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This thesirc presents studies on some of the problems of
single equation econometric regression analysis. The problems
are

i, Omission of regressors from a single equaticn regression model,

u "

an
2, Handling of ervors in variable models with trending or

autocorrelated errors.
The structure of the thesis is as follows

Chapter 1 attempts a brief survey of existing literature on the

problems of

(a) Omission of relevant regressors from a regression equation

and misspecification of algebraic forms,

(b) Autocorrelation of disturbances.

and

(¢) Errors in variables,

Chapter 2 considers the problem of omission of regressors from a
single equation regression model with nonstochastic regressors and
spherical disturbances, The results of this chapter have been

published in the Journal of Econometrics 1977, vol,5, pp. 301-313.

Chapter 3 considers the problem of omission of regressors

from a regression egquation having stochastic regressors and/or

£

B
auvocorrelated disturbances,


http://www.cvisiontech.com

—fi~

in Chapter 4 we have compared the asymptotic MSEs of the
CL5 estimators of the regression coefficients in tho fﬁlly speci-
fied model with the M3Es of the OLS estimators of regression
coefficients when one of the variables has been omitied from tho

true model,

Chapter 5 considers the problems of estimstion relating to
errors in variable models where the errors of observations either

have trend components or the errors are autocorrelated,

In Chapter 6 we take an overview of the entire investigation

and point to the directions to which further researches can be made,

Appendices 1,2 and 3 contain the derivations of some of the

results of Chapters 2,3 and % respectively,
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CHAPTER ©

AB STRACT

very often in econometric snalysis one adopts the classical

linear regression models The elassical linear regression model

is given by
Y= X8 + ¢ (0 1)
\\ 7 ™
f¥1 AF1 0 Farove X\
Y. X see
whore y = | 12 Y. [ 3 *a2 #kz .
. ST :
\n XIn  *on ¢ Fiq
£
p = 2 and £ = 2

The underlying assumptions are .

E(e) = QJ (null vector)
(0. 2)

V)

and E(ee') = ¢ I

X 1s nonstochastic and rsnk of X 1is k £ n.

If, in additioh, € 1s assumed to be normally distributeds
the model 1s called classical normal linear regressien model.
Ordinary least squares (OLS) methods of estimation and hypothesis

testing are based on thia mcdeiv
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chutsihe assumgtigngadh gis and: x's ma& not be fulfilled

in reaiityi or,fig.other wordss the model mé} not be correctly

specified. - Gée class of problems arises when some of the regressors

cre omitied from the equatlon and/or scme additional Tegressors are
oﬁgry included in. the model, or when the algebraic form of the

rrgr03310n equation is misspe01fieda In such cases-QLS method

would falI to glve sablsfactory estimates of the regression

v

caefflclents,

Anether class, of problems s’ created when E(ee!) o I
~Ceneralised least squares technlques are called for in such

>1tuat10ns. Y .

Problems also arise shen the regressers-(X)-are stochistic-
There is little trouble if X 1s stochastic but fully independent
of € . However, if the regressors and dlsturﬁences are correlated;
LS estimates cease to be unbiased. The danger is particularly
great if the regressor values and the disturbancesfin the same““
observational equation are correlated. In this case, GLS estimates
of B's are not even asymptotically unbiasede This kiﬁh of )

complicatien arises in two imnortant 51puet10ns $ i;7-\,""
- ‘ o P - \. f v i -
(a)a where the regressors ane observed with errors
hi” ; i : G RS

and (b)  where-the equatinn 19 embedded in simultaneous.

H

equotion models where several currepg'éaﬁpgsaousﬁhﬁb .
[ RN N Ci K- \:-')


http://www.cvisiontech.com

varisbles sre determined through the simultaneous
interactions of the -structural relationships in

. the model.
.This studys is largely gqncérnedeitp

1« Problems of omiscion of regressors from a single
equation regression model leading to autocorrelation

among the disturbances

2  MSE criterion in the context of specification error

_ analysis with stochastic~regressors
and

3e Handling of errors in varlable medels with trendlng @

autocorrelated arTOTSe

- Below we give a summatry of 3ifferent chapters in the thesis.

Chapter lé A-survey of previous researehes. e

This chapter gives a brief survey of existing liﬁérééﬁfé on
three main problemé of economefridé (single equation methods) to
provide a background to the investigations reported-ié this thesis.
The problems are those arising due to R

Sre

(a) Omission of relevant regressors frem a regrecsion
equation and misspecification of algebraic forms

(b) Autecorrelation of disturbances
(¢) Errors in variables.

(a) Omission of relevant regreasors from a regresqion gquation

and misspecification of algebralc fhrmq + The survey has been

organised under the following heads &
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(1)

(11)

NESED

{iv)

(v)

and (vi)

The consequences of using OLS procedures fbr‘éstimating

the regressionLcoefficients,of‘a-misspécified model.
Applications of specificationfanalysis;

Different tests of misspecificatlon and their appli—

cationS¢
The residual variance criterion.. .

The methed of using least squares.to_apgroximate

unknown regression functionse

 Consequences of misspecification in siﬁultaneous

equation systemses

(b} Agtoggriegatigg of‘digturbanceg-: Here we have not consi-

‘dered the distributed lag médels or simultaneous equation models

although a few references have been cited. Différent.methods of

testing the randomness of disturbances in a reg¥ession model have

been discussed. A brief survey of different methods of estimating

the fégression coefficients in a regression-model w;th autocorre-

lated disturbances has been given. Ay o

(¢) Errors in variables & Single-equatipn errors in variable

models have béén considered. We have dilscussed.

(1)

Effects of errors of obsarvations on OLS estimation

of régression coefficlents.
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(i1) Effects of errors on the regression line.
(iii) Methods of estimation.

and  (iv) Other relevant problems.

Chapter 2. Autocorrelated disturbances in the light of specili-

cation analysis. Fol4

Thls chapter examine the consequerices of omissinn of
relevant regressors from a regression equation with nonstochastice
regressors.  In the literature on econometric methods 1t is

wellknown that one of the important causes of autocorrelation

i v &

among disturbances is omisSion of relevant regressors from a

regression equation. When the disturbances are autoconrelatef,

they are generally assumed to follow the Markov schemne.
Eg = p Ep_q + Uy )

3 )
5tSA§e1ag_

wheres |p] < 1, E(ut? =0 ¥& and cov(ugy uy) = o]

the Kronecke}'delté.'

In this cases the QLS formulae for éstimating the sampling
variances of the estimated regression coefficiéntsltend to give

serious underestimates in some important siﬁuations.

Ify however, thé effect of omission of regressors be exami~-
following the approach of specification analysis due to Theil

(1957)y the ususl *nrmulae appear to overestimate the samplirg

-~
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variances of the estimated regre351nn cnefflcients of the misspeci-
fled equationi 8o we arrive at something like a contradiction.
Thls point has been examlned carsfully in this chapter from the

point of view of specification anaiysis-,

Supposes from the equation (0:1), let the last (k-m)
. &
regressors have been omitted. . Sos the misspecified model is

= Xt 4 et - e T (0.3)
where X' contains the first P eolumérof X 8 = (B Bhreee Bl
and €' (81’.'4""’5 e 8 is different from  $... 8" should
be defined 1n such a way that 1t may capture to the extent pessible
the partial influence of the omitted regressors on the regressands;
orsy 1n other words, Bi‘s should be defined in such a way that
they may enable the regression function to approximate as closely
as possible the systematlc component f - ¥y 1e@ey B Xj+B Xohees
+ kak. |

The OLS estimates of g;‘s will, . in general, be biased
estimates of ﬁi'e eﬁq_ﬁay qet be so meaningful. 1If, however,
the interest lies meinlg.in P%?Q;Qtingﬁ yf.from;theytruncated
set of regressore aﬁd net-inhestiﬁating iqdividual structural

parametersy‘the equ;tién day still be quite usefuls.
pt has been defined so that D {% B ET s e T T

% =
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" E {(y*X+B+)’ (y - X%B+)} 1s minimum (0e4)

(0e4) is minimised for

+

[H

gt = (X"t )y L xt o xp = e e (0e5)

+

i

and € ¥ - x gt _ (0.8)

The newly defined ¢ has some peculiar properties.
E(€+) = (X—Xff_’.)ﬁ 3 -3 =(31’ ZZ":"’ZH)'

+ + _ & L2 -
E{e" e 1) = zz’l+ a ;n ¥ 0 In (075

e D(eh) = B’ —m(DY { - BN = L

Soy £''s do not follow a Markov scheme: ~ . -

a e; = p e;_l + ﬁ£ v Jpl <1 ‘ahdl-ﬁt spherical (Oee}
It has been observed that the_OLS,pstimator‘gives unbiaser

estimates of a“;ts, 1 = 198yeecqlle

p( %) = B( gt-pY) (- ) = LET XL (0:9)
+, +
o° 1s estimated by —=—E-

where e 1is the OLS residual given by
=g 0F ) (0.10)

where B° 1s the OLS estimator of p% in (0:3).
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It can be shown that

E(e™'e") = 5 (X - X P)' (X-XPIP +*(n-m)o? S (a1
e+' 4 2 o ‘ . L g P
Thus, . Mﬁ ~m_ > ¢ (in general) R o (0.12)

+, + vl
503 the usual OLS formula H (X ‘X ) 7 gives an overestimate

‘ f
of D(.ﬁ*). Thisy however, is a ‘famlliar result proved by Theil
(1967). | | | |

The Durbin—Natson (D—-W) (1950,l951) test statistic for
testing the randomness of disturbances of*the mlsspecified model

is given by vl . , :

a= -2 T, ¢ e Rhew T (oJEd)

plind= 2(1 - p ) | | (0.14)

Q.
iz

and = ' el Tl Pt '
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g I

and a§= 1im -
N300 &

sha
U M

P - :
%Ojt

. L : . 7 L
where Zo,t 1s the t-th element in the yector. (X ~ X P, )8

and P = l1im P.
s n-éool

If §'=0, then o = 0. Ify however, 5 1s positive and
02/02 is such that 0o 1s appreciably greater than zero, 4

o]
would often come out to be significantly smaller than 2 in large

samples. .

When the D-W statistic comes out to be significantly less
than 2y one generally tries to re-estimate ﬁ+ by fitting a
Markov scheme: to e;'s, leeey
s; i e;_l, g <1 and Uy 1s the spherlcal disturbance
| ' | tarmr | ‘ T oels)
Here the symbol Po has been used in antlcipation of subsequent
resultse The methods of reﬂestimation discussed are

(a)  Cochrane-Orcutt two-step method (1949).

(b) - Prais-Winsten method (vide Raoy 1968).

(c) Durbin two-step procedure (1960).

It has been observed that all the abeve two~step procédures glve
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5 0.

.
7

inconsistent estimates of p's The 'probability 1imit of the
Gochrane-Orcutt two-step estimator 15 approx1mately equal to that
of PraiSwWinsten;eséiﬁator 3 whereas, the probability limit of
the Durbin two-step estimator is different from those_ofTCochféﬁe—

'~Qrcutt two-step and Pra1SAWinqten estimators.

Ty i . 4

Chapter 3. Autocorrelated disturbances 1n the light of spe01ﬁ1e
' cation analysis - Part II.‘

LTI

In this chapter we have mainly extended the resuvlts in

Chapter 2 to the Lase where x! s are stochastic and st‘sJin the

true modelnareFthemselves,agtgggrre%ated. In this. chapter we have

also considered the subecases where

L Ul

(1) x's are stcchastic and €r's 1s the true model are

A

spherical. oy
(ii) x‘s are nonstochastic end st's in the true model
2 i e X0 e v f‘( ' .‘ o f‘:t =g ”
follow a Merkov scheme.
5 7 3 Egawe 0 @ ,t:r_'ff" T O w ¥ '_ [y
The model considered is
- g:"\:f‘:.“‘{ “ £ ! T TES &5 Ml 7‘ . e T Tt LR '.}‘-i“-' ‘ 4
y= XB + ¢ (00 16)

b e ) wwires gl siten ey X

x's are stochastic and

f‘“\':,{ . ’-— Rl R 1 T S S R L 2 g

Et =p £p_q * Uy lp[ <1 aud Uy spherlcal with mean 0 and varis cs
AT T e et e ) Ve o agedm SATIC s e Ty o = 1

-

u ] ”so, in this case,
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2 = 1)
a ;
where 02 = .u.g
1= p
and i o
1 p p o0 8
p 1 peee
vV o= : - :

From the model (0.186)y the last (k-m) regressors havs been

omitted. Sos the misspecified model is of the form
i il I :
y = X6+ e , (0.17)

where 87 1y obtained by minimising
By - X8 (v - X8

It has been observed that the above exPressioh is minimum when

L

don 6 = EEt YR 0

L

| ."13”5 - iy 5 i s
Mfmhm CWBRLET
e ‘i 2 FED 1984
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"

et =y - et s L SRR T

Here € has the following properties -

5(e") = Bx-X" Byp =7 = (%, ZgreearZ ) £ 0 (in general)

E(etetty = p7 2 CARD) + 0%y and
D(e") = E{e+ - E(e+)} {e+ L E(e+.)}‘ = cév
Ll (0. 20)

From the above resultsy it 1s obvious that gz's do not

follow a Markov scheme given by
. . . . _
®t o €43 * Uy 3 |p] <1 and @ spherical.

In the special case where .E( EAle) = 0, (dees where the

regressions of X on X are strictly linear),

E(et) = 0 } it g (0 21)

It has been observed that the OLS estimstor fails to give

unblased estimates of g, ,But,;uﬂderfthé assuﬁptidn that

plim (= X'X) exists, (0. 22)
n—>00 |

OLS give consigtent estimate or p'.

In the special cases where E( E’[X%) = 0y the 0LS give
unbiased estimate of g7,
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In the general casesy where E( E‘IX%) % 05 let us define

i_IE
e e el
i B 1 ? .
"=t o+ % t 2, Bh 11
BO B Bl 1=9 Bi i ’ 52’ sew 5m

4

(’51’ ﬂ;a Ly g':'ﬂ)t'

1]

(X-:)t Xg)-l -_-l'% (aij)i 14 = 1,2"‘..’111, 515 T By ok o iy

where alj = aj 1- = 1-0-9'?.7"': for i j = 2y 3 ?'J'—-{m Wi
an +y b
and | {§’~ Det (X' X ). m

~ :
Loty ‘87 be the OLS estimator of g
‘ g N X ] i s

~o ' ;
V( 3&+) = [the (1,1) element in the matrix V'] + Hy a?

a n
L {_%l JE pj(n’j)} | (0.25)
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where vTois thé‘dispersion ﬁatf}x of (n fx y 1 ;' 7 e

TM1= M;EL

; : ‘ +
= [the (is1) element in the matrix V' ] + wy o°

In . .,

P

.
V(B
2 § re pel ' ;
+ 20 ( 8] ql +'p q2+ LR R 4 +D qn_l)’ 132,3,-..,111.
LA - (0e24)
e |
where My = E(‘:) |
i= l %1 %t . ‘
S = E s t -—'7‘112’.0‘,‘.'..\,1'1"'1 b
2t ‘QZ
ai) =ea ) - E ) b Ayl o En) o+ eew +oag(E . o~ K)
j 12 Fpy = Xl + 2algyr il T ot T By Uiy Xm

abrut e
o® 1s estimated by "g—:ﬁ%- in the OLS procedure.

iy, .
+ o+
o .= ¥y -4 B,

i
39

Under the assumption that ~Z 's are homogcggastic-withlvai;ande

0’%’ 1 = - = Y ; ; . p {

(0. 25).-“".‘- ]
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Pt
*

-

i 2 n-1
E(eT1e™ = n(o® + 62) trace W - m03+ 29—[a b pj(n-j) +
n-1 j #36 g
+ a ZopY ZTAx ~X ) (% b |
22 42 =1 2y 1+37 2
*am Zoo {igl. _(Xzi = X (X, 545Kt i§1(xai’*xs)'f"2; 143 ) Preoe
=1 , . ' :
" jfﬂ £ %1 m
+ 2 opt i B (R X )(x - X )
m g P m’ Fm 143 T M
= (n—m)‘c,_2 +'q-d2‘; E(SO) ~ trace W. 10.26)
) ¥ e ‘
T TR D) R P +
wher? W”TME{(Xb Xb? XE B Xbli

If o :‘di B(S,) vanishes. The term“nq;,— trace W may be

taken as the effect of omission on the residusl sum of squares.

+,
e e

n -

Vhether is an overestimate, or underestimate or unbiased

estimate of o° will depend on the relative magnifudes'bf

n 0 - trace(W) and E(S Do
Z ¢ : .
The standard OLS formulae for estimating the variance of
A Y ow o s 1

~ 4 At . : :
ﬁl and Bi’ i = 2¢3y5ese3m are given by

el e (0e27)
n —-—m IQ, \
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+ + L, : o ‘ 3
gl 1 4 o, S A : ‘
o A 1 = 243ssee9m respectively (0e28)

and

From (0.23)s (0.24), (0.26), (0a27) &nd.(0.28), we find
that the standard OLS formulse fof estinating V(~%1) and
V( 3;)3 i= 2,3,;,.,m_.Qan(bé“in‘erfér in two respectse The
és‘imate df o2 may not be unbiased and at the same time many terms
11 the expression for V(J%E) or :V( §;)y: 1= 243sasesm may be
neglecteds This result is, however not surprising. Alsimilar
r§§u%tlholds for the OLS estimation of varianceé of thé estimafed
régreséion coefficlents when the disturbances in the correptlyﬁ

: ‘ !‘ " - - * xl
specified model are autocerrelated and there is nd omission of

Tegressors.

Next, the Speicél case E(Z [Xf) = 0  has been consldered.
Let X be the (n*> (k-m) matrix which contains the last (k-m)

columns of the matrix X. When the regressions of X on X are

i,

o

perfectly linear, s Ak
~ —— s e el Pk
E(Z [X) =0 [since 7= (XX B)p = (X X" F¥)p ]
where CPH = {E(Xf' X+)}”l BT X))

and g¥* = (5m;l’ Bm+2""’ﬁk)l
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The following set of regression equations have been considered.

X =% 649 (0.29)
We have further assumed that < 1s independent of X'. So,

E([X) = (L) = 0,
5 = P*

and  E(Z [X:) = EK‘)[xz) ¥ = g

B( 7 7 r[XZ) = E(J p** gkt ) 'IX;) = B( pregxr ) 1)
(0.30)

We can write

N J owe B
melyl m2y 1 : ksl
J ] -3 S 35
Q I'ﬂ+l,2 0 g I‘I}+2,E ree k,g
| b : y
mlsny 2410 kn

We assume that these (k-m) column veetors in (0.30) are mhathally
independent. This means that any two regfeésoré in X have

Zero partiasl correlation if the influengce of X" has been
eliminated.‘ Each vector of disturbances in (0+30) has 'been axsumed
t? be homoscedastic and the i-th vector follows the Markov

scheme eives hy
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N = ~J n

WLt TP Tmedytel Y Tyt b ol <1 i= 1,25000 (kem)

i = 293}'::. ,..n
(0.31)

nw*i,t - 1s the spherical disturbance term with

, _ | . w5
Emm—'ri,t) =0 ¥t and E(nl’m—i,t, nmi,s) = UHH—igTF 6138, Sts
being the Kronecker delta.
Defining %% = 42 px 1= 1,2 (k-m)
i i, m+i ? . j
k~m
Be *2 .
=i 151 71 | 1 (0.32)
U2
and ,,— U;i’ lm+i2_§_, i= lsgsocng (k—m]
- ps
We have
A 2 2 a?l nod J B
VEBLT) = 4y (0%%69) 4 2E[~= ¥ { 2 () 0¥y (n-3)]
1 J R
2
a n-j .
r28 [ = 3 T (o] o2 (0.33)
) J=1 ,
and
2 = 2 2
V(B)»—M(G+G*)+2f:(2 Py 93 +p %) gy
k-m k~m
2 k2 n-l .2 n-1 2
+ - s 2 8 . -
( jf DJ U,j + p G ) q2 + + (le pJ lO’J + p )qn l]

= 2,37.00,1’11 : ‘(0034)
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In the expression for ¢ E(e+‘e+) in (0.24)y we can now obtain
a simplified expression for *trscos 1

i
V.

-1 m
- — kS 4 2 d %2 4y
trace W ~jmo P E[all { X 1~l py 03 ? (n j)}_

)

] n-1 w j o0 n-j

* 299 le(gzl ey 7] T (th ~£p) (x5, by X0}
n-1 y-m - ‘ _

Yo (E LR PLOTY { E (Ko %2) (g, 41 = %)

n-j
N 2 (XBt - 3)(X2 t+3 ~ Fo)}

+‘ LA A L R O IR R

n-1 w-m i .2 n-j _
* jfﬁ(ifﬁ Pi %1 ){éza(xm X )( *n, t+j ” Xm)}]
= ma*© 4 E(8%) (say) i (0435)

The conclusinns reparding the bine 4n rstimating %hé'sampling
FaN
i )
variances of BI and ﬁgls, 1= 2sees3m by the OLS method are

similar to those 'in the general case.
In large samples when the E%‘s are positively autocorrelated,

under certain assumptions the D-W statistic for testing the random—

ness of dlsturbances comes out ag

* Z e; ef
-1 ki t=g © i =il gy
plim 4 = 2(1 - plim 5
n—>o0 -Doo no,
, z e
t=1
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3
s 0'“}-+_Q 02 ‘ ‘
A B (0.37)
¥ e e 0 3‘?
p L J
g
7
- n
2 6. €
where = | 513 =2 ,E” s
p = p4ilm == :
n->00 n &:2
T &
t=1 3
-1 - "
7//tié By Ag.3
p_J"—*’“ plim
Z I =3 OO % '522
t=1 °©
n
and G.Ef), = plim 1 z ?tz
Z n—+oco 0 tq

For » > 0y plim d 1s likely to be less than 2 shnze,
n—>00

sample o, 1s awsumed to = positive.
2 ,
When D-W statlstic comes out to be significantly less than

2: one generally fits a Markov scheme

+ o5+ + ‘ _ . s
Et = g Et—l + ut tn Et and tries teo re-estimate B

by using the three methods of re-estimation discussed in Chapter 2.
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¢
Here alscs in the general casey these three methods of

re-estimatjon giVe inconcisvent esvimaves of B+. The probability
1imit of the Cnchrane-Orcutt (1949) two-step estimator is approxi-
nately same as that ef the Prais-Winstein (vide 35651968)eetimatormsat
the probability limit of the Durbin (1960) twn-step estimator is
different from;the'probability-limits of Coehrane—OEcﬁtt tweestep

and Prais-Winsten estimators.
_if“r -l
Tn the speclal casesy where the regressicns of X on X

are strictly lineary: iasy where E( E’VX+3 =0, ‘undef“a set

i

nf fairly general cnnd1t10ns, all the three methods nf re-estimation
give cnnsistent estlmates of’ the 134'.-i | | |
Next we consider the subcases (1) and (ii).

Subcase. £8y: x‘s are stochasticy' e!s.spherical.

All the results can ‘be obtained by puttlng In_tfor V.-,in the

previous results.

Here it has been observed that OLS give biased but con51stent
estimates of pT. Only in the spe01el cases where EB( z/X) =

0LS give unbiased estimates of B+.

A et — -
M and ﬁif be the OLS estimates of Bl+ and . B; §

e
Let Bl

i = 233’000 s Me

~ ' - ,».
B s + TR S - g
v{ Bl) = [the (1,1) element of V + 49 07] > 4q0° = VOLS( B1)

(0.38)


http://www.cvisiontech.com

=D

and in general,

A T - ; N
V{ %;) = [the (1s1) element of v+ oy 02] > uidg = VOLS( g;)
i = 23331(:.)111 (0139)
Here ‘.E(e+’ ) sl(n—m)idz
$ et O SRR, [T S _1 +,
A BLISX (XK T Xy 2 ]'[{I—XO(¥§'X i 4 4
. . (0+440)

>2(n~mn)o

+, + ) | s :
! - . 3 . ] E .
Soy  S—2- (x't x')7! will give bissed estimates of the variances

AT ‘
of V(‘EE)’ V{( ﬁ;) 1= 2yeee9ym depending on the relative

effects of the first term in (0438) or (0.39) and the second term

in (0- ‘D)'
Large sample propertiee of the ueunl CLS fnrmulae inr 9st1mau1ﬂ.
4o
the sampling varianceﬂ nf B have been investlgatod under the
assumption that E( z 4K ) =0,
All the three methods of re-estimation (mentioned before)

give inconsistent estimates of B e But in the special cases where

E( E}Xﬁ) = Q},Ithe methods of re-estimation give consistent esti-
> )

mates of B .

ubgase {ii The regressors (X's) are nonstochastic and e's

follow a Markov schénme

gt-;’p g1+ Uy lp] <1 and u; spherical.
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Most of the conclusions for stochastic X and e's fellowlng a

Markov schemey remain valid here also.

Chapter 4. . MSE criterion in the cnntext of specification error

analysis wlth stochastic regressors.

Here we‘have congidered a two variabie stochastic regressor
medel from which one regressor has been omittede The true model
is ' [

Y= ByXy + B Xo + 8 (0.41;
Xy and xz are stochastic anﬁ £ is’the,spheniéa;;disturbance
term. X3 X5 ¥ and €& are n X1 vectors. Eaéﬁ of the
varlables has been taken as s deviation‘from its respectlve mean.

¢ 1s independent of Xq and Xoye
From the above models the regressor fxg ‘has been omitted.
Sey the misspecified model 1is E |

% : y = BI Xl + F+ : A (O..42)

N ,
Let Bl and %I be the OLS estimators of Bl and Bf respectivel.

We have obtained conditions under which V ¢ Ei) fhe'asymptntic

A - Jor
variance of Bl ls greater than V ( Ei) the asymptotic variance

of EE.

V¢ %E) < V¢ ﬁl) 1f‘and only if
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| (0.43)
(0e44)

.,

(0e45)

Tk, ~24-
‘o 2
B2 ww: o Bepe
< o W
— (\ ! .- Ak RS g il
where /‘é\z 1s the OLS estimate of B8, in (0-41)3
. ;/ A e
| EG § Fo1 Ty )m - bead
-621 = i
LI ‘ﬁ(l* . ) ir
: o ;'
L * *p1 *q1 ,
and 521 = n o . ‘-.
B, 2 .
] %%;
Also,
1im MSE( {31) < 1lim MSE( Bl) if and only 1if
n—» 00 , T n-soo .
2
Ii"‘E.' 2 1
= 2 — o
v (B, V(5,.)
g 1+ 21
lgl"
When X and %, jointly fellow a bivariate 'n_ormal distribution,
= A e
V(8 1-0%y
2 e 2
%21 nopig

1/ For some sequence of random varisbles

gla g2,. .o ’gn-’

"E':(gn)

1lim E(g )
s Ja'e}
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whéfé'_plz i1s the populstion correlation coefficient between X,
and Xpye ‘ S
Sos the condition in (0.44) becones
2
5 " o7 =t
e 3 3 , (0. 46)
V(Bg) 1+ f.'l--l) 912 2 . :
The sbove result has been extended to the case where the
true regression model consists of k “ragressors from which one
regressor has been omitted.
The true regression equation is ik
Y:BI X1+ Bz 2+ Qo¢+ Bk xk+ € & (0047>

Yy Xq9%y ,...,xg and e are (n > 1) vectorse - Each of the

variables has been taken as a dev1ation from its means ¢ s

spherical with the variance covarlance matrlx GZI « ¢ 1is also

independent of x'se.

