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Notations and Abbreviations

Abbreviations

r,v, random variable

i.i.d, independent and identically distributed

i.i.d. r.v.'s independent and identically distributed
random variables

a,e, almost everywhere

ah ) distribution function

Wor.h. with respect to

m,z.f, momient generating function

nbhd ne ighbourhood

Notations d
x 1/2 2

E(X) i (2m)™ exp(-x"/2) dx

Xﬂ—jﬁ§ X The sequence of r.v.'s X, converging

X,~2> x in distribution to the r.v. X,

a, = 0(b,) lin sup a /b, < o
n -> o

a, = o(bn) a /by, > 0 as n > =

a, = 0 (bn) 0 < 1imninf a,/b, < limnsu_p a,/b, <

I(A) Indicator function of the set A

X, = 0 (a) For every <€ > 0O, there exists a constant
such that P(|X;/a;] > E(€)) <& for all

a, « b, a, = O(bn)

avb max(a, b)

a~b min(a, b)

X(e)
i>1
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CHAPTER 1,

1.1, INTRODUCTION

A The central role of’the normal distribution in statistical
theory and mefhodology is beyghd question, Apart from other attra-
ctive featurég, one important reason why this distribution has
been found to be so useful is that it turns out to be the limiting
distribution of many well-known statistics (for example the sample
"ﬁeaﬂ, samnple moments etc,) after suitable standardizations under

usually very moderate assumptions.

A result of pivotal importance in this respect is the so
called Central Iimit Theorem (CLT) which says that if X, X0,
is a scquence of iidrv's with common mean 4 and common

A 1 .

variance o° (0 < 0% ¢ ), then defining S, = ' X (o2 1

and £ () =P((5 - nu)/(J}lc) < t), ome has

(11D sap | B8 -y (8) | = 0
—z0{ 1 {o0 -

¥

where Qﬁt)“‘is'fhe distribution function of a. N(0,1) variable,

One major limitation of the above result is that it does
not say anything regarding the rate of convergence of T, 1o @o

The independent work of Berry and Esseeh show that if in addition

(1.1,2) . E |}{113 < o,
then 7 ' 1
(113 swp | B (8) - B8 1 ¢ € n B 1%-u]3/a% )

T
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27 3

{then 1

G T (D - WO < ﬂ—g—E(—pﬁ, B o7
t
where C 4is a universal constant. (For numerical value of C,

see Zolotarev (1967).) N

The condition (1.1,2) was later weakened by Katz (1963) o

Clo1.4) : ylE Ox g{x) ] < o

)
where g(x) is an even, normegative, real valued, nondecreasing
function with |x| /g(x) nondecreasing on [0, «)., He could

then prove that

(1.1,5) s%p -}-Fn('t)-ﬂ(t') t <o g wa E[:{(Xhu)/q}z g((X-pd /o ]]

These uniform rates of convergence, though very useful
are non_ade%gate for many purposes. For instance; if it is known
hat g i a function such thit E[x(|7|7]< >, where T ig
N(O,1), then in view of the fact 'Ehat (8,-n )/(/nis) BN T, one
mgnt intultively expect thal B g(|(S,n )//hs]) —> E g(m)  as
n-» e, Or, one mightvbe interesféd in knowing Wwhe thex a

Lp—version of the Berry-Esseen The orem holds, i,e,, whether

E . L 1
(1.1.6) || B (0)-B(t) [y = 0 f 108 |P.af]? = o

’as n ~> <, Questions of this type cannot be aqswered frqm

the uniform rates of convergence given in (1.1.3) or (1.1.5).
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The main reason why bounds of the type (1.1.3) or (1.1.5)
are inadequate for the above purposes is that they do not reflect
the role of t in the rate of convergence. The fcollowing result
of - Nagaev “(1965) gives a nénunifbrm rate of convergence of

P (8) to Q).

Theorem 1.7.1 Iet X, Xg, ... be iid with E X, = O,
EX, = 1 and EIXJ] < ~ . Then,
(1.1.7) P8 - 0] ¢ cn /2@ e p)P )",

where C 18 a universal constant.

Recently Miohel (197€) has provided an interesting approact
in the study of nonuniform rates of convergence of F (8) to O(1).
His way to tackle the problem .s to break up iae positive axis into
two regions; and obtain two different bounds for the difference
an(t) - p(t)| depending on the region where t2 belongs. This
idea was possibly implict in TEsseen (1945), but was explored very

effectively by Michel (1976),

Cramer (193%8) had an important result in the theory of
deviations, He was interested in the question of values of t
(night depend on n ) for which 1 - F (+) ~ §(-t) as n -> =,

Cramer’s main theorem is as follows®
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Theorem 1.1.2 If +the X;'s are iid with a finite mgf,
then -, =N
(1.1.8) 1 - Fncﬁ)”faa @(—t) for t = o(n!/®) and
. i 1
1 "HFn(tn) = exp [ - %,ti(1+°(1))] for 1< t, = o(ﬁ§ )

Later, in comnection with the study of Bayes risk efficiency -Ru.bin1
and Sethuramen (1965 a, 1965 b)_ considered the case A = c(log n)%
(¢ > 0). They showed that if E [X|°"%*% ¢ w for some 6 > O,

then, 1 - Fn(Kn) o @(-hn). The result was later proved under

c+2

the weaker condition -E |X|®"° < » by Michel (1974),

Michel (1976) strengthened his. 1974 results further to
obtain rates of convergence tc normality depending on + and n,
and it is the later work which is the genesis of the present

thesis,

1.2 SOME WEAK TWOTYTNENCGT STRGCTURE

In this section, we define some weaklygdependent processes
to be considered in Chapters 4 and 5 of this thesis, Iet |
¢ Xi, - {iK m_} denote a sequence of random variables, and

4
~ A

b

S APER

a i S'E)- denote the o-field generated by
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Definition Xi - is said to form aq:'m—dependent Seguencce

if for all k

H
sup sup | P(AB). - P(A) P(B)-I = 0
k
A

e IB B 1:B € ﬂ%{+n

whenever n > m., In other words, the sequence xRt is m-

?

dependent if ey Kot o X&)‘ is dietribuﬁed(independehtly of
(Xr-l-m 2 )L-E'*'Hl*"[ ] .,: - ) fOI‘ all T '

m—dependence is one of the simplest type of'dependence.
An ﬁmportant example is the moving average procese generated‘by

finite Ilinear combinations of independent random variables.

A more general kind of dependence is the so=called (P-mixirs

The sequence § X; - of rv's is'said to be (P-mixing if for

all k,
sup  sup | P(BIA) - BB ] < On),
L N Lo 4
A elgn B s]Bk+n

where PA) > 0, and. £f¢(n) n > O-} 1s a nonnegatlve sequence
of real numbers satlsfylng 1 = @(O) > @(1) > 0(2) >
with 1im“‘®(n)

n —=> oo

is virtually independent of the present, The ‘@—mixing process

® » 0 k)

=0, Ina @—m1x1ng process, distant future

includes as special cases m-dependent processes, some Markov
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processes and certain infinite order chains.

1,3 SURVEY OF RETATED WORK

As mentioned already, this research originates with the work
of Michel (1976), One of the pleasant featurecs of Michel's resu1t1
is that these yield as byproducts several Iimportant results earlior

proved independently by several authors. One inmportant corollary

are the moderate deviation results of Rubin and Sethuraman (1965 al
There have becen several extensions of these PMD results in recent
years, Ghosh (1974, 1975) obtained the PMD results for statio-
nary and nonstationary m-dependent sequences, PMD for ¢-mixing
processes were obtained by Ghosh and Babu (1977), later extended
to strong m1x1ng sequences with exponentlal decay by Babu and Singh
(1978). Also nonunlform rates of convergence to normality for
®~m1x1ng processes were obtained by Babu, Ghosh and Singh (1978)

quite in the spirit of Michel's work.

Regarding the so-called large deviations results, i.e.,
deviations of the type afn, Chernoff's (1952) classical theore
asserts that if the moment generating function is finite in a neigh

bourhood of the origin, then,

o log (1 = Fn(aj?L)) -> log e

’
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where ©° = inf E [ exp (h (%4 - a)) ] . Several extensions were
rade by Sievg%g (1969), Plachky (1971), Plachky and Steinbach
(1975) when the rv's are independent but not necessarily iid

or when the rv's are dependént, but the cumulant generating func-

tions satisfy certain stability assumptions.

This thesis .is also concerned with deviations of certain
nonlinear statistics, 1i,e., statistics which are not linear func-
tions of the observations, Such statistics can in general be spiit
into two components, the first one being a sum of independent ran-

dom variables, the second one being a negligible remainder. To be

precise, let T = 5]

B _ .
8 = ? V(X;), (21, where X, (1=1,..., n) are indepen-

_Tsi > 0 and

n
n S, *R,, where S = ? X,y m21

dent random variaples . Suppose, 1lim inf n
Rn-jié 0O as n ~> o, Then, under vegy“;i?d additional condi-
tions, I, — N(0, 1). Representation of the above type is fairly
common, and is obtainable, say, via Hajek's projection lemma.

Examples of such statistics are the U—statistics or L-statistics.

Central limit theorems for U-statistics were first obtained
by Boeffding (1948)  for iid and independent .rv's. Recently,
interest has‘been-focussed on the rate of convergence to normality
for U-statistics. ‘The order bound 0(n2 +6)7 (8 > 0) for U-

statistics‘were[obtained by Grams and Serfling  (1973) assuming
i 7 ¥F W
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finiteness of all the moments, while the order bound O(n =1/2y
fo=—.U~statistics with bounded kernels were obtained by Bickel
(1974), This condition was later weakened by Chan and Wierman
(1977) who obtained the order O(nf1/2) assuming finiteness of
the fourth moment of the kernel and the order 0-(n_1/2(log n)T/g)
assuming finiteness of the third moment of the kernel, ?inally,
Callacrt and Janssen (1978}'obfdfned the sharpest order bound
O(nfT/z) assuming only the finiteness of the third moment of the
kernel, e '

THe @symptotic normality of L-statistics was first obtained
by Jung (1955). TLater, under varidus'assumgiaons on the score
functions, and ihe;momentS‘dfithé distributions, such results were
obtained by Chernoff et al (1967), Bickel (1967), Moore '(1968);,
Shorack (1972, 1973, 1974),  Siigler ({§72, 19(3, 1974) &nd others.
Rosenkrantz and 0'Reilly (1972) obtained the rate n_1/4 of
convergerize 16 mormality for L—statistics'usihg a Skorohod repre-
sentatlon*' Baerve (1977) obtained the sharpest order n” -1/2 for
trimmed Ipstatlstlcs combining the technigques of Chernoff et al |
(1967) and Bickel (1974), Finally, in a recent paper Helmers
(1978) obtains the Berry Esseen bound n="2 for untrimmed I-
statistics with smooth weight functions not éll%ﬁingrfoo mﬁch

weight on extreme observations,
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1.4 A BRIEF SUMMARY OF CHAPTERS 2-5

In Chapter 2 we obtain non-uniform rates of convergence to
normality of the partial sums in a triangular array of random vari-
ables, where variables in each array are independently distributed.
Section 2 of this chapter generalises the results of Michel
(1976) nmainly in the direction of considering a triangular array
of random varicobles, A slight generality in the moment assump-
tions is also made, The later extension is quite in spirit wlth
Katz's (1963) extension of the classical Berry-Esscen theorgm
Since by Tomkin's theorem (sece Tomkins (1971)  or Stout (1974))
the laws of the itefated logarithm are directly related to the Z01N¢
where 1 - Fn(tn) ~— t@(-tm),= tn -> « as a corollary of our
theorem (2.2,6) (see in partiecular (2.2.52)) we are able to
show that laws of iterated lo,,arithm for Sn holds if

£ el T+e
Sup max EX;; Clog (1 + X 1)) { =

for some ¢ > O, which is incidentlly best known result for inde-

pendent case (sce Stout again P 275). As other appl;cations o

themanon;uniform rates we prove moment type convergences and a

non-uniform I, ver510n of Berry-Esseen thecrom extending the

results of Erlckson (1973) .
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e F O

In section 3 of- Chapter 2 we consider the case when all
the finite moments of the underlying random variables exist but the
m,g.f mneed nof necessarily exist, Consideration of this situation
helps us weaken the assumptions of the known results of the last
four decades, As a conseguence of non—uniform”bounds in this case
we prove Cramér's(1938) results on normel approximation zone and
on large deviations under milderrconditions_ ﬁe also prove Bahadur
(1960) type upper class results on‘excessivély large deviation
(i.e,, deviation of the form‘ Jﬁ.é, a > 0) for random variables in
a triangulaf arréy, sharpening his results with an estimate of
5(n, &) (éée‘Bahadur, 1960 pabér)‘in i.,i.d case, for both upper

and lower clasédestimafés. Other applications of these nonuniform

rates includes moment type convergence and a stronger non-uniform |

L, version of the Berry-Esseen theorem.

In section 4 of Chapter 2 we partially cover the extreme.
case viz, when mn.g.f necessariiﬁjegistsj?ut thé random ﬁafiables
are not nccessarily bounded. Since-itlis known (see Feller 1969)
that so far nqrma;rapproximation zone and large deviation zones are
concerned ‘boundé&ness‘bf the random variables is not of much help
compared to the gilder condition of existance of moment generating
function; we content ourselves with a relatively sironger form

compared to section 3, of Lp versions of the Berry-Esseen theorem

and moment type convergences,
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Chapter 3 generalises the results of Chapter 2 for general
non-linear statistics., As exampies, we inciude L-statistics and
U-statistics also show that the technique can very walbe adopted o

cover sampling without replacement from finite populations,

Chapter 4 of this thesis considers m-dependent process,

Results of Chapter 2 are extended to this process,

Finally in-Chabter 5 we consider @—mixihg process. The
results of section 3 of Chapter 2 are extended to some (non-

stationary) O-mixing process.
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CHAPTER 2,

NON T.IIFORM RATES OF CONV..RGENCE FOR STALDARDISED
ROW SUMS OF RANDOM VARIABLES IN A TRIANGULAR ARRAY

[

In thig‘chapter we study the non uniform rates of convergenet
ﬁo hbrmality for random variables in a triangular array. Consider
A @bhble sequence [X . 2k i<n, n> 17 of random vari-
abies, where variables witpin each row are independently distributel
and satisfy -

(2.0,1) EX: =0 Sup max ‘B X g(X.) < o
i ni ¥- an 1<idn ni. ni

with g, to be specified later,
and ; %
(2,0.2) inf n”" si,ﬁ> 0 ‘where s = 3 E Xii a
n>1 = 6 =1

Nonuniform rates of COnvergence4of‘_Sn/sn are studied under

different conditions on g. VR

<

NON UNIFORM RATES WHEN SOME FINITE MOMENTS OF Xni's EXIST.

2,1 Introduction, In this section we first generalise and
extend Michels (1976) results to row sum of independent random
variables in a triangular array, Michel (1976) considered g(x)
= |x{® for some c¢ > 0. In the following we allow g(x) to be

slightly more general than Michel's ,let
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(2.1.1) EX. =0

2+¢
i " Sup max E{X; | u(X 3) <o

n>1  1<i¢n

where ¢ > 0 and u(x) is non-negative, even, nondecreasing func-
tion on [0, =) with u(x) < |x]® + L(¢) for all ¢ > O with

some L > O,

Examples of ~u(x) satisfying the above assumptions are
u(zx) =1 (e> 0), ulx) = log (1 + |x|), w(x) = log log(e + [x])
ete.

In the special case when the X;'s are i.i.d random
variables, our assumptions are identical with those of Katz (1963)

when 0<c<1 or ¢ =0 and 1lim u(x) == or c =1 and
‘ ?xl-)oo
u(x) = 1, e further assume(2,0,27%to hold,
- ]
We now define S =._<i1 Mgy " BBV =R WL ).
In scction 2 we derive some non-uniform bounds for |F (t) - ) |

for different values of +t, and use these to study the speed of

convergence of 1 - Fn(t) to zero as 1 -> o the speed of conver-

1

~gence of the moments of !s;l 3 to those of IN(EJ, 1)| wvariable

e

and in finding certain Lp version of the Berry-Esseen theorem,

2,2 THE RESULTS ON ROW SUMS OF RANDOM VARIABLES IN_A
TRIANGULAR ARRAY

Pirst we prove two theorems giving rates of convergence of

F () to 0(t) depending on both n and +. In the special case
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of sums of i.,i.d random variables,.these include more general
" versions of theorems 15_and- 2 of Michel (1976). For sums of
iiliodf'ranaom variables our theorems are quite in the spirit of

Katz's (1963) extension of the classical Berry-Esseen theorem,

Theoféﬁ 2.2.1. Let (2,1.1) and a(2.0,2)'Ahold. Then for
£ & IR Eb?ézibg n + log u (jﬁ‘f] , K> 0, there exlsts positive
constants?fb; and r (depending on a, ¢ and K) such that

-

-

(2.2.1) P (0)-0(1) | S D gxP E— t (1-3r)] + z P(‘Xh1i>rs 1t 1)
-‘*'(nV%mvn)‘-"’ (atr 8 (1t] vIN™ or n'"W

according as Ojg c <1 oF ¢> 1.

i
n.

~ where w = w(n ]tl;c)‘

{

Thebrem 2,2.2, - Let (2,1.1) and (2.0.2) hold, Then for
32 > K [(e/27 Fog n f-log_ugji X]: there exists b >0, r (> 0)

depending on u, ¢ and KX such fhat

(2,2,25;';|F5‘t);é;;if“S'“ﬁtgéignﬁ%i?ljj ~-(K-1)/2 ltlfz(K+1)
+ li (‘Xhi‘) r s |t|)
Proof of theorem 2,2.1, Throughout the proof b1,-b2,.,,‘{1

denote positive constants which might depend on u and ¢ but not

on n and t., The theorem is obvious for +t = 0. We prove the
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theorem only for 1t > 0, as the proof when t < 0 is analogous,

For 0<%t <1 the theorem.Tollows immediately from Katz's (1963)
. / b

theorem, For t > 1, let ;

(2.2,3) L o= 1, = X I UX 0 < s,t) , i=1,2,, . n
‘ n
I being the usuzl indicator function, Define Sp = B Y, (1)
3 i=1
Then
-1 e 5y
(2,2,4) |P(s," 8! < t) - F (2] < 121 POIX ;1 > » s, t)
Next define
(2.2,5) () = fn;i(t) = Bexp(t Yy/8) , 1i=1,..,, n
(2.2,6) omy(t) = £, () E [Yi exp(t Yi/sn):[ g A =0l
- s n '
mn(t).? n ' = mi(t)
| 2 2 s B .
(2,2.7) mi(t) + ci(t) =1 () E EYi exp(t Yi/sn)] g s B

= ~2 & JEiEE fe
o (t) = n '"121 o; (1),
(2.2.8) B(z) = 6, G () mz +n m (+))

whore

(2.2.9) dGn(Z) = {E(exp(‘t S;l/sn))}-- —~1 exp(é/sn) dP(S;l < z)
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Then standard methods (see e.g. Cramér (1938) or Bahadur
and Ranga Rao (1960)) yield
g s % 1
(2,2‘;10) P(s;lfl Shb t) = An(t) f exp(-t s;f n? T z) dHn(z)I

B_(t)
where L

(2.2.11) An(t)

=

i=1

TT 2,8 exp (-t 351 n m, (t))

(t s, -nm, (£I)/ (Jno5, (+))

(2,2,12) Bn(t) L

using (2,0,2) ‘and (2.1.1) one has the estimates
_ | ~-(c+1) | : .
(2.2,13) 2 Y1 = o ((r s, t) u” (r s ), 1Limy
i

(2,2,14) 0K E Xfli - B Yi = o ({(r Sn‘t)_c u (r Sn't)), 1 5_1_{_1'11

0(1) if o > 1

(2.2,15) Bl |°

o((r s 8)17% (alr s 7 “if 0 <o <1

Now using (2.2,13) = (2.2,15),

2
t 2 -1 5 2
(2.2,16) |2, (t) - 1 - P EX, | ¢ bwn exp(grt)
= .

Next we show that w exp( % T t2) = 0(1) by proper choice of r > |
For 0K ¢ X<

2rk
(2,2,17Y  wexp ( ) < (n1/? )¢ 2 snt)(nc/gu\[ﬁ))4 =0(]

[NV,

if r<min (2K, 1)
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E

Again for ¢ > 1, sinee u(x) < |x| + I for all & > 0, one gets

5
S e 2xr
(2,2,18) w exp( %frtg') =‘.n"1A/2(nc/2 wfn ))4 = 0(1)

ifs r ¢ 4/(5%ec),

Thercfore, choose O € r < min (1, (5K)“1 (c v '1)71) sc that bothr
(2.2,17) =nd (2.2.18) " hold. Now from (2,2.16) - (2,2.18) ',

(2.2,19) m . A f 5 2ic
% log-f(t) = t” ¢ O(wexp ( 5 rt g
j=1 4 s = ,
Next note that
| E 1 B gpitggm 25 D
(2,2,20) E[ Y, expr(t‘ sm1 Yi):] = t,sn1 BX ; + O(n ey exp(%r‘t )}

' 2 z - 2
(2,220 E[L Y exp(t s7' ¥ = E xii + On 172 4 exp( % rt°))
Hence, from (2,2,6), (2,2,7), (2.2,16), (2_2-—,‘;?0) and (2.,2,21)
ocne gets

(2,2,22) mi(t) = % s;': E)ii + o@ 12y exp( % rt2)) -

(2.2,23) mi(t) + o;(t)“ = EXii + 02 y exp ( %rt2)) ,

Thus
s B® = e v oy e (§ e,
(2.2.25)  Fot) = n7led w0~ VZ wexp (2 xt7Y)
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?

Hence from (2,2,11), (2,2,19) and (2.,2,24)

(2.2,26) A (1) = exp (£°/2) [1 + 0w exp(G rt9))] exp(~t?)
oo N, " 3 B
X L1+ 0w exp( 5 7t)) |

éxp(— %—t2) [1'+ O(w exp ( % rte))j

where w exp( %“rtg) = 0(1) by dhdbsing ir (> 0) appropiately

small,

- Also from (2,2,12), (2,2,24) and (2,2.25) one gets
CUa2.2D B(H) = 0w exp (3 D). :

PFinally from  (2,2,10) one gets :

(2.2.28)  |2(s7! 85 < 0= AB| = [PCaZ! 52 > 1) - Bt |
= A () .jf exp(=t ;' 02 5 2aH (2) - F(-1)]
By (+)
$ L ¥ I, + I
where . > . , ‘
(2.2.29) 1y = (4,0 [ exp(-ts] 0252 at,(2) - §(a)))]

- B, ()
IAn(t) = exp(—t2/2)i /( exp(-ts;
B, (1)

(2,2,30) 1, 1

4

n'/? o 2)dP(z)
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~ 8

(2.2,31) I, = |exp(-td) exp(~t 57" n!/2 5.2) af(z) ~ P(-1)].

Bnl‘t)

Using (2,2,25) - (2,2,27), +the Berry-Esseen theorem, the c, in-

equality with r =3 and (2,2.15) one gets,

(2.2,32)_ 11 < exp (- %) [t + 0(w exp (2 rt ))J

rt5)))]

o

X exp [-t(1 + O(w exp( 2 rt 1)) (0w exp(

X Sup !Hn(z)'; d(z) ]
Z

< by exp(-t /2) [1+0(w exp( 3rt° M =] 8o

n
fAz By (Y.—mi(t))2 {
{i=1 “n ;
n - :
8 Z By IY [
2 =1 “n
£ by, exp (~t7/2),
' : 212 =3
: S on g’

n

< bs exp (~t°/2), n=/? e 1%, 1° exp (417, 1/5)

n
< b4 exp (-1;2/2). n“3/2 exp (rt2) g B [Y.13
i=1 o
‘t2
Lo wexp [~ 5 (1-20)] .
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(2,2,3%) I" = [A (t)-exp( t /2)[ exp(gt s, ?n 62)

X P(-B, (1) -t 3;11 n1_/2-,3n) i

< exp(~-t /2) O(w exp(% IriS )) exp(-—t s;g n 52 )]"

_ (2
< bow. exp (- 3 (1-31r))

Finally .

(2.2.34) Iz = lexp(- % 2. %-t2 e 2) O(-B, (t)-t s T nl/2 o )-0(-=0)
Y B B N PRI RIS BV,
-_g"}eXP(—-gt 3" 877 0 T §0(-B (0t s 0!/ 5 )-p-0)]|

+ Jexp(-pt -¢-1 Sieet n3§> - 1] Bty
‘ - 2, a2 - = 1 . = 5
L b, exp :L-%t (1- Sn211 Jﬁ); IB (B} +t 1= n‘!/2 Unl}‘;

J
Pad exp(-tz-'/-?) + b{lexp %(-t2/2)(1-s;12 n 0121')}'—” t"1.e—t 72

< bow. exp [ %‘tz (1-3r)] from (2.2.25) and (2.2,27)

The theorem now follows from (2,2,10) and. €2:2,32) - (2i2>.34).
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Proof of theorem 2.2,2,  The result is trivially true for
K =1 by using the same trucation as of theoren 2.2.1, For KX > 1y

first note that for t > 0O

{

1 1 ,
— 2 2
(2.2.35)  §(-1) < t~T(2n)exp(-t2/2) = +~1(2 70 2exp Et_ég_-ﬂ_ %{] :
" 1

B 2 3 (R=1)
< t"'1(2?t:)§exp(— %ﬁ) n®/? (ﬁl) ?

(K—-’I) -2(K+-1)
{D ( A ol (ﬁl 2 ‘

The rest of the proof of the theorem for t > O follows. .the 11nes‘
of Michel (1976) by taking r = (‘21{(101))“'1 and

(2.2.30) 'n = 7" 07"/% [(§ 1og n + log u(JR))(K-1) + 2K(K+1)1log t].
For t < 0, +the proof is similar.

Remark 2,2,1, In the special case of 1i,i.d rv's when
u(x) =1 for all x, ¢ 0, Michels theorem 1 follows as &
8pecial case of our thecorenm 22,1 by taking K= 2£1+c"1).) However,
With the same choice of X theorem 2 of Michel does not follow
from (2,2,2), Howe‘ver, again in the case of 1,i.d, rv's, under

the condj_.tions of theorem 2.22 one can for c >0 6b£aih instead

of (2,2,2) +the bound

(2.2,37)  [F_(0)-§(8)| < b, n (K24 rpyy~(Ke+2) /20 —2Ke

+ nP(]X1[ >rn1/2 1t])
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- -1 _=1/2
taking 0 < r < mln{:c(Kc—2) 1, (2+c) (Ke) 2] _and hw=‘§"_n““/

[:(Kc 2) ( -2- 1og n+ o log u ({n)) + (Kc)2 log t| for K >

Then tak;ng X = 2(1+e™1) one obtains a stronger form of Michel!

(1976) +theorem 2,

i Ffbm“theﬁrems 2.2,1 and 2,2,2 (by a proper choice of
K> 0)dit is easy ta derive the follow1ng non uniform Berry-Essee
theorem which generallses theorem 3 of . Michel (1976) and
theorem 3 of Nagaev (1965) Included also is a corresponding

uniform Berry-Esseen theorem of Katz (1963),

Theorem 2.2,3 There exists a constant b (> 0) depending

only on ¢ and u, such that for all t

(2.2.39) 17,(8) = B[ < b (1 + 1£)27°)T %% u( ) oo n'/
where x Ay = min (x,y).

Remark 2,2,1a, The order of t in (2,2;38) can be impro
in general, From theorems 2,2,1 and 2,2,2 it is easy to
obtain

: o =1
B8 - B0 | < 2.[n%2 u(Jmy A 0'2] rtrK <leI>r

IIM{S

<D [h°/2 u (Jn) A nj/2] _1|t|—K

+ by n®/ 2141=@*) (u(z 5 1)~
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forany K> 0 and b (> 0) being a constant depending on X,

Now for ¢ > 1, we have

208 - D] < by nm V2 (1w 1110 ) (1w g
and for 0 £ ¢ < 1

B8 = 8| ¢ b, [ n®? afn)] (14142714 _Lu(fﬁfz 3
u n

Which is further improvement of (2.2.38) .

