-

dered in Proposition 3,4 (10) (respectively Proposition 3.5(10)
or Proposition £,10 (7).,

If (X4 8) is a compact unitary act vhich is ¢isjoint

(respectively i-disjoint), then the congruence Ca (respectively

ci) on ¥ is closed and hencey by the compactness of the act
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(Xy 8): the quotient act (X/Cd : 8) (respectively (X/Ci ¢ 9)) is
defined, We shall show that,; if a compact semigroup S acts on
a space X quasi-transitively, then also the quotient act

(X/Cy + 8) is defined., We have already secen in Proposition
4.,10(7) that )Co 1s closed and we shall show in Promnosition 6.2
that the quotiecnt map q, + X => X/CO is open, From these  two
facts it follows that X_/cO is Tausdorff Ler, Proposition 8 ,

pe 79 of Bourbakl 191]. Purther, as 4, is open, the map

d, 1 Xx 8= X/C, X 8 is a quotient map, and so, .the quoti~

entv act ls defined,

Before proving that gy 1s open we state a result from
Bourbaki [Propositicn 6(e)y p. 54, [9]] which will be useful in

the sequci,

€,1. Propesition, Let R be an equivalence relation on a
topological space X, Then the quotient map qf X =>X/R is open
iff the closure of each subset of X which is saturated with

regspect to R 1is saturated with respect to R.

A subset Y of X 1s saturaced wlih respect.to.. R 1if
v :tj%;[x] ¢ x€ Y, Ix] 1s the equivalencc class with respect to

R containing x}‘.

Then wi can rprove the following.

6,0, Proposition, Let a compact semigroup S act on a space

e owaw op ow

X quasietransitively. Then the quotient map 4o ¢ X => X/C, 1is
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open,

Proof: TLet A he a subset of X saburated with respect to

Cov We shall show that the closure E of A is also saturated
wish respect to Co whencey by Proposition 6,1, it will follow
that ds is open, ©So let A be such that

4= ufxs: x€ A} . Ve shall show that A =y { x8 x€4S$.
Since the act 1s unitary A (= LﬁiXS i xE Eﬁg Conversely, 1if
KGE, hen we gshow that Ksez for any sE8, Since XBK! there:
ézists a net E:%x% in 4 such that Xy TP X andy since A is
.saturated with respect to Cot it follows that for any s€8,
$x,55 1s also a net in 4, But x, > X and the action map
1s continucus, and hencey x48 ~» xs which imnlies that

xst E v

Iiowvevery; for a coﬁpact unitary act which is disjoint

(respectively i-disjoint), the quotient map q, f X => X/C4
(resvectively a4 * X => X/C;) is: in general. not open as

seen in the folloving example.

6,3. Ixample, Let K:=ﬁ0,w:0;;yg1%U§bh0):
0 L ns l}' consicdered as a subspace of The »nlane and j
S = L0y 1] be the usual unit interval semigroup acting on X
via the identliy (xy y)s = (xsy y) for all (x: y)EX and all
s€S. The maximal orbits are (0, y) for 0 £y <1 and

i(x, 0): 0 £ xg1 g which are also the mazimal invepse~orbits.

(X¢ 8) is both fisjoint and i-disjoint, Here the sei


http://www.cvisiontech.com

-
A4 = %;(0: y) : 0 <y« 1'3 is saturated with respect to hoth
4 but the closurc kL of A is not saturated with
respect either Cq ©Or C;. Hencey by Proposition 6,4, neither
"le next glve a sufficient condition for 4 (respectively

qi) to be open,

6.4, Proposition. Let (X, 8) be a compact unitary disjoint
act, The quotient map qq : X = X/Cd is open if, whenever
Z.xm} is a net in X such that X, S 1s a maximal orbit for

all «. and K ~>» Xy then x8 is also & maximal orbit.

Proofi. Let A = yfxS: xCA and xS is a maximal orbit§ be
a subset of X satﬁrated vith respect to Cy. We shall show
that the closure A of 4 1is also saturated with respect to
Cd- s | ={J {XS: X64 and xS is a maximal orbit} = B,
say.

et vye€ A. Then there exists a net fy, %t in 4 such
that yg ™ Vv ¥y = Ry Sgr for x,64 and 8,651 and x,
is a marimal abit for all a.. By the compactnéss of (Xy 8)y
We cel assume X, "> X and s, ~> s and then, by the cati-
huity of the act: y = xs. Since; by our hypothesis, x& is
a maximal orbit an¢ x€ A, it follows that v€B, So & ( B,

Fext we shov that - B (C A, First note that, if xek ,
then, for any sE8y xs€A vwhich follows by anm argument similar

to that in the proof of Proposition 6,2 and the fact that (¥,S)
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is ddsjoint [cr, Proposition 3,4(5)], ¥Hence, im particular, if
x€d and xS is a maximal orbit, then x8 (C I, and hence,
B (. X,

Thls completes the-proof by virtue of Proposition 6.1.

6,5, Proposition., Let (Xy S) be a compact unitary i-disjoint

set. The quotient map qi': X => X/C; 1s npen ir, whenever
{Xag is a net in X such that X "7 % and ye€ XS("l)r

then there exists y € an(-l) for each @ such that 1y, V.

*

Proof:  As berore, let A = Li%_xs("l)z %6 A and  xst™1) 4o
a maximal inverse-~crbit '; . We shall show tkat 1% 3{){}{8(-1):

ag L and xs("l) is a maximal inverse—orbitf = Br say,

We first shov that L (U B, For this our first claim is
that if y€ Ay then ys (C A, Since, if ¥v€ Ay theny for-some
x€4 such that XS(—l) is a maximal inverse orbit, yexs("l) and ,
therefore, yS('l) - XS('l). Again, if y8 C: v'Sy a maximal
orbit so that &'S("l) is a minimal invergse-orbit and
y‘S('l) & yS("l) - xs("l). Therefore; in view of Proposition
3.5(6)y vs U v's C v's C x4, 1ow, ir v, then
there exists a net ¥ Jin Asuch that y = y, 1r yexs(“l). a
maximal Inverse-orbit, then ys = x for some s€S, MNow
YoS€ A for all « and y s> ys = x. Hence, x€% ang

2 ( B,

We next show that B C: X. TFor, if yﬂxﬁ("l), a maximal

inverse-orbit for =x€ 4, then, for some SES, yé = x, There
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There exists a-net Exai in A such that x, > x and, by our
hypothesis and the fact that (X, 8) 1s %~dlsjoint [ecf, Propo-
sition 5.5(5)j, the;e exists Yo xﬁs('l) for each o such
that y,€A and y,~ y. Therefore, y€A and B ( A.

This completes the »roof by virtue of Proposition 6,1,

For a compact unitary disjoint {respectively i-dis joint)
act (Xy 8)y the quotient map dq (respectively qi) is a elosed
map. If a compact semligroup S acts on a space X quasi-
transitively, then we de not know whether in general, (if X
is not compact): the gquotient map q, Will be a closed map,
Of coursey if 8§ happens to be compact group, then it 1s well~
known that the quotient map q, is a closed map and, in fact,
a proper map {(i.e,y a closed map such that qﬁ'l)(y) is compact
for all y& X/c,) Lef. Propositions 1 and 2y pp.251-~252,
Bourbaki [9]], fThererore, if S 1s left simple or & acts
normally on X then sinces by Proposition 4,17(3), (X, ) 1s a
homomorphic extension of a quasi-transitive action on % by a
compact groupy 4, must be proper, The following remark gives

a sufficient condition for ¢, to be a closed map,

6.6, Remark. Let a compact semigroup S act m a space X
quasi=-transitively. If the quotient map a9, 1s such that, ‘
whenever for a net f Xa;i in X which has no converging‘sub-
net, the net {q(xa)ghas no converging sub-net, then q, is

a elosed map.
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Eroof: It is necessary'and sufficient for q to Be a closed
map that 4y (3) = q (A) for any subset A4 Of % ler. Proposi-
tion 9, p. 56¢ [9]] where X <&enotes the closure of A, By

e

the continuity of Uyt (ﬁ) - q, (A). Cconversely, if
x€ &'ZE). then there exists a net .ix '3 In q (A) such that
x ~> X. Then there exists a net ‘{yﬁﬁa in 4 such that
qo(ya) = xa for all a, By our assumption and the Tact that
g ~> X4 ¥, "> ¥ such that g (y) = x4 and then,since yEAs
x€ qo(i);
The following tremark connects topological structures of

X an¢ X/C, for a quasi~-transitive act (X, §).

6,7, Remark. Let a compact semigroup S act on a space X

quasi%fansitively.
{i

(1) X/C0 is diserete Iff each orbit xS is open {and hence

clonen) in X,

(2) If the quotient map 4, 1s propery then X is compact
(respectively locally compact) iff X/C, is compact (respsc-

tively locally compact).

Proof: (1) Trivial

(2) Follows from the corollary %o Proposition 9.
pp. 105-106, Bourbaki [9] [cf. Corollary 1 of Proposition 2,
p. 252, Bourbaki [9]].
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Tn the rest of this secticn we are concerned with the

following problem,

6,8, Problem., TLel a compact semigroup § act cn a space

X quasi-transitively. How are the dimensions of X S and
X/c, related ?

We ¢o not attempi to solve this general pioblem in this
dissertation. It may, hOwever, be noted that the work of
'Stadlander [20] is closely reiated to this problem. Yo make
some remarks giving some sufficient conditions for the aquality
of cimensions of X and X/C, when both are metric spaces
ant we consider Lebesgue covering dimension (dim) which is
same thing &s the strong Inductive dimension (1nd) for metric
spaces. We refer to the books of Nagata [35] and Wagami [34]

for dimension theory,

First we quote a few facts from Nagata [35] for reaay

reference.

In what follows U and V are two metric spaces. Let
f be a continuous mep from U dnto vV, A4 point q of £(U)
is callec an unstable valve Oof _f if for every £ > 0 there

L
o - v a T

exists a continuous map g from U into V such that

(f(p)y glp)) < € for every p€ U,
g(ﬂ) C.V"' iqg 1
where we denote by 8 the metric of V,

ret T genote the (n+l)-dimensional unit eube 1i.e.,
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In {(.{» tewutX |X| S,ll 1_1!2!00‘0? n+l
1 n+1 -1

Then the following gives a characterization of dilmension of a

space,

6,9, Proposition [Theorem ITI,1, p. 52, Nagata [35]].
A space U has dimenslon £ n 4iff all values.of every conti-

nuous map from U into In+l are unstable,

We shall 21so need the following result,

6,10, Proposition [Theorem I7I1,6, p., 63, Nagata [3511.
Let f bhe:a continuous closed map from U onto ¥V such that

dim £ (q) <k for every a€V. Then dim U < dim V+k.
llow we can prove the followingu

6,11, Proposition. Let f be a continuous closed map from

U onto VvV, If dim f‘l(q) £ 0 for every @6V and there exists

=1 #~1)

a continuous inverse of f (i.en: is a continuous

map from V into U such that FIe(p)) = p for all pehtd,

then dim U = dim V.

ot o E

Proof: By virtue of Proposition 6,10ydim V 2 dim U, Now we

show that dim Vv £ dim U, Let dim U = n, If f1 _is a conti=

h+1

nuous map from V into I™'7, then f, = fjof is a continuvous

fE(U) . Theny by

L

map from U into _In+1 et g€ fl(v)”

Proposition 6,9, given € > C, thers exists a continuous map

~ 3
g from U into T8 T such that
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Q(fé(p); g{p)) < € for every pé Uy

where 98 denotes the metric of In+l,

(~1)

Nowr h =gof is a continuous map .from V into T such

that

2(£,(p)s np)) = 204D (), 2(eL(p))) <6
for every pE Vi
nv) = g(v) C " - a3 .,

Therefore;y by Proposition 6,9, dim V £ n = dim U,
Hencey dim U = dim V,

There are two more sufficient conditions for

dim U = dim V which we quote from lNageml [32].

6.,12. Proposition., Let f be a continuous closed map from
U on%o V, .
(1) 1f £1(q) consists of k points (k < =) for all

Q€ V, then dim U = dim v, [cf. Lemma 12-5 [Suzukil, p.73, [341].

(2) If the boundary of f"l(Q) is not dense=-ineitself
and dim £ 2(q) £ O for all Q€ V, then dim U = dim V
Lef, Theorem 15-6, p, 97 [321],

e
In view of the above results we can state some sufficlent

conditions for dim X = &im X/c, vwhere (Xy 8) is a quasi-tran-
sitive act, For exampley in view of Proposition 6,11,y we can

state the following.
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6,13, Proposition. Let a compact semigroup S at on a
metric spact X quasi-transitively such that X/¢, 1s a metric
space and the gquotient map ¢, X~ X/C, 1s closed, (If X is a
compact metric space, then these conditions hold). If dim xS0
for all x€X and @, admits of a continuous inverse, then

dim X = din X/Cys

8imilar statements can be made concerning dis joint and

1-dis joint acts,

In this section‘we have merely touched upon a general
problem concerning quotient acts which we formulate below,
This 1is analogous to a general problem concerning semigroups
about which a considerable amount of work has been done and has

been reviewed in a recent paper by Carruth [10],

6;1%; Problem lef. Problems 7 and 8 (10]1].

Let (Xs §) be an act and C a congruence on X (C may
be any one Of gy Cg ©Or Cj) such that the canonical quotient
act (X/Cy 8) 1s defined. “Then is it possible to make conclu-
sions about the topological properties of X, topological and/or
alg“braic propertics of &y or the action itself i1f the

structure of ¥/C is known 7
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7+ Proguets of Disjoint (respeCuively i-Dlstint or

ok oaee e w

Ouas1-tfan51t1ve) Acts,

Let L’(Xig Si)j and {(Xi, S)} be two families of acts,
In 8.ction 1.3 we have deflned the product acts (rTXi: rTsﬁ)
and (TTXi: 8). 1In this section we examine how does a product act
inherit a given property P rfrom the component acts where P
may be dils jointness,; i-dis jointnessy; quasi-transitivity, ete.

of acts,
Ye first study the product act (T]X;r 178;).
7,1, Lemma, Let '{Si} be a family of compact semigroups,

Then TTKi is the minimal ideal of TTSi 1ff Xy 1s the minimal
ideal of 8y for each 1.

Proof: Thils follows from thes fact that X 1is the nminimal ideal
of a compact semigroup 8 iff X is an ideal of 8 such that
K = Kak for all atXK and the fact thaty for arbitrary families

of sets {43 and 9B, 8. re [, T'TA =T, irf 4= Br
for a1l rel .

7.2, Lemna, (TTkin 1Téi) is unitary (respectively point-
transitive) irr (Xi‘ Si) is unitary (respectively point-transi-

tive) for each 1,

Procf: Trivial,
Then we have the followlng result.
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7.3 .Proposition, Let -{siﬁ- be a family Of compact semigroups,
Then (]]%4+ T18y) is quasi-transitive (respectively transitive) |
irr (Xqs Si) is quasi=transitive (respectively transitive) for
each i. Furthery the quotient act (]Tki/cot TTSi) is iseomor=-
phic to the product (T[[Xi/cg).,. TIs;) of the quotiemt acts
(%4 /Cg y 84) where ¢, and ci are the closed congruences

on TTXi ana Xy inCuced by the quasi-transitive actions of

TTSi and Sy resnectively,

Proof: The first part for quasi-transitive (respectively

transitive) case follows from Temma 7,1 and 7,2 and Proposition

4,10(6) {respectively Proposition 4,20(4)),

The second part follows from Proposition 6,2 and a well- -
known fact which is the corollary to Proposition 8, p. 55 of

rourbaki [92].

74, Lemma . Let ijxi. Si)i be a family of compact acts,

AL
- &

Then,for (xi)e TTkit (xi)TTSi 1s a maximal (respectively mini-
mal) orbit of (]iXy» 1]Si) iff x4 §; 1is a meximal (respec-
tively minimal) orbit of (X4+ S;) for cach 1,

P$99f} Follos from the definition of a maximal(respectively
minimal) orbit and the facts that Tor arbitrary families of

sets S A% v tB 5y rels (1) 114, C TlB, irf 4, C B, for
each ref ane (2) T]a, = T1B, irf A, =B, for each e,

Then we have the following result.
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7,5. Proposition. TLet {(Xj: Sj)} be a family of compact
unitary acts, Then (T]Xj: TTBj) is dis joint (respectively
i-dis joint) iff (x50 85) 1s dis joint (respectively i-disjoint)

s

for each J. Furthery if the quotient map qf t Xy = X4 /0

3 = Xj /CE ) is open for each j,ztheh
the quotient act (TTkj /cd,-T1sj), (respectively (Tij/ci, TTSj))

is iseomorphic to the vroduct (T?(Xj /Cg)n‘TT Sj)(rsnpsctively

(respectively qg : X

(TT(Xj / cg). T]Sj)) of the quotlent acts (Xj /Cg. Sj)(respec-
4 N 3 ,

tively (Xj /Ci sj))

where Cq and Cg (respectively Cy and Cg ) are the closed

congruences On TTKj and Xj induced by the disjoint (respec4‘

tively i~dlsjoint) actions of TTSj and S. respectively.

J
Proof: The first part for disjoint (respectively i=dis joint)
~case follows from Lemma 7,4 and Proposition 3.4(5) (respec=-
tively Proposition 3,5(2)),

The second part follovs from the corollary to Proposition

8y p. 55 of Bourbaki [9],

While the procuct act (17X;s 1784) inherits from the com-
ponent acts_(Xiy Si) the provertvics mentioned in the beginning
of this section, it is not so for the procuct act ([]Xy + 8)

as sech in the following examples,”
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T %8s Example, Let S be the usual unlt interval semigroup
and S act on itself by its multiplication, Then (S, 8) is a
compact unltary disjoint act (in faoty having'only one maximal
orbit), However, the product act (S%S: 8) is not disjoint

vhich can be casily SCeNy

747, Example., Let § = [0, 1] be the usual unit interval
wilth right-zero multiplication, i,c,y xy = y for all =x, yES
and S act on itself by its multiplication, Then (8; 8) is a
transitive act and.hence,a quasi=transitive aet.However: the
product act (S X 8, 8) 1s not quasi-transitive and,hence,not
transitive (in factg not even an onto act) which can be easily

verified,

In fact, without some restriction on the acts (X; + 8)

we can not say anything about’(TTkir S).

First we note the following fact about transformation

group (oriin shorts TG).

7.8, Proposition. Let i(Xi: 8)% be a family of acts. Then

R

(TTki 1 8) is a TG irfrf (X4 8) is 2 TG for all i,

Proof: Let: for any s€Sy 8g ¢ TTki ~> TTki be defined by
9, ((x)) = (x;8) for all (x)e TIX; ana 92- : Xy => Xy By

i — . o3 = i -
ss(xi) = xgs for all x;6¥; . Then, sinee 9 ((xi))- (Qs(xi))'the

result follows from the fact that QS is a homeomorphism iff

9i

s is a homeomorphism for all 1,
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As a ccrollary to Proposition 7.8 we can state the
following which exnresses an analogue of Proposition 7,3 and
which holds for a large class Of semigroup aets [erf.

Proposition £4,17(3) ],

749. Corollarys Let E(Xi 1 S)% be a family of acts which
are homom®rphic extensions of group achs, Then (TTkii 8) is

quasi~transitive iff (Ki y 8) is Quasi~transitive for each i,

Proor:. Lety for each iy (Xy+ 8) Dbe & homomorphic extension
30f Qxi. 4} vhere G is a group. Then (TTki1 8) 4s a homo-
morphic extension of (11Xi 1 G}y and hence, the result follows

from Proposition 7,8,
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8y On_ Homomotphismg of Aets.

Throughout this section we et h to be a homomorphism
from & compact nnitary act (X, 8) onto a compach unitary.act
LY_;_,S)J.” that isy h 1is a map from X onto Y, vhich need not
be continmuous, such that h (xs) = h(x)s for all =x€X and all
s€8., Compactness is assumed to guarantes the existence of maxi-
mal/.%zll'dbi%%n Igeﬁld inverse-orbits), We investigate how h maps
each maximal (minimal) orbits (’1nverse-or;oits) or a dis-
joint (i-dis joint) acty onto a maximal (minimal) orbit (inverse
orbit) or a disjoint (i-disjoint) act‘respectively. This sectdion

is mainly algebraie.

Clearly, h maps an orbit onto an orbit., Regarding

v

raximal orbits we have a few results,

8.1. Proposition, Every maximal orbit y8& or (¥, 8) is

h~imag- of some maximal orbit x8 of (X, 8),

Proof. Tor any maximal orbit yS ir xeh =(y) then
n(xs8) = W(x)8=vys, Ir x8{ x'S, a maximal orbit, then
h(xg8) = y8 {C h(x')S. Now makimality of y8& implies that

n(xt)s = ysg,

--------

8.2, Proposition, h maps each maximal  orbit of (X, §) onto
a maximal orbit of (¥, §) ififor any two maximal orbits x4 S

andé XES o 1(Xq el xlS # XES implies that neither .
h(xq) 8 g{ h(x?)S nor h(x,z)S C;Z( h(x, ) S.
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Proof. Let x8 Bera maximal orbit of (X, 8). 1Ir h(x;)8
is not a maximal orbit of (Y, S), then, by Proposition 8,1,
the¢e exists a maximal orbit x,8 of (X, 8) such that
h(xz,)S 1is a maximal orbit of (Y, S) and h(x)s C h(x5) 8,
But this implies that X;8 = %, 8y and hence, h(kl)s = h(xz)S.
This completes the proof, |

8,3, Proposition., h maps each maximal orbit of (Xy 8)
onto a maximal orbit of (v, 8) ifyfor any % X2€X;,d
C = hx) 8 r;:h(xé) S# @ implies that, ir cgélﬁzé)ss
then ¢ Fh(x;)8 for some x;€X such that X8 Cx,8,

Proof. Suppose for some maximal orbit x 8 of (X, 8) .
h(xp)s Ch(x,)8: a maximal orbit of (¥, §) which corresponds
to a maximal orbit %58 of (X, 8) by virtue of Proposition 8 y
So € =h(x)s and either ¢ = h(x,)s or ¢ G hixg)s, The
latter case¢ can not happen as then ¢ EEh(xg)S for some

%z €X  such that XIS(:ZXSS§ but then xlS = xSS ang

¢ = h(x;)8 = h(xs)8,

So h(xl)s = h(XQ)S.

8.4, Corollary. If h is 1-1; then h maps each maximal
orbit of (X, 8) onto a maximal orbit of (¥, §).

Progf. If h 1is 1-1, then we shov that the hypothesis of
Proposition 8,3 1is satisfied., Tet, for Xle_xge Xa
C=n(x)8 Nhix)s #¢¥. Theny if h is 1-1,

=1 i ' - Y& S

pTe) =58 N xS, If €% Nx,)S, then N (C) F %5 and
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either (1) 11(c) = x8 or (i1) n™M(e) @x & If (1) holds,
then xlS C: xzs and we take X of Propositicn 8,3 as Yo
If (ii) holds, then we take X3 of Proposition 7.3 as xy.