From the model (0.47) Xk has been omitteds Sos the
mlsspecifled model is ol

' o
= BZ Xy + 52 x2 ool - B -1 Xk l : (0.48)

Here MSE( ;31) < MSE( B ) if and only if


http://www.cvisiontech.com

02

2 2

2!t

o

BBy Oy, 103y s k=1

where

2
ke 123040 k1

2 N — PR
Uko 123. 60kl ~ E(Skc 123.-.k~1) J

of Xk on xlyxgyb..,xk_l.

02 =
ke 123- e K~1

2

2

"‘0-1'023 ese K~—1 B

-2 =

1
_gg ity o b e
K1 Z30ee k-1

2

.‘"'

o .2 n
_plk023took*1 _%LQQ_LLth:L1
%1423 ses k-1
v

(0408 .00 k1)

= a2
E( Sl- 23 se s }{-‘1)

¢z

L e

{0.49)

where 51,98 4 kel is the resi.ual sum of squafég in the linear

regression of X, on Xy x33‘¢;;, X q°

plk:éé;;.k—ll is’ the partial correlation coeffic%ent between X

and Xk conditional on XE’XS"'Xk—l

S “E T, S ; gt e i
61{10 230001&—-1 = the 1s% c¢lement i

f‘u o

;i X X

12 22
Xln X2n

o P

b

{f*i’xf)_l X%f-xk} .

1

is the residual sum of squares in the linear regréssion
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\
3

.

97

£y

' Under the assumption that XI,XZ,...,XK"joint;y follow a %k

variate normal distributilon, the condition in (0.49) becomes

qa . 2 ‘ 2 S
4‘—0- ) i plko 230 _ook—l ¥ ) l
: < = ‘ | {0.50)

S ek T P
? %k 128.0.k-1/ 1t (@D el on ka1

Mc; Callum (1972) and Wickeus (1972) showed that the asymptotic
bias‘in estiméting a regression coeffidient-by using a prdiy for
an otherwise relevant independent vsriable in 2 multbiple regression

Lfmddél is: smaller than that obtained 5yrdiscarding the proxy

. wg2ltogethers Algner (1974) expanded thls analysis to consider the

. variance in addition to bias in the critetion fanctien.

‘kigner considered the model

- . Y= 2BiXy HBgXo + & Yl | s (0e51)

Ty e

éﬁlere' Xy x2 and y jointiy follaw a trivariate normal distri-

i

fbution.; 7
£~ N (0y0) and (xly.-.xgy,f_—r_ﬁz(ﬁg y )

/'011 J12 ¥

where & =
’ “ig . C#Sggh

A simple randem sample of observations are available on

ve ¥. 2nd  x* vhera
= [
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X‘S = xg + u ' (0e52)

where uffo(O;,qu)e u. 1is assumed to be: independent of all"’
other basic variables.

Let 4? be the OLS estimate of Bl in (0e51)s Obtaining

1P

%sufflcient condition under which "MSE( BlP 1s greater-that
2/

MSE( B ), Algner observed that although the 1nclusion of proxy

18 not a superlor strategy unequivocally, it can be recommended

ra

over a.broad rangé of empirlcal 31tuat10ns.

However, the formula for. MSE( B ) obtained by Aigner was
wrong.' Tn fact, the true result for MSE( B ) will have .some more
terms than those con51dered by Algner. TIn this chapter we have

rectified this mistakes
We have obtained the sufficlent condition under which

{MSEf'ElP) < MSE( 7). Our conclusion is to include proxy in most .
of: the cases... Our examinatiocn covers a wider range of values of
p1g (the correlation coefficient between x, and xz), n{the

sample size) and e

Considering the general case of Xk regressors we have also

derived a necessary and sufficient condition under.which*

il

2/ g: is same as in (0,42),
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202

f-.Msw ) < MSE( B Ye

SE( BlP

Let the true regression moael be

v =X151 + Xzﬁz .+ see + xk'Bk + £
yl, Xl, .ngo..,xk
£~ '\I(OQO')Q_(X:L,X

where

distributions. o

gt " N
;o i ) ‘le_ :

e NI
ﬁ - [}
: ) \Ukl ] Gkg eee O-k.k‘

Suppose Xk. has been observed with errore

*

e s B R

where u s~ N(0, au)
variableses
2 3/
1im MSE( Bl ) < 1lim MSE( B )
n—>00 P n->co

7-..9X-| )—*-J N- ( 0’ 2)3

52 b 02
Pu Bx ii; = %
v Gk.ZS...k-—l (1 - plkoZSoouk—'l)

(0+53)

Jdlntly fellow a (k+1) variate normal

where

SO,

(0+54)

N
L

and u 1is independent of all other basic

if and only if

92
5
y ko 23400 ki-1
B “121
o] 1 + — 4+ 1
5 { 5 2 5}
i1s 230 o o k-1 O 102800 ekl PTkeo3,. . k1) + 9y
(0.55)
3/ '

el is same as in (0,48),
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and ferJarre—pe-—

2
_ 96 =
klu 28.0.1{"’1

A
plk-ZB.,,k—l
2 o 2 : . T
k02300-k"‘1 ¢ plk-%oook 1 end k'i' 23'..4_1 arec same
as before.
If sufficient data are avallaple as in the book by Griliches

~ TRE Qe

where

and Ringstad (1971)y (vide also Ajgner L@?@), the condltion (0.55)
can be verified easily. s

Chapter 5, Handling of errors in variable models with trending

or autocorrelated errors.:

In this chapter we have considered the problems of estimatien

rcla%ing to (E—V) modols where the onrors 6f observations have é&lther
trénd ' cdmponents or the errors are autécerrclaﬁoa 'Both lidear and

eXponential trends have been considered.

(1) Errors in variable models with linear " trend in errors.

The true model is 8T~ -
Yt = o+ B xt + —gt” E t = 1’2,0 -:"’7‘1’1”; g (0056)

t 1s the spherical disturbande term with variance 0%

where ¢
x 1s stochastic and e  1s Independent of x.

......
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*
Let X = X+ Uy .
. ’ (0e57)
and Ry = TtV
For linear trend,
= et
up = ¢y ¥ cgt + Uy
—~ (0.58)
Vs B dl + dgt + W,
’Ht and ’;t are spherical with mean 0 and variances GE and
u

qﬁ respectively. ﬁé s and V£ 's are serially and mutually
b .

independent and independent of x and ye. These are. also-

Independent of etfs‘ The E-V model is

vE = X+ Bxf+ Y+ g : = b © (0.59)

where < = (o + d, - Beq)

¥

Y= («, - pey) :

ut = 4 e -+ ut . _
-0 ' (0e60)
w v o o .
and Vt = Av e + vt
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. Assumptions about 'E; and '?; are same as before.
S0y the E-V model is
' -d t -d_t
yg = o+ B xg -Ye Y 45 e % LR
=4t
= &+ B x¥ +(s -Yye + Ty
4
— * v . —dt ' ;
= &+ B xf 4+Ye + gy (0a61)
where . du = dv = 4

g - "k ~ : v .
Yy=8 A5 S=4A and Y= (5 -V,
For estimating such E-V models, instrumental variable

technique has been adopteds. Assuming {kt} series to be serially

correlated, the matrix of instrumertsl variables can be taken as

o -
& X7 2
£ 3
1 x2 3 _

'_'r‘voo

*. Y
x* 4 n

For the case where Uy and Vi have exponéﬁtiél‘%rends}'we“have
assumed d to be known. A search proc?dgré f&r-estimating d could
. . be suggesteds But it is not easy to verify whether such

estimates are reasonalee.
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In both the cases of linear trend and exponeutial trend in
errors, the asymptotic efficienny nf the I-V estimator of B with
rocspect to that of the 0Lg estimator of 8 (in the case where

) 4
L. = 0 ¥t and O0LS ig consistents) 1s given by

2 . . -
Ey = pq {(provided {Xt} is stationary) {0.63)
-1 | ) z
= St - 1
EoGxp =X (x4 - XN ¥ x
t=1 -
where pp = B a1 4 e AT
I (x, - %12
t=1

Followlng Karni and Weissman (1974) alternative I-V estimators

0f o5 8y ¥ in (0.592) or o BsY  1n (0.61) can be obtained by

congidering the matrix of instrumental variables

=

i xg + x{ 2
1 xz + xg 3
% : : : (0.64)
(2) L] [ ] -
1 xﬁ + x;_2 n-1

Herejy the asymptotic efficiency of the 1-v estimator of 3B
with respect to that of the OLS estimator of B8 (in both the cases
of linear trend in errors and exponential {rend in errors) will be

given by
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2
2 Py .
B, = ——— >F., = p2 (0.65)
2 (1+02) & 1

=2
whare Po =
2 n-l1 o

2 (Xt = X')
t=1

n-1

¥ X
t=3 orl -
X = 15 seme- :
and x+_ ——Ta:iy—- " -a5—befors,

[a 1]

R e :kﬁz'-‘z’-%"‘)/@-z)
Howevers the metheds of estimation suggested here can be used
rather routinely even when the errors do not have a trend component.

Under the assumption that "i{tt

cally and identically distributed we have obtalned up te order

s are independentlysy symmetri-

. y the small sample bias of I-V estimator of B in both the cases
n

of linear trend and exponentisl trend in errors.

Following Gurian and Halperih {(1271), under the assumptions
that 'E;?é are independentlys identically and normally distributed,
we have obtained the exact small‘samplelbiases cf OLS estimators of
B both including and excluding the time variable from the models
(0a59) and (0.61)
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In this chapter we have also considered the case where the
measurement errors _ut’s and v,.!'s are correlateds The true model

1s given by (0«56)s The E-V model is

£ *
vE o= e+ 8 xf+og (0066)
where y§ =yt vy
) (0a67)
xf o= ox o+ ouy

u, and vy have mean OC. u,  and vy are mutually independent
and iudependent of true values Uy and vy are also independent

of e,e But both the series {ut} and {vt} are serielly correla-

ted.
. Let

5 = Po St * Wor 7 ool <1
Ug =g g g+ Wpp 0 depl <1 (0. 68)
Vi = pg Veop t Wap 0 el <1

Vot Wit and Wot are spherical with mean 0 and variances

‘03 y 03 » and 03 + For estimating « and B8, I-V technique

o 1 2

has been adoptede Under the assumption that ut's are so small
that rank ordering of the observed x*!s give the rank ordering

of true x!'sy the matrix of instrumental variables is
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e

{0,69)

= s e

vhere ry is the rank of x*¥ ,
- = # -
+ We have 2also discussed the methods of esthnating tha variance-

covariance matrix(V) of £ consistently, Moreover, the following

Rl ]

special cases

(a)

Py = O
0‘121 ,
() 5 = A (known)
G ' o - ?
v

have been discussed in details,

However, the case of autocdrrolatt"d grrors is much mor ¢

compllcatod than the casec of tronding errovs. The uorlrablllty
of the methods of est-imation suggested” (_s;)eclqlly for cstimating

V) in this case remains to -be exp'erimenQally verified,

e Low

Chapbter 6 concluding Observations‘:i

£

In thls chapter wo take an OVOT'Vlew ‘bf‘ the czntlro investiga-

tion and stressr‘d the rcsults roachod and ‘bhmr s:Lgnificancos. Wc 7 -
have al 50 pointod to the directions £ T}hlch "‘UT'thcr resoarches '

s

can be made,

4/ This is in fact, an oxtension of Durbin‘s (1954) method of using
the ranks of the observed x¥is as 1nstrumentsa

t
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CHAP™ER 1

A SURVEY OF PREVIOUS RESEARCHES

1.1 Introduction

Most of the econometric theory is mainly cenceraned with
the estimation and testing of relationships among economic
variables, For this, the first step is to specify the relation-
ship or the model in mathematical form, Ths next step is to
collect data relating to the economy or the sector to which the
model refers, Finally, we use different statistical methods
for estimating the parameters of the model and judge by sultable
tests whether the model provides a realistic picture of the

phenomenon belng studied,

Although economic theory often specifies the exact functional
reiationsnips.among-its variaoles, a careful examination of
economic data shows that no such exact relationships exist in
reality, So, the task of econometric theory is to provide a link
between the exact relationships of theory and the observed relation-
ships of reality, So, need is felt for the specification of a
stochastic error term in each relation, Hence, the probabilistic
version of econometrics is that it specifies a functional relation-
ship in which the observed independent variables and unobserved
disturbances determine an observed dependent variable, The

statistical properties of the disturbances are also specified,

~37 -
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Very often in econometric practice one adepts the classical
linear regression model, %Tue ciassical linear regression model

is given by

Vg% X3 Py ¥ Fpy Bo b oees v Xy By teg, Il2,L 0

(1,1,1)
or, in matrix notation,
y= X +e 3 (1.1,2)
where f
rj Yl \.' #
- [y
'y | Yo \'
5 b
L5
\In |
SR Ter e M \
! : )
- X1p ¥pg ke Kyp |
- |
o §h .t ‘
I‘. J
\\\xln xal L % /.‘"

= (xly Xg beo xk)

. very often the first column of X s (1,1, ..., 1)

Bl “\\ El \
¢ ; P ; €e i!
¢ B i | and g w02
AR L .
By - " TN
2
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The underlying assumptions are

E(e) = 0, (LA 230

21 (1,1,4)

t ==
Bleel) o ot

X 1s nonstochastic and fixed in repeated samples. BRank of

X=% <n,

In such a case, the ordinary least squaresQLSymethed give bes
lineare unbiased estimates of the regression coefficients B's in
(1,1,1)., If in addition e is assumed to be nomally distributed,
the model is called classical normal linear regression model.
Standard methods of interval estimation and hypothesis testiﬁg are

based on this model,

But the assumptions on :'s and X's wr2y not be fulfilled in
reality, or, 1n other words,the model may not be correctly speci-
fied, The literature on econocmetric methods [vide Johnston (1972),
Goldberger(1984), Theil (1971) ete,] is largely concerned with the
statistical problems that arise when one or more of the assumptions

of the classical model is found to be unrealistic.

One class of problem arises when some of the regressors are
omitted from the equation and/or some additional regressors are
wrongly included in the model, or when the algebraic form of the

regression equatién\is misspecified., In such cases, OLS method
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would fail to give satisfactory estimates of the regression

coefficients,

Another class of problems is created by nonspherical
disturbances, Here E(ce') # 0° I,- “hen the diagonal élements
of the dispersion matrix are unequal, but the off-diagonal
e¢lements are zerp, we have the problem of heteroscedasticity,
If, on the other hand, the diagonal elements are equal but the
off-diagonal elements are non-zero, we have the problem of
intercorrelated disturbances., Both the above two complications
may also be present in a given problem, In such cases, OLS
procedures of point estimation may not be optimal and interval
estimation and hypothesis testing may be seriously wroneg.
Generalised least squares techniques are called for in such

situations,

Problems also arise when the regressors (X) are stochastic,
There is 1little trouble if X is stochastic but fully independent
of €, However, if the regressars and disturbances are correlated,
OLS estimates cease to be unbiased, This is the case where one
of the regressors is a lagged value of the Y wvariable. The
danger is particularly great if the regressor values gnd the
disturbances in the t-th observational eguation in (1,1.1) are
correlated, In this case, OLS estimates of 83's are net even

asymptotically unbiased, In this case, the least squares
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estimates will be inconsistent, This kind of complication arises

in two important situations @
(a) where the regressors are observed with errors

and (v where the equation is embedded in simultaneous equation
nodels where several current endogeiious variables are
determined through the simultaneous interactions of

the structural relationships in the model,

This chapter is intended to give a brief survey of the
existing literature on the following problems of econometric

methedology,

L% Omission of regressors from econometric relationships

3

~ or more generally, the misspecification of algebraic

forms of these relationships,
2. Autocorrelation of disturbances,

e Presence of errors in observations on the regressors,

This survey is mostly confined to the discussion of single equation

econonetric models,

1,2 Omission of regressors and misspecification of

algebrzic forms.

1,2,1 Consequences of omission of regressors and misspecification

of algebraic forms, A regressor may be omitted from an economic
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relationship for three main reasons |

(a) The importance of the particular regressor may be

unknowa o the analyst,

b Reliable data on the regressor may not be available

and the regressors may have to be replaced by a substitute, a.d

(¢) Inclusion of the regressor may increasc the risk of

multicollinearity,

then a regressor is omitted or the algebraic form of the
equation is wrongly specified, estimation of the regression
coefficlents in the misspecified =2quation poses some serious
problems, This was first studied by Theil (1957), He considered

the following regression model
v=%8 + ¢ (1,2.1)

where X 1is a matrix of order n >k with rank k., The element

in the i-th row and the j-th column of X is denoted by

Xig0 i=1,2, ..., n % 3=12 ..,% TItis further specified
that the elements of X are real and nonstochastic | vy 1s a
column vector of n real eclements having ;s 1 = 1,2, svey B

as the 1-th element and B is a k =1 vector of real parameters,
e is an n >n vector of disturbances and B{e) = 0, Given

these, the 0LS estimate of B 1is
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B= L vy {i,2,2.

We krow that B is an unbiased estimator of §# snd this B
is BLUZ if it 1s further assumed that

2

E(ee') = o 1I_ ,

It

NHow suppose that instead of using X as the matrix of
observations, one uses some other real nonstochastic matrix X
of order n <k’ with rank k', So, “he misspecified model

may be written as
y=X B +¢ (1,2,3)

.. BTy =13 - xt st

L 1. SR e +
provided X' 1s also nonstochastic, and thi~ implies B®(e') # O
in general, for whatever B, If however, the columns of ¥ and

+.
those of X+ are linearly A~nondent  +hen ws mav have Efe ) = o

for some choice of B+. Now from (1,2,63)

4t

-— T
il a2t = = B

)y 5 xe

PR (1,2.45

P 1is given by the auxllary regression eguations
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+ . ,
X=XP + matrix of residusal s

In the special case, suppose X1 oo seay 3k—1 are
ccrrectly specified and included in the regression eguation and

T= 3 + - - r - -+
%, 1s replaced by Xk Thus X = (xl,xzqo.,?xk_lgkk) and

v (X19 XpresesXy 1 % s
Here, E(B,) = By * Py By h= 102, 0, k-1, (1.2.6.
but B(B,) = P, B (1.2.7
k kk "k Saik
where Pl's are given by the regression equation
k-1 N |
Ty T h§1 Pk ¥n1 ¥ Py My (1.2.8,

are the elements in the i-th row and I Sk

+

where and R
ere Xhi n X4
COlUMNy h=1y2y4,4k of X and i-th row and k~th column of ¥ PaSTHN-

tivelye.

The specification blas of the estimator 5h s given by

T"i/f\+ — = ! "
ElBy) - B ™ P B s h=1.2 ., k-1 (1,2.9;

Yhe estimators

4 '+ f\'+ /\‘+ . 3 s
B Bz, evss By _; have no speuifi?atlon bias 1if
corresponding regressors are uacorrelated with tHe incorrectly

the

specified Kk.

Theil (1957) alsc considersd the following special cases °
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(2) The true model is

= 2 -
Yi By t ByX; + Boxy tey , 1 ¢°2?f"’n (1,2.10

But the analyst fits a linear relationship of the form

_ ot o + _ ; .
Vi = By TR Xy ey, 1=1,2,,.,n (1,2,11

It is assumed that Xy i1s measured as a deviation from its

Mean
N n
x= % Zx .,
i=1
Here E( B]) = By + Br (1,2,12°
n
ny 5 M
where rE on = J'HL— .
2 Z x?
Z o

Since the slope of (1,2,1C) &b the centre of gravity ( x = 0),
m
is equal to By, we may conclude that 32 Ea is the specificatica
2
bias, '
Theil (1957) also gave some interesting results for the
case where the correct specification for a bivariate relationship

is linear in logarithms and the incorrect specification is linear

in the variables themselves. Correct specification is

E
y; =Axt el i=1,2,...,n (1,2.13)
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s

where one fits

vy =atbx | i, = B2 e, S

e's are normally and independently distributed with commen
variance 02. Then expectation of elastiecity ( % ) obtainecd fica

the fitted line at the centre of gravity is

2172

E(n )= e2 5{1 + %iﬁ - 1) ylx) L0 } (1,2.15.

where yi and v are the coefficients of skewness and of variasica
respectively of the independent variable =x, The result {1,2.1i5)
shows that here two types of errors have been made, One ié th=
error due to nonlinearity of the true model, This is given by
the expression between the curled brackets, If B = 1, there s
no specification bias resulting from this somrce, Because then
the relationship between x and y is linear, The second soure
of error 1s concerned with *ho treatment cf the disturbances,

log v contains the disturbance term & which is normally dist-i-
buted with zero mean and variance 020 But the specification
a%ogged deals with y (not with log y), This leads to the faston
ezd which is always > 1, so that, for this reason, 7 :is bia;&d

away from zero;

1.2,2 Application of specification apalysis. Application of

specification analysis can be found in the theofy of aggregaticn
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of microeconomic relations (vide Theil (1954), Theil (1971),
The matrix representation of this theory is due to Kloek {1961),
Let us consider that tiere are N economie agents, each of

&

wilch is characterized by a behavioral equation of the type

Vi< K Botd T, d=1g,,,,W (1,2,16)

where yi and xsi' are column vectors each contalnlng n elements,
Xi is a matrlx of order n >, Tho assumption is that for each
pair of agents (i j) any column of (y19 X)) fias the 1nterpretgulop

as the corresponding column of (y. XVﬁ, -Only these two columns

R
refer to two different agents, Moreover, in each Xy let the
elements in the first column bo unity, The parameter vectors

Bl, BB’ vesy Py of N agonts can be arrangod in .a sy <N matrix !

/' ﬁll Bl2 . e . ..: BlN

| Par Pope o .. Bgy %:
(Blgﬁzgfo.ogﬁN) = s . - ! 3 (112.11)
5 § L] - J
N\ Pk Prp e o e By /
Now, from (1,2,16) we have
N N S
3 ey Al R o
y=% Z X 8. t2 3 ¢, (1,2,18)
e N 1=1 } & N 1=1 i
- 1 K
where vy = N = V4 «
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But, no researcher will like to work with the above. model bocause
thc labour would . be prohibltive He will perfer to cstimate a

7mapro relation of the=ﬂorm

i y N ' | b
y= X8 + i:% PN Ei e (102019)
i=1 . :

o = N
- where . X = N Zh_ I
i:

Here the OL3 estimator of B is

PI -l S T L ; i P | : l“ﬂ
SIS S L (e
Making usual aSsumptions9 e T
2 e = :
Ay . ":5"‘1‘E(.“~‘ EUT)' = 2 B B . ‘. e
i=1 - O =
i _ -t-'l--t-l. . .

is the coefficient matrix of the auxiliary regression where

B
%-Xiq }s regressed on X. Writinggtheseffegressioﬁs as

N o
l =3 -
N Fohi % b

=1 Jhi Xe3 e

-—

where x,4 &nd x, are respectively the («, h)-th eclements

of X, and X and b is (j,h)-th element of By.

Jjhi

L
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| AT
Let ﬁh be the- h-th eloment of tho vector ]B
. 2 \ 9 N -, o TR 3 iy N ., e ) ﬁ'»--'. = A -
i« B(B Y= Zvh By e TR, B Po TRESS g T
R’ 42 hhi hi b j?!h 421 ,]hi _ L = o
) N ' i ‘ N
] = Zﬂ--+2( )B (Zb..ﬁ..)
N i_'l bhh l hi 7‘1’1 i=7 - ‘]hl : Ji-
L S L R ok o (1.2521)
N e N: S s - 4
Since iEl By = I, 51 bjhi =, L if "h=j i

: = DMl if h #l_j = e e e

Ay 1 . ree L9 3
et e Ay - o

The second and the third torms in (l 2,21) togethor give the

aggrcgation bilas of the macro cocfflclent By, -
il

Another application of the speclflcation ana1y51s can be
found in the theory of groupjng of observatiﬁns (Haltovsky(1973))

Thls can ‘be illustrated 1n the case of a two regressor model

!
a2

= A+ 4+ B.X. toe’ o 11.2:22)
% ‘B,. lel BE 2 F‘“ g ST e R RS B . h ;

L

WHSTOF Il LRy ‘ai‘@-'*.n-""*‘l columh: vedtors, "~ 1 7
| mil PR

This can be written in terns of1deviations from overall means as
Y= By Xyt ByXy gt e (1,2,23)

where Yos Xl,o* xz‘o and €5 denote deviations from their

respective means,
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Suppose we have two tables, one showing averages of all
values for each of a number of intervals of x; and the other
giving averages of all the values for each of a number of
intervals of Xge Haitovsky proposed to obtain an estimate Si
of Bl by regressing Vo OB xl,O using the table based on
X1 classification, and an estimate 32‘0f 32 by the simple
regression of Y on xz,o from the tébles based oq X,
classification. Both the estimates will be blased, because in

each case we have left out a relevant regressor from the .

regressor equation >

n ;
(2)
” . Tle0,1 *a5001 ;
D “en
DI ¢
=1 103
(2) S
3 iil *2,0,1 *1,0,1
_ +BCBg) = By - R S (1,2.25)
z xg'o 1 L
=]_ sy

where the sgpérscfipt§ ((1) and (BZ)LOh”the summation sign
inhdicates the table used for computation, Haltovsky's technigue

]
consists in solving for By and 32 - from the equation

1 -- -
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. =01=-

TR :'551‘* Xl 0.1 *2.0,1
B13"’ 51 +Bg :

(1.2.26)

. j-." " ,-.5'12 s
N = xl,O;i

I e ’
B (24 S Tl N
Ry 9 - 2 0 1 1 O A% awed s
b= By izl el B (52 427
5 : . _A:-‘?:: ) ‘ 2 ( 2) x2 ) E “ s . _-.. A :
“ = "2,0,1

Obviously those solutions are unblasod estimators of 61 d .

52, Finglly,

Cdbepe oS Y WREpT By Xy o T s (1,2, 28)

AP v N 0 ) SE
fnereg‘yﬁgﬁik,and Xy .are thgi;espective‘Méahs of ¥y, ¥y and
Bt S e 2.3 ‘ o i ; -{I:\-} o b ‘ ; .