Next theorems 2,2,1 and 2.2.2 are used for proving

_..‘IS

moment type convergences of LA s, 8,

to those of T = |N(0,1)]|

Related results of Von Bahr (1965) and Michel (1976) are

special cases of the following theorem, where As Mo, }\3 are

arbitrary positive constants,

Theorem 2,2,4, Suppose that the assumptions of the theorem
) A
5 X 5 :\ul' X € Nc .

x> O,where N 1is a countable set and points of ¥ (with

2.2.1 arc satisfied with uw'(x) ¢ Aot A

+ sign.) are continuity points of Fn, then

(2.2,39) |E(Y121+° w(Y,)) - g(po*e wW(M ] = o™ )

where c* = %— min (c, 1).
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Further for ¢ < 1 with limu(x) = and > 1lim u(x) = O,
o ‘ = X=Doo x>0

- i |Kni[2*°-a(xni) - are uniformly integrable (u, i) then

the above order can be made o(n"c* e

Mg

J

2+

Proof, Tet h(x) = w(x), x> 0 then h'(x) =Xy + Ay X2

Now since the points of N arc continuity points of Fo,
contribution from those points to h(Y, ) is zero, Also

’VEH(Y ) = ( .f h'(t) P([Y | > t) dr(t), Similarly for Th(T).
Ooo-l\T

Thercfore

(2. p) En(Y.) - En(m)| ¢ nr () ;P( Y 1< 1)
e £ gl BRI

- P(|T|<) |an(s)

! O(n0/2 1/2)—-1

u((R)A D + _21 gh'(‘t)PﬂXm_p rs, t)dt

1=
by using the orems 2,2,1 and 2,2,2 @ith Sufficientiy large value
of K. HNow
- n ) )‘ H
(2.2,41) = () p(x,1/rs, > Dat = 3 Eh(xm/rs )
pp=1" i=1

_ =(2+c) _ -(2+c)
= Sn i=1

T e

H Koy et u(an/rs )

(2,2,39) therefore follows from (2,0,2), (2,1.1), (2.2,40)
and (2.2041)0

When {ijniI2+c u(Xhi)}" are u,i1 and 1%36 u(x) = 0,

then E[Xni{2+c u(Xhi/rsn) = o(1) uniformly in i, 1 (i < n,

as n = «, Also for c ¢ 1 1st term of r.h.s. of (2,2.4;
is o(nfc%) since 1im u(x) = e, Hence the 2nd part of the
- X=D oo

HbARION! 4
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The bound (2,2.39) mnight not appear very useful when
¢ = 0. But even in that case under u.i, assumption and
lim  u(x) = , 1lin a(x) = 0, the 1.,h.s of (2.2,40)
X-> o L X=> 0 i ; 4
converges to gmero,

Erickson (1973) derived Lp—versions of the Berry-Essecen
theorem. Our next theorem also provides a non uniform Lp version,
which is stronger than the corresponding uniform version, although

the assumptions and finzl results are_different from Erickson's,

We write |]. |p for the usual Lp-norm with respect to lebesguc
measure .
Theorem 2,2.5, Suppose the assumptions of theorem X[ anda 2 2'3

Bng SatiSind. Then for P > 1
(2.2.42) (1 [t]Pro-/p E (D=0 1 = 0 2a( . A nl/3~"

for -any q > 1,
PTon, Note that

(2,2,43) '][(1+1t])2f0eq/P (Fn(t)_@(tj)];p = f (1+'t|)p(2+c)—q

ry P
X, [P, (£)-D(t) |Pat
Using theorcm 2.2,3 with the observation lim (1+t®)/(1+t)™ = 1

| >
n>0 and -
(2.2,44) ;J (1T + [t] D724t < « for qa > 1, the desired

conclusion fallous ,
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The next two theorems investigate whether the tail probabi
lities (B 0 w

(2,2,45) T - Fn(‘tn) ~ E(T_}(_;‘t.n) as’ -tn > oo,

(By a(n) ~ b(n) we mean a(n)/ b(n) -=> 1 as n > =)

We shall see that as a consequence of theorem '2.2,6, one
can casily cstablish probabilities of moderate deviations (see
Rubin and . Sethuramen (1965), Michel (1974) and Michel (1976):

in the special case %, = (c log /%,

Theorem 2,2,6, Suppose that the condition of theorem M2

> 2 . g‘v il = -
are satisficd. Then for a sequence “{tn}‘ t, > . w1t§

2 H : 3
(2.2.46) ,#n - q:log n - ?(c+1) log |t,] - 2 log ulr s, ty) =

(2,2,45) holds,

. 2+¢ Nl -
Purther, if the sequence {_lXﬁiI u(X 5 )‘} is wu.di
then (2.2.45) holds even if 1l,h,s of (2,2,46) is bounded

above by a positive constant

Proof of the above theorem and the following follows the lines o
theorems 4 and 5 of Michel (1976) with an application of
theorems 2,2,1 and 2,2,2, observing that ,for t > O
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o]

(2.2.47) 0(n®’? u(r 5 %) gere y-1

N

Pl PUX ;50 > T8 t)

1

= o(nc/2 ulr snt) t2+c )"1'

it %\xm\%cu(xﬁiﬂ; is  w.i.
The, following theorem stateés that such a- strong conclusion may not

be possible if .l
. X _ :
(2.2,48) t, - clogn - 2(c+1)log|tn| - 2log u(r st ) => o

Theorem 2.2,7 Suppose that the conditions of -the theorems

2,2,1 and  2,2,2 are satisfied, Then for = sequence tn

(=> ) satisfying (2.2,48)

o(t£(2+0) 1'1_0/2 u—1(r sntn)) b

{1xni[2+° ‘1(3%:1)} is u.i.

. O(tnk(2+c) n-c/2

(2.2.49? 1-F, (%)

-1 :
u” (r s, t )), otherwise

Remark 2.,2,2. Suppose

2.2 50 . u{ Ax) —— u(Ax) - 7
( 5) o_«:iﬁ%mm < Jlffm TV ¥ A>0

then (2,2,46) amd (2.2.48) reduces to

2 clog n - 2(c+1)log]tn| - 2log u({i.th? -> -

n
and t2
n °

- clog n - 2(c+T)log|t | - 2log u(ynty) > o0
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in view of (2,0.2) , Also the order of approximation in the
first line of (2,2.49) reduces to cXt—(2+C) n"c/2 u_1(J5.ﬁn?) dsf

the u,i assumption holds,

e

The condition (2,2.50) is satisfied for u(x) = 1og™(1+|x]|)

m > 0,7 log log (e+|x|) and in general for slowly varying fune-
tions,
Aéraq{éxamplerconsider the case when u(x) =¢logm(1+[x]) ,

m2 0, ¢ and m not both zeroes. Then (2.2,46) redrces to

(2,2,51) ti - clogn - fc&2m+1)iog logn => =0 if ¢ > 0

and :
(2,2,52)" ti'; 2m log log n - log log logn -~ -« if ¢ = 0

From (2,2,52) with an application. of Tomkin's theorem

(see Tomkins 1971 or Stout (i974) P-261) it therefore follows
’

that laws of the iterated logarithm for s_, row sum in triangular

ne
.array, holds if m = (1+¢) for some ¢ > 0.

.y I Sup max E X°. 3log(i1+|X_. <
’ 1 1<idn ni g-Ug

i,e

which is incidentally the best known result even for independent

case,

Remark'2.2:3f* fThgﬂcondifion l(ﬁ;t&?) can be relaxed for

the proof of theorem 2,2,6, Asifor’éxample'consider_the case c > O

!
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u(x) = 1, It is clear from the proof ¢f Michel (1976) that it
suffices to have w =n - for some ¢ > O in the theorem 2.2,1.

Tﬁus, from (2.2,16) we need

3 t1Y, /s

t ' 3 i n -1 _-¢ ) 2
ES—T- ElYi] e : { b.n .?1 exp( ) r t7)

n

: : 2
i.e., 853 E]Yi|3 < b {Tre) rt/4

Using (2.2,15) , wé need

-l

~(1+¢)
n 7 : )

c’ =:min(c,1) and ¢ > 0 is
' - arbitrary

_(_ bo

i,.cea, Sn 2.. b. n(1+8)/(2+c')

Hence to prove theorem 2.2.6, (2,0,2) may be replaced by

g . it b rn(1&£)/(2+c‘),
e e : ’

ok

2,3 HWON UNIFCRM RATES WHEN ALT THE MOMENTS OF Xni'S EXIST

In this section we consider the triangular array Xﬁi ,
é £ign, n > 1-‘ under the same_setrup_of:section 2,1 except
iﬂmt instead of (2,1,1) we assume (2.0,1) +to be satisfied with
g havihg sharper growth than any power of [x| but with growth
less than or cqual to exp(s|x|) , s >lO. . More specifically we

assume  (2,0,7) to hold with. g satisfying
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(2.3.1) k(e) |x|® + L(e) < g(x) < exp(s|x|) ¥ ¢ >0

and some s > O where XK(c) and L(c) are constanis depending

only on ¢ and X log g(x) is nonincreasing for x > X, (> ~2)

In other words theTcaSés Qhen all the finite  moments exist
but the momenthgenérating function of X :;'s do not necessarily
exist is the subjecct of'study. Examples of such fungtions are
g(x) = exp(Log™(i+]x|) ), m> 1 , g(x) = exp( |x}a); 0<a<1,

L

etc,

As applications of these.non-uniforﬁ bounds the range of
the values of t; where 1 - F (b))~ Q(-tn) , b, > is
found. This gives a clear picture about the variation of the normal
approximation zone_dependiﬁg on the;functional form of g. Consc-
quently the Iéarlier resulﬁs’of‘ Cramér (1938) are obtained under
milder conditions (see theorem 2.4.5). Thesg ,non#ﬁniform bounds
are further utilised to obtain-strongéf'fd;m of the- Lp version-
of the Berry-Esseen theorem as compared with the earlier section
and to prove certain types of moment convergences , “Apart from the
so called large deviations, it is also shown that 'too large’
deviation-tyﬁe resultsy (see‘Bahadﬁr 1960) 'can be obtained in

limiting sense . (theorem 2.4.6).
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2,4 THE RESULTS OW ROW SUMS OF RANDOM VARIABLIES IN
TRIANGULAR ARRAY

The following theorem states the rate of convergence of
Fn('t) to §(t) depending on n and t when t is in a

neighbourhood of the origin,

Theorem 2,4,1 et (2,0,1), (2,0,2) and (2,3%,1) hold,

Then for
(2,4,1) (¢ 42 < 2(log [t} + log g(r s, 1))

with |6] ¢ €5 v/m, €, (O 0) small, there exists constant

b> 0 depending on r, 0 < r < 1/2 such that

(2.0.2)  |F ()-8 | < boexplmpt?d) |3]7 fexp(o@™/2|417)) -1

<4

bexp (-5t° + 0@ /2 1|7 a7 1/¢
n
z

+

l=1P ([X3l > 7 8y lt])i

Remark 2,4,1 The second term in the r, h,s. of (2,4,2)
can very well be dropped, but it 1is written in conformity with
theorem 2,4.3., For t2 < 1 one may use uniform bound O(n-1/2)
since 01l the moments exist, " This comment holds for theorenm

2.4,% also,

Proof of the thgzorém, w,0.,1l,g assume 1t > O, As in

secvion 2,2 we have the following representation
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[= =]

(2.3 B! 5y 0 =4, - em(top 0'/? Fp)a )

wherce the symbols have the same meaning as in section 2.3, Undeﬂ

(2.0,1), (2.0.2) and (2,3.1) onc has the following estimates,

(2.4,4) E Y] = o (rstglrs )

- | . s
(2,4.,5) 0 < E Xii - E Yi = o (glr s 1)),
Then for any » (> 2) fixed, denoting F, 4 the distribution

- : 9 e
function of X 4
(b
(2,4.6) Ji&}exp(t]xl/sn) an’i(x)
lx|<rs t

< X(e), _j/ e%p (1+e)t x|/, an’i(x
{x|<rs b
- by Holders inequality in view of (2,0,1) and (2,3.1), where
K(e) is a constant depending on ¢ (> 0) and e can be mnade
arbitrarily small. | _
Now,

exp (1+e)t |xt/sn < xeg(x) pointwise within the range

e vx, <|x| <rs,t
(to avoid the origin wherc the incqualit®;

is false, we take x> e V‘xo_lm
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" |
1f "(Tas)t @ —-—-Ill- log (x2g(x)) for e v x, < [x] < r st
f x| ~

which is sutisfied for large n  if

(2.4.7) t° £ r_(?f_«rgT [log g(r s t) + 2log(r sn't)]

A =1 2 i . A
since x log g(x) is non-increasing in x > KXo

Hence letting r = .1-(2(‘!'#5))""1 (< 1/2) we have

(2,4,8) S\ilp max [ [x]p exp(t fx|/sn)an i(x)
w1 1<i <¢n el =
- = = |x|<rs t

< X * K@sup max {'xeg(x)dFﬁ 4 (X for some K, < e
w1 1<i<n ’
K o8 _
if t satisfies (2.4.1).

In whot Pollows ¢ éatisfiés (2,4,1) and b is a constant

whose values may be different at different equations., Using (2.4.4)
- {2,4,8) alengwith (2,0.2)

2
.49 |£,(8) - 1.- X5 BX, ¢ bp-tu-1/2 3
I£5 E;? Xil R *
n
Similarly e
i -1 -1 -1 ,2
(2,4,10) [EYi exp (t %n,'Yi) * t Sh E)ii ! _(_ b n : Sl
and > =

(2.4,11) IEYi exp (% 3;11 Yi) % Exf]i ] _<-: bln-T/Z %,
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Hence from (2,2,6), (2,2.7) and (2,4,9) - (2.4,11) one gets

(2.4.123 my (£) = fI1(t) £ [Yiexp(tYi/sn)] = ts; EX2 + O(n 145

)

2 2 3 . o = 2 ~1/2]
(2.4.13)  m (B0, (%) = fi1(t) E LYiexp(tYi/sn)J = EX_;+ O(n /3

And hence

) joy __1 = 1 . ___‘]7 -1 2
(2,4.14) m(t) == ¢ m () =t n's_ + 0n t9)
» I =
Ge.i5 BECh, e S it s oGV
ety 1/ n -n 1 i = n -
Also from (2.4,9)

n " .
(2,4.16) £ log fi(t) = t2/2 & 0(n71/2 tB)

i=1 o

Hence from (2.2,11), (2.2.12), (2,4,14) and (2,4,16),

I
(2,417 A (%) = L snice) exp(=ts=) n 7 () = exp(_t2/2
i =1 it n n

+ o~ V2 7))

(2.4.18) B ()] 5 (8) < bu /7 e

we are now ready to estimate the following difference

(2.4.19) |2(s' 8 < B) - BB = P(s7! 81> 1)~ B
=, [ exp(eten! n'/? T (02)am, (2)-9(-
B_(t)

[~
=
—
+
H—
M
+
=
AN
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where . P
(2.4.20) Iy = |a,(t) {{' exp(-t 57" n!/? 3, 2)AF (2)-§(2)) |
B, (%) “ |
(2.4,21) I, = lAn(t)—exp(—i2/2)| 15 exp(~ts£1 w172 Enz)d@(z)
B(Y)
(2.4.22) 1y = |exp(-+"/2) | exp(-ts]! n'/? 5_2)af(z)-f(-1))|
B, (t) | ty

Using (2.4,15), (2,4,17), (2.4,18), the Berry-Essesn thooren
and cauinequality‘ with & =3 (see also (2,2.32))

-

(2.4.23) T, < A exp(-ts n'/? B ()5 sup |H_(2)-(s) |
§7p(-tey ; _

< b0V exp(=t/2 + 0(a=172 +3))

Next ~ :
(2.4.24) 1, |An(t)“ex§(_ta/gﬂexp(%tgs;2 - )@(_B (t) o] §‘-ﬁ)

]

(B (8)+ ;‘ jg*
...-- B s o
< b{Ah(t) exp(~t /2)[exp(‘-—t s _2) n

X B (t)+ t &7 ﬁT/?VEh; i
72 | o3/ ) 1.2
Sb e [e‘ - 1[‘fexp[-2-]3n(t)

218, () [tz n'/7 5 T, |5 (1) ts] n'/2 3 |


http://www.cvisiontech.com

~36-

From (2.4.18) note that

(2.4;24a) 1B, (t)1 < b n! 42 < &gt since 1t < e n'/?

and €1 = brey - can be made arbitrarily small with small choice

of &,. Hence

(2.4.25) B8 + £ 57! 25 =1 o o

Also from (2.4.18)

1

(2.4,26) LR + 215 (D) v 57 0125

% % wlnT 14 v p n=1/2 43 o ,172 5.

Hence from (2,4,24) - (2,4.26)
2.4.277 ‘1, < bt Y exp(-t2) [espota 2 7)) - 1)

Finally following the lines of (2,2,34)

(2,4.28) Iy = Iexp(—%t2+%t2 sfn Ei)@(—Bn(t)-t 8;11 n'/? En)-@(-_é.

2., =2 =2 T 12
(! exp-{— %t (1-s " n On)}rngn(t)‘ + t{1-s n cnl

¥ . 2 '
' R~ S ] -t /2
5 exp(—t2/2) + blexp(- %t2(1—sn n on)) - 11t7", e /

From (2,4.,15) note'that, in view of (2,0,2)

- - =1/2
(2.4,.29) sn2 n ci = 1 +bdn 1/

1
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Hence from (2.4,24a), (2,4.28) and (2.4.29) we have

(2.4.30) I, < beexp (0”2 ¢ exp(-t2/2) nT42

+ blexp (0 (72 7)) ~1] +~7 exp(-t7/2)

< b, ot

exp(-t°/2) Jexp(o (n~ V2 7)) - 1]

ot

The thé&orem now félléws form (2,4.19), (2.4.23), (2.4,27)
and  (2.4,30)., |

Remark 2.4,2, In some special cases of g, ¢ in (2,47
can be taken to be zero i.,e., r = 1/2 in thosc cases. e.g, if
g(x) = exp(|x|) then for t> 0 | ' e

|x|p exp(t]xl/Sn) < ng(x) = & xo_<'x T st

if tix|/s < |x] - (p-2) log |x|

i,e,, 4if '
’ B (18 R:% log |x| )
_ b x '

which is always true when

t ¢ sy, (1 - B2 10g |x | )
1%, |
It may further be noted that for gencral g the region
(2,4.1) may be extended to 1° < M(log [t] + log'g(r s, 1)),

M> 0 arbitrary by sufficiently small choice of r in (2.4.7)
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Remark 2.4,3, The value e5 in theorem 2;4.14 is immeterial
when g(x) = o(eiﬁ(S]X})"¥ s > 0, for in that case (2.4.1)
asscrts t = 0(n1/2). But when g(x) = exp(s|x]|) for some s >0,
(2,4.1) tellsus t ¢ s 8, ;hénce‘the value of e, mattors
in that casc, Proof of the above theorem leads‘us to conclude
that e, is basically determined through the counstant b in
the relation eq = b ey, of (2.4,242) and b can be taken to b

(see  (2,4,8))  (c/6) E X" (s|x_ ;1) * if
c sgp m?x [Xﬁ1| exp s[xnl

1t < 8 g

ny S' <s where ¢ = su$ (Jn /SH)3
n) ]

*(which is finite with an application of Holders inequality as

all the moments of X

(4 exist and from (2.0.1))

The ultimate value of e, , constraining ‘the value of €1

in (2.4,24a) 'so that (2.4.255 holds turny out to be

|Lc sup max E [ |7 exp (s ?”*I)] .
Spis X1 | %3 .
When g(x) = ¢xp (s|x|). Thus theorem 2.4,1 is valid for

1 i st o] n/2

3
t < E( A xp (s'|X .
| Ce s;p max [Xh;l exp s'|Xnl

1

s' < s when g(x) = exp (s|x|).

Similarly the order of 1st and 2nd terms of the r.h,s.

of (2,4,2) i,e,, exp (o(n~17% [t|3)) = exp(Xx n~ /? lt[B) with


http://www.cvisiontech.com

-39

' ?
K= ¢ supmax E|X .| exp (s"1X.])
n 1, | ]

 For thcorcm 2.4.3 similarly we have, K = ¢ sup max E Xiiexp(s'°
4 nood
Jdx 1) ¢ = sup (Jm/s )",
ni i X T n
Hoting- that moment generating function (m.g,f) of a r.v
X cxists around a neighbourhood of the origin implies that
E(exp (s]X|)) < = for some s > O, a few observations imme-

diate from theorem 2.4.1 are listed below

Theoren 2,4,2 If the m.g.f of R ‘i 151 <8 ¢m
¥

exist and uhifOrmly bounded around a fixed nbhd of the origin

then

(2.4.31) 1= P (t) ~ P-t)  if t_ = o'/
e n''n ' n -
Remark 2.4.4. When X ;'s have identical distribution the

above rcduces to a theorem of Cramer (1938), Subsequéntly we
will show that even in the case of triangular array the condition
of thecorem 2,4,2 can be substancially relaxced to obtain the same

conclusion  (sce theorem 2,4.5)

Proof of theorem '2,4.2. In view of the well known result
Peax) ~o (ZTT)"1/2 %1 exp(—x2/2)
show that

s, X =2 o it suffices to
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(2.6.32) b oxp(t2/2) (1 = Fp(ty) = B(=t)) = o(D.

which follows from theorcm 2.,4,T as n71/2 ti = o(1) and

) n
i} Foa L -1
(2.4.)3_) f—:ﬁ(ixﬂii >rost) < bt (g(rs,t))
| .Sup max BXog &(X)T(|Z 41> T8
n 1
-2
= 0(t~° exp (-r snt)
=-o(t'1éxp(-t2/2)) as t = o(n1/6)
Remark 2.4.5 From the proof of the theorem 2,4,1 it

follows that the truncation of the random variables is not nece-
- gsary when the m,g.f exist. Hence the calculations (2,4.33)

may be omitted in this case.

* Remark 2,4.6 The necrmul approximation zone can be extended

to o@"™®  when
(2.4,34) BO, =0, ¥ w21 1gign

Then we have the following

Theoren 2,4.3 " Under the assumptions of ‘theorem 2,4,1 and
2 : o Sy
(2.4.34), for)4t® ¢ 2(log|t| + log g(r s,t)) with |t] < enn
e, (0 small, there exists constant b depending or T,

0 < xr < 1/2 such that
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(2.4.35) [P () - B(t)| < b exp(~t/2) 1417 fexp(o(n—1t%) - 1
f41 L ’

“+ b expﬂ—tglg_f o(u™ ")) 9:1/2

n
| ; +& 121 P(|xni] >r s |t] ).

Remark 2,4,7 ‘The 2nd term in the r.h.s of (2.4;35)
ensurcs that the overald order of n, (~lm <t < =), cannot be
lcss than n'1/2. , -

Proof of the theorem 2.4,3 The proof essentially follows

the same lincs as that of theorem 2.4,1, We indicate the necessary

nedifications,
(2,4,26) £ (%) - 1 A BX < L By, + £ (X %)
oite i = = é—s‘g )(Ili ‘ ] -Sgl [ i’ 5;2. }%li = |l
n n i
. |EY;| + " EY? exp(t|Y,[ /s,)
| 3t 53 = 41 84 1 5% . .
] I n ) n
Now from (2,4,34)
EY, = -B X, I (X,|>rs.t)
So. .
2. 9 N
(2.4.37) Byl ¢ 15y 1P (s 07 ar(xy,)
|Xﬁil>rsnt ]

= 0 (72 n'a/e) since all the moments
of Xri exist,

a
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Henee tvaking a = 1

(2,4.38) £i(0) -1~ SEx, | ¢ bula
2sn
Similarly
) - -1
(2,4.39) |E ¥; exp(t s Y;) -t s, E Xii <
| G2 - 1
(2,.4,40) |E Yy exp(t s " Y;) - E Xii W2 oot &
Using the ébove gestimates
(2.4,41) () = t o' BE, + om? )
(2.4.42)  nl(v) . 02(t) = EX, + 0 t9)
And thercfore
(2.4,43)  m) = tn s o+ 0@Z )
(254.44) Ei ’ =_f ! Si + O(n..'1 %27
b ke mE FE > 4
(2.4.45)  E log £.(¥) = t°/2 + O(t"/m).
i=1
 Next
(2,4,46) -Anﬁt) = exp {'-t2/2 + O(t4/n)ﬁ}
(2,4 A%) 18, ()] @ = o@ ! )
- e ¥ n p n

And finally .v
(2.4.48) 1, ¢ boexp (<1772 + o@ th) o712

>
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(2,4.49) I, < b exp (-t2/2)exp(0(n™th) < 1] £

1,4

(2.4.50) Iy < bexp (~t°/2)]exp(o@ th) - 1] +71

This proves the theoren,

Using theorcm 2,4.3 and following the lines of proof of
theorem 2.4,2  when the m,g,f of X ;'s are uniformly boundcd

around a fixced nbhd of the origin one pro%és remark 24,6,

As a consequence of theorcms 2,4,1 and 2,4.3 wWe may
obtain normal approximation zones for general g which will be
helpful to obtain normal approximation rcsults known so far,under
weaker assulmptions,

Theorem 2,44 Under the assumptions (2.0.1), (2.0.2) and

(2.3.1) for a sequence 3t b satisfying
L

[

(i) t, = o(n1/6)

e 2
and  (ii) t, - 2(1og t, + log g(r s b)) > -=, 0<r <12

)

y = Fn(‘tn) s @(-—tn) as tn “> oo,

Further if  (2,4,.34) is satisficg , (1) may be replaced by

e 1/4 <
¢ " =" alm ).

(r may be taken to be 1/2 in some cases according to remark 2.4.2)
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Proof . The proof is irmediate from theorems 2,4,1 and
2.4.3 along the lines of theorem 2,4,2 with the following

obscrvation

i}
(2.4.51) =

" -2 -1
; POIX ;1> rspt) < b t77(glrs 1))

n

1
' . 2 ' .
> Sup max B X, g(X II(JX . |> rs_ t)
w1 i mt SR ¥
: A -1
= 0 (77 (glr s, 1)) )

. N 2 ) A
= 0(t'1‘e"t /2) as t = t, satisfies (ii).

Remark 2.4,8 If the-séquence %;Xﬁi g(Xhi)}-is unifromly
intecgrable then the conclusion of theorem‘2,4.4 . holds even if

l.h.s of (ii) is bounded above, since

(2,4,52) 3 PUX,] > rs®) = ot (glr s 87

i=1 _
‘ in that case.

Iet us calculate the normal approximéfion zone when g(x)
= exp (slxla ), >0, 0< a1, Letting t = t, -> = from
(ii) we hawve

p) il
t° ¢ 2s(r s, 0)° , t> o0,
ic., t ¢ 25" 022" wnere A% = inf (sZ/m) > 0

T =
te., t < (28 % AHZT p* /7 [2(2-0)]
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Note that prg=y = &, 1 5r

—

respectively,

L FV)

1
7o
Therefore, in vicw of theorem 2.4.4, We have the following,

Theorem 2,4.5 The conclusion of theorem 2.4.2 remains

valid under the rclaxed condition

' & - 2 /2y
(2,4.,53) Sup © max E exp(s|X .| ) ¢ o for some S
1 1¢i<n | onl il

Similarly under (2,4.34) the conclusion of remark 2,4.6 holés

even if

exp(s|Xnij2/3)'% < e for some >0

=

(2.4.54) Sup mgx."E %;Xii
w1 1£iln
Rbmurk 2.4,9 Since g has growth more than any power
bound it is immaterial whether we consider xgg(x) or g(x).
prefered wo consider xeg(x) rather than g(x) becausc of follow
ing‘ two reasons, Firstly, it is known that the conclusion on the

rates @oﬁconvergence cannot be achicved unlcss we assume a bit

>0

morc than the existance of the 2nd moment (sce e.g. Katz (1963)).

Therefore we wanted to base our conclusion on rates solely on
- .0 A ; .
the exeess of x° viz. g(x). Also the ostimate (2,4,4),

(2,4.5) cte. take nice form if we consider x° g(x).

Next note that excessive deviations of the type ajn , 2> 0

can alse be handlced as per the following thoorem.
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'Theoren 2.,4,6 Under the assumptions of theorem 2.4.2 for
t,sfn, ¢ > 0 small
e
. o i + -
(2,4,55) 7 Fn(tn)’ < b tn exp - D ( Ke }
under additional assumption (2,4,34)
) ‘ = B (1 s 1)
- (2.4,56 i = Fn(‘t.n) _g b tn exp {- - (1 + Xe

Further in special case of iid random variables, one has

t2

2
R t '
(2.4,57)  cxp {* —51 (1 + G(e))} £ 1B (t) < bt;'ilex-p{- -2‘13(1+Kel-

and undcr (2,4, 34)

: \ 2
(2.4.58) exp{ c1+o<g ))} < 1-F (t ) < be; exp{ n(1+Ka )}:

where K is defined in remark 2.4,3,

Proof. Sincé the m.g,f of Xhi exist, the third term
OFf BheEi el (2 2) docs not appear (see ramark 2,4.5). Hence |

from thcorem 2,41

: -1 n SR oD
(‘!2.4.59) 1 - Fn(tn) < Pt by {_- < tKn tn} :

; 4 - {
b 'tI—IT exp { —g‘ (1 + Ka)}

Similarly (2.4,565 follows from thecorem 5.4.3.

=
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For_lo#or class inequality in the special case of . iid
randor variables, w.o.l.g assuming EX? = 1, we have from

Chernoff's +theorcem (see Bahadur (1971)).

. 2 =1 ) 2 - t(X -!-8)
(2,4.60) lim - log P(X > &) = log inf B e "1
fte> ®® g 1 Xﬂ ? t>0
Naow '
) ‘E(X,i—a)
(2,4.61) B e

v

2 3 :
E {1 "’t(X_]—E) + %(X1—8)2+ %(}9*5)3 -}

t2

) 3
1 - et + 3r(1+82)'+ %?(ﬂ3~38—€3)

L

where Mg = EX?; Differenciating the r.h.s of (2,4,61) w.r,t
t and equating it to zero we have

5 o :

(2,4.62)  —e + (1% + Ly -3 -7 = 0

The above quadfatiq equation admits two solutions which tend to

0 and - & as e -> 0 (seen by putting & =0 in (2.4.62))
3 .

of which we may ignore the second one as the 2nd derivative of

r.h,s of (2.4,61),

(2.4.63) 1+ 62 + t(Ug = Bc = €2) => -1 at t=--2 ase >0
3 i,

indicating, that supremum (and not infﬁuqm ) is attained at the
second soiution . Therefore we will assume + -> 0 as e => O

Wow 1ot v = L-g, i.e

-~ .y bt = e *+ ve,

¥ow from (2,.4,62)


http://www.cvisiontech.com

~48-

2
(2,460 (- vty b a2 = 0

Dividing both sides by t and noting (t-e)/t = v(1+v)

(2,4.65) 1Zv + 52 + éi(MB - 3¢ =~ 23) = 0

using the fact that t -> 0 ag ¢ => 0 we obtain v => 0 as
& => 0,  That is
(2.4,66) t = ¢ + o(e)

Finally the following rearrangement of (2.4.62)

| 1 w
(2.4.60 4 = {& =% =302 2§ /(D)

alongwith (2.4,66) implies that
o ' 5 ]
(2.4,68) t = &+ 0(e") or & + 0(e”’) according as

- one may check that the 2nd derivative of r.h.s of (2.4,61)
is positive at these values of t for sufficiently small valucs

of e , ensuring that infimum is attained at these values.