Thus the assertion of the corollary is proved.
Regarding disjoint acts we have the following results,

8,5, proposition., h maps a disjoint act (X, § onto a dis-

joint act (¥,8) if, for any y€ ¥, h™t(y) = xA for some x€X
ané @ # A C8,

Egpgi. Let; if possibley two maximal orbits ¥y S and VoS
of (¥, 8) interest, Then, by Propcsition 8,1, suppose x, S
ahd X5 8 are two maximal orbits of (X, S) such that

h(xy)8 = h_(y,;)S. i=142, lNow, for y€ y;S nygs# @,

WH(y) M %38 # 9y 1= 1.2, Then as (%, §) is disjoint,
hél(y) = x4 for some x€X amd @ £ ACS iff W i(y) is
contained in & unique maximal orbit and, SO, h-l(y)c::xis N x,8
which implies that XlS = ng. Hence, yiS = yéS,

Ve now give an example 'which illustrates that: without
the conditions agsumed in Propogsitions 8,2 and 8.4, the conelu-
sions of these propositions are, in general, not valid. This
also illustrates that the converse of Proposition 8,5 is not
true,

8,6, Exemple. Let X = {(0: y): 0 <y <13vils 0 gygcd}
and X' = {(0, y): 0 Ly < 1% be consicered as subspaces of
the plane. Let & = [0, 1], with usual multiplication,; act on
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X (and X') as follows: For (x, y)eX (or X') and s€S,

(x¢ ¥)s = (x1 ys) vhere ys denotes the usual product. Then

the map h ¢t X => X' defined by h(x, y) = (0, y) for all

(zy y)€X defines a homomorphism from (X¢ S) onto (X',8). Tt

1s easily seen that h Goes not map each maximal orbit of (X, &)
onto a maximal orbit or (X', 3) énd the hypotheses of Proposi-
tions 8.2 and 8,4 are not true., It is also easy to see that the
“hypothesis of Proposition 8,5 is not true but even then h maps

the disjoint act (X, 8) onto the disjoint act (X', ).

The following gives a necessary and¢ sufficient condition

for a homomorphic image of an act to be dis joint,

8,7. Proposition. h maps an act (X, 8) onto a disjoint
act (Y, 8) iffy for any 3;'€Y, there exists an orbit x§ of

(Xs 8) such that h™H(y) N xS# ¢ ‘and whenever x,S is an orbit
of (Xy S) such that

RNy VxS A ¢ nix)s C nx)s.

Proof: 'If part ', Let, if possible, ¥y 8 and y,S be two
maximal orbits of (¥, 8) which intersect. If ¥y, 8 ﬂygst
then, by Proposition 8,1, there exist maximal orbits X1 S and

and Xo$ Of (X, 8) such that h(xi)S = y48 1 =12 and

nIypn %, 8 ﬁ:cZS #@. But then, by the hypothesis, we must
have some orbit x8 of (X, ) such that nh™i(y) A x5 # ¢
and y45 C n(x)8, % = 1,2 which implies, by the maximal ity
Of y38: 1 = 142y that ¥18 = ¥5 5,
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IOonly if partl. Let yey anc T =3 x, S ¢ h"l(y)hxas # G’}:
Let P! =f:x& S & X& S is a maximal orbit of (Xy 8) such that
hWx})S is a meximal orbit containing h(x,)S for each x seé};
gince yen(x})S. for all «, b™l(y) N x!s # ¥. But,ror any

x), 8E€F',y 1i=1,9, (vt Vs = h(x} )sas (¥, 8) dis aisjoint.
@yg 2

Fowy by definition of ¥ and F', for any =x,8¢ F, ths corfespon-
d¢ing =x}SEF' which may be equal to x,S is such that

h(x,)s C h(x})8y and hence, as h(“‘)s h(z! )8 for any
2

x&éSBF'g 1= 1,2y the only irf part follows.

S48, Proposition, Tet h be a homomorphism from (X, §) onto

--------

(Yy 8), Then the following two statements are equivalent,

(1) (¥s 8) is disjoint and h maps each maximal orbit

of (Xy 8) onto a maximal orbit of (v, 8).

(2) TFor any two maximal orbiis xs81 1=1,2, of

(Xy 8)s N n(xy)s £ ¢ implies that h(xp)8 = nlx,)s,
1=1

Proor, (1) = (2). Trivial,

(2) =>(1). " suppose v18: 1 =1,2; are any two maximal orbits
of (Y, 8) vhich intersect, By Proposition 8,1 suppose X, 5
i =142, are two maximal orbits of (X, 8) such that H(xi)S =y, S
i = 1,2, Then /ii y;8 # ¢ dmplies that ¥18 = ¥ 8.

To show that h maps each maximal orbit onto a maximal

orbit let x8 be a maximal orbit of (X,S). Tet hi(x)s Cys,

a maximal orbit of (Y, 8), and let X S be a maximal orbit of
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(X+ 8) such that h(xl)s = y8, Now h(x)s F\h(xl)s # ¢ implies
that hix)s = h(xl)s = ¥B« |

Corncerning minimal orbits we have the following two

restlts,

(1) h maps each minimal orbit of (X, 8) ontd a minimal

orbit of (¥, 8).

(2) .Zach minimal orbit of (¥, 8) is h-image of

some minimal orbit of (X, 8).

Proofs (1). Suppose xS is a mintmal orbit or (X, 8). Suppose

y8 Ch{x)S for some €Y, Then for any sE8y there exists s'€S
such that ys = h(x)s' = hixs'), Now z = xs' dimplies that

28 = xS as x8 is minimal and so h(z)8 = n(x)8, Also sinae
h(z) = ys, n(z) s C.y5 and so h(x)s = n(z}s C ys Chix)s.

S0 h(x)s = y8.

Proof. (2). Let yS be a minimal orbit of (¥y 8). TLet
xei M (y). So n(x)S=yS and,if x'S 4s a minimal orbit con-
tained in x8 ythen h(x's)C h(x)s = yS, which implies that

h(x! S) = y8,

8,10, gorollary. A homomorphic imase of a quasi-transitive

s

(transitive) ac® is quasi-transitive (transitive),

e next consider maximal inverse-orbits and homomorphisms,
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8:11, Proposition. Bvery maximal inverse-orbit yS("l) of

(Ye 8) is h-image of a union of maximal inverse-orbits ‘ZXQS(-l)g

of (X, S) such that h(x,) 8 = ys.

(w1)

: Pxppi:.‘ Hotice that yS 1s a maximal inverse~orbit iff yS is

a minimal orbit and, by Proposition 8,9(2), there exists a minimal
orbit in (X, 8) whose h-image is yS., S0 suppose {ch 8 %are all
he minimal orbits of (X: 8) such that n(x,) S = yS. We claim
that yst=1) = uh(xas(’l)). tote that h(xs™1))  n(x)e(~1)
for any x€¥ and h(xoﬁ)s = yS iff h(xa)s(_l)f— yS('l).Therefore.
= 1( XL S(-l)) - ys("l), and hence, U h(x, S(-l)) (:ys(-l).
Converselys let zeys(-l). Then, for some x€X, h(x) = z, as h
1s onto and there is s€S such that h(x)s = y and h(x)sS = ys.

There exists a minimal orbit x'S (( xsS so that h{(x's) 5

o h(x) = zen(x s('l)) C Uh(xas(“l)),
8.12. S P.*.i,;..l.gp,- (Yl S) 1s j=dis joint iff for any two

maximal inverse-orbits xis(-l). i=1,2, of (%, 8)

ARSIEN S(-l)) #74 impifes thwi h(x)de= h(x,) s,

Proof, Suppose yis("l), 1 =1y 2y are any two maximal inverse-
orbits of (¥, 8) which intersect, Then, by Propogition 8,11,
there exist maximal inverse-orbits XiS("l) of (Xy 8) such
that n(x;) § = yy& 1 =1,2 and N h(xis("l)) # ¢ when it

follows that 8= VoS
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Conversely, let. for any two maximsl inverse-orbits

Xist*l)l i1=1, 2y of (X4 8)¢ F\h(xis('l)) # ¢. Then

'ﬂh(xi)s'('l)?‘ﬁ as h(xs("l))c h(x)s('l) for any x€X, Then
as (Y, 8) is i-disjoint, by Proposition 3.5(2), it follows that
M h(x;)8 # &, and hence, by Proposition 8,9(1), h(xl)S = h(xz)s.

In general, h(xs("l))c h(x)S(-l) for any x€X and
h((xs("l)) = h(x)S(-l) iff for any aeh(x)s("l):

‘h"l(a) A XS(-l) #¢. The following gives a sufficient condition

for the latter to happen in case of maximal inverse-orbits,

8,13. Proposition., h maps each maximal inverse-orbit of
(X 8) onto a maximal inverse~orbit of (¥, S) if for any two
maximal inverse~orbits xiS("l), i1i=1,2 of (X, S);

Nnlxg 81y # g impries that n(xps(™L)) = n(x,s1)y,

(=1)

Procf, Let xS be a maximal inverse-orbit of (X. 8).
Then xS 1is a minimal orbit of (X, 8), h(x)S i1s a minimal
orbit of (¥ 8), by Proposition 8.,9(1), and so h(x)S("l) is a

maximal inverse-orbit of (¥, §) such that h(}:S(-l)) C h(x)S(-l).
Now, by Proposition 8,11, h(x)s(-l) =U{h(xa8('1)) : x,5 1s a
minimal orbit and h(x,)S = h(x)s} and, for any &, B such that.
xq8 and xg8 are minimal orbits and h(x,)S = hixg)s = h(x)s,

by Proposition 2,7(5), since x,5 C xas("'l). x58 C xﬁs("l).

n(x)s C nix, ") N h(xg s¢*1)y yhich inplies that
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h( 3, S(_l)) = h(XB S("l)). Therefofe, hi(x S("l)) = h(x}s('lj.

8,14+ proposition. Let (X, 8) be disjoint., Then (Y, 8)
- is i~dis joint 1f, for any two maximal inverse-orbits Xy S(-l)
of (X: &) that intersect, h(x s('l)) = h(x, s('l)). If h
maps each maximal inverse~orbit onto maximal inverse~orbit,; then
this condition is also necessary,

Progf. 1In view of Proposition 3.5(8), it is sufficient to shcw

(-1) of (Y, 8) is a union of

that any maximal inverse-orbit yS
orbits, By Proposition 8,11, y8'~L) = U hix, 1)y yere. X, S
are all the minimal orbits of (X; 8) such that h(x,)8 = yS,
Since (X, 8) 4is disjoint, by Proposition 3.4(6), each maximal
orbit xS is a union of maximal inverse~orbits corresponding to
the minimal orbits contained in X8y and then, by the condition
of the Proposition, if xS =y x gl=1) then; since x€ r\xps("l).
it follows that h(x 8) = h(xB s¢"1)y)  for each B, This

implies that for any maximal inverse orbit xas('l) there

exist a maximal orbit x°8 such that h{x"8) = h(xas('l)).

So, if ys('l) = Uh(xas("l)). from the dis jointness of (X, S)
and the condition of the Proposition it follows that there exlst
maximal orbits j xS § such that U h(x™ 8) =1J h(x, s(=1)y =

v S('l) which is a union of orbits,

To prove the other way suppose (¥, 8) is i-disjoint ang

h maps each maximal inverse-orbit onto a maximal inverse=-orbit.
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Each maximal inverse-orbit of (Y 8) 4is a union of maximél
orbits by Proposition 3,5(7). Suppose two maximal inverseQi
orbits x4 s=1), 4 = 1:2: of (Xy S) intersect. 4s (X, S)
is dis joint, by Proposition 3,4(86), U X4 S( ~1) C x8¢ a maximal
orbit, 8o Uh(xy s("l)) C n(x)s C y8y a maximal orbit, As
(Y: 8) 1s i1-disjoint yS 1s contained n some maximal inverse
orbit y' 81, ana since. n(x; 8071)) = n(x )s( ") isa

‘maximal inverse-orbit for i = 1; 2, it rfollows that‘
U h(x,) £=1) = o g1 g e h(xi)S( ~1) . y. s(=1)

Thus h(xy st-1)y = h(x, 8 g\
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CHAPTER 1II

O SOME CLASSES OF TOPOTLOGICAL MACETINES

1., Introduction and Summary

In this section we introduce the concept of a topological
machine; give several examples and give a brief summary Of the

results presented in the subseduent sections.

- T W

1.1, Topological Machine . Let X be a nonvoid Hausdorff
space and S and T be any two topological semigroups whose
operations will be dencted by juxtaposition, A topological
nachine [43] M; denoted by a five-tuple M =< Xy S Ty £y g8 2
is defined by two functions f and g:¢ T <""“""g"“ Xx 8 "'f"'"'> Xy
both contimious with respect to the product topology an X x S,

satisfying the following two axioms,

AL, £lxy sy8g) = £{£(x: s7)¢ s5)
a2, glxy syss) = glxy sp)e(r(xy sq)v sg)

for all x€ X and all Syt 5268. Xy S and T are referred

to as the state space: the input semlgroup and the output

=y S-S e ok o ) e . wiirre

Eggigroqg respectively., Theé two functions 'f and g are

P

referfed to as the state-transifion (or next stabe) fanction

and the outpub funciion respectively Lef. 2. 6, 21, 23], The
function f satisfying 41 was termed an getf in Chapter I

-7 Oa
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and we shall continue to do so referring to f as the action
- map, e shall also suppress the explicit mention of f and
denote an act by the pair (X, 8) using juxtaposition for the
action map {as well as for semigroup operation) unless otherwise
necessary to mention f explicitly. We shall also refer to an
output fﬁnction simply'by the term'gngggppégﬁ and, understand-
ing that the underlying act (X, 8) is given, a machine will be
referred to only by an op~function g ¢ X x 8§ => T for some
semigroup T. By the term S=machine we shall mean a machine
whose underlying act is such that the state space is same as
the input semigroup which acts on itself by its multiplication.
We shall use the term algebraic (or discrete) machine if no
topology 1s consideéered and, in the sequel: the term machine
WALl alvays refer to a topological machine unless stated
Qtherwise explicltly, K11 spaces are assumed to be Hausdorff
spaces, and all semigroups (and groups) to be topological unless
stated otherwise. ‘

Returning back to the axioms postulated in the definition
of a machine we would like to point out that often the following

two adlitionsl axioms are also postulated though the axioms Al

and A2 are really the baslc ones,

A3, There exists an identity u of & such that
¥u=x for all x€X .,
A4, If A3 holdsy then g 1is constant restricted

e Xi:{ui =1
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A machine (respectively an act) satisfylng A% and A4
(respectively A3) may be referred to as a machine (fespec~
flvely. an act) with idensity.  u.

It Is worthwhile to note the following simple conse-

quences of A3 and 44,

1.2, Remark. (1) Tr A3 holdsy then g(z, u) is an idem-

potent of T for each xEX,

(2) If a4 nolas, then g(X x {n}) acts as
an identity of g(x x 8),

Proor. (1) Sinces by 42y g (s uw) = g(x, wu) = glxyw)elz u),
(1) rollows,
(2) Let wv = g(X xa{ug ) and tég (X x 8).
Then vt = vg(x, s)¢ for some €x; s)€ XxS
= glxs walx, 8) = glx; us) = glx, s) = t.
Alse tv = glx, s)glx, u)

= g{xy s)glxsey v) = g(xy sw) = gz, 8) =%,

In viev of the Remark 1,2, we may as well replace A4 by
the following: .,

A2', Tf A3 holds and v is the i&entitquf Ty then
gy w) = v for all x€ X,

A machine can be viewed as & mathematical model describing
the external characteriStics, namely the input-output behaviour,

Of physiecal systems like, for example, a computer; a verding
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machine or a tax display device etec., to name only a few, where
the set X may correspond to the various intermal states of
the system: 8 to the set of possible inputs (programs, come
mands etc.) and T to the set of possible cutputs (the results
éisplayed). Then g{x: s) is the output that we will have if
the machine is in the state‘ X and thé input s dis givens

or we can think of g(x, s) as the output resulting from the
machine's transition from'the state x to the state =xs, We
40 not expect an output unless some action takes place and that
‘means some input must be given. If the machine is idling in a
state x, we do not expect any dutput. In the 1lizht of this
discussion A2 can be interpreted as follows: if the machine
is in the state ﬁ and the input sy 1is followed by the input
Sor then 1t 1s reasonable to expect the output gl 51) to be
followed by the output g(xsys s,) i.e.y g(xrsysy) =

g(xy s9)g(xsys s,) A3 means that there is one imput u  which
leaves the machine in its current state x no matter what x
is and A4 means that the output is the same, whenever u is
the input; no matter wha* state =x the machine is in. A3
does not secem to be unreasonable, and if 43 holds, 1t seems

equally reasonable to assume AZ,

We now list a few examples Of machines.

1.5. Bxemples (1) Algebraic Machines. The classical concept

Of a seduential machine L2: 6, 21, 23] which models a sequential

switching circuit, a basic component of all electronic digital
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hachlnesy 1s a special type of algebraic machine where the
state space I is a finite sety the input semigroup 8 and
the output semigroup T are free monoids generated by some

e . and outyul alphavet
finite input alphabct/respectively and the axioms Al, A2, A3

anc A4' are satisfied, Cinsbursg's quasi-machines and abstract
) Ry complete .
machines. [20, 21] are genersalizations ‘of/sequential machines.

A quasi-machine i1s an algebraic machine where the state space
X need not be finite and the semigroups S and T may be
any arbitrary ones, An absiract machine is a quasi~machine

E W omm FmoE e e ow

where the output semigroup T ig left-cancellative.

(2) dnalog, Computers. Topolozical mmchines are not merely\
topologized Quasi~machines but can be regardced as ap@ropriate
mathematical models for d€scribing the behaviour of a large
class of physical devices called amalog or contimious compu-
ters. ler. Jackson [251]. 4 simple example cf an analog com-
puter 1Is that of an electric clock where thre position of the
hand clnras continuously with {ime The clock integrates with
respect to {ime the angular veloclity of the motor shaft and
Obtains a smoothy contimuiously chanzing angular Cisplacement
of the hands, The operatiom of this ¢lock can be modelled by
a machine as foilows. Let X denote the set of possible angu-
lar displacements (states) of the hancs from an imitial position
ané so X can be taken 0 be X = [0, »). Tet & denote the
Time scaley agailn, 8 = [0, o) with Usual addition, The dial
of the clock can be thought of as the unit cirecle and sO, if

we take T as the circumference of the unit cirele with
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rightfzero=?E}tip}icaygon i.e.y xy=y for all x, y&T

- B AR AR R SR R W R Ak e

the machine model of the clock can be take to be the following:

T <~“§"-X ¥ S —£;> X where f(x, s) = x + vs where v 1is the

(constant) angﬁlar velocity, =x 1is the initial‘(angular) posi~
tion of the hand‘and f(x: s) is the position after an Interval
of timé s, What we observe is the position of the tip of the

hand on the dial and g(xy s) = el(x+ vs)

gives the position
of the tip of the hand on the dial when the angular position

is = + wvs,

Apart from these concrete examples:; we list a few more
mathematical ones which also can be conceived of as suitable

models for some physical devices,

(3) Tet (X S) be an act, T a semigrowp ané v an
idempotent of T, Then g : X x 8 = T, defined by g{xe s)= v
for a1l (x, s} X x 8 1s an op-function. Here the device
just changes from the state x to the state xs but gives a

constant output,

() 1et (X, S) be an act: T a semigroup which may be
the same gs S, and h ¢ § => T a homomorphism, then
g : Xx 8= Ty defined by, gl(x: s) = h(s) for all

(xy s)e X x 8 is an op-function,
A slight generalizationh of (4) 1is the following.,

(5) Tet (X, 8) be an act such that xS = x for all

x6 X. Let T be a semigroup., Then a contlnuous map
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gt Xx8-YT, is an op-function iff g(x; s) = h(s) where
h, + 8= T d4is a homomorphlsm for any =€ X. For example,
if 8 =T = [0, ©), the ustal additive semigroup and (X, 8) is
an abover then g ¢ X x 8§ = § is a (continuous) op-function
iff for each =x there is a non~negative real number o(x)

such that glx, s) = alx)s .

Examples (4) an¢ (8) are not unnatural and we can con~
ceive Of physical devices which conform to these models, TFor
examnle, the Hlectricity Corporation may like to ipstall a
¢evice in each houss which will display the amount to bhe char-
ged for the electficity consumed upto any moment, Herey the
input to the device is the amount of electricity consumed and
the output is the price of that, Here we can take Y as the
set of poséible rates per unit of electricity and can be a
subset of [0y ©); § and T can also be taken as the set
10y ) with usual additlon, Then our machine model will be

T <“§”*X z 8 "£;> S
where flxy s) = x
glzy s) = zs
for all (xy s)€ X x 8, DMNote that no input changes the state
z (the rate pewr unit) vhich is actually determined and fixed
from time o .timé& by the authority entirely from other
considerations,

Pinally, the following gives an example of & -machines,
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(6} Tet S b e the usual multiplicative unit interval
semigroup and S acts on itself by 1its multiplication, Let the
function g : 8 x 8 => 8 Dbe defined by

‘ r 1 m{(tx) :
glxy y) = exp 2 - [ =37 at §  for some continuous non-nega-

y
tive real valued function m on S. Then g 1is an op~function.

%

satisfying A2 and A4',

We would also like to point outthat for group actlons,
in a measure theorctic set up, certain Borel functions called
cdoeyeles satisfy the same algebraic conditions as the (conti-
nuous) op=-functions in the present topological=algebraic set up.
Cocycles play important roles in Harmonic Analyﬁis ané details
of vhich are available in Veradarajan [42] and Helson [24],
In the followlng we merely mention what exactly cocyles are and
what roles the play. (Here we deviate slightly from the stan-
dard notations in that we take actions on the right).

1.4, Cocyclesy, Let G be a locally compact second coun-
table group with identity e and act on a standard Borel space
¥. Let u be a measure on X which is EE?E}:EEXEE}%P&.UD&GT
the action of Gy i,e.: for each g€ Gy u and g (where Mg
is defined by, for A C % ue{a) = u(Ag)) have the same mill
sets. Let M be a standard Borel group with identity 1.

A Borel function f¢t ¥xG= M is said to be a‘(lh Gy M)=

cocycle relative to pu 1f the following properties are

. —

- satisfied.
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(1) £(xs &) =1, rfor p-aimost all xex

(2)  rix, g8185) = flx gy ) f(xgys g,) for .

(» x» x M)-almost all (x, gyt gg)

' eX X Gx G,

where X 1s the Haar measure on G,
T 1s shid to be a strict cocyele if it satisfies (1) and (2)
everywhere, Functions satisfying (1) and (2) are called
cOcycles because these equations afe generalizations of the
identities which describe the cocycles in the cohomology
theory of groups., Tt was G.¥.Mackey who first-studied the
cocyeles in the context of arbitrary transitive actions of
locally compact second countable groups, It was the detaileg
study of these functions which enabled him to state and prove
the generalizations of the classical work of Frobenius on indu-
ced representations of (finite) groups., Later HsHelson and
D. Lowcenslager used these functions to study the invariant
subspaces Of LE(B), B the Bohr group., They discovered that
these functions are in a one-one correspondence with the

simply invarisnt subspaces of LQ(B).