Lo : R

MJ An carly application of spcclficatlon analysis was made by
Grljichc;-(i957) in estlmatlng the rctntns to scalb 1n:prpductlon
.wqen an 1nput variable (e.g. managorialrserv1ces) has. boen omittod
.iufrom tho Cobb—Douglas ‘production function  Under usual- assump~
ons the om1551on of managerlal 1nputs blases the. estimate of
:;“ﬂg elastlcwty of output- with respoct to capital inputs upwards
- and ho cstlmate of returnsg to scale downward If the quality

T

d%ffo“enccs are dlsrogardcd in tho measure of ! 1abour input

PN

onast1c1ty of Tabour -ihputs becomos downwardly biaSed that of

capital inputs upwardly biased and estimates ofAreturns to scale

¥
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become downwardly biased, If geometric averages and sums are
used when aggregating the xnputs, there will-%e no bias unless
there is a strong association between the individual elasticities
and the levels of the corresponding inputs, But the estimates
are not good, Even when we use the arithmetic sums, the
elasticities may not lead to bias (exeept in the constant térm)
if the inputs being aggregated are used in -approximately fixed

proportions,

Mundlak (1961) (See‘also Hoch 1955), suggested a method of
‘estimating the parameters of production functions free of
management-bias; Management input is generally omittéd:becauSe
of lack of units for its direct measuroméﬁt.~ The ﬁnderlying
assumptﬁon is that the management does not change considerably
over time, and for short peri»ds, say, a few yoars it remains
constant, For the purpose of anaLysisﬂflx ;shsufficiéht that
{thc managcmnnt remaing 3;;:i;:E;:;: afﬁgéiodEthﬁo years, since .
at 1eastftw0'observationsjen,each figm are re&uired.j Thest #
procedure;ﬁeals with the linear form of a productféﬁﬁfunctioﬁ.
So,'thiérincludes thaaCobbeouglas;fﬁﬁé£ion where the variables
are written inLLoéaritth“Analysis of ceovariance has been used
to obtain unbiased cstimates of the coefflclcnt of the llnear i
form of the production function, -«The blas‘of¢§he;estimates due

to omissioh of management input has beeﬁ.evakﬁatedAand.then

.

R 3
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management has been estimated up to a‘mﬁlfiplier. The method,
however, does not solve the problem of estimating the cconditional
expectationﬁgf output for a giﬁen bundle of resources since the
value to_he}egtimated depends on the value of management, and
therefore varics from firm to'firml- As long as management is

not’ measurable, 1t is not possibvle to solvo such problems. One
Possibllity is to ignore the managoment variable, 1In this césé
the inferonce is directcd to tho avcrage firm under the assumptlmn
‘that- the managomont variable in the sample is measured from its
average, Another possibilitygisato use the interfirm regressiosn,
Since it 1s subject to managemenﬁ biés the correlation bctwecn
management and other inputs will be refleéted’ ‘here, So, thlS

can be used for the purpose of inforrlng about the productivity

of a fim vhose level of nanagement is known,

N 2
Yo

-1;2.371Test§_of specification errors. Ramsey, (1969) (see also
r’RamSQy 1974) suggested four différent procedgres of testing for
the presence of specification errors in cléséiééihlinear Tegress-
ion model, The sp001fication errors considered are (a) omitted

variables, (b) incorrect functional form, (c) simultaneous

J

B

: equation problems and {(d) heteroscedasticlty.l
-. The modcl considered for rogr0331on is

' L. ,3' s
+ . . i £ o ER ]
. 2 . v

vy = XR+ &
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i N 3
i ol
e Seds
it 55 T I o &
Cree
E h
HL S
T L ey
S S -
},-i Hos = St ;_

where ¥ '1-'s<'-an-,,.t{'n,,—--.?';i.:,;_.;y;e_a_g:tpr, X is an n Kkﬁatrix of non-

stochastic regressors;of rank. kmﬂ_ is a- k ><1 " Vector of

IS

regression coefflcionts and et is an ﬁ =1 voctor of 1ndeﬁchdcnt’ i
disturbandes tcmms-poxmally and idontically dlstributoﬁ with hesn

zero and variance 62 Equation (1.2 29) spocifies the null "
hypothesis, For each: spccification error the al%ornatiﬁo ' oF
hypothesis' is defined” by speclfying, that the true model has some

k)
el e .._..“‘-;. ,..r.(. ‘-_;_ !
= AL

other specificationy. -

Let theJS§ééifiéE€ibnT6T‘théTtrue=modeiﬁfh%unn:'~ ok
p -?‘_:) by T = 4 T \ W et
R TR A 5 SEEGER Ve S me o .
y= XghzVt e, e 23 Rl ol y gt ap)
" y P T RUTE L Snant (@) OF Yy sy
¥ = Z)/ + € g F ;.’?,"":{'-:\;_l- ot { - ) (1 2 31) -
| . P o
y=Xp+te, e~N(Q , 0" ) . (1.2.33)

In model (1.2,30), the specifiecation of ¥y, X and B are same
as in (1,2,29), zis an n >1 nonstochastic regressor vector

and Y 1is the corrosponding coefficient, s**N( g, @ I )« If one

-

£ "j F 7,3'1 G -L,.!:-' - o
the misspecification is that of omitting thc regressor Ze In
f

) ;
model (1,2,31), Z2 1is an n <k matrix of nonstochastic regress-

uses (1,2.29) to ostimato B, one has a misspccifled model wheve

ors and ¢~ N( 0, ¢ In)‘ If one considers a matrix X -whése -
elements are obtained from the elements of the matrix 2Z by

nonlinear transformations, and one uses (1,1,29) as the regression
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model instead of (1,2,31), one would have a misspecified model
the misspecification being that of incorrect functional form of
regressors, In (1,2,32), let y be an n ><1 regressand vector,
Z an ><k1 matrix of nonstochastic regressors of full rank with 7

the céfiQSpnnding.doeffinient veetor and W an n):kzmatrix of stoch

agtic regresgors of rank k2 in robgerved gamples with 6 thé eorres-
ponding coefficiens vector

/ and &~ N( 008 In), where the elements in each row of W and

the corresponding 519 i = 1 2,...9nf‘are statistically depondont i

Defining X = (z" W) an’ n Xk (k=ky +k o)y matrix, and

e ” E =~

[

prt= (Y, S‘) a k ><i vector if one were to _assume that the
model y = XB + e. so deflngd satisfies the condlt;ons given in
(1,2.292), one has a misspecified model in which, the misspeciflca—wu
tion is donoted bv stmultaneous equation problem, In (1 2. 33)
all the c‘aecifications in mo¢21 (1,2.29) are corréct except that
62~& is diagonal -arid  has unequal clements on tho diagonal,

)

Here if one uses model (1,1,22), the SpOleiCation error of

heteroscedasticity 1s said to have been made(’

1

- Next, Ramsey obtained Theil's (1965) BLUS residual vector
= By 2"yt : fo e
. - « 3= g " .: ] - .

¢ "=ty P (1.2.34)

where the +{n - k) ><n¢Lmatrix A SéfisfieS?fhemeonditiQna

< S

O M
Lo
o


http://www.cvisiontech.com

56=

B 0 ); .;{ _':'.-f_:- oL B 3
A"Xm?-’ O % e Y iy R

[

S (et 1 : T e,3)
A'A e

I}
H

Ramsey showed that for model specified in (1,2.30), (L, z 31)

and (1,2,32), the use of the equation (1, 2, 20) as the true regress -

ion model leads to a BLUS residual vector 6*' . vwhose distribution

2
is N(atg, o I, . k) whcre £ is a (n - k) =1 nongtochastic

vector whose precise definition depends on the particuLarimisspeci*
Je e, ‘ .| e |
fication and ¢ is the‘variance oﬁ. 31+¥ i= 1.2, wn Under

9 91"9

quite general condltions ‘Ramsey showed that’ AKE canfbe abproxi~

mate vy i Ly s
e R

5 qz q2 + L W N . k F (1f2.36)

A'E S ql a3

whcre (n - k) ><1 dimensional vcctors qa‘s .3 éffgﬁ,..t are -

’

doflncd by g ¥ 59 : [ =
q.-} = A“ y(3+1)9 3 ="71§‘2§ AR R R 3. ) (1¢ 203?)
~ 3y N - et
and yﬁg Vo y§;+1).'§;3 Ay yﬂa 1))thro

1/ If the regression (1,2,29) is not in deviation term and

a constant term is not included in X, then

Ao o ATLo+ aq F a, +

1Q1 2q2 [ N N

vhere 1= (1,1,..,,1)'.

9
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+

'yiq is the j-th power of the least sdﬁares.estimatOr of mean

& . o e P 20
E{y, ). T bl e

" In the case where the model (1,2.83) is'%fue the use of
the model @l 2 29) -implies that the distributionm of e'+
(conditlonal on X) is N(0, Al 4), 5 Sl

¥

cht we shall discuss brlefly the tests developed b¥ Ramsey.
For each of the tests cpnsidered by Ramsey, the. nu11 hypothesis is

SH Distrlbution of &% 1s N( 0, %1 ). 7 T (1;2,38)

The alternative hypotheses H, i gllvg,sé}éq‘m

- 1
H) i Distrfbution of &% 1s W(artg, o271 L) s
o and - “ _: = N g e . %
H2: - Distribution of ‘e +. is N( 0, ©) o . : (.1:;:‘2040)

where 6. is a dlagonal positive definite matrix,

i 18 Regression Specification Error Test (RESET).

Under the alternatiVe hypothesis” H,, Ramsey considered

the regrcssion equation

7 e
If however, the implicit relationship between 2z and y dis
not analytic it may not be possiblo to express z in temms of

a polynomial in y,‘
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o ] e ok nhl ¢
© Ty Ty F Kglo Foew. T Kd, T U . (Lo 3L

where u 1s a vector of independent:dlsturbance ﬁéfﬁ‘distributed

as normsl with zero mean and constant varienee. Hgfis7%ested by

o Wl
the usual F “test for testing the Joint significance of

0° 190009

) w1th.(p+1; and (n%k~p~1) degrees of freedom, S

i

oo o Under H_, F - statistic is dlstrlbuted,as a eentralis

Ramsey and Sehmidb (1976) described PLSET procedure using

a regression equation of the form

b B A : i | | 3 L - ) i
e T = gy tglp F oyt b » (L,2p42)
: ...

(i,e,, there is no intercept term).

Here also_a central F statistic with p and (n—keﬁ) degreee

of freedcs is uSed to test th 2 Jjoint 31gn1fi~ance of Ay 5% 2,,..,qpb
Ramsey apd Schmidt: (1976) denoted this as BLUS variant A test
and the RESET procedure dovh’nned bijaﬁSOj (1969) &as- BLUS variant
B test, Whether BLUS vepiant A or BLUS variant B- is more
powerful will generally depend on the alternativc hypothesis,

However, the two tests appear to give almost identjcal results in

some limited Monte Carlo experiments that have been done,

s o e e w

3/ How many dj‘S'are'needed will deﬁeﬁd on the particular
problem. Ramsey found that using ¢;,d, and q4 was sufficient,
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%

Ramsey and Schmidt (1976) also showed that BLUS variant A
test is equivalent to a test obtained by regressing the OLS
residuals & | on My Q [vhere Q = (qlgqg,...,qn)‘ and &

e =[I - X(X'X) T X'] and using the ususl F test for testing
the joint significance of the associated coefficients, This
procedure is also identical to regressing y on (X, Q) and
using the usual F stafistic for testing the hypothesis that

the coefficlients associated with Q are zero.

2. Rank Specification Error Test (RASET)

Here Ramsey (1969) assumed that the second moment of é;+
varies monotonically with g4 = ai y(2)9 i=12,...,n%k, wvhere
: T
L

aj 1s the i-th row of A, Since 81 is an estimate of the

second moment of 'E'+, Ramsey considered the relationship between

the rankings of P

;- and of qi1e Rearranging 941 into ascending

order and permuting the elements of the veetor e * conformably,

one transforms 447 > J, 3= 1,2,.,.,nk where ] 1is the index
2

of J-th largest g;;. Then one assigns to each Ei+ an integer
2
r; such that r; indicates the r-th largest value of Ei+ ‘

So n-k numbers {ri} 1s a permutation of integers 1,2,3,,,,,n-k.
For testing Ho against Hl’ Spearman's rank correlation coeffici-

ent given by

N o) n-k o
R =1 - 5 z (ri - 1) (1,2.43)
s (n%k) [(n-k)° - 1] i=1
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po M oo |

For‘large values one uses the asymptotic result that

'+

—

T ‘(n-k-2) Rg \.'2 .
Yy ST Bt

(1 - RS n

is distributed as Student's t with (n-k-2) degrees of freedom

under the null hypothesis,

3. Kolmogorov's Specification Error Test (KOMSET).

The distribution of the squared residuals. é; depends upon

3 , . b _2 |
the unknown scale factor ¢ . RABET 1g invariance of this seale
factor. Another way of avoiding this scale factor is to consider

the distribution of

2, z
é* I
= —Lcii{-\g 34Kk 3,k = 1,2, w0k (1,2.45)

ﬂi‘s are so chosen that they are independent underr Hye Ramsey

'

studied the distribution of ﬂl

s under HO“énd Hy. Then, for

testing Ho against Hl; he applied Kolmogorov's test on these
. :

ﬂi S.

| 4. Bartlett's M specification Error Test (BAMSET),

Following Bartlett's M test for equalityof variances,
Ramsey (1969) also suggested a procedure fqr tééting HO against

HQ.
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In mostiof the models examined in Ramsey and Gilbert (1969,
197%2) . RASET has 1@55 power than either RESET or BAMSET and
sométimes Jess than both

Appllcations of7Ramsey S tcsts VRamsey (1968 a) first.reported

the use of hisfSpeEiTieation error teétsﬂclété} f@ﬁly describcd

in Ramsey (1969), ° Tha*tcsts were used to discriminate betwecn
eight different mo&als ‘showing the relat:i.onship -’ﬁc“cween v‘aluc
addod per unit‘of lahour and- wage rate, Dospite ‘the, small sample'w
sizes, the" t@sts wGre fairly scnsit1VG to\varlous altcrnativgé =
and onaoled oné to sclqct'armodel in profevencemto thc others.¥“ wii
Gllbcrt (1969) used the tests to dlscriminﬁte beﬁwnen altornatlveﬁ¢
formulatlcns-ofwdemand for’ money, . Leo C1972) usad them fer v
discriminatlng between four. altgnnativo productinnﬁfuncplons
Ramsey an. Zarembka (197 1) us.d the tests to dlsénlminatc betwcén
the Cobb-Douglas, CES, VES, GPF and quadratlc production functians

using the data relating to UJS manufacturing industries; Although

< AJ:

all the coefficlents estimates were statistically significant At
5 per cent level and all the R2 values were greater than:O,QB?H
CES came out as the best form of the prqdu@ﬁidn function and
aifnough the quadratic form had the hiéﬁESt'vélug of RE it was

‘ most strongly regected by spoc1f1cation error tests. Ramsey |
(1971) tosted the adequacy of a market demand model fomulated -
in Ramsey (1972). Loeb (1976) appliod tho tosts to compare

o
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three quarterly investmentmodels f&fﬁulaﬁed’by Anderson (1964,
19673, Elsner (1962) anl Mcyc: -Glanber (1974) with data rclating
to thlrtecn manufacturlng 1ndustrlos, The" modcls were ranked in
ovd@rfef;the number of” tlmes they fallod to be re;ectod by the "
four Ramsey tosts) Thls rank ‘schame has been comparod to that ;-
found in a previous study uyJérgen&Gn Hunter and. Wadlri (JHN)
(1970). 1In both.the ranking schemos Eisncr s mode;ﬂprovﬁd to

be tho bost one, . dn JHN ‘scheme Meyor-Glanbcr model was ranked
second and Anderson model’ ‘1last, But9 according to Raaseyftests_

Anderson‘model wgsqyanke@~SGcond andlMeyerFGlanber-model last,

-

S By R i 3

il RO L, ‘Bupposeé the true modcl is -

egidual va ‘
given by (l,2 1), and tho miSSpeciflod model is glvon by (1 2. 2)
The OLS residual for ﬁhc nodcl (1,2,2) is

i y-x+ B By T w41, 2,46)

e

Theil (1957) showed:thatf

N A Q B i
;KﬁL—JE_Z|31_02~ S UL AL BAT)

P
=
-

4

N E
SIRRE

(1,2,47) means that the r931dua1 variance estlmatoT @vercstlmatos
2

oo I

if the spcclfiCation isc ineorroct Thls pﬁguldes 4 ﬁa31s‘for

Aoy

selecting a sp@cificatlon with %he smallest rosidqal vamlancc

50 G
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But, this criterion does not work when neither specification is
correct, Again, it can be applied in‘a straightforward manner

only if the different specificatisns have the same regressand,
Koerts and Abrahemse (1970) pointed out that when the sample
/e i u r’i

-slze 1s small, sthe analyst may make a wrong decision with a large

probability by choosing a model with smaller feéidualuvariance.

Klook (1975) showed that the probability of adopting ‘the
Wronﬂ modol on thc basis of the r051dua1 varianca-crltovlon
onveygqs.to,gere ag.the sample slze lﬁareases.f¢$he trug model
is , T -; :
A y= X3 +¢ | 7 (1.2.49)

M,
Wi

"whorc X is an n =<k matrix of nonstocﬁastic rogressors.‘
‘The 44 $turbanges (e) are indopendontly and identically distributed

with zero mean, ' 3

A ';‘,&? y
The misspecified model is i Y )
y= Z¥+u e (1,2.50)

where Z 1s an h Xh nonstochastic regressor matrix and u ;s
are the disturbances, It is aséﬁmed*ﬁhat.thp spaée‘spanneﬁ by
 £ﬁé-éolumns of z does not contain X8. Hence, a specification
which contains all the variables in the correct sﬁébificétion

plus some irrelevant variables, is not-incorrect in this set up,
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Let 52 be the residual variance of thé correctly gpecifiéd model
and tz be the residual wariance’ oftﬁhg 1ncorfeéﬁ1y¢§pecifigd_ i,

moﬂql. Then‘Kloek.prQVQd that>_37?@:

& A i ' £~,_ ¥ -; 2
lim P[t 2 L5800 ‘For everyedn <1 and |
n—>o0 Jp——

for a certain number g >0 (1;2,51)

Schmidt (1974) showed that the‘Theiifé (1957)'residual*'=*
variance criterion étiil‘holds'asfmbtbtfcgllyJWhenithé‘diStufbances
(ets) are autocorreiatéd, ' He considered the classical regression
model | * F

PN
: Y

=X + ¢ [ g = (1,2.52)

(v is a vector of rder n ><1 and X is a matrix of nonstochastlc

o B
I

' regressors of‘order ‘n xk) with the dlfforonce that thofdlstur*

bances ¢€'s follow a Markov scheme

ey = PEL_y t U, lpl <1 and wu.'s are 1,1.4, ag"N(O,GEJ
8.2 ' WL Y fege s .
' ' (1,2.53)

Let the misspecified model be b

y=re) t v

<

ey

e rn1,.2,54)

( Z271s oF ordef n xh),
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Assoclated with this model, there is an estimate of op .

&/
0 -

» with probability 1imit
S0, Yk =V <P Ve

= X*;tB +ug +H(p
where - X"“‘,t =- X, "pxt_l _
and ;{t -:

-65 -

TP ep . t=2,2,.n

e

‘)(;JS\:Lt o th 3 @e's 9 th) »

vy

Undcr the assumption that as n — 00 b ‘l AR convcrges to a

positive definite ma rix

2'9;530 LR 0

n "

say

9

(1,2,55)

g e 8
o :
ST o
TR aey an
£ P
3 (1,2,56)
B W" - .L
n ]
e
i o el ok
#
E} 30
and
¥
Tt
L) -
' (1 D 57)

pm)

-2, 2
plim 07 > o - (2,2,58)
n=>co u u = (
4/ I8 p s not ostimated but chlqlsen on some apriorigrounds
tden clearly, p = P '1 i*f the moddl y.= Z“X + w_is not
to be transforms, p - g 7.,0._._‘ Thus the model y= z2¥+ w

i3

LD P

s ’
L Y

23 e “Cguluuu\ab Vary g!..ub.l.‘dl
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It should also be noted that when the model ¥ = z)’+ w
contains the same regressors as the tmie model(i e, 2= X) the
probability limit of the estimated error variance is smaller
when the true value of p is used to perform the transformation

{1.2.55) than when any other value of ¢ iS‘used;

~, At
i .

1;2,5 Using least squares to approximate unknowh regression

functiong., White (1976) obtained some results which”ma? be
interesting for one eoncerned with least’ squares approximatlon ‘
for unknown regression equations but whose relevance for
econometric practice is not quite clear, He considered models

like T e

&

y; =eCK) ve, ,  1=12.,.n " : (1.2.59)

X; are 1adependent“ identica.ly distributed 1.><r vectors
with generaliged density function daF{ x ). X being a real —_—
valued 1 >xr vector and g( xi) is an unknown Borel funeﬁlon

Moreover, %; and ey are independent, E(si x ) ‘ E(Qi ) =0

and E(ee'}) = d,glnﬁ i — o

T

The a?pep ro ximation mo del is
Vi = xiﬁ + Uy, i=1 - LI (1,2.60)

where x5 isa 1 xxk veetor
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7

ui = g( x_i) = X_Lﬁ + Ei“‘ i = 1920...911 : (1'2L6_‘_)

Lt can be shown that the OLS estimator of B is

s = (x0T xry (1,2.6%

where X is an n >k matrix with typical row xi)

~
ig & constant estimater of B, So, Xy B 1s a consistent

—~—

estimate of a least squares approximation teo gf xi) with

weighting function dF( x ),

White also considered the case of nonspherical disturbances,

Z.2s, the case where

E(eet) = # 021 (1,2,63)

n

and {- is positive definitg, The generalised least sQuares estimsta
of B 1is '

=T opely (1,2,64)

w3

~
LA
P

1s a consistent estimator of B, and so is a consistent

Xy
estimate of a least squares approximation to g( x;) with weight-

ing function d4dF( x).

1,2.6 Consequences of misspecification in simultaneous equation

systems,  Fisher (1966) considered the effect of omission of
variables in the context of similtaneous equation systems, Let

she particuler equation considered in the system be
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—-58=

=YY+ KB £ W ke (1, 2657

Yy is an n component vector of observations on an endogenot.s

variable, Y is an n >m matrix of observations on m okhe.
endogenous variables® X; isan n >§( matrix of observations

on A included exogenous variables, W is an n xq mabrix of
observations on ¢ additional variables. & 1is a vector of

disturbances, Y , B and M are vectors of coefficicnt parameter,
The analyst commits a speeification error by assuming that 7 = 0,

The general k-class estimator of « = ( Y; B)' is given by

-

, =1
Y'Y-kv'y YRy £ X - kvt _
- .
«(k) = f : Y (1,2.68)
t t §| =F /
\ X].Y Xlxl .d‘f Xl J/

here v 1is an n ><m matrix of values of residuals from the
‘educed form regression of ¥ on X where X = [x ; Xz] is
n n >k matrix of observations on all exogenous variables in
he complete system, X2 being the matrix of observations on
hose exogenous variables which are excluded from the equation

ader study, k 1is a scalar with plim k=1 if = 0.
n ~00

len k=1, « (k) becomes the two-stage least squares estimator.

For limited Information maximum likelihood estimator, k

3 glven by the smallest root »f the determinental equation
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Det(Qy - »Q) = 0 (1,2.67}

Ql and Q2 are the varlance-covariance matrices of the residuzls
from the regressions of the (m+1) endogenous variables correspond-
ing to 'y and Y on the variables corresponding to X; and X

respectively,
Now

5

d(k) = plin ( «(k) - «)

I =D o0
| Sl
Y'Y-kvty T'Xq o (T kvt) (Whtu)
= plim L |
n=>cc ‘\ XiY KiXi/; i Xi(Wﬂ + 1) /
3 1 E \\\ /
i # 0 (in general) (1,2,68)

which shows the inconsistency.

Fisher (1966) considered in particular the problem whether
the two stage least squares Is affected more {or less) by specifi-
cation errors than the limited informatinn maximum likelihmad
estimator is, It was found that although two stage least scuarecs
and limited information maximum likelihnod estimatnrs (and other
members of K class) have different sensitivities to specification
error, neither is uniformly more robust than the other . ¥hich
estimator is less sensitive to the type of specification error
depends on the unobservable nature of error committed and on

the unobservable disturbanges,
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Summers! (1965) cenducted Monte Carlo experiments to examine
the small sample properties of two stage least squares (2SLS),
limited information (least variance ratin) maximum likellhood
(LISE) estimator, full information maximum likelihood estimater
(FIML) estimatnr and ordinarly least squares (OLS) estimator when
one variable was incorrectly excluded from one of the two
equations in the model, When exogenous variables were independent |
258L3 was ranked first, LISE Secnnd, OLS third and FIML last,

For correlated exngenous variables, 2SL38 was agelin ranked first

OLS second, FIML third and LISE last,

1

Cragg (1968) conducted an extensive series of Monte-Carls
experiments to study the effoets of Inecorrect specification on
small sample properties of several simultaneous equation estimators.
For most purposes, the effecu of misspecification was probably
ennugh tn render the estimates of the structural coefficlents
useless, Falling to specify as zero all cnefficlents for which
this was correct had serinus effects on the coentral tendencles and
dispersinns ~f the estimators when knowledge ~f these coefficlients
was important for the identificatinn ~f an equati~n, FIML seenaed
the estimator most sensitive to this danger, These findings
suggest that in the absence »f a fairly complete and conformably
held knewledge about which coefficients in a structure are very

small or zern, successful econnmetric medel bullding becomes &
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very difficult task.

1

tosd

For more details on the effect of misspecification on sme

%
il

sanple properties of different simul taneous eguation estimators,

see also Waud (1966), Glahe and Hunt (1970) and Eyvon (1972).

1.3 Antocorrelated disturbances, Next we give a brief review

of consideradle literature cn the protlems created by au tooorrelmted
disturbances in single equation regression analysis, These problems

may less exactly be called the time series Eomplication.