Putting'thése approximate solutions to the r,h.s of (2.4.61)
we obtain from (2,4,60)
| 2 2 . gh J8
A ~ _ o
(2,4.69) lim —~ logP X, > ¢) > 5 log gj.. S - 0(e7) ¢
n -> e N £
if po # 0

& ' .
2 > log {j“ 5 ~0(34)j} if 4z = O
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Hence

lin 5= log P(X > ¢) = =1 + 0(e) or =1 + 0(:2)
n> = e<n n .

= w according as Hrg #0

- or Ms = 0,

Hence the results, -

Remark 2:4,.10. . From Bernsteia inequality one may obtain

1_‘2

1= By(t,) = PR 5, > e ) ¢ exp { - R (1 + 21}

wherc f(<) => 0 ‘as g ~=> 0, But the rate at which f(<) => 0
' remains unspecified. Similarly Bahadur (1960) proves for iid

case

r

e S - |
L Fn(tn) = exp { - 7% (1 + f(n,s?) }

where lim  1lim = f(n, ¢} = O
g=> 0 n-> oo

Theoren 2.4,6 is therefore an improvement of their results
providing us an order of f(n, ¢) , Also since the constant X

(2,4,56) is not insignificant,

The following theorem states the order of 1 - F ()

- 1/2
for #n = o(n'’"%)
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Theoren 2,4,7 Under the assumption of theorem 2,4.2 for

t, = o(nT/“) P anJﬁ 3 where ey =2 0 as n > e
4 2
-1 5 1-'n ¥
(2.4.70) I = Fn(tn) < bt lexp -5 1+ Ken)j—,

under the additional assumption (2,4.34)

‘ 2
s .

-1 n a2 b
(2.4.71) T-B(t) < bt exp{-F(+EK )},
when the X4 's are iid rv's one may further have

_n ?
(2.r.72) T-PF (t) 2 Dbexp {:- (1 + 0(1)) .
Proof, As proofs of (2,4,70) and (2,4,71) are similar

to those of (2,4,55) and (2,4.56), we only prove (2.4.72).

Note that P(X, > e ) > P(X, > ¢) where for large n

= n”1/2t

- . o{1) < ¢ (> 0) Tixed,.

i.e., ‘%r log P(in > an) > “%_ log P(T{n > &)
e T n

€

. ‘ , .
lim inf T log P(X_ > ¢ ) 2 lim  lim ~5—10gP(X > &) =
n -> oo o Xn e=>0 n->eo E B Xh

Hence 1 - F () > b exp {; n (1 + 0(1)).}
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The following thecrem provides the non-uniform rates of

convergence in the complementary zone of theorem 2.4.1.

Theorcem 2.4.8 For t° > 2(1og|t| + log glx snt)) with

x| log g{x) > 0 as x -> o we have

g . ! : ~1+ . n
(2,4.73) [F (£)-0(1) | = O(]t[g(rsnt)? “fn,t o4 .i (!Xhl]>rsn|t|)
where
1_~1 ; '

(2,4,74) P Ot s, logfft] g(r t sn)B > 0 as n ->

Proof, w.0,l,g assume t > O, Since Q(at) g;bt_1exp(—t2/2)

U b
and .= Fn(t) S*R(Sn sy > t) + 121 P(IX ] >r st )
it is enocugh tc show that
-1 - : -1+ g
(2.4.75) P(s," 8! > t) = - 0(]t] g(r_snt), n,t
n

Recall that 8 = %, Y, where Y, = X . I(JX ;| £ r s t),

o

Now by the Bernstein inequality

(2.4,76)  P(s, ‘SA > 1) < izl B, exp (~h s_t) where
3,= E(exp(h Yi))

Tet h =2 t g log (+ g(r snt))

n then h -> 0 as n > «
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tea

Alsol ‘ : .
(2,4.77) Bi = E (exp (h Ii))

2 3
1By )+ B e, « BBy ey )

s
;2 s EYils E Xii,)

1+ 5 (EXii + Kh) + o(a™ using (2.4.4),

{~

and 0 < K <= as shown below,
(2,4,78) E]Yi]jexp(h}Yil).i E{exp ((1+e1)h|Yi])) K(s1) where
¢4 cad be:made arbitrarily smell (seec 2.4.6)

Tow,
(2,4,79) exp ({1+g) hx) ¢ kzg(x)' pointwise in the range
‘ev;f-‘o < |V! {r Sn't

which is satisfied if

P , :
(1+e)h £ x"1log(x2g(x))(§_ (r snt)"ilog T (r ant)zg(r g 1y

e

gince x—1log g(x).}v in x, we need

2(1+2)r log (t glrs t)) < 1log {(rsnt)2 g(rsnt)}

which is truc for n > n, and r < 1/2,
Thus, from (2,0.1), (2,4,78) and (2,4,79), it follows that
0 <X <o, (see also (2,4.8)), Hence, ' '


http://www.cvisiontech.com

%5 0 5

n , n 52 5
Ao
(2.4.50) i log Bi < i 7?(E Xni

. L DG R
1 i :

1

e o
853 (Sn +n Kh) + b

g

F b,
2t"2{:10g(t g(rsnt))}‘ (1 B 1edn)n B9
< Log(t glrs, 1)) (1 + 0(h)) + b

since tg‘l 2 loglt] + log glr 5,83

Hence
' 1+0(h)

(2.4.81) rf{ Be Ry B t glr s, t)}

80 . .

=5 = t=ltey 4

(2,4,82) (o Sn > 1) = 0t g(rs t)) *" from (2.4,76)
and hence the theorem,

Renmark 2,411 In the case x"j;ég glx) => 8 (> 0) . as

X -> = ¢,g8. when g(x) =exp (slx|), for t = o(n1/2) we may

use thcorenm 2,41 or theorem 2.4.3 and for

t° > 2 %logltl + log g(frsnﬁ Kn)} (i.e, |t] >ss, K = o(n'/2y)
we have )
B -1+0(K,)
(2.4.83) [P ()-0(t)] = oO(]t] glrs t X))
It

+ ‘21 P(IXﬁil > rsn[t])

i
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wherc K, is any sequence such that £, = 0 as n => =

Proof of (2,4.83) folloews the same lines os that of theorem 24, 3

with the following choice of h e i

(2:4.84) h =2 t7's7" log(t glr s 8 K)) , ( => 0 as n -> =),

As a conscquence of theorems 2,2,1, 2,4,1, 2,4.8 (remark
2.4,10) we may obtain following nonuniform bound over the entire

range of 1, = oo <t < =™,

Theorem 2.4.9 Let (2.0.1), (2.0.2) and (2.3.1) hold.

Also let for some As Aoy Az, & positive constants

(2.4.85)  [gls,t)] 1" ¢ A1n"1/2 Cet,0)] 1

for all safficiently large n, when x-1log gx) > 0 as x => «
with t satisfying $° > 2Qloglt| + log g(rsnt))

(2.4,86)  [ers k)] ™" < 2y 07/ (a0

for all sufficiently large n, when x~'log g(x) -> s (> 0) as
x => e with 1 satisfying 42 b 2(10g1t] + log g(rsnﬁKh)) where
K, 1s some secquence converging to zero,

Then

(2.4.87) |7, (-] < b a2 Cgtrt)] ™!

n e
+ % P(Xyl > e lt] ).

i=1
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éFurthgr if . . r :
(2.0.88)  [t%(re 917 < v 2T for t5 00
S Sy gir n = ' . 2 . 0=

then )
(2.4.89) |2 (B)-§(8)] ¢ v a2 gO,1)] = N

Proof of the theoreﬁ To tackle the first and the second

terms in the r.h.s, of (2,4,2), theorem 2.4,1, note that with
O<p <1 (p<1 letting t = o(n1/2) therein)

;EXP(~’8t2) = n /% exp( - §t2 + % log n)
. p .
=172

'n exp (-atg) » 70 < a<.p/2

i~ J

. b s 8 g ' .
if —at? > ~p€2/2 + %rlog n i,e,, if t2 > (p-2a) 1 log n.

Since oxp (<at?) <D Eg(hzt)]»'1 from (2.3,1) , 18t part
of the above theorem i,e., (2.4,87) in case $2 > (p—2a)'1log n
:followS‘from theorems 2.4.1 and 2.4.8 (remark 2.4.10 with

Kﬁ“; o(log n)}"1 say) alongwith +the assumption (2.4.85) ((2.4.86)),

- For t2 < (p-?a)'1log n, (2.4.87) follows from theoren
2.2.1 choosing ¢ therein sufficiently large (°.° all the
moments of X . exist), (See -also Michel (1976) theorem 1 )

’Alternafively note that |exp(0(|t|3/J?D)‘~1] = O(n_1/2|t|3)

for t2 < (p-2a)-110g n,


http://www.cvisiontech.com

-56-

2
2
_for some r > O, - t2 <t

£Xlogn., K> O arbitrary, For t2 < ti the assertion

Hence [P (£)-0(t)] < b n~1/2 efr#

fdllows from the uniform bound n~ /2 for IFn(t)—ﬁ(t)l? Finally

(2,4.89) follows from (2.4.88) -as |

n
2 = =i
121 POJX; 0 > rsni) < nlrs,t) Eg(rsnt)J
o ~ 2
X S;p mix_E » Xn; 8501

And hence the theorem,

Bemark 2,4.12  Assumptions (2,4.85), (2.4.86) and (2,4.86)
intutively follows ffom the fact that g has growth more than
any power bound, All these conditions are satisficd fof | g(#)

= | x| pr(logm(1‘+ fx{)) , @l> 1 5 gx) = le.exp(lxly Dig
O 1 ete,- ;here Ay > ﬁ can be made arbitrarily large and

e > 0 arbitrarily small

«Fron the theorem 2.4,9 it is possible t6 obtain the

following non uniforn Lp version of the = Berry-Esseen theorcn,

Theorem 2,4,10 Under. the assumptions of the theorem 2,4.9
b N b & 2 /2
(2.4.90)  |lg(,t)(1 + |£])~W/P (F (0)-Q(8) [}, = 0o(n™ /%)

for any p > 1
and q > 1,
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Proof: DProof of the zbove foiiows'froﬁ'theorem 2_4.9 along
with the fact that

(1 o+ |4 q)‘q dt <o |

.§“~\8

Theorem 2,4.9 may further be utlllsed to find the rate of
convergence of expectations of some functlon based on

L g s
Y, = E s, s

n] to that of | T = |N(o, 1)1,

Theorem 2 A 11".Under the assumptlons of theorem 2,4,9
anﬂ 8" '

- d"E - o -q ‘
(2.4.91) =lx g(x)]'g A g(hux) (1+x)~ tA3 Fxee N, x> 0

for sone K1, M, 0 a> 1, Ay same as that of theorem 2,4.9
.and where N is & countable set and points of N (with * sign)

are continuity points of F,, one has

(2.4.92) [Ecyfl g(Yn)) - B8 g = oa=1/?)

Proof: Proof of the above theorem follows fromu(2 4, 89)A
along the llnes of theorem 2,2 4,
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2.5 KON UNIFORM RATES WHEN m.g.f NECESSARILY EXIST BUT
THD TAWDOM VARIABLES ARE NOT NECESSARILY BOUNDED

In carlier sections we covered the spectrum of g
cxtending upto moment generating function, Since it is known
1 < T 3

that s S - N(0, 1) =7

- o it is natural to ask the

question, given that ;E g(T) < = when does |[E g(s;1 5,) -EBg(T)|

-> 0 2s n => e, For exanple

-1 .-6
Eg(T) < = if g(x}) = o1+ x) exp(x2/2)) for some 6> O

In the following scction we partially cover that spectrum of g
which has higher growth than exp(six|) for all fixed s

but lics below (+x[y " exp(x’/2).
\ .
“Unlike preceeding section, the conditions on the triangular
array will be a bit stringent. Here we shall assume

(2.5.1) EX%. =0' ¥ n2ty lgign

and

2
(25.2) EX, = so/n (>0, 1<ig<n, n3I.

In other words (2.5,2) means that variance of the random
variables X is uniform for all i, in a row. This is

satisfied for example in the iid case
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With the assumption that all the odd order moments are vanishing
i.e,

2.5.3 X' =0 ¥ n>1 1<i<n

m=1,2,3 ...

t

We shall show that a sharper result is possible, As one may note,

our results cover the situation of symmetric iid r v's,

Since”it is known that the normal approximation zone cannot,
in general, bo éxtended further compared to those obtained in
section 2,4 , evern if random variables are ‘bounded (see e.g.
'.Feller 1966;l we shall ES content with theorems lime 2,4.1 ;nd
2.4.3 arourd a nbhd of the origin. Also we obtain a theorem
analogous to 2¢4.8.:iHoweyer, bécausc ¢f the stringency of our
assumptions sharper cstimates for the dif%érences of tail

probabilitics are available.

- As applicétions these non uniform bounds will be used to
obtain moment type convergences as indicated above and to obtain

stronger non-uniform Lp Yyersion of the Berry;Esseen theoren.
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2.6 THE RESULTS ON THE ROW SUMS OF RANDOM VARIABLES

IN{A_TRT;EGUEAR ARRAY

We start with the following ‘theorem

Theoren 2.6, 1 Tet I'x i el

|~

ign, n21} b
triangular array of randon varlablcs where variables within an

array arc independent and satisfy (2,5.1) - (2,5.3) and

(2.6,1) Sup  max ( =% LHm E Xﬁl [ s (Zﬂ? sy, 1< LKL
w1 1<i<n Bn i

£ .
then there cxists a constant b( > 0) such that

(2.6.2) [T () ~ §(£)| < b exp 2T o S g

Eroof, Since 1 - ft) < b |t]"1 exp(-t2/2) sufficient
to show that,

(2.6.3) P(s£1 S,> t) < exp &-t2(1-X'1)'3

Now . -

(2.6,4) P(s£1 S, >t « I:I B, exp (<h s, t)  where
(2.6,5) Bi = E [exp (n X0d o i=1,2,..., n

et h = t/sn then
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(2.6,6) P(s;1 S, >t & (TT 6B, )exp (<)
Now in view .of (2,5,3) N

(2.6, B, = E Eéxp(hxhi)] < eXP(hz.Sﬁ_/fF?

since
‘ L 2m
4 , e h m
(2.6:8) 1 + . E Xii 4: E L RS 1 [ E Xﬁi o Rl G
2l L w8 in ' i o oA
h s h 1 h sn i

RS R e R o L

and from (2.6,1) .

(2.6.9) E XD ¢ 2ml o 2mm
i o — e

Sote that for m =1, (éi/ﬁ =) EXii < 2["1 si/n‘ restricting
£<2 in (2.6.1), y

_Hence from (2:6,6) and (2,6,7)
P e | 1y
(2.6,10) 2(sg S, >_t) .5 exp (-h s (- £77))

= exp (-t (1- £71)

Hence the theoreﬁ;

Remark 2.6,1 If odd order moments are non zero still we
may have
i 1 ' I]X -- - -hX .

(2.6.1) s[Ee ™ +Ee ™M J=1hns or (2, 6.8) < exp(h’s /Zn)

from (2,6,7) under assumptlon (2.6, 1)
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-hX .
p e i

Since > 0 we have from (2.6,11)

: hX_ .
(2,6,12) E ¢ an £ 2 exp (h2 si/fn)

Therefore from (2,6,6)

(2.6.13)  2(s7' 5 > 1) < 2% exp(—t3(1 - £}

Hence we have the following

Theorem 2,6,2, If the assumption (2.5.3) is omitted in

theorem 2,6,1 then v
(2.6.,14) P () - 6| ¢ b. 2Rexp(-t°C1 - DYy

We continue to assume that odd order moments are gzero, our
-1

next thecorem states moment typg convergences of Y = lsn Snl
to that of T = [N(O, 1)|
'
Theoxen 2.6,3, Let the assumptions of the theorem 2,6.1

alongwith  (2,0,2) be sapisficd. Let g I (= =, w) => (0, )

g(x) even, g(0)

O be such that E g(T) < « and

(2.6.15) g{x§

: _1_58 2 -
1+ 1- ‘
0 §_( x) exp (x /( _Z ) } 3 xg?t)
Thgn_ i

(2,6.16)  [E-g(¥) -EgD] = 0o@™®")  uhere

- 5 1
p* = %_3+25v15 ] }
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froof.  Under (2,6,1) since m.g,f of Xyy exist (as
Bi <’¥i fofffiged, h from 2.6,7)' we havé, in view of (2,0,2)
and  (2,5,3) with m = 1, by an application of theorem 2,4,3
with the last term in the r.h.s of (2,4.35) delated (sce

renark 2,4,5)
2
(2,6,17) 7, (0-8C)| < b exp (-t7/2) v, 0< |t] < M,

where B = (n.'"1 Mi) V'(nf1/2)

, M=o’/
t = oY 141! jexpcoa! 14y _ 11 = o™t

Again. from theoren 2,61

(2.6,18) |F. ()= (t)\ < b exp(-t2(1;(‘1)), < Jt) <=
n My

Hence with the representation

(2.6.19) |Bg(Y,) - Eg(T)| ¢ [ &' (W 2()s7"s_|<t)
5 0
and that ¥ o™ o - =P(IN(O, 1) |<t) [t
O axce, f (fa-0 4 - 02 )
0 M
© we hawve . N g 4 o o VA
(2.6.20)  [Eg(Y) - Bg(D)| = o(r,) + 0(M;%)

Equating thc opder of M;G and rn‘
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20 =l fel M =g/ (3+O) 5 = 1 0w
- et Tyl ’ o (3+6 N s
‘ " = Mn = n
~1/2 =5 | e _ _1/28
n~ 1/ =M i.e., M, =n :

in the case 6 > 1 (sec 2.6,17), giving an order

| GEad -
- (2.6.21) M£5 = n - for  (2.6,20)

\

For 0<8 <1 letting M =n""* w  have the order

-

(2,6.22) Mga = n~%4  for (2.6.20), 0< 5 <1
(2,6,21) , -(2,6.22) completes the proof,

The follow1ng theorem provides a non uniform Ib version

of the Berry—Ess;en theoren

Theorem 2.6,.4 Under the assumption (2.0,2) and those
of theorenm 2_6}5A for any p > 1

. ‘o ' ‘ ‘
(2.6.23)  [lexp(t2(1-£")) (14|11~ (0*1/D) (Fg()-B) [ = o

where 6 > 0 and p* is defined in theorem 2,6,3,

Proof, Note that
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L.H.S of (2.6.23) = [: ? (1+]1 )~ (1+0P) {exp(t2(1~l—1))

P 1/p
X (DN} at ]

The rest follows along the lines of theorcm 2.6.3.

Next we consider monent convergence and Lp version of the
Berry-Eeseen thcorem when the assumption (2.5.3) is not satis-

fied i.c., odd order nmoments are non-garo,

-

Theorem 2,6,5 . Let the assumptions (2;0,2), (2.5.1),
(2.5,2) and (2.6.i) be satisfied with some £ > 1. Then for
any g . (- e, =) > (0, =), -‘g(x) even, g(0) = 0, such
that E g(T) < = and

(2.6,24)  g'(x) = O(exp(x°/f(x))), 0< x <=  where
(0, =) > (o, =),nondecreasing, with lin f(x) = =
' X Do

7

the following=golds,t
(2.6.25)  |B g(¥) ~ E M| = o@ V),

Proof. - 'Since m.g.f of X, eoxist under 2,6.1, delating
the last term of r,h.s of (2.4,2) theorem 2.4.1 (for an

explanation sece remark 2,4,5) and following the 1st part of +the

.

e
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proof of theorem 2,4,9 we have

(2.6,26)  |F_(8)-B(®)| & bu/? exp (-ath)  for

2 > (p—2a)'1 log n

]
0<a<p/2, p<iland t=o"’?
Similarly for t° < (pﬁ2a)“110g‘h "~ we have from theorem 2,21

choosing c¢ therein sufficiently large
% -1/2 e
(2,6,27) |F (£)-()| < bn exp(-a,t ) for some ay > 0

Finally from theorem 2.,6,2

(2,6.28)  [F (®) - §(t)| < b 2% exp -5 0-Hy

< b n~1/2

exp~(-a2t2) , 85> 0
if n'/% . exp § atz(T-K'j)}- < exp(—aztz) |

if, ° 31 = 1% a,} > mnlog2+ -%— log n ; 1—['1-a2 > 0

if £° > ‘hzn for s8me A depending on { and a5 -
4
Finally for the zone o(n1/2) <t ¢ A n1/2 we may use
remark 2,4,11 with g(x) = exp (|x|). Incidentally remark 2,4,

applies there also, ., and therefore from (2,4,83) and (2,0.2)

&5
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(2.6.25)‘ |2, (0)-9()}] < b exp (=K, n'/ %) where K is

some sequence converging to zero,

Now we need show that

(2.6.30)  exp ( o0ty ¢ w2 42 emtPreth) |

K, n'/% <t < an'?,

ie.,, -~k 0%t +llgn+ 21051t ¢ ~t2/2(t),
~ Which is'true if

2t > [ Khn1/2 -5t 2 log n - 242 Log tj

i _ Kh n < t < A 1‘11/2

since f ig nondecreasing the above is true if

f(Kh n1/2) 2 EKn/K = —"g n log n - 2x =2 n-110g(h n1/2 J -
2\

Since the above chgice of £ depehdsroﬂ. K£ and n (which can
be interpre;-ed as inverse fn of Kn asaning the map n -> Kn
is one to one) and since the choice of K, => 0 is arbitrary

it follows that we may take f£(t), nondecreasing with 1im £f(t)= «

] t-—)oo
arbitrarily,

¥

g~
Hence for K n'/? < t < aAn"? o have from (2.6, 29)

and (2,6,%0)
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(2.6.32)  [F(8) - WH| £ ba/? 7% exp (<1°/2(1))
Finally combining (2.6.26) - (2,6,28) and (2.6.32) we have
for - = < 1t <> alongwith uniform bound O(n—?/z) for IFn(t)—QCH

(2.6,33)  |P(1) = B | ¢ b/ {rtye exp (-t7/2(E)

The required agssertion now follows from the representation

(2.6.19) and (2.6.24).

From (2,6.33) it is further possible to obbain a non-

uniform Ib—version of the Berry-Esseen theorem,

The oren 2,6,6 Under assumptions (2,0.2), (2.5.1),

(2,5,2) and (2,6,1) with some £ > 1, the following holds

(2.6.30)  flexp (£°/ £(8)) " (B (8) - P |, = o@=1?)
where . lim f(t) = « ,
o> e ' | -
Proof Proof of the above follows from (2.6.33) and
that ‘ )

1+ tH M4t ¢ - . |

é "?‘.""*\_! 8
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We remark that it suffices to consider the values of
by for which 1 - B (t) ~B-t), t - = as the
values of t, for which B G e @(tnL t, ~>- can be

dealt similafiy;
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CHAPTTR 3,

e

RATES OF CONVERGENCE FOR GENERAL
NON-LINBAR STALISLICS (Tn)

3.1 Introduction In this chapter we consider non-linecar

statistics of the form

(3.1.1) T, = s, S, *R, where S, = )

Xni

Hmpe

1

g ¢+ Xpoos vee Xon belng independent random variables satisfy-
ing (2,0,1) and (2.0.,2) . Representation of the above type
is fairly general and are obtainable, for exgmple via, Hajek's
projection lemma (see Hajek (1968)), TUnder suitadble assumptions

on the moments of R, , we shall show that the results of Chapter

2 may be extended to include T .

Results on T analogous to those obtained in scctions
(2,2) - (2.6) are proved in sections (3.2) - (3.4). In secc-
tions (3.5), (3.0 we cite examples of T and verify the
assumptions on R, Finally section (3.7 Vexploits the fact
that non-uniform rates in finite'population may be obtainable

via a rcpresentation like (3.1.1).
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5.2 W@ON-UNIFORM RATES FO.. T, WHEN SOM TFINITE
MOMENTS OF X, EXIST

In his section results for Tn analpgous to those obtained
in section 2,2 are proved., Assume (2,0,2) and (2.1.1),

Mfurther suppose that Rn satisfieg
(3.2.1) E(Rim ) = O(n"m(log»n)?) for some h > 0 (h may

be a function of =m but not of n) n being a positive integer,
c < 2n < c+2,

Let
(3.2.1a) a,(t) = |t|d (n¢/? a( n))™" . where 4 > 1
' and n > 0

to be chosen later, Then for £ < K[ -;— clog n + log u( ] ,

theorem 2.2,1 yields

(3.2,2) IP(sp' s, < t o+ 2 (8" = Bk + a (£))]

s

< bexp[- -% (t + a.n(t))2(1-3r):] [ncfeu(ij?l)';g ]!
n
o+ E PO|X ;5 >T sy |t 2 a (b))

2 ) kel
Note ap(t) 50, @s n->wfor t° ¢E[ e log n + log u([R)7,

so |t + a (t)12 = t2(1+o(1)).

without any loss of generality assune t > O as t & 0 can be
handled sinilarly,
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Then :
(3.2.3) |Gt x a (8)) - BB < a (¥) (@r)TVE

X exp [ -4 (t -8 (t)7]

< b 1& (%72 a( m NN exp(—t2/2 ).

Again using Markov's inequality and (3.,2.1) one has

(3.2.8) PR} > a () & aB(t) ERD

= O(’c"emd(n‘:’/2 u(jﬁ))emTi n ™ (log n)h )

If ¢ > 0, choose n such that

(3.2,40) n W2 . gEeN pm
i.e., m = Tﬁg%TTE . Por ¢ =0, n (>0 can be chosen arbi-
trarily,

From (3.2.2) -(3.2.4) if ¢ > O one gets for 2 ¢ ¥[ 5

~log n + log u( fu )],

(3.2.5)  [P(T, < ¥ - B | < [ exp( - 267 (1-3r) (0 Pu( fa )
A n/?)-1

7 o om
+ |'I:|d n ot CIGTI) cntlle exp(—t2/2)
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5 e
-n YT A
U |_t|“2md n 2] (u( {n)) “m+ile (log p)h J.

Bi( X1 > rusn]‘t’ “;a'n'(t)! ).

it o1 3

.+

o i=

Now for t > O, .
G a () = b0 - 4371072 a(Ja N7 ), This equals

zer0 if either + =0 or 1t = (n/° u(r ))n/(d-ﬂ._ Since the

last value of t lies outside the region 2 <) K[2 log n +log u(ﬁﬂl

and since o ey il .
inf - inf [1-t=Ta_(t)] = & = A, u,d)>0
n O<t <Kl_—-—10g n +log u(ﬁl )] S |

we hove 9

(3.2,6) |B(T, < t)- - Tg“cm g-texp(; 1% (130)) @20 ) A 0D

-2m i .

+ l_t’d 2m+1 ( (J ))z fl+150 e.ng—"t.g/g) "

: L .

i 'tl-de n21:1+‘! (u( & ))im+1 T (107g‘nf)hj b
..n

+ T P(I > A s |t )
- F X | r" altl

For ¢ = 0 sinilarly we have _

G.2.1 BT 9-08)] < b Cexpla & (1-30)) (u( o 1T
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AT R DT exp(-t7/2) 41289 u i y) 2

0 M log n)h] + z P(]X | > x s [t )Eﬁ
i=1

for sone A> O, where 7 > 0 is arbitrary,

We are now in a position to state

Theoren 3,21 N Iet j‘an be a sequence of r.v's
setisfying (2.0.2) ana n(2.1.1). Let T, = 87's_ + R, where
5 2 _ 2 N
g = iiT i s s, = 121 EXy s @21 and R, satisfies

(3.2,1), Then for t <K [ 5 log n + log w(n)], (3.2,6)
holds if ¢ > 0 and (3,2.7) holds if o = 0. '

Yet another form of the inequality is obtalnable by a

different choice of 7m > 0, For ¢ > O 1t n > 0 be such

that mem - m<-c/2 i8., 1< (n- %CT/(mc) ;y c < 2n g c+2,
Then from (3,2,2) -~ (3.2.4) it follows that for some Y > 0,

(3.2.8) ’P(Tn L) ;”@(t)’ £ b n-) EGXP(~t2/2) + n—c/2 J

+

IIMS

PO X[ > rhs [ t] )

Note that putting |t| = (c log n) /2 one obtains probabilitics
of modertte deviations' (3.2.7) and (3.2.8) w111 further be

utilised to have a theoren analogous - to theoren 2 2, 6
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(D=

o > K E%log,n + log u( fm7],

First obtain frem theorem 27,2,2 with:“£i> @i

Next'we derive an efrorrbound for ¢

(3.2.9) |7, (t + a (4)-P(t £ & (+))]

A s _
| + .1#1:P(|Xﬁi1 >roslt-a (8)])

Note that yﬁf

(3,2,10) [0(t = a (D) - P& < an(t) Ot ~a () , f%(x)“l e

Hence for t # a (%) ,

(3.2, [B(T, ¢ %) - )| < b [02 u( ] -1/

X 1t . ?}n(t) l-_-2(K+1:)

% (mOT 48 exp [- At-a (0727 |
. .