Following the above we could have described an op=-func-

s g Pkt it s

tion as a continuous cocyele defined on a semigroup act.

Howevery since our motivation comes from algebfaic theory or

machines we shall stick to our terminology,

Various aspects of acts, both algebraie and topological,
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have been studied recently Lef, bay [14]] and abstract machines
have been studied by Ginsburg lcf, 20, 21]. However: machines
have not been studied in a tOpOIOgical-algebraié set u@. though
Ginsburg himself sugfested such an undertaking [ef, {2177, Stmitar
vicws hove also been erxprcsscd Sy severc] others; for example,.
sce  Arhin £ p, 270, 11\bay [12], wallace [43] and Wymore [45],

Tn the bresent chapter and the next we have initiated the study

Of topological machines which we believe to be a worthwhile

beginning in viewv of our above discussions.

'

In this chapter our problem is to ob¥ain results which
characterise the op-functions when the underlying act is given.
Some results characterising cocycles are knovn Ler. 42] but
no such works concerning €p-functions seem to be in print. Tt
1s difficult to obtain any result in a very zeneral set upsy but
if we consider a special class Of acts whose structures are
well-ulderstoody it 1s possible to describe op-funcﬁions for such
acts, Indeel, this is our strafegy which we will follow in the

subsequent sections where we present our recsults a brief summary

of whiech is given below,

1.5, Bummary. In Section 2y we present a few elementary
resul®ts characterizing the op-functions defined on a few special
but fairly general classes'of acts, 7In Section 3 we charac~
terize op-functions for acts whose input spaces are freely

generated monoids (or groups) in terms of continuous funetions
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from the state space into the output space satisfying certain
concitions. 7e also prove a fevw related facts. Finally, in
Section 4, we consider op-functions on acts whose‘input space is
a certain special type of thread with identity and interior zero
and acts on itself, We are able to give a fairly complete
picture of such op-functions, We also give many 1llustrative

examples,

2, ©Some Elementar Res ;ts

L e W W W W L W ol R e - o= -

in this sections we prove some elementary results eOncern-
ing the structure of op-functions corresponding to some special
classes of machines. We consider machines which satiéfy Al .
and A2 but need not satisfy A3 and 44 or A4'., Our first
result is concerned with machines where the op~functions
2t Xx 8=>T are of the form (%) g(xy s) = h(xs) ror some
continuous functﬁon G X => T 1i.e.: the output depends on
the state ¥ into which the machine goes from the present
state x and not what inputs bring the machine from the state
x into the state vy, Our Example 1,3(2) of the electric clock
specifies such an op~function. Note that the condition (x)
implies that h(x) = g{x, u) if the underlying act (X, 8) has &
an identity wu, Howevery whether (X, S) has an identity u

or not g defined via condition (x) is always an op=function.
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2+1. 'Proposition. Let (Xs 8) be an act with identity
u and ‘T any semigroup, Let g: Xx &= T be a continuous
function and let h: X => T be defined by h{x) = g(x, u).

Then the following statements are true,

(1) h(xs) = glxy s) ifr g(x, st) = g{xs,y t) for
all =x€¥X and.all s, t€S8,

(2) Ir T is a right zero semigroup: then g is
an op-function iff g(x, s) = h(xs) for all
(x: s)€ X x 8,

(3) Suppose g 1is an op-funcfion and h satisfies
h(xs) = g(x, s) for all (x, s)e X x &.
Then g(x: s) is an idempotent of T and a left
identity for g(xy st) for all =x€X and all
sy t€ 8, Ify, in addition, glixt x8) =1
for all x€ X 4 then T 1is a right zero Semigroup.

proof, (1) Suppose h(xs) = g(x, s) for all (x, s)e X x 8,

Then: for any t€8 g(x: st) = h(x(st)) = n((xs)t) = glxs, t).
Conversely, suppose g{x, st) = g(xé. t) for all =x€8 and all
st t€8s Then note that ‘ '

glxy s) = glxy su) = glxs,y uw) = n{(xs)u) = hixs).

(2) Ir T is a right zero semigroup, then for any
x€ X and sy t€3y g 1s an op-function irf
glx: st) = glx, s)a(xsy t) = glxsy; t) and hence, by (1), (2)
follows .
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(3) Since g is an op-function, for any (xs¢ s)€ X x Sy
glx, s) = glxy su) = g(xy s)glxs, v) = g(x, s)h(zsu) = g(xe s)blxs)
= g(xy s)g(x, s} and sor g{x, s) is an idempotent of T. Also,
for any tE6S since g(x: st) = glx: s)glxs: t) = glxy s)glxzist)s
by (1), it follows that g(xy s) is a lert identity of s(x, st)

purther, if as; b€ T and glxy s) = a and glxs: £) =D
for some xXEX and s: tESy then ab = gl sYalxsy t) = glx. 8t)
= h{xst) = h({xs)t) = g{xs, t) = b, Hence: T 1s a right zero

semigroup.

Let (X, §) be an act and T a semigroup (or a group) .
Then an op-function g : X x § => T 1is called a gimple
op-funciion 1f there exists a continuous function
bt ¥ = T such that (x) p(x)g(x, s) = blxs), or equivalently,
g(x; s) = b(x)_l »x%, s) if T is a group. The function b
satisfying () 1is said to_define the op-function g .
“le call such an op-function simple because if T i1s a group,
then any simple op~function 1s comnletely defined by a conti-
nuous function B ¢ X > T.

We shall show that in many situations every op~function
is simple, THowever, we glve two examples helow showing that

rhere are examples oOf op-functions which arc not simple,

x

xample., Let S be any commutative group acting on a

2.2

!

space X and 82. the Cartesian product group 8§ X 8t act on

7 as (xe (sqs 52)) ~> x8185. Let, for a commutative group Hi
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hy ¢+ 8 =H, 1 =1, 2y be two daistinct (continuous) homomorphisms
Then the (continuous) function g ¢ X x s2 => H defined by
g(xi(sqa sg)) = hl(sl)hZ(Sz) is an op~function because the map

x 3 82

=> H defined by k(sy+ s5) = hy(s;)hy(s,) 1s a homomor-
‘phism, e show that g is not simple, For, if
hl(sl)hz(SQ) = b(x)"b(xszs2) for some continhuous function

b : X = E then note that for s, = s;,l: RHS = 1, but THS # 1.

2,3, Example., Tet S be any subgroup of the additive group
R of real mumbers such that S 1s dens¢ in R with usual
topology. Let Sy stand for S with discrete topology. If
(X: 8) is an act for which 0 is an identity, the action map
X x 8o X will still be continuous if § 1is given discrete
topology and so we also have an act (X: S4). Theny for any
non~continuous homomorphism h of S into a group Hq
gt Xx 83 > H cefined by g(xi s) = h(s) for all
(x: 8)€ X x 841 1s an op-function vhich is not simple, .For, if
g 1s simple, then there exists a coﬁtinuous nap b ¢ X *> H
such that g(xy s) = h(s) = p(x) Ih(xs) for all (x, s)eX x By-
Now: by definition of h, therc‘is a sequence fsnﬁk' in S such
that s, = 0 in S but h(s)) —7*>1 in H where 1 is the
identity of IH. Then, becausc of the continulity of the art
(X 8)y 1f =x€X, xs, = x0 = x, Therefore, because b : X - H
is assumed to he continuous, b(x)"l b(xsn) =-> 1. But this is

-the same as h(sn) => 1y which is false, Hence no such conti-

nuous funciicn b can exist.
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That there exists a nonecontinuous homotnorphism on $:can
be seen as follows. Let H = R. Then there sxists a nonwcontimu-
ous homomorphism from 'R 1nto R. This follows from a conside~
ration of a Hamel basis for R and a cardinality argument. Then
the restrietion on 8 of any non-continuous homomorphism of R
is nen=continuous homomorphism of 8 asy if note S beling dense
in R and a continuous homomorphism being automatically uniformly

continuous there would arisq a contradiction.

The followring proposition iIs a slight generalization of .a

simple fact known in group theoretic set up ler. 22].

2.4, Propogition, Let g & S x S => H be an op-functlon for
some semigroup S and a group H., TIf S has a left identity
u (respectively a right zero =), then g 1is simple and the
map b defining g such that b(u) = 1 (respectively nb(z) = 1)
is unique. (In case & has a left identity g is simple even '

if E is just a semigroup and not a group).

Proof, Let 8 have a left identity u, Then deflneb : 8§ > H
by b(x) = glu, s) for all x€8,~ Since g is an op-function,
for any (x: y)€ s x Sy glu: xy) = gluy Dglxe ¥)

ie.r blxy) = blx) glx, y)

ie.e glxe y) = b(x)"* blxy) and, therefore g is
simple, Clearly: B ()= wa, if possible: let by Dbe
another map definins g such that bl(u) =1, Then. for all

(x¢ YESx 8y by ()™ by (xy) = v(x0)™ blxy)
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i,e.: b(x) bl(x)"'1 = b{xy)bq (2¥)

which implies that b(u)bi(u)-l‘= b(ydbl(yafl =1 for all *
y€ S8 and that means b ® by, ' .

Mext let S have a right zero =z. DPefine b : S ~> H
by blx) = g(x, z)™1  for all x€S. Since g is an op=-function,
for all (xz¢ y)E8 x 8y

glxy 2) = glxy y2) = glx. Pelzy: 2)

1,600 2(x: 'y) = b(x)"l n(xy) and soy g is simple,
Clearly, Wb{z) =1, Again, if possble, let by be another map
defining g such that b,(z) = 1. Then, for all (x: y)€8 x S
b ()70 by (xy) = b(x)"Ib(xy) implies tuat

b(x)bl(x)_l = b(xz)bl(xz)'l = b(z)bl(z)'l =1, and s01 b = b,.

2.5, Remark, The uniqueness of the map b defining a slimple
op=function in Proposition 2.4 1is sub ject to %the condition that
b(u) =1 (or blz) =1). In general., however, if & simple op-
function g ¢ X x 8=> H 1is defined byamap b ¢+ X = H and
H is a group:. then ahy translate Elwﬁ‘s-:?-ﬁ;-gi;'b'(24§4i~

bl(x) = hb(x) for some h€ H and all x€X) also defines b,

vl w o m o E ke S Th e Rl b ol P+ &k T D I T ) L R T

2.6, Pproposition. Let S be a commutative semigroup and
H a group, They any op~-fumction g : 8 x 8 => H is simple
and is derined, for any a€S, by the map b, ¢ S > H (or any
translate of b,) where ba(x) = gla; x)e(=x, a)"l for all

x€8, TFurthery any map b ¢ S => H defining g 1s necessarily
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a translate of ba for each actg,

*

$XOCLs FOT any a€Sy; let b, : 8 => I be defined as in the
Proposition 2,6, Then, by the commmitativity or g,

g(xy ya) = glax, ay) . for a1l (%1 ¥)€8 x 8, and s0,

sz Yglxyr a) = glx, a)glxa, y). Therefére,

elxr ) = g(xy a )glxar y)(glxy, a)~t

H

glxy a)egla, x)™L glar xy)glxy, a)™t
b))t b(xy).

H

Hence the first part of the Proposition 2,6 follows,

low suppose g is defined byamap bt 8= H i,e.q
glxy y) = p(x)™t b(xy) for all (x, y)e S x 8. Then, for any
at 8y we have, for all %E S,

b(xz) = blxa)zg(x, a)™+
andy by the commutativdty or o,
b(ax) = bla)gla, x)
v(a)g(ar x)glx, a)™t
bla)b, (x)

n(xa)

B

1

Thercfore, b(x)

]

which proves the secomgd part of thc Proposition 2.8,

2.7, Proposition. Let a commutative semigroup S act on a

e, A

space X such that the rollowing two conditions are satisfied:

(1) There exist e6X and de€S such that for each
x€X there exists a unique €5 such that xd = CYe.
(g2) 1r fsa% is a net in S having no convergent

subntzty then the net icsa?r, for c¢€Xy; has no camvergent submet.
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Then every op=function g : X x 8 ™2 H . where H 1s a group,

is simple,

Proof, Let g ¢ X x S~ H be an op-function, Define, for ]

fixed c€X, 468 given by (cl): b : X = H by blx) =

gley yelx, )™l for each i:EIX, where y dis the unique ele-

ment in 8 such that xd = ¢y, We claim that the map b is

contimious, If ixﬁ} is a net in X such that x, => x then,

by the continuity of the act, x,d ->xd and then, slince

" %48 = cyyr by (C2): we can assume y, => y smch that ¢xd = cy

which means that the correspondence x "> y is continuous.

Therefore, it follows that b is continuous being a composi~

tion of several contimuous maps. Then, for any (x; s)€ X x S

by the commutativity of 8y glx, sd) = g(x: ds) which means that
g(xy s)glxsi &) = glx, Qelxd,y s).

Therzfore,

e(xy A)elxd, s)el(xs, a)~t

gl s)
= g(x: d)gleys s)glxs, )™
= g(x: A)gler ) el ys)alxs, a)7L

B(x)™T plxs)s since xd = cy implies, by the

commatativity of S, that =xsd = #ds = cys, and so, g 1s simple.
" The following example illustrates the above proposition.
-_.18- ix mpl.f:_, Let X = [C] °°)| S = [dg °‘;)1 for = °° e < °°;|

0 <d& <> and ¥ =R, the additive group of real mmmbers.

Let the action map as well as the semigroup oneration be usual
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addition of real numbers, The numbers ¢ and 4 satisfy (C1)
of Proposition 2,7. A4lso note that (¢2) is satisfied in this

case,

The above results can be slightly generalized as follows,

2.9, Remark, Let (X, 8) be an act satisfying any one of the
- hypotheses of Propositions 2,4, 2,6 or 2,7. Then, for any space
Y if & acts on the product space Y x X as follows:

(yr ®)s = (y¢ xs) for all-(y, x¢ s)EYx X x &, every op-function

ge (vyxX) x 8~ H for a group H, is simple,

broof,  The proof is easy in all the cascs and is 1llustrated

for the case when 8 has a left identity e, Here S acts

itself by its multiplication,

Define bt Yx 8 => H as follows: by, s) = gl{y, &) s)
for all (yy s)6 Y x 8. Then, from the identity
g((yg e)z St) = g((y: G)t S)g((}h S): t)

for any t€8y it follows that g i1s simple and defined by rb.

Likewise w¢ can verify all other cases,

Owr next rcsult is concerned with extension of an op=-
functvion from a homomorphic image of an act, We recall that an
act (X'y 8') 1s a homomorphic image of an act (Xy 8) if there
exlsts a homomorphism from (X, 8) onto (X', &') i.¢.: a pair
{(hy k) where h s X = X' is a continuous onto map and k : 88"
is a continuous onto homomorphism such that h{xs) = h(x)k(s)

for all (x: s)¢ X x 8. Then we have the following proposition,
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2,10, Proposition., Tet (X', 8') be a homomorphic image of
an act (X 8) via the homomorphism (h, k) and T be a fixed

+ semigroup,

It g' ¢+ XY x 8" ~ T is an op~function, then the func-
tion gt X x 8 => Ty defined by glxy s) = g'(h(x),y k(s)) for
all (x, s)6 X x S, is an op-function satisfying the condition:

(¢) ¢ g is constamt on h F(h(x)) x ¥ t(k(s)) for all
(zy s)EX x 8.
gonversely, if g ¢ X x 8> T 1s an op-function satis-
fying (C)y then the funection g': X' x 8' = T, defined by
g'(x'y s') = g(hﬁl(xg) x K1 (s%)) for all (x'y s*)e X' x s,

is an op=~function,
\
The proof of Proposition 2,10 1s easy and omitted., The

following diagram may b¢ helpful in understanding this proposi-

tion

T < e B T Tl ¢

S th h
kUl

X' il S‘m.-m-»-o,---_— N b > X'
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34 Machines with Freely Generated Commutative Mqonoids

TR K S AL s T 8 ey e WS R M el i A b, we e e e T e T

{or Groups) as_ Inputs,

Let {Si :ieIE? be a famnily of monoids (or groups). Then
the gartesian proguct monoic (or group), X { 8&; ¢ 1617y is the
procuct space X i Si : ieI}- equipped with coordinatewise multi-
plication and the direct product of {&; : 1€I } is the submonoid
(or subgroup) (%) {Si $ ielig GRS ZSi ¢ i€ I,} consisting of
those points which have all but a finitely many coordinates
identities, Tor a finite family 3 Sj1...1 Sy % of monoids
(or groups) X {si I lg....11} and () iSi I = R ﬂl}
are same and are often denoted by Sl(zJ..‘(z)Sn . If additive
notation is used, then the term direct sum is used instead of
direct product. 4 monoid (or a group) 5 is the topological
(respectively algebraic) direct product of its submoncids (or
subgroups) {Si : iBI;§ if 8§ is topologically {respectively
algebraically) isomorphic to the Girect product @) fS_i : 1€ I}'

Tf a monoid (or a group) S is the direet product ofrdts-
subionoids (or subgroups): then every element s of § diffe-
rent from the identity has a unidue representation
8 % 871855 ves Sy for some finitely many elements S1t «» 1t Sy
which are not identities and come from some submonoids (or

subgroups), 58y Smlr...s Smn of 8, A& discrete commutative

monoid (or a group) S is said to be fresly generated by a set
A of elements of S8 if 8§ is the (algebraic) direct product

of the monoids (or groups) ‘isa : a€ A:Ewhere each 5 is the
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Infinite monogenlc{or ovel ic)monoid (or group) generated by

aA d,e,q B, = { al ngzo0 }-(or Se, :{an ! n any integer3 ).

In this section we obtain structural characterizations
of op—functidns (which are tacitly assumed to be continuous amd
satisfy A2 and A4' ) defined on an act whose input semigroup
is a comrmutative monoid (or group) freely generated by & set of

elements, Towards this we first prove the following result con-
\ ' .
cerning op-functions on an act (X, §) where 8§ is a commita-

tive monoid and 1s the topological direct product of n smbmonoids.

3v1. Propogition, Let S be a commutative monoid which.lg -

[,

the topological direct product of n submonoids Syt 5o caetSp.

If 8 tets onaspace X and T is any monoid , then a function
g3 Xx 8> T is an op-functicn iff thers exist (unique)

op-functions gy t X x 83 *> ¥y 1 £ 1, ,..: n; such that

a) g4(x, si)gj(xsi ! sj) = gj(x, Sj)gi(xsj "si)

for all xEX, siesi and sjesj and 1y §J = 1+2v...410

and - ¥l A5

and n=-1

all =X and s€S wWheré & hae tha [uniquc) represen-
tation g = jlr Sit siElSi 1 afl N leo.o.s D0,
&1
Proof, ‘'If part's First, for n = 2, it is shown that,if (a)and

(p) hold, then g is an op-function., Let & = 81 69 S, and

o
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sy s'€8 so 'that g = S1 8o Ende shi= si Sé for sy s&e Sy
1:11 2%
We shall show”that, for any x€X,

g(xy ss') = glx, s)glxs,y s')

t

Yow, glx, ss') = g(x, (slsi)(sgsé))
= gi(x. slsi)gg(xslsi . sgsé)
1

= gl(xtsl)gl(xsl'si)gz(xslsi, s5)go( %57 8] 501 s3)

= gl(xnsl)gg(xsl;sg)gl(xslsg. si)gg(xslsgsi. sé)

g(xy s)g(xs, s').

Next an induction 1s made an in. Suppose for n = m the result

is true. Ve shall show that the same holds for n = m+l. Let

5=5@ ... @ 540 = 8@D...@ s, anc o 8=5®@s,.

Let s€B and s:=j§:si 1 54654
= tsm+1 r LES*,
uppese g 1s defined by (a) and (b).

lowy glxy s) = glx, tsp47) = 84 (x )84 (2t Sp4p) Where

e 8 X X 8F =8 T and guay ¢ X X 8 ,,™> T are tvo op-functions
and g, 1s OBtained via conditions (a) and (b). TInduction is
corplete if g and g .. satisfy (a), That is to show that
for all x€X, tES* and Sm+l€ S+l

m‘n
Assuming t = TT'si t then
i=1
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me=1

-LHS = gl(}:tw Sl) gz(xsll 82) ) .gm(}’i E-ls i % Sm) grﬂ“‘l(x-b‘ Sm.'.l) .

After repeated applications of (a) from the right one shows
that LHS = RES, Thus g satisfies 42 and, since each g4

satisfies 44'y g satisfies A4' also,

Furthery inviev of (b) and that § is the topological
direct product of Spteves Sn' it can be easily seen that g
is continuous.

'Only if' + Ifg: X x S => T is an op~function then let
g; : X x8; = T be the festrictiOn of g on X X 81
1=11.e.v n, It is easy to see that gy's satisfy (a) and
(b) an¢ gi‘S. being the restrictions of g on X x Syt

are unidque,

If S 1is a commutative monoid which is the topological
direct product of infinitely many submonoids of S, then the
assertions of Propositions3,1 is false beéause the function g
so defined via (b) may fail to be continuous, The rollowing

xample illustrates this point.

342 [Example. Let S; = Ru the usval additive group cf reals,
i=214%tve.1. Let S be the tonological direct sum of Si‘s.
If R achts on a spage: X, then, taking R as the ocutput semi-
groupy the function g; * XXR “>R;,dcfined vig g4 (%, ri)= Ty
for all x€X and r;€ Ry is a (continuous) op-function for

cach 1 and the condition (a) of Proposition 3,1 is trivially

satisfiea, If g: X x S => R is defined by (b) of ~
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Propositlon 341y then we*shall show that g - is not continuous.

If isn?j is a sequence in S,

where s, = (r; o+ Tp reenr T % t et % + 01 0 ...)% (m%ﬁ)st,
to (m+n)th coordinates being equal to % for all n 2 1, then
L = . f = 3

nlig _ ©n (r] 1oyt P, t Ore..))C = s¢ say. But while

g(x',sn) = Tyt 4.t T+ 1 for all n2 l: glxy 8) = ritet T,

-n-.

go g i1s not continuous,

However,; if {Si : iSI'} is an arbitrary family of smb-
monoids of a discrete monoid 8 which is the (algebraic)
direct product of isi A I_} 1+ then we can state the

following,.

343 Proposition, Let & be as in the above paragraph and

[ A X A L

act on a space X, If T d1s a monoid, then a continuous
function g: X x 8 => T is an op-function iff there éxist
(unique) continuous op=-rfunctions gy + X x 8 > T 1€I,

satisfying

(a) i(X' s )ﬂ (As1 ' sj) = gj(X; sj)gi(xsj 1 Si)

for all xEX;y siesi ' sje Sj and i, j€I,

and (b) g(x, s) = gil(x' Sil)giz(xsil' 312) .

n=1
gy ( x TT s; .t Sy _) for all xtX and s€S such that
n 3=1 ,]"l n=1 _

I

s has the (unique) represthatiOn

S: ‘rT Si.e Si. *
=1 J J J
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Proof., That g so defined satisfies the axiom A2 and A4t
can be verified using Proposition 3.1 and that g 1s continuous
follows from (b) and the fact that the continuity in the first

coordinate only has to be established.

owy 1A view of Proposition 3,3, if S is a free commue=
tative monold (or group) generated by a set %}i 3 ieI}Of.
elements gnd & acfs on apaspace X, then for any monoid {or
group) T we can obtain structural description of any op-func-
tion g+ X xS T in terms of functions £y ¢ X T, 16T
satisfying certain condition similar to (a) 6f Proposition 3,3
While this 1s our objective in the rest of this section we shall
state and prove our fesults only for the case when T is a finite
setys the generalization to the case when T is an infinite set

beling quite easy,
Thefefore our next proposition is the following.