In a pioneering paper Yule (1926) crew attention to the
difficulties of interpreting the correlation beiween the two
autocorrelated series, But in the subsequent literature anong
those anthofs who were concerned with the measurement of funciicnal

relatic ip between autocorrelated series, fow nma de it cleur that

neh
the 51gn1f ant faetof‘in the analysis is‘the autoceorrelation of
the eryor term and not the autocorrelztioﬁs‘of the time series
themselves, This point was clearly brought’ out by Aitken (1934/
1935) angd 1a§er'by Champernowne (1948) who carried the problenm

into the field oX statistical estimation and sampling theory,

Cochrane and Orcutt {1949) pointed out that. the error
terns in manysif not most, economic relationships are highly
positively autocorrelated, They claimed that such autocorrela-—

tions arise from three main sources
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1. Omission of important eccnomic and non-economic regressors
from the relationship and the autocorrelated nature of thess

TegTressOTrSs
P Faulty choice of the algebraic form of the relationshipe

3, rutocorrelated errors of observationsa

le3.1 Tests of randomness of disturbancese Anderson (1941),

Bartlett (1935), Dixon (1944), Durbin and Watson {1950, 1951),
Geisser (1956)s Neumann (1941,1942); Hart (-o42(a)s 1942(b))
Rubin (1945Y; Shewon and Johnson (1965) and Wnite (1957,1961)
among-ethersr'investigated the problem of testing for randomness
of the Cisburbances in a regression equatione Host of these
“studieé are relevant to using the null hypothesis of zere auto-

correlation among disturbance;.‘é/

Two of the most important contributlons are due to Veon-Neumann
(1941, 1942) and of Durbin and Watson (1950; 1951)» The Von-Neumenn

test of randomness 1s as follows 5

5/ For the cases where egquatinn centaln lagged values of explana-
tory variables (X's) and/or the lagged values of the dependent
variable (y)s considerable work has been done on the problems
of testing of randomness of Aisturbances and estimation of
regressirn coefflcients. TFor detalls, references are madey
ameng others, to Knyck (1954), Marriot and Pope (1954),
opiliches (1961,1967), White (1961), Leeuw {1962), Tinsely
(1962), Liviatan (1963}, Morten (1964}, Teylor and Wilson(1964),
Almon (1965,1968)s Copas (1966), Wallis (1967), Zellner and
?eise% (1968), Lund and Holden (1968), Crcutt and Winokur
(10/0Y, . - il
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Let u,_u P be a series of observationsg. _Von-Neumann

L

ratio for testing Hj 1 u's are 1i.i,d, N(u, 62). is
-

n
a2 (g - ut~1)2

R (
Q = n . " (1.8v1-
% p3 Cut - 5)2
=1
D n
wvhere u = % PN Uy .
t=1

When Q 1s sufficiently small, it_indicates positive autocorrels~
tion, and when Q 1s large encugh 1t points towards negative
autocorrelation., Under Ho. the significance polnts of Q have
been computed by Hart(1942(a),1942(b)}) for n<60. TFor n>60, the

distribution of Q may be approximated by a normal distribution

- <0 . 2
with @oan Nl and variance o

For a time series regression,

i
j—
0o
o

Ve T Bo T PyFrp F Bo¥ar Tl F ByEy tag, v 21,2,
(1.3.2)

where et‘s are normally distributed with mean O and a common

variance o, Durbin and Watson (1950, 1951) proposed a small

sample test of
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w'fd

Hy ¢ et's are independently distributed -
(1,3,3)
against Hl . et‘s are positively autocorrelated
The test statistic is
2 &/
t§2 (o = et_'_i)
d = (lo3.4)
n
Z eg
t=1
= 2 -r) . (1,8,5}
n
z € € _
_ t=p t “t-1 )
where T = Y
2
pR eq
t=1
A ™~ ~ 3= ) ) t 3 1 2"
and Ot = yt = (50 + lelt + p2x2‘t * 434 F bk xkt .io? s

(1.3.6::

- -

Fa S

where éoo By eo. By are the OLS estimates of B, By .. By
in (l 3 l)

&/ In dcriving the D-W test’ s%&tisti %ﬁe underlying assumption
is that e's are distrimuted indopendontly of X, So, D-W
statistic 1s strictly inapplicable for the cases where the
regression equation contains lagged Vf s as regressors, In these

cases, D-W statistic will be blased towards 2, TFor these cases,

ﬂurbin (19?O) suggested a large sample test of serial independence
of ‘S,
€t

Another assumption is that the regression should contaln a
constant term (i.,e. x,, =1 ¥ t),
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Durbin-Watson test statistic is obviously closely related to
Von-Neumann statistic defined in (1,8,1Je Luter Hy, 4 7 2

end under Hy, d < 2,

Sinecg, even under Hj, et‘s are autocorrelated among
themselves, the determination of the sampling distribution of
d under HO has proved difficult, The sampling distribution

of d under H, depends on n k and ths data matrix

- L

CE11 Fep vee Fy N

* A

. X12 Xpg e T2
X = ‘s . » !
\'\ k xm X‘grl . xlm /‘!.'

Durbin and Watson ﬁere able to formulate only the bounds (d‘{9 du)
for each significance 1imit of d such that the 1limit lies in
this interval whatever X may be.

If d4d < dl . H, 1s rejected in favour of Hy

d > du : HO is accepted

d£ < d < du the test 1s in conclusive,

3

A test against negative autocorrelation is obtained by
replacing d by (4 - dj~ 2(1 + ry) which leads to significant

values when r is negative and sufficiently large.
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T

For n > 40, Durbin and Watson (1951) deseribed sn  approxi

-mation method for obtaining conclusive rcsults whon d falls in

“He inconclusive rcgion6 This metnod suggests using ld as a
Beta var&able with parameter p and. q determinod by

gt ] ‘ :T:H T |
P ¥ A= ey d4 - % L) mna p = Z(p * q) E(d) (143,7)
Theil and Nagar (1961) also attempted a SOIution to remove
“he difficulty associated with the inconclusive' region, The
vnderlying assumption in his procedure ig that the first and %he

seeond order differences of ‘the regressors are small in absolite

value compared to the range of the corresponding regressors

*»fhcmselvesﬁ On the basls of first four moments of d under H,

given by (1,3,3)o a Beta distribution was fitted to the sampling
distribution of d 1in the range {a, 4 - b) in the following
manner, "

d -~ a . TR s \
Let W= 4 - (_a + b) 3 : . | 5 1 b ’ (10338;

So, w 1s a Beta variable in the range (0, 1) with density

function

£lw) = fﬁﬁlﬁT w1 - v)q | ) (1,3;9)


http://www.cvisiontech.com

77 -

N
to(d) (W)
Bquating  g1(d) = —g2— to gy (w) = —3 (13,10
L, e(ay i uz/g(w)
w,(d) w,(a)
and g.(d) = —=& ! to g (W)= —— -3 (1.3,1.)
B ugta) 20 aden "

{where pg(d)9 us(d) and y4(d) are the sgeond, third and
fourth moments of d under H, and g (w), us(w) and p,(w)
are the corresponding moments of w) p and q are calculated,

Next, equating

d - a -
E(w) to_ @ = eath (1,3,12}
pod)
and ; nz(w) to 5 . (1.3,13)
\ {4 - (a+b)}
a and b are calculated,
From (1,3.8),

d=w §4 - (a+b)} + a | | (1,3.14}

Using this beta approximation, tables for 1 per cent and 5 per cend
significance poinst of d for testing the null hypothesis Hy
were constructed, The critical values were, on the average,K found

to be very close to du‘
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Incidentally, Hamnan (1957) [see also Gregor (1960)] pointed

=1
out that vo an order ¢f acsiracy higher than n *a true signifi-
cance points of d are ciose to d, in the case where the

regression equation is a polynomial in time (%),

Malinvand (1966) pointed out that when each regressor is
an approximate linear copbination of a constant and a sinusoidal
series with long periods, the eritieal values of d are close
to 4.

Theil and Nagar (1961) approach was pushed further by
Henshaw (1966) who also fitted a Beta distribution to the
sampling distribution of d wunder H, on the basis of its first
four mements, DBut this approach is more general because it is ,
applicable also to those cases where the first and the second
order di_ ferences of'khe reg essors are large in absoiute value
compared to_the range of the regressors themselves. This procedure
is, however computationaily more laborious than Theil Nagar

9

procedure,

Durbin (1970) sugzested another procedure to be applied
when d 1lies in the inconclusive region, Ue proposed a

modified Durban-Watson statistic.

Let

L]

AEN S S | (1.3.15)

Xi's are the characteristic vectors corresponding to(k-1)smallest
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characteristic roots of

1 -1 0 0 R - 0 0
-1 g & 0 .., B.9 P
L= A R (1,3,16)
Q 0 0 0 e =1 g i
g 9 6 © ., 0 =1 1
v

zero characteristic roots have been lignored,

Let, X denote the n ><(k-1) matrix of (k-1) regressors
expressed as deviations from the sample means, Then one computes

vhe least squares regression

¥ = alt + Xby v Lby (1,3,17)

wvhere 1= (11 .,,. 1)* 12 an n =<1 vector,
P4 T !
Let PPy = (X X ) and  PoPL = (Ly Ly) (143,18)
where
X, = X - LU nx
and Ly = L - X(X'X)™T x'L
"inally one computes

- ppl 3.19)
¢ = PPt b, (1.3.19)
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e

Define
z=y -al -Xb; ~Lb, + Xe . (1,3,20)
and the modified test statistic is e
n
. 2
tzh (zt Zt-l)
ar = = (1,3,21)
n
by zf
t=1
The critical value of d! are,same~asm du‘.
Another statistic used for testing the randomness of
disturbances (g,'s) in the model :
(where xjt‘s are nonstochastic),
1s the circular serial corre.ation coefficlient,
= :
Z €. ©
‘ e =1
rl = =L (1,3.23)
n ) ’
z ey
t=1

where is the OLS residual, This 1is closely related to

e

t
D-W statistic., Anderson (1942) obtained the sampling distribution
of this statistic when only a mean correction has been made and

tabulated the significance points,
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" Another important problem which often arises in practice
is_that the nulllhypothaslsQ.ls noc¢ the serial independence of
I but. rather

:;t.= p ?tf1‘+ ut?. (1,3,8@)
where |p|. <1, u, i,i,d, N(quz),

The alternative hypothesis is ' S

ey t & ep 4t 8, Cpog T g gl (1,3,25)

8o, here  Hyy 5, = O s TE N (1,3,26)

This is tested approximately by the partia] autosobrelation

2 ' : A
r —
SN - SN . .
Foe,1T 7B L (1,3.27)
1
- where rj = CJ/CO.!
n=-j z A
2 e, e, . ;
L v
- =1 = :
with Cj = o C_j

Daniels (1956), Jenkins (1954,1956) and Watson (1956) made &
detailed study.bf this type of statistic when only a mean
correction has been made, Their exact derivétions are however
based on

=

f:-l
Cj a

tMpB

et et+j in place of Cf.

3=1 J
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With the help of Fourier methods,k Hannan and Terrel {1963)
showed that the effect uf wue regression un the significance
points of d depends substantially on the cross gpecta of the -
regressor vectors Xyt in (i,S.éfja‘ If- the spectrum of x, 3% ig
{elatively very concentrated at the origin, the effect will be

‘approximately allowed for by using the significancefpnintgfnrad as

T s : u
the true significance point, In the special cases such as a

5-’? . . = I I | X
polynomial regression, this procedure wlli=bve accurate to hyder

L s ¢
5 ¢ Hannancand Terrei also obtained | B{Tos 0.3 ) and Efr02 l)

A

upto order e On the basis of these, ntdey have suggested that

when ¥jy are series which have specLTa concontratéd at the
krl

origin {ry, 1+ (5T

b

can be used ag ordinary correlation

from (n+2) pairs of observations,

Une of the difficulties with 1eas§zsqﬁares residuals is that
even when elements of & are spherical ;ﬁhe‘éléhents of e are
not,  Theil (1965) developed an estrmate of s’ which is best
linear unbiased (BLU) and which has a scalar (S) covariance mainix,
These estimators are called BLUS ros1duals, Thssm obviously are,
more amenable to direct tests of autOcorrelatlon and also of othaoz
hypotheses (e,g, tests of normality), The BLUS residuals are
defined by |

e = By ‘ (1,3,28)
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where BX = 0 (null matrix) . « © (1.3.29)

and BB == iF o .. | , (1030'30)

However (1,3,30) cannot be satisfied since by (1,3,29) the rank
of +BB' cannot exceed n-k, Thus at best we can obtain a matrix
on the right hand side of (1 3. 29) with n-k unities On the

princlpal diagonal and the remainlng gy elements zero fSO. BLUS

residual Ch can estimate only n-k dlsturbances‘ Assuming that L

the first k dlsfurbanees are not estlmated W ; -

LB B“""‘" ! e { ] et | (l.S.SI)

\\\C

where O is of order k ><n and C of order (n-k) ?€3445ﬁ

LA

A

T @@ b . o |

CX. = "0.;-..£nu’1.1;‘ f’.n@_:,.riix)' SN A
+261,3,82) 5

i el E T g [

an C ﬂﬁk; ke, 1 ‘ .

.o

Let us partition™ C by the first "k and the remaining n-k

e - ‘_
B

o gl '\‘".’: L ,_‘;._:.
columns, et 52 R
ol . ot o

(1.3.35)

(9]
]
~
2
LN ]
)
~—

and partition X by the first k and the remaining (n=k) rows,

A - ; atel® |
N — HAT a,3,30)
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ST

Let My, =1 - xz(xxx),:l_,

~

11 x5 s | (1,3,35)

1 " 3 a g N
.LLet D /2 be the diagonal matrix whose diagonal elements are

the positive square. roots of the latent roots of Mli' anigthe
columns of the matrix T are latent vectors of Myi. It can
be shown that
ng . D1/2 T K |
Aat " B - (1,3.38)

and - - 4% “a (X b Bl

1% 6 X

“So, the BLus-estimatorgﬁﬁ,théﬁfaéf B-k disturbances 1s

'E; = Oy - 3 et 0 (1e3437)
Tet - g = (_a I T s . ‘
ale e » SR PR o '

Theil also proposed an alternative method of computing

el which requlres cOmputatlon of only k latont voctors. The

bagic reéesult iS .‘._'"",‘.7'\:-‘-\"' ’ . \_*
o & \f'ﬂi
e = ey = X(X;) 4 ( z ~a~3—— fi £1) e (1,3,38)
where e = g & [ 1 ) (e belng the 0LS re51duals),

<di is the pOStive square root of the latent roots and
1
f, are the latent vectors of the matrix XI(X x) - Xl . In
general all the k roots will be less than unity, but,k if not,
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the summation over 1 in (1.3.385 should be restricted to those

which are less than univy.

‘ Finally, the probiem is, which of the K disturbances is
to be omitted. Theil (1968) suggested that for testing against
positive autocorrelation, the first . m and the last (k-m)
-ibbservations (where m is a nonnegative integer < k) are to be
delected, This gives a cholce of (k+l) different sets of k
observations that might be deleted. According to Theil, the
choice among these (k+1) sets should be made as follows, For
each set the matrix X (X'X) 1 xi and the roots a2, 4%

‘are’to be computed. s - e
If one or more of the roots are zero, the set should be omitted

2

-oc_dk

because its Xi matrix is singular, For remaining scts the
 sum dl + d * eee + dk is calculated and that set is selected
for which the sum takes the Jargest value, This givas the set

which mlnimises the expected sum of the estimation errors,

The usefulness of scalar cdvariarnce matrix df BLUS residuals

is that Ven- Veumann(lgézia),1949(b)) ratie g can be directly
applied to theso rosiduals. Replac1ng ut s 1n(1.3.1) by et and n
by n-k_  the modifled Vbn*Neumann ratio of n-k successive

BLUS résiduals is
AR n-k :( 2 L= }2.
. E- B :é{__:""—é) [
LR t=g BTl %t
t P L
Q (n - k- 1)g2

&

(1,3,39)

i
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n
% 92
o _ t=1 ° o - -
where g~ = —— 3 . &nd ¢, is the OLS residual defined

in (1+3¢6), Significance limits of Q' for n-%k = 2,  ,..,,, 60
have been derived by Press apd Brooks (1969) under the condition

that E%‘s are 1i.,i.d, N(O, cf), For n -k >60, Q' may.be

e
approximated by a normal distribution with mean 2 and variance

4

e

Blattberg (1973) examined the power of Durbin-Watson (1950
1951) test for situations where the digturbagcé follows processes
other than Markov schemes, In large samples, power seems to be
greater for a second order autoregressive process if Po (second _
order autocorrglation coefficietit) > O than for a Markov scheme,
but if pé < 0, the power seems to be less for the second order
process, The power is'about equally higher for a first order
moving average process and for a Markov scheme when O < Py < ,5.
However in large samples, the powerris greater for a Markov
scheme ghan for a first order moving_average process vhere

.5 <pp <107 pg being the first order autocorrelation

coefficient,

Kfishnaiah and Murthy . (1966) set up simultaneous tests
for trend and serial corrclations for Gaussian Markov residuals,
Let
X = py t et . WS L2, yusy B (1,3,40)
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and By =X +8t, t=12.,.n :  (1.3.41)
E(Et) = Og V(et) = 0'2 andl cOV\(gt‘q E'IH-k):qu o B < 1
| ' | ' (1,3.42)

et's_are-nonnally-distributed and form a stationaty Gauss Markgy“

process of order one,

- Krishnaiah and Murthy deve10pod a mothod of testlng P
simultaneously the hypotheses

H'r = 0

O e .
H02 ] B =0
and . Hye ¢ Stationary Gaussian process g } 1s a process,

of independent variates, A trivariate eentral F statistic

e
A .

with (1, n—B) degreos of freedom was used for the purpoSo of

tcsting.

e

1,3,2 Estimation of-regro 1on coe fflclents. T s

e~

S0 far weé have diseussed different tests of randomness,
When the hypothesis of randomness of Q;Ptgrbancesnisﬁrejected
estimation of the regression coeffie;ea$§;pgses a very serious
problem, OLS estimates of regressien coefficients are no longer
BLUE, However, they are still unbiased: What is more seriouss
Ordinary least-squares formulae for sampling variances of the 2

estimated regression cOefficients give biased estimates, The

1
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usual formulae for setting up interval estimates or for teéting
hypotheses regarding the,fegrg;sioh coefficients_gre né longer
valid, We shall also get Inefficient predistions, that is,
predictions with needlessly large sampling variances, Generalised

least squares progedures are called for to overgome thisg hurdle,

Cochrane and Orcutt (1949) proposed estimating the
regression coefficients assuming that the disturbances follow
: a Markov scheme and that the first order autocorrelation
coefficient (p) ofvtnﬁ 3isturbanqgs isknown. Starting from

this idea, a two~-step Cochrane-Orcutt. method and a Cochrane- -

Orcutt iterative procedure for estimating the regression
co-efficients (vide Johnson 1972) have been suggested when
g 1s unknown, = il

The regressibnmmodei’is,now
Ty = o By Xpp t P Tpy T oo T B Xy By
Wher'e ' Et -!—'“ ﬂ ?t'—l +u‘t RLENE 5 juﬁl «‘:‘la 3 anc-‘i, ut Balach
is a random process with mesn O and variance GE

K i

. .(1,3,43)
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In Cochrane-Orcutt iterative procedure, the estimates of
By? Bys evas B and o ‘are obtained by“minim1s1ng s

T

: al - : ‘
2 = -+ <
t§2,ut‘ tE%[(Y_ et g 11 Po (1 p) L (th 2at-l)

Lo BT
il

~ see - Bk(th;;ﬁgﬁk,tqi}}z.-Ls“s:- (1'§:4414

P
ST :-—,.‘ 3

rigg-giaa

with respect to ps po,'slf;;;;s;J; vFipst,uﬁér“é fi;ed sslua;at;
of ps_ (1;3;44§'is'miﬁimiseé Wiéh.m68p9§%€%%i Be,ﬁlgo..,ﬁ

Thens using these estimates, (1.3 44) is' agaln mlnimlsed with
reSpect to p to get an estimate of p e This is continued“w

until successive estimate dirfer only by a small amount.

Sargan (1964) showed +net for +his typk of problem this
iterative process will always converge to a stationary value
of the sum of squares in (1.3+44).° Howevers there is the

possibility of the existence of several local minima; in which
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case the process would converge to one of them depending ou the
starting point. In a large number of studiess conducted by
Sargan (1964), no case of the occurence of multiple minima could

be traced. i

in two-step Cochrane-Qrcutt procedure (vide Johnston 1972)

the first step is to estimate o as

In order to control iteration, an alternative approach
(videy, Johnston, 1972) is, firsty to test the hypothesis
of zero gutocorrelation of ¢ by applying Durbin-Watson
test to OLS residuals. If the hypothesis is rejected, the
next step is to minimise

L ;
B R e o T Y B L/ Tl AL

,2
Pt}

with respect to o for given values of ByrByseces, o Let

rl be'the‘estimate of ps Next, ’51""’Bk are estimated

by OLS procedure from the equation (1.3.46 of page 91 ) using

Iy for p « With these estimates of p and sb’ﬂi""’sk’

i~
D-W test is again applied te QLS residuals obtained from
(1.3.48). Iteration is stopped when the hypothesis of“zéro R

antangrrolatiorn is sceantad.
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n . i
n Do Ot G > 2
p = 'ri ] (1-3045}
5 & RE '“
°x
T3 e Ol e

where._ ‘@ 1s ‘the oLS residual defined in (1:8 6)1  ‘Then
Bo,ﬁlg.a. ﬁk 'are estimated by OLS procedure from the equation

SO e g o s e T
yt - py-t_l ﬁo(l P)+ Bl(XZt pngt_l)'{".ii‘ £- Bk(}ckt p xk7t,,1)

~
toey PEy 7, (;,3,46)

o e - = &

under fairly general conditions, it can be provéd that
509 1"”‘Bk glve consistcnt estimates of Bosf 1,...0§E.;

Durbin (1960) suggestel a two step mel 10d which gives
estlmates with asymptotlcally the ‘sane: mean VOctor and dispersion

matrix ds the 1east SYGELEL Lo vlGLED: Obuaaqu by direct ninimisa~

tion 2 ut in (1 3,44), In this mothod the first step is to
' t=2. N

estimate p . by regresszng ¥y on §L_i;kzegxg tulai':oxk?t°
katsl: The OLS testimate of the coeffﬂ01enulof V-1 is taken
as an estimate of p o ?he,second step fs-tg userthrsee§timate
of -a"for ? in equatiog;(;,S.éG) and esﬁimate BoaPyesie Py
by OLgumethgdg Here also, it can be proved, uﬂder’fairly-general

assumptions, Durbin's procedure yield consisteént estimates.
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pf. 3O°B1°ﬁ..°ﬂk and p ., Durbin's'methbd'extends quite simply
to;highernopdepjautoregressivo schemes,

In Prais and Winsten (vide Rao(1968)) method of estimation
p is_ estimated by § in (1.,3.45). Next, using this 5,
BO?Biq...QBk are estimated by generalised least squares method,
Under falrly general conditions, this method algo yields consistent
estimators‘of ﬂ0°Bl°"'°ﬁk and p (vide Theil 1971 pp 393-408).

Another procedure is to apply OLS methods of estimations

to the equation

Vo = Boll =0 2 ¥y * ByXgy TPy PXp g * s By Hyy

B R Rl L

ooy ©7(1,3,47)
Using the restrietion ' i A3
 ghgE S A g T
« o Bl'p X ﬁl P
' A
: (1,3,48)

T A

‘This method 1s iterative and computationally more expensive than

the other four methods,

A1l these iteratlve or two-step estimates are computationally

mich more efficient than ordinary 1ea§t‘qu§rés,_ To examine the

e
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gain in efficiency and also the variation in the efficiency of
various two step estimators in smali samples, Griliches and
Rao (1964} conducted a Monte-Carlo experiment with samples of
size 20, They postulated the-model,’.-- B a2 e Lk

yt = f x% + gt 9

X, = k‘xt—l Ve | : (1,3,49)

EY'T pEgg + “t"
0LS was found to be less efficlent than all the other astimators.

~

This is Speclally true'fet ol > 0+3. For low values of p ,

however there may be a llttle loss of efficiency in
using the more complicated methods, Durbin's two-step method of

estimating p appears to be better than the others and a GLS
method using Durb1n p seems to be the best over a wide range of
parameters, Finally, it appears that theunonlinear‘method shows

no improvement over the simrler two step procedures.

Wold (1950) gave an apprOpriate 1arge samples formula for
correcting the OLS expressions for standard errors of estimated
regression coefficlents*when the disturbances are autocorrelated
assuming that all the explanatory variables are exqgenous [vide
also Wbld and Jureend963&pp-209-215] Dyttkeng(1964) generalised
this formula to the case where correlatlon Oocgurs betwcen the

regressors and lagged values of“the residuals, for #nstance,

4 [
N &
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when iagged'vélue of Vi ocecurs in the regression equation

of Tie

l,B,ﬁ O;hgg ;Qﬁépggggg. For simultaneous equation models
considcrable work has bean_ done on the problem of autocorrclauod
disturbances, among others, by Sargan (1961) ;- Amemiya (1966)
Fair (1970, 1972), Hendry. (1971} Tvphrmes (197@,: Gullkc_y and -

o e o

Schmidt (19721; Gullkey (1974) etc. RO T D T

Finally, there are Bayesian nethods (wlde, Zellnet 1971,

" Chs 4Y  Of jestimation and tosting of rogr0551on cocfficients
when' the. disturbances follow a first order autoregrnssivo L7 ST
process, “

1,4 Errbg§~in-vagiablg modéls

Igt;gdugt;o o €,
' Lastly, we make a survey of the mothods of estimation and

« hypotheses testlng for model§ with “errers in the variable (EVMJ;

Prcsenco of crrors iq Va“lablOS posos & scriOus problem
to the oconometricians, The classical “Findar regression model i
is widoly used to draw inforence and to make predictions’ with
the help of data (timo series and/br cross, section} But such
inferences and prodictions are not valld when the regressors
ontoring the regr0351on equation are not free from crrors of

observation

S

The problom of unobscrvablc errors of measurement (or

e
Fa] ~a N 2
(8 ._"-T Comio

prmane In Tarpis b7f~‘ ihusiha Asiateipaned avaididicobrdfah

rr)
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the form particularly apprOpriate;for'econometric applications,
Koopmans (19373\5ppiie5'£he weighted regression technique to
‘handle the problem of errors-in variables., Durbin (1954),
Madansky (19592) and Cochran (1968) wrote important review af%ieles
on the problem of errors in variables, More recent surveyégare

due to Griliches (1974) and Lankipalle (19755

1 4,1 Effects of errors of obserVation on OLS estimation of

-r

v

regression coefficionts. 5 )

Lot us congider the simplest problem of errors--in—variabaes°

i

- Let y and ¥ be true variablcs.. The. QorreSponding observod

variables are y* and x*, ‘So," T = P i e
y;=yi +vi S ey g
oan@ o e NIV n0he | (144,1)
IO b TR i AR

Here vi and uy ;- are the orrOrs of measuremant «Usually uy
and vi are'assumed to be random variabies with zero mean and
unknown constant variances dg"and, 62 _These errons are-

1ndepcndent of the true variables and also mutuallyxindepcndent

——at

The relationship betwoen the truo variables is

ypmx+ B m ey, 1=12.00 0 ¢ (L4.2)
Uy and vy are assumed'tO'ba-iadependenﬁ'Ofw ?i fmr each 1

bt ER
g -
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i, _pote

=6

e;'s are mutually independent with mean O and variance

¢ ¥1 and also independent of %78, The equation (1,4,2) can
alternatively be written ag

yi =+ 8 =f + 5, (1,4,3)
where f;i = Si + Vi - B uic
Lot us further agsume that

Elce! /X*) = ¢t

1o \
= _ ,
vhere ¢ = (anszy.‘.,en) and ¥ = [ xs |
L
R
v ow
'8 2 d
plim &£ =g
N =00 n (104-4)
*', . N, B L g i :
plin. 2= -5 (q positive definite matrix)
n—2 0 . PR L :
g | *1 s
and  plim X—n—é I )
: n —»co |

It can be proved easily Q_;+g Johnston (1972) Ch, 9, Theil (1971)
Ch.-‘l2 Sgc,2) that the oLs rogression of vy* on . x* provides
1nconsistent estimates of; « and B.in (1 4,3) because x; and
£; are correlated for given 1, This result can be easily

generalised to the case of more than ome explanatory variable,
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e

(For the effect of correlated measurement errors on CLS estimat

of regression coefficlents see Chal (1971)).