+ii1p(lxiil>r sn|t_an(t)|)-+ P(!Rn(t)|;>—an(t)):

0 atre 1t =0 and

Note that the solutions of % - a_(t)
t= [%2 (@) V@D 5 5. a (1) 2 At . if

1 - +7a ()] > A where A (0 < A< 1) may depend on K, and

is at our choice,
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Hence, for t ¢ [(1 + An®/? u(Jn )] n/(d—j) one has

(3.,2,12) |P(T, <t) - @(t)[- < b'[nc/zlu(ﬁl )] -(k-1)/2 Itl--?(Kﬂ)’:

¢ @20 @M 141% exp [ - 3% 7]
i

n
* 21 P(iXﬁi[ >,r A sn:|t[ )

+ ‘ng(n"c/2 = [tl'z(E?j) ) for some &' > O,

To justify (3.2.12) note that

PUR,| > 2,()) ¢ (a,(£3)~20 5 20

i

0t (log M (02 u( [n))?mn |4y-2nd )

il

o(u=/2 ~&' {tl—2(K+1) y

for some e' > O, if n(l-cn) > ¢

S 1ed

*e' o di,e,, 1-cn > (ct+2e')/2n
i.e,, n < (2m—c—25')/2m

Since ¢ < 2;m £ ¢+2 this choice of 1 (> 0) is possible for-

some  e' 2(0, (2n-¢)/2) 3 @ is chosen in such a way that

2nd > 2(K+1) ie,, ad > (K+1)/m

Agein for t ¢ [(1 + ) n®/? u( n )] n/(d-1) , choose
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ax(t) = 417 @YPa(mE N, (1< ax < d), and get a similar

inequality as (3.2,12) with d* replacing 4 for t £ CU+n) n®/?
(0] n/(@*-1)

;S:ane the | two intervals

T]/(d—‘l) n/(d*-1)

(1 = ?\)nc/gu.(ﬁl ;-and (1 + AMn®’? u( mn))

can be made disj'oin’t, one gets (3.2:_‘""172) for all t2 > K E %lo‘g‘n
+ 16g u(ji):l Now . : )

dli
(3.2,13) exp |_— h g _| ~' exp |_ 1; h (1-a )t _j exp |'_'_ Z at _l

£ ,\‘[nc/ u( Jn )] xS a/2 exp E—~ > A (1--a)t2-_]

choose *a' such that (n +x 7\-2‘-‘3;/2) = (k-1)/2 "i.é'., a = I-If:—"% ~2n

For adequate choice of A and 1 one has 0 < a. < 1,

Hence the 2nd term of the r.h.s of (3.2,12) 4is less

than or cqual to
L ‘ =y (B~ L R
we now state the following.

Theorem 3,2,2 Let the conditions of theorem 3,2,1 hold,
then for ~1° > X = % log n + log u([n)_], we have, for some °

s'>0,
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(3.2.14) '?(Tn % 1) - @(t)! <D ]:nc/2u( J‘fl )j —(K—'l)/.?lﬂ-fg]{i-'i
n ‘
+ ii1 POE ;1 > x s, 11 )
+ b2( n_c/2 -g" ]_tl—g(K+1) )

in view of theorems 3,2,1 and 3.2,2 with X sufficiently

large we have for ¢ > 0, t e (= o, ),
. y "' 0/2 i o
(3,2,15) |2(2,, £ ) - 0t} < bl u( jn )
5 _
! _ 4n
e a2 T OENCET (0 ] (14)312%C T

where 2nm is the largest even integer < (e+2), and for ¢ = 0

(3.2.16) BT < t) - )| < b))t wen

Renark 3.2.1 The non uniform bound (3,2.15) can be

improved when: from uniform Berry-Esseen bound one knows that
(3,2,17) Sup |P(T, < %) - G ITE df(nc/zu(_ﬁi) f\,n1/2 i
£ ¥

Then without using (3,2.6) one may directly use (3,2,14)
alongwith (3,2,17) +to obtain

(3.2,18)  |P(T<8)-B(H) | < b0 2a( [ ~n'"2) " (10g n)8)
bt (1+|‘t|2+c y—1
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In the light of (3.2.6), (3.2.7), (3.2.8) and (3.2.14) it
is alsc possible to obtain itheorems analogous to 2,2,4 +to 2.2.7
Without going into the detailed proof we now state the results as

follows,

Theoren #.2.3" Suﬁpose that the assumptions concerning u(x)

of theoren 2.2,4 hold, Let:.Y = [T | and T = |N(O, 1],

Then
. ; . 2 .
- - . dm - .
O(n—0/2 v n12m+1 (u(j}ﬁ)32m+1 C(log n)h)
' e if o> 0
(3.2.19)  |B(¥2*Cu(y,)) >

- 2
= ) 4
c/2 v ,n(2g+1; (u(J?D)Z§m+1SC(1Og e

u(Xhi) is u.i

i

—rmetC

AF 030 and if [X,|°*C

o(1) if ¢ =0 and if

1%y 1°7%0(%;;) s w.i,lim a(x)=0
' x->0
and lim w(x) =
X => o

Note that if a uniform Berry-Essecn bound (3,2,17) is
Imown by using (3.2.18) instead of (3,2.6) sonmetimes it is
,possiblc to obtain. sSharper orders ‘in (3,2,19) for ¢ > b. This

corment holds for the next theorem also,

Denote G (t) = P(T, £ ).
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ZTheoren 3,2,4 Under the assunmptions of theorem43.2;1
2,20y | 2re-q/p C
(3.2, 0 T+t (Gn(t)-@(t)) HP
_-m
= om°/? v n{2m+ : (log D) if o> )
= oa(fma N if ¢ =0
for p2> 1 and any g > 1.
Remark 3.2,2 If ‘¢ > 0, we take u(x) =1 in (2,1,1)

to obtain  (3_2.10).
Using (3.2,8) in the casc ¢ > 0 and (3.2,7) with

n=1 for ¢ = 0 we have the following theorens.

Theoren 3.2.5. . Under the assumptions of theorem 3.2,1, for

a sequence = {t,3, }tn -> » with

) 5 L |
(3.2.21) ~t,-clogn - 2(c+1)1og]tn| - 2log u(r sntn) ~> o
We .have

(3,2,22) T - G () ~ Pt

2+¢ 3

.- - ) '- :( s - -
Purther if the_sequence 1 IXﬁil u(Xhi) ;oois i, then

(3.3.22) holds even if 1,h,s of (3.3.21) is bounded above.
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Theorenm 3,2.6 Suppose that the conditions of the theorems
f.2,17 and 3.2,2 are satisfied. Then for a sequence _%tn% ,

tn -> = ywith

> _
(3.2,23) b - clogn - 2(c+1)log [t,] - 2 log u(r sntn) ~> o

we h@ve
' - (2+¢) _c/2 1 : 2+c_,
(3.2.24) » F'= G, () = oty n u (rs,t ) if X5 |7 TulX )

is w.i.

]

{(2+¢) —c/2 _1 .
O(tn N u (rsntn) ctherwise,

As o concluding remark of this section we may note that remark

2.2.2 and 2,2,3 apply as well to the theorems 3.2.5 and
3.2.6,

5.3 HON-UNIFORM RATES FOR 7. WHEN ALL THE MOMENTS
OF X,  EXIST

In this section results for Tn analogous to those obtained
in sections 2,3 - 2.4 are obtained. Assume (2,0.1), (2.0,2)
and (2,3,1), Purther suppose that Rn satisfies
en

(3.3.1) ER,") < e(Zm) n™® (1og M ror some h>0

m = 1!2!3’

LR ]
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where c¢(.) is constant depending on mn, under suitable
restriction on ¢ and h we shall show that the results of

section 2.4 may be extended to include T,. w.0.1l.8 let t > 0f

Note that due to the representation (3%,1.1)

2% PR K t) ;‘@(t5| < P(s;1sn < txoa (3)-0(tx 8, (3))]

s 100t 2 a,(8)) — BB ¥ BRG] > a (1))

where -an(t) > 0 will be choosen accordingly. Now
(3.3.3) POIR,| > a () £ exp C-a, an(t)j E [exp(a IR, ]

It will be shown that if

2m

(3.3.4) c(2m) ¢ (2m): L for some L > O

T or ‘An = g n1/2(1og n)—h/2 and for same ¢ > 0O

(3.3.5)  Sup B (exp (A_ IR ] D) < o

n
so .that R
(3.3.5a) PRyl > a,(t)) = 0 [ exp( -a, an(t))j

Pirst note that i

TH(3.3.6) (& IR, 1) (-A_IR 1) 2 [1 s -———(Anlﬁn!}gm
P - XD c + expl- = +
. . . ¢ BT]. | ‘n n m=1 (2111):

Taking expectation both sidés and noting that E exp(uAann|)> 0
> * “ |

_
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we have, in view of (3.3,1) and (3.3.4)

8

(3,3,7» E exp(4 IR 1) & 2 C1 s T __-L)Zm‘]

™

m=1

" Hence Ffox & < L_1 r.h,s of (3.3.7) is a convergent geometric

seriecs frec from n, therefore we have (3.3.5) under (3,3,4).

We use this result in obtaining o normal approximation zone

for Tn"

Let an(t) = nfy where Y > 0 will be chosen later, Then

r.h.s of (3.3.2) ye have from

with t satisfying (2.4,1)

for the 1st term of the
theocren 2,4,1

(3.3.8) 1st term in the r.h.s of (3.3.2) < b exp(—(t:n_y)z/Z)
< 14+ 0771 Jexpo(itr 0|3 1421

g

i

[T Bt

. T
; PO1X ;) > syt 2 n7))

£ 2 '
< exp(~t /2)| exp(0(|t]> n= /) 11 |3~
n y
E PO, > T As fth) for t = 0(@")
=1

+
1=

with some O < A K 1, -

(3.3.9) 2nd term £ b.n’y:exp(_t2/2)

Q(|t1“1 exﬁ(—t2/2) for t = o(ny)
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1 _

‘ | 5/ >
(3.5 10) 3rd term ¢ b exp( -¢ n2 (log n)'h/“ )

(3.3.8) - (3.3.10) with ) = 1/6 implies the following

theoren along the lines of theorem 2,4.4 and remark 2.4.8.

Theorer 5.3.1 Suppose (2.0.1), (2.0.2)," (2.3.1), (3.3.1)

and (3,3.4) ‘hoid. Then for a sequence %;tn}, satisfying

)t = om® 1 neo
. 1/6 y-B/4

o] (log.n if h> 0 for some O< e' < &

72N

angd 5 - : .
ii) t, - 2(log t, * log glr A Sy, tn)) > =, 0<r a<.1/2
~ the following holds

(3.3.11) T - B(T, & 3 ~ G-t as > o,

§ -~ e] i | | }. -- 1 H c
Further %Tu?h” sequence { Xii g(Kﬁi) } i uniformly integrable
then (3.3.11) holds even if 1l,h.s of 1ii) is bdd above.

Now let us have a different choice of an(t) viz. &n(ts = af
0 < @< 1. In that case with t (> 0) satisfying (2.4.1) we
have, for the 1st term of the r. h,s of: (3,3.2), from theoren
2.4.1

i ] g2 el
(3.3.12)  1st tern of r.h.s of (3.3.2) < b exp [~5(1-a) +kn™ 7 2%7]
2P|, | )t s )
; : + 2 P(|X .| > r(1-c)t s for scme
; 2 F s n b
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(3.3.13) end tern < b exp [ ~(1-0)? t2/2j at

(3.3.14) *  3rd tern ¢ b exp [-c a t n'/? (1log n)_h/zj

and hence we have the following theoret,

Theorem 3.3,2  Suppése (2,0,1) with g(x) = exp(s|x]) for

some s > 0, (2.0,2), (3.3.1) and (3.3.4) hold. Then

. 2
' t
(3.3.15) P(T > %)) < bexp {H~ 1§H(1 + 0(1))“}
for 1, = 0(n1/2(log,n)'h/2 Yy t, => =,

proof of the above theorem is similar to that of theoren 2,4,6
letting o -> O,
_ . 172 2
For h = 0, noting that for + = e' | atn = at /et

letting ¢' -> 0 along the lines of theorem 2.4.6 with the
observdtiin that l.h.s of {3.3,16) is indeﬁendent of a (and

hence finally lotting a -> 0) we have the following theorem,

Thecren 3.3.3 Let the conditions of theoren 3.3.2-'h01d
; - N - /-
wth h =0, then for t = etdn €0

(3.3.16)  1im sup 1im sup (% /2) = Log P(T, > t) & -1

et => 0 n-> o

Next with the game choice of a (t) i.e a (t) = at, the

il |

following theorem and remark 3.3.1 follow from theorem 2,4.8
remark 2,4,11 and (3,3,2), -
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Theorenn 3,3.4 Suppose"(?,O,T), (2.0,2), (2.3.1), (3,3.1)
and (3,3.4) hold, then for t° > 2(log |t] * log g(r s t))
with )c"‘I log g{x) -> 0, we have for sone b(>0) and any o, 0< ol

-T+¢

(3317 [R(L -0 | & 0(]t]glras,t) n,t
+ exﬁiu(1_a)2 t2/25 a |t b
+ b exp E}d]t]n1/2(log n)_h/%] +

+
i

Hoa

; PC X ;1> r(1-a) Sy [t] )

where & . is defined by (2.4,74).
n’

Remark, 3,3,1 Supposé (2,0,1), (2,0,2), (2,3,1), (3.3,1)
and (3.3.,4) hold, then for t2 > 2(loglt] + log g(rsnﬁkn))' with
any sequence I, -> O We'have, for x"1log g(x) => s O 0)

: Bl L - ~1+0(k,,)
(3.3.18)  [B(T,& t )= QCtI| < O(]t|glras, tk,))

v b oexp(=(1-a)2 $2/2 )

+ bexp [—a|t[n1/2(108'n)-h/23
+ = POIE ;100 r(1—0)snlt[)
i=1 oo il
To obtain a non~uniform bound over the entire range of t , 1i.e.,

~ o ¢ t < e, we proceed as in theorem 2,4,9. et %

0
be égye positive constant, Note +that for
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S0 e W Voticzer G| 5 sufficiently large, (3.3.21) follous

the same lincs as that of theorem 2.4.9 where one uses (3,3,12)

- (3.3,14), theoren 3.3.4 and remark 3.3.1, TFor ti < e

£ k log n, one uses (3,3,2)7 with an(t) = Kn*1/2(log n)h/2 +m[t|;
in this case (3,3,21) beconmes almost imnediate when o is

replaced by o, = A n"1/2(log /2 1 inr(3,3.12) - (3.3.14)

and noting that fexp (0C1t° u™'/2)) _ 1| = o(4]% n=1/2) sfor

2 .J
t~ < k log n, .For [t] < t, (> 0) one uses an wniforn bound

1" 2og )2 *1 4l in theorem 3.5.2, Hence the following

Theoren 3,3,.4 Suppose  (2.0,1), (2,0,2), (2.3,1), and
(3.3.4) hold alongwith

h,

o e
(3.3.19) [sr o 5,7 ¢ A 20108 07

: Ce)] !

for all sufficiently large n when x“1 log g(x}) —=> 0 as x -> o

H

with t satisfying t2 > 2(log |t] + log g(r snt))

A = “ .
5.3:20) [g(r « spt k)] sk < Ao n-1/2(log n)§ La(rt) ] =

for all sufficiently large n , when x”1log gx) > s © 0) as-
X => = with 1 satisfying £° 2 2(log It] + log g(r syt k),
where kn 1s some sequence . Sl T - Aty Ao SOme +ve
constants,

A
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Then. - =
(3.3.21) [B(Dy < )-0(t)} < b n (log m)® [gOrt)]

o+
L4

Oy e ¥ .

IO PUX 41 >r(1-a)s, [t])
i=t - -

Further if, for some t4 > O .

h
‘ +1 , .
(3.3.22) - [t%x(1-0)s 2] " ¢ b 07 2Q0g 0)°  [g(at)] -7

Cfor all. > 1 :
then

- : h '
- -V 1 e
(3.3.23) [B(T, ¢ ¥) - BH)| < b 0~/ %(10g ? e,

= K t e
Ag a consequence'of theoren 3,3,4 we may have the following
two theorems the proof_of which are similar to those of theorem

2,4,10 ~and"theorem 2.4.11.

Theorem 3.3,5 Under the assumptions of théorem 3.3.4“

Bis
2

(3.3.24)  |la(at) (1+t])~9/P (Gn(t)-@ct)}np = o(n'_?fe(log n)
for p> 1 and any g > 1.
Theoren 3.3,6 Under the aséuﬁpt;ons of theorem 3.3,4 and
(3.3.25) 1%2 Eng(x)j < Ay g(ax) (1+ [x[)~2 + Ao ¥ x>0

and for some Ay, A, > 0, g> 1, A being same as that of
theoreﬁ’%.3;4, one has


http://www.cvisiontech.com

<89-

+1

nof

(3,3.26) IE(Ti g(Tn)) = E(T2 g(ThH] = o(n‘1/2(1og n}

where T = [N(0,1)|

See remark 2,4,12 for some examples of g satisfying the

conditions of the above theorems,

Remark 3,3,2 (3.3.5) essentially needs the existance
of moment generating function of normalised Rn and this is
ensured by the assumption (3.3,4)., This assumption has only
been utilised to have an estinate of POIR,] > a, (1)),
In the same fashion it can be shown that if c(2m) < (@rm! I
OCexp(~(A .
; aﬂ(t))1/71)), A =e11j!/2§log‘n)'h/2 for some &> O, The

If

for some L > 0 and J; > 1 then POR, T > a ()

wohizigue may be briefly described as follows, By Markov's
Inequality,

| = k
P(IRy > a (3)) < [a, ()] E{R ™ |
Now to have the optimal order differenciate r.,h,s w.r.t k after
setting the estimate of Ef%fk. For details of the technique

Chepter 5 may be consulted where dependent processes is considered .

(See also (3,7.31) - (3.7.34))

[S

As a result all the theorems of this chapter my be _
nodified under weaker conditions on R, e.8. c(@m) ¢ (2)1m)iL2m
)‘r > 1 or c(2m) ¢ exp [(2}31)}], 7> 1 ete. Since the basic

technique remains the same ) details are omitted,
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3.4 HON-UNTFORM RATES FOR Tn WHEN i.g.f
OF Xﬁi NECESSARILY EXIST

This section generalises the results -of section 2,5 - 2,6

for mnon lincar statistics T, Assume (3.3.1) with
7 | _ g “ep 200 :
(3,4,1) -c(2m) & mi L for some L > O,

Then rnote that

(3.,4.2) Sup E [exp(A n 1/2 (log)_hylen!)éj
n

o0

= Sup [ 1+ % -(hn1/2(log nj-h/2”)2m'E Rﬁ?/mi R

n m=1
< 1+ = (IR R R if o<a¢ L
m=1 . ;
Consequently

(3.4,3) PR > an(ti) = Slexp-0n" 210y P 5 (11N,

o< n <L

Hence from (3 3.2) with t2 < £° £klogn (k may be arbitrarily

larg@ lettlng a (t) = 1/ (log )(h 1)/2 t A7 and w.o.l.g
letting t > ©

(3.4.4) |P(T_ ¢ - 8] < b a /%47 exp(-1°/2)

¢ b 2(l0g B D724 exp(212/2) st 2exp(2/2)
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for ° < ti‘(> 0),one , however, uses uniform bound b

.(log n)(h+1)/2; Hence:® (3.4.4) for £° < k log n. (for similar

w172

calculations sce (3.3.8) - (3.3.10))

For t > k log n under the assumptions of theorem 2.6,1 one
has, using (2.6,2) and (3.3,2) (with the same choice of gn(t)

as above)
(3,45 B2, <P - W] ¢ v VP exp S'L_tzm_z‘-").r}

— o I ) i i 2 |
+ b n 1/2(1og n)(h+1)/2 exP(Lt2/2) s b o~V Pexp(-t7/2)
where 0 < r <1,

since, exp (~t?(1—£'1)) £ .n"q/zexp (—t2(1—£-1)r) if

t2> [2a(l-r)] "' logn, O<r <1,

Which can be ensured choosing k sufficiently large.

Note that trucation of the variables Xhi are not needed -
as mn.g.f exisﬁiyso the term = P(1Xhil >ros,t) is omitted

(see remark 2.4.5)

As a consequence of (3.4.4) and (3.,4.5) we have the following

non uniform bound over the entire range-of .t

-

Theoren 3,4,1 Under the assumptions of thcorem 2,6,1 and

(3.7.,1) with (3.,4.1) 3b>0 depending omn r such that
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(3.4:6) | 1B, < B = §)] < b B (Log ) P72

‘ 3{ exp _(;t2(1-,x"'1-)r)‘°

for allr, 0 < r <1, =t e,

Subséquenfly'the following two theorems are immediate from (3,4.0)

- noting that 0 < r < 1 1is arbitrary.

Theoren 3,4,2 Under the assumptions of theorem 3,4.1 for

any g . (dm,;) > (0, o)

’

g(x) even, such that = g(T) < = g(0)=)
T = IN(O, 1|, and |

(3.4.7y —g'(xy = O(ekp(—¥§(1—l;5r)), L 0<x <
and for some Py 0] Ko b 1

the following holds |

(3.4,8)  |E g(Tn)lﬂ E'g(]| = oV Zog n) P12

o

prof of the above follows from (2,4,93).

0<r <1,

Theorem‘3.4;3 ‘Under the assumtion of theorem 3.4, |

— - |

: 2] | |
(3.4,9) [|exp(t°(1-£ )r)(Gn(t)—@(t))1|p |
= B i

= O(n“1/2(1og n)(h+1)/2 ) foxr any, p > 1 and E

Next we consider the case when the assumption (2;5@3) in

theorem 2,6,1 1is not satisfied i.e,, we consider the caseé
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when odd order moments of X . are non vanishing., As before for
£° £k log n, it is possiblc 0 obtain (3.4.4) since theoren
2,6.%7 is not used there. However for t° 2 k log h we may use
(2,6,33) 4in (3, 30,2) with the same choice of a (t) viz.

| a (t) = nfT/Z'(log n) (h+1)/2 |1:]'?\"-'il to obtain

(3.,4.10) [B(T, ¢ ) = BB ¢ b n "% 2 exp-tP/e(4))

+ b nf?/?(log n)(h+1)/2exp(-t2/2) + bn-1(2exp(—t2/2)

L

for  t° > klogn, where 1linm (L) = o,

. t >
Hence combining (3.4,4) and (3.4,10) it is possible to obtain

the following\pop_uniform bound

Theorem 3,4,4  Under assumptions (2,0.2), (2,5,1), (2.5.2)
(2,6.1) and (3.,3.1) with (3.4,1) Ja constant b ( > 0)

depending on f(t) , £:(0,o) -> (0,~), nondecreasing and li§ £(t)
= o _such that =

(3.4.11)  (2(2, < ®) - B ] < b uV(rog n) BT 2012 ())

_oo<‘t<oo°
Consequently the following two theorems on moment type convergence
and on non~-uniforn Lp version cf the Berry-Esscen theorenm

Tollows from (3,4,11) noting that f() therein is arbitrary,

s


http://www.cvisiontech.com

=94-

Theoren 3,4,5 Under the assumptions of theoren 3,4.4 for

any g * (- N o)

=> (0, =), g(x) even, g(0) = 0, such thﬁt
E g(T) < o and | e

y O0<x < F

(3.4.12)  g"(x) = O(exp (x2/£(x))

o8

7

(0,0) ->(0,),

-nondecreasing and  lim £(t) = «, the following holds
tDw -

$3.413) B g(T) - Bg(D| = o(n~ /2 (10g n) B*1/2

Theoren 3.4,6 Undefffhe'assumption of theorem 3.4,4, for

any p> 1,

GoA18 lexp(t™/£ () L (6,(D-8(8) ||

= O(n—1/2(log n) (B*1)/2 )
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3,5 RATES OF CONVERGENCE POR I-ST! MISTICS

et X, % Eon £ oo £ X, denote the order statistics

corﬂesnondlng to n 1iid v.v's X4y %,...., X, having a common

distrlbutlon.function F.; Consider linear combination of function

of order statistics of the form
: n
(3.5.1) T. = ii i (X))

where the C;n's are constant and h is some measureble function,

et H# h o F =18 @ wiiems G(x) =1 -~ exp(-x)., Also, 1let

Zip £ e £ Zom denote the order statistics corresponding to n

iid r.v's Zis Bogeeasy zh eaéh having the distribution function
_ . : n
G(x)., Then T, 1is identically distributed as £ ¢,  H(z,.)
‘ i=1.
This representation is due to  Chernoff, Gastwirth and Johns

i

(1967), Tote that z;,, has the same distribution as = zj/(nyj+1)
j:‘},‘

and hence

(3.5.2) Uiy = E(zin) =

I

(n-j+1H™1 1 &1 4 n

3=1

Assumlng that H is dlfferen01ab1e by the first mean

value uheorem, one has

_ ] i
(3,5.3) (Tn—un)/sn = &y Iy, ¢+ R where

] 2
(3.5.4’) e = i Cin H(Ui )
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(3.5.5) R 1;11 B (g ) (2 gm0y,
(325567 & = 5;11131 0y (Z3=vs ) [___H’(O 2yt (1-8)v; )= H (v, )]
2 D o | e
for some 0 <0 < 1; s = Z e aln (n-i+1)"" 5 Cin H' (v, )
i=1 e =i
. - | |
1 ¢ i< n, Vote that ii1cin H' (vg ) (25 =05 ) hasrﬁhe same dis-
n , 2
tribution as B = 121 ain(ziﬁ"1) and s, = var (U.).

The above expansion was”used'by Bjerve (1977) in obtain-
ing & uniform Berry-Essecen theorem of O(nfq/z) ‘for trimmed
L-statistics, Helmers (1977) obtained the same rate of conver-
gence for general L-statistics under different conditions, The

asymptotic normality of T, was proved by Chermoff et al (1967)

Our aim in this section is to develop non-uniform Berry-
Essecen bounds for Tn and to obtain thecrems analogous to theorens

(3.32.1), (3.3.5) and (3.3.6).

The following assumptions are made

I. Sup nax les, | ¢ = ¢
n>1  1¢idn n ’
II. H 1s differenciable and Sup [H'(x)| < = ;
014 ‘
III, H' is lipschitz of order one over (0, =) ;
IV, n  a's® > 0

N> oo L ,
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It is now easy to sce that (2.0,2)_ and (2,0.1) are
satisfied with g(x) = exp(!x[) since m.g.f of the exponential

distribution exists, To have an estimate of c¢(2m) first observe

that in view of I and II1

174N

- - ‘ 2m i, = 2~ 2m
(3.5.7) EIR,|™ & 1" n " E Eiiq(zin - V) ]

' n i .
o™ EL 2 {3 (2,-1)/(njen)}2] 20
i=1 Yj=1 '

]

N 4 |
o B L2 (2-1%/(nge1)
3=1

! 1'1--1 e .
+2 % ok (z._1)(zjﬂ—1)/(n-j+1)]2L

J=1 gr=jerd
Where in the above and in what follows 1 4is a generic constant

which is ot dependent on m  ang n, Also

E E(zj -1)2.,,(2.

(zi—1)2/(n_,j+1))2m =3 ,,.0 il Jom

It don (=d+ 1) Ll (nog, o)

. n —1)2]
(3.5.8) E( 2
.j=

1

Using Holder's inequality 2m times,

& | .- 2
(3.5.9) B [(z5 D% (2, -1D?] ¢ TT g/ . -1
J1 Jdon - J

i=1 -

But E(z1-1)4111 £ (4m)! , Hence from (3.5.8) and.‘(3.5;9)
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n 1
(3.5.10) E( 2 (a,-D/ g+ ¢ () (. —1 )20
2 k. B =3
=1~ J=1
2n
< (4} (log n)
Fortiher
n-1 n or,
(3,5.11) B[ = p) (z.=1)(z;,-1)/(n-j+1) ]
2 i=1 je=3+1 Jo
: Bz «1){(z;,-1),,.(z. ~1)(z.1
] n -1 4] J J4q B W 3%
= 5 z N ) z . L e %

R e L - r - B €5 PRy D IO ¢ PURA b
Note that if any one of the pairs (ji, ji) occurs only once, then
the cxpeetation vanishes, and hence every suffix should occur at

least twice to make a non-zero contribution,

Subject to the condition that cach pair of suffixes occurs
at lcast twiece the maxinum number of pairs that can occur is n,

Also applying Holders inequality 4n tines,

3.5 12 - T B st .
(3.5.12) [E(ZJ1 1)(ZJi T (szm 1((23ém 1)1
tny | |
$ T R 0™ 2 w5 ¢ e

1

In view of the fact that =, ,,%
ig ip (neigsDPT | (nei +1)PK

L al

pj(}O) T, §=1...K and that maxinun nunber of pairs is m each
occuring at least twice, we have

(3.5.13) = l.h. 8 of (3,5,11) <
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<Y n n-t n 1
< (4l -3 2 ... B 2 2 2
RPES B FEA A B IS B S TEE B €2 P D RO ¢, BES b
n-1 1 ‘
= U (z ™ < (m)! (log m "
j=1t (n-j+1)

snd hence, finally
(3 IR P (md: n® (log m2® 1M |
2, 5 RS m)! n - (logn)™ I7  for some L > O,

Ye now proceed to have theorems analogous to 3,3,1, 3.3,5 and

3.2.6, .Note that according to remark 3,3,2

= /vy
(3.5.15) POIR,I > an(t)) = OCexp(-(A 2 (1)) ))

In this case vg = & A = e n1/2(10g n)""1 as ‘h =2 here, (sce

3.3.1). Therefore letting a,(t) = n~Y (log n)K, A, v> 0 to be
chosen later, we have
a 1
v
Oexp(-(e n?m log n "1+A)1/2))

It

(3.5.16)  B(|R,| > a (1))

o(]t]“1 exp(—t2/2))

1—‘U

for % = o(n‘g (log n)~ 1A y1/4

/
H

41s0
(3,57 1PCtx 2 (8))-0(1)] < b n™V(log m)* exp(-t°/2)

= o(]t|"1 exp(-t2/2)l for t = o(n’(log )™M ),
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1
. z v -
Now eguating n"(log n)™" = (n (log n) LGl 174

which gives v = 1/10 and A = 1/5 the following thooren follows
along calculations (3.3,8) - (%.3.10) of theoren B o' iz

Theoren 3,5,1 Under assumptions I-IV  for T, defined
in (3,5.1)

(3.5.18) 1 - (T, & 1) ~B-t)  for 4y = on'/10 (105 n)'

tn, -> oo,

Now letting an(t) = ¢ n—1/2(1og n)3 [t] in  (3.5.15) the

following theorcms follows in view of the following observation

(3.5.19) P() R, | > an(t))-= O(exp(—a1/4l [t] logn)) for

| an(t)=an_1/2(log n)%t{
< bn71/2exp(_xJ It1 ) if ft!>to, for sone t,
depending on A,

Hence |2(T, < ®) - 8(®)| < b (log m)% exp(-r] [] )
for [t} > t,

But a uniform bound rnfj/g(log n)° is available from the relatiom

(3.5.193) PGNP Y <P ~p Il + @572+ p(y) > N
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for any two r».v. X and Y and a, > 0, Now choose X +Y = In,

Y =R and a Sen -1/2 “(1ng n)3 to obtain unlform boand

n
*1/2(103 n)3 proceedlng as in (3,5, 19), Hence the following

-Thggrem_3.5‘2. . Undef‘assumﬁtions i e IV for T . defined

in (3,5,1) for any A > 0"3; P> 0 (dependlng on A) s.t,
(3.5.20)  |P(T, € ©)-0(®)| < b 0% (20g )7 expl-r] [1]
_oo<'t,<oo.