3.4, Proposition, Suppose S 1is a discrete commutative
monoid frecly gencrated by the slements Apt 12-...: lnr S0
that each element s of 8 has a unique representation

n m,
i=]1 g :
mg 1s ajnon-negative integer, i = 1¢9¢...: n, If S acts on

a space X and T 1s any monoid with identity 1, then any
function g : X x 8§ = T 1s an op=function iff there exist
(unique) continuous functions £ : X => Ty 1= 1:2,,.., 1

such that
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(a) fi.(x)fj(x?ui) = fj('::)fi(xxj) for all

i: j: l: = ve.t Nt. and i
‘ s '
| » S | TE il if my > 0
: my k=0
(B)(1) gy(xe Ay M=
1 if my =0

fOI’ izll 2' LI | n‘i

R n m R m
. , i
(il) g(:x:, iU;- li ) . gl(xi ?\ll) ..‘.‘gn(X E—?\-ii! Rnn)

for all xe€X, *

m
E.:E‘Po.f' 'lif; Part'g Note that, if Si ={7\ii‘,mi .>=,. OE’ t+ then

ol e e

S = &LGB..,(Eﬁ S, and g; defined by b(1) is an op-function

i
on X x Si. In order that g defined by b(ii) be an Op=funec= -
tion, it sufficies to show that the gy's satisfy (a) of
Proposition 3.1, MNow, by repreated applications of (a), it

can he shown thag
I, m m.

"

My m,=1
i
. P W
fJ(X}1 j )

_( ( ( nﬁ-l L ( .y Iy M3l
= Iyl eglnn ). r gl EFICC NS AELY Mleworg(aagd Ay )

i
A

Ll . m ‘
= gJ(X, ljJ) gi(x ljj, ii), This completss the prodf of Vif part!,

-
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‘Qg}zmig;gégﬁlf pefine r;(x) = g(xs Ay} for all =x€X and
g4z, l;i) = glx l?i), 1 =1y 24...4 n, Then (a) and (b) are
true. The uniqueness of fi's follow from the fact that, by
the condition b(1) and b{ii), fi(x) = g(x, li) for all x€xX

and i:-ll 2[5..; Ne

Next proposition is skated for the casc when & is a
comautative discrete group freely generated by finitely many

€lenmants,

5+0. Proposition, Let' S be a comautative discrete groups

frecly generated by Ajree.n A, SO that each element s of

. m
S has a unigue expression s = f% hii, mi 4g¢ any linteger,
i=1 ~

i1=1y...r n. If S acts on a space X and T is a group
with identity 1, then a function g : X x 8 = T 1is an
op-function iff there exist (unique)(continuous) functions

fg ¢ X=> Ty 1=1,..., n, such that

a)(a) of Proposition 3.4 is satisfiecd and

ma=]
, g k
) k=0

m 3
p)(1) g4(xe A4H) = 1 if m
”Lmifl. e
. 1// EZLE T DI < S R
/ k=0

.

if mi>0

I
Lo
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m .
()(11) gz TT agH
m Mo Oy nﬁ' my Ty
= gl(x, M )g’(xkl ' Kg’)...gn(x. 18 AT A )
for all =x€X,
Proof, By virtue of Proposition 3,1, it is only necessary to
verify that g.'s so defined satisfy (a) of Proposition 3,1,

i.e., to show tha'tg for i }£ jg il j= l!u..t Ny and mi 1 mj

any intecgers,

ny mg o m, ' g By my
() g3Cre 2y D50 A0 = g4 A D Gan Jh 2™,

Nowy for the Casc 1 when myr Mg 2.0 (*) has been already veri-

flecd in Propositicon 3,4 and so we shall casider the remaining

cases,

- = - A mE S m, > 0., ‘
Casg 8. My Ky v £y 2.0 anc my 20

In this casey; we can show that (*) is cquivalent to

' ri§=1 n. . fa=1
(x!)f.(x RECE. AN ) e (e WA
fJ( )fJ(xAj),. fj(y?\j )fl( J)...fl(x R )
L1 ny=t
o Ax N .
SECOENCL WIS NEIEVEIDE SIS PR FIE S VA
I’:]i
vhere x' = = A\;”,

This can be easily verified by repeated applications of (a),
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Lase 3. my 20 and By = - j o Xj 2.0, This 1s sfmilar to |
Casec 2,

ase f, my ==Ly e f3 20 and ny=-[fy 0 k20,

Notc that the condition (a):

fi(x)fj(xhi) = fj(x)fi(xkj) is equivalent to (a'):
s -l a—l - —l -l

(*) 1s equivalent %o .
il . -1 - B Xi i =1 Xi “'X

r -l 2 bg 1
FAC D R 1 A TR F1E PR AN 1E 2 e PRI e Y )
- -l
—l 0-1 '.X' 1 -/(. -1 c-/(' -X
C e (aenl "2 3 Jy=1 Goe

which is easily verified by repeated applications of (a'),
This completes the proof of Yif part)

'Only if' Define f4{x) = gz, A ;) for all x€X and

Ll Y ]

i=1v...y n, Then f£4's satisf€y (a); and, further, ir
g 4{x R ) = pif 3y ?i), then (b) is also satisried,
This éompletes the proof,
The following gives a concition whgn every op=function

in the prescnt set up 1s sinple,

3,6, Proposition, Suppese S is a comrmtative discrete
moncid freely generated by an arbitrary set -{hi : i€I§Cd‘

gencratofsy; If (Frifscaygroup and S acts on a space X, then
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any op-function g: X x § = T is simple 1ff there exists a
continuous function b: X = T such that fi(x) = g(x, li) =
b(x)™L p(xr;) rfor all xex and all Ay o 1ET

The proof is trivial,

Tha fOlloWing glves a situation when every op-~function

is sinple.

Bug 114 Proposition. Tet § be a sub=semigroup (or subgroup)
of the additive real 1line X generated by a single element A\,
Then for amy group T, every Op=-function g: X x §=> T 1is

simple,

Proof: TLet g: X x 8 ~> T he any op-function, Let £(x) = g(x,)\)

o e

Tor all xEX, Because of Propositicn 3.6, we need to show that

() (%) = nlx) =1 bl \) ror .11 =€x, 'Tor some cobinucus functto

bt X~ P Hov nobd the following property (P) of real mumbers.

(P) Every real number has a unique representation v = XA
for 0 < x ¢ XA and n an integer. Now take any continuous
function b : [0y A] = T such that b(\) = b(0)£(0). Then
for any y 2 M if y = x+nh, n 2 1, define bly) so as to

satisfy (*) i,e., set

b(x + nA) = blx + n=1 A\)f(x + n=1 )\)

H

b(w)

H

blx) f(x) flx + A} ... flx + o1 A).

ahd for y £ 0y iIf y=x=nAy n 21,
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plx = m\) = blx = n-1 A) flx - na)"L

b(y)

H

p{x) f(x -~ 1)-1 f(x - 2A)'1 v f(x = nk)"l

Ther b is a well~defined continuous map from X into T
anGy by the very construction, satisfies (¥) for all x8X .

ence g 1s simple.

Tezt we give an example of op-funcition which is not

sinple,

3.8, Example, Let 8 be the Ciscretc subgroup of the
addlitive real line X generated by 1 ané an irrational number
M, Let T be the circle group and f; and £, be ©wo funeso

tions from X into T defined by

£1(x) = exp (ix) an¢ r£,(x) = exp (irx)

H:
0
=

all x€eX , t can be easily seen that fi and f2 satisfy

the condition (a) of Proposition 3.5.
)
Then, via Propositicn 3,5 and cfter some simplifications,

the op=function g ¢t LT x & = T constructed from f; and f,

is" derined ast

exp [i(mx:+gigrlj)] ifm >0
Bl )= 1 ifm=0

exp L=i(-nx = :mizgil))]if m < 0
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exp Lir (nx + ] gr")ﬁ)] ' if m> 0

1]
o

glxy n\) =95 1 if n

exp L=i» (~nx = :pﬂ(:%tl.)_ A1, if n

~
o

1

and g(xy m+ nr) = glxe m)glx. ¢+ mynd) ,

hen, for m <0 and n »> 0, it can be shown that

(%) glx, m+nr) = exp Lilm+nn)x]l, exp %(mm?\)g].exp[- %(m.,_mz)]

Tf g is simple there should exist a continuous b : X => T
such that

g(xy n+n) = b(x)™" b(x+ m+ o))

for a1l xEX and¢ m+ nr€ S,

Now consider a sequence mk+-nkl ->0., It can be assumed that
n, 7 Or ny > and m. <0 forall ¥k 21. §o 1f g 1is
trivial one should have
lin g(x, m, + nkh) = ]
L, + n, A => 0 -
i k ,
whence from (*) )
. i : o _
1im B exp b~ 5 (my + 2" )] =1
mk+ nk?\ > 0
That is;, Ihe + nklz i & for some constant £ and that

iy m
means ah ~> kg. But,y as . + n?l ~> 0, ﬁk - = A,
jis . Kk

This is a contradiction, and so, g 1s not simple.

In concluding this section we give a characterization of

op-functions for the action of discrete group of rationals
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on the set of reals_ R. Let @ be the group generated by % '

n
n2l, Then 9 = U Gn For a group H with identity 1 an
n=1
Op=function 8q * RX Gy ™» E is described as
=] .
T £ (x + &), it n >0
3 n n
i=0
(&) g, (x4 ¥) = 1 ir m =0
-m_l
i l/ﬂ_f(ix "‘"+;)| if I (0
N oo n

for all =x€R and all mnm; where fn ! R~ H 1is a continuous
function and is defined by fy(n) = gn(x. %). The following

is then a description of op~functions g : Rx @ =~> H .,

8.9. [Proposition. A functiom g : Rx Q= H is an
op=functlon iff there exists a sequence of continuous functions

fn 8 R=> Hin2 1 satisfying

!I—-'

() 1300 = 2,0 g5 (x v g9oen gy 0x+ FEY

i S ij

St

for all x€R and i, j 21
ané glx, ~ =) = & (zt, % ) as given by (a),

Proof, 1Irf fi'ts satisfy (8) and g is defined via (a) it

is casy to see that g sabisfics: the condition 42 of an

! 1 n - ol o} £
' H} € @y then n nnt and n'l %Eq

fnd =

op-function, For, if

5 Qoo _
ané s0 ¥ 4 ¥ Gnn‘ .
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Only thing trat is necessary to verify is that ¢ defined via

t
Trerefore, gz{:mx, = Byt (X,'% + %n) will satisfy A2 .

() is unambizuous.

< 1]
That is, gn(x, ﬁ) = B (%4 %%y ) for all integers my n, n',

with n. n' 2 1.

Expanding the RIS and using (B) for the two cases when

m2>0 and m <0 the above equality can he easily established.

Conversely, if g ¢+ Rz @ = H 1is an op-function, then

define fn(x) = glx, % ) for all =x€¥%¥ and n 2. 1. Tt is easy

to see that fgﬁs satisfy (a) and (B).

A final renark 1s worth making in this context.
Zxamples of op=functions which are not simple are given in both
Bections 2 and¢ 3 for actions of discrete subgroups of additive
real line R which are dense in R with dsual topology, =
But what can be said about op-functions on R x & where £ 45 a
donse suhgroup, the topolosy on 8 being the induced topology
frori R, If I is complete metric, then every uniformly con-
tinuous op-funcﬁion Rx 8 into H has a unique uniformly
continuous extension to R x Ry and hence, must he simple,
What can be sald about the structures of continuous op-functions ?
More generallyy suppose S 1s a dense submonoid (or subgroup)
Of a group H acting on a space X and T is a monoid (or
group). Can every op-function g : X x 8 => T be extended

10 an op-function g': X x H=> TY “le do not know any answer.
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i, Srmiachines wvhose JInput Semigroups are certain

e ;T —

special’ tvpes of Threads having 1dentity and

A MR W e o T L T

zero and Output Semlgroups pontain zZero,

i iy i A S

We have seen in Section 2 (cf. Proposition 2.6) that if
8 4is a commitative semigroup and H a groupn, then every op-
function g ¢ 8 x S ~> H is simple, However, if H is a

group with zero (i.,e,y H is a semigroup with zero ¢ such that

H\\Q is a group, for examplec: H can be the multiplicative
semigroup R+ of nonnegative real numbers), then this may not
be the case, TFor instance, if & = L0, 1] with usual multi-
plication, then S 1s a subsemigroup of R+ ané not every
op-function g : S x 8 —> 8 dis simple. 1In fact, if

g = [0, 1] with usual multiplication, then we shall prove in
the sequel the following proposition which completely charac-

térizes all op-functions g ¢ & x S => S,

4,1, ZProposition, Tet § = LO, 1] with usual multiplication
and g : 8 xS => S be any op-function. TLet (C_) denote the
condition that : g{(0, x) = 0 for some x€S. [ s R iC
Then :

1)- If (C,) holds: then gither
(a) glx, y¥) = 0 for all (%, V)& S x 8,
or (bp)(i) glx, 0) = 0 for all =xES and
(11) 2 (ze y) £ 0O for all =x€s and 7y > 0.
é) if (GO) does not hold, then glx, y) # 0 for ail
(%1 y) € 8 % 8y andshence, g wwst be simple.
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The arguments reduired to prove the Proposgition 4.1

are quite elementary, However, similar arguments can be made
use Of to study op-functions when § is a more general interval
senigroup such as a standard thread or a thread with identity
and interior zero [11]. This motivates the discussion of this
section and our discussion 1s carried on for a certain special
class ¢f threads with identiiy and interior zero, From this
discussion results for the case of a standard thread and. in

particular, Pronogition 4,1 will follow as special cases,.

Towards this we first describe the structure of threads
with idontity and interio® zero. ‘e refer to clifford [11],
Day [13] and Paalman=-de ¥iranda L37] for this material,
However, we shall mainly follow the nctations and terminologies

of cliffora f[111].

hreag ws shall meah a compact conhected linearly or-

[ —rn e

By a
dered senmigroup with both end points as' idempotents. A unit
thread is a senigroup tonologically iSOmorphic(or,simply,
isecmorphic }tq L0y 1] with usual real multiplication and a
nil thread 1is a semigroup iseomorphic t0 the semigroup [%e ]
with myltiplication defined hy xy = max %%g usual real product
of x and y}. By a ligament we shall mean either a unit
thrcad or a nil thrsad, A standard thread is a thread with

one end point as zerc and the other end point as identity,

The following rasult descrihes tre structure of a

standard thread,
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Theoren befs Cclifford L11]y Day {13]]. Let 8 be a standard
thread with E as the set of idempotents. Then B is a
closed subset of 8¢ and, if Xy yEE: xy = nmin {x. yj’; the
complement of E 1is the union of disjoint open intervals: and.
if P 1s one of these, then the closure of P is a subsemi~
groun of 8 which is a liganent: and, finally, if x€P and

VY€ B then xy = min%_x. y} . In varticular, & is Abelian,

The next result describes the structure of a thread with

identity and interior zero,

Theoren Lef, clifford [21]). Tet T = irf, ul be a thread
with u as identity and having interior zero 0 such that

f <0 ¢u (if necessary taking the order dual). TLet

S =10, ul andé s' = {r, 0]. Then § is a standard thread;
8' is an order dual of a standard thread (i,e,, 8' 1s obtained
from a stanéard thread by reversing the order) and the multi-
plication * in T 1is defined via a continuous onto homomor-

phism @ : 8 =» 8' as follows: For x, y€S and x', y'¢ st,
x%y=xy ¢ xtxy=x' g (y)
X:‘,:.y.l - Q’(K) y|. K‘* y‘ = Xl y.t g

vhers the multiplication in 8§ (and 8') is demoted by juxta-

position, Further, @(x) = £*x = x*f for all x€S8,

Howevery in the following discussicn we shall consider

w_identity and dnterior zero such that the

L N e e T ST

Q,QEP-LQ A S' mentioned in the descripticn of the
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structure. of. . I. . ls actually. an isgomorphism i.ey we consider

a T where &' is an order dual of 8. TLet 1B and E' denote

the set or idempotents of & and 8' respectively. Then: Ior

every e€E, gle)e E',
Let T4 be a semigroup with zero 0 such that for X vE TR
x #0y y#0 dmplies that xy # 0 and By: the sed of idemporw

tents of Tyt is totally disconnected,

For the rest of this section we assume that we are gilven

s Mmoo e me g W Goesl R TR A w R R mods R EC E R R e A e o m n F o emE e e K e e o ek e

ined by a (cormtinuous) op-functicn g i T x T 2Ty

T e

an S-maghine defi
are as descr 1beq above., e

e e A CRTm T WS 6 A AR WA A e

satisfying &2,'waere T and Tl

now proeeed £to descrihe the structure of g for vhich we shall

neel = series of intermeciate results of which Hhe first is the

followving,
&4,9. Proposition, Let g: T xT = T, be an op=function,
Then @
(a) For any e€E and for all xe [ #le), el
1) g0, ) = 2(xs €)€ B¢ andy
11) ir g(0, e) = 0y ther gley x)
{b) For any e'€E' and for all x€ Le'y 0l,
i) 8(01 E') = g(x'. e‘) eElr andy
11) ir (0, e') = 0, then gle', x') = 0.
(¢) For any xET, the following statements are true.
1) Tf elx, y) = 0 for some yESy then glxy y*)

ror a1l v'e [ #(y)e yl.
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11) Ir glx. y) = 0 for some yeES', then
gxe y') =0 for all yte [y, 03.

Proof. ali). For any e€E and any x€ [P(e), €], it is clear.

H

that =x%xe = e*ﬁc X, Therefore, by A2, glx, ¢) = g(xy exe) =

g(x, e)glx, e)€E, for all xeld(e),el.

I

g(xy e)ag(xxe,e)

Now, since [ @#(e)y e] 1s connected, E, is totally discon-
nected anc g is continuous, it follows that g(0, e)=g(x:e)€E,

for all x€ [ g(e), el.

Proof, a{ii): Tor any e€E and any x€ [ g{e).el,

gler x) = gley, xxe) = gley x)a(xe €) = 0

since g(xy e) = g(0y e) =0 by ali).

Proof, b{l): For any e'€E' and any x'€¢ [e', 0],
x'*e' = e'*x' = x'y and so, by A2 ,

glx'y e') = glx'y e'xe') = a(xty ') g(x!, e')EIFl .

Therefore, since Le', 0] is connected, By is totally discon=
neeted and g  is contiziuous, it follows that g(0, e') =

g(x'y, e')e E.

00f. b(ii): Follows from b(i) in the same way as a(ii)

»
- - - e

followg from afi).

!
Proof, c{i): Let, for some y€S; glxy y) = 0. We consider
twWwoO cases:

Cese 1. TLet y'e Lo, yl.
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If ¥y and y' belong to the same 1ligament

E U= [el . eg] of 8, then there exists a z€U; (in fact,

R

T e R e e A AT s I o

TR A

e L Ea

v' £z £ y) such that y's yxz, Thereforc,

elxs y') = glx, v¥z) = glxy y)g(xxy, 2), by A2, and then
since g(xy y) = 0, it rfollows that glxy y') =0,

If 'y and y' do not Belong to the same 1igament, then,
since y' < yr yx¥y' = y' and so, glx, y') = glx, y¥y') =
g(x, S")g(X*YIY')?z 0 because g(x, y) = 0,

Case.2 . Let y'e [¢g(y), o].
The prooy is exactly similar to that of @ase 1 whether

y and y' balong to the same ligament of & or not,.

Lo ) -

roof. ¢(ii)s Similar to the gase 2 of c(1).

In view of Proposition 4.2(c), if the congition (C,):
g(0, x) =0 for some x%ET is satisfied by g 1let us define
the two elements x,6 S and x| € 5! as follows:

s 1= gu;;{xe S glo, x) = O}

and :ﬁcé = inf{X‘BS: g(Cy x') - O}.
Then we can prove the following result which will be very

|

usefrl in the sequel.

4.3, _‘Opos't'o -

]

et 235 Tx T = Tl be an op-function

satlsfying the condition (Cy) so that x, and x! exist. Then
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1) . x,EE ana g0y x) =0

ii) x,€ B' and g0, x') =0

9

iii) XA A f ifr X, £ U and Q(XO) =zl .

Proof. {3): TLet, if possible, =X g% an® the 1igarment of
containin~ X, be U= [el: 62]. Then therc exist Xy v xgeU
such that =x, < X o xg < X, and X% Xg < X,v and s0y by 42,
2(0, X ® xe) = 2(0, %) (0,4 x?). But, in view of Proposition
4,2 cli), since both glo, %) £0 and glo, xg) #£0 iaplies
that g(0, Xy * Eb) #0 we arrive at a contradiction to the

fact that g(0, xl*xg) =0 for xxx, < x, . This contradiction

shows that xere

Againy by Proposition 4,2 c(i) and the definition of Xt
singe g0y y) =0 for all yel o, ¥4)+ by the continuity
of @ it follows that g(0, x,) = O,

Proof, (41): Similar to the proof of (i),

E;pgigmiiggl: If xé # £y then X, # u., TFor, otherwise,

g(0y x5) = g(0y w) = @ dmplies, by Proposition 4.2 c(i), that
g0 y) =0 for a1l ye {P(w), ul = [£, ul, since ¢ is an
lscomorphism and @(u) = £, and so, (0, f) = 0 which is a
contradictlon to the definition of x} . Thercfore, x| =£r
implies that x, # ue g(0y £) #0 and, for all x > X
g(0y x) #0,. Hence, ¥f x' = ¢(x) rfor sone x > Xt then
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g (05 x) = 2 (0y £ x')= g (0y £ x) = g( 0y £) g( Oy x) # O
- . ) . oS ‘ F]
since “both 2 (0, ) # 0 and g (0, = ¥ 0. put,
irr P(x) < #lxy): and
hence, for all x' < ﬁ(xo): g0, x') #0. On the other hand,
|

sinee ¢ 1s an iseomorphisi, x > xg
since g(0, x;) = 0 implies that g(0, x) =C for all

x€ [¢(x))+ x,]r we conclude that ¢(x.) = x!.

:The converse casc of (iii) is obvious.

At this polnt we like to remark that in proving
Proposition 4.2 we do not require that (a) the mep @ 8§ =—> &
is an iseomorphisn and (b) Ty satisfies: for X, y€Tj: X #0,
v #0 dmplies x y # 0., However, we have used bhoth (a) and (b)
in the procf of Proposition 4,3 and, as the following exanples

showy these conditicns can not be dropped.