Griliches and Ringstad (1970) examined the effect of using
ordinary least squares method for estimating the regression
coefficients of a nonlinear relationship when the regressors

contalin errors of observation, ' /7
Let ?he true model be

g% Bxy kY a ke, 1=1,2,,..,0 (1.4,5)

and

i

x‘{ = xi+ ui i 1929ooa »n (1'4.6)

It was found that the OLS estimates of £ and Y were biased

downwards,

RBichardson and Wu (1970) considered the functional

relationship model

[N
1

yi = o + B Xi + Eig = 1929009-91‘1 (104'7)

’Cf = Xyt Uy, g = 1,2, v aalp B3 (1:2.8)

vhow

where u4, g, and =x; arc independent of each other., uy; and

€; are assumed to be spherical with medn 'zero and wariances

IR

6¢ and o ¥ 1, Tt s also assumed that e, and uy are

u
normally distributed.Uﬁﬁg; these assumptions, the authors
calculated the exact bféé and mean square error of the OLS

estimate of B «
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In the above set up, under the assumptions that for each
i (g4, ug) follow independent bivariate normal distribution

with means O and the variance covariance matrix

/2 pdd;\
2

Q}O‘Uu O’u
Halperin and Gurian (1971) obtained the exact bias and the mean

square error of the OLS estimate of B,

Aigner (1973) examined the problem of getting consistent
OLS estimates of regression coefficlents when the regression
equation contains a binary independent variable measured with

error,

Maurice D, Levi (1973) studied the errors in the variables
bias in the presence of corr.ctly measured variables. He showed
that if there is any.one regrgssors measured with errbr‘and the
others are measured correctly, under large sample assumptiéns,
the the bilas 5f the OLS estimate of the coeffichent associated
with the variables measured with error is downwards, The
direction of blas of the estimated coefficlents of the variables
measured corfectly can be determined if the variance-covariance

matrix of observation is known,

Grether and Maddala (1973) considered the following meodel

L]
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e

=30

TS P T g
. t = lqzyaou 9n (154!9)

R
with the usual assumptions regarding the variables, The OLS

residual is
ey = B xf + e, ~B x (1,4,10)

where B is the OLS estimate of $, It has been observed that

~ess x and u are serially independent, ei's will be
ansocorrelated even when st‘s are serially independent, Similar
results are reported for models with lagged endogenous variables
and serially correlated errors; ”éonsidering the following

errors-in-variables model, =

Vg T K Tpq TP I Y ELS

=¥

gt BREF (eg ' B uy) | (1,4,11)

il

i i
Grether and Maddala proved that « and P are both inconsistent

and the bias can be divided into two parts!Q-one due to measure-
ment error and the other due to serial correlations of the serles
Xy and  u,.

Berkson (1950) (see also Lindley 1953) discussed an

interesting situation in which it may be possible to set x* at

predeternined levels and corresnonding to esach obgerved ¥* there
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may be a number'of x's that wbﬁld lead to the same value of x*,
x* 1s called a controsied variaple, So, x is a random variable
distributed about fixed x* with an error u (1.e. x= x* + u’,

which 1s indepcndent of x,

In this case, if the model 1s
vy T+ B xy, 1= 1:85 sosm N (1$4012)

One can write yi= o+ p xf + (Pu; + v,), 1= 1,2,.,.,n
(1.4,13)

where yi = y3 t+t vy

and x; = X tuy

Since both u and v are indépendenf of x, OZS proéedufe wiil
give conéiéfené éstimates of « and B.

Fedeorv (1974) generalised the Berkson case to k regressors,
Under the assumption of.exié%éﬁéé of.ée;tain momgn?s of . u and
v consistent estimatoés of the’fegfesstonréoefficients have been
:PptaiF?qY r“

For the extengion of analysis of controlled variables to

the non-linear case, see Geary (1953) and Scheffe (1950),

1.4,2 Effect of errors on regreésion line

Considering the relationship between the variables

Yo Xp5 Koo ..;,xk. to be linear, Lindley (1947) (See also
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uf

Allen (1938), Fix (1949) and Laha (1958) established a condition
under which the regression will contimie to be linear when the

variables are influenced with errors,

VLet

k
E(yix, oo X ) =5 B8, x. - {1,4,14)
1¥=p e o Y
where the variables vy, xqug,...,xk are measured from thelr

respective means,

Suppose,

(1,4,15)
and v =y + v

where u,,uz,...; and v independently distributed with
zero means ; furthermore, they are also independent of vy and

xi‘s 1=1,2,...,k).

Lindley established the necessary and sufficient condition under

which the result

k 8/
E(y*, fx*., T oo ) = 121 B (1.4,16)

will hold good, The condition is

k Ke(tqatoeene,ty)
pt x{tpeboeecaaty 2 pb epdlL2oBMOSC K
Z (B = 1) “1=1 2 't
i=1 ti Lo
(1,4,17)
87 + L

Bi , iI=1 2,...,k are the usnal regrossion coefficicnts of

of y* om =x¥. X5 aae @
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vhere x(tlgtg....itk) is the cumulant generating function(cgf)
of X = (Xl, Xos cnes xk: o £ hiitlg tg,...atk) is the c.g.f.

of u, (i=1,2,,,, k).

The above condition is obviously satisfied of y and xy
(1= 1.2,,..,k) Jointly follow multivariate normal distribution
and further v and w; (1= 1,2,,,, k) have independent normal
distritutions so that y* and xf (1 = 1,2,.., k) also jointly
follow multivariate normal distribution, But the above condition

may be satisfied for other types of distributions also,

Cochran (1970) dealt with the case where the standard -
linear regression model Vi =+ 8 x5 t+te;,1=1,2,,,,,n with
¢ and x independent and E(e) = 0 is assumed to apply to a
bivariate sample of pair (y, x). However, owing to the
difficul ies is measuring th x values, a tually the bivariate
sample used is of péié (y. x*), vhere x*=x+1u, u beihg
the error of measureﬁénu, LiGepeadels Or 'x} y and €, Cochran
exanined %he effect of départure from linearity of relationship
between y aqg x*, The examples‘he considered suggest that
departure from linearity can be approximated by a quadratic in
observed x¥ if-elther u or x* has a skewed distribution
and.by a cublc if either u or x has a symmetric distribution.
The 1iﬁear component dominates because the meén ;quare deviation
of y from lincar component is ohly slightly larger than that

from the exaet regression of y on x¥,
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1.4,3 (Classical methods of estimation

The classical solution to the problem of estimstion of
the regression coefficients in errors-in-variable models is
based on normality assumption for u, v and ¢ and also
sometimes for x's, Let us make such asgumptions and examine
the performance of maximum likelihood (ML) methods in estimating

the regression coefficients in errors in varisble models,

Let the true relationship be given by (1,4.2) and the
errors-in+~variable model be given by (1,4,3), Let E(x{) u ¥ i
and V(x;) = B(x; -4)% =02 ¥4, Then under the assumption of
nomallity of x, u, v and e, x* and v¥* variables have

bivariate distribution with paramet ers

E(zq)=u ¥ i

E(YI) =&+ fpy ¥i

2 2 2 2]
UX* = E(x% -u)g = Gx + S ¥ i, wvhere o, = V(ui)¥ i

2 , | 2 2 _ 2 0
dy* = E(yi-a - B4y = B%JE + ¥ 1 where o< = dv+d

and V—(V-).=O'20
1 % ®a
V(ei) = g2
(1.4.18)

The corresponding sample satistics will be the maximum likellhood

estimates of these parameters, Thus,
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(1.4,19)

wvhere nm = & g ( ".f*)z
e o x§

L
AR A o ]

" m ' = i o ok Yk
and m?{*y* n 151 (xi X )Y .

On the left hand side of (1,4,19) we have five sample
statistics and the right hand side contains six parameters, 8o,

&
U
the model 1s not identified; But, if 4% or 65 is known
v
5
apriorl, then the problem can be solved: In econometrics, it
is possible to hazard an estimate of UE . (For instance, for

national income statistices, 1t is becoming a common practice to

give some indication of the 1likely range of errors),

For the general case with k régressors, the true model is

Y= XB + ¢ (1.4.20)

oS

Y is an nvxiireétor‘. X isan n xk matrix, R d2 2 I x17


http://www.cvisiontech.com

~165=

vector and e 1s an n =1 vector, Write

X* = X ¢ U

and (1,4.21)
Y* = Y 4 U

vhere X* 1is an n >k matrix of observations and U 1is an

n <k matrix of unobservable errors’® Y* 4is an n ®1 vector

of observations and v 44 an n x1 vector of unobservable_
errors, The assumptions regarding XsUsv and e are similar $6thosa
in (1e4e1)y (1,4.2) and (1,4,3), Here also, for identification

of the model, zuu‘ the variance-covariance matrix of U should

be known,

Next, one can allow for possible correlation between the
errors u and_ v in (1,4,3), Thus, if in (1,4,3), u and v
are corrclated, writing ¢ + v= 6 one can 1ssume that u and §
Jointly follow a bivariate normal distribubion with means zero and

varilance covariance matrix

2
//66 Pyy Ty Ug\\
‘ 2

(1.4.22)
puvdudé o'u

Moreover, 1f x also has a normal distribution which is indepen-

dent of u and 4, it has been proved that unless any two of
2 2
up d&
(yxide Kendall and Stuart 1967, Ch. 22). See also Madansky (1951).

(o and puv) are known, the model remains unidentified,
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Ingtrumental variable method

While least squares estimators of « and B are inconsis~
tent the ML estimators and methods of moments, require strong
assumptions about the dispersion matrix of the observational errors,
These difficulties do not arise with a class of estimators known

a8 Instrumental variable estimators,

Let the general errors in variable model be given by (1.4,20),
The assumptions are also similar to those in (1,4,20), 1In the
instrumental variable method, k¥ variables 21+ 2oy 64 I Are
selected such that they are uncorrelated with e, u and v and
at the same time‘highly correlated with X, If any of the
regressors in X be free from errors, it may be ineluded among

the z's, Let

I

S P11 Pgl e By

i

v
L3 N ]

\Zln Zal LI O ] Z}m
So, the instrumental variable estimator of B is defined as

N

Bry= (2 x*) L z'y (1.4,23)

Under the assumption that
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plim ('1‘ zV E) =0

T =>00

plim (J‘ z! X*) =

n~>co

I xx oxlsts and is nonsingular  (1.,4.94)

piim (%‘ z'z) = Z,, exlists

plim 8_= B , | | (1.,4.25)

Agy var( Iﬁrw)= plim ( sIV B) ( BIV B!
N =00 ,

- .J;.. =1
n 2. Ezz z"I(“"‘z (1.4.26)

= F! & =
where Zyy = Zlyx and oF E(E,i) ¥1 and £, 1s the i-th
element in the vector_ & + v - UB, Cholce of instrumental

variables is, however, a difficult job since there is no means

of verifying that they are uncorrelated with the errors,

Now we shall dlscuss some instrumental variable estimators.
Two well known grouping techniques now appear to be speclal cases

of instrumental variable estimates,
The errors in variables model is given by (1,4.3).

(1) _ Wald's (1940) method of estimation,

Here, 7 \
1 ~iL
1 eyl
\ i i
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where the elements in the second row are pIlus or minus according
as the corresponding x* is above or below ine medlan, The
underlying assumption 1s that the measurement errors u's are
s¢ small that the grouping of x* values above and below the
nedlan will represent the same grouping for x values, (See =

8lso Neyman and Scott (1951)).

(11) Bartlett's (1949). method of estimafions < Hore the ranked x*
values are divided into three equal~sized groups, the first
containing the smallest x* values and the third containing the

largest x* values,

Here,

(1,4.28)

il S A N e
1
it

The elements in the second column of Z are =1, 0 or 1 accord-
ing as =x* belongs to the first group, or the central group or
the third group respectively, Here also, the underlyihg assumpt -~
tion is that u‘'s are so small that the grouping of x* values

represents the same grouping for x values,
74
Theil and Van Yzeren (1956) examined the optimal formation

of the three groups in Bartlett approach for different types of

9/ By optimal grouning we mesn that enapming fow yhioy 0.3
variatcgs of & ana B are nmininmm.
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distribution of x*. See alsg Nair and Shrivastava (1942).i
Gibson and Jowett (1957a, 1957b), Hopper and Theil (1958).

Durbin (1954) suggested a more efficient method of estimatica,

Here y
1 rl
1 Ty
z = [ ] : (1‘4'.29')
it Ty

where Ty is the rank of X4

The underlying assumption is that the ranking is unaffected by

the errors of observation u's,

Stuart (1954) showed that when x follows a normal distrl-
bution, the efficiency of Durbin's estimator with respect to that
of the OLS estimator is E2 = %f%- % Y where n iIs the sample
size, In large samples, E21:: 0,96, For samples of 20, the

value drops to 0,86 and for samples of 5 to as low as 0,64,

If 1t 1s felt that the errors in x values are_so large
that rank ordering will be seriously affected by them, the x
values may be arranged according to magnitude into Xk groups
and the elements in the second row 6f Z maybe 1 for all

x's in the i~th group,
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When ¥ 18 a randof variable wWith an asyrimetric probability
digtrivution and u has a symmetric probability @istribution. by
taking the 1+-th element in the second row of Z &8 xf, We get

a wongistent estiihate of B,

1,445 'ﬁgmghzggggg_ggzelggggp&g in the mgtgod.oﬁJgétimgzjon,
Sprant (1966) develOpéd a metﬁod of estimation of coeffl-

clentg of a linear E=V model bY_%}nimising the sum of squared

residuals with welghts inversely proportional to their variandes,

He considered the following exact functional relationship.

Yi = ﬁ xi i S i.,2.—, LER ] n (1¢4130)
Let i
VI=9t vy
i=1.,2, suc B (1,4.31)
oty

where uy and vi are fndepéndent of Xy and ¥y for all 1.

ui 'ahd- vy ‘have zero means and the varlance cOvafiance matrix

given by
2
o o
u uv
E = V i
- . 62
= \\\uv v
Henee, a
E(Y{) = Yi F
and (1,4, 32

E(xg) =" Xy
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and the varlance covariance matrix of (x*, y*) is

2

Tkt = %a dx*y* = Tav
i = | (1.4,33)
= - - 2
0.-Jc"‘y"‘ v c,y"‘y"“ %y

The corresponding sample variance covariance matrix of (x*, y*) is

Sk sx*y*
s = (1,4,34)
Sxty* Syry*

Under the asstimption that uy and vy are serially independent,
Sprént showed that B can be estimated by minimising

2
P™ Sykpe 7 2B Sywox * Syag
Q= 5 (1.4.35)
B” Opngr ~ 2P dx*y* + T ypryk

with respect to B, A solution to this problem is possible if
Z 1s mown completely,

It dx*y*z 0,

L
2 2
S xok — PS4 +{(S* "95**)'*'4'9'3**}
A v b b N b x*Y x*y
S e, (1.4,36)
st*y*
B .
Y*y* -
vhere €= — .
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when % 1s unknown, they may be replaced by estimates obtained
‘from replicated observations of x* and y* corresponding to

given values of Xy and y3 of x and vy,

' The above method has been generalised to the cases where
the errors of observations'are'serially dependent and vhen thes

number of regressors is mbre than one.

T

For a functional reiationsp}p model ,. Glesser and Watsbn
(1973) attempted to provide maximum likelihood estimates of

parameters of the model

vy = B Xy + 4 i=1,2, eee M (1,4.37)

]
il

X

Xy + ui, r i 1,2, °f°nn : 1 (1-4i38§$

and u' are independent of x's and ets, B is a E >:p

matrix of unknown coefficients and each Xi is a p ><1 vcctor;
having multivariate normal distribution with the common covariance
matrix c?z The underlying assumption 1s. that” £ 43 cOmpletely
known, :

_In a paper by Warren, White and Fuller (1974), for a
structurai relation model with errors-in=variables procedure
is presented which provides estimators of regression cOefficients
and their sampling variances. “The procedure ;s 1llustrated with

an example of manager?ai vole performance,
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The model is

XP +e . (1,4,39)

¥ =
Y= Y+ v

- (1,4,40)
.X* = X +T

where Y is an n >1 vector, X 1s an n <k ‘matrix, B
is a k >x1 veetor, v and é are n:?él vectors and U is
an n <k matrix, It 1s further assumed that U.,v and € are
serially and mdtually independent and U and v are independent
of X and Y,

v NID (0, 02)

and (1,4,.41)

U W0, %)
2, is known_to be diagonal with the i1-th diagonal element

2

a
u

1‘=_, 1929 L nl
i

Estimates of ,GS are assumed to be avallable which are

i .
mutually independent and independent of ¥X.,v and u. The

authors derived a consistent asymptotically normal estimator

‘E of $# and showed that this is a method of moment estimator,

For a two variable linear functional relationship model,
when both variables are subject to errors, assumiqg the exlistence
of first and the second ordér serial correlations ‘gl and T Po

of the true regressors ( X » y) of which Py # 0. and the
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measufément.errors (u and v) to be serially uncorrelated ’
Karni and Welssman (1974) proposed a mgthod of estimating the
-slope of the regression line, Earlier, Relersol (1950) suggested
that for such a situation one could take the lagged value of the
observed regressor (%*3 as the instrument, Karni and Welgsman
proved that using (xi - + X1+l) as an instrumcnt of xF ,

e 238 L yields mOre efficient estimate than that glven

by Reié5301; They also proved that using an instrument

o = gk . * = * * *
L BT K T X g P oeee TR TR T el ¥ XL

for certain h one ‘can get a still better estimate of p 4if
Py +792 “;;. + oy % 0, py belng the k—th lag correl?tiqn of
the trus” x's. S
Fér-further détails on che methods of estiﬁatlop and their
applications, see also Geary‘(lQéb)Q Sargan (1958), ﬁiViagan.-
(1961)ﬁéHa1périn (1961), Ccarlson, Sobel and Watson C1966),
clui:tén Brock {(1967), -éoléri '(19_69'), Maliios (1969), Ware (1971).

'1.4;5 Otherfrelevant problems, |

On a criterion'of minimumaasymﬁfotic coefficient biaé.(for
0LS estimates), 1t was shown by Mc} Callum (1972) and Wicken
(1972)'that.facéd with a choice of using or discarding a proxy
for a relevant unobservable inggpendent;Varfaﬁle ﬁhich appears

in a multinle repression madel one should alwayvs 1sc o Troxv,
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Aigner (1974) expanded this analysis to consider the
varianco in addition to bias in the criterlon function,. He
| found that although 1nc1usion of proxy is not always a better
strategy, yet is is recommended for a broad range of situations,
These results:have a bearing on the problem of omission of

relovant rogrossors.

Feldstein (1974) con51dercd the followlng simple two
variable linear relation model with independent crrors in
variables,

vg = Fxtey M,
i=1,2, ,..1n o (1.4.42)

F

qi=ogqty

The basie assumptions aré simila; td those 1in ﬁéﬁal_errqré in
variable models, The mean square error of the OLS estimator
basod on (yi, 4) has'bccn compared with that of the instru-
mental variable cstimator (IVL}. An.alternative ostimé%gr
WAIVE (woighted average :I.nstrumental variable estimator) has

bcen deflned as

WAIVE = )&(OL_SE)“ 2 (1,_,;)") T ". Eo (1.4.43)

where X 1s chosen to minimise asymptotic MSE pfiyAIVEi
It has been shown that the MSE of WAIVE is sometimes smaller
than that of IVE though the-two estimators are asymptotically

T S, sp ot
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equivalent, On the basils of Monte-Carlo studies, the author
concluded that WAIVE is preferable in general to OLSE or
IVE,

Cochran (1970) considered the:effect of errors in variables
on measures of correlation, Assuming Lindley's conditions,
linearity of the regression of ¥y on the error affectod variables
‘may be exploitcd The effcct of these errors on the multiple

correlation cocfficicnt was examinedﬁby Cochran.

Lankipalle (1973) examined the effoct of such errors on

partial correlation coefflcients.

wu‘(1973) developed a set of useful tests for the indepen-
dence of regressors and disturbances term with interesting

applications to errors-in-veriable models,
Sargan and Mikhatl (1971) developedoapprokimafions of the
Gram~Charlier type to the cumulative distribution function of

the instrumental variable estimators,
Langasken and Ryckeghem (1974) presented a method for

. obtaining the variances of the measurement errors in the major

components of national accounts.
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Two independent estimates of some economic variable have
been taken. Each estimate is composed of the true value of the

variable and a measurement errore

-
Xl- X"Pul

* o (1’4.4‘4)
Xo = X+ ug

wﬁere E(u1)~ E{uz) = 0O, E(XI) = E(x%) = x and
E(x1 - x*) E(u1 - u2) = Qe

For a small number of observations t-test can be used

to verify if the sample differencee gxi - xg) differ on average

significantly from zeros If the hyﬁethesis is rejected, 05

1

and UE the varlances of the measurement errors u]_and uz
2 i R

ST

can be estimated as follows.

ASeuming ul' and u, to be iﬁﬁependent and independent

2
of the true value Xy i M
2 s 2
07 % wx% = Oo- _ + 4 .
Uai*, = 0§f+ 05 N | -
B NE e Bl o e e o (1e4e45)
2 B 2 2

Thus from (le4.45) and
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2 2
07 % _oky + 054 — 074
° (x7-x3) il X5 A
Gul = o = ) (1.4-46)
- o 2 2
g + g - @
(x*-x¥*) xX x*
05 = 1l ¢ 2 1 —Bé (Lode 47)
2 0 -

2 2 e 2
It 1s verified that Uul < au2 implies UX{ < GX§

When x§ is = revised estimate of xf{ uy and u,

may be expected to be correlateds Iet - be the
1’72
correlation coefficient of uq and Uge

Then after certain algebraic manipulations on the equations

2 2 2

g. + 0 = g - + 2 p o a g
i (x*-xX) LW'e I s |
172
2 ?
g ) a a = =
4 Puguy uy Tug 2 (1o 4. 48)
2 b
and O - g o = %
by Tujug, uy ug 2
2 B® | |
Gu = Ak : (104049)
5 ,
2 -
2B + (A-B) p + o /4N +(8-B)%
- uuy - Pugug 17 upu,

From this we get some Information on the minimum value of .

Oy » This minimum Duluz follows from

i Yg
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* 2 7 .
pulug = - ——éﬂa§— (le2a50)
{4-B)

4 solution of ¢° for this minimum always exists.

R u,, : uql,
-For alternative values of Pu-u ranging from the estimated

172
minimum to the maximum value of oney we can then estimate
05 and og .
1 2

Herey 1t is assumed that the formulae used to selve for

the population variances o2 and ag

A 2
for the sample values 55 and Sg

yield unbiased estimate

if we replace ci*, g

2*
X

2 1 2
and of by their respective unbiased estimates
Lastly, the theoretical implication of the dependency of

. the measurement errors with the true variable has been examined.

In the field of simultaneous equation models with errors—
in-variablesy work has been done by Zellner (1970), Goldberger

(1?72)a Robinsan (1974) among otherse

An extensive literature exists on Bayesian methods of
estimation for errors—inavariabie models (ylde Zellner, 1971,
Che 5)
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CHAPTER 2

AUTOCORRELATED DISTURBANCES IN THE LIGHT OF SPECIFICATION
ANALYSIS -~ PART I

2.1 Introduection

. ‘In the literature on singie ééuatioﬁ méfﬁods of econometrics
[vide Cochrane and Orcutt, 1949} Johnston, 1972] it is generally
'recognised that autocorrelatlon among the disturbances is
V.brlmarlly caused by the’ om1551on of relevant regressors from,thé
lrelatlonship between the variables. when the disturbances (e's)

are autocorrelated, they are generally assumed to follow the

Markov scheme.

ey :mb-ethl + u,  where Ip},ﬁul,_E(ut) =0Vt and
=e0 i g iy 2 - - .
i cov(u 1 1 s) =9y Bt sts being L

. kKronecker de:ltao.f,_a Cal

In this cése,'the Ordinary Least Squares (0OLJ) formulae for
estimating the sampling variances of the estimated regression
coefficients tend to give serious underéstimates in some

important situations.

. s

Ify however, the gffect.of‘dﬁission of regressors be |
examined following the apprbhéh of Specificétion anélysis due
to Thell (1957), the usuél formulaeiappear té overestimate
the sampling variances ?f the,estimated regréssion coefficients
of the @i§specified;éqﬁétion. Soy we arrive at something 1like

a contradictions
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Our first aim in this chapter is to examine this point

carefully from the point of view uf specification aﬁalysis.

We start with the model

Yo = ByXgy * BpXo  + eee + B X+, ts 112!---??'