In view of theorem 3,5,2 we have the following twe theorems

Theoren 3,5,.3 Under the assumptions of theorem 3.0.,2, for
any i > 0

: 2 2
(3.5,21) IE T exp(AJ 2,1 ) - E T° exp (AJ {7}

= O(n"v2 (log n)'3 )

Theorem 3.5,4 Under the assumptions of theorem 3.5.2 for

any A > 0 and p > 1

(3.5.22)  flexp(a ] ) (o, (t) - JN 11, = 0(a™ 2 (20 )

The conditions assumed on H are satisfied when for

example F(x) = G(x) = 1 - exp(~-x) and h is the identity map,

ingl
In the case of trimmed I statistics T = c.. H(z..)
na? +1 =5 E
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0<a< B <1, and-weaker condition on 'H suffices, All we

need assunme here .is : - sup |JH'(x)| < » -and H' is
gt & a<x<b b=

Lipschitz of order 1°on ‘[a, b]  where a < -log(1-a) ,
b > -log (1-B) -alongwith I and IV . d
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3.6 . RATES OF CONVERGENCES FOR U-STATISTICS

et (X, , n> 1'} be & sequence of‘independent but not
necessarily identically distributed random variables, A U-stati-
stic with kormel ¢ and degree r, based on Xis Xpyeeey X
(n > r), is defined by |

G v,o= (DT ox ST A

1$i1<ooo:£'ir‘<_n r

where the kernel ¢ is symmetric in its arguments,

In this section we provide a Hoeffding (1961) decompo-
sition‘for U~statistics in the non iid case and use this in deri-
ving certain unifornm Berrj—Esseen bound for TU-statistics with
Some non uniform Berry-Esseen bound analogous to those obtained
in sections 3,2 - 3,4, Finally for Kernels with degree 2, a
weak invarignce principle is proved for U-statistics in the

non 1iid case.

First a few nqtations are introduced, Assume w,0.1l,g
that E @(Xi1 2l sl xir> =0 for all 1 ¢ 1 < ... <1, <0,
To keep the notations simple we show the decomposition only for
L =73,'although%it'can very well be generalised, Iet
G260 ) 5 e 0 =B L0 L% % )% =x; ]
oslz iy y 12,13 i, 13 1 14

T<iy £y #ig <,
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i, .d
172

(3.6.9) 03

- ) = B (X, - L X ) X, =x, ,X.=x.:]
%l-} ’xi2 A Eq) )&1,)&2 }&3 I 11 11 12 12

1y Fip Fig gy

~~
N

» -
o

*

o
O
G

i i i, i i,
1212 s S e et
is (xi1,xie) ®13 (xi1,xig) l}ig,is(xi1 ¢i1,13‘ i

(3.6.5) 4 Xy 2%y %5 ) = 0(xg ,%; ’XJ‘3) 12,13(xi1)
i 3 i4,3;
“¢i1,i3(xi2) 1}11,12():13)— by (x5 %)
—1}31’13(1: x: ) - ¢ 2133 (x4 x; )
i, - 14?71 i 12’ 13
1(11 #12#13<n
Writing
(1) n-Ty~1 i
(3.6.6) (X)) = (35) R S 600 B
R 27 1gicaen iRt 1
iFi .
f¥i
(D (g %) = m2)! = 1,3 (X, . %)
LR =1 (#1#3) i "Xif 0

' n
3.6, v = nl s

=(1) (2)_ -1 (2)
(%) , V,°'=(,)" £ % (X, %)
‘bn : n 2 1¢i<i<n iﬁ1:1 4 X]

and

¢.6.8) v = DT 5313 "

11,12’]..3

(Xi19 Xig’ XiB)
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- Une has the representation -
(3.5.'9) Uy =3 Vfl L0 v“"’ . V(3)

The follow:l.ng facts can be eamly verified

N i.{ 11:3-»2
‘ (3°6-1O): E 11;12’13()(11) =0, E [¢i3 O& 54 )]Jc_l ]
| a.e
11,1p,1, 2
(3'641) L ()(11’X12’Xi3)lxl1 R Pl o
e om oo Lo ad pef :
(3.6.13) ® [¢ e S LRI AL j =0
It follows from (3,6,10) - (3.6,12) that
i N VA S W o L
3.6.13) EL b s ) 4,72 (%, .2 YT = o -
E Iblk’l[ 11 q)l]'p_ 19 12 j H
for any 1 ¢ 1 # iz # 11' Ln, 11 # s # 3.2 e
R T | ‘. il
(3.6,14) E [ lbir (Xi ; xl )- 1[)1 11, 113).-] =0
for any 1_5-_{_ 1 # i, # 12 <n, L i # 1, # iz <n;

' i i,i,,1
(3.6.15) = [y, if(X' ) p 1723
ot U e

i ] fap T 1'3')3-

25

for any 13_11{";6{!#113"‘:1, 184, A4, #45 ¢n;
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(3.6.16) = [ Sk )
56, ¢ir (Xiq, Xi2 b i
forany 1 <1, #i4#1,<n, 1¢ iy #1i5 # iz < n,

-

whenever {111, i% and iy ié, i%?g are dlSJOlnt §

1912’ t‘lvsi’é,iB(

(3.6.17) E 3 ) § 1 Xy, ,Xi,)] =0
Ly, S A AR 1y Fig)d

whenever | (i4, i, i) & (13, iy, 13).;

Henceforth, unless otherwise méntiohed, we work with U-statistics
with ker nel ¢ and degree 3. The generalisation to an arbitrary
r (>3) 1is immediate, It is assumed without loss of generality

that

(3.6.18) E@(Xi 1 pesey X3 ) =0, 1 i, £ .. #i, < n,

b
We now prove a lermma whlch glves mcmeqt bounds for Vﬁe)
and <3) when ‘0 has un+formly bounded (2m) th moment.
Lenma 5,6,1 If (3.,6,18) holds and
2n
(3.6.19) max E| O (Xi v X i Y &
3
then
) 2 ym  ~mm on

(3.6.20) E(V< ) no il max E1OCX, , Xia, X; )|

1$;1<12<;33n i
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(3.6.21) E(V3 ) ptmagm RALC AN S e

Where in the above and in what'follbws L (> 0) is a generic
constant independent of m and n,

Proof,

. (2) 2m ‘_ n _2m : 2(2)
(3.6,22) BT, Yo s AP RRP R > E[:¢n (%% )
(2) I )
- .o $n (Xizm,ngm ]
Note that if a pair of suffixes (ik’ jk) occurs exactly once
in ( {11,3.1} 900y 9 {‘j-2m9‘jgm} )’ -then in View Of (3.6.14)
(3.6.23) E[ lb_(?’(x.;.jx; ¥ .. E;rﬁ?)(x.  %,00 = o)
2m
Subject to the condition that each pair of suffixes (1k,aﬁ
occurs at least twice , the maximun nurber of uufi‘lxes.tha-t can

occur is  2n, Alst by repeated anplication of Holders inequality
’ ssw

' =(2) =(2) '
(3.6,24) |E " (X j1) b, &, zﬁ Y]

2m

'17 E 2 (2) (X : Yj ) ‘_‘, 1/2n
Kk

fow applying Jensens and C2m inequalities one gets
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(3.6.25) B PBx, x 3 )¢ mex  BIGGK X o

| | k *k 1€14<i,<iz<n 1 2 73
Thercfore, since the maximun number of suffixes that can occur is
2n , cach ranging from 1 to n, we have from (3.6.22) , (3.4.24)
and (3,6,25)

(5.6.26) BN ¢ P AT IR max L om[pRy % L% 2
| - 181 4<1 p<ixn e 73

Hence (3.6.20), Similarly (3,6.21) can bc shown, The lemma
follows -

Remark 3.6,1 The nmethod of proof of this lemna is essen-
tially adapted from Punk (1970) and Grams and Serfling (1973).
They considered respectively the one sample situation in the iid

case and the ¢ sanple situation,

NON UNIFORM RATES FOR U-STATISTICS

From the above lemma, writing

- - n - t
(3,6.27) n/? U, A30, ) = -351 by ¢é1)gxi) + R, , where

i=1 -
(346 28) & = g E 52 (X;) 02 = p1 g2
® n {1=1 1 g n 7 LD I U
and R, = nt/? 051 (V(g) + % VﬁB) )
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" Ye rBy have, under inf o2 > O
n = ol
G.6.29) BRE < n®swp  mex B ¢PR(x % % ) I
n>3 1<11<12<13$n 1 =2 3

Klse#ﬁete. that from (3 6.2), (3 6.6) 'uSlng 06'1nequallty

and Jensen S inequality for condltlonal expectatlon

(3.6.30)  Sup max - B{P(X; Xi Xi ﬂ < k(&)

= E1'5;?3(xi)|5 < k() 12, &> 0,

¥ i=1,

o s sl
Comparing (3,6, 29) with (3,2.1), (3 3. 1) (3. 3.4),
and

(3.3. 27)
(3.4, 1 we may have analogous theorems for U-statistics.

depending on the stringency a the assumption on the noments of

the kernel ¢, For example if (c*2) th moments are uni%ormly-

bounded for ¢ for some fikeu ¢ > O, *weiﬁaj obtain the results

of the section 3,2  (letting u(x) =1,

Sinilarly if

(3.6,31) Sup. max - Xi Xi ,X ) < (2m)v m a1
w3 14d <12<13<n =5

then we may obtain results of the section 3.3, Finally irf
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(3.6,32) Sup ) nax mgm(xi',xi 4 ) < m! 1 m> 1
w3 1 Kiisiagdn s

then reSults‘bfnth gsection 3,4 may berbtained.

A slightly weaker uniform bound is assocciated with the
‘abové non’ uniform bownds [ sec e.g. (3,2.15), (3.2,16),
(3.3.23), (3.4.6) and (3.4.11), In the’ following we find out
harpest unlform Berry—Esseen bound ' for U-utatlstlcs in the non

1id case,. In what follows R denctes a generlc constant and

o -

- oy WA n
) (8). = !z E| ¢;1)(Xi)|2+6 ;
Theorem 3,6, 1 If
(5;6.33) rsup max l@ Xi 1 % < )42+5 (Kot
w3 1<1 (12<13 -

for some & >§O,‘¢aﬂd

(3.6,34) inf min E~[j5§1) (x0] SRR
: w1 1¢ign e ;

then |
(3.6.35) IP( n1/2[1n/(30.n) s X ) _'@(X)‘ i Kn...ﬁ'/z 7n(6')0;1(2+5')

where &' = min (5,1) and $(x) is the distribution function

of a N(O, 1) variable.
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Remark 3,6,2 When the X;,'s are 1id, the conditions
(3.6.33)  and (3.6,.34) siuplify, Under these conditions with
5 =1, Callert and Janssen (1978) proved (3.6.35). Our method

of proof uses their argument as well as Esscen's classical leama.

Proof of theorem 3.6, 1 Pirst write

1}
{

s 172 Log S == !
(3.6.36) o BTG = g Sl

e = n172 =1 ((2), 1°:(3), ite 7= 1= 5" /23
where Rn =n 3 (Vh + 3 Vn ). Write Tn - 7 (8).

- ?
. On(2+6 )9 using lerma 3.6,1 and Marcov's inequality

1/2 1

- IV(3)

-1 e 4 6=2 mev(3) 42
(3.6.37) P ( > T) £k T n oL BCR"Y 3

W=

'=__ 5l B . 2(2+5%)
O(n Xn (51) o )

But since (3.6,.33) and (3.6.34) imply that o = 0_(1) ,
;n(ﬁ‘)_=10;(1) where O, denotes the cxact order, the r,h.s
°f (5.6.5T) can ve written as o(n™®'/2 § (51) oz(246")
Forther, following Chan and VWierman (1977), dccompose Y

- n
= nj/E 0“1 V;?)

n ags
' a 2(2)
(3.6.38) Y = + where = ( M s 3@ (x 1)
: n ZEl:m ZSTQ | Zﬁn'l “n 1<i<jge, %.J
N 1
n j=-1 -
and £5n2 =n'/? —T(n)_1 z " (2) (%,%) , cn=[§~3n§ leg @]

3—c +1 i=1
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the integer part of (n—3n1/ log n) Now for fixed n, writing

j=1 —

Ej = E ¢(2)(X j and, Eﬁ the o-algebra generated by
j_:. -

e; (12 2), if follows from (3.6,10) that {es, Ty ;

2
j>2 7;' forms & martingale seguence, Also, writing W

k
5y (k2 2) if follows that E(W g | Wo,.oey W) =W
8., fige 1Al R 2, Hence répeated'applicatioh of martingale

inequality of Dharmadhikari, Fabian and Jogdeo (1968) gives

+ 8/2

(3.6.39) - a2 o A 120 ¢ Rim-e 1 2 (are)
B . TR ‘ . J-1 e
CE e g 02 gy T ) TR ey m27
j:cn+‘]' i=1

using c, and Jensens inequalitics for comditional expectations

one gets
G60) & F s w0 ¢ K
Hence from (3.6.39),' (3.6.40) and Markov's inequality;

(3.6,41) P (1,_/;1,2} > T;_,'f - T§+5 E IL\AITE_;I2+5

_.-” ; 3 ' 1. >
<K Tﬁw 3 2(2+8) n1+35/2 )1+ 5/2 n1 +5/2

<X n5°(2+a)/_? a2=8 (/2

¢ g /2 =8/

(n—cn

log n)JI +6/2

(log w1 72 = o(mh.
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In view of (3,6.36), (3.6.37) end (3.6.41) it suffices to
show that

(3.6.42) | ( 351_31 @)+ ALy € %) 0@
1=

= E =57
<K7(5) S bR, «
But using Esscen's lemma and the notation n, (t)> for the chara-

cteristic function of a random variable gz, one gets

(3.6.43) 1.h.s of (3.6, 42)

n - 2, <1 -1
S | I n 0 ( t) - exp(-t /2)1}1;1 dt +xT,

i=1

Using a iesudt of NEsééen (7945),

T |

n " 2: ' =31 R |

(3.6.44) i LI iy (8) ~exp(-t7/2)| |t|7lat ¢ ®1]
-, %y i.i 'Lb (%;)

Thus it remains to show th@t'
. Tﬂ' | ‘ ‘
(3.6,45) | n (t) - 7 ) 1
S, —(1) BRI S | ¢ ot cpor
Q4 ! ¢ (%) s ¢ (X324 L0q

f“T=n ?

s the other integral, mamely the ome over the range (4Tn; 0)

!
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can be hendled similarly., Now choosing e (> 0) such. that
T1(2 >e for n2mn, (say), proceed as in Chan and Wierman

(1977) to obtain the inequality

_ 5'1‘:1/2
(3.6.46) | \n : ) -1 5 [
- == ot _1 — |
0 Sn1.§ ¢é1)(Xi) Sn .% 1|’1S11)(Xi)+£3=-n1
. i=1 i=1
E‘.T;/Q | |
o o g 2 ) SRR Rl i
< X CIE (exp(its _jsiTLbn (Xj))ﬁ_m |+ 3t BA 4] dt
o ‘
Now ‘

o g By SR eah) .
(3.6.47) L [exp (its, = {4, (Xﬁ)) Jaynl

T %

1<iitge, L KA

n 2

i PaY

-1
(t s )
RS )

=13 (1) L T . T(2)
><El_e:icp(1t<3 € ,('Yj)-.,“ N (Xj.)) by (K X .,)]

But for t¢ T , tel ¢en® /22 Fl(sn ¢genl® V72 ¢

n n : on.
i 2P
(3.6.48) T T @ em g TT expt- 32572860
2 S, k#J#J' ‘b(‘i)(xk i ) ki‘:_]}‘;]' C 1, 2 Xk

= exp(-31?) exy Tpt2er? {m Lo xpP + 8 [ 5" (xy0] 1
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< Kew (-39

Also from (3,6,14), (3.6.33) and (3,6,34)u,

» ko 1<i<ige,

' 2 Wy 4 :
(3.6.49)  EA,; < no (P 3 5 g E*¢§2)<Xi'35)] c

H

_O(n"1)

Now, proceeding as Callert and Janssen (1978), it follows from
(3.6.46) - (3,6,49) that ‘

(3,6,50) 1,h,s, of (3.6,.46)

£ Xn o, 8, (2) 1$§<j$2nAEIE ¢n“ (Xi) ¢n ij)¢h ‘?ﬂ%?l
+ 0T, 0y

~1/2 3 3 o SEBM2 M Tt i LBess
< EKn on” 7,(8) O(n Yo (B e "7

It

o (27"

Finally répeating the steps of Callert and Janssen (1978) it can
be shown that

T
< n
(3.6.51) | n (+)- 7 &) {141 Yat
172 o1z 3 x) 513 OSSN -
el n;-y'n =1 ny.40 i 11

~1
K'Tn

I
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The proof of theorem 3,6,1 is complete,

In the speical case when ¢ has degree 2 write
i = hE = -
b= 05 = B L0, x)Ix = x],
' L Lol J : i
¢2(Xi,xj) = 0(x;, xj) - ¢j(xi)- ¢g(xj) , 1< i #j < n. Also

= ‘ n ; -
let  §.(%) = @17 3 ¥3(x), i=1,..., n Then U, has

J=1
. < (#1i)
the reprcscntation
n—
Uy = (2/n) ii1 ¢n(xi) * By -
where RZ = (2‘)"1 z 2 4olxy, ij), If T, denotes the

1<i<jsn

c_élgebra génerated by Xﬁ,. - Xh , then it can be easily

verified that { R, T, ; n2 2 ‘g is = martingale sequence.
Using =z result of Meleish (1974) and following the lines of
Miller and Sen (1972), one can establish a weak invariance

principle for U-statistics,
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3.7 RATES OF CONVERGENCE IN FINITE POPULATION

Comsider a finite population of N units
A= §1,2,..., ¥} and let 'a’ be a subset of A. 'a' may be
considered as outcomes of a2 simple random sampling from the finite

populdtion .. A,

2"

Denoting an a consisting of X elements by a., and proba-

K
bility of ay by“'P(aK) we have simple random sampling of size
n defined by the following probabilities

Ny~ 1 -

(n) if K=n
G LY - Pap =

0 otherwise,

on the other hand poisson sampling of mean size n is defined

ag follows : ‘ h
(3.7.2) P(aK)' =' (%)K (1- % yN-K
Let .’?1 .. yy be a sequence of realé; and let
(3.7.3) € = _Z ¥y N where a, is the outcome
ie By
e Simpie randon sempling of sime n, Then the random variable

t has the finite mean
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‘ N ‘
(3.7.4) . By = & 3z ¥y,
3 N i=1 < - & |
and variance
) ' =142 2 L I T
In view of the relation
MWK n \N-K _ N, n.X nyN-K Hy-1

(3,7.6) (ﬁ) (1- T ) = E (K} (ﬁ) (1= ﬁ) ] (K)

observing that poisson sampling may be interpreted as simple random

sampling of size K, where K 1is a binomial random variable attain-
ing the value K with probability () ¥ (1-DH¥E  ngjer (1960)
obtained nccessary and sufficient condition for asymptotic norma- |
lity of ¢ and the conditions obtained agree with those s derive
by Erdos and Rényi (1959), Hajek, however, considers convergence

to other iimiting distributions also,

Following Hajek (1960) we shall split n =¢ - E ¢

= E (y;-1) into two parts, viz.,
ica
n
i N
(3,7.77 n=n* + {n - n*) where =n* = = (yi-Y) = ¥ f;i
: . ieaK i=1

where

(3.7.8) 5, = (3;-D I (ap 2 1)

Note that conditional on K = k, $.'s are iid r.v 's
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N oW,

C _ if X =n

| (y;-D  if  K<n
I -y;-Y)  if K> n

and can be treated as remainder, Note that wq,have adopted the

same notation as that .of Hajek except we use 8y, 8 instead of

S)» 8y of Hajek +to avoid canfusion of these notation of earlier

chaptersg

Now note that

e _yonm
<3.7,1o? B {Fn—n*ﬁm | k=) = E[{i31<yi-y)} 1K=k |
were £ = |keni, |

Expending, we have from (3.7.10)

O IR T TS SO

Z =y -y .

Note that if any one of the suffixes i1 S 12 occurs only

m
once then the expectation vanishes, Hence each suffix should occur

&t least twice to make a non-zero contribution,
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Subject to the condition that each suffix occurs at least twice
the maximum number of suffixes that can occur if m., Also apply-

ing Holderslinequality 2m  times

2m
E |zi R T 1 (& zim y1/2m
1 2m JEITvE =g g

Therefore

(3.7.12)  E[(n-n" /=] ¢ & zi? = A pE-po

vhere y is a iaﬁdom variable taking values V1s-0es¥y each with

probability 1/N., From (3.7,12) we finally have
(3,7.13) .E(n—n*)gm < | ?(y-T)zm E}K;nlm

Since K 1s the sum of N iid Barnoulli r.v's using theorcms

2,6, and 2,6,5 we have

K-n
(3.7.14) E exp (r X°) < » for some: r > 0, where X = ———
| - iﬁErZK)
if % = % (so that odd order moments of X
are geroes).
and . |
(3.7.15) E exp(lX!e-e) < o if f% # % , for any ¢ > 0,

Now for any r,v' X, wé shall show the following
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Lemma 3,7,1

(3.7.16) B exp(s|X|1/U) < = for scme s > 0

= E|x® < I o™ for some I > O

where v > 0, m =12

 J L 2L I ]

and

(3.7.17) E exp —ilog(1+*{'=xl)}fﬁ/cu—1) < w = Ex|T ¢ 1B emu

for some L>0, where v >1, m=1,2

Proof: For (3.7.16), note that

1/1)) IXIP/U

exp(s|X| B p=1,2,...
pl s

x| P/Y Bk

Now if p/v > m, e.g., if

>
p a "t o P

pl s pts

p = Eumj+1
Therefore, with this choice of p |

(3.7.18) EIXI" = EIX™ 1(1x] <D + E1X® 1(|x] > D

1+ ([ompD:r s [om ]+1 E exp(le]1/U)

L 2 I Y

Now E exp (s[X[1/U) { o and using Stirlings approximation
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for factorials, ( [omJ+1)¢

( Com+1)( Com] ) < g mmu‘

ke

. for some L > O,
And hence from (3.7.185

Eix|® ¢ o™ for some I > O,

For (3,7.17) , also note

s L1/ (u=1)
(3.7.19) exp (log(1+|x| ’))l"’/(”"” = (1+,X|){1°€(1""X|)j
Now

‘ | m In m /(v -1)
(3.7.20) E{X© < E(1+1xPDT = EG=|xD I(log (1+1X]) > m)

1/(v~1)
+ BO1+1XD™ I(log. (1+]XP < m)

The first term of the r,h,s of (3,7.20) is finite. from
l.h.s of (3.7,17) -and from (3.7.19). Again note that

1/(v=1) B E |
log  (1+|%]) < m = log(1+|x]) < m %=1 o modog(1+]x]) <

= (‘H[}q)m1 < ean

Hence the second term of the =r,h,s of (3.7.20) is bounded
above by exp(m’) and therefore (3.7.17) follows,
Throughout this chapter we shall assume n/N -> A, (0 < A < 1]

of which =n/N = 1/2 3is a particular case,
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Since -var(k) = Oe(ri) where Oe denotes the exact order.

Ve have
(3.7.2D)° E|g-n|® ¢ 02 (w2 m (3.7.15)
< /2 /2 " under  (3,7,14)

Hence a normalised version of = - ¥;  (call it T,) can be

ic an

written in the following form, see e,g. (3.7.7).
(3.7.22) Tn = o/ far(n®) + '(n—n'*)/,rﬁrfnﬂ
4 . N V, ’
- -1/2
= [var(n®)] | ii‘i TR R, 3

» | Ry = (n=-n*)/ Jar(n®)

where the 1st component is standardised sum of N independent

random variables, see (3.7.8) , and 2nd component is remainders

under the assumption

; 1 N =15
(3.7.23)  inf ¥ .Z (yi -Y)° > o
n i=1 :
We have
o1 N 2
(3.7.24 )  var(n*) = n(1- ﬁ) i i21 (y1 -1

ft

0, (n)
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- Hence, from definition .of R, iin (3.7.22), (3.7.24) and
(3;7,13), we have, ‘ .

C(3.7.25) BRI ¢ g2 U2 m oo 928 aer (3.7.15)

and . ‘ .
(3,7.26). . E Rﬁ? < n/2 yn/2 E(y_?)Qm under (3.7,14)
where
3.7.2D B-D*P = 1 3 (5D
i=1

under the agsunption .that

(3.7.28) o* < wmex lyy-¥| < ax
st 1y ALALH H

i.e., the valucs of y-¥ are bounded above and below .
We have from (3.7,25) - (3,7,28)

(37o29Y & Ri# £ nB/2 (1+edn/2 ™ under (3.7.15),

for some L > O,
and '

l(3;7.30) B Rﬁm o2 mm/2 i i, . under (3.7.14)

[P

for some I > O,

To have an estimate of P(|R,} > A (%)), note that if (3.7,30)

is true then

n

(3.7.31)  P(|R,| > An(th ¢ Dy =, g
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[ FaN

Eln(t)] ~2m n—m/2 mm/2 1B

£ exp E~2m log An(t) - %log n + %log n+nlogl j‘

Differenciating the quantity appearing in exponent w.r.t., m and

equating it Lo gzero, we have

(3.7,32) ~2 log A, () - % log n +.% log m + % +log L = O
or . | N .
(3.7.33) n = exp[4 log hn(t) +logn-1-21log L]

-2

4 =
M (t) ne™' L

Hence from (3.7.31) and (3.7.32)

(3.7.38) . 2R, > 2, (1)) € exp(-n/2) = exp [;Ai(t)niﬂ, from (3.7.37)
for some L > O,
In the above we conveniently ignore that m may not be

an integer,

Similarly if (3.7.29) holds, then
(3.7.35)  PUR,| > A8 < exp [-02(8) 0733 1]

To obtain normal opproximation zone we recall (3,.3,2).
Note ‘that, in view of (3,7.28), -41°s defined in (3.7.8) are

bounded, Therefore, taking g(x) = exp(|x|) and An(t) a ™"
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(the notation is a, (t) in section 3.2), we nay obtain in place

of (3,3.8)-(3.3.10) the followings

(3.7.26)  1st term in r.h.s. of (3.3.2)

< b 37" exp(=t2/2) |exp(0(|t)° n~ /21
for |t} = o(n’)
(The tern _21 P(I€ 1 >rn’"|t £+ n|) is absent since #£;'s
e | .

are bounded, sce remark 2,4,5)

(3.7.37)  2nd tern in r.h.s. of (3.3.2) < b nY exp(-t°/2)

and
(3.7.38) 3rd tern in r.h.s, of (3,3,2)

‘ _A
£ - exp(-L n1 Yy if n/N = 1/2

5 b
< exp(-L n(1=40 0=l 5w o N, 0< A<
for some 1 > O,
from (3,7.34)-(3.7.35) taking A, (t) = A= ey 0,
Letting v = 1/6 we may obtain the following theorem parallel to
theoren 3.3,1 | N h |
Theorert 3,71 Let T, defined in (3.7,22)' be a standar-

dised sdmple sun from a finite bobulation of size N. Iet (3.7.23)

and (3.7.28) hold, Then for a sequence %tn} satisfying
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t, = o®  ir nw s
T

e €

= O(n ) if n/N <> Ay OKCACT, >0 N
arbitrarily small
the following holds

T=2@ b))~ fl-t) b o e,

With a different choice of MB) viz, A (1) = at,
O0<e<1, >0, for T, defined in (3,7 ,22) we may have
(3.3.12) and (3.3,13) in the following form '

(3.7.39) 1st term in r.h,s, of 5.35.2)

2

£ bexp[ - % (1-a)% « K n~ /2 t?j

i) . .
(The term 3 pCle | > r(1ia)t:n1/2) is absent since £ 's are

i=1 4
bounded, sece remark 2.4.5)

(3.7.40) 2nd tern in r,h;s of (3.3.2)
< b exp(-(1-a)° £%/2) at

However (3,3.14) changes to , in view of (3,7.%4) and (3.7.35),

(3,7.41) 3rd term in r.h.s. of (3.3,2)

i~

b exp(-at 1 t%) 1r am = 172
< b oexp(-att g ghme plmey ioo A, 0K A<,
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subseqguently, following two theorems follow along the lines of
theorens 3.3,2 and 3.3.3,

‘Theoren 3.7,2 Enden  (5e . 280 wnd 1 (B, 7428 ), whon 5

Gelfined: in « (5,7.22)

L W 2 i
(3.7.42) P, > b)) & bexp [ - w5 (Tro(1))]
/B
for tn = o(n & tn -> oo
" . . 1/2 -h,
Remark 3,7.1 Unlike theoren 3.3.2 where t,=o(n"’"(log n)
with R = Op(n"1/2(log n)h/z) s in (3,7.42) b, = o(n1/2) although
~1/4 oF |
Bn = OP(n 1/r) because of sharper order of t in (3.7.41).