4,4 Bxample, Let T be the usual unit thread [0, 1] and
T, be the nil thread T / [0, ). Let q: T = T, be the
natural hOmomorphism; Define g+ T x T = Tl by glxy y) = q(y).
Then g 1s an op=function aqd a(0y v) = § irfr v £ % where

§ denotes the zero of Ty Here X, %JﬁE, In this example

(e

the condition (%) is not satisfied andé the question of (a), of

coursey does not arise,

4.5, Exanple, Tet T = [~1y 1] with multiplication defined
by letting {0y 1] be the usval unit interval, (=1, 0] the order
dual of ity and ¢ : [0, 1] = [~1y 0] be defined by #(x) = =x,

Then subintervals like [~ %¢ 01y [« &, &1 and [- %, 8] are
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‘4deals of Tf‘ Let Tq = T/L- %: é] and define g : T x T “9ley
g(xy v) = qly) where q 3 T =T, 1s the canonical homomorphism.
Bere; Xo = % # Dl Bt 2 £ B' and #(x]) = - % #x . In
this example, though the condition (a) is satisfied, the condi-

tion (b) is not true,

‘

4.6, Example, Tet T = L- % ¢ 1] with multiplication defl-
ned as follows, Tet L[O, %] and [%. 1] both be lseomorphic

to the ugal unit Interyal, so that l is the identity for

RO %J and zero for [51 1), If x€ [O, 1] and ve [L. 11, 1et

Xy = yx = x. Finally, l1et ¢ : [0, 1] = [- 51,01 be defined

by e x <
#(x)

Do DO

- ;
3 311} X ?

¢ is a homomorphism, because L %1 1] %s a subsemigroup of

[0, 1]. (This @ would not be a homomorphism if L0, 1] hag

usual multiplication), This @ derines a multiplication on T
in the way ve haveﬁindicatedﬁin#describing a thread having identity
and tntoplor zero in tlg dbeginnlng of thjs Suct”on Note that
(- £, 1] is an ideal 0f T. Tet Ty = T/L- &1 3] and define

g+ TxT=>T, by g(xy y) =aly) where q: T > T, 1s the

1
canonical homomorphlsm, In this case % # u.
Q’(xo) = - % = X"D = £, In this example both the condltions (a)

and (p) are violated,

Our next result is the following:
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4,7, proposition, Tet g': T x T > T; be an op-function
satisfying the condition (C,). Then g(x: y) = 0 for all x€T

and all ye€ Lxlr x 1.

i

Prooz, From Propozitions 4,2(a)(i) and 4.3(i) and the relation

glzy y) = glxy xox ¥) = gl Xo)g(x * ;e y) it follows that

I

glx, y) =0 for all x, y& L@(x)). x, 1.

Yow, if x¢ EQ(KO). XO]g then xx = z, or Q(XO), and
in any casey g(x* xor ¥y} =0 ror all ye {@(x. )y x ] and,hence,

glxy y) = glxy x, * 7) = gl xo)g(x * Xt vy =i,

Thus, g(x, y) = 0 for all x6T and all ye L@(x ). ::O]‘
and so,; by virtue of Proposition 4,3(iii), irf X}, # £y then
Propositicn 4,7 is proved, Gy L1F xé = f, then g(0, £) = 0,
and soy gl(x'y f) = 0 for all x'€ &'. Therefore,
gz, v') = glxy vyt * £) = g(xy, y)glx* 'y £) = 0 for all xET
anc. all y'€8' since == y'es'.

Thus,; Pronousition 4,7 is nproved.

From Proposition 4,7 it 1s clearlﬁﬂat Tor all
xZ bxla xo]g g(0y x) Z£0Q ana g(0y x) Z#0 for xeg (or xes')
implies that £(0y v) #0 for all v 2 x (or y ¢ x). Therefore:
unless glxy y) =0 for all xy ye€Ty g(0, x) #0 for some x€T,
Let us now define the two Eif?f??fvﬁy gﬁmigftwiifiélwiiz
B = inr SLyes: g(0y ¥) #0 §
gnd oyl = sup _{y’GS‘ s g(0y y") # O}‘.

The following remarks will be useful in the sequel.
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4,8, Remarks: ILet g: T x T = T1 be an op~functiocn and

Xot X 1 Yor ¥ be defined as above,
i) If both x, and y, exist, then x_ = y. and
0 0 O
similarly, ir both =x! and v, exist: then

Xl = ¥4 » Further, ir xl = yir then g(xo) = x! .
11) If y, exists, then g(0, y ) #0 implies that

Yo = V5 = 0.

Proof, (1): Since T is connected, the existence of both X,

—ae e v E onow

and 'y, dmplies that x, =y, anc: similarly., the existence
of both xj and yj implies that x} = yl. Further, ir

x5 = yor then xl 7 fy and so by Proposition 4,5(1ii), #(x.) = x!.

proof,(ii): If g(0: y,) # O¢ then y_ =0 since otherwise there
exists 0 < x < Yo Stch that g0, x) =0 and so x, exists
and X, T ¥y, but then g(0, xg) = 2(0, yo) = 0 which is a
convradiction, |

Further, there is no x'€X' such that g(O, x') = 0 sgince

0 which is a contradiction, Therefore,

otherwise g(0, 0)

vs exists and yé =y, = 0.

Then we have the following,

4,9, Proposition. Let g: T x T =T, be an op=function,

L e LR

(a) If Y, and yé exist, then the following statements

are true.
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(i) glxy e) #0 for all =xE€T and all e€E subh that
g(ol e) 7£ 0

(11) - gles x) #0 for all x> y, and all e€E,

(1i1) g(x!'y e') Z0 for all x'€S! and all e'en!
such that g(C, e!') #0

(iv) gle's x') #0 for all x' < y' and all e'€E'.

(v) 1f g0y y,) # 0. then glx, ) #0
and gley, x) #0 for all =x€T and all ec EVUE'.
(b) If y, exists but y! does not (which means that

= f), then the following hold,

(i) For amy e€E such that g(0, e) Z0, glx, &) #0
for all x 2 d(e). '

-—

(i1) gley x) Z0 for all x> ¥, and all e€E,

proof, a(i): Tet eEE such that g(0, e) # 0. Then, for all
xe Lg(e)y el. g(x, €) # 0, by Proposition 4,2 a(i)., &o & us
consider an xf (g(e), el and, ir possible, let g(x, e) = 0,
We shall show that this leads to contradictions proving that

g{xy ) Z 0., We shall distinguish two cases:

Case 1, x . e,

MM, W A WL AT S —

If xZ Ey let x € Eel‘ e2], a ligamenﬁ of S, We first
clainm that g(x, e,) # 0. For, if glx, e2) = 0, then: by

T e mea LR A A ey e e e e o

Propositicn 4,2 a(i), g0, e?) = gl x, e,) =0 since erel. 82]
(and hence: =x€ {f (e))+ 62]).‘ Hence, g(0y y) = 0 for all
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ye i8(eg) e2]; by Proposition 4,2(c) (1), which implies that
g(0;y €) = 0 since e < eg and so ef {ﬁ(eg)iﬁg]. This is a
contradiction to our basia assumption that g(0, ¢) # O, and

hencc, our claim that g(x, eé) # 0 is established.

Towy since g(x, 02) # 0, therc exists a 8, &) < 8 < e
such that g(x, y) # 0 for all ye [8, e,l: since, otherwise,
by the continuity of gy 1t will rollow that g(x, ey) = 0. Then
note that for any vye [e, eg];,as € Lo <egr exy=e=yihe,
and so, g(xy e) = glx, y* e) = g(x, y)glx * y,le)! and since
glxy y) # 01 g(xy @) = 0 iff glx % yy @) = 0. That is, there

cxists an x'y namely,

X' = x % &, such that g(x; ¢) = 0 1iff
glyr ¢) =0 for a1l Y&ix', x].

Again, if x€E, then, as x > e, arguing as above, since
g{xy x) # O, there exists a 6, e ¢ 6 < x, such that g(x, y) £ 0
for all y& L6, x] from which it will follow that there exists
an x'y namely x' = x % 6 = ©, such that g(x, e) = 0 ifr

glyy ) = 0 for all ve [x'y xl. Let us now define an element

i aad

xles as: ,
X = inf i_x*es i glxy e) =0 iff gly, e) = 0
for a 11 v€& {x', X]j .
Note that, by the continuity of gy glxy;r ) = 0 ir glx, e) = 0,

Fow we claim that X, £ e. For, if possible, let Xy DA - 18

.
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Thcn,_sincejg(xl: e) = 0, arguing as bheforcy there exists an

x! ¢ x Such that glyy 6) = 0 iff g(xlg ¢) = 0 for all

ye iz, Xl] which is a contradiction to the derfinition of X
and heneey %y < ¢. But x; § o since glxyy ¢) = 0 and we

have alrcady scen that gly, e) # 0 for all y& {@g(e), el.

Thig comtragictlon arises from ‘cur assumptlon that
o(x, ¢) = 0 for some x> e and, thereforc, g(xy ) # 0 for

all x> g,

Case 2! X §Aﬂ(c).

Tr x£E': let x€ {eig eé], a ligament of 8'.

Again, we first claim that glx. ei) #0 ., TFor, if g(x ei) = 0,

§

then, by Proposition 4.2(p)(1), g(0, ei) = g(x: ef) = 0 sinco
x6E 1011 @], Hence: g(0, y) = 0 for all yeiei. 0l: by
Proposition 4,2(c)(ii), which implics that g(0, glc)) = 0

since e < x < e} g gle). But g(o, gle)) #0 since

o(0y ¢) #0 which follows from the facts: since £ is an isco-
morphist and yé = ﬂ(yo). by Remark 4,3(1), that ¢ > 5o irf
gle) <yt and glo, e') #0 for all x' < yl. Therefore, our
claim that e(x ci) # 0 is established,

1 '
l<9<021

such that glx, y) # 0 for all yé€ {eig 8] sincc, otherwise,

liows sincc g(x: ei) #Z 0y thcrec exists a ©, ¢

by thc continuity of g. g(x, ¢f) = 0. Then note that. for any
v'e tefr 61, yv'x glc) = #le) = g(c) x y': since e] < gle).
Theroforc, glx's B(e)) = glx, v' « B(e)) = glx'y yHelx = y'gle))
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inplicsy as glxy y') # 00 g(x: B(e)) =0 iff glx * y'. #le))= 0
That is, therc cxists an x', namely x' = X % &8, such that

elx, #(c)) =0 irr gly'y glc)) = 0 for all y'eE Ix, x'].

If x€B'y sinecc x < fle) < y§ = By, )+ arguing as boforc.
g(xy %) # 0, and so, therc cxists a 6y x < 8 < g(e), such that
glxy v) # 0 for all y€ lx, €] Therefore., arguing as beforc,
there oxists an x'y ¥ < x' < g(e), such that g(x, #le)) =0

ire glyy #(e)) = 0 for all ye€ ixy x'l.

How, lct us definc an clement Xle st as:

X] = Sup ig‘es' : glxy o)) =0 it glyy #(e)) =0
for ye Ler x'11.
Notec that, by thc continuity of g &(xqr g(e)) = 0 ir

g(xy 125(0)) = 0,

Now we first claim that x; 2 gla)., TFor, ir %, < g,
arguing as before, we can have an x'y X < ¥ < #(c); such that
gl 1 #(e)) = 0 (which is implicd ny gz, @(e)) = 0) implies
that gy, #(e)) = 0 for all ye ixlz x'] contradicting the
dcfinition of x,. Buty again. x; } g(e)y since glxyr Ble))=0
ana gly, #(c)) # 0 ror a1l ye ig(e)y 0}y by virtue of
Proposition 4,2(b)(1) and the fact g(0, ¢) # 0 which implies
that g0y #(e)) #0 as @ 1is an iscomorphism. This proves that
for a1l x < B(e), 2(xy e) # O.

Thus, g(xy ¢) # 0 for all xE€T and all e€E such that
g(Ot e) %Oo
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}

for all x'€3'" and, since Kx‘. e]'_) : xtes! is a compact setq

.

there exists a €, e] < 8 < yir guch that g(x', y') # O for all
x'e8t and y'c lelr 6], Then, by choosing y! such that

e]'_ <0<y < yi and y' x € > yi we arrive at a contradiction
from the relation glet, y' x @) = gle'y y')gle' » y', €) and
the facts that gle'y y') #0 and gle' x y's €) # O,

Thus, gle'y x') # 0 for all x' <yl and all e'cE",

Proof, al{z): By Remark 4,8(ii), y, * y§ = Or and hence, by

2(1) and a(iii), glx: e) # 0 for all, x€T and all c€E and
g(x', e') #0 for all x'€s'! and all e'€E'., Now we show that
g(xy, ') # 0 for all x€5 and e'€E'. TFor, 1if g(x, ef) = 0
for some xES and e'€B'; then, by Proposition 4.2(e)(ii).

glx, y') = 0 for all y'ele', 0}, anc thus,-glx, 0) = 0 which
1s a contradiction since g(x, 0) #Z 0. Therefore, glx, e) #0

for all €T and all e&FUR',

Again, by a(ii) and \a(iv), (e, x) # 0 for all xES& and
all etE and gle?'y, x') # 0 for all x'€S' and all é'GE".
Next we show that gley, x') # 0 for all e€E and x'65', For,
ir z2(e, x') = 0 for some e@E and x'€S'; then gle, 0) = 0,
by Proposition 4,.2(c)(ii), which is a contradiction since
g{e, 0) # 0. sSimilarly, gle', x) # 0 for all e!'€E' and x€8.

Thus gley x) # 0 for all xET and 211 eE6FYRE',
}
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Prcof,a)(iil): We give an outline of the proof omitting

=

the detalls as it is very similar to the previocus ones.

Let for e'cE'y g{0y e') # 0 Then, by Propesition 4,2 b(1i)
glxty ') # 0 for all x'€ Le'y 0], Solet x' < e!', If x'¢E',
let x'€ {ei ' eé], & ligament of §'. Then we can show that
a(xt, ei) # 0y by using Propositions 4.2 (»)(1) and 2,2 (c)(41),
which will imply that there exists € > x' such that
g(x'y e') =0 iff g(y'y e') = 0 for all vy'e ix', 6l. Ir
x'€ B'y, then, since g(x'y x') ¥ 0, there exists a € > x' such
that g(x'y e') = 0 irf g(y'y e') = 0 for all y'€ [x', el.

Nowy 1f we define xi = SUp{ £c gt @ glxty e') = 0O
ire gly'y e') = 0 for 211 '€ ix', ng'we can shov that xi
1s neither > e' nor ¢ e'. Therefore, glx', e') / 0 for all

x'e€st,
Proof.a(iv): Ve again give only an outline of the proof.

Let e'€EB' and e{BE' such that ei < yl. Then, since
2(0, ei) #£ 0, by a(d11), gler, ei) # 0 andé hence, egle'y x') ¥ 0

Fer ok | BY & e which follovs via Proposition 4,2 (e) (1),

Therefore, glety x') # 0 for all xﬂ'g_ei and all e'eu!

vhere {ei; yél is a ligament of g8?',

Now, if possibhle, letsfor some X'B(ei: yé), glety x') = 0

for some e'€E' and define ¥] inf-{x’e (ei; yé) g g(e‘,x‘):e%.

ote thaty by the comtinuity of g. gle'y y{) = 0 and so

21

vy > ef. Towy gl0y ef) # 0 implies, by a(iii), that glx', 1370
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for all x'€8' and, since igx'. ei) ; X'BS':} is a compact sety
there exists a €, e < @ < yJ+ such that g(x'y y') # 0 for all
x'€8' and y'e [eiy 8], Then, by choosing ¥' such-that
ei <8 <y! <‘yi and y' %« € > yi we arrive at a contradiction
from the relation gle', y' % @) = gle', y*)gle! x y', €) and

the facts that gle'; y') # 0 and gle' % y'y 8) # 0,

_Thus: gle'y x') # 0 for all x' < y{ and all e'€E",

Proof, a(z): By Remark 4,8(ii), Vo ¥ ¥§ = 01 and hence, by
a(i).and a(1i1), glxs e) # 0 for all, x8T and all eCE and
glx'y ') #0 for all x'€SY and all e'€E'. Now we show that
g(x: e') # 0 for all x€S and e'eE!. For, ir glx, ef) = 0
for some x€8and e'€E') then, by Proposition 2£,2(e)(ii),
g(xy v*¥) = 0 for a1t y'ele'y 0], anc thus,-e(x, 0) = 0 which
is & contradiction since gﬂx. 0) # 0. Therefore, g(x, e) # 0

for all =xET and all e6Fuz',

Againy by a(ii) and ;(iv), gley x) 7 0 for all x€s and
all eCE and gle'y x') # 0 for all" x'€8' and all é'eE'.
Next we show that gley x') # 0 for all eCE and x='€S'. For,
if gley x') = 0 for some éeE and x'¢s', then g(e, 0) = 0,
by Proposition 4.2(c¢)(ii), which is a contradiction since
gl e, O).# 0. S8imilarly, g(e'y x) # 0 for all e'€B' and =xE€8.

Thus " gley x) # 0 for all =xET and all eCFYE!,
]
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roof,b{1) and (iif: It is clear from the proof of a(i) and

e

alii),
Then w& have the following important corollary:
4,10, Corollary: Let g: T x T~> T; Dbe an op-function

(a) Ir y, and y! exist, then the rollowing statements are
true, |
i} g(xy y) # 0 for all xET and vy > Yor
11) pglx'y y') # 0 for all x'€8"' and y! < yé.
i11) If, further, the conditicn (e ):@{z:f) # 0 for all x€8
noldsy then glxzy y') # 0 for all x€8 and y' < v

iv) 1r g(0, y,) # 01 then g(x, y) # 0 for all x, yeT.
(b) Tet Xé = f(i,e., y§ does not exist) and v, exist.
If, further, the condition (cz): glxty e) #0 for all x'es?

A A T W AW

and o€E such that g(0, e) # 0 holds, then g(x, v) # 0 for

all x€T and y > yg

Proor,a(i)s We first claim that (A): g(x, y) # 0 for all x€T
and y 2 8> y, wierc e@E, First note that, for any e€E such
that e > y,: since g(0, e) # 0, by Proposition 4,9.a(i),

g{e, e) # 0 for all =xET. DNow, if possible, let for some

y1€ Legy e5]:r a ligament of § such that. 81 > ¥ g(x ylj = Q
for some xET, Then it follows, by Proposition 4.2.c(i): that
glxy y) = 0 for all y€ {f(yy)s y;J+ and hencer glx, ¢) =0
which is a contradiction as e > y,. Therefore; our claim (a) 1s

established,
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Now, since glx, el) # 0 for all x€T where e, corres-
ponds to the right end point of the ligament [yog el] and the
set -{(x, el) : Eeﬂfg is compacty it follows that there exists a
8: v, < &< eqr such that g(x, y) # 0 for all x6T and
ve (8, e;). Let y' = inf {ee Ly r et a(xy y) # 0 for all x€T

and ve Le el] }

Ve claim that .y' = y_. Clearly y' 2 Yo+ SCp if possible; let
' > yoe Now glx, y) #0 for a1l x€T ané yely', el].

We can chcose yyr ¥g > y' such that y, < ¥y * Vo € v

anc¢ then:.

’

glxy yy * vo) = glx vy )elx * ¥yt ¥o) dimpiles that
glxy yp * % ) £ 0 as both gl(x, yl) £ 0 and g{x * Yyt Vo) 0.
But y; * y5 < y' which is a contradiction to the definttion of

y'. Therefore; y' = y_.

Thus, g(xy y) # 0 for all =xE€T and y > Yo

Proof.a(ii): Aszain we can easily show that «(x', y') # 0 for
all x'€8' and y' < e' < vy, vhere e'€E' by using Proposition

4,9,a(1ii) and arguments similar to thosc in the proof of ali).

Then, as before, from the facts that g(z'y ef) ¥ 0 for
all x'€8' wvwhere e{ corresponds to the left end point of the
ligament iei: yéz of &' anft that z(xﬂg ei)= X'BS‘ § is a
compact set, there exists a €', e] < 8 < y!y such that glx', y')# 0
for all x'€8' and y'€ lefy 8'l. TWow, if we define y'"' as
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y = supé-e‘e lefe y&l : glx'y y*) # 0 for a1 x'eS' amd
y'€ {ei 1 e'] }

Then we can show that y''= Yoe

This proves that g(x', y') # 0 for all x'€S' and
¥t < yge |

Proof,a(iii): For any x€§ and y' < yl: since x«f = f(x)es' and
fx ¥yt =yt glxr ) = glx, fxy') = glxy £g(d(x), y') # 04
because g(x, f) # 0, by (q1)| and g(g(x), y') # 0, by alii),

Proof.aliv):

Ao - o

By Remark 4.8(1i), y_ = y! = 0. DNow g(o, 0) # 0
implies, by Proposition 4,9.al(i), that g(x, 0) # 0 for all
x€T which, in turnm, implies that g(x, f) # 0 for all =xET
because, by Proposition 4,2,c(ii), glx, f) = 0 will imply

g(x: 0) = 0. Thus, the condition (qi) is satisfied, TNow al(iv)

follows from a(i)—- a(iii).

Proof,(b): Because of the condition (Cy)+ and Proposition
4,9,b(1) ¢ Proposition £,9,a(i) is true. Now if we 1ook at the
proof of a(i) we see that Proposition 4,9.a(i) implies that

glx, y) # 0 for all =x€T and y > y,.

From the above discussion it is c¢lear that, if we had con-
sidered an op-function g: S x 8§ — Tl’ where S 1is a standard
thread instead of a thread T we considered above,; then we could

have obtained by somewhat less efforts the\following.
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4,11, _Remark: Tety for a standard thread S, g Sx 5= T;
be an op~function where Tl is the same as before such that Yo
exists, Then, for all x€S and ¥y > y, g(xy v) # 0 and

g{xy y) =0 for all x€S and ¥ £ Voo Further, if g(0; yO) # O
then g(x V) #0 for all xy y€S. In particular;_if g8 = Loy 114
the unit thread. theny 1f y exists: vy, 7 0, and,hence,

Proposition 4,1 1s obtained as = very special case.

For the .rest of this sectlon let us assume that Tl is a

——— — v

sroup with zero 0 (di.e.. T, 1s a semigroup with zero O such

that Tl\\O is a group). Then tovards the structure of an

op-function g: T x T = T, we have the following results.

4,12 qugggggiggg et g: TxT ~ T, be a function, Then

the followin~ statements are equivalent.

i) g is an op-function such that g(x, y) # 0 for all x. yeT,
ii) g 4is an op~function such that gz(0. 0) # O.
141) There exists a continuous function b : T = T, such that
b(x) #0 for all =xET and glx,; y) = p(x)™t blx % 7)
for all x: y€T,.

Proof, Follows from Remark 4,8 (ii), Corollary 4,10.a(iv) and

Proposition 2,4 or Proposition 2.6.

The next few results are concerned with op-functions
g: TxT-> Ty such that neither g(xy y) = 0 for all x. YyET
nor g(x, Y) #0 for all =x: ye€T., However, for this case, the

descripticn of thé strueture of g 1s not complete,
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4,13. Proposition, Let g : T x T3> Ty be a function. Then

— - . T PR e

the following two statements are equivalent.