: i 2,5 n (26 s T)
1 -2 _m e BN R '
whers E(et) =0 ¥t and cov(gt: es) = 07 by 5 being

, ts
the kronecker deltas b
The regressors in model (2.1.1) are assumed to be nonstochastic.
One of the regressors may be 1 for all ty and the corresponding
8 will then représSent the constant terms In matrix notation

the above relationship may be »ritten as

/'/ =
Y=XB + ¢
=X ¥4+ X B¥*t 4 e : (2616 2)
11 le LN I ]
X.lg : X22 se e
e
xln in Tene

The rank of X is k < n. Xf ~1s . an . n Xm: matrix.icontainiﬁg”:
the first m columns of X and X  is an n > {k-m) matrix

containing the remaining (k-m) columns of X.
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P= (ﬁl’ 52’ sre 9 Bk)‘
B*:,(al’ r?z-’;_._ g 5111) J

. 3o o @, Bk) ' S

and g '(-B:m—;l". Bm+2

Now suPPPSe that from (2¢1e2)y (l-m) regressots Xm+1,xm+2,
ctesy Xk have been omitted, that 1s to say, Y 1is regressed on
xt.  The estimated regression coefflcients of 1,...,Xm will

in general be biased estimates of 'BI,...,a and mey;ngt be so
meaningful. Ify however, the interest liss mainly in predicting
Y from the truncated set of regressors ¢ yd not in estimeting
individual structural parameters, -the eq;atlon may still be quite
useful Estimating and testing the significance of indlvidual

regression coefflcients of ‘such misspecified equations seems to

mol

be of practical 1mportance. In developing the methodology of
doing these,y, 1t seems useful to redefine the regression coeffici-
ents assoclated with the truncated set of regressors,\allowing
them to capture as much of the partial influence of the omitted
regressors on Y as possibley‘or in other words, to enable the

regression function to approximate as closely as p0381ble thei“

systematic components of . ¥, that is, § Xi +.32X2 + ees + ﬁka.
This is done in section 2 and this 1eads to a definltlon of the

disturbance term of the misspecified equation. We also examine

-
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the nature of these disturbances -and the effect of applying OLS
procedures for point estimation of regression coefficients of

the misspecified equation.

Performance of the Durbin-Watson (D-W) (1950, 1951) test
of randomness of disturbances of the misspecified equation has

~ been studied in section 3.

Section 4 deals with the performance. of the Cochrane-Orcutt
two step procedure (1949), the Durbin two step procedure (1960)
and the Prais—W1nsten method (v1de Rao, 1968) of estimsting the

regre351on coefflclents of the mlssPe01fled equation.
b : ty

Section 5 concludes the chepter with some general observa-

2.2 Model after dmissidn'of regreséors o

’ .- E

"The true model is glven by (2-1.1). From tﬁisAmodel; (k-=m)
regressors have been omltted. Here we seek to nedeflne ‘the
regression coefflcients 355001ated with the regressors. l,XzyLm.,
Xm ineluded in the mlSSpele%?d gquaﬁ}on, S0y the observational
equation méﬁ be written as
Ty E B; iit-+,p;,x2t + ..,,+°5; Xt +rs¥a b = 152500090

: R IR L R - E )

where ﬁz‘ 1ss. in, general, different frof :Bi{:{'é;lyéai--im."'

A
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The definition or g% = (p¥, By eees By) 'y and €7 will be

given belowe.
In matrix notation (2.2.1) can be writteh as

g v = X% B+ " 8+ : - 7 _ (2.262)7

As- stated earlier, ﬁ+ should be so defined that x may
eXplain as much of the variation of y as possi le. Nowy it

cgn‘be easily shown that
E{Ey - X%B+)’ {y - X+5+)} will be minimiséd:when
5+”= PBs -lwhere P = (X%‘”X+)—1 X+{X; "(2;2;3)
££99£?§, B Jy - kaﬁ¥)?i(y-~ Xfﬁ*)}
= EBf(Xp - b G R U (X8 -Xféf)A+e}' T
=S X BN (e - x'8Y) ¢ B(ete)
< (%8 - XfﬁtJ}'TXB,v # ) v nod
Mininising this with respect to § we got
X1 (xs - X6 = o
ors (X10e - xt g = o0

ors BN Gl o R BT |

-_— T D
2D OPUIMIZ
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Equation (2.2.3) defines B+. For finite samples, one gets the
best fit on average when Bi is chosen in this way. The distur-
bance €@ is accordingly‘defined as
I
ef ey -x g s xR B (24204)

Now, this pseudo-disturbance et has some peculiar properties.

Thus, - i ,
= E(8+) = (X = X+ P)B ;é 9\) -2-/ - (2- 2.5)
although ¢ o e i f ' ‘ .

XX - XP) p=0 - (2.2:6)

. Let us dendte %he t-th element pf the vector (X —'X+P)B by .

W3

Z,e Then, if all the elements in the first column of X are

equal to 1y (242.6) implies

.““ ’
i

1/ In some discussions nn the effect of omitted regressors,

X"8** + ¢ has been taken as the disturbsnce of the misspeci-
fied equation [vide Ramsey (1969)]. The present approach
seems to be more appropriate for problems kept in view in

view in this chapter. Obviously, e’ would be nearer zero than
than X~ B** + ¢ on the whole. ‘

2/ Even when X 1s stochastic, E(X - X+P)65££L .
The reason is that (X-X'P)p = (X"-x"'xX")™1 £"1X7)p** and the
elements of (x - X (x 1x0) 1 x*

ary regressions of X on x". Their expectations do not
vanish if the true regressions are not strictly linear.

'X") are residuals from auxili-


http://www.cvisiontech.com

-126=-

4

2 Zt =0 ) (2. Ze 7)
t=1

E(e" ey = (X - X'P) Bpt (X - X" P)! + a®1

£ o®T I - (2.2.8)

i e . s +,
although the variance covariance matrix of ¢ is

p(et) = czxn : T (202,9)

From (2.2.5); (2.2.8) and (2.2.9), it is clear that s, camnot

ol R Sl

follow a Markov scheme )

+ = "‘ : ‘ - - & NS : e '
b =0 ghq + oy s (2.2.10)

R ¥ o 5 s e

o e S ond
Y | )

N bt L 2
where [p| < 1, E(uy) = 0¥t and coviugs ug) = O Spgtar Oggt
being the kronecker delta, because, (_2.2.‘10) implies, améng

orther trings.

+y - T ¥l
Ms).zg (2.2.11)
2
- p p L N
a 02 | 1 é L
aﬁd D(s+) = —2 ks (2.2.12
= 5 . Tl roda (2e2.1 )
: (1- %)} - -

\n-I n-2 n-3
p p p ew e

In facty if one wants to explain ezmby (2.2.10), one will get
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B(c™' e") = g (X - X'P)t (X - XP)B +(n - me®  (2.2.18)
Therefore, in gensral,

o f.~+1 +\ '
ﬁé tﬂﬁﬁ_a 5 42 (2. 2.19)

which 1= a fomiliare result proved by Theil (1957). Soy if we
+

: A + ‘ -
estimate  D( B+) b &—@ (xt X+) 1, the sampling variance
2 n .

~m
P
of B; 1s overestimate for all i even though the omission of

regressors leads to some apparent. autocerrelation aﬁoﬁg the

®

disturbancese.

2o 3 Performance of the DueW. test of randomnggs

Let us assume that in model (2.2.1),-xit =1 ¥ t. . One who
is not awcre of the true natu e of disturbancss et of the model,
wduld like té test their randomness 1in the usual way by using

the Durbin-;avson (D=w) (1wevy 1wou) test ctatistic

{2.3.1)

with a view t~ dzciding upon the procedure of estimation.
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E(e™ &) = p1 (X - X'P)! (X « X'P)B +(n - m)g? (2.2.18)
Therefore, in generaly

NS
(~T1 e 2

VPl s (2424 19)

which is a familiare result proved by Theil (1957). Seos if we
+, +

) A w
estimate  D( B+) by i i ; (xt i) 1, the sampling variance

A ‘
of B; is overestimate for all 1 even though the omission of

regressors leads to some apparent autocorrelation among the

¢ § E 5 {

disturbancese.

2¢3 Performance of the DsW. test of randomnegs
Let us assume that in model (2.2.1)’-xlt =1 ¥ t. One who
is not aw.re of the true natu e of disturbancis €' of the model,

would like td test their randomness in the usual way by using

the Durbin~iavson (L=w) (i1w+v, 1vou) test ctatistic

.
G L
d = t=2 - _ (2¢341)

n
tz e;

Ll
e

with a view t- dcciding upon the procedurs of estimation.

b ‘ «\
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Nowr,
+ ... L F"s
€ = X - a
Fa%
=X+ ¢ - X gt
+ /M
= (Xﬁ -~ X B ) + & (20302)
: AR Y N
and g = ER+ (X! X)) AL (23.3)

Under ustizl large sampie assumotion, that

lim . (% xte X*) existe and ie noasingular, (243.4)
n->0d

. A g ] :
plim B = P8 (2.3.5)
- 00

where Qm = 1lim P.
i-—> 00

SOy as n -» oy e” converges in distribution to (X - X%pm)B + €.

Let St bg the t-th element of the vector (X =~ X+ Pm)ﬁ. Then

: =
r 4 =N _ {fe=
g oo e Tyl P e, il T CpaD]
L e ' :
n
. 2

By simple algebraic manipulsations we get
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( T =B
_ > n L Soteot T T (o part Sy
plimd =2 41 - plim
n—-»>o00 =3 0O
z 4 g (3 + ¢,)°
i, n o2y, ot t
e
1 B
// n t§2 %ﬂt %Ost-l
=2|1- lim
n-> oo n
1 2 2
H t§1 Zy * O

Sincey for finlte n.
+ +
X'(X -XP)p = 0y 1t can be shown that
+ +
1im X '"(X - X P = 0
N> 00 a) st
n n

s @ lim z Z = Q.
n->c0 t=1

1 n
- n tf Zost Zoyt-1
Let B = lim 2
n->co n
2 5 &2
n £ ut
n
. 1 2 o
and 1im = ¥ 2 = T
n->oo B t=1 bor & 0

(2.3.6)

(2.3.7)

(2¢3.8)

(2.3.9)

(2.3.10)
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. / Y \

. e p‘lim d = 2 TN s s ..u2
B o2 k\\ 1+ L /)

02

o

= 2(1 - p,) | (2.3.11)
r~d
where F
Blay = s
& 1 + 02/03

If /E; = 0y then Bra — 0. Ify however, “§ is positive and

62/G2 ic such that 1s appreciably greater than zero, the

P
o 4]

ctatistic 4 would often come out to be significantly smaller

than 2 when the sample size is large.

2.4 Performance of some standard methods of estimstion

Suppose that d has come out to be significantly less than
2« In this case the usuzl procedure is tc re-estimate the regress-
ion coefficient g+ making the usual assumpticn that the disturb-

ances of the model(€.1s1)follow the Markov scheme
(2e4d.1)

2
where [p | < 1) B(uy) =0 ¥t and coviupu) = o, 6

u “ts’ 2

ts
being the kronecker deltax
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Here the symbol Po has been used for the autocorrelation
coefficient. in anticipation of subsequent results. The definit-
ion of po Dhas been given in previous section. Nowy our aim
is to examine the performance of the following methods of estima-

tion (which involve the estimation of Po 818C).

(a) Cochrane-Orcutt two-step method (1949).
(b) Prais-Wineten method (yide Rao, 1968).
(¢} Durbin two-step procedure (1960). ¢

It will appear that in generaly thece estimators are inconsistent.

' 2.4,1 The two step Cochrane-Orcutt procedure

Here one first regresses y on " and obtalins the 0Lg

residuals e'. The next step 1s to estimate b, bV
oo, ar ‘
Ze
G 4 D t t-l (2. 4, 2)
o n .2
b2 e;
1l
The derivatlon of plim & in section 3 shows that p gives a
Ne> oo -

consistent estimate of Py Filnallys one fits the equation

~ - ot N + ~
Vg = 0o Ygop = Prl =00 + Bo(¥oy =0, X5 4 q) + see +

+ A
PolZnt = 0o Xn,te1)
: (2e4.3)
by OLS metheds This gives,
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¥ Y1 5y
N o~ FaS
Po P Po
1 X: -1 X+t (}gj B+ + 8:) (2.4.4)
~
Po Po Po  Po Po
o~
Po
A
- 8o
- 05
A :
In T “3’2 "Bo yl)’ (yz - o y2) o (yn = 30 yn—l)--‘] 1_
o i
+ = - % =3 i ..." 1
and Eé\ l:('52 Po E:l.)’ (83 o ‘52) " (en Pip en-l)]
o

From (2.1.3) we get

= _ .
B-l-n ="+ ¥ xt -1 xt
L 7 \

& \ ) . et (2¢4.5)
So B~ Bo o

Let us now define a2s (n-1) Xn mnmatrix Tm as
Po .
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-% i@ @ 'wda @ Ga 4
o
0 -%, 1 0 .. 0 0 o0
T = b S (2.406)
B 0 0 0 0 e -5, 1 0
A
O 0 0 0 LR ) O ol po 1
and let
2L T =Wl (eay) (2.4.7)
[ ~ Il
Po Po Po
. A N s -
o B:o B+ . \X+’ v’Ll X+} 1 +, w,-..l =¥
Po Po
=gt WO wT [ - ) B s e
Po Po
I S M. A R N IR, | E
= (= X WA X)) (n-lx whx,s
P I Po
1 o+ -1 J:_.
+("—n_._1X‘W’°X) (s X‘W e)
Po
(2¢4.8)
Since plim 'SO = B ? TA le 2 consistent estimator of

o0
== po _
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0 0 0 0 _see-p, 1 0

0 0 0 0 ;. eww O-'po 1

S0y ﬁ:l is a consistent estimator of W'l = {0 B s
o ; o Po Og
Let us assume that 3/
. T T, |
lim == X' W X=¢C (exists) (2.4.9)
n—>oo B-1 Po Po
1lim _li Xt w"l x = @ (ie nonsingular) (244410)
n~»co 07 Po Po
1in Lo ("t Wl wl X)) = 3 (extets) (2.4.11)
n-»co B Po Po
Since plim p = pos from (2.4.9)5 (2.4.10) we have,
N300 @
= ; = o
plim =L (x't w7y = plim : (Frw (2.4.12)
n—>co 07 '30 n-» 0o pr:)
Alsos under the assumptlon that
| 1im —l- 3 X | y h= 1;2,...,k C (2.4.13)
8 n-1 = st-1 :

2/ Compare Theil 1971, pp 370371
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exists; {vhich,; in facty existe by (2.3.4)), it can be proved

( fo proef see Appendixii, tinav

. ) == - % daut® R
plim —*== ¥+ (g7 ~yly ¢ = 0 (2.4.14)
n->ec /n-i %o 04 =
Wo alec unte that IE{~"— el W”l €} =0 and variance-covariance
/n-1 °o =
matrix of f%:; X ﬂ“l ¢ tends to o2 Z a5 n —>oo. So,
/=1 Pe '

by Chebyshev's ineguality (vide Theil 1971 pp 359-360)

. e e,

plim <X rw™t e = 0 and so, by (2.4.14),

n>oco 0 Po -~
plim = Xt e =0 (2.4.15)
n—> .0 5 7 B}

o

Thusy from (2.4.8)y it can be shown that

A, . .
q{iin BC; = opp Cpo B = Dpo B (=ay) £ P_ B (2:4416)

Hence, Cochrane-"reutt two =tep method does neot yvield consistent

. +
estimator of B in general, ‘ /

2:4¢2 [F[raicMinsten method of estimation

Here also ore makes the assumptinn (244.1). The variance-

covariance matrix of e+ is
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2
o]
_!.L._g__ v o A4 (eav) (244.17)
(1 - 90 Po Yo
2
o
where 02 = i
(1- p2)
o
1 2 n-1 \
7 Po Po *** Po
p 1 p L N ] pnhg
and V = o 2 2
pO . . .
n-1 n-2 n-3 1
p() po pO s
Here also (sas in (2.4.2)) B is estimated by el
+ + g
Po ¥ T4 2
P e;
t=1
~
and plim o =5
n—oo s o
Soy a consistent estimator of V, 1e given by
1 AN ~ D A n-1
po po aw e po
AN 1 ~n N n-2
po po *aa po
v = (2.4.18)
s s
Po
B 1A n-2 ~ n-3 1

o Po Po
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In Preafe~Tinsten melhol, 7 is estimated by

B_;-‘“" (‘X;': V:".J_ X‘r}-u. (K‘-i Vo y)

0. Po
IO el G QT b G A
. o t
T QO
T Y T = ok
g8 & TRV ETY M Vo LX «Xp) B+ €]
o Po ' ‘
A TR . e O i
= .(n AR (n X "V T X8
Pe Po
o - L
gyt phytl Aot g1, |
n ~ n
Po Po (244.19)

. 4
2% us aesume that &/

o I i l B | "'1 —_— o 6 )
ceadit "ﬁ (X Vv X) = C (eXiS LS) . (2..4. 20)
1-300 Po Po

| 0
’ hd po 1 0 LI ] O O 0
- Fol ol ~ o - 1 e 0 0 O
Bt I ST B S . Do
¢ (1~ DO) e Ph Fo ot b '
G 0 O oo: - pO 1 0
O 0 0 s 0-p 1

Crrmporing Lhls vish Tb ~defined in <ection (2.4.1), it can be

- 1.

o
preves enaily What oo mtine dn (2.44020) 5 (2.442T) and (2.4.59°
are apprnximatoly‘GQaal <0 the assuip®ions in (2¢4¢9), (2.4.10)

aac (2:.4-11" resmn~tively.
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I
1im % (xtt v 1 X+) = (is nonsingular) (2.4.21)
n->00 Pa Po
Tum L vl vl ¥y U (s positive definite) (2.4.22)
n>oo Po Pao

Since plim '80 = p.y from (2.4.20) and (2.4.21) we have

n->00 =
plim % ' vy = 1im %(xff v1x (2.4.23)
n—>00 6}} N> 00 B

Alsos under the assumption (2.4.13), it can be proved as in

(2.4.15) (see also the AppendixlA) that

plim —=— x*+ (v 1 oy he= o (2.4.24)
n->c0 /n Ba Po

is in section 2.4.1; here alsos it can be proved easily by

Chebychev's inequality that

plim 2 x* V;I e = 0 ond houce, from (2.4.24),
N~z 00 0
lim = xrrvie= o (2.4.25)
p n
n->c0 60 ~

Hence: ' from (2.4.12)y it can be shown that

lim B Euld p=TD B (say) $ B 8 (1 1)
plim = = _ say , g n general
‘n-—>co PW Po  Po Po =2
(0. 4. 96\
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Soy, Prais-Winsten procedure does not yield consistent estimator

of B+ in gencrale.

2.4.3 Durbin's two-step procedure

Here we conslder the equation

Ve = (1= pgdBy + oo Ypoy * By Ko ~ 0ofo Ko, 07 + oo
L

+ + +
+ By Xpt ~ 0oPnFo,t-1 ¥ (85~ 0o Etu1

t = Bsenenn

(2e4e27)
In matrix notstiony (2.4.27) can be writteu as
7=3% B+ e: (2.4.28)
o

)

where ¥y = (yé, ysa-a-ayn)’

Loy Xpp Xy e X X

X3 Koo e Xy K

Yn-1 Xén Xz,n--l o an Xm,n—l //

e
m‘<€

and i&

l
[N N
LR N ]

(S5 et e

Eq' =[(1 - po),ﬁ-‘i, DO’B;, - poﬁgsoa-,ﬁ;s

and
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+ * o + + + + + ;
Epo = [(eg - p 1)y (&3 =0 20)s evey (e =, €} )]

using OLS procedure we get

AN -1 ;
Br=(T'TH T %

=Fr + (X T 3 e;’ | (2.4.29)
O- :
Now, ” {
Zo " Po %1 /1?2 " Po &1
) 279 Z -8 £
o % " 0g 3 3 3 “Ps.%2
Po K
L Po “n-1 n-1
= Z + € (SaY) (2.4030)
Po Po
, +
Now, 2 = (X - X P)B
Po Po Po
[1700  Fog meoXyy e Kyp - opo¥y
: 1 ol EA WK =
where Xﬁ =f 1= pq Xgg - PoXog ¢+ Xyg - Pofyo
o] y 8

LE B N
LE N B ]

T

1-p5 Xop - PoXo,n-1°" X?n = Pofy,n-1

snd X' contains the first m columns of X .
P - Po
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It can be shovn that

(X - X PiB=x%p -n p (2.4.31)
Po

Po
; - k1
il sl L e 4 see X X
heve T = 2 23 22 k3 k2

\1 Yn-1 *en Teyne1ttt K ¥gynel I,

[
i
[\DN
AV]
05
ot
.
i
0o
ral

LN X X ]

= (X5 X 3
ard B = [(1 - po)s Po?bsr - 0pBpreces By - poﬁk]’
So
PR (I T . @I
O
(T REL @ THT R e
o
=B+ @ HT @I GTHT . (2.4.32)

Po

vhere B* = [(1- Po By g2 By - PoPor seed By - p 8,11

and Tg** = (Bm'f‘l’ = p,) Bmlﬁﬂ"’ﬁk’ = poﬂk)t
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FaS
<« plim B = B* + plim (""i T XYL p1im (-—-- X't X Ty B
11200 n—> 0o N 00
|
+ plim (--— X TH plln(—"" Xoe )
n->o0 2-1 n—>oo0 Po

(244.33)
Nowy since X is uncorrelated with e under the assumption

(2.3.4) (for proof see the Appendix 1B ) only the second element

of E%i(§+' ep ) has now zero probability limit. The probability
o
1imit of thils element is given by

pllm '"“-(yl’yg’--e’y Dk [(52' N (83' Pofg)e e (En" Pon-1’]"

->CD
= - g, o° (2.4.34)

provided the fourth order momert of Ey's exicts.

S0,

plim (-—— Xt oe ) = (0y -~ p 05,0,0,...,0)' = L (say) (24 935)
n—>00 Po °

Let us assume that the following stochastic I1imits exists °

4 = —
plim (——T X" x") e N = (ni.) is a positive
ne>00 4 om x<om
definite matrix and

ne-> 00 2mx 2(k-m)
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- A i
s plim B+ = ﬁ* +w N C ‘-5** = NL bt . § (2- 4. 36)
n-yco L AL T

In Durbin's two step procedure, the second éleméht of Bt is

taken as o . Obviously from (204.36),

plim /Bo F p, (necessarily) y O= : (2.4.37)

n->00 Y

Let, plim JBo = g & A (say) LA ; (2e4438)
N—>00 ’ .

where A 1is not necessarily zero.

Darbin's second step cohsists in fitting the equation

¢

~ —® ot _ ~ -+ . s
yt = poy-t_l e Bl(l po) + BE?E‘XET: QOXE’ t"l)+ ess +

®. L A
P g - P oy £-10* (857 Py ) (E2839)
by OLS methode This gives
A B
B+ - {X+' Xf 3 1 X+' v
D ~ ~ ~ Al
86, o P
= (X > Gl };t!{x: B+ ey (2.4.40)
Po Po Po Po Po i ! Al L]

This ;Sb isy obviously . different from P, 1n (204.2),
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are defined in (2¢4.4 ).

-~ £ y{\
P s} Q 0 o
W™t = Tt T as defined before.
A P, : e 15
Po Ha Oy e -

From (2,4.33), we get

A%

l +
By Y

st 4 (@f! er (2.4441)
P90 po po p0

1

1l

Fag @‘1 X1 gt w:} o*
QO pO - . i AT e T

i

gt +(X‘W"'1X) XIw [(X-XP)B-!-&]

of k
{

. 1 i
=757 X! Al G X L 08
Po po
£ ek i =let =la T . el
+(357 X '%& X)) G5 X W )
o Y

(2.4.42)
Since pllm p =

By ¥ A{say)s T is a consistant estimator
N0 = Y

Po
of T(po+A) where T(p +4) is obtained by putting (po + A)

for po I T « Sos W . is a consistent estimator of

i o, g p(} po i
-1 i 1
w<o a8 T ogrd) o eade Tt uz sazume, thay
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1l .+ ~1 i
1im (=== X' W Xy = ¢, . exists and
ne>eo L (pot8) r"::U',A)
lim b—%i xh Wzl +4) ) = QU 1) is nonsingular.
N~>00 s ﬂo Po 4

Under the assumptions similar tec those in section 2.4.1, it can

be shown that

- A g -1
plim By =19 ¢
n—»c0 : (90+A) (potA)
= D B+ P B (in general)
(o g+ A '

(2e4+43)

S0y the Durbin two step ‘procedure does not yield a consistent

estimator of ﬂ+.

2.444 An nvervéfi of three al*ernative methos of estimation.

From (2.4+16)s we have,
~

plim B =D B
n-»oo 0 Po

and from' (2+4.26),

1 '?s” D P
im = )
g—aoo P Po

From foot.note 4 4 1t is also obvious that

!

(2e4044)
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S0y '
/\

plim s ~  plim spﬂ (244.45)

n—00 L oo )

From (2.4.43),

N

plim fp =D B and D depends on
n—00 (po-!—!l) (po‘*‘-ﬂ)'
wl = 71 T . T is different from both
(po+ﬁ) _'(DO+A) (pO+A) (po+ﬂ)
ot
T and T ° SO
Po Po
plim ﬁ T & plim B co = plim Bpw (2e4e46)
= 00 N=->00 n—00
andy plim B + plim B and plim ﬁD are all different
n>m n—>o0 n—>00 ‘
Y N .
from pll& B = gn B (in g.neral).
New» 00

5« Conclusion

The main results of thls chapter may be briefly summarlsed

as follows o

1. In the elassical linear regression model with nonstochastic

regressors, when some regressors have been omitted from an equation,

(2) the OLS formulae for estimating sampling variances

of the estimated regression coefficients will give over-

> s
estimotac,
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(b) The disturbances in the misspecified model will not
follow a Markov scnenice Lney wili be mutually uncorrelated
with nonzero means. But the elements in the mean vector
éf these disturbances may be such as to give rise to some
appearance of autocopreiationiémong the disturbances and

es a result the D-W statistie may come out to be signifi«
cantly less than 2 in large samples (provided the first
order autocorrelation coefficient of the elements in the

mean vector is positive).

(¢) Cochrane-Orcutt two steps Prais-Winsten and Durbin
two step estimators of the regression coefficlents of
the misspecified model are; in general, inconsistent.
While the probability limits are approximately equal for
the first two estimator:y they are dif 'erent from the

Durbin two step estimator.