The following theorem deals excessive deviations of tho type

an1/2 ; a > O and the proof is sinilar to that of theorem 3.3.3,
Theoren 3.7.3 Under the assumptions of theorem 3,7,2,

for »t = 2 n1/2 !

» , ' >0

(3.7.43)  lim sup lin sup (t /2) =1 10g P(T RN RE
e' >0 i~y oo

Next we obtain moment type convergences and non uniforn Ib
version of the Berry-Esueen theorem, W,o,1.,g. let t > 0, For
t2 £ XK log n oproceeding like (3,4.4) (where notation a (t) is
used instead of @n(t)) with An(t),? h‘(n71 t2 log n)1/4 for

some A' > O, if n/N =-1/2 and using (3.7,34) instead of (3.4.3)
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we obtain

(3.7.44) {7 < D)0 ! < b v~ /2 t2exp(-t2/2)

+ bnf1/4(log n) /4 t1/2exp(-t2/2) + b n"1/2 exp(—ctz)

for some ¢ > O

Por t° 2 K log n, with the same choice of A (t) and

proceeding like (3.4,10), we obtain

(3.7.45)  |B(T, < -0 < b0 7?2 expt2/2(£))

+ b0~V H1og )4 exp(=t2/2) + b 0172 exp(-t2/2)

where f ; (0, =) > (0, =) nondecreasing with lim f£(t) = =,
: : t Do

L 2
Also note that proceeding like (3.5.19%a) with A_ = A%(n 110% )1/
. , . n

we may obtain an uniforn bound O(n’1/4(log )74y

For n/1 => &, 0 <A< 1, (3,7,4%) and (3.7.45) hold with 2nd

term of =x.,h.s. of the above equations changed to b n71/4 P
t1/27+€ exp(-t2/2), letting kn(t) = A'(n"1 t2+8)1/4¢ Also the

miforn bound changes to O(n™ /% +€),«1e:l:ting Ay = A n"1/4°
Hence we have the following . | |
Thecren 3.7,4 et (3.7.23) and (3,7.28) hold, Then

& constant b (> 0) depending on f(t) £ ! (0,») => (0,), £

nondecreasing with 1lim f£(t) = =, such that for all real t
B oo
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(5.7.46) BT, < 1) - §6)] < b a1/ H(log M4 exp(-t7/2 ()
n L
if n/ N =1/2

<ple) mVH T exp(atP/0(8))  Af n/N > A, O < A<

where ¢ > 0O can be nade arbitrarily small,

Subsequently, from the above theorem we may obtain aﬁalogous
theorens of theorems 3.4.5 and 3,4.6 with the order of (3.4.13)
and (3.4.14) changed to O(n'1/4 (log n)1(§)- or O(n71/4 ey
e > 0 arbitrarily small, depending on whether n/N = 1/2 or
n/f > A, 0< <1,

~Ags a concluding remark of this section we may note that the
condition (3.7.28) may be relaxed, Still we may use (3.7.25)
and (3,7.26) +to have an estimate of P(JR | > A, (%)), 4s for
example under the assumption ‘Supfﬂy-?]2+o ¢ « for some c¢ > 0,
fron (3,7.25) and (3,7;26) wg may(have B Ei? = O(nfm/2)
where o < 2n < c+2 and results analogous to those of section 3.2
nay be obtained by the 8ameltechnique used in that section, Simi-

larly if Sup Bly-T! < ® for all c > O, then setting the

N ]
bound  for Sup E(y-—Y)2El in (3.7.25) and (3.7.26) and

e | ‘
foilowing the technique used in (3.7.31)-(3.7.34) we nay obtain

estimate of P(|R,| > hn(t)) and from there analogous results

of section 3.5 may be obtained, Sinilarly we nay oblain
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analogous results of section 3.4 even with out assuning
(3.7.28), SihCe:the basic technique remains the sare, we onit

details,
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CHAPTER 4,

RATES OF CONVERGENCE FOR m-DEPENDENT PROCESS

4.1 Inteoduction Results of Chapter 2 are generalised

for strictly siationary m-dependent process under similar assump-
tions., Iet g'Xn, n> 1 } be a stationary m-dependent process
with

2 m-1

(4.1.1) EB X, =0 BEX: + 2

] , 1 ZOEX X, =1 and Eg(X1) {

i=1
where in the 2nd section of this chapter we shall consider

(4.1,2) glx) = ]x|2+c al(x) , ¢> 0

and u satisfying conditions mentioned in (2.1,1).

In the 3rd section we shall consider = higher spectrun

of g wviz., (2.3.1)

The technique used can be briefly described as follows,
The partial sum (X1+ g +Xn) will be divided into two types
of blocks, The long blocks can .be treated with the same proce-
dure as for 1iid random variables whereas the contribution from

the short blocks can be shown to be sufficiently negligible,

To be specific we consider the following blocking procedure

which will be followed throughout this chapter,
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For »>m with k = [n/(p+m)] where [X] denotes the

integer part of x and £ = n-k(p*m) if n > k(p+tm) define

p
I T I
N i=1,2 ...,k
(4.1.30. 4G, ji1Xip + (1-1)m+j
[f‘

et T 321 Xk(p+ﬁ) *J or O according
| as £' > 1 or not,

- Now write ¢4 in the following form

(4.1.4) . PELE I SR S -=e'

+ X2 + KIII+2 +'X2m+2 * .

+ + +

L * ¢ @ EIE ]

+ Xm + X?Iﬂ 7+ . e e

= + + +
1 T BT ee. T oEp

Where each z; is a sum of [p/m] on [p/m] + 1 independent
comporents. Let gq(x) = g(x/m).  Then

~172 -5 :
B 23)

(4.1.5)  Bg(»7/% ¢)) = el p
. _ i=1 >

Eg(P—1/27 Sup ]zil) °.* g(x) is non-
1<ise

JA

decreasing in |x|

~1/2 3 = ~1/2
lz;1) = = Eg(p |25 )
1 i i=1 =

I
=t
Ho
n g
[4)]
S
Lo

z;), *.° g is an even function,

i
n g
b=t
(e}
Fame
e

< e uniformly in v, Tfrom theorems-2,2;4,2.4bjj,
under appropriate agsumptions,

Also note that for a triangular array Yﬁi’ 1£i<n n>1,
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with indeneundent components in an array with zero mean, following
the same proof as those of theorems 2.2.4, 2.4,11 and 2.6.3 under
appropriate assumptions on g, - for a sequence a, with a -> =

AZ N > ©

H

(4.1.6)  Bg(sZ' s) 1(sZ' 5, > a) = Be(D I(7 > a ) + o(1)

]

A o(1) T =N(0,1),
{Wote that the function h(x) = g(x) I(x>a ) is not
.,

differentiable at x = a,. In‘'case a, 1is a point of continuity

of Fn wé can directly use theorems 2,2,.4 and 2,4.11, Otherwise
noting that since a distribution function may have at most
countably many disconiinuitiesithe set of a2ll points of
¢iscontinuity of F, n> 1 isqéountableo Now select a point

nj
that a_ -¢ = Oe(an) and then use theorems 2,2,4 and 2,2,11

ajy where F., n> 1 are‘continuou?9from (a, ~€, an), such

n
vith h(x) = g(x) I(x > aﬂ).}

Similarly we can show

(4,1.7) Eg1(p-1/2 21) I(}_)"’V2 £q > an).

m

'z

, .
-172 5 z;) I (p~1/2
i= * i=1

= Eg(% P zg ? an)

£ Eg(p"‘]/2 Sup [zil I(p-JI/2 Sup ]zi[ > an/m)
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< E

|fbﬂa

1

-1/2 ~-1/2
RGN EA I (G PN

H

o : _ :
. Bg(e™ % 2) 1w 5| > a_fm)
l — ‘ S A o R

= o(1) as n -> oo,

These facts are to be used repeatedly later,

k.

4.2 NOW UNIFORM RATES FOR g(x) = [x]° %u(x) * o > 0

We shall consider ¢ > 0 and ¢ = 0 separately. Let us

first consider the case ¢ = 0. The following theorem states non-

uniforn rates of convergence of ]Fﬁ(t)-@(t)[ to zero around a

nbhd of urigin,

Theorem 4.2,1 Let $ X1 be a stationary m-dependent
process  satisfying (4.1.1) and (4,1.2) with c¢ = 0, Then for
1§t?g A log u(Jn) there exist constants b, by, * > 0 depending

on u and A such that

(42,1 P (0)-0()| < b w exp [- %‘t2(1-3r)-_|- +o(g1(tm £(m))~"

+ o((k+1)(g1(rﬁc )~ Tys b, f(n)exp(-'t2/2)
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where w =(u(r k1/2 t))'q and f(n) is any +ve sequence con-

verging to zero such that tJn/k'f(n) -> oo,

(For t2< 1 we may use uniform bound O(f(n) v (g4( W7k £(n))”

v (Ger1) (gy (E YN™1  as in theorem 3.5.2,-see (3,5.19a))
Proof, For t =1t # f(n) we shall complete the proof by

showing the following

(4.2,2)  [PO-B(V | ¢ byf(n) exp (-t°/2)

. k 172 1

(4.2.3) PC 21 ngl > tn f(n)) = o(g1(t¢n/k f(n))I~
k+1

2.0 BT gy >y /%y - f-t) |

<bw cxp(— 2 (1=31)) + o((k+1)(g(rjk't)) )

proof of (4,2,2) 1is trivial,

For (4.2.3) note that since

(4.2.5) Egy(ny) = Be( (x;+...+x)) < Bg( swp |X, ) < 5 = ? e(1%; )
7 (g g X Xﬁ 1<1<m| ’ 1 ’

I
T =

Eg(Xi) = m Eg(Xy) < =,

i=1

We have from theorem 2.,2.4 combined with an argument like (4.1.7)
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~1/2

n;) I(k

k
(4.2.6) Eg, (x 1/2
‘ 1

z ng tm f(n)) = o(1)
1

whenever thn/k £(n) > «

and thereforc by Markov's inequality (4.2.3) follows,

IMnally to prove (4.2.4) note that we have fron (4.1,6)

nm .
(4.2,7) Eg1(P*1/2 g?) & 12 Eg(p”T/e Zi) < o uniformly in p.
fience using some technique as for the proof of the theovem 2.2.1

k+1 '
(h.2.8)  [BCZ ey > 40 ety |

~-1/2 1/2

x+1
<bwexp[_. £ (1= 3r)]+ EP(p leg > k778

where the last term may be written as b(k+1§ P(p"1/2]g1| > p kq/at)”

(4,2,4) now follows along (4.1.7) and Markov's inequality.

As a consequence of theorcm 4,2.1 we obtain a zone where

0 3 i 1 -1
i = Fl’l(tl'l) o @(—tn) s tl’l ~> o, Since :1 L Q(tﬂ) ~ 21_‘\ tn

2 BXD (_ti/2) ag tn s from the terms on the r.h,s of

{4.2.1) we have following restriction on t.

Fron the 18t term
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2
(4.2,9)  t exp(t /2) w exp (- % f2(1-3r)) = 0(1) gives
t2 < £ (- logt - 1logw-M) for a sequence .
=~ 3r g e ;Mn. . ¥
N Mn —-> oo,

and choosing . r sufficiently small this gives

(4,2,10) t2 £ -rlogw = A logu (r k1/2t) where "'A may be

arbitrarily large,
From 2nd temn |

(4.2.11)  texp (47/2) (g, (47K £N" = 0(1)  states

(@s g () = gln = (D u@),

(4.2,12) +° < 2(log t + 2log( n/k £(n)) + log a(t n/k £(n)/m))+ M

for some M'> 0,
Let '

(4,2,12a) f(n) = 1’178'/2 ., ko= nT"e s £ 2 ' 2> 0

Note that for t> 0, tf/k £(n) as in (4.2.6),
choice of f(n) and k, (4.2,12)

-> o for this

then reduces to

(4,2,13) . t2 S e'' logn for some e'' > O

Kext from the 3rd term

(4.2.14) G+ 1) (g (x Jk )" t exp(t2/2) = 0(1) gives
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-1

(4,2,15) y ‘exg(ﬁ2/2) (u(rj}:t/m))'1 = 0(1) i.e.,

£ 2(log t + log u(rJE t/m))+ M for sorc M> 0

L4
o
L ]
_
y
—
ok
Fa®

I

2(log T +-log ulr nl/2 -e/2 t/m)) + M,

1-¢

taking k = n »
Finally the 4th +tern state's

(1,217 t° = o(f @™ i.e # He@ey

b

fence combining (4,2,10), (4.2.13), (4.2.16) and  (4.2.17)
ve have tho determining cquation as (4,2,16) (as the region
determined by the other equations are larger than this).

Obscrving that e > 0 in (4,2.16) is arbitrary and r , o

aré some  +ve - constants, we have the following theorem .
Theorenm 4,2,2 Under the assumptions of theorem 4.2,1

1 - F ) ~ 0t t, > e if

k)
gLz | 172 ¢
(4,2,18) ¥ £ 2(log t + log uln t)) + M ,for some M > O

wicre e > 0 can be made arbitrarily small,

Remark 4.2,1. The corresponding zone for independent randonm

wriables in a triangular arrary was

t% ¢ 2(log t + log u(r n'/2t)) + M
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To prove noment type convergence theorems, we will, however,

prefer the following form of (4,2.1)

(4.2.19) [P (0)-B®)] < bwexp[ - 5 t°(1-30)]

+P(|
i

[N

ngl > %] 02 £

s (ke 1) BCp Vo g1 > T kP8 )
+ b £(n) exp(-t5/2).

' The following theorem states non uniform rates of convergence

to the complementary zone of theoren 4.2,1.

Theoren 4.2,3 - Under the assumptions of theorem 4.2,1, for
2 > A log u(Jn ), there exist constants b, r > 0 depending on
u, A such that

L o _ == !
(4.2,200  JF () - O] < b (k)] ]t|—2(m 1)
. )
© PO E mg) > [t n'/% £(n))

-1/2

s bRV P ey Pre 215+ bE(@) exp(-t°/2).

The proof of the above theorem follows from theorem 2,2,2 and

along the lines of theorem 4,2,1,
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Combining theorems 4.2,1 and 4,2.3 with (4.2.12a) we

have the following theorem which generalises Katz's result,

Theoren 4.2.4 Under the assunptions of theorem 4.2.1 for

every ¢ > O there exists a constant b depending on ¢ and

u  such that

(4.2.21) [P (-0t ] < p(1+£°)~ T u(n?/2 N, et e

As a consequence of the above we have the following non-
miforn Lp version of the Berry-Esseen theorem cxtending a

result of Erickson (1973).

Theoren 4.,2.5 Under the assuwmptions of theorem 4.2,1 for

p>1 and any q > 1

(4.2.22)  [|(1+ t5)1-/P (F(£)-0C) |1, = 0(u(n1/2 =&y~

where e > 0 is arbitrary.

Next we prove a moment type convergence theorem using
(4.2,19) and (4.2.20),

Theoren 4.2.6 Under the assumption of theorem 4.2,1 and

A
o u(x) = 0 with u'(x) < Ay*aox 3, 0 ¢ x < o,
x~>0

for some A4, Ao, Az > 0,

3
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(4,2,23)?"‘[ﬁ¥iuT(Yn)iffEng{gmz]if'o(1) where Y, = n~1/ 2 Sy
e | 1= N¥(0,1), and u1(x)'= u{x/m).
Proéfr" Let h(x) = X u1(x) X > 0, then h(O) and

h' (%) < Aq*A % A3 for some h1, hg, AB > 0 and therefore using

the following representation

B

a1

(4.2.24) mh(yn)-Eh(m)l < )f h'(t)|p (l n=1/2s AR
0
= p(|m(o.,1)‘|_<_ t ) at

Dividing the gome (0, ») imto (0, A log u(Jn )) and [Alog u(®)|
© ) with sufficiently large A and using (4,2,19) -and
(4.2,20) with (4.2.12a) we have

(4.2,25) . |En(Y,) - B(D)| < O(u(n1/2 =E")y=Ts
°° K
+ b rh(t)P([znil > ¢ n/ f(n))
Gl 3
+ (1) | b (o) P(p-1/2'|t,1 1> k/%4) at -
0
Now the 2nd term of the r,h.,s of (4.2,25) )
k 172 1/2 k
= bEhEl 2 “1‘ > n f(n)]'bEth' 12 ) > n®7]
1

for some e > O and hence from (4.1.6) it is o(1),


http://www.cvisiontech.com

-143-

—1/2|

Similarly, writing Y = p t4] , the third term of the r.h.s

of (4.2.25)

b(c+1) En(Y/rk' /%) = b@ee)r=25"

It

Eu, (Y/rk'/?) ¥,

Note that EquT(Y) { o = EYguT(Y) ICIY] > a) = o(1)

as a -> o from (4.1.7).
32 1/2 i i .
Also DY w,(Y/r kX' '7) I(lY] < a) => 0 for every fixed a if k-> o

ot g (x) =ulx/m) -> 0 as x| -> 0) Hence the third term

is also o{(1) and the theoren follows,

CASE ¢ > O

Here to 'start with we shall truncate the random varlables
% at $al/% et X} = X% T0%] > t 0% and define the
usual blocking procedure (4.1.3) with X; replaced by X .
Fote that the properties (4.1.5) -~ (4.1.7) are still preserved
4s the corresponding results are known for triangular array, The
truncatiop of the random variables is done so ag to use a moment
inequality (lemma 1) of Babu Ghosh and. Singh  (1978) for
obtaining a sharper bound than - (4,2.3) and (k+1)P(p”1/2|51[
> 1 k1/2 e
Using the said inequality for (4.2,3), with n; as sum

of m truncated Xi's


http://www.cvisiontech.com

~144-

; k )
(4.2,26), B(] = mgl >t 022 (n))
. 12

e ) _ - o 2+\
¢ D) (2@ L™/ e/ 2 e

it

D(v) Eﬁv/2(tiﬁ7ﬁ f(n))*v,+kmf(n)‘v(n1/2tjhﬁ2+e):

Similarly

~1/2

(4.2,27)  (k+DP(p leq | > k%)

¢ @) D) (e V2D 7 2ep/ 2072 ]

(k+1) D(v) E(n1/2 22, ()™ ]

It therefore follows tha£ chooging v sufficiently lérge say
v = v, depending on ¢ and f(n) = n_a/vo 0 < ; <1 it
is possible to make both (4.2,26) and (4,2.27)

ot /P4y~ (%) ney, | ‘ ﬁ '

r |. = oy W - 1— oL .
Hence letting k =n "°"% ¢+ > 0, Tec-e' > O, we have

along the  same lines of theorem'4,2,1, the following.

Theorenm 4.2,7 Let %Xﬁ} be a stationary m-dependent

process satisfying (4.1.1) and (4.1.2) with c¢ > O, Then

for‘rt?.g‘ A %_ log n + log'u({fn)) there exist chstants

b, Y *and T > 0 1(dep@hding on A, C and uw) such that

=t

=2
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(4.2,28)  |E (0)-§(t)| < b 0 exp(-(+%/2) (1-3r))
+ nI(]X1|>n1/2lt[) + b!t]—(2+0) n—-C/2 -t

As o consequence of this theorem let us obtain a zone

where 1 - F (%) ~ @(~tn) , t. >, Since {(-t) ~- (2m)~1/2

n
t'jexp(—td/Z), t <> o, restriction on t, from the TIst term

of the r.,h.s of (4.2.28) turns out

5 exp(t2/2) n exp (ut2(1-3r)/2) = o(1) , or

2 2
(4,2,29) 1= ¢ 3T () logn - log t - Mn) for a sequence
My > .
Hence for sufficiently small choice of r (4,2.29) states
(4.2,30) £° < (e+1) log n

Similarly from the 2nd term in the r.h.s of (4,2.28)

we get

1/2

t exp(+°/2) n 21X, | > n'/%8) = o(1)

te., texp(t%/2) na'26)~*D (w21 = o)

o

(.0 B 150 a1 |

> n1/2t) = o(1) )
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i,e., t"(0+1)‘nfc/2<exp(t2/2) (ﬁ(n1/2t)}71,= 0(1) or

(4;2.315" t2 gv 2 { %‘log n + (c+1)log t + log u(n1/2t)‘} + M

- for some M > O

Restriction from the " 3rd term in the: r.h.s of- (4.2.28)

) cxp(18/2) w72 =" L o1y B
oo ‘

bl

(4,2,32) 2 < (c*2e'")log n + 2(c+1) log L EH 5 0 < ™ de

>

Because of the structural restriction u(x) < |x|® + 1L
for a1l ¢ > 0 with éome L> 0 (see 2.1.1.)” it follows that
the determining equation so that 1 Po(t) ~ B(~t,) holds
is (4.2.31). 'Hence the following |

Theoren 4.2,8 Under tr: assumptions ¢ theorem 4.2.7 ,x”“

& zome of | %, such that 1 - F (t)) ~ B(-t)) , ty, > e

holds is

A

b4

(4.2,33) 2 £clogn+ 2(c+1)15g t + 2log u (n1/2t)“+ M
for some M > 0O,
 The above theorem states that contribution of the function

u  to the normal approximation zone may be incorporated even for

n-dependent Process, We shall not proceed to prove nmonment
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convergences and Lp versions of the Berry-Essceen theorenm for

the case ¢ > 0 as they follew fron more gencral results of Babu,

Ghosh - and Singh (1973).

4.3 NON UNIFORM RATES OF CONVERGENCE TO NORMALITY FOR
D-DEPENDENT PROCESS WHEN AIL THE MOMENTS EXIST

This section extends the results of sections 2.3 - 2.4 for
n-dependent process, Here we.shall assume  (4,1,1) with g
satisfying (2.3.1). As before the blocking technique will be
used t0 find non-unifornm rates, using these non-uniform rates,

We shall show that normal approximation zone can be cxtended upto
o(n'/10) under the existance of moment generating function, under
additional assumption of EX? = 0, we shall further extend the
zone upto o(n1/8), These non-uniform fates will be_further
utilised to deal  too large' deviation in limiting case and to
prove moment type convergences and non uniforn Lp—versions of the

Berry-Esscen theoren,

The following theorem provides the non-uniforn rates of

tonvergence around a nbhd of the origin,

Theoren 4,3.1: Tet (4.1.1) with g(x) replaced by ng(x) and
& satisfying (2,3,1) holds for a stationary m-dependent prodess

L, . Also let g satisfy the conditions of theorem 2,4,11, Then for
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1< t2 < 2(logit] + log g1(rk1/2t) there exist constants b, b1

depbndlng on & such that
(43,1 |E,(8)-B(8)] < blt |77 exp(~t2/2) lexp(O(|t | k-1/2)) 1]
+ olgy (4 VETE £(m))
+ o((gy(r /Ty byt (n) exp (~t° /2) o<r<1/9

where by, = (t2f(n)), f(n) is a sequence f(n) -> 0 as n -> =
and 51(x) = g(x/m), (For £° < 1 one may use uniform bound obiaing
by putting t =1 in (4.3,1) and this is obtainable proceeding like

L

(4.3.2) to (4.3.,4) with + =1, see also (3.5,19a).)

Proof: Recall the blocking procedure (4.1.3). We shall

complewe the proof by sh owing

(4.3.2) [BCt,) - )| < by £(n) exp(=t°/2)
k 1/2 —— -1
(4.3.3) P(] E1n.| >t n/f(n)) = o(g(t V/n/k £(n))) and
he1
(4.3.8) P(2 £y > by n V2 LBt |
< b]tnl‘1exp(_ti/2)1exp(0(1tn|3 172y o1

+ o((gy(x k' /FY)

proof of (4.3.2) is trivial and that of (4.3.3) is similar to that
of (4.2.3). PFinally (4.3.4) follows from theorem 2,4,1 along with

(4.2.4) and noting that
pQee1) 2o /2 e, | > ok /28 =a[les D) ek P0) g7 (e /T
from (4.1.5), replacing g by xgg(x)

= o(t™% g7 (xx/ %t)) = o(gy Taex'/%8))  as 2 > 1.
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We shall obtain normal approximation zone as a consegquence
of this result, In subscquent steps e > 0 is a constant whose

value may differ at different equations, w.,o.l.g let 1> 0O

Pirst notc that for +t = o(k'/™

-1/2

(4.3.5)  Jexp(o(]t 17 & /%)-1) = Jexp(o(|t]°k™/2))-1]

as t,= t+ £(n), £(n) > O,
1

H

t~Texp(-t°/2), t -> =, for normal

Since §(-t) ~.

approximation zone, the following are the restrictions on t

From the 1Tst term in the r.h.s of (4,3.1), in view of

(4.3.5) , .
(4,3.6) 2 < ¢ log gq¢(r k%) with t = o(k'/®)

From 2nd term of r.h.s of (4,3,1)
(4.3.7) 2 e log g(o gk (@) - log t

which is true if t° < e log g1(t Jn/k £(n)) where the last
inequality follews from the fact that g and hence 8¢ has
growth more than any power bound, and e in the second inequality

need not be the same as the first,

Similarly from the third term of r.h.s of (4.3.1)
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(4.3.8)  t° ¢ e log g (rk'/%4) _log 1

which is true if t° <

£ & log gq(r /2

1),

And from the 4th ternm

(4.3,9) t = o(£(n)”) i.e., () {r, where r ->0

as n => «
Combining (4,3.,9) with (4.3.8) we have

(4.3.10) £2 £ & log gq(r, (n/k)Tf2 )

Since (4,3,6) is more stringent than (4,3,8), we have,

from (4,3.5) - (4,3,10) +the following theoren

Thooreﬁ 4,3,2 Under the assumptions of theorem 4,3,.1
have 1 - F (1) ~~ @(_;n) t, => e

two positive sequence Ty » ¢, converging to zero with kp ~. n,

we

, 1f “or some & > O and

2 . 1/2
(4,3,11) t, £ sup min {f log g1(rn’ﬁ/k), s log gq(rk / tn)’“

k .
1/6 1
Ch Kk i
let us calculate the zone (4,3,11) for some special

functional form of g, For g(x) = exp (s|x|y Y, 0< Y <1,

s> 0

t2

< e log g1{r,Jn/k ) states 2 < a(rn(iﬁ/kJY{ e > 0 is

arbitrary,.
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le. . |
(4.3.12) t = O‘-(n-/k})/ﬂ.
e tz-S e log g,(r k7% 4) = L (k1/2;t)7
oy Y/2(2-))
k

(4,3.13) t < £

And hence we have from (4.3.11) .
1
d - zz§_55 L}

Eguating the brackated terms with the observation kp ~ n

(1.3.14) ¢ =0 ( (o774

?

- +71
CVSUAEN 0 ORI o= )
he., W/ @D L reay

similarly (/0774 = k16 iates 1 /6 « )/ 2(5742)

And hence we have the normal approximation zone as

J J
S LIgmy o BN Te S .
(4.3,75) ' _ 4 0= o+ pFV0m 2R b, = w,

For ) = 1 we have t, = 0(111/10 ).

Now consider a different spectrum of g, Iet g(x)

= exp (8 log (1 + |x])) / sy 7> 1, s> o0,
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Then t2 < e log g1(rn.ﬁ7k ) states t2 £ e Elog(rnfﬁ7k )] /

2 =
(4,3,16) t2/) e logp+logr, £ = log p (choosing rn7>0
appropiately)
Also  t° < e log g(r k'/°t)  states 2 < & [log(zk'/2)7 7
or tg/y 1 i i e i
’ -elogt £ e log k¥ , which is truc if

(4.3.17 27 ¢ logx . From (4.3.16) and (4.3.17)

equating p ~ k ~ n1/2ﬁ we have t2/y £ ¢ logn and hence

(4,3,18) +° < e (log n)] for some ¢ > O turns out to be

normal approximation gzone,
(which satisfies t = ok’ = o'/ of (4.3.11)),

Nexi we prove a few excessive deviation type results, To

be precise we find out a zone of t for which 1 - Fn(t)

il

. 2 ‘
b exp § - % (1+o(1)} ., Singh (1978) proves that 1.F ()

2
= b oxp %— % (1+ Sn’s?:} for t = ¢ n1/2, e > 0 where
lim TIim lan | = 0. The following theorem generalises the
gw> 0 Noee €

result providing a rate for 6n . Also the proof is considerabl
3

simplified,
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Theorem 4.3.3% For a stationary m-dependent process
— i
§X,} with EX, =0, EX% R 2131 EX(%;,; =1  and

E exp (s]|X;]) <= for some s > O we have

2
(4.3.19) P /%5 > ) =bt T exp -5 (1er, D} >0

1

where A o(1) uniformly in t for t = o(n1/2)

1t

0(g) for +t = ¢ n1/20(e) where c(e) => 0
' as e => 0,

1/K

(e.g. one may take c(e) = ¢ where K> O may be arbitrary

large )

Proof of the theorem. 1In view of (4.2.7) with g(x)

= exp(s|x|) for some s > O, it follows from the work of

Plachky and Stienback (1975 ) ete. +that a Chernoff type

theorem holds for the triangular array of the random varizbles
2

gii/PT/fE i=1,..., k*1 . fLonsequently by theorem 2,4.6

and 2,47, for t<ek/° with e, , >0 a8 po>e

1
we have

1c+1
(4.3.20)  paVE T 6/ 5> ) /200 s o o V)

i=1
2

1.t
-5 (1+a )
oxp 1 -7 (1*h )¢

=b 1

_ - :
Foot note; To be precise, in theorem 4,3,3 we need E X? e® |X1l¢w
for some a°'>0., This is implied by E exp(s|X;[) < =, 8> 0 by
an application of Holders inequality where s' < s,
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I}

where Ap 4 o(1) uniformly in t for t = o(k1/2)

i

0(e) - for t € k1/2

2 LN

e » 0,

Also since ni's are iid with finite m.g.,f around a nbhd of
the origin (as m.g.f of Xy 1is finite around a2 nbhd of origl

X.'s) we have

and g is sum of i

~ B

(4.3.21) P 1/?
i

Ioed

1/2

= -1 -1 2 . :
bley o t /B exp - 2(51’9 t jn/k) (1+xk,t1)}
where t1 = ET,p t]ﬁ?k %

- Now r.h.s of (4.3,21) is negligible”C6mpared to r.h.s of
(4.3,20) if '

(e1 p t,ﬁ/k )2 /t2 -> oo as p > oo,

?