1) g is en op~function such that both y, and y[
. exist, g0y y,) = 0 and the condition (¢;),i.6..
glxy £) #0 for a1l =xC S, is satisfied.

2) There exists an e €E such that, for any idempotent
e > e,r there are three continuous functions hys T=- T
i =1:2¢3y satlsfying
(1)(a) ny(x) # 0 for all xCTy i =1, 2, and
( x) #0 irf xf lg(e )y ety and

(b) +there exist two constants dla dz g Tl such
that d; Z 10y & # 0 and
by (x) = hS(x)-l dq for all X2 e

bl(x)

and ho, ()

"

hs(x)-l ds for all x < #(e),

1'13(1c)"'1 dg for all x £ (8(e), &)1
and (ii)(a) g{xy y) = 0 iff =xCT and  yeé [ﬁ(eo)1 eo]:

%) hy(xz = -1 i
(p) g(xy v) = {ih (C) =l ¥) T y2e

ho(x) holx « SO ir vy < #(e)

for all xET, ,

() 2lxy y) = hS(X)"l h3(x % y) for all
xf {gle ) e ] ane yeT,

(8) g(xi ») is a homomorphism from [e,r el

(and from [@(e), #(e)]) into T, for all
xe[ﬂ(eo),eo] (an¢ for all x€ iﬂ(eo), ol).
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(e) sglxy y*) = hz(x)g(ﬂ(x), y') for all x€lo, e ]
and y'elgle), #(e )]s and: finally.

(£) g deflned via (11)(a) = (11)(e), 1s

continucus,

Procf:1)=> 2Y. Tet 85 = Yo+ Then, by Remark 4, 8(1)1 ﬁ(e ) =

Mow define, for any Jdempotent. e 2 e 1 n.h Te=> Tl' 1= 1.2, by
hl(x) = g(x, €) ana hz(x) = g(x, ﬂ(e)) for all x€T Let

hy ¢ T-> T, be defined by hg(x) = gluy x) for all x€T.

Clearly: hys 1= 1,2¢3¢ is a continuous function,

Yowy by virtue of Proposition 4,7 and Corollary 4,10(a),
glx, y) = 0 iff x6T and ye€ ifle )r e }v and hence, (1) and

(i1)(a) are satisrfied.

We shall next verify (4)(b). For that, let d&; < glu, e)
and d, = glu, ge)). Theny for any x 2 e: he(x) 1y (x) =

gluy x)g(xe e = g(uy x x e) = glur e) = a;% for any x g gle)y
he ()0, () = glur x + gle)) = glus Fle)) = dy & and finally,
‘for any xZ L@(e), e},.hB(X)hE(X) = gluy x « #le)) = glu, gle))
= d51 and, therefore, (1)(b) is verified. :

Now, for any xeT and y > ey g(xs e) = glzr y* e) =
g(xy Y)elx » yr €) so that glx: y) = by (x)hy (x + )™, and,
for any x€ T and y < Ble)s glxy dle)) = glx, veglx x ¥ ﬁ(e))
so that g(x: ¥) = hy(@)h(x * y) "l Thereforey (11)(p) is

satisfiad.
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Again, for any xf [ﬁ(eo),eo} and yeTy glw, x x y) =
sluy ®)glxy ) and soy by (D)(a)y glx, ) = hS(X)"l h.(x % y).

Thercfore, (1i)(e) is satisfied.
Let z€iBley)r el and yy: ¥, € le,r el. Then
slxe vy x oy = gl yplelz = vy, ¥o) = alze yplelxe vy)
and, thererore: glxz, .) is a homomorphism from [GO: el into

L for any x€ [ﬁ(eo}, eO]. Sinilarly, g(x, +) is a homomor=

1
phism froa [F(e), ﬁ(eo)} into Ty for any x€ [ﬁ(eo), rl.

Therefore, (1i1)(d) is satisfied,

Fext, for any x€ L0, eOE and g'eldle), ﬁ(eo)]‘:
glzy v = glxy gle) x y') = glxy #le))glx = gle)y y¥) =

ho(x)g(#(x)s y') . anad so, (41)(e) is also satisfied.

Finallys g¢ belng given tc be an op~function, is conti-
niicus,
2)_ ¥ 1). We shall show that g, defined by (ii), is well defi-
ned by virtue of (i), and is an op~function satisfying the

conditions of 1)

To show that g 1s well-defined wvia (i1)(a) - (ii)(e).
we shall have to only check that the values of g(x, y) for those
%y YET for which g is defined, in (11)(p) and (ii)(e), in- -
terms of both hy and hy (or h, and h,) are seme whether g is

4 ~. { L - P ] » . . .
efinad by hl or hg \or by h,, or hS) ainl this can he easily cone
o £ N
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by virtue of (1)(b). For example: for any y 2> e and x> en

g(xy y) = hl(X)hl(X + 7)1y by (11) (1), and glx, y) =

hS(K)"'l ho(z % y)y by (ii)(e). But, since, for y > e and
X2 € X#* Y2 erand, for y2 e and e < X< €y X%y = Xy
we see that, if x * y 2 e: by virtuc of the relation hy(x) =

hS(x)ml 4, for all x> e glx, y) = hl(x)hl(x vl o=
hS(X)"l dldil hS(X x y) = hs(x)"l hS(X * y) and, if

xxy = x gla ) =0 (x) n (0™ = n)™ ny(x) =1,

Similarly, we can verify all other cases and show that g
is well=defined and, by (1i)(f), g is continuous. So only
things that remain to he shown are thot ¢ satisfics axiom

A2 and the conditions of 1) are satisfied,

Howy by (ii)(a)¢ for all =xET and ye€ [Q(eo): GOJ: g
trivislly satisfies A2, and, if y 2 e > e/ (or y < #le) <
Ble,)) ¢ satisfies A2 by virtue of (i1)(b). Again, if
x Zlg(e )y e ] and ye (e, v e) Lor ye (gle), gle)))y 2
satisfies A2 Dby virtue of (i1)(e¢) and, finally, if
xelf (ey)r el and ye (egr o) Llor ye (g(e), Ble N]: &
satisfies A2 by virtue of (1i)(d) ana (11)(e).

-

Finally, by (ii)(a) it follows that g(0, y,) = 0 in
view of Renmark 4,8(ii), and, as e, # uy (i1)(a) rfurther
implies that g(x, f) # 0 for all =x€ T and hence, the condi-
tion (¢} is satisfied as well as both y, and yl exist,

since x} # Ty
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If insteac of a thread T we consider a $tandard thread
(or o unit thrend) 8§, then concerning op-functions g : 8 x S—>Ii.

the Preoposition 4,13 takes the following special form,

!

4,14, Proposition, Tet g: S x 8 n>'Tl be & function then

the following two statements are equivelent,
1) g 1is an op~-function such that ¥, exists and g(O.yo)=(l

2) There exists an e ,fE such that, for any iderpotent
a > e, there are two continuous functlons hi P S Ti-
1 =1, 2y satisfying
d) (=) hl(x) #0 for all x€8 and hg(x) # 0 for
all x> 6,1 and

(b)  there exists a constant 4e Ty

ny(x) = n(0)™a for a1l x> e,

such that d # 0 and

11)(a)  glx, y) = 0 iff xeg and  ye [0, e ]y

b (Db (x9)™ for a11  xes

(b)  glx. y)

and y > g,

-

. -1 =
() g (x y) = hg(x) hg( Xy) for all x> e,
and yes,
(a) glxy ¢) 1is g homomorohism from [96’ &l

into Ty for a1l xe [o, e dr and: finally,

(&) gr defined via (11)(a) - (i1)(a), is continuous
In casc¢ 8 is the unit thread; thén 2) can be replaced

by the following,
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2)t  g(xy, 0) = 0 for all x€S8 and glx, y) = h(X)—lh(xy)
for all x€S and v > 0 where h d4s a continucus func=-

tion h s S =~ Tl such that hix) # O L TF e (g
Finally; wc have thc following.

4,15, Proposition. Let g : Tx T => Ti bc a function. * Thén

e B e e T T T Ly ppuu

the following two statcricnts are cquivalent.,

1) z 1is an op=functicn such trat Vo, exists, xé exlsts ¢

and  x! = f iand the congition (Cz)‘ i.c.r glxty &) £ 0

for a1l x'€8' and c€B such that g(0, ¢) # 0 holds.

2) There cxists an ¢ ,£E such that for any idempotent e > e
there are threc continucus functions hy + T => Ty
1= 1:2:3, saotisfying. ‘

1) (2) hl(x) #0 fér all =x€T,
hz(x) A0 iff x> Cor  and

hS(X) # 0 1fr =x¢# iﬁ(eo), eO], and

noN=2ero
(p) there cxist tiofconstants, &1 d2e$1 such that

b (x) = hg(x)"l dq for all x 2 ¢y
hl(x) > hs(x)“1 d, for all xf (#(c)s ey

and 11i)(a) g(x, y) = 0 1ff xET and vy é P

() glxy y) = by (I (x + )™ for a1l x€T and y3 o,

(e) glxy y) = hz(x)fl ho(x % y) for all x > e, and yeT,

O

(a) glx; ¥) = hs(x)"l By(x.x y) for all x < #(e ) and yET,
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(e) g(xy +) is a homomorphism from [eo. e] into i

for a1l x€ {@#(e_ )+ e J: and finally,

(f) g: defired via (11)(a) = (11)(e), is continuous,

Froofs The proof 1s very similar to that of Proposition 4,13
and so we give only an outline.

idempotent _
1.2 2). Let ey = Vo- Define, for any/e > e,y hy : T -> T,

1 =1:2¢3 as,y for all xeT,
hl(x = g(x, e), hg(x) = g(u, x) ang

(g(f: x) irf x2 0
hs(zc) ﬁz

g(ry g1 (x)) if x<0

Fows by Proposition 4,7 and forollary 4,10(b),(1)(a) and
(1i)(a) are satisfied. TIf we set d,=gles e) ang 4= g(fy e),
then (1)(b) can ne easily verified. The verifications of

(11)(p) = (41)(£) are routine and omitted.,

As in the proof of Proposition 4.13¢ it 1s easy to
show that, by virtue of (i) (b), the definition of gy via
(11)(a) = (ii)(e), is unambigucus and g is a continuous ope
function, Further, (ii)(2) guarentees the conditions of 1) to

be satisfied by g,

In this section we have studied op-functions g : T % T —DTl
for a special class of threads amongst those with idempotent eng

points having identity and interlor zero. There are other types
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07 threads vith identity and with or without (interior) zero hus
net having both end pointe as idempotenté, €.2.1 the interval
=1y 1] with usvel real rmltiplication and many types of inter-
val semigroups 12, 37]. while it is of interest to study op-

functions in case of other types of threads and interval semi-

grouns we {0 not make an attemnt to do so in this dissertation.
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CHAPTER ITI
Ol S0ME5 PROPERTIES OF TOPOLOGICAL, MACHINES

1. Introdu

D e

tion and Summary

1.1, Introduction

et M= <Xy 8¢ Ty £y g > bé an algebraic machine, A
set of Ilausdorff topdlogies on Xy S and T for which M
becomes a topological machine, i.e.. S and T become topolomical
semigroups and £ and g become continuous,; will be referred to
as a set of compatible topologies on M, There may be several
sets of compatible topologies on M and two topological machires
corresponding to two different sets of compatible topologies on
M will be referred to as two topological variants of M. Vhile
it will be of some interest to us to obtain conditioms that
guarartee the uniqueness of one orkmére cf a set of compatible
topologies on My our main objective in this chapter is to gene-
ralize certain basic concepts and results of conventional alge~
hraic machines to the topologicel case. But hecause of the tope-
logical structurés endowed in the irput, outrut anc state spaces
of & topological machine it is nbt possible to ohtain immediats
generalizations of the results of the alpebraic theory to the

topological set up. 1In fact, Wwe shall show that with natural

~] 57
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general izations of the concepts of algebraic theory to Yopolo=-

gical case we need to pub much topological restrictions in order
©o chtain results for topolcgicel machines which are generallza-
tions of the corrssnonding resulis for algebraic machines,
However, this is quite a common feature in many parts of topolo-
gicrl algebra. Tor example, i1f S 1s an algehroic semigroup and
¢ is a congruence on S; then it is well known that the mudtipli-
cation in S induces canonically a multiplication in §/C: the
gset of all eguivalence classés with respect to (C, s0 as to make
S/C an algebralc semigroup, called the quotient semlgroup., But,
if 8 1s a topological semigroup and ¢ 1is any congruence on S,
then this canonicelly defined nultiplication in 8/¢ may not make
S/C a topological senigroupy and, in fact, &/C may not be even
Housdorff or, even if §/C 1s Hausdorff, the canonical rultipli -
cation in 8/¢ may fall to be econtinuous. OF course, if & is
conmpact, then it is well known that &/C will he a topological

semlgroup and this harsh condition of compactness of S which

ct

isy of course, not necessary is gquite = stanfard hypothesis., In
a recent paper b30]; hovever, B lladison discussed this problen
and obtalned several other sufficient conditions for which S/C
becones a topclogical senigroup, Similar problemns arise in the
case Of acts or machines too and sone of the results of Madison
which we shall mention in the sedguel will be of much relevance

te our discussion in this chapter. 1In the next few sections we

srall generalize the concepts of state equivalence, input
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eduivalance, machine equivalence, reduced and input-reduced

=139~

forrms, etc.r and the basic results related to these concepts
from the algebraie theory to the topologiczl case. For the
algebralc theory of machines we refer to Ginsburg 121,

Hartmanis and Stearns [23] and Arbin [2].

Me shall follow our earlier conventions in u I ﬂ_ﬁhe term

4
AT T S ¢ M S, e e T I T g -l - ke e

machine for a topologi cal machine, a s ace for a Hausdor space,
cSLllE P8 A, L OopoLlog] p =L pdee

e R s L T i

a semigroup for a topological semigroup and that all topologies

o am Lo Sy T . Y ———— - g

to ke Hausdorff topologies unless stated otherwise, _We shall

o . e f e T - T o ——————

alspo, assyrie thal the output semigroups of all machine

LR R L N T et B b RN il EUAR A me—

derad in this chapter are left can ellative. The letter M

{with or vithout subscript or supe rseript) shall be
¢enote a machine M = <X, Sy_ Ty £y g (with same gsubscrint or

D T T i

superscript on X, 8y Ty £, and g). We also assume that all
SHUPErscript on Ay oSy Ty fy and  g).

& v w oW o o= w e e e m

macnines in this chanter satisfy Al and A2 . but_need not

o ——— e+

satisfy A3 _ andl A4 or A4t

. W e I R,

* +*

We conclude this introductory section by gilving a brier
stmmary of the contents of the subseGuont secticns of this

chapter,

1.2, Bummary. In Section 2 certain results of Kelemen (28] for
recurslons concerning uniqueness of compatible topclogies are
presented in a slightly general set up vwhich are applicable in
the sequel, Tn Secticn 3 the concepts of state squivalence,

i1seomorphisp of machines and reduced form of a machine are
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introdueced and cervain sufficient conditions are obtained for

the existence and uniquéness unto isecmorphism of the reduced
form of a machine. In Section 4 the concepts of input eguiva- 5
lence, inrut iseomorphism of machines and input-reduced form

of & machine are introducel and certain sufficlent conditions

are ohtalned for the existence anﬁ unigueness unto input=-iseo-
morphism of the input reduced form of a machine, 7Tn this section
certain results are also ohtai:ed concerning the topclogical
version of z problem of Ginsburg on the existence of a input-
dlstinguished machine with a compact state space for any given
input semigroup. Tn Section 5 the concepts Of machine eguiva=
lences are introluced and certain resultg analogous to algebraic
theory are proved. Finally, in Section 6 a few relevant topolo-

al facts are nroved,

2. Unidueness of Certain Compatible Topologies

MO B W BT @ B 4 E & W omca e ek P R

For each set of compatihle topologies for a machine M
we get a topclogical variant of& M. Unéer what conditions are
ornie or more of thess compatible topolozgies unigquely determined 9
This gquestion for recursions was discussed by Keleman :28] We
can state his results in a s1ishtly reneral set up from which
simitar results can be directly read off for topologieal machi-

nes. The nurpose of this section ig to mention these briefly.
Tet X, ¥y 7 be any three spaces, Tor a net ?Xa} in

e 2 ~ o - 2 ~ R
X 1im x, == 1if {Jﬁx} does not have a converging subnet.
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A continuous funciion o : X —> Y is said to be IP (infinity

. . e i "
preserving), 3@ vhenever X, + ds net in X such that
1in x, 7 e sthen 1im o(xy) = =. A continuous function
X x Y= 7 is sald to be  IP (or weakly IP _or W IP) on

X 1if the continuous partial map i, ! ¥ -> 7, ux(y) = (x5

is IP ror a1l (or some) xEX,

Then the results of Xelemen can be stated in a slightly
general form as follows. The proofs are essentlally the same as
those of Kelemen and we include them for the sake of complete-

ness,

2,1.FProposition, Tet, for any two spaces X and 7, and any

non~empty set Yy ¢ ¢+ I x Y~ Z Dbe a function.

Tet u be effective on X (i.e. pul(x jrl) =%y y,)
for all x6X implies y; = yé).

1) Tetb T, and Ty be two topologies on Y such

that under each of Tl- and¢ T.p ¢ is continuous

ot
with respect to produet topology on X x ¥V and

is WIP on X. Then T, = Tz'
ii) Tet T, and I, be two compact topologles on ¥
such that unéer sach of T1 ant T,y 8 is conti-
]
nuous with respect to product topology on X x V.

Then T1 = Tz.

Proposition 2,1 foliows immediately from the following,
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2,2. Proposition. Tebt., for any three spaces Xi ¥ and Z.
‘wt Xz ¥~>7Z bea gontinuous function which is effective and
WIP on ®. Then VYV 1is homeomorphic to the subspace

i py 8 X 4 iE Eof c(%, 7), the set of all continuous
maps from X to Z with compact-open topology: where

yy(x) = u(x, y) for all =xEX.

Proof, et W = {gy : ye'YS. Since ”y = le b iy} ' uy is
continuous ané thus W (C c(X, Z). %et h : Y -> W be defined
by hly) = Hy for all v€ 8§ We will show that h 1s a homeo-

morphism, h 1s clearly onto and if h(yl) -2 h(yz), then

Yo

<

Ky (z) = p (x) for all =x€X which implies that Y1 ¥ Yo

since g is effective.‘ Thus h 1s a bijecﬁion.

The notation (X, V) = joec. (X, 2): o(x) C v} y where

X is compact and V is open; is used to denote a subbasic
open set of the compact-open topology. We next show that h
is conbinuous. TLet h(y)e (Ky V) I W, a subbasic open set in
W, Then u(K) (C v. cnoose U, in Y and V, open in X
such that yeU,r K € v, ma s (v, x U, C v. This can be
done gince K is compact and u_is continuous. Tet teUG:
then Mt(K) Cu (v, x UO)C: vV implies that w6 (X: V) which
in turn implies that h(UO) C(k, N\ W ané, since YeU,_ 1

this means that h is continuous.

To complete the proof, we now show that h 1is opeh,

Let 0 C. Y be open and let pg € n(0). If we can find (&)
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K, Kot oo, K, compagt in X an¢ Ul’ Uzg.. t Un open in 7
such that w. €M (Kyr U3 1=1,.,., A\ W n(0) then

we are finished. Suppose the desired sets do not exist, Let :JT
be the family of all finite intersections of subbasic open

sets of c(Xy Z) that contain u_. Thus 1f FE¥ , then

. y*
Hy€ F and B = ﬁ% (Kgv U3 4= 1, , nnt for some n where

each Ki

D be an index set for F and ir a, BEDy define o < B irf

1s compact in X and each U. is o en "In Z, Tet
D 3 . p

Fg < Fy» Singe Fy1 Fge F implies that Far\ FBG F+ it follows

that (Dy <) 1s a directed set., For sach a&D, choose ¥,
suclh that ey 6F, but yojf 0, since {A) does not oceur, we
o

can always make this choice,

Now Ey(xg is a net dn ¥, We first show that 1im ™ o,
Suppose iyﬁ} were a subnet of {yas which converged to Voo
Then y €Y\ 0 since gyaﬁ (C. Y\ 0 which is closed. Thus
Yo # vy since ¥y€ 0. By the efrectiveness of u, there exist
x8X such that u(x, yo) %/J(K; V). Choose U, V open in 7
such that wlxy y )€ Uy ulxy y)EV and UAV = §  anc then
select U' open in Y such that 7,6 U' and u( =% x u")(Cw,
Finally, 1st 96D bhe such that Fy = (x:+ V). Then a> 3
ilmplies yy(xB Fy vhich means u(x, ¥,)EV and thus Y, £ UL,
But this contradicts the fact that a subnet of ] 743 converges
+0 yert‘ Theréfore) Lgyoaz},' has no convergent subnets

f.e. 1im Voo = =,
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We now show that 1im y, = « contradicts the fact That
4 is WIP on . TLet for any given =xEX %XBZ be such that
w bwi ) = Z.1 and V Dbe any open 'set in 7 vith z_€V.

Chcose 9§ so That 7, © (o, V- 1 Mheiy for & > 2a 4 B Fa
N 0 T

) =E

which implice that u(x: 74)6 V. Thus lim pu(xz, y .

K

for all x€X which contradicts the fact that u 1is "IP on

e

X. Therefore, (4) may not be denied which means that h is

an open map,» and hencey, is a homeomorphism,

2.3 Propcsition. Tet, for any two spaces X and Y and any
non~empty set Z,u ¢ A x ¥Y=> Z bhe a function, Tet., for some

X o4 Y) :'_Z_

%, €%y ,uxo(y) = px,

1) Tet T, an T, be two topolosies on Z such that
dJ -
uncer each of Ty and Ty, the partlal map M is IP
- o)
and continuous. The T] o T2 .

e
|
g

et Tl and T2 be two commpact topcloegies on 7 such
that unler cach of Tl and T.1 # Is continuocus, Then
Fe

Tl % Tg.

Zroof, ‘e use nets and the notatlons v 1im,

141, 1im to

0

4l 2

indicate limits taken in Yy (Zy Tl) and (Z, T2) respectively,

Suppose that the set ¥  Z i1s closed in T1 but not in T2.

Then there is a net §z, ¢ (. F such that olim z, = 2 €ZN\F.
For each «,; choose yaeY' such that u(xozya) T2, and note
that ,lim (g(xof V) = zq v Which implies that limy, # o
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because My 1s IP, Thus,; there-is a convergent subnet

o
Eyﬁ} or zyocjf' - Tet 4 1lim yg= y; and observe 'tELT?.t

”(XQ’ yl) = ;.t(xo_. y 1im yB) = 5 lim u(xo, yB) = 2rlim ,\u(xguy{x)=

5 limz, =z, since i,u(-xo: yﬁ)} is a subnet of f,u(xog Vo) i’
ané “Xo : gfxog x Y= (2, T2) 1s continuous., TLet
r(x yB) = 2g for each B, Then the continuity of

NXO: {Xo} XY~y (7, ‘Tl) -implies that zq * M(Xos .Vl) ’*"

K Fxo' v lim yﬁ) = i lim p (Xor yB) = i lim 25 and EZBE Cr

converges to zq in Tl‘r But F is closed in Tl and

zlELZ F 1s a contfadiction. Thus, every set that is closed in

T 1s closed in To o Similarly, every set closed in Ty is

closed in Tl s0 that Tl = Tg.