In tﬁe next chapters we shall extend these results to the
case where the true model has stochastic regressors and/or autos-
correlated disturbances. (Such disturbances may occur due to auto-
correlated errors in variasbles). On the basis of the above analysis
it appears that some of the standard methdds of testing and esti-
mation menticned in the literature on the problem of autocorrelated
disturbances require modification if the autocorrelation 1s partly

or wholly Aue to omission of non-stochastic regressors from the


http://www.cvisiontech.com

~149-~

true model. Attempts_are being made to extend the above results
to the case of stochastic regressors and to the case where the

algebraic form of the equation is misspecified.
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CHAPTER 3

AUTC JORRELATED DISTURBAAJES IN THE LIGh. OF SPECIFICATION
ANALYSIS—= PART 1II

3.1-’Introductioﬁ ' 4

S0 farlwe‘have examined the effect of omission of relevant
regressors .from a fegression equation where tne TEgressors are
nonstonhastic and the disturbances are spherlcal. “Ih=this'chapter
we shall con51der the case where. the regressors are stochastic
and: the disturbances in the -true model areAthemselves-autocorrela-
ted (possibly due to autocorrelated enr&fé;efiobservatiodS) and
examine in the same manner as in Chapter 2y the effects of omiss-
ion of regressors from the regr9531on equatlonol We shall also

B L

consider the following subcases‘.

s . ;¢ The: regressors are stochastic and the dlsturbances in

the true m~del are spherical.

e The regressors are nonstochastic.anq,the disturbances

,mt

in the true model‘arejappqqqrreiapea. g
In section 2 we redefine the regression coefflcients assoc1ated
with the included regressors and also the dlsturbances of the
mi§Specified equation; and we alse study the'hatﬁre of these
disturbances. In section 3y we‘examine:the performance of the
OLS procedures for point estimatlon of the regression coefficients

Y
of the misspecified equation and also of the assoclated standard

ey ~ -150-
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errors. Performance of the Durbin-Watson (1950, 1951) test Of
randomness of disturbances of the misspecified equation has been
studied in section 4. Section 5 deals with the performance of
the . Cochrane—Orcutt two step procedure (1949) the Durbin two-step
procedure (Durbin, 1960) and the PralsAWinsten method (yide Rao, '
1968) when applied to estimate the regresslon coefficient of

the misspecified equation. 'Section 6 concludes the chapter with

some general observations.

3.2 Model after omission of regressors

The true model is

YL = By Xy + By Xgp b o +,-ﬁkfktf gps €= 1hZreeayn
| (3.2.1)

where ey = p €y g * Uy R”_ 5= 2,3,...,n 3

lp] <1 and u, is the spherlcal disturbance term having mean
zero and varilance 03. gts are assumed to be independent of X's.
We further assune that

plim Gl X1xX) = ZXX (a positive deflqlte matrix) (342-2)
I=-> 0o _ !

The regressors in model {2.1) are assumed to be stochestic.' One
of the regressors may be 1 for all t % and the corresponding 8
will then represent the constant terms In matrix notation (3.2.1)

can be writtan as
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' ¥y =XB + ¢
= XTB* + X p** 4 ¢ . L (Semad)
where X+ and X , 8* and B** as same as in Chapter 1. and .
= (X E X_)Q o t |

Nows (2.1) implies that

E(e) = 0 . . (3.2.4)

2 =1
o] P *fno \
n-2
and E(ee') = 02 1 o P i = 02V (say)
n-2 n-3 ]
2 p p LN 1 ol /
2 G :
where ¢ =-—~3-§ o . i (3.2.5)
. 1.. g B

Suppose from the regression equation (3.2.1), the (k-m)
regressors included in :X have been omitted. In such = case,
ove tacitly fakes X p** 4 e as the disturbance £erm of the
misspecified modsl [vide Raf;lsey_“_ (1969)]s But this is untetnable.
The regression coefficients associated with the included set of
regressors should bhe redeflned in such a way that they may
capture as much of the partisl influepnce of X on y as possible.
The misspecified equation may be written as

= pr + g ptes +
y i 5l Xl + Bz X2+ .-.I'*“B.Iﬂ""}(rh + £

ory y = X% B+ + et (3.2.6)
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where B; isy 1in general, different from Big_i = 1y29eee e

: SRR g _
The definition of 8% = (B;, Bé,--.yﬁg)' and & will be given

belows
It can be easily shown that
E{(y = X 3+)' (y - X+ﬁ+)} will be minimised when

B+ = f’ ﬁ g i ; (3.207)

where P = {i (x" Xf)}"l B(X"t X).
Proof T E{(y - X8 (v - X5y
= B{(xs - Xp*)t (B - XY} + no® ,"

Differentiating with respect to p' and equating the derivatives

¥

to zeros w. get

- 2E(X'N)p + 28X X)) 5= 0

+
Oy B

i

{E(X"’" X+')'}-l‘3.(x+‘.x)5;.,

— -5 Be

Sos the model after;omissionfdf'regfeésofs!may be Spéciﬂied"

as
+

y o= X+ﬂ+ + £ (8- 2-8)

where B+ is given by (8.2;75 and


http://www.cvisiontech.com

w154~ -

AN AT L P PN = [ i
= (X - X P) B + 8 ) (3.2.8)
il E(E ) = B(X - X P)B # 0 " in general (3a2¢ D)

Tifi however, the regression of X on X' are strictly linear,
then E(X - x' ﬁ)ﬁ vanishes and &t has zero mean. This can

o

- be proved in the following manner °

Suppose,

X =xt6 + ) (3.2.10)
where 6 1s the matrix of regrecsion coeff1c1ents a35001ated with

X+

and ‘QF is the matrix of the disturbances with mean 0. If

the regressions of ¥ on Xj~ are strictly 1inear"agd - is

independent of X%a i : 1
ECVX) = 0 (aull ma trix) (3.2.17)

Theny it can be proved easily that the lines of best fit are

glven by
5 =P = " Oy BT YY)  (3.2.12)
e oV = (X - ¥ Py R S ¢ S TN

- E(VfX) =0 (null matpix),

B{( - X*E**),[‘ Xp=o0 (3.2.14)
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oW

L}

E{(X2X) - XN(T 1 PRy (p* 1 p*¥)
S
E(X - X B*Y) p*

E(ety = E(x-x"P)e

]

]

E(wlﬁ**) =0 (byFVirtue of (3.2.,14) . i
- N (3.2415)

In general, however, ¢" has nonzero mean given by (3+2. 9)s In .

this case, the disturbances (e7!'s) have some jnteresting ﬁrdperties .

Cele 3

E(et ¢71) = E{(X - x'P) pa!(x-x*“ﬁ)!} + czjv’ ' (3.2.16)
and D(e) = E[{e+ - E(e+)} {e+ = E(s+)}‘] =TV 62 (3.2.17)
where V= E[§% - B} { ¥ - E(EIY]

and ’; = (E‘l, ’_22’. e 5Enl ZE(X - X+ 5)]3 . .

From previocus discussions it follows easily that s;

cannoty in generaly follow émMarkov‘sehéme of tﬁelform

E; :{5‘ S-,*t;_l + Vt 1‘ £ 2’3’...’11 [ ";f\l Cl" and

vy is spherical | {3.2.18)

(3+42.18). would imply

e

E(e™) = 0 1 4 1 (3.2,19)
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/
¢ Y p l ) p N s e p ‘
and D(e") = '(—u-——z-)-( . ' (3.2.20)
1- 5 ° et i
|

| ewas

~ n-l . n-2 .. n-3 ‘
\p @ B mes

o
S

furthery, if one tries torexplain e;, by(3.2.17){*one*%ill"

g

obtain : . -
Zo+ e =5 ( zt__.1 +oep ) 4 vt“*?f'_#;iw g ”-}
ek °t TP fgul TP Fpg - TtV | C (3.2.21)

This implies E(e, -5 €v1) = B(PEL 4 ~‘§£) £ b'fiﬁjgéhé}al)

o G g i)
and - ‘ |
coovf(el =% eh )y (€5 -F et N} e

» . 4 R
= covy( z, —’E‘Ek_l)?;( E£_1 —’5?? )}+ s (l -9 7 ) (p -7 % Q.
\ (in_general) \ : (3 2.23)

whereas (3.2.18) requires this covariance-to be zero.

Althoughw e% ‘cannot follow a Markov SCheme, yet the. elements of
the- vector 8, will be autocorrelated and the elements of the

mean vector’ E{(X - xF P)B} may also be autocorrelated. .

£

Let us now consider the following cases.

y
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Casg le. - € in model (3.2.1) is Spherical':-: In this case,

eséen‘tially all the results remain unalterede. Only V in (3.2.5)
~will be replaced by I . | "3

Case 2. The regressors in model (3. 2.1) are nonstochastic while
els follow the Markov scheme ¢ Here, since the regr_es.sors are

nonstochastic, : + '
i ‘{(y - x5} (y ’.X+B.-,'-)} will be minimised when

= (x't % )"1 X't X.= P (say)

defined :I.n (2.2. ) of Chapter 2.

Sos in the misspecified model,

e = (X -XP)p+ ¢

-G

STEWIE T A iw % ; (3.2.24)

H

where: ‘Zn:—j-'.(vzl, 22,...,2.11)' = (XT¥+P)B .

In this case,

il

E(e*) = (X - XfP)Aﬂ,[ - Xt 1y X_]ﬁ*'f:.:‘

-3

= '('x".. xt prEyp¥* :i: ,9_, ' . in:general
_. o (3. 2. 25)
(" o*1) = (X-X'PYBBT(XXP) ' + 0BV (3.2 26

and D(e’) = oy | | ' (3.2.?.:"'.'50
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Here also, it can be proved easily that e; cannot follow a Markev

scheme of the form (3.2.18). However, because of the autocorrela-

tions of e's and also because in practice the elements of the

mean vector (X - X P)p would appear to be auteccorrelated if
considered as a time series, the -eéfs would, in general be auto-

correlated.

3«3 Performance of OLS procedures

From now ony we shall assume that in equation (3.2.3),

X1y = 1 ¥ t. ' Soy, the equation (3.2.6) can be written as

v T S ESB A€ | (3.3.1)
where Xgr‘consists of‘_g !?OWS (1, xgtq...,xgﬁ) and g :
X?t = R ii’ § = Ii2g..f,ﬂk;aﬁd_ 0= 2:3,...,m,,and ii-t~% o

By = [(] + z By %301 855 - 3';}‘
= ('g‘l—k, 542-, ceesy B;)!. -
The OLS.estimate of ﬁ; is given by
(AN SR SR (R .-
= @R o 5 ot -
- ﬁ; + (X;' Xﬁ)ul é:’(21+ £) (T.‘e+ =7+ g) (3.3.2)
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P

& & E(rﬁ\i(:) fs +E{(X=x)"1 i "7y

: | | ,
+ B, (in general) since &( z X7y # 0 1in general

(343e3)
Again,
. A
plim B " = 1im B + plim (){ t X -1+,
n—>co ° n->c0 ?1-—,»00 )TN e
= lim B + plim (X"" X -1 st
n-»co p_.;.oo ) Xo.'. z (under fairly
general conditions)
=11m3+p11m('lX'X) lin ( xft 7
n~->8p n-sco B=©' -0 ?1-}00( eh
= lim PB '-15 {say)
n_&m OOB v (303.4:)
whére P_ = 1im P .
*® oo
Proof Let us first coﬁside,r

plim < (¥t 3)

Tl 0O
i nﬂg %x*“' (x - x' P

i

+
Lpllm (-:1= XT1X) - plinm ('l X”'X) « lim {E(x—’n—"&) }...1

N300 h—00 N—00

X 1im E(——X)W (3.3.5)
n—;eo ) i
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Since by (30202)) plim (.Zli X'X) 2 2‘)0( )

11w OO
S04
lin E(& X1X) = Iy (tide GColdberger (1968, pps 118-119)
w0 = 4
(303, 6
Nows »
plin (& X1%) = plim pedeit iyt ¢ XY = (s ')
Nepoo B gww{n ¢ ' gt Tty
(3.3.7"

where Z + 4 2and X 4+ — are the submatrices of the matrix
WX T XX

o i

Sz .
xt Xy

& = /
XX . .
‘\\ XX XX

Uslng thesc, we get-from (3.3.3)

4 & ¥ Ty = ¢
plin X" F) = o (343.8)

Now; note that the first column af X i (1y1y54451)t.  So,

PLim £(1y1yeeer1)! 3 = 0

= (3:3:9)
n->o00 '

Nexty let us consider

plin (& %1 3)

n-> oo
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/ o1 = Ky eee X0 - X
L Xy = Xg  eee Xy - X

o s : s

o)
el

\\l Xop = iE eor X - iﬁ //

( l x2"‘x2 ce s xm—im) (say)

{1

Since the flrst column of X; is (1,1,...,1)‘{ the first element

in the vector %(Xz‘ Ef) has zero probability limit by (3.3.8).

It suffices to show that the second elément in the vector

l +"J 3
E(Xo Z ) converges to 0. This element is given by

!

%1( }(2 - 5-(2)f Z ""% X'z E - ‘.’li iz(lylyooo,l)! %J (303.10)
Nowy, plim % X'Z'E =0 (by (3. 5‘8)
n-> 0o S oy Ul e :
and sinces;  plim 2(1y1,1yeea,1)t 7 = 0,
n—»oo B 1
we have
plim %(Xg_gz)t"z‘{ = o | (3.3.11)
n->o0
~ —
S0+ plim 8% = lim g =B p (3.3.12)
n00 ° psoo
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A
Hence 38 is consistent but (generally) biased estimate of 5; g
A
D 85) = BL{ B,*-BC 8"} ¢ 8% - B( Bo )}

= E{EEDT 2 - mOGE K s et 2t

+yy ! . y
- E(XO'XO) X = }J .
+ B{CCD ™ g e < (xh )
w ot o ghy =l o4y -1
= V' + BE{(X) X)) x) ae!xo(o X)X .g.]
= Vv o® B X gy Xt xhy L (3.3.13)
where. V' is the dispersion matrix of
Fooghy -1,
(XO‘ X,) X'z (3.3.14)
Let us consider the ternm
/
2oty by =1 + 4 ooy oy =1
g (XO XO) Xo VXQ(XQ Xo) (3.3.15)
Ty gyl _ 1 - -
Let (Xb Xb) = A (aij) where alj = ajl = 0 1L

for j = 293yee.sm  and = Det(xg' X;).

Let Ci = X ' - X i i= 2’3’-;_.’[11

and Cq = (15151r404y1) 1,
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The i-th diagonal term in the matrix (3.3.15) 1is

2 m m
J . :
-~ b3 2 8. a, . Clv C 1= 1,29...,31 (3-3-16)
A2 j=1 k=1 ji ki 7J k -

Sos from (3.3.15) the first dilagenal element of (3+3415) given by

2 g £
O B
Bf ey C1V G}
o 2
a g 2 n-l L
= Bk — 4 2E{-—Ll T pln - )y oF (3.3.17)
A A2 =1

For i = 2y the expression in (3.3.16) becomes

Ty

2 t 1 1 b \
g (P22 CoV Cg + 2a5583505V05 + 2ag52, .00V Gyt «ev +2a502,,CLVC

p—

g
AV]

+ aggcévca + 22308, ,04VC+ wpevs + Bagon SCLV C_
4 'Q-'c-oo-.oiuac...o--oooo--pocooooaoko..ooaoooo

=
+ a Clv ¢)
me "m m (3.3.18)

in (3+3.17) the term independent of , 1is given by

AV}

2 oy t tvo
(agoChVCy + 855855 CL V Cg + eus + 850 25004VC )

>1q
0y

62 n

- A2 I - -
=32 PzelPeal,Z Uy %)™ agp 2 (6p-%5) (a5, -X3)

n _ L e . -
*agp B oy Rp) (Xgs =R+ wor + ayp 2 (5 -%p) (3y4-%y) }]

& 2
o%a. A A )
A A
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Again, in (343.16)y if we consider expressions of the type
¢ 2y ;
(332 855 CBVCE + agy C4VCs + a32a4zc§vc4 +oeee o83, 8, CéVCm),

it can be shown that here the term independent of p 1s zero.
Proceeding in this mannery 1t can be shown thst the second

diagonal element in (3.3.15) is

g,
2
2 P 2 n-2
22 20° 2(2),(2), 2 (2) 2(2)
—A—— + 52 (pi;zl o i+l+ o} E ai i+2 Faoed p (2) (2))
where (3.3.20)
a§2)= azg(xgi—£2)+a23(x31nx )+ ven + 8 (x imim),

In this way we can obtain all the diagonal elements in the matrix
(3.3015’ So, form (3 3s 12)1

V( §1+) (the (1,1) element in the matrlx v ) + #y0 e
: 2
n—
+ 20%{—% 2 oI (n-1)} (3.3.21)

" PP
where 4, # E( x )

V( BS") = (the (2;2) element in the matrix V') + to0®

2 n'-"-'l

: it gz) (2_:1
a =T J J+
- Tl = J=1
where Mo = E( A.) and qilu E( = | Y s

Nowy the standard 0LS formulse for v{( Bl ) and V( ) are
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TS
5 2
= n + - 2 3
VOLS ( 32 ) = Mz ¢ L (3-3. 24,

: A '
If in (3.3.21)s o > 0y then V( B;*) 1s greater that Vors( sl+)
given by (3 3.23)s Similarly, if in (303522)3 Qysdodedarq, o
are p051tiveg then for o > 0 V( 52 ) given by (8+3.22) will
be greater than VOLS( 52 ) given by (3:3:24)s This is true also

BB ] 34 etc.

+y +
Nows 02 is estimated by i _em in OLS procedure, where
+ + O+
& =¥ - X, B
. e +3’ =1 +’ i
-[I—XO(XD-X) 1 (Z+ ¢ (3.3.25)

Under the assumption the z !s are homoscedasticy with variance

G .3
g

E(eTret)= E( Z' F+ete)= E[(’Z+e)'x;(x;'x;)“lxgi( Z+e)]

lf

n(o® +g%)- E tracef('E¥e)*3§(X§'X;)*1x;'( T +e)]

Zz

u

n(q3-+02)— trace E[(x;ixg)ulxgi( E’+E)('E}+E)TX;]
z a
(3.3.26)

.« E(etret ) = n(o +0 )— trace W - 02E trace[(x X )"1 +’V X ]
z

(3.3.27)


http://www.cvisiontech.com

%

~]66w

where W = B[ (X 'x)"1 3t 77 ] (3.3. 28)

Let us comsider the last term in (3.3.26)s It can be shown that

2 Ayt =1 +
g trace[(Xo‘Xb) XtV Xb}
02 m . : m m
e t P ad !
R (é:l ali CiV Cl + &1 a2 C!t V 02 + +i§1 ami Ci V Cm)
2 n-1 . n-1

= moos %‘—[anjfl o’ (n-j)+ a, ;E ek z (le x) (g, 105 = %)

e nul 3 ~
L +a23 { 2 (X21 2) {xé,i+j = XS)
n-j -
X i « . e seo0
+i§1 (x53-%3) (x, irg "X F e
ngl 3 n-j g 1= - ) =
" P gD f 2P 5 ) Ogag - XY
. 2 .
= mo~ + So (3.3.29)
S0y from (3.3.28),
“\Z
E(eTtet) = (n-m) 02 + nagﬁ— E(SO) trace W (3.3.30)

f
If p = 0y E(SQ) vanishes. The term. ng? - trace W may

be taken as the effect of omission on the residual sum
+y
of squares, yhether z _em 1s an overestimate, or underestimate
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or unbliased estimate of % will depend on the relative magnitudes

of nos - trace W and L(s,/. Sos bhe standard OLS formulae for

estimating V( %i+), 1A %i+)’ i = 293yseesm can be in error in
two respectss The estimate of 02 may not be unbiased and at

the sametime, many terms in the eXpression for V{ %i+) or

V( $i+), i = 2y3ys,eym may be neglecteds This result is,
hoyevers not surprising. A similar result holds for the OLS
estimation when the disturbances in a correctly specified equation

are autocorrelated, and there is no omission of regressors.

Let us now consider the special case when E(E[X+) = 0

. E(ZX) =0, E@ =0 (3.3.31)

We have mentioned in section 2 that this is possible when the
regressions of X on X are perfectly linear. Counsider the

following set of regression equations

X = X6+  given by (342+10)

We have further zasumed that~is independent of X+. Soy
E(Y X)) = B(J[X) =0 = E(3) =0 (3.8.32)
From (3.2.14) and (3.2.15), since & = P*¥*¥ and Z =Jp**,

B(Z|X) = B(J[X)p** =0 (3.3.33)
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and  B(ZZ'|X0) = B(9 pr*prery [xF) = B(Dprr ey’ ) (3.3.89)

Nowsy we may wrlte

/“) < Y ~
{ m1y1 m+2s 1 ksl
|

N i 3
m-142 m+2y 2 . ke 2
N A . (3.3.35)
: . '
J a8 8 9
m1lsn m2sn kn

Here we have (k-m) column vectors of disturbances. We get some
interesting results if we assume these vectors to be mutually
independent. This means any two regressors in X have zero
partial correlation if influence of X" has been eliminated.

We further assume that each vector of disturbances is homoscedastic

and the 1i~th vector follows the Markov scheme given by

.\)m-{-i,t =Py Jmi,t_l + nm+i,t 3 |¢i| <1y i= 19290009 (kem)

t = 2’3!iot,n (3-30’36)

Tm+i,t 1S the spherical disturbance term with

i . o

5ts being the kronecker delta.
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i kel o Koo o kel 2\
/ 0’* Z’pio';{ Zplff:{ s e .2 pi 0’; ‘
/ = i=]1 i=1
k~-m k- k-m
oot e $ 0,012 ees Il R0t
sprepreiyn= | D - = ‘
: i f
g k-m
k-m k-m
b3 p? 10;2 2 _20*2 z 1’.1-30'"{2.0q 0*2
$=1 i=1 j=1 1
= vo (‘3.3037')-
#2 . 42 KK S
where Gi = °m+i,\) ﬁm+i
k-m
2= T -cf 1= 192yase (kwm) (343.38)
i=1
2
2 ~ _Etlxﬂ_
and °m+i,0 = e 2
o o o : ; : . oo+
since herey E(Z|X) = 0, it can be shown easily that 8
is an unbiased estimator of gt = 7o

easily that

D( B) = B{(X'%p)

e i a, , a
Sos V( Bl+)=E(=-i% civocl)+ E( 1l

2

.-1695-

-

e

}+02E{&X+*X )

Again, 1t can be proved

will ol +y -1
O‘VOXO( O'XO) 'VX (X ‘Xo) }
2 (3.3.39)
CiV C1 )
R
A
a n-j
: 11 . J 2
= o b org2y+2E[—2 T Z (p5)° 0¥ Y (n-)]
1 A y=il { =1 P1 }
(30340

a n-3j
28 (3 T od(m-p1 o
A% 3=1
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AR = e ¥2 2
\I(Bg)-—-ﬂg(ﬁ-‘l-ﬁ )+2[(l§ plO' +p0)ql

k-m o o k-m
+( 2 oS o+ o 2o )q2+...+( 21

i 1:1—10,;2_‘_ i:}I'J. 1 2
i=1

07)q, 1]
(3.3441)

~
. g n . .
The usual OLS variauces of 51 and Bi+ g = 230009 re given

by (3+3.23) and (3.3.24). As in the general cases here alse 02

+, +
g e

-

will be estimated by « The expression for E(e+'e+) will

remain the same as in (3.3.27). But here trace W <can be

calculated and cg will be replaced by 0*2. It can be essily

shown that

e 1 .K-m .
2 2 = i %2 :
trace W =mo*“ + = g4 Z (2 p: 0%) (n - i)
A 11{j=1 jmp "1 71 J

n=1 X-m

AT e S -
i “ee | g (if Py % ){tfl(xzt"xz) (o, ey = %)}

n-1 ¥Y-m i 2 n-j -
u 403 jiﬁ(izﬁ Pi %4 ){ Z (XZt—X2)(XS 17 5 XS)
n-j _ i
+ 2 (x3t X3} (X'z,m-j - x2)}
+ -..-.c-o.-n-.-.ooToc..-..o-..icci
n-1 jm i W2 -
mmazl(l_z_ pl o} ){ Z (x, xm) (Xm,bl-j - Xm)}]

= mo*° + E(Sg) (say) (3.3.42)
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S0y from {(3.3.25)s we have
E(e¥te™) = (n-m) (¢° + o*%) - E(S,+5%) (3.3.43)

Here the term (n-m)0*2 - E(Sg) may be taken as the effects of

omlsslon of regressors and the term E(So) is the effect of auto-

corrglation on the residual sum of squaress From the above results

we find that conclusions regarding bias in estimating the sampling
A

variances of §i+ and '31+'s i = 21eee9 by the QLS method

‘are similar to those in the general case.
Let us now consider the following subcases.

Gage l. The regressors are stochastic and e's spherical. Here
all the results can be obtained putting o = 0 in the results

of this section. S0y in this case,

(1) The OLS procedure will ,ive biased est.azator of 8° |
but if E( Z |X') =0 , the OLS estimator is unmbiaseds

(i1) Putting "o = 0 1in (3.3.20) and (3.3.21) we get
>+ : + 2 2 o
V( By ) = [the (l.1) e}ement of V +41 0 ]2#16 = VOLS( By )

(3¢3.44)
gnd
/\+)

.. ! + 2 2
V( B; ) = [the (1,i) element of V g 0712440 Honst B

i b

!
¢ 1 = 2335000 L R

(3.3+45)
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Alsos from (3.3.22), putting p = 0y we have

-1+

X ‘}

2 (m-m)Uz ' : - (303¢46)

B(e™1e") = (nem)o® + BL{T-X O ) a1y 2]t (gI-K (1)

‘ B #ote o poags T .
S0y 1T in uicg we use 3 -em as an estimate‘of GB,J V( Bl )

V( B ), i = 2,3,...,m may be overestimated, underestimated or
estimated unblasedly depending upon the relative effects of the
first term in (3.3.44) or (3.3.45) and of the &econd term in ¥

((@iBa46)e T -t e L e v PV LB

E ¥
Néxf{“let us derive the asymptotic variance of the OLS.
estimator of-~b+'ﬁhen thgifegf%béioﬁs of 7X7 0h x¥ aféSstriéély
1linear dee. | |
S P PR :
| S o i
// B1 o Bag een By ko \

| 6o1  8pg vee Sg | o

where &8 = | . 1 : = and '~ has been
Sn1 Spo oo 5m,k—m"
N
s h i al B '
defined in (3-2011)0 h "4
= So,

Kn]‘*'i,t = Xltéli + xztagi + .__.'!l' + Jﬁntsmi"'J !{.-L"t, i = ‘1’?,"008' (}:—m)

N and t = lagyuo-n r2.19 47\
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[

The OLS estimator of a in the equation (3.2.6) is

r oot = 4

e '
E tn ( ) -1 + 1y y
= g% + (x?'x*)"l (X+tx")s** + x X )“1 F1 e . (3.3.48)
-5. ‘( ) = v{( 1(X ty )}B** + g E{(X tx )'1} 7 (343449)

L

.50y the asymptotic wvariance L of" B * s given by

L] "/. l 3 Fi
oo lim V(YY) = 1im V{( ety Loty )} 8** + o° lin Ef( )7l
n—co N> 00 n—>00
QI'y b i
— ~ - — —
V(Eh =7 {(X Xy (X?'X;)} pr* + o BLXTKN) Ny (3.3.50)

o
Let Shi be the OLS estimate of Shi’ h = 1y2yeee9my in equation
(3.3447)s Sos from (313.4§D ard (3+3.4%8)y the i-th element in

the vector
(xFixty=l (Fixmyprr qs prk ’a\j

u)"

Fa¥
where Bj = ( 6j1’_632?...’63’k~m

Nows ajx is the j-th element in the vgctoi .