1€ if p -> o ags p =>

51 ’p

Hence with this choice combining (4,3,20) and  (4.3.21)

we hawe

2

Vexp § - 3 (1 + Ay )]

(@.3.22) P@ Vs > 1) = bt

Let us now choose p = 0=2(s) with c(g) => 0 as e => O,

Then k = n/(p+m) = O (cz(e)n)
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ard AL ¢ = o(1) for t = o2 = om'?)

]

1/2

=0(e) for t = ek Oe(s nV2 c(e) )

Hence thce theoren,

We now attempt to find a zone where 1 = Fn(t) <D t'1
2
. exp §- % (1+0(1))] , t -> = , for general g.

Theorem 4.3.4 Under the assumptions of theorem 4,3.1 for

2 .
£ A log gﬁ(r n'/? e,) for some A > O and any positive sequence
e, => O the following holds

: 2
(4.3.23) T-F ()< 3 exp § - % (1+0(1))/ for some b > 0,

t oo,

Proof, Since @(-t) £b T exp(-t2/2), t > =, in view

k+1

(4.3,24)  p1/? e/ o> t(n/kp)1’2(1 1))
i=

, 2
<Dt exp 7 - g{1+0(1))} 2.0 {(g1(rk1/2t))"1

i

for t° < 2log g1(rk1/2t)

Now
(4.3.25) (g,xk %N~ ¢ tlexp(-t?2)  1r

t° ¢ 2(1og g;(r k%) - log B

£ A log g(r K/ 24) for some A > O,
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Similarly

k
(4.3.26) P(| =
i=1

)

V24 ¢ ) = B(x

ni[ >.n

k
|2 ngl > t(n/0) /%)

2
b 17! exp §- B0} + ol g (xx!2ep

where  t, = t(n/0) /%
for t° ¢ 2 log gy(r k7% %,

Also

(4,3.27) e /%) ¢ v 51 exp(-td/2) i 15 < Alog g (xx
| for some A > O,

From (4.,3.24) - (4.3.27) the result follows lctting k = Oe(n)

The following theorem provides non-uniform rates in the

complementary zone of theorem 4.3,1

Theorem 4,3,5 For a stationary m-dependent process satis-
fying the assumptions of thcorem 4,3,1 with x*qlog g(x) => 0
as X => «, for $° B 2{}og gq(r k1/2t)+1og[t]% , the,followinghq

(4.3,28) [P, (6)-0() | < o]t} (x 1 1/24yy=1+0(1)

-1/2 1/2

+ bke1) PO e ] > T k14D bk B(Ing [>rk i

-1

Proof,  w.o,l,g assume % > O, Since @f-t) < bt exp(—tz/ﬂ

=0 (r.h.s of (4,3.28)) it is enough to show that
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(4.3.29) @ 25 > 1) ¢ ogte (x k72 )T

~1/2 1/2 1/2

+ b(k+1) P(p fe [>Tk 58 + b kB(Iny PPr kT 1)

K

Now in vicew of (4.2.7) we have from theorem 2.4.8
e 2 1/2A
i > 2 » ) 1 m
or 1 {1og gq(rk t) + loglt[}- and £ -> 0

k+1 :
(4.3.300 P& 8 /05 > a2 1 e )
1 |

< 0¢ey (rk 21 Ly p(p™ % leq 1> 12

And for an(n/k)1/2 > 1, similarly we have, for the same region

of 1%,
k

k
EEARE' an(n/k)1/2) < P(K™
1

e ERAEE
1 1

(4.3,31) Pk 172

< oltey (x X721y k p(gng | > r k)

g s S2Y &, T 2(x/n)"?  we nave

(4,3,29) from (4,3.30) and (4.3.31).

Hence by a proper choice of ¢

1

For the case x 'log g(x) -> s (> 0) we have the

following remark from remark 2,4,11 following the lines of

i theorem 4,3,.5.

Remark 4.,3.1 For x"1log g(x) > s (> 0), we have, Tor %°>

S

flog|t|+ log gq(xr /2 snt)} with any positive sequence e, -> 2
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(4.3.32) |2 (- | < oltgy(r /2 ent))_1+0(1)

1/2

r bGP/ B | e K/21ED + bk BCing Pr x/E 18D

Combining thecorcnms 4.3.1 and 4,3.5 / remark 4.3.1 we
nmzy have a non uniform bound over the entire range of t,
T E N s A N oD B s S

some A and e > 0, Then assuming

(4.3.33) (g O n® )71 ¢ b a4t (g ()T for some
1 1

b, A*¥* > 0, and = < 1 < =,
and ,

(4,3.34) (g, (ent /4071 ¢ b T hTE (g )

we have from (4,3,1), for 4 <X log g4(r AR Aozl [ e
the following

(4.3.35) [ (0)=B(t)] < byt 1™ exp(ati/Z)[exp(O([tHIB a1yl

o p /4 e g71(k*t) + pm /E ot exp(-t2/2)
Also note that for (4.3.28) and (4.3.32) '

(4,3,36) (k+1) P(|£1/J§ > r k1/2|t|) = O(g;1(r K1/2 £))

= O(g;1 (r n1/4 1))
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and
L 2
(3.3 kPUn | > e kP8 = og! 2 kM2 )
: -1
= 0(g] (r 2% o).
Thereforc, if for some e* > 0 and lt>t,, t,>0 arbitrary;
we have 1

- +

(4.3.38) [}t]gy(r n1/4t)j =il ves < b | ‘[gTCA*t)] =

when lim x—1log g(x) = o
X=> oo

and 1

(4339 [ [tlg (x ¢, a4 -1 (b A% [y ()]

when lim x~| log g(x) = s (GO)
X=Doo

then in view of (4.3,34), (4.3.36) and (4.3.37), (4,3.28)
end. (4,3,32) take the form

1

—reb o

(43,40 7,8 = 9] ¢ ba* g0y

Hence we have the following theorem in the same lines of

‘ﬂmorem'2_4.9

Theorum 4,3,6 For a stationary m-dependent process
satlsfying the assumptions of theorem 4.3.1 and (4.3.33),
(4,3.34), (4,3,38) and (4.3.39) we have

| : a0 y
(4.3.41) R (-0 < bt eI T, cectcw
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Consequently we may have the following two theorems on
moment type convergences énd non uniform Lp version of the

Berry-Esscen theorem

Theorenm 4.3.7 Under the assumptions of theorem 4.3.6 and

(4.3.42) & &g (x]] =2 0 (g (D (I+]xITLy , - = < x <, @1
one Vhas

1
——+g
(4.3,43) |Bx2g, (1) - E2%, (D] = 0(n *

Y, T = IN(o, D],

= |1/ 2q

Y, = |n S,
Theorem 4,3,8 Under the assumptions of theorem 4.3.6,

for any p > 1 and q > 1

o

(4.3.48) |18, G50 A+t D"VP@E_(0)-H()) || = 0(n )
1: n i P

3

Nexit we consider the case when EX1 = 5, Note that using
the same blocking technique it is possible to obtain, when all

the moments of X exist,
1
....Z-I"E -c
(4,3.45) |F ()-8(t)] < bn (1+1t]) _ et <o

where ¢ > 0 may be made arbitrarily large and e > O arbitra-
rily small, b depends on e and c,

Now note that
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_ o 0
(4.3.46) :E(n‘1/%sn)5’*= JW X dF, (x) £ {.x3 dr_(x)
0 i
Also & - = 1
£ s 0 B b o U 3 2 1 x)) a
(4.3.47) j’ x” B () = xOLE G)l [ 3x (1-F, (%)) ax
0

0 0

u

|

[ 3xa-p (0). ax
0

similarly

. 0 0 -
“348) [ 2ap@ = - [ 3 py(0 ax
| OO )

Ietting c =4 in‘ (4.3.45) and noting that x3d@(x) = 0

' we therefore have from (4.3.46)7

(4.3,49) [EAgpr/? gn)3|’ < bn
ind hence

A

(43,50 |ETEg Y] ¢ b

e

where e > 0 is arbitrery, . 1 e

Note that in Chapter 2 , if E Xii = O(p—aj; ﬁ = p(n)

and o > 0 then in place of (2,4,9)\:we have,'exﬁanding £y
wpto the 4th term (see also (2.4.38))

<= T

‘.‘. [}

g ' -1 .-1/2 -a i1 1.4
(4.3.51) ] -1 - E Xﬁi! < b 4R pm 3Ly g Tnly

d

S

n]
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Then proceeding-as in theorem 2.4,3 it is possible to obtain

instead of (2,4.35) the following

(4.3.52)  |F_(8) - B(H)| ¢ b exp(=t°/2) ||

- X |exp(0(n"1/2 p~° 1t13 s t4)‘) '..1[

+ b exp(-t2/2 + o~ V2 p% |t + w1 %) a1/2

+
[l

P( D t1).
2y BTyl > T ospltl

Therefore for the m-dependent process the equation (4.3,1)

changes to
(4.3.53)  |B_(t) = B(8)| < b exp(~to/2) [t |7

1, ‘
> exp(O(Itn]3 /2 p B £ =15y 1§

—-1“'
+ b k2 exp(-t2/2 + o(Jt |° w2 pT R Y
v olg (7k £@™T ol (x k%))
+ 51 f(n).exp (~t2/2)

for 1$t2 £ 2(log gy(r /28y & log |t])

Recalling the steps used to prove theorem 4.%.2 we have,

in view of (4,3.53) the following theorem
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The oremn 4,3.93 Under the assumptions of theorem 4,3,1 and

BXC =0 we have 1 - F (t) ~ O(-t), % -> =, if for

some e* > O and two positive sequences Tps

ch converging to
zero with kp ~ n and ¢ > O arbitrary small the following
holds ‘

2

: - 1/2
n & Sup min je* log g1(rn‘5/k ), e* log gq(r k / t),

(4.3.54) "7 %
, k

cnkT/g" cn(k1/2 p1/4 —8)1/3~}.

If we calculate the zone (4,3.54) for g(x) = exp(s]xly),
0< <1, s8> 0 then (4.3.14) reduces to |

I 1 L
(43.55) t=o0 f@awl/ta /277 K3 A PED L

Since kp ~ n we can write (4.3.55) as

-

. 1
— _—
n4 ¢ A ¢

k

(4.3.56) t =o E(n/k>7/4,ax ( Y173 o 7D A 1/4)?}

: J 1 N > 2
Note thot Ciy ol 2 7 <=> It 3

Therefore for ) £ %, y/2(2=y) A 1/4 =J/2(2-Y) and

(w4 = 72D NSV VITSS S I

gives k

w?’t = o204
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Y/ (F+1)

For ) >

( % ))/4;= /4 gives k = n

2
o
with (n/k))/4 = n7/4(7+1)

. - J
Henoe (a/)?/% = (77220 ~ 1/4) x = n(2=-2/04=0 T+

gives

1—-5‘ l+e 3)_1 +e |
Sinilarly . /% = @% k% V3 gives k = n’']
{(e>0 arb,)

172(3+1) e

with ()’

Hince lotting k = n(2-Y2/(4=0) . Y/OQ+1) o ¥/2(3)+1) -

in (4,3.56) wc have t = o(n/k)yr4 i.e,,

1

(4.3.57) 4 = o@/2UDY o QPO 200 e

where ¢ > O is arbitrary,

For J =1 i,e,, when n,g,f of X, exists we have

t = o@m’/® -9,

As a concluding remark of this chapter we my note that
possible extension of the results obtained can be made to the
non -stationary m-dependent process also as the corresponding
results arc known for triangular array of independent random voari-
ables from chapter 2 which has been utilised as the basic tool

in the present chapter.
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CHAPTER 5.

RATES OF CONVERGENCE TO NORMALITY FOR NON-STATIONARY
O-MIXING PROCESS

N

5.1

Introduction:

Iet §{ X, n> 1! Dbe a non stationary {-mixing process
defined on a probability space (., A, P).

: n o
Define S T X, a

n
Assume that

= V() , P (1) =P(S, < t o)

(5.1.1) E(X) = © for all n1
(5.1.2} ¢, <« exp(-r n) for

some A> O
(5.1.3%)

Sup E|X‘i|m < f(m) ,
21

159000
where =

(0, =) > (0, =) is nondecreasing, satisfying

Sup £(3) f(m*1-3) <& f£(m+1) and
1<3<n
(5.1.4) it n V%2 5 o
1 !

Under various types of moment bounds we shall study the
nonuniform rates of convergence to normality of F (t) to §(+)
where  Q(t) is the N(O, 1) distribution.
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In section 2 we prove a lerma& which states ﬁhe_order
of n'™  absolute moment 5, in terms of f(m), This lemma
which 1s of specific importan;é of‘ité bﬁﬁ;-is the basic tool for
proving the results in section 3 where we deal non uniform

rates,

5.2 THE IEMMA

Lemma 5,2,1 et 3%, n>1} bea non stationary
¢-mixing process satisfying (5,1,1) - (5.1.3), Then there exist
a constant L (> 1), depending only on @, such that for all

positive integer uw and h > O,

m dm/?

(5.2.1) E | < mt T f@m , m>1

Proof of the lemma? The lemma is prova}by induction, Define

u

(5.2.2)  C(u,m,h) = B| 2 X,

]m
i=1 i'B

~and C(u,m) = Sup C(u,m,h)
o

Then it follows from Babu, Ghosh and Singh (1978, lemma 1) that
(5.2,3) Cla, ) < u? x(w

Hence the lemma is true for m { m, , where m  may be taken
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sufficiently large by adjusting T with k(m ). Specifically

we take L = max 3 1, max (a!, £(m))~ 1/ k1/m(m)”} .There-
’ m<{m i
= %o

fore assuning the lemma to be true for m < m_ (n. sufficiently

0
large) we shall show it to hold for (mo+1), For simplicity of

0]

notafions we write m =1

Ob
t
Fix an integer h > 0. Define 5, = 2 X ,
i=1
t
= s ] -

Su,t (Spusg = Suay) 808 Sf 4 = 2 Koy

Now

| ‘o 4 | m+1 . s -m+1
(5.2.4)  E([s, Su,t|) < E(S, ] ]su,ti)

m+1 ) :
£ n+1 m+1-3 J
= 3 . ) E(]S
= 5 (18, [su’tl )
¢ 200, m1) + 3 (Y m+1-J J
g 2o, 1)+ x D B(s, 1M s, 1)

uging a lemma of Ibragimov  (1962) e,g,, see lemma 1 P-170

of Billingsley
(5.2,5) IE(!Su|m+1-3lSu,t|3) - E(]Sul)m+1'j E(ISu,t|)j|
¢ 2 ¢l1-3)/ @) () C(u,m+1)

Therefore
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A .
(5.2.6)  EB(|s, + S, 4™ g 2C(a, nr1) + 20(u,me1) = 91-37(m+1) (4
, .

j=1
n+t  - m+1=] 3
P (‘_j ) g 15, E]Su,t|¢
Now
: Ti . +1
(5.2 3 &3 o1=3/*1) () = o) Cstegm /@D gy ™
j:
- ¢“1(t) -1 ]
< E-] i q)1/_(m+1) (‘t)j n+1
At/ (m+l)  _ mel .
CAM K R T e M ge |
for some Mg > 0,
£ (1 + c)m+1 letting t = 1, = Aom where ¢ >0

can be made arbitrarily small with sufficiently large choice
of h,. Therefore denoting (1+o)m+1 = a(m) = A and assuning
(5,2,1) for j &m i.e.,

(5,2.8) C(u,d) £ /@ i: 19 £(3) , we have

(5.2.9)  E(|S, *+ S, t|)m*1 < 2(1+)) Ca,m+1) LG DV

m
12T s 2 () £@1-))
j=1
201 Cla, D) + w® 72 @ 1 £, from
ond vart of (5.1.3)
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Therefore

+ 87 _ g m+ 1

(5,2.10) C(2u, n+1) = E|S, *Sa,t u,t 2u,t|

’ 1
< D5201en) cluymen) + w2 s 1 g p(men) B

+ 2% sup ET/(EH) [X.

n+lt = n+l
i>7 il -

< £200) clamen» D2 @eny s 1 2 @en) 3 (1ee T

where o4 Sup E“f/(m+1) 1)(1[
(5.2.11) i1

& = : .
1 T/(n+1)
a/? 1L FE(m+1) (m+1) 1]

n+l

PN

. -1
au1/2L- for some 2 > 0, since T = A,n

apd  (ng)'/® | e~ n,

50 eq can be made arbitrarily near to zero (uniformly in n

ard w) by a sufficiently large choice of L.

Writing b = (1+s1)m we have repeating (5,2,11) 1 times for

u=2ra

(5.2.12) G2, me1) < 2(1+) b 0(2TT, met) & (2P HE/2
where f1(m+1) = (m+1)? 21 . f(n+1)
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< D20+08F ¢(1, ne1) « (2F-Tfme1)/2 £, (@+1)b
+ (2=2y(m+1)/2 £ (@) b° 20100 + ... L.
$ 2O+ BT swp Elx 7 . £,(m+1) p 2(r=1(a*l)/2

1>71
. (1 + b 2‘(111"’1)/2 2(1_‘.;\'))—-1

In order that the above is less than or equal to g ("*1)/2 [+

-

(m+1)! £(n+1), First we nay need

[2(1+0)b] r-h__su1P BIEI™T ¢ F 2@ @ oy pmen
1> |

which is true if

C2C1+mp] T < Z(@m+1)/2 as m>1 and L > 1

SEN IO
(5.2.13) l 2(14-;\)"b < 2(13‘*1)/2
ie., if 2[1 + (1+¢)0*"7 o (1+€1)m+1 < 5(m+1)/2

Le, it 21+ @1+a)™' 3 ¢ [ p, (T+e,) J 0¥

teo, it 2¢ [/ (1+e) ]8T | p(14e)a*]
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Which is true for all large n since r.h,s, ~> » as

n-> o if €1 ang C are nLesar o zero, .
For the 2nd term of the r,h,s of (5.2,12) note that

-(n+1)/2

b 2 2(1+3) <1 if b 2(1+n) < 2®1/2 i i

view of (5.2.13) is true for small choice of Si and &,

And hence C1-1 o~ (m+1)/2 2(1+2) ] -1 = Ay < e

So we have

Mg {(m+1)? f(m+1)

f1(m*1)b 2(rf?)(m+1)/2 ¢ 2r(n+1)/2 1,
if Ay (Gee ™1 ¢ (am)™T 2(m+1)/2
i.e., if h4 < (213)‘1 E J'é/ (1_,,81)- j n+l

which is again true for all large m as r.h.s, -> » as n => o,
it eq < 2~ 1,

It is now easy to show that the sum of two terms of the r.h.s of

1 (5.2,12) is less than or equal to

@2 @ y 2(me)

:for all sufficiently large mn,
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. I
Hence the lermma is proved for all w of the form u = 2

°

Tor general 1w we use binary deconposition of uw as in  Ghosh

and Babu (1977) +to show

Clu, m) £ W2 1B 22 e op(n)

= ge I m! £(m), where L, = L2

Hence the lerma is proved for general u.

Remark 5,2.1, There arec a cholce of constants involved in
the proof of the lemma. First of all choose i, in (5.2,7)
large so that € therein small, once X, is fixed ‘a' in
(5,2,11) is fixed and therefore choose 1 1large so that €4 in

(5.2,11) is small uniformly in m and u,

5.3 RATES OF CONVCRGENCE

In this section we shall study the non-uniform rates
for differcnt checices of f, As a matter of fact we shall

consider the following two types of bounds viz,

(5,3.1)  Sup ElXi|m < @) =T exp(v n log n)
i>1

for some L > 0 and v > O,
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and

(5.5.2)  Sup E|X% " < £(m) = 1P exp @¥)
i1

for some L > 0 and v > 1

It is apperent from (3,7.16) - (3,7,17) that (5.%.1)

and (5,3.,2) arc implied respectively by

(5.3.3) : 322 E exp (s }Xi|1/u ) € e , Tor some s> O
l—

S

(5.3,4) Sup E exp [ log(1+]x,])] v/(o=1) & -
i>1 1

possible cxtention of the technique used can be nmade +o bounds

other than (5,3,1) and (5.3,2) also.

That, f satisfies the requirement nentioned in (5,1.3) ecan

be verified as follows,

For f defined in (5.3.2) note that

Sup (3 f@1-3) = ™ Sup exp(3V + (me1-7)Y )
1<3<n 1<ism
< ™7 oxp t(m+1)?lj if

(5.3.,5) x0 + (1-x)V ¢ 1 0<x <1
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Since the function g(x) = x + (1-x)°  is symmetric around

the point 1/2 , it suffices to consider the range 1/2 < x < 1,

e V-1 v=1 -

g'(x) = vx - v(1-x) T x for x> 1/2, v > 1

Hence supremum of g is attained at the end point x = 1 and

there g(x) =1 . Hence (5.3.5) is satisfied, Similarly for

(5.%3.,2) assertion on f may be proved.

We now describe the blocking technique that will be
ugsed throughout the chapter,

et p=pa, n) = [n], q=a,n = (2”3, % =k(e,8,n)

= [n/(p*q)] and [ = n-k(p+q) where 0 < B < @ <1 will be
chosen accordingly,

Put,

o
It
g8
It

0 g

s FESE .
\ i .l j=1 1P
\ £
E1e+1 En,k+1 311 Xk(p+q)+£ or O accérding as

£ 2 1 or not,
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k

1 k
Also let Un = i

1 &

L[
]

i
where A> 0O to be chosen later,

Pirst we consider the moment bound (5.%.1)., The
following theorem states nonuniform rates of convergence in an

interval containing the origin,

corem 5,%.1 et {X,, n2 17} bea non-stationary
e

{-nixing pirocess satiéfying (5.1.1) = (5.1.4) and (5.3.1).

Then for

(5.3.7) £ ¢ w7y,

with |t] < e k1/2, e > 0 small, there exists constant b > 0
(dependirz on M) such that for any A > O and some a > 0

(depending on v and @)
(5.3.8) B, (8) - §(H)] < blt] Texp(~1°/2)] exp(o(|t]’ ¥ /31

+ 5 oA exp(-t2/2)

' | Y221/ (ue1)
+ b exp [-a 3|t| q(e-B-2r) /22 |

* b exp [-a I}t nl1=9)/2 } 1/(u+1) 7
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Proof oi the theorenm | w,o0.l,8, assune +t > O,

Since the proof is long we shall conplete it in a few

parts., It will be shown

(5.3.9) |96 - D] < bt exp(-t7/2)

i . 1/v#1)
< bexpl -a3t n(a—ﬁ_2h)/2} ’ i

il -\
(5.3.10)  P(ju;| > t n"%)

and ‘
(5.3.11)  |P(U, >t o )-P(-t )] b t~exp(42/2) |exp(0(t° k~1/?))
-1 |
= L 1/(u+1)
*bexpl-afst n(1"a)/2,§ 7
for t° ¢ M A2 s b < e k2 ana t, = (b * n~My,

These will complete the proof,

Prcof of (5.3.9) is trivial.

For (5,3,10) note the following, From lemma 5.2.1 and (5.3,1)

denoting I to be an arbitrary positive constant

oo = ~A _ T ) 2
(5.3.12)  B(lup] >t 07t ) < (b nTh o )7 E(UL|

4-m nf-m(1/2 -\) e nCLJHB)m/2 ot MU logm

[Fal

e

4 n_(a_B_2A)m/2 0 e(u+1)m log m

P
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Hence

(5.3.13)  log pCjUz > % S £ -mlog t - I—g— (a-B-27) log n

n

+ (u+1) m logm + m log L .

We try to find an optimal value of n so that r.,h.s of (5.3%,12)

is a mininum,

Differenciating the r.h.s of (5.3.13) w.,r,t m and equating

it to zero, we have

(5.3.14) <log t - %(G—B-Zh)log n+ (u+1) logm + (u+1) +

+ log L =0

with a falue of n

(5.3.15)  m = §ult-P-2N/2 4 9 1/00e1) 4

In the above we conveniently ignore that m may not

be an integer,
Therefore from (5.3.13) and (5.3;14) we have
(5;3;16) log 2(U; | S t n'hcn) £ -m(v+1)
wralu+1y o1 gn(a_ﬁ—zh))a* g 1~ } 1/(u+1)

and hence we have (5.3,10),
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and

~-1/2
P / £q

Finally to prove (5,3,11), let tf =

) 7 _
tio = &) T (ejl €8 H,GeD®) where s (> 0) will be
chosen accordingly, Applying lemm 5,2,1 once again and following

the steps used to prove (5,3,10), we have

2 k+1 | k+1
(5.3.17)  |p(2 g1 >t p /% ) - (3

~1/2
> % o)
i=1 i= P n|

£ =
110 n

k+1
E P(lg§f> s(k+1)172 t,)

A

(1-a)/2

i~

(k+1) exp {-a(t n 1/(0*1)%

)
(1-a)/2 1/(0*1)2

< -
exp 7-a(t n §{ for some a > O,

L2 1/2 -1 112
Next write C, = (cn/(k+1)p )1/ y P =not ok 1 p v
£, = EGexp (b, ¢, )) ;
17 EeRR b 5 s gy = Blexp (b B oey))
R - _1 &1
my = fy E(gioexp (bk gio)) , m= (k+1) iE1 m, and
k+1 : - .
—~ -1 =1 2 2
= +1 : .
G (k+1) 121 [:fl E (Eio exp(bk gip)) - my 1

Then after some routiné steps we have the following

representation


http://www.cvisiontech.com

-179-

e+

ViBrions: o -
(5.3.18)  2(2 gy, > WDV 00 = { exp(-ny0)am ()
By
‘. ‘ k1
vhere o4 = -gk:exp“-(;;pk ii‘l mg.) -
B, = (b 0™ o - @ (1) /%y

-~

D, =B k2 5 and Hk('x) = G (o (x+1) /%4 +(1§+1 )m)

Note that from (5.1.1) , B¢ =0 and Elailm < e« For every

fixcd m, uniformlyﬂin i and p, from lemma 5,2,1, So

(5:3.19)° CIE ol =Bl - B el T (Jegl > s t e E

= |E ey I(ed| > st (k+1)1/2 )| o= o(k"2

Next we hall show .

3 T o
(5,3,20) E}gio! exn( x~"1ol) < o for t satisfying (5.3.7).
the that - y : o
g ! iy B
.(513{21) ‘Pk = Pe(k t) ;. and

(5.3.22) u|£,io|3 exp(bklziol) < K(a) E exp 3(1+¢) b 15’.}

by Holders inequality, sinece all the moments of 2] and hence

of rgioV'exist;. where: K (e) is 4 constant depending on e,


http://www.cvisiontech.com

-180-

e (> 0) can be made arbitrarily small,

Now

' " | . -1/2 .
(5.3.23)  E exp 5.(1+) b l55017 < Eexn(c v Qo)™ e, i)

for some C >0 from (5.3.21)

s(k+1)1/2
=1 + #f C t(k+1)" =llizie exp ; C 1;(1@»1)“1/2 1§
0

. P(,Eiol > Ly ) dIq

o0

, ; N\
(vhere one uses for h > 6, h(0) = 0} Eh(x) = j‘ h* (BIP(|X]>t)at

and the fact that upper bound of ]giol is s(k:f1)1/2 t)

s(k+1) /%4
$1 e [ oot Pexp ot 1y
0 _ )

. €Xp (-a Lz/(")”))dL1

by lemma 5,2,1,

Since the integrand is a monotone function reaching its :
maximum at the upper end point of the integral, we have, multi-
plying the meximum of the integrand with the length of the

interval of the integration

(5.3.24) E exp %(1+s) by e | }- < 1+ ¢ st° exp 5C stz-a(kvzt)u+

for some a> 0,

a
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Now the r.h,s of (5,3,.24) is finite if for some C

C st - a@!/? 1/
08 2 1/ a/2(e)

T X

a y(u+1)/(2u+1) . 1/2(2v+1)
1(65) k

Hence chesing s (> 0) sufficiently small (5,3.24) follows from

(5.3.7).