The roles of X and Y can be interchanged.in the above

" propositions,

Kelemen's results stated above can be used to state
varlous conditions on f and g +that guarantee uniqueness of
one or more compatible topologies on a machine. We do not

state them explicitly here,

TR

q VR ey,
TR DL TN 1 18 b H
R A W

.;r.
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On, the Reduce¢ Form of a Machine

All machines considered in this seclion are assumed %o
have the same input anc output semigroups S§ and T respec-

tivsly.,

Two machines i, anc i, are sald to be topologically
isomorphic or, simplysiseomornhicy written M = %' if there
exists a homeomorphism h : Xl —>X2; satisfying, for each xBXi
anc¢ each s¢68¢ the following concitions of algebraic isomorphism
{a1l, |

1) &1 (xy s) = go (h{x)y s))1 anc

2) h (fl (xy s)) = Ty (h(x), s)).

A state % of Ia is sald to be equivalent to a2 state x. of
Soutvdaienty o

Myr written Xy~ Xye Af gl(y : B = gg(ng s) for each sE€8.

A machine M is in reduced form or d

- -
I e A T T S e T -

X~y dmplies that x = y, 4 mechine M

I—’-
o
I
Hol
.
[
M

of M 1if there exists a continuous orvo map h: X => X' such
h

that x ~n(x) for all =x€X , and Iff is disti

‘'e now progeed to investigate hether for a machine there

¥

8xists reduced Form, and 1f so, whether a recuced form is

o)

unique upto iseomorphism,

The folloving lemma is well known Lef. Temma 3,1 t211]
anc follows from the fact that the outnut semigroup iz left can-

cellative,
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S+l Lemma. Let Mi and Mé be two machines. For xlexl
anc xnexz y If xthxz, then, for any sE5, fl(xl t 8) o~

fz(xa 1 S)t

We shall also need the following topological fact.,

3.2, Lemma., Tet X Dbe any arbitrary topological space (X need
not satisfy any separation aﬁiom), Y be any T2 space and D
. be any non=empty set, Let {hk' kBI)} be a family of conti-
nuous maps from X into Y anc¢ let R be the equivalence
relation on ¥ defined by xRy Iiff hk(x) = hk(y) for all
kED. Then the quotient space X/R 1is a Hausdorff space,

Proof. Note that the product space Y is a T, space and
the map h : X => Y’, derined by h(x) = (n, (x))+ kED: 15 con-
tinuous., Then the lemaa follows from a known fact

Lcf. Proposition 9, p. 79, L9l1].

It 1s well known [cf. Theorem 3.2% {21]] that 1f M is
an algebralc machine, then thore exists a unique (uptc isomorw
phism) reduced form M!' of M, M' 1s defined by taking the
state space X' as the quotient set X/~ , the set of all
equivalence classes wilth respect to the equivalence relation v
on X, and the functions f' and¢ g' are canonically défined
via Lemma 3,1 so that the Figure 1 hecomes commutative. In
this flgure q : X ~> X' d1s the canonical map defined by

a(x) = equivalence class of x with respect to ~ and
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1 : 8= 8 1s the identity map.

) K Eotiin K %118 e rimmmy X

N2 £ /
X ! x S PRPU——— .,...> X 1

Flazure 1.

For a topolozical machine M, if tlhiere exists a Housdorff -
topology o X! that makes M!' a torological machine ané g

a continuous map, then we get a reduced form of M, The
quotient topology on X! is Fausdorfr by Lemma 3.2, if we take
the set D of the lemma as the set S so that x~y if

g (x) = g (y) for a11 se€s, R b being defined by
gs(x) = g(xy s). Therefore, a Favsdorff topology on X! that
makes M' a reduced form of M must be weaker thian or equal

to the guotient topolory on %Y., Moreover, after a moment's
reflection it woull be c¢lear that any reduced form M' of M
must be obtained (upto iscomorphism) by oiving a Housdorff
topology on X' that makes the maps ¢, f' and g'!' of Figure 1
continuous, TPor, if M'" is a reduced form of M and p: XXM
s the contirvous map such that x mzp(xi for all =x€X,; then
we can establish a one-one correspondence between the state
spaces X' of M' awnd X" of M', namely the map,

h: X' = X' defined by hix') = poq"l (%) for all =xext ,
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by virtue of the fact that M'' 1s distinguished, such that -
the topolozy of X'' can be carried ever to Xt and that will
make M' a topological machine iseomorphie to M!'" and a reduced
form of M, e do not give the details of the arguments hut it
is cleéf from the following comautalive dlagrams glven in

Figvre 2

TR L 7 Boxt x § —E X!
g /./ f]\ y . ' _
4 p j_i . N h
7ol X { s“h“,il--m_"; X
I J
vt NS

(a) - (b)

Therefore.for a topolorical machine My a reduced form_ M'
exists 1ff thesec exists a Hausdorfrf topolozy on X' which is
weaker than or egual to the quotient topology on X', that makes
M' a topological machine, and, if M' 1is a reduced form of M,
then M' is the unique ( upto i1seomorpvhism) reduced form of M
iff the compatibhle Hausdorfr topology on X' is the unigque
Hausdor{f ﬁ:bpology that makes the maps 'y g' ané¢ q of
mizure 1 continuous, Tf the qguotient topology on X'y, which is
Yaugdorff by Temma 3.2, makes f' and g' continuous we shall

refer to this reduced form of M as the guotient machine c¢f M.

e


http://www.cvisiontech.com

—15 Cm

The rest of this section is primarily concerned with
machines for vhich the quotient machine is defined and is the
unique (upto iseocmorphism) reduced form, Incidentally, if M
is a reduced rform of M, then under some conditions there
exists a tOpologicai variant M'" of M such that M' is the
qﬁotient machine of M'". For obtaining such conditions we need
to solve the following topologigallprOblemt Suppose Y 1is any
non-empty Hauscdorff space, X is any non~empty set and
f+X->Y 1is an onto map. Under vhat conditions can we give
a Fauscorff topolozy on X such that £ hecomes continuous
open (or Y hecomes the quotient space X/f) ¢ 4 sufrficient

concition for this is the following:

3.3, Lemma, Tet ¥, Y and f he as in above. TIf, for any
Vit Vs €Yy there exists a 1~1 correspondencé between
f"l(yi) and f-l(yg), then X ecan be given a Hausdorff
topolozy such that £ bhecomes continuous open,
Zrodf. et A, = 1y}, y6Y ana 4 = A for a fixeq

- n e yo
Yo¢ Y. There exists a 1«1 onto map hy DA Ay for each
YEY, Tet Ba = {hy(a): er}. Then {Ba% is a partition

of X and, for esach a€A, there exists a 1~1 onto map

h, # By => ¥ defined as : hy(h(a)) <y, Note that
h, = f[BB. Give B, the T, topology making h, a homeomor-

phism and then to X give the union topolozy (G which is the

required Eausdorff topology on X making f continuous open.
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Tn view of the above lemma we can now state the following

for machine,

3.4, ggggégiggg. Suppose for a machine M there exlstsa

reduced form M' and the canonical map ¢ : X - X1 is such
that q-%(xi) and q-l(xg) are in 1~1 éoryespOndenge for
every pai:. X 0 xz-BX'. then M' is the quotient machine for

a tOpological'variant ey Tk

Proocf. Since the néw topolozy on X obtained from X' via
Temma 3,3 makes ¢ continuous open,by cansidering the Flgure 1,
1t ig easy to show that this new topology on X 1s indeed a
comnatible topology defining a topological machine which 1s a

s

topalogical varlant of M.

Towards the existence and uniqueness of the quotient
machine for a machine we have gome gufficient eomditions only,
We first nots some such conditlons in the following remark.
We may recall here that a continuous map f from a space X
onto a space Y is a quotient map if A (C Y 1is open iff
£71(4) 4s open in X.

3.5 Remark. If gt X => X' _is the canonical quotient map

and g xi: X8~ X' x8 is a quotient map Lc.T. Figure 1} '
then_for a machine M the quotient machine Mﬁ is defined, If
Mq is defined and the quotient topology on X' is minimal
Hausdorff [24], then it is the unique (upto iseomornhigm) reduced
form, Tt is known that a compact Hausdorff space is minimal

Hausdorfr (4271,
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" Incidentally, we qudte in the followlng same results from
Madison 130} which give several sufficient conditions for the

map q x 1 of Remark 3,5 to be open.

3,6. Remark. Le.f. 30]. The map q x i of Remark 3.5 is

a quotient map I1f any one of the following holds,

1) 8 1is locallylcompact.

2) X' x 8 i1s a k-space. (4 space X _Is a k-space if a
subset A of X 1s open (closed) in X whenaver ANK
is open (closed) In K for each compact subset K of
X. X 1s a k-space 1ff X 1is a quotient space of a
locally compact space). |

3) a9 is a bi-quotient map. (Amap f : ¥—= Y is bi-quo-
tient i1fy whenever vy€Y and @ 1s a covering of f’l(y)
by open sets of X, then finitely many £(U), UE\, coved

some nelghbourhood of y€Y¥Y, A bi-quotient map 1s a quotient

rmap and q 1s a bi-quotient map 1f q is either open or

proper.)

We do not make an attempt to reproduce the proofs of
Madison of Remarks 3,6 but our point 1s only to record the

existence of such results which are relevant to our present

discussion,

The following example illustrates Remark 3,5.
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3;%.;;;&@213. Let R Vhe'thefusgalorea; linge T the circle
group and § a sub-semdzroup (wiﬁhout_identity) of addltive
group R generated by 1 ang A\, an Irrationsl number. Tet &
act on R by ugsual nddition., Tet ry and f2 be two func-
tionslfrom R into 'T defined by
fl(x) = exp (1x) and

fz(x) = exp (irx) for all x€R

Then, as scen in Section 3 of Chapter fi,the function g

defined on R x 8 with values im T as

=1 n-1
glxy m#nx) = TT £+ 3) TT £, (x+m+ jr)
J=o j=o

€Xp [i {mX‘f' i?i’i #H n(xﬂn).].n_ggi'_)xg ]

for all ms n 2 1. Is an output function. Tt can be seen

caslly that xjnv X, 1ff x ¥ x, (mod 27) whence 1t follows

that R/~ =T yhich is compact and the quotient map
qd: R=> R/~ 1is open., So the quotient maching is defined

and 1% the uniquc reduced form,

The following gives another sufficicnt condition for the

existence and uniquocness of a rc¢duced form of g machine.

3.8, Proposition, Supposcy for a machine My therc is some

SES such that x vy implies that g{x, s) ? g(y: s), and

By ¢+ X = T, gs(X) = g(x, s)y is a continuous open map. Then
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- the quotient machine is defined and is the unique (upto

dseomorphism) reduced form.

Proof. From the given conditions it follows that the quotient
1s homeomorphic to g4(X) and the canonical map q:X—>X'
space X/r = X'j?zs open. So the quotient machine 1s defined
and g! 1s a homeomorphism between X' and gé(X') = g (X)
tc.f, TFigure 11, and hence, there is no weaker T, topology

on X' making oé (ané hence g') continuous., Therefore,

the quotient machine 1s the unique reduced form.

The following example 1llustrates the above proposition.

3,9. Example. Let a compact semigroup S with identity 1

act quasi-transitively on a spacc X (i,e., the orbilts form
a decomposition of X) [c.f. Sections 4 and 6 of Chapter 1J].
Let X' be the orbit space 1.e., the quotient space obtained
from X by coalescing the orbits, and q : X ¥> X' the
quotient map which is known to be open. Let T = X' be
edulpped with right zero multiplication. Define the outﬁut
function g : X x 9> T by g(xy s) =g(xs) for all

(xy s)€X x S. Then the partial function gl(x) = g(x, 1) 1s
a map from X onto X' which is continuous open and

gl(x) = gl(y) implies that gs(ﬁ)‘ﬁ gs(y) for all se€s,

In the 1ight of our discussion of Kelouon's results in
Section 2 w¢ state the following proposition giving some suf-
Tleient conditions for the uniqueness of a redueed form of a

machine, 1f 1t 1s definec,
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3.10, Proposition. Tet M= <X, 8 Ty f1 2> be a machine

)

and M' = ¢ X'y B¢ Ty 'y 2' > be a reduced form of M, Tet
¢ : X ~=> X' bpe the quotient map, Then M' 4is unique upto

iseomorphism if any one ¢f the following three conditions hold,.

1) g 1s WIP on 8.
2)(a) f ds WIP on 8 and g is 1IP, and

(v) X~ Xy 1ff flxe s) ~ £z, )  for all ses.
(Note that, i1f M satisfies A3, then (b) is automatically
satisfied).

3)(a) TFor some X EXs f(xo. S) = X, and

(b)  the partial map £, and q are TP,
o

Proof, 1) g 4is WIP on & implies g' is WIP on g,

For, 1f, for a net ix& § in X'y 1im x} = oy then, 1r
Xy € q-l(x&). we see that 1im x, = ~ and so there is some

s€8 such that 1im glxy ¢« s) = 1im g'(x} 4 s) = e .

Further, g' 1s always effective on 8. Fory if
g*(i{. s) = g'(x} 4 s) for all s€S than, ir x.eq7(x}),
=, 2, g(x1 r 8) = g(x2 ¥ 8) for all sGS and so X~ X
and hence, x} = qlx) = alx,) = x!.

Thereforg, Proposition 2,1(a) can be applied.

2). Again it 1s easy to see that (a) implies that ' is
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WIP on & and (b) dmplies that f' is effective

on 8. ¢

3) Note that (a) 4mplies that r£'(g (x): 8) = X' ang
(b) implies that the partial map f&(xo) is IP.

Hence, the Proposition 2,3(a) can he apnilied.

The followlng example illustrates the above proposition
‘where, howeveri aill.the three conditions are satisfied.
3,11, Example. Tet M be a machine defined by 3

R<-—8 R xp—I 5 g2

where R 1s the usual real line, Rz. the @Gartesian (additive)
product group, and f and g are defined as:

£f({ry v 25)e 2) = (g + 1y By, & )

g((ry ro)e T) = blry + ry r, +1) - blr; + 1)
for all (r1 t To 1 r)E R x Ry and b 1is a continuous map
Bor B s R rdeflee® By plry sorg) = () + 1)<,
l'ote that

gllr, « ry)e 1) = é_{_rz + r(r

and (r:L v Tg) ~(r! + rl) dff ry *ryg 7] +rl sothat

Rz/%J is R,
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Therefore, the quotient machine  M'-which 4is defined 1s

' :
R enwdoeive Rx R i Lie i

where f'(ry ¢s) = r + g

and g'(r, s) = 4(s® + rs)

for all (r, s)€ R x R.

It 1is easy to see that all the three conditions of’
Proposition 3.10 hold. |

4. On Tnput-distinguished Machines

-»w-v T A Lo M L W R Y b o R T e mioae

In this section all machines are taken to have the same

outrut semigroup.

For a machine M two inputs s and 52 are jinput-
equivalent, written s; sy 1f glx, s;) o gl s, and
glx, s g) = f(x,,sﬁs) for each =x€X and each s€S. M is
called m_tdism E;Js;%ed if no two distinct inputs are input—
equivalent, M‘ﬁ is an _i__put-—reduced form of M 1f there
exists a continuous onto homomorphlsm ht 8~ S' such that

~h(s) for all s€S and ¥ is input-distinguished, Two
machines Ml and l\%, are input-iseomorphic if there exists
an iseomorphism h : S1 — S2 ané a homeomorphism

ks ¥ — 12 such that :

1
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(1) x(gy(xe 8)) = £5(k(x)y nls)), and

(2) gl(x, s) = g2(k(x), h(s)) for ail x€X, and all s€8, .

We first sbtudy whether for a machine an input-reduced £ewm
form exists_ands if so, whether an input reduced form is unique
upto input-iseomorphism,

*

The followin~s algebrale fact is weil known and so ve

state thls without giving any probfl

4.1. Lemma, Lef. Lemma 3,2 of LQ&E]; et ¥ be a machine,
Then:
(1) 1£, for ﬁ.SQBSam#xlyﬁh Sy RISy and X~y

then f(x, sl)’\’f(y: So)

In particuiar, 1f ¥ 1Is distinguished and, for S 15585

§9 Mzsgr then flxy s9) = flxy s5) for all xBX,-

(2) 1f¢ for Syt Sgr Sz 5,68, SRS ant  SgadS,
then S1 S302 Sg Sa It follows that 2. 1s a congruence rela-
tion on 8.

We shall also need the following fact.
4.2, Lemma, The quotient topology on 8/, is Hausdorfrf,

Proof. Tet D=XVUXx S, Now sy¥s, 1f 8,(sy) = g, (s,)

£
e

and g(x,s)(sl) =:g(x.s)(82) for all =x€X and s€ S vwhere
g, ! S—> T_(respectively Blx,s) > B —>T) 1is defined by
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5.(s9) = glx , s;) (respectively g(x,s)51) = 8lxs s98)).
Hence, by Lemma 3,2, the_result follovs,
For algebralc machines the following result is well known
{¢cf. Theorem 3.3 or [211].

4.3 Proposition, TFor any algebraic machine M these exists
an input-reduced form M' such thai:

@] %% x

(2) There exists a homomorphism h ¢ S =» 8' satisfying

elxy ) = g'(x, nls)) for all s€S and each xEX.

(3) If M 4s aistinguished; then am} input-distinguished
machine M'' satisfying (1) and (2) above 1s input-isomorphic
to M', :

M' 4s defined by takins X' = X, 8' = S/¢ , which is
the well-defined canonical quotient semigroup via Temma 4.1(2)
and f' and g' are defined via T, emina, 2,1(1) so that the

Figure 3 becomes commutative

~

T oo v Berc s X & 8 mme e 1y 3
Iy = /2% e
|~q 1)/X

£ :
e / )
L/"> :

, 7
N TR SR I8

Fieure 3
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Tn Figure.3, p ¢ S =>.8' = 8/:4 , is the canonical map defined
by pls) = the equiéélence class gontaining s with respect to
a1 4 8 X =—>X/< is the canonical map defined by qlx) =
the equivalence clags containin: x with respect to ~~

75 X => X is the identity man, A : X x 8' = X/rv is defined
by L{xy s') = the equivalence class with respect to ~v cantain-
ing f{x, s), for any Sep_l(s') and q("l):‘xﬁwf ~»X ds a map

which selects one point of X from each equivalence ¢lass with

For the topological case, hovever, several problems ariss
as in the discussion of the nrevious section, TFirstly., thouzh,
by Lemma 4.1.(2). S/~ inherits canonically a scmigroup opera-
tion from that of S, there may not exist a topology on 8/~
making it a topolozical semigroupy in fact: even the duotient
topology on S/~  which is Hausdorff by Lemma 4.2, may not
make 8/ a_topological semigroup, The quotient topoloty on
8/ mskes 1t a topological semigrdup if the map pse-pd
pxp: S8x 8= 8 x 8/ is a quotient map where

Pt S=-> 8/~ is the cenonical quotient map. Several sufficient
-copditions for p xp to'be a quotient map similar to those
stated in Remarks 3.6 are availabls ir Madisorn 1301: but we

do not state them here, Secondly, there should exist not-only

a topology on S/ﬁy making it a topological semigroup, but also
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a topology on X/~ so that p, g*rlX} 4 and q(-l) of

Flgure 3 become continuous,
. »

Lety for topological spaces X and Yy o ¢! X => Y be

& continuous map. Then a map G(-l) : Y= X 1s a continuous .

inverse of o if o{1) 1s continuous and c(d(fl)(yﬂﬂ =57

for all yevY.

Then for a topological machine M there exists anminput
reduced form sati#fying (1) and (8) of Proposition 4,3 if
there exists a topology on the quotient set S/ and a topo-
logy on X/~, such that Sﬁ?a becomes a topological semigroupn
tne maps py g's Lt ¢ of Figure 3 continuous and g admitg .
of a econtinuous inverse q("l), Further, 1f M is distingui-
shed then, arguing ‘as in the case of existenbe of a reduced
form of a machine, there exists an input-reduced form iff there
exists a topology on §/72 making 1t a topological semigroup
and the maps py g': f' of Figure 3 ‘continuous and a unique
(upto input=-1seomorphism) inputereduced form 1ff such a tOpolog&

on 8/n¢y 1s unique, ‘

Now we shall state two results giving sufficient conditions

for the éxistence and uniqueness (upto input=-iseomorphism) of
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, an Input-reduced form of g distj_nguished machine analogous o

results of Bection 3.

%

Analogous to Proposition 3.8 we can state the following

444, Proposition, Let M be a distinguished machine, Te¥
there exi.st an XQB}C such that the partial map -,Ag}slo'i 3 - T,
gxo(s) = glx s s)i 1s continuou§ open and | soit implies |
gxo(s) 7 gxo(tji Then the quotient topology is the unique
To-topology on 8/ making M' = <X, S/rt, v Ty £y g' >

le.f. Figure 31 the unique input-reduced form of M.

Proof: Similar to that of Proposition 3.8,

Next we glve an example to illustrate the above,

i

4.5, Example. Tet = [0, ») with usual addition, and R
the usual Cartegsian product of R"' with itself., Let ¥ be

defined by

2 .
B"' B . R* % ®5T FO. .Y gt

£r, (rl N rz)) =1+,

&

| _ , — ‘ + %
and g (r, '(,rl 7 .1!-;2}) = 2r r + I‘g for all (-r_.(rl % ‘rz))B_R TR,
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Note that since r # r' dimplies z(r,(0y 7)) # g(r':(0,1))

Hencey rMsr! and so M is distinguishe&. Further, note that

+* §+

Eo ¢ R = & = fiS

: _
1s continuous open and g, (ryiry) = rg = rd® =
golrfr r4) 4Aff r, = r whence flri(ry1rg)) = £lri(rdird))

+
for all TER  and so (rlfrg)?}(ri,ré). .

Thercforey all the assumptions of Proposition 4,4 hold good,

As in Section 3 we state a proposition below giving
some suffleient condltions for the yniqueness of an input-redu~
ced form, 1f 1t exists: in view of Kelemen's results of

Section 2,

4,6, DProposition Let M= <X 5, Ty ¥ g8 > be a distin-
guished machine anéd M!' = < X, 8'y Ty f'y 2! > ©be an input-
xe&uéed. form of M, M' is uniqgem(upto input-1seomorphism)

if any one of the following conditions hold good,

1)(a) g is WIP on Iy and
() 1f 2(x. sl) = glx, Sz) “for all x€X., then

glx, sy 8) = g{xy s, s) for all xEX and all sES.
1 )

2){a) £ 4is WIP on X: and
(p) i flxy s;) = flx: sy) for all xEX, then
glx, sl) = g{x, 32) for all x€X .