(5.3.25)

Theréfore

(5.3,26)

We are now ready tc estimate

f; = E exp(bk iio) |
2 5
b b
K 2 k 3
= 1 + bkE Eio + - E Zio + O(-g- EIE’iOf exXp (bklg’iot)
bi 3
=T v By, v o))
b2 '
=1+ LBl + 0?7 trom (5.3.19)-(5,3,21)
Bl b,k ~1/2 3
Rl Bk M TR =

Mrther following the lincs of procf of lemma 6

of Ghosh and Babu (1977), one gets
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T g k1 - ‘
) -1 2 W gt -1
{5.3.27) | (k#1) BB g B0 o] O(n™ ")
‘ - i=1
Fron (513.26), (5.3.27) one gets
k+1 |
(5,3.28) I log £, = t2/2+ o243y
e i n
i=1 e
Also' J >
29) e 5 & 2 (bkE’3
(5.3.29 By = E Bogy, explby g, ) = by E g5, + Oz Bleg |
. GXP (bk- "l"’io, >
- 2 =02k
= bk E Eio + O(k™'t7)
Hence
o " 1k+1 7 -1k+1 o 1.2
(5.3.30) @ = (k+1)"' g p = b (+1)7 £ E g5+ ok~ 145
‘ : ) . i k i io .
i == 1-1 1-1
L -1 2 -1 ,2
= bk n Gn + Ok t7)
= (k1)) o, . 5772 4 ot 49)
And

2(5¢5.31)' E gio exp(bk Eio) = B gio + O(bk) 5 therefore

e o5 2 __ »p 2 |
(5.3.32) £7'E £, CEP (bk iio) - miwu Egi, - m; .+ O(bk)l 50

1
(5.3.33) 52 = p~1 ofl + 012 3y

Using the above estimates finally we have

(5.3.34) B, = 0x~1/2 2
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(5.3.35) D = 01 4 g 1/2 4y

ow arguipe as in Babu, Ghosh ang Singh  {1978) one can show

+

-l

PRI Tt T ol < st B o (s 7 =12
1 &) - 1] & i 4 i#T 4 mq cxp(s n of 1=
Pl 1))=1/2 yy
= o™ exp (12/2)
v

vhere one uses the fact that ¢(n)
an?.
(5.35D g, ~ gy = 02y g0

L exp(-an) for soms 3 2 0,

38

k+1 B %
4, S \ "n =1/2° 3, .2
_{;__ = .'gk exp( _,'Bk .2 ni) = exp i'lg- * O(K / t )—'f-n :

i=y
= e {122 » 0172 3y

Finally wo writc

G2 by exmptnman o e R R A
& .
wherg

TAck: R~ 4 § expCn ) AH (0)-9(x)) |

< A exp (-B D) sup  [H (x) - )(x) |
& Hy oxp (-B & b Iginie g
£ b V2000 42 Q™12 13y

i
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- - Z . 5 .
(5.3.41) 1, = |4, - exp(-t_/2) | f exp(-Dy. x) 40(x)
B,

is

s

e

LN i = 2
< bjAk . th(-tn/2;} i exp(aDk x - x /2) dx

By
\ 2, 2 1 2 e
= blay - exp(-t, /2) | ! exp § - 5(x+D, )"+ 3 Dy } dx
= b4, - exp(-t2?2)| exp(D2-2) exp(-t2/2) dt
Ik n k/

By Dy
< bl (42/2) | exp(32/2) ox (-~ =(B,+D, )% )|B +D. [~
L bihy - exp(~t,/2) ] exp(D/2) exp (- 5(B D) ) [B D, |

2 3 ‘ -1
$ b[Ak - exp(ﬂtn/2)| exp(Bk/2 + 2]Bka]) IB * D]

2 _1y2

Now |B| < bt ¥ /% ¢ et since t< 3;31/2 for some &,>0

Hemee By + Dy 2 -eqt + £(1 + ok~ %)) 2 (1-e)t where e (O 0)

can be made arbitrarily small choosing e, O 0) sufficiently

small, Henee
(5.3.42) I, < bexp (-17/2) |exp(0(t> k™72 . 1| ¢

as Bi = O(t4/k)

B

) D

L 3 ~1/2
e = 0t k )
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.’
1; Final}_y _ o) .
| (5.5.43) 1= [exp(-12/2) { exp(-p, xaf(m - §-t)|

I

blexp (~12/2 + 22/2) § (-5, - D) - Bl-t)|

fA

$b 7 exp(tP/2) | exp (0082 1By - 1

Hence (5,3,11) follows frami'(5.3.17) and (5,3%,39)-

(5.3.43)  completing the proof of the theorem.

As a consegquence of theorem 5.3,1 1let us Tind a gzone
; \ S . = —y=1/2
vhare 1 - Fn('ﬁn) ~ Q(-‘tn) . 't‘,n ~> =, Bince Q(-t) ~ (27) /
, 4]

exp(rt?/2) it follows that the restriction on t from the
1 et term of r.h.s. of (5.3.8) is

(5.3.48) 1= 06 ana  t ¢ Mx/2ED e 4 e k'’

i I L 822 0 | amall;
éestriction_oﬁ.'ﬁ from" 2ﬁd tefm of r,h.s of i(5t3_8) is
(5.3,45) t = o(@™

Denoting‘}e to be an, arbitrary positive constant, we have,

restriction on ¢ from.the 3rd term of r;h;s of (5,3,8) is

(5.5.46) 42 ¢ ¢ §o (P2 V) |
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< e % n(“"?'zhégg}' Fa

' i
2 =1/ EteEy (4-P-2N)

i, e., i.c.,

5 3147) < s gC¢fﬂ~2x5/2<2u+1>

Similarly restriction from the 4th term

(5.3.48 © 4 ¢ o (1-8)/2(20%D)

Equating the powers of n in the f,h,s of . (5,3,47) and
(5.3.48) and letting B -> O we obtain 1-¢ = a - 2%  with

a value of «a

(5.3.49) | a = A o+ 172

For (5,3,44), note that /6 2 ﬁZE%TTT <= p X1

Hence for v > 1, we have, from (5.3,44) in view of k = Oe(n1'a)

ot =_0(n(1_a)/2(2u+1)) , Which has already been considercd

in (5,3t4§). Therefore! for v > 1 putting the value of a-
from (5.3,49) to (5,3.48) and equating the power of n with
that of (5,3,45) we obtain

A= (1/2 - M/2(20+1), die., A = 1/2(4u+3)

§ = on(172(4v+3))=e

So, for v > 1 we have where ¢ > O
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_can-bé madedarbitrarily small by sufficiently small choice of
P in (5,3.47). For v <1 since (2(20¢1° 1> 1/6 we shall

consider (5.3.44) which is'more stringent than (5.3.48),

From (5,3.44) we have t = t)(n“"a)/6 ). Equating the
power of n with that of (5.3.47) 1letting B -> O, and that of
(5.3.45) we have

- , 1-a = S d=Z A N
(5,3,50) & < = m = A

1st and 3rd elements of (5.,3.50) when equated gives o = 1-6)
and with this value 2nd and 3rd terms of (5.3.50) states

(5.3.51) A = (2(2u+1) + &)
W2 now summerisc the wesults in the Tollowing theorem.

Theorem 5.3.2 Under the assumptions of theorem 5.3,1, we
- C¥* -
have 1 - F (t)) ~ §(-t)), t, > for %, =0 Shis 8 B0

arbitrary and C* = min {(2(4U+3))“1, (2(2u+.1)+8)'15—°

2
i ! 1 y
For a zone of t where 1 - Fn(t) £ Dbexpj-~ -g(1+o(1))_T
following the proof of theorem 5.3,1 with t, = t(1+e) , 0 < e <1,
(5.3.8) takes the following form
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(5.3,52)  |P(0)-0(6)] < blt17" exp(=t°/2)] expCo(]t]’k" )1

+ b exp(<t©/2) + b exp- Eua 1t| (“—B)/? ! 1/(u+1) J

(1 ﬂ)/2~ 1/(u+1) b

3

+bexp[-a. ]tl n
for t2 <M k1/(2u+1) with 1t] < 5 k1/2 , €5 2> 0 small,
In this case, noting that @(—t) s (2}7)-1/2 t“1.
. exp(~t%/2) as t m, we find the region of t for which

1T -F () <bexp [_ t (1+o(1)):| holds,
Restriction from the 1st term of rlh,s of (5.3.52)
(5.3.53) t° <M 2D a4 = ok'/?)  so that ]t!sk'1/2;o(t%§

Trom 2nd term of r.1.s of (5.,3,5°) there is no

restriction on t., Restriction from 3rd term
(5.3.54) t = Q(n2i2U+1:: ) where ¢ > O can be made

arbitrarily small éhoosing B small,

Fron the 4th +term of r.h.s., of (5.3,52) restriction

§o

(1-a) /2(2u+1) N

on- @

(5.3,55) + = 0(n

Iet a = 1/2, then from (5,3,54) and (5,3,55) we get
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; 1
- —c
(5.3.56) t = o3 )
Since k = 09(111"Ol ) we have from (5,%,5%)

M n1/4(2u+1)

(5.3.57) £ < with t = o(mn'/*)

. -£
comparing (5.3.56) and (5.3.57) we have t = o(n?(2V*D) T )

Hence we have the following theorem.

Theorem 5,.3,3 Under the assumptions of theorem 5.3,1

Nk 2 3
' ; ¥ I .
(5.3.58) 1 - Fn(tn) < b exp %_-—3% (1+o(1))3 y 3, -> = for

1
'( z '—j' -
i A= O(n4 v+l )

n where ¢ > 0 is

arbitrary.

- To prove momnent type convergences and nonuniform Ib
verion of the Berry-Esscen theorem we need rates of convergence
in the complementary zone of 1t of theoren 5.3.1. The following
theoren states rates of convergence for ‘t2 > 01 k1/(2U+1) for

any C4 > O,

Theoren 5.3,.4 Under the assumptions of theoren 5.3.1,

for +° > c A RS DN

2 1 , - we have,
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(5.3,59) [Fn(t)—@(t)l < b exp g —[t]T/(U*E) n® a %

for some e, a > 0,

Proof: Recall (5.3.6). Dofine Uh =

H
1

and o Ek+1 SN W 015 let +t > 0.

_ 'By lemna 5,2,1 and the procedure adopted to prove
(5.3.10) we have

(5.3.600 B(IT_| > +n"2) < b exp } cact n(1=9)/2 ) 1/Cu+1)y

»
»
i

~ 4=at  _1/2 av/2(2
Iet g =% n /23220 i e e e chosen later

k

= -1 ,
¢ = £, I(le. ! <y™') and ux = g g *
J J d . SR IR
Then J . :
T T R k -
(5.3.61)°  |P(U, > tn'/®) . plux > t a2 | ¢ ERIA B
1= '

[

< b exp (-a(s®’ p!/2 =9/2 =at(1-0)/2(2y+1) )1/(u+1)%

following the same lines of (5,3.60).

Now by Marcov's inequality and the lemma 2 of Ghosh, Babu and
Singh (1978), one has,

. P Y
(5.3.62)  P@x> tn'/?) ¢ &R p(ITR)

k
< exp §;~t1'ay ka'/2(2v+1)3 [ T,

e p—
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where

yeX
(5.3,63) 55 =2 ¢ @p + Be” )

< 2e 0 +1+ [Bg*y + 2 y° B(r¥)°
P J | J
To estinate Sj note that
g 1
(5,3.64) |E E§I L |E zj I(figl >y )|

< 7 Elgj!m+1 for every fixed n > 1

< b exp {-a(t“' n1)2 -a/e =o' (1-2)/2(20+1)  y1/(v+1) ?

adopting the same procedure as that of (-1 Jo)) I

Also note that iy expg'-a(ta. al/2 =0/2 —ar(1.a)/2(2y+1) )1/(U+1)f

4

& 1,
And henco b
B k_ ok 2 2
(593.65) 10g I I S. = 0(1 + y E,-) = 0(1 + k p y )
i= * i=1 L

0(1)

|

since Xk p y2 = 0,(n yz) = Oé(t'a x'/(20+1) ¢ = o1y

Cas 17> 0y K7D p e ¢y > O,

Therefore fron (5.3.62)

(5.3.66) P(UX > % a'/?) < b exp §~t1-a' k“'/2(2u+1)%

]
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~ Equating the exponent ﬁower-of‘ t fron (5.3.61):ﬂ”
and (5,3,66)

We obtain

T - a' = av/(y+1) or at = %E%- 2
With this choice of a', noting that
1 o a'(1ma) _ 1 i at 7
z -3 - W = 2(1=) {1 - ey} 0
for a' = 3:; ag o < 1,

we finally obtain from (5,3,60), (5,3.61) and (5,3.66),

(5.3.67) P(Sﬁ >3 40’2 <b exp%f-t1/(U+2) n a for

Lermy

some e > 0, a> 0,

which proves.the theorem in view of inf;n'1 &i > 0 and
n>1

@ﬁ-t) £ b t"1 exp(~t2/2) A © > 0,

As a consequence of theorem 5.3.1 and 5.3.4, we
may obtain a non uniform bound .over the entire range of t

- < % < =, For that choosing A =‘% ~E o =2/3 and

-

letting B -> 0 in (5.3.8) alongwith (5;3;59) we obtain

the following non-uniform bound proceeding as 'in theoren 2,4,9,
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Theoren 5,3,5 Under the assumptions of theoren 5.3.1, onc

hag for any A% > 0O,

- +E

(5.3.68) ]Fﬁ(t);@(fjl'_i 3l % |1/(0+2) )

exp(-A%|t where
¢ > 0 may be made arbitrarily small
-2 £ 1t { =

Subscquently we may obtain the following two theorems on monent
convergence and on le'AverSion of the Berry Essecen thecoren
proof of which are sinilar to those of theorenms 2,4,10 and 2.4, 11

Theoren 5,3,6 ~ Under the assumptions of theorenm 5,3,1, for

any p 2 1, A* > 0 and q > 1, one has

(5.3.69) Hexp(ax[4]1/ V%2 y (qupyy-o/p (B, (£)-9(+)) I
- +é =
= O(n )
Thcoren 5,3,7 Iet o 1 (=, =) > (0, m)' be even with
(5,3.70). 8'(#) = O(exp (A¥ x1/(”+2) Y(1+x)"% )  for sone

a> 1, >0 and 0< x < =, g(0)=0,

Then under the asSaﬁ?tiOns of theorem 5.3.1 one has
( 5 _é;a' due n

arbitrary , T = N(0,1),
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=) Next we shall flnd out the normal approximation zone
when the third moment of the randon variables are vanishing. it 3E % 1o
EX? =0, i=1,,,., n, In this case procecding as in the case

of n;depéndent:ﬁrocess,weihave“the following in place of (5.3.8).

5.3.72)" [7_(9)-0¢0)] < b1t~ exp(-t2/2) lexp(0(|t]® k™72

+ b k2 axp(t?/2 +o(t)? ¥/ '(1/6)*8h+ 4 k?‘))
*b n;k,exp(—t%2)+b exp [ -a §|t| “ne-P- ZK)/ZZ 1/(U+1) ]

+ b exp E —a %’ | t] n(1-°)/2} 1/ (v+1)

Ll

Conseque@ﬁ}y (5.3.44) changes to (which takes care of 2nd term
of the r.h.s of (5.3.72) as well

(5,3.73) ¢t = o176 p(1/18)"8 ), &> 0 is arbitrery ,

t= o, w2 i k<., k72

en > 0 small,
And  (5,3,45), (5.3.47) and (5.3,48) renain the same, we

writc these equations again

(5.3.74) t = ot
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(5.3.75) t ¢ o nlo-F-2N/2(20+1)
o stad g b ¢ n(1=2)/2(20+1)
A sinplified version of (5.3,73) is

(5.4,77) .

tl

2

O(ﬁ(T;a)/6 +a /18 ¢ 3 = O(n(§_2a)/18 —c )

t = o@T=2/4 4 ¢y (=720

+ S é2 n(1;a)/2 o

Since the third and 4th condition on t in equation (5.3.77)
is redundant in view of more stringent condition (5.3,76), as.

v 2 0, the final set of restrictions on +t is

(5.3,78) t= O(n(3—2a)/18 _5) with t = Q(n(T-Q)/4-)

(5,3.79) % M

oln

(5—3480) % . n(3-B-20)72(2p+1)

[FaN

andfu )
(5.3;81) t < e n(1—é)/2(2u+1)‘
where in the above sequal and in what follows ¢ >0 ‘is arbitrary

(small)  positive constant

Note that v < 1/2 < => 2(20+41) % 4. So, for v > 1/2 we

?

shall consider (5.,3.81) instead of t = o(n(1'a)/4 ) of (5,3,78),
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In this casc equating the powers of n from (5.3.79) - (5.3.81)
and letting B -> 0 i,e.,

(5.3,.82) A (a=2A)/2(2v+1) = (1-a)/2(2v+1)

i

(2(4u+3))'1 with @ =+ 1/2 (K 1)

]

(5.3.83) A

~and this valuc of A satisfies! A < (3-20)/18 ~¢  (of (5.3.78))
as v > 1/2,

Hence for v > 1/2 with the choice (5.3.83) we have fron (5.3,78)
L (2(40+30)7" - |

‘= (5.3.87) t = 0(n ) "®) where ¢ > O is arbitrary
small letting B ~> 0 in (5.3,80),

Next consider v & 1/2. 1In this case since 4 > 2(2y+1)
we can ignore (5,3,81) in view of the 2nd equation of (5,3,78).
Hence, as before, letting B -> 0 in (5.3.80) we have to select
®, A in such a way that ninimun of (3-2)/18 , (1-6)/4 , A,
(a=20)/2(2v+1) is maxinised,

Equating the first and the last two clements we have
(5.3.84) A = 3/2(40+13) with o = 6(v+1)/(4p+13)

and this choice of A and o satisfies; A < (1-a)/4 in
YieW of U_S 1/’2« I-fenee for v £ 1/2 we have 'b - 0(n3/2(4u+13) -8)

where ¢ > 0 is arbitrarily small; We now surmerisé the results
as follows
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Theoren 5.3.8 Under additional assunption E Xz =0

i=1

s..., N alongwith the assunptions of theorem 5,3,1 we

g L o = C*_E - oa
have 1 - F, (%) 9(-t,) for t =0(n W By .

where C¥* = nin §ﬁ2(4u+3))"1,3/2(4u+13)§

and ¢ > 0 mnay be made arbitrarily snall,

In (5.3,72) letting A = (1/4)-¢ , o =73/4 and
B => 0 alonguith thecrem 5,3.4 it is possible to obtain the
following thcorem following the lines of theoren 5,3%.5.

Theoren 5.3.9 Under the assumptions of theorem 5.%.8 fox

any A¥ > 0, one has

(5.3.85) ]Fn(t) - @(t)j < b.nf(1/4)+€ pr(_%* |t!1/(u+2) )

where ¢ > O nay be made arbitrarily spall
s (b€ o,
Conscquently, under the assunptions of theorem 5,3.8 the order

-(1/4)+¢

in thcorems 5.3,6 and 5.3.7 can be sharpensd to n
0 < e £ 1/4, '

Wext we consider the monment bound (5,3.3)., The following
theoren states non-uniform rates of convergence in an interval

containing the origin
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Theoren 5,3,10 Let the assumptions (5.1.1) - (5,1.4) and

(5.3,2) hold for a non-stationary ¢-miming process, Then for

(5.3,86) g i '[;2 5. M (log n)’\)/(U-—1) ,

there cxists constant b (> 0) depending on M, such that for

any A 2> 0, &> 0.

(5.3.87) |Fn(t)—@(t)| < b[t|“1 exp(~t2/2)| exp(O(|t|3 k“1/%)-1{

+ bt exp(-t2/2)

' v
+ b cxp [—(U¢1) % Llﬁél( %(G-B—Zh)log n + log’tf§ EU“Tjju

v o Do) L5 J-0nt0g n + gy 12/

Proof of the thecoren: The prcof of the above theorem is

sinilar to that of theorem 5.3.1, We mention only the necessary
rodifications, From lemma 5.2,1 and (5,3.2), denoting I to
be an arbitrary positive constant, note that -ﬂy"t? @

T E "'A- B ""?\ -1 I- n
(5.3.88)  P(Up] > tn o) < (¢ n o))" EjUY

n! exp(a®)

1
g n"m(‘z'-” B (l-a+p)ny2

g B n‘(a“ﬁ"gh)m/? 1" expm' + m logmw )

Foot note; For te < 1 one may use the uniform bound obiained by

putting t =1 in (5.3.87) and that is obtainable
following the proof of the theorem 5.3.10 with t =1,
see also (3 5,19a),
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.Thqrgforc
' i y g ! o =A N
(5.3.89) 1log P(iUﬁl R ) 6

S -1 log t - %(G-B-2A)log n+mlogl+ (¥ +n log m)

Differenciating tho‘i,h,s of (5.3.89) w.r.t m and equating it

t0 zero, we have

V-1

(5.3,90) - log t - %(a-ﬁ-2x)1og n+ log L+ (um + 1 + log n)

= O‘

In view of the fact that logm = o(mu"1), v-T > 0 we have
solution of (5.3,90) as

(5.3,91) = [ 13327 g(a~ﬁ 2M)1log n + log t - log L - 117 V=!

where e > 0 may be made arbitrarily small
Note that the 2nd derivative from (5,3,90) is v(uv=1) n¥-%
15> 0 as y>1,

+

Hence from (5,3,89) and (5.3.90)

(5.3.92)  1log POJTL] > ¢ n"an) £ -(-Dm’ cm < (o=
=L
-1

£ =(v=1) E.iTU}ZT_g”%(a"B 2\)log n + log t -log L tji]
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< -(-1 [ (3%;7 %ﬁ%(T-a')(G—B—Qk)log n +log t%_] v/ (u=1)
wherce ¢' > O can be made arbitrariliy small
as n =»> o
< =(u=1) C Llﬁﬁl'fg(a-ﬁ-2x)log n +log t) ] v/ (v=1)

where ¢ > O can be made arbitrarily small

Sinilarly, for (5.3,17), mnote that

i k+1 ke 1 |
(5.3.93) |P( = z,j'- > tn 9"1/2 cn) -P( = £io > "'tn P’"1/2 cn)l =
, i=1 i=1
k+1 172, W s miiges, . T
£ 2 POl > sk+1) ) < (k1) (s(k+1) t T Bl

L exp E—(U-—1) % .(1_;)"8_) (-;—(1..0.)]_08' n +1Og t)? U/(U-—'])j

f.llowing (5.3.92)

Finally for (5,3,23) note that
sQe+1) /%4 1

(5.3.94) B oexp §(1+)byleg 1} <1+ [ ot (o)™ 2oxp fotee1) 2L
g |

P Shegl > 1y ay.

Dividing the range of integration (O, s(k+1)1/2t) into (0, A)

and [ A, s(x*1) 1/24) where A is a constant to be chosen later

and noting that the integration over the 1st interval is a finite
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quantity for all k , we have _ -
i s(k+1)1/2t y
| - ~1/2
(5.3.95) E exp §(1+e)bk lesold g A+ f ct G ]
A

.CXD ECt(k+1)“1/2L1§ P Elgs 00 L,? 41,

s(k+1) /%4

Mot f ot (e exp Sotaen 122,
A

P

.exp $-8(log L, - log L)"/(”"”_g.dL1

for some &6 > 0, following (5,3.92).
B u/(v-1) .
Choosc M\  so large such that (log A -log 1) is defined,

R.H.S. of (5.3.95) is finite if (following (5.3.24))

¢ st° expiC st - 5 lcg(s(k+1)1/2t /I}U/(U—1)} ¢

i,e., if ¢ gt° < 8(log nyv/ =1 for some 6 and C

“." log k = 0(log n)

i.e,, if t° € G é% ) (log v/ (v=1)

which covers the region  (5,3,87), choosing s > 0 sufficiently

small, Hence for +° satisfying (5.3.87), (5,3.95) is finite
(uniformly in k). ’

The rest of the proof is similar to that of theoren 3.5.1,
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As a consequence‘of the above theorem we may proceéd
to find normal-approximation zone. In vicw of the fact that
@(—t)ﬁ{; (21’()"1/2 tf1 exp(-t2/2) . £ -> o restriction from
the 1st term on the r. ,h,s of (5.5.87) is

(5.3.96) t = ok®) = om(1-*7/6)
That ffom A2nd tefm is

(5.3.97) - t = o@

Restriction from the 3rd term of the r,h,s of (5.3,.87) 1is

U

=1

$°/2 + logt < (v=1) g%ﬁ(%(a_s_eyx)log n + log ¥)}

which, in view of log t = o(logmn) from (5.3.96) and (5.%.97)

reduces to
’ . | i v/ (v=-1)
5.3.98)  ° ¢ 2(u-1 § =2 Leap2n)log n

where ¢ > 0 can be made arbitrarily small,

Similarly restriction from the 4th term of the r,h,s of
(503987)‘ “is |

2 v/ (u=-1)

(5.3.99) ¥ < 20D § 822 1 (1-0)log n}

Letting o =1/2 and B, M = 0 we have from (5.3.98) and
(5.3.99)
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(0]
v
]

?

(5.3.100) 'b2 < 2(u=1) (lju_a_ log n )U/(U—q)

can be made arbitrary small., Note that (5.3.,100) satisfies
(5.3,96) anda (5 a3 9

Hence we have the following theorem,

p ,
Theorem 5,3,11 Under the assumptions of theorem 5.3,10

we have 1 - P (4) ~— §(- t, ) b, > o if

L}

' 2-- - L u/(u=1)
(5.3,101) T, < 2(v-1)(1-2) P75 log n | . s U > 1

where e > 0 can be made arbitrarily smail.

Next we prove a non unlform bound on the complemcntary
:zone  of t of theorem 5.3,1. As before tl > proof of the

following theorem is  similar to that of theorem 5.%.4,

Theoren 5,3.12 . Under the assumptlons of theorem 5,3, 10, for
£ 2 C4(log n)v/ (v-1) » C4 > 0, and for any ¢ > 0 there

exists b (O 0) depending on Cqy and & such that

U

--—-—_

(5.3.102) [P (O-0() ] < b exp § (v 1) <1=£‘ 5 log n +1og|h1» %

s U and Ty, as in theorenm 5.3.4 and

Pr Proof: Define Uh %

w.0.l.g let t> 0,
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_ By lemma 5,2,1 ‘and the procedure adopted to prove
(5.3.93) we have

PR 1/2.- Toe
(5.3.103) BCIT, ] > tn1/2) S boxp 3-G-D (5(1—a)log n

+ log t))”f(u‘i)g

let y = 1= qm1/2 (log n)*'0/2(0=1) 0<a <1
/ * .

el
osk
I

h -1 ‘ .
. ! : T e 2
£ (1aj| < ¥y ') ‘and L
Then |

(5.5.108)  [B(U_ > t n1/2) - U > tn/H)] < T Rl >y D

( '1/2|gi| > n(T'a)/e £ (log n)a'u/(u-1)>

|~
ME

i=1

I

?XP E}(U—1) itglﬁil( %(1-G)log n + at log t)5§U/(U-1)]

following the same procedure as used in (5.3.93),

Proceeding as (5.3,.62) one has

(5.3.105)  R@E> t 0"/ ¢ exp{-t1"" (10g m® /-1y T Ts;
where S is given by (5.3.63) 1i.e.,

' - yE*

2 e ¢p + E(" Y4

2
2 ¥ 2 *
£ 2e 0,1+ |E¥ly+r2eyE 3

(5.3.106) g
2
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Prom (5,3.64)

(5.3,107) IE g;[ ¢ ¥ E lgj]m+1 - for every fixed m > 1

< exp [-(v-1) %153( %(1_G)ldg n+ atlog ) }u/(u«-ﬂJ

following the same technique as for (5.3.104),

& 1,

An@ ‘hence

k ' 2k 5 2
(5.3.108) log T T s; =0(1 +y Br;) = 0(1 + kpy™) = 0(1)
i=1

i=1

since kpy2 = Oe(ny2) = Oe(t"z(log n)U/(U_1) T = 0(1)

as t° 2 C4(log n)v/ (v-1)

Therefore from (5,.%,105)

(5.3.109)  2x >t a® < boexp §t1" (20g w10/ -1

we finally obtain from (5.3.103), (5.3.104) and (5,3.109)

l-e

SRV

~hon

(%(T-G)log n

.

(5.3,110) P(Sn > if n1/2) < b exp [ =(v-1)

v ot log 1) 7 W/ (-1 7
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This proves, the theorem, letting o, o' -> O noting that
1

e

. > 0 is srbitrary, iaf 5 oo > 0 and $(-8) < bt
cexp(<t°/2) , 1 > e, =
Using (5,3,87) or a version of (5.%,72) when (5,%,2)
holds instead of (5.3.1), in the case EX? =0 ° alongwith
(5.3,102) _We may obtain non uniform bound over the entire region
of t. Note that since v > 1, logn = o{log n)U/(U'1) . And
hence putting A = -16- &, «=2/3 and letting B -> 0 in
(5.3.8M ; A=4-e, a=3/4 and B >0 for the version
of (5,3,72) we obtain the following ncn uniform bound in view

of (5,3,102)

Theorem 5,3,13 Under the assumptions of theorem 5,3,10 for
any ¢ > 0 and A > O there exists & constant b > 0 depending
on = and A suéh that

‘ 1

sy ) 9]
_ ~Fte " 0 I —
(5.3.11) 1P (1) - §®)] & bn® exp [~(v-1) 32+ 1=¢1009) 7" "]
. CH»@
further if B Xi = 0 ¥ 1 then

3 . m, - ,
(5.3.112)  [P.(B)-(H| < b ot s, dec o
i | oA o Cexp [~(v-1) 7 A+ = 1oggg}€ 3

(1+ 1tY)

Subsequently, in view of theorem 5.3,13, we may prove moment

type convergences and non-uniform Lp versions of the Berry-

Esseen theorem,
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Theoren 5,%,14 Under the assumptions of theorem 5,3,10, for
any > 0, A> 0 and p > 1

(5.3.113)  {lexp [(v-1) 3 a+ =2 108 It] 3 “/K”’T) (Fn(t)-@(t)N|p

1
-
ot = o(n © )
..al-l- E . ‘
= o(n® ) i .EX = 0, is,..n
Theorem 5,3,15 Under the assumptions of ‘theorem 5,3.10, for

an even‘function g1 (-, ) > (0, ) with g(0) =

satisfying

(5.3,114)  g'(x) = O(exp [ (v-1) %?\"‘ 11')'5 log (1+X)"EU/(U"1) ] ); x>0

one has, for T = N(O, 1)

A N = _% L
(5.3,115) |E glo,” 8) -Eg(M| = o(n’> )
= 0(n ), 0 arbitrary
it B0 =0, i=1,.... n
i ] geoaey i

Proofs of above two theorems are 81m11ar to theorems

=

2,4,10 and 2,4,11 and are omitted,
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