Proof: 1) Follows_from Proposition 2,1(a) 1f we note that (a)

e s o e e

Implies that g' 4s WIP on X and (b) 4mplies that g!


http://www.cvisiontech.com

~164w

ds effective on "X.
2) Similar argument is needed,
We now give two examples,

4,7, Bxample, Let R and R be as in Example 3,11, Define

a machine M gs:

R~—fued> RX B =Ly R

where "flre (ryr rp)) =7 + 1y + 1y

and glry (r) 13) = (zp + )% + 22z + 1)

for all (r, (rlr r23) ERx R,

Note that ¥ is disginguished and

(rlaré)?d(ri:ré) LET Tty = ri+-ré. and 50y 32/§§= Rs
Note that g satisries 1(a) and (b). Sao

o '
M ¢ R <¢Fm— Rx R~&> Ry vwhere £%(r, s) = ®#+s and

2

g'(ry s) = s +2rs for all (r, s)€ R x R 1s the unique in-

put reduced fofm of M,
4,8, Example, Let everything-be as in the above Bxample 4.9
except that glr. (rl 1 rg)) = (r = ry + r2)2 for all

(rl(rl + T5))ER X 32. Note that f satisfies 2(a) and (b)
and M' 1is samething except g‘(f, s) ='(r+‘s)2 for all
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(ry s)ER x. R and. g' 1s not effective,.

Next we discusg the topological version of a problem of
Ginsburg conegernins input-distinguished machines, The problem
i1s to find conditions on a semigroup S which guarantee the
existence of an input-distinguished machine M= < X, Sy Tw fv g2
with a compact state space X Ler, 21]1. 4s ngted by Ginsburg
t21], for each semigroup S there exists an input-distinguishedl
machine M= < X, Sy Ty fr g >. For, wlthout any loss of gene-
rality, we can assume that S has_an identity and then define
M as follows, Tet T _ be the semigroup obtained by defining a
right zero multiplication on § 4#.e, S185 = Sg for all
s, + 5566, Then, taking X = §, define T<Fm X x 8= X
by f(sl' s,) = 8¢S, and g(sl: 8 = sy85 for all
(sq1 s,) €X x S, Bubt, in general, X need not be compact 1f
8 4s not. Ginsburg provided with examples of infinite semi-
groups L21] for which these exists no finite-state input=dis-
tinpuished machine, In the gequel, we make some observations

towards the existence of an input-distinguished machine with

compact'state—space for any given input semigroup,.

4,9, Remark, If a semligroup & admits of a compactification
g* of which 8 4is a sub-semigroup, then there exists an input-
distingulshed machine with a compact state space, namely, o*

and B as input semigroup.
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Tn the following we make some_obsérvations where glven
an input semigroup we obtain con¢itions under which there exists

an_input-distinguished machine with a compact state space satis-

fying some additional hypotheses,

4,10. Proposition. TLet S be a semigroup with identity.
Then there exlsts an input-distinguished machine with a compact
state space and an_output semigroup having right zero multipli-

~r L

cation if there exists a compact space X on wvhich S acts
effectively and there exists a 1-1 continuous map from X into
S,

Conversely; 1fy for a semigroup S with identity, there
exists an input-distinguished machine with a compact state spacs

¥ and an output semigrour with risht zero multiplication, then

S must act on X effectively.

Proof: Suppose S acts effectively on a compact space X.

Suppose. T is the semigroun obtalned by defining right zero

multiplication on 8, Then define the machine

M=%y B8y Ty £y g > as s+ £ Is the given action of S on X
and glxy s) = h(f(xy s))_for some_ 1~1 continuous map
h:X=>T [ef. Proposition 2,k of Chapter IT), Now M is

input-distinguished since, for each pair s;1 s,€5: 1 Z Sot

there exists x€X such that flx, sl) # £z, 82)1 and hence,

g(xr s7) # glxe s5).
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.Conversely; suppose M =< Xy Sy Ty £y g > is an input
' distiaguished machine witbl S having identity, X compact and
T having right zero multiplication. Then, by Pr0posi£ion 2.1
of Chapter IT, there exists a continuous map h : X = T such
that glx: s) = h(f(xy s)) for all =x€X and s€S. Since, for
each pair s;r s,€8, 54 £ So1 there exists x€X such that either
flxe s9) # £z s5) or glx, sl) 7 glx: s;) (equivaleﬁtly‘

h( £{x, sl)) 7 h(f(xy s5)))s it follows that f(x, Sl) # flxy 52).

4.11. Corollary. Tf S8 is any infinite semigroup having
identity._then there exists no finlte~state input-distinguished
machine with the output semigroup having right zero multiplica-

tion,

A closely related result on effective acts: which may have

some independent interest, is as follows.

%.12. Proposition. A semigroup_ § acts effectively on a
locally compact (compact) space iff there exists a semigroup

5*  such that

(1) there exists a 1locally compact (compact)right

ideal X of 8% on which 8% acts effectively, and,

(2) there exists a continuous 1-1 homomorphism h

from S 1Into &%,

In (1) the statement &% acts effectively on X can be
replaced by saying that h(S) acts effectively on X,
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Proof, 'Tf'. Define the act f : X x 8-> as : f(x, s) = x.h(s)

for all =x€8S.

'Only ir'., Suppose f 3 X x 8-> X iIs an effective act
withk X locally compact (compact). Tet ©S* be the semigroup
of all contimous maps from X JInto itself under the operation
of compoéition Of maps and compact-open topology. Then the map
hot 8= 8 hls) = £, X=X £(x) = £z s)y 15 1-1 con-
tinuous homomorphism and the map ng) = kx' kx(X) = %y for all
x€X, 1s a homeomorphism and ®(X) is a locally compact
(compact) ideal of ©F such that S* acts (canonically and)

effectively on 0(X).

If & acts quasi-~transitively on a space X, the equiva~-
lence relation on X defined by identsfying the orbits, is
referred to as the orbit eguivalence relation on X, Tet R
and R, be two equivalences on a set X. R, is sald to be
weaker than Ro  1f each Rl-equivalence clags is contained in
some Rgo-equivalence class. Then the following is another

observation corcerning Ginshurg's problem,

4.13, Proposition  Given a semigroup § thers exists an input
distinguighed machine with a compact state-space ¢u which 8
acts quasi-transitively such that the orbital equivalence rela-
tion i1s weaker than the state egquivalence relation (~) 1fr
there exlsts a compact space Y and a semigroup T such that

a continuous map g : Y x 3> T exists for which gy P8 e Ty
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gy(s) = gty: s)y1 1s a (continuous) 1-1°‘ homomorphism for all

vEY.

Proof. 'Omiy if'. Tet M= < Xy S Ty £y g > be_ a machine of
the type described, TLet Y be the (compact) quotient space ef
X obtained by coalescing thg orbits under the action of S on
X. _Then there exists a machine M = <. Yy S Ta £ 2t >
“efined canonically,so as to make the Figure 4 commutative

as follows:

£ixty s) = q(£(x, s)), ang g'(x'y s) = g(x; s) for some

36q71 (x*); x'¢® and £8S. Then g'! satisfies. the requirements.

i T, JP - S U

!
g q x i q
s “/ b4
. Y X S .-,A-x-..;wf.:.-. v e e .,.>Y
Figure 4

'_I_it " Define, 'bak:’frlg X=Y M= < Xt St Ty f_|_ g > as :

flxy s) = = for all_x6X ang all s6€S and g as given, Then

M 1s a desired machine,

' Ginsburg's problem is, however, not yet satisfactorily

and completely sclved,
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8, On Equivalenceg of Machines

-

-

- A11 machines of this section have same input and cutput
semigroups. For a machine M let X! = X/~ . the guotient set
o2 . p » - -r 73 % i
and § = {gx 2 S - T f g.ls) = glxs s){ x€X and s68%. Two
algebraic machines M, and M, are said to be (hehaviourally)
equivalent if there exist two maps h : X > X2 and

k 3 Xg - Xl such that thfh(xl) and Kaﬁfkﬂxg) for all
% 6% end x,EX, {21}. or, equivalently, if ?1 = ?2, Then,

via a 1~1 correspondence betveen X' and §_, two (algebraic)
machines are (bshaviourally) equivalent iff thelr reduced forms
twhich are unique (upto isomorphism) and (behaviou:glly) equi-
valent to the original erms] are iscmorphie [21,*46}. The
purpose of this section is to discuss the topological version of

the above concept and result.

Two (topological) machines M and M, are said to be
(behaviourally) equivalent, written M 2o My 1 there exist
two continuous maps h : A = Xy, and kX, = X, such that

xipgh(xl) apd XBKN'F(XE) for all = 6% and %, 0L,  However,

the topological version of the equivalent form of this concept
in the algebraic settins is not equivalént to this but 15 some-
what weaker, Accordingly, we say that M] ang. Mé are weakly

{behaviourally) eguivalent, written M ~vM, if 9, =9, and

the resultant 1-1 correspondence petween ' ang Xé, both
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being given quotient topologies is a homeomorphism, The concept

of iseomorphism (%) of machines signifies that of structural

~equivalence and is a stronger concept than those above, These

remarks are justified by the followins:

G Proposntion Let M, ané M, be two (topological) B

[

mach1nes.

(a) Moz, = Moo M
(b) If the (canonical) quotient maps ‘qi P Xy = Ki.

1= 1, 2, are open (or closed),; then

By > o,

(c) TFor algebraic machines, Mig&%% iff B&ﬁJN%‘

Proof., (a) 4is obvious and (¢) is well-known {21). For (b)_loogk

[TEURE L =

at the commutative Figure 5 where hi are the maps establishing

~2 betveen M and -Mé and h dis defined by

hix!) = q20h10QIl(x‘) for x'€X{. Note that h is a homeomor-

phism,

._w-*m-,.,vw._>xt

;! i

]l h
N

R A

Figure O,
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In the rest of this section we ohtain some conditions
under which for topological machines part (c) of Proposition 5.1

hol ds, .

5.2, Proposition, Tet M M, be two machines for which the
quotient maps qi‘s are open (or closed) and admit of continuous

inverses, Then R&?zMé iff MiﬁJMé.

Proof. Mi?:kb => N&““N% by (b) of PTOPOSit;OD 3.1. To prove

~the other way, let h : Xi - Ké be the desired homeomorphism

and ki 3 Xi - X1 be continuous inverses of Qg t - " 1 2,

Define Iy : X = X and h, 3 X, - X, by

hl(x)

and hg(X)

#

k_ohoq. (x), for x€X
2 1 1

k

lohfloqz(x), for x€X

o -

Then h, and h2 are two required continuous maps.

While the existence of continuovs inverse of a map demands
much topolozical restrictions: which we (iscuss subsequently,

the following ohservation is worth recordine,

5,3, Proposition. Tet M and M, be two machines such that
qi's are open (or closed) and MiﬁyMé._ Then qi‘s have cont-
mious inverses iff there txist two continuous maps hl 3 X1—> K2

and h, ¢ X? - Xl such thet XYy implies that

hi(xi) = hylyy) ~v xy for 4 =1, 2,
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{

Proof, 'If part!. Took at the commutative Figure 5 in connec-
tion with proof of 'Proposition 5,1. Define k, *: X

1
i (x!) = ny0a7t on(x!), §
and ko (x8)

S .

il

moart oh(xl)  for a1l xjex!: 1 =1,2.

It is easy to see that ki 1s a continuous inverse of Ayt

i=ll 20

'Only Af part!. The proof of this is contained in the .

proof of part (») of Proposition 5,1 and that of Proposition 5.2,

4 final remark glven below contains an anal ogue of a

result for abstract machines lef. 21, 46].

- -

(1) Tet M be a (topological) machine such that the
quotient machine M' is defined. Then M'azM 4ff there

exists a continuous 4nverse of q.
(2) 71et M and M, be two machines for which the
quotient machines Mi and M, are defined and N%ﬁ&w%,

i=1,2. Then MM, 1ff M_'LQ:Mé .

We now give an example to 1llustrate some of the above

discussions,
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5,5 Example. Let R and R° be as in Baample 5.11. Define

a machine M: R <E— R x R° =L R® as follows.

1 1 = pf 1 12
and | g((r1: rz,)f (I‘lr o)) rf+2r,xf + rl
for all ((rls o) 1 (pi. ré))e R°_X=Rg.

The output functiom g 1s simple lef. Section 2 of Chapter IT]
[»)
and is obtained via the defining map b : R —> Ry blr ¢ 1) =

2
Ty + To -

Note that (rls rz)rdfri| ré) iff 1, = r) . Therefore

RQ/KJ = R and there exists a continuous inverse of the quofi—
ent map 4 : 32 =t B?/gq = R, Hence the (unique) quotient

machine is defined and Is eguivalent to M,
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6, Miscellaneous Topological Results

o e e wem w ok W R e

Tn this cection we present some topological results
which may not have any direct bearing on the material of
this chapter but are somewhat relatul to a few problems

treated in earlier sections.

6.1. Compactness of thc Range of a Continuous Open Map

Tn view of Remark 3,5 we would like to obtaln necessary
and suffietent conditions for the compactness of the range

of a continuous open map. Towards this we have two results

which we present below

e shall first prove a lemma,

6.,k,1. Lemma. TLet X be gny Hausdorff spaces Y be any
T,-space and h be any continuous map from X dinto Y, Let
F be a family of nonvoid compact subsets of X 1linearly

ordered under Inclusion i,e,y for Ay B in Ft AL B 1f

BC 4. Then n( M) &) = N n(a),
Z AET AEF

Proof, %e need only to show that for any y€ 1) h(A) there
-ACF

exists an x€ = A such that hix) = y. Tet AOBF and

F={ = AMa: AEFY , 7Then [V = (4 and
1 Al O } ‘ﬂlcFl Al AET

%QF:L h(a)) = fQF n(s). Tow T, = {Az = h’l(y)(\Al:A.leFl},
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1s a collection of closed sets of the compact space h-l(y)nAo
having fintte intersection property and/ hence, Fo has a non-

void Intersection which proves the lemma.

We then have

6,1.2. Proposition. TLet X be any locally compact T,-space,
Y be any T;-space and h be any continuous open map from X
onto Y, Then Y i1s compact Iff there exists a compact subset
C of X such that h(g) =Y and h 4s one-to-one on CO.‘|-

the interior of ¢,

Troof. e meed vo yerify ‘ormly if' part. Let Y be compact
and F = {%{ s Ax is a compact neighbourhood of xe}{% ., Then
F, :i%‘;’ : XGK} is an open ccver_fgr X and

h( L) 4%) = U n(a® = v. since n(a® 1s open ror all
x€X ¥ xeX “x .

x€X, {h(}l;j,) P XEX } is an open cover for Y and as Y is com-

°),.. n(a ) § for
. -

i

n
Y., So h{\U AX3= Y and thus there is a compact set
=1 8

pact there is a finite sub-cover, say: {h(A

n
A= grf'AX; (C X sueh that hn(a) = Y. Let

Fl =iA! A is a compact subset of ¥ such that h(4) = Y}
be partially ordered under set inclusion as In Lemma 6,1.1.
Then any chain in Fp has an upper bound:; namely the intergeca
tion, by virtue of Temma 6,1.1 andyhence, by Zorn's Temma

there exists a ma::imai element ¢ 3n Fl ané h{g) = v, ’We
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Sﬁow that h. is one-to-one on ¢c®. Tf h is not one-to-one

on ¢° there exist two distinct points x and x, in ¢°

such that h(x) = h(x,). Since X is a T,-spacec and h is open
there exist two disjoint open neighbourhoods Eki and N, of

% and X respectively which are completaly!contained in ¢°
such that h(NXi) and, h(NXZ) are two open neighbourhoods of
h(x) = h(xg) =y say. Then V= f(NXi)fW f(N%é) is an open

neighpourhood of y, Consider 'U; = hfl(V)F?N;i i=8

Uy, = hrl(V)fWNig. h(Ui) = h(Ug) and h(CO\Ul) = n(¢®). so

n(e\wy) = Y. Bubk C\U; 1is a compact proper subset of ¢
which is a contradiction, This proves the result.

The phrase 'h 1s one-to-one ©Of ¢®t  in Proposition 6.1.2
can not be replaced by 'h is one~to-one on ¢' as shown by

the following counter-example, -

6 .1.3. IExemple., -Tet X be the real line and h be the map
X

given by h{x) = e. Then h is a continuous open map from

tdw

X onto h(X), the unit circle. Obviously, there is no compact
subset ¢ of I such that h(¢) = h(X) ané h is one-to-one
on C,

However, when X 1s any connected subset of the _real

1ine with usual topology and h Is a real valued cantinuous

open map then h is one-§:§—one on a min‘mal compact set ¢ C X.
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More generally; we have the following results the proof

of which is easy and is omittedc

Let X and Y be any two connected linearly ordered
spaces equlpped with respective order <Topcligies T.et h be

any non-~constant continucus map from X Jnto Y, 1let

, -1
h = sup hizx)y h, = inf h(x) and" E = h + h Tt which may
2 =EK o oxexX Lhy S%

be empty. Then ¥ _4is a closed subset of X and E°4 the
complement of BH; is nonvoid and is a disjoint union of open

irtcrvalsy; the connected components of EC.

Theh we have -

6,1.4, Proposition. h is open (with respect to the range h(X))
1ff h 1s one~to-one {or,equivalently,strictly monotone) on

each component of E°.

Further; we have two impOrtdnt corollaries,

6,1.5. gorollary. Tf h is open then h(X) is compact Iff

there exists a compact subset of X h-homeomorphic to h(X)s

6,1.6., gorollary, Suppose X is as above and X has a first
element, Y is any I,-space and h 1s a continuais open map

from X onto Y, Then the assertion of Gordllary 6.1.5 holds.

The discussion of Sectton 5 shows the relevance of the
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§r0b1em of the existence of contilnuous Inverses of maps; The
problem of existence of a contlinuous inverse of g map f 1is
also related to the problem of continuous selections as formu-
lated and studied by Michael Lefy 17: 32, 33] and.: in fact,
they are same if f 3s open anc¢ closed or f is open and
domain of f is cdmpact Hausdorff Lef. 321, As noted by
Michael, the continuous selection problem has a_solution only
for wery much restricted spaces L333_ e,z,; o-dimensional com-
plete metric spaces or when the domain space is o-dimensional
paracompact and the range space is comnlete metric ete, Tn
the folloving we make an observation on the existence of a
continuous inverse of a (continuous) map which is modelled on

the Example 6.2,3 given in the sequel and seems to be nev,

Suppose f is g(contiﬁuous) map from a topolog®cal space
(X; 1) onto a topological space (Y, T') and the following

conditions are satisfied.

(1) There exists a linear order < on X such that
<{-order topology on X is weaker than T.

(2)  There exist <-order-preserving bijections

hey B 55 = £7Hy)  satistying

(a) = h;]}'c ané h, =D, oh, forall x,y z€Y,
(b) for any ?efrl(x). 7 < hxy(z) iff < th(W) for

a1l wefl(x).
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(¢) for any w, %z€ f’fl(x). 7 < w implies that
l%:y(z) <w for all yE€Y, and

(a) for any x€Y and zef_l(x) " and for every T-open
set A é X, there exists a <~open set B {_ X such that

{er: hxy(z)eAﬁ = ier: hxy(z)eBg*.

Define § on Y as x§ y ify for all zeg‘:-l(x); z < hxy(‘z).

§ 1s alinear order on Y _ induced by the 1inear order < oh

e g o

-

¥  via the map _f.- An equivalent definition of ¢ 1s 3

=1
x ¢y ify for all wef (y)q hyx(“’) < W,

6 .2.1. Remarks. (a) From 2(a) it follows that for any

wer (), w= hxy(w) iff x = vy.

(b) From 2(a) and 2(b) it follows that
2(bY) : for any zef (%), z > hxy(z) CifR w o> h}:y(W) for all
we f-:!'_(x).
(¢) Simivlariy if follows that

2(et): for e zEf H(x), = > w implies that hxy(z) > w for
all yev.

Then we have:

6.2.2. Propocsition, Suppose fy Xy ¥ are as In above satis-
 fying the conditions (Y)and (2}, suppose g- order topology on Y
1s weaker than T'. Then thers exists a continuous inverse

of f.
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* Proor, ‘Defi'ne», for a fixed =x€Y and a fixed ze'f"l(x). a

map g, * Y= X as follows: gxz(‘y) = h)w('z) for all yeY.
e prove that By, 1s contimuous with respect to £=_order
topglogy on Y and <~ order_topology on X Lef. condition
2(d)3 whence 8y 18 a continuous inverse of f« To show
that, for any weX. 0 = goi Juu> v uEX § 1s a g= open

set in Y.

Case 1, 2z = w,

g = {y:er such that hxyfz') > W= ZS = {y. Y€Y such that
hxy(z > ' for a1l zref"l%x)j)[by 2(»)], {y X gy%: by

definition of < 3

Case

i

7 < W,
If wefr Hx), then as zef"]'(x); by 2(e)y 2 < w implies

that h.(2) < w for a1l yeY and hemce 0= ¢.

Assumey then, wg f"l;(x) and consicer h)mg(z.). where

w' = flw).
ubcase 2(a). e hol2) ¢ w,

[ ey ol

By 2(c), he(z) = Bty OR i (2) <w for all yey
since both h:w,_(z) and wE:f"l(w")_ 8o 0 = ¢.

Subease 2(b). h_.(2) > w,
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By 2{c), 'hxy{ﬂ = -I_Jw,y” oh. ¢lz) 3 w ror all yey.

1f

Ag‘é_ling by 2(&): hxx(z)
soy b e (2) Yo,

% > % which 1z a .czs;@n{;.rac‘:ictiom ahd

ir

Subease, 2(e). h . (2) = w,

0={§t°%Y auch that hep(2) = By oh i (e) 5w
=3yt y8Y such that e, (W) > w ¢
= gfy ¢ y€Y  sugh that y P2 W‘-} r by 2(b) and the

definition of § i

Case 3, 2 % w. This can be verified in a way similar %o
that of gCase 2, | 7

making use of Remarks 6.2,1 and the definitions of
§ and using arguments similar to those above 1t can be shown
that for any wex, O = g;é iu § WS Wh ﬁex} s £ open in

Yy This proves the result,

It may be noted that there e:.::?:s‘.c more than one .cpnt‘i'—
nuous inyerses of f wunder the hypotheses of .P;f_cxp'osition 6.2,.2,
one continuoug invertse of f for each fized pair x£Y and
2€ f"ﬂ"(xi. However, 1;hé cardinality of the set ¢ of a1l
continuous inverses of f under_the same hypo’thes.es is that

of f-l(::) for any =z€Y. This 1s because the set
C, = zg s * ze?'i"‘l(-x)} for x€Y is samé for ulil choices of

X and so eQuals ¢.
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The following example illustrates the above

discugsions,

6.2.3. gggpplgé_ Let T be a topolony for the set ¥ of
reals whose base is-flusual bageg k}iﬁn, X): x> n and n
integral} . Tet ¥ =10, 1) with usual topology, If

f: XY s defined as : f(x) = fractional part of X%
for all =xEX, hen the hypotheses of Proposition 6.2.2

are satisfied and there exist continuous inverses of f.

Tn this example, for x, y€X, h

- ~1
by £ (%) = f (y) 1s

defined by

I&y&) =z -x+y forall zCf+(x).

e e e
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