(X+fX )“1 X+t X K 3 A = 172’ooc’k-m

-

- s(f).+‘t3'rﬁ+)"1 ¥ “JA (3.3.51)

N
v The existence of such asymptotic mean and variance of ﬁ has
B p;()\rbd Lis ngyo GRALN LL'
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(K7 _ - :
where & = (51/(5 62_K"'°’6m}()1 and ‘\)/(— ('\)/(1’ sesy )&!II\)‘ .

Under the assumption that Qb:..“s are homoscedastic and éeriéliy
ungorrelated, V( %\j/() = V{ Q/()a the j-th element of E(X 1x") 7t

(since J's are indepent of X' !s)

— = ("} ) | B T
RS V(.'S”j/() =V T‘L » the j-th element of E(‘&n—'&-) ¢ . (3.,3:52)

Nows it 'can be shown that

S . BRI
T(p**r gj) = pre E(-‘—’;;—)-) p**[the j-th element of E(E—E3 |
. (3.3.53)
From {3.3.8)y We have
RS ‘\‘
/M bl gl 2 :
-E XIX = ! il - n ¥ X+X— \\
(T) =E | = Zyy \l
\ o e : j
\I’l n ' X+X+ )
. ¥
/
oy By = (g 8, £ E, ) (3.3.54)
XX ¥ Xx ¥Xx
S0 from (303052) and (303053)9
T(prxr 5) =Lz -m, | zf+ T, ) Bt (the $-th
J 2 Xx~ Xx XX Xx°
element in 2’3 +) (3.3.,55)

XX
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SOE fI‘OIn (3-3- ), «1-
= PN 4 1 -—-l d 2 x
VOBy) = 2fp**1(x 51 .y L L JB* 4+ 0"U(the j-th
J al XXm XxT o3ty Tty ¥ '
: -1
element in ¥ ) (3.3.56)
Xt

) A
The usual OLS formuls for V( ﬁj+) is, however,

2
w—r e /\ + — .
VOLS(BJ Y = gr(the J-th element in Z|§ +) (3.3.57)
XX :
2 et1et
and 0% is estimated by n - g From (3.3.46),
+ + Ny

e" =y - x" p

=XB+ & - XTp* _ x?(x?fx+)”1(xflx”)ﬁ** + {I—X*(xf!xf)'1x+!} £

]

{1 - xf(x*rx*)71x+r} XTp** 4 J1 - x"(xFixty-L xf'} £

(3.3458)
.« E(etrety - E[ﬁ**’x_’{I-K+(X+fX+)—1X+'}Q{I-X+(X%'X+)-1X%'}X_B**]

" E[e'{I~X+(X+’X+)"1X+'}I{I-X+(2(+'X+)”1X+'} e]

-

= E[ﬁ**'X—'(I~X+(x+‘x+)"1x+')X-E**] + (n_m)gg (3.8.59) ‘

3 +, % -1
« » lim E{g—ég—l = B¥*Y(E -3 = & E, )B*t 4 g%

n->co0 xT X oty ¥y

(3+3.60)
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+, _+
e ‘e

n

I _ .
soy V(8" = {the j-th element of (X'tx") L} (3.3.61)

will éivé'as§ymptﬁtically an unbiased estimate of- V( g;) derived
in (3.3.56).

Case 2. Regressors are nonstochastic and the disturbances
autocorrelated (e's follow the Markov scheme given by“(3.2.1)f,_.
Here,

:\ A '
(i) the QLS estimator B * gives an unbiased estimate of
N !

BT = P3 (defined in Section 2).

e

(i1) 1In the expression for D(.BO+) (ride “equation (3.3.10)), -
the first term will be absent and here we need not take expecta-

tion ou X S0,

N

. . o T g
v( B,%) = (the 1,1) element of V') + 2 6% ©  (3.3.62)
_— A ¥
ll’\ a.. .’
and  V( B.") = (the (1,1) element of V") + -—AQ 6%y i=253yee0 m
(3.3.53)
L1509,
~ a
fa 11 2
V. A BFY = == ¢ - Y
0LS* F1 A ( )
and v ( 3 +) = E;i 02 y 1= 243 m (3e3465"
OLS i A i 7 .. ’

Thus (3.3.64) and (3+3.65) neglect some of the terms in (3.3.62)
and (3.3.63).
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+, +
e 'e
-m

©(411)  o® will be estimsted by

) + .
y and sinece X 'z = 0 ,

from (3.26) and (3.27); we ‘have 7
."EKe+'e%) = (n - m)dg +2'z - 8
§393.66)
Here 2!z ;s‘ihefgffgct of omiésion.of'regreségrs‘and Soi ié
the effect of autocorrelation among the diéturbahces- Heﬁce the
conclusions regayding the biasedness of 0LS estimates of tﬁe
sampling vafiandés are:éimilar to -those in the general case of

stochastic regressor with autocorrelated disturbances.

34 Performangewa the D-W teét“df*randomneééj

4

= t-1 . :
d = t=2 > ’ (3.4- .1)
n
+
2 e
t=1 ©
+ + N .
where e =y - XO BO
FAS
— y _‘AX_'— B + b
L. . ~ + -— —
. plim B = 1lim P B = F, B
r~> 00 n—>00

+ ; 5 . .
e o As n >, e converges in distributien to

(X -— X+ E;OO) B + £ = ZOO+ £ - (3.402)
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Py .t — H
whers ZOO:: ( 1’ Z o et e Zoo’n) .
Hence,
Vs 3y
RIS . %) Coop1t te)
-:*i?g o . -
R ) "
Rl 5 z + £)

no_,
plinm -l( T oz

+
13 50 nt_2 ooy & oo,t-—l =2 t t—-l

&
Mo

‘...-plimdzz 1"’
n-—> 0o pllM'l ( 2 52 .+ Z BE)

n->ood t=1 t=1
: e i (Be443)

Nows let us assume that Z's follow a covarlance stationary process
(vide Dhrymes, 1970, pp 385-386).

80’ i o . g
E( ZOO,t) == tut’ = lj'gyooo’n (3.404)
[ since lim ESK (X - X BIpL = 0 5
im0 Y= 0
0o :
lim E( £ 'z =1
ne>oo  t=1 ot J
Soy  E({ Zo'o;t), cannot be. same for all t.]
s 2 _ 2 3
E{ Lot —ut) =0 ¥t (Be4e5)
and\ E( 2 t t) ( t"’f = ‘at—'rt) = c'__’:’ (3&4.6)
= 2
= o
Let. e, =0 .
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Pt

where o 1s the first ordef'serial‘correlation coefficient
z :

of 7 .
Soy it can be shown easily that

_:L'

plim = 3 b4 =p 0 4+ 1lin= T u (provided the
n=>co B g=p L e t-l T Po T T el gog HE-1
| . limit exists)
and ; | 5 < i
18 e 2 T 2
plim = ¥ 'z £5= 07 + lim = 2 4 (provided the limit eX1sts)
=00 &ﬂ‘m; Z n-»oo L& ( ;
; Sede8
" provided

(i) the dependenée betweén the distant values of;f%;‘s

wears off rapidly as the distarice inéreases,;

(i1) %;‘s have a finite‘fnurth order:mémeﬁp,

n ’ b )
and (iii) 1im 1 4 8w ===, i
BNl tfl Key- exist. ARy i

S0y under the assumption that ut's in (3+241) have a finité”
‘

fourth order moment [vi de Goldberger, 1964y pp 143-155], ‘it

can be shown that
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L
2 2 . {
: p. O+ p o7 Ilm B T Ly My 7
a | A n>oo M g=g ¥ L
plim d 1 - . \\:
n ; | . : T A ‘n Sk
UE + 0% + 1im -}1 Z ug 7
X, Z n->eo o t=1 o
= - 2(1 -p *) (say) ) (3. de 9)
In the Special cases, where E( z |- X%y = 05 =0 ¥t
ey - ol SO  (3.4.10)

P plim d 2 "" Z - (3-4.11)
. Hrsiee o2 + e
’ o ' Z

From the above it is clear that for , > 0, plim d 1is likely

) N 0O
to be- less than 2 unless in large samples,
LI B
4 P O'N - 2 M
Z Z ] t
~— in {3.4.10) " or o __in (3.4.11)
n : )
0° + 1 z ME
B el

is negative and sufficiently large in magnitﬁde.

Case 3. Regressors are stochastic and e's Spherical. Here,

i

all the resnlts can be nbteined Hv mitting A E 0.

=
B
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Case 3. Regressors are nonstochastic while e!s follow the Markov

scheme given by (3.2.1). Here et converges in distribution to

(X -X BB+ &,

=z _+ ¢ ay o (3¢4.12)
where %, = (%n,l’ Z ;:;wzum_)"gpd ;;?l'has been defined in

0y 2 ooy

(20345) of Chapter 2.

Under the assumption that u's in (3.241) have a finite fourth
order moments (vide Goldberger 1964, pp7143-155) 1t can be shown
that = | | e

ngg 1 pa® .
plim d = 2(1 - =52 5) = 2(1 - p%)
D00 9 + g =YiE -
v gl fz %n,t %m,tul
where Py = 1im e
n—>co g z2""
t=1 b
Ll 3 g2 L =0 - i (3.4.13)
n-peo 1 =1 % ° P

- *

From (3.4.13) it is clear that £6r 5 > 0y plim d 1is likely
to be less than 2, unless, P, is negative and sufficiently

large numerically.. .

In all the above casesy d is likely to be significantly
below 2 in large samples more often tEEnJﬁhefstated risk of first

L4

B . SR . g T e S s ‘o
WAL e T (A‘_-')‘, Cras Qe
oy

= il -
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3¢ 5. Performance of alternative methods of estimzstion

Suppese that d has come out significantly less than 2.
In this case the usual procedure is to re-estimate the regression
coefficient B under the assumption that the disturbance in the
| model (3.2 6) follow the Markov scheme
t o

Ex = p E:—l + uy (3+5.1)

where [p*| < 1, E(uy) =0 ¥ t

2

u 6tS,_ 2

and cov(ut, us) =& ts :eeing Kroneeker deita.

Here the symbol p* has been used in enticiﬁatioh‘oi Eubsequent
results The expression for -p* has been given in (3.4.9) Our
aim is to examine the consistency of the estimate of B given

by the following methods (which require the estimation of o*)
(i) Cochfaneébreutt ﬁwo—step'ggocedure ( 1249).
(ii) 'Prais—Wiﬁéten me thod (vide Rao, 1968)

(iii) Durbin two step procedure (Durbin 1960)

. 8«1 Cochrane-Orcutt two step method w Here the first
step is to estimate ﬁ+ by OLS method from the regression equetion

"‘Cieos)o Then p* is conststentlyestimated by [éide (3+4.9)]

#

n
+
2 e e
t t-1
t;-12 (3.5.2)
2 :
s &t :
t=1 t
From section 4 it is clear that

A
p —

plim o * = o* (3:5.3)

‘r’\—/d
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The next step is to fit the equation

AL Yo gt eyt - A aat , " V
Vo =07 41 T Pp(QeHpo(Xpp-0%ap p g dbeeer By (i - 5%y ¢ g)
: . L]
)v\

| *leg = T ) (Besi9)
by OLS method. This gives:

~ , y 7 | i {‘
ﬁcz i (Xj* X: ) Xj! 35.\:* | -
s
g ¥ p* %
PR 5 =l d
=@ @ e )

{3

SN U i e (LR B s  (345.5)
PP P o ' T S Y

Nl ! o ] v

F w88 la g A w2
e G LY r
] i :

4 A T~ ] SN
-7 ; -g* ese X s B
[rewt o Xy =ty Kig m0T Xy
J Ny L N . . Ik 1
i 1 - P X -0 L =l X .2
where X = = 23 ,’.'..:-X.22 %3 oo m2 L

S S Sn BT e TR /

: ~ A 1 T Nk N A
\ i XZn N p*xz,m-—l e Xyp p*?l(.r;u,'n-ﬁl i

>‘<1
1

[(rg =0"y))s (73 =%y ene (yy -y )

e o ot STRAL P "‘."‘,,"\* + !
and E’a* = [(82 0 El), (83 o 82), --:‘., (Sn p En_l)]

Let us now define as (n - 1) Xn matrix TA* as »
o
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Ear =207 25 0 6 0 .. =* 1
\
b @ 0 D B ees 0 =0F
\\\.‘ . &
and let ' T ) =W~ (say)
A% T Ak
o 8
= ) 5| )
o st drwiyh Tt vt N
> ISY. 3 /6* =

[

¢!

et s I T vl i - X ) 8o+ el
) 3 fb* . /p\* ‘ 7 o ;

L RPN TP, Y- R S, . C R T S IS
(=7 X”‘w?}* XN X0 G X wgb*x*)

e
op Loy i
XGZ X W e
(3.5.8)
Sinces plim 5% = p*, T fs a consistent estimator nf T
‘ 1 —500 o* p*
nbtained by putting p * for p*in T , So, .w:l:isﬁﬁ'cbnsistent
AT 2 *
P p
estimator of WL . | .
* : el srnt Bl
P o g
Let us assume that
plim E%i & wln =c +« texists) ™ (3.5.9)
n-—> 00 p* P
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pllm wi- (xt gl ¥p Y=g (is nongingul~r) (3.5.10.)
—>00 1 p Q . '
lin By—d=(x* L ERL X =y (is prsitive definite)  (3.5.11)
n-sea Tl'— P 24 : . ’

Since ’5* is A crnsistent estimstor ~f g*s from (3.5. 2 ) and

(3.5. 9),
plim —L(x*t wL x) = p1un Lo trwlyn (3.5.12)
n—->»co p* n—>00 n- p*
Als~y under the assumptionn that
n-l - . : - !
1im E(“—_:L‘ 2 xht) . : b (3.5.13)

n=—-—>00

eXistsg, (which, in, fact, existq by v1rtue of (3. 2.:2)), it can be
proved that (fﬂr pronfy see Appendix 2 4),

plim =2 ¥l Cyly o2 g (3.5.14) -
n—>eo /n-1 B* o* T

We further note that,

+*

E wrwtle) =
/l’l—l p

—

0

d lim v (X w 8)
an v { Jast } : B T "

Thusy by Chebyshev's inequality
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plim ;;‘}‘.'i‘ (Xrwlte)= o {3.5.15)

n—>0a p* =

and hence, from (3.5.14),

plin  —L= (X"t w7l e) = 0 B (3,5, 16)
1= 00 p : 4 1

SO’ from (3-5- 6)1

pila ﬁe,, Q AR RN Py B (in general)  (3.5.17)
LB . o® , 3 - ; "+ Th.
- Sny 3+ 1s nots 1n generaly =2 consistent estimAtGr nf 5“";.-”'i

co

Specisl case ¢ Let us consider the case where the regressinns nf

X" on X" are strictly linear. Sn, E( 5}X ) E( s y = 0. From
(3.508 )y ] = i = wiex

Nt

-1
st e rwlyy Tyl (7o = X S T

o o
In additinrn tn the assumptirng (3,5.9 )y (3.5.10) and (3.5.'1D,"

here we.further assume that

*

11m E(——l— Xfrwtv_ wlxfy = (%) (is positive definite)
n—>e0 £, p* 2z p* 5 - 1

(3.5.19)

where vV =B(Z 7). ‘
Z

We note that
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oyl Y
AL

twl (@ - 3 Bye
G5*

il

(xtr wl X=Xt Wt ¥ Fyp
(N o*

*

(345.20)

using (3+5¢2)y (3.5.10) and (3.5.12)', it can bé proved that

plin n}-l @ty = plim -—- (xte W
e ' s* - n— >oo‘n
Agaln, .| E(-ﬁ%i:j;x*’r:-wf&-’i y =g

1o :

'~'-:—'

and - 1im: v(—l— Xy ot 7))
n-—»co s -

|

- 00 n-1

S0y by Chebyshev's inequality,

plim =Lz X"t ¥
n—00 g 0

and- hence, from (3.5.19),

plim =L groyly o g
n->o00 B* .

Thusy from (3.5.18)y 1t follows that

1im ﬁ =P B
g—;»oo =

n = (%) = 0 (qull matrix)

(?.5.21)

ir,
et

- (3.5723)

(. 5. 94)
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S0y in this case, j§+

co 18 a consistent ostimator of 7t

3.5.2° 'B'I".ais- Wingten method

Undgr the assumption (3.5.1)y the variance-covra__ri-énce'__matrix

of e is given by

#
//ﬂ 1 p* p*2 L Y ,.
20 T § *
‘D(€+) _ ,:u. _ f p p [ ]
=L 1% { :
_ A n-1 n-2 n-3 : ;
2 \p* p* p'* P -
2
d .
= 'a-g-*)—g v : (say) ; . 5 B s e B S25
% N :|¢ -p - - ’ o

p* 1s estimated by g* given in (53.5.2_)-- and ’E,* is a.
consistent estimator of c¥e S0, Vp*' 1s consistently estimated

by VA*

wilch can be obtained by putting ’;\3* for p* din V.. s
P ' ¥

e . p*

In Prais-Winstent method of estimations BT is estimated by

~

P ® p*

b=t vight vty
* o~ %
0 P
=@ v o toe + v iy laevle)  (s.5.26
A ~ /B*
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/
Let us assume that 2/
. d rerr -1 o B0 :
plim - (X't v7- X)) = ¢ « (exists) (3e5.27)
n‘ﬁ\)oo p* [ p’ ’ H ' d [ .
U RS S R ~ Sty il
plim = (X" v™ X"y = g , (nénéingular) . amle (Bebe 28)
n_—>m p* p - .y .- PR . .
e B 2ty y vyt o 0 (exfsts and is positive
n—xo o*  o* e i b Ty “
. definite)

(3.5.29)

- ‘%
As in (3.5, 12);_h§re alsos 1t can be proved from [3.5. 27) and

(3.5. 28) that
plin £ (31 vy = puin L (¢t vl gy (345430)
n-» co o * n—soo 1 0¥

[~

Also; under the assumption (345412)y it can be prove& éégé Appendix
2 A) that

e

. ji )

Cprim = eyl Cyly oo g (3.5.31)
ndeoi/m mE T ox o o~ LR

and thusy as in (3.54 16), here slso, it can be proved similérly

that

piin 2 (v yley= o - >y  (3.5.32)
=300 a* ~ 4 2

2/ s in Chapter 2, here alsos the'éséumptions in (3.5.27),
(3.5.28) and (3.5.29) are asymptotically same as the
assumptions in (3.5.9)y (3.5.10) and (3.5.11).
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Sos from (3.5.26)y 1t can be proved that

. plim B = Q C B=D B#FP_ B (in general) (3+5+33)
| =00 PW p* p* p* £ :
T | .

S0 ﬁPW is noty 1n general, a consistent estimator-pf 8

i

Special.caée. In the. special case when the regressions of y. o

1

on X are strictly linear, BE( z|X ) = B( 2?),#;0'._ From

(3.5.26)y | | i,
1 M@ SIS Y
oy =B+ X vl T vl (T o (sisiag
0 p* B St |

In additien to the assumptions in (3.5. 27), €3, 5;28) and (3 5429

we further assume thet

lim E (X ‘V * —l i) ( 7)) (ex1sts and 1s positive

n-—>oo- ’5 ) 2
' : z pF definite)

' ‘ ‘ (345.35)

As in (8 5. 21), here alsos 1t can be proved from (3 5e 30) ‘that

plim E(X+'V-1'E p 2 plim %(X.‘ V z ) (which exists by (3¢5.27)
and (3.5.28))

o) Sty k . .+ (3.5.36)

'We further note that y |

gL xe vl gy
n .p*

-1 _l ]
and Itm VAT vIE s 1m 2 L (7)) =0 (null matrix)..
eSS {'ﬁ * } n—>oa B 2
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F

S0y by Chebyshev'!s inequality,

L3

plim < X1 v"i’%" ="o0 * (3.5.37)
n-—->00 ) P ‘ "

and hencey from (3.5.29), ro

plim %'XTI viE o= 0. if e . (3.5.38)

n—>co o) &

1O

fhﬁs, from (3.5.38),

A
+ e —
plim 3PW =2

B ey . (345.39)
n->> 0o : i : ;

POO

/\ & ‘ B - 4
Sos in this case, ﬁpﬁ 1s a consistent estimator of 3+.

L LTl P -
3 1 H -
[3 =N 4 3

3.5.2 Durbin's two-step pfocedure ] Gl

Here we consider the equation

TEEN - s . - B
- H ° : ) -~

=5 * + * o _ xpt
Yt - (l - D ) Bl + a\ yt-l + 82 th 0 Bg X2,t—-l + s

L L wgt ] .+ <L gt '-: ooy
,+:Bm X & =0 Bm X g1 * (et o et—l) t 2,3:...,n
(3.5.,40)
In matrix notstion (3.5.40) can be written as
F=%F 4 e+* P PR 0 el (345.41)
p i

where y = (¥ ygr eser v )10

X" 1s a (n-1) xX2m matrix in which the t-th row 1is
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(-A“}'ty X2,t+l, th, cee Xm’t+19 th) B = 132;-10,1’1—-1‘;

w = [ (1 = p*) ﬁ;s o ¥, B;a - p* ﬂ;s sae B';, -p*ﬂ;]t

- e;$ 1s a column vegtor in which the §-%th element is

L]

ot
” .

(Al —-é-p*‘f;:) y t=1,24e0.3n-1,

>7"nz OLS procedure, we get
F=(E izt s

=B+ ()L o (3.5.42)

P

N..m 1t can be easily proved thati
+

wE RE I E++ ep* (858, 4

TlETe _37 is an (n-1) < 2k ratmix in whicii- the t-th row. is

-

206+17 T2t’ r Tmpeklt tmptt vt Y g1 Fiey )
t = 1’2, soe9 n-lo

X=( X, X ) where X~ 1s an (n-1) X 2(k-m) matrix
ac “=ining the last 2(k-m) columne of X .

s E(I“P*)Bl’ p*’BE’ = p*gé,ﬁs, = p*ﬁsn-.}-’ﬁm: = p*ﬁmﬂf'ml

* ) e ¢
-nf“) B ’:1.~rr_' ,qvf A :‘1 '-!B,]
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- % e _ o %p L% RS
Sp* [(82 p El)j (83 p 82), &4 00 (En p En—l)]
Frew (3.5, 52)it can be shown that
i
plim BT = B* + plim (== 7 X X7 B ol (——- X 3T s**
T > Co 1> 0o R -0

+ piim («—« ¥ 7yl plim (——-— T e ) (3.5.44)
n--> oo n—>00 P

where E* contains the first 2m element and E** the last

2(k-m) elements of B

Under the assumption (3.2.2) and also under the agsumption
that ut's in (3.5.1) have finite fourth order moments it can be
proved (sece Appendix 28), that

PLIm 33 (X0 e ) 2[00 5 - 0% 02, 0,seea0]" = 1, (sny)
n—00

™ " (3+5.45)

Thuss 1t can be shown from (3.5.44) that

' - “lc 3 (3.5.46)
n—> 0o 1

where  plim (Eli X ¥y =y (say) assumed to be unonsingular

and plim Elw'i+i'§") = C(say) =assumed to exist.
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3 ~
In Durbin's two-step procedure, the second element of B is
taken as an estimate of g*. -Ubviously, frem (3.5.48),
. o *g/ =0 .
plim "o* § ¢* Tnecessarily , (3.5.47)
n-—> oo : ; :
,,_.‘_Let, - oplim p* = p* - Al(say), ‘ A1+ 0 .7 {345.48)
n-—>00 :
Durbin’s second step consists in fitting the equation
N + - + ‘
Ve TPy T By (DB 4 0 -5y o) 4 s
+ LA L » ‘ i /\*-, +
* Py Oy <8 xp o g) ¢ (e -5l ) L (3.5049)
by OLS method. - This gives
Nt % S (LS R :
By = Og;%f) b v (345.50)
2 ot CRRECh
where the t-th row of gf* is given by
Y

A | b ' -
(=0 (g 000 20" Xda eeen Gy = 3% )]

t = 112,.-¢ (n“l)

+

€ can be obtained from E+* by writing 5* for
* 3 .

7

*

Q* &;nd y’a‘ = [(yz "‘B*yl)’(ys ‘G*yg)’ 0"!(yn"{5*yn,.l)]t

§/ R
Obviously this §* is different from P* in (3+5.2)s
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- From (3:5.50), it can be shown that

M~ § e L =L N
Br= 8" + (X wlxh T (xowl et (3.5.51)
Fald ~
] o}
where W_l = (T{ T Y.
/Q\* /6* /’5*

Now, WL is a consistent estimator of W"l which can be obtszined
Ak *A
P D+l 7
by putting (p* + Al) for p* in W-i « Theny following the
o

arguments as in Section (3.5.1); it can be shown from (3.5.51),

that under certain assumptions similar to those stated 1n Section

(3.5.1),

plin g% = g1 c B

n—» oo (p*+A1) (p*+ﬁl)

= D(p*+A1)B + B, B (necessarily) (8:5052)
1
where C( xgp.) = plim (—;- xtt oy == X) assumed to exist
p 1 n—,oo (O*"‘Al)
-1 .

and Q, « = plim (——- xt W, "« xh ; assumed to be non-

(p +%} N—>00 (p +A)

singular. So, BD gives inconsistent estimate of B+ in general.

Speclial case ; .Let us consider the case where the regressions of

X" on X are strictly linear, i.ecy, EB( % ["+ =0

From (3.5.42), it can be shown that OLS estimator of B is
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A ' T =y

Bh =B 4 ¢ §f1'§+)"1 T ¢ E;*'+ ep%f- _ (Ba54537
whepe, the t-th element of the vectcr_ - ;p* is

( rgt-f-l = O* (é‘lt)i t = ‘I’2$'-t (Y.‘l""ri)eo
Sincesy in this case,

%

B /Ry = Bz 928

1

—~—

soy: B '-Ep-*/x+) = B(Z ) 0 (345.54)

Sincey in i+a all the columhs excepting the second one contain
elements of the matrix- Xy under the asSumption:(Soa.z), it

dan be proved th:> {see Appendix 2 C)

w0 X+~‘ Eo * E )
plim ﬁn; g o [0’(QV - p*)qi,, 030y e 6]‘ :”LB(SHY)
n—>00 P =

. l:"L - :‘:"O.CB. Se! 5:
providéd
(a) Z 's are assumed to be stationary with finite fourth

order moment,

Ab) 41 A e = i,gg:.r,t}lg the‘éovﬁriance between E;

and ‘%;+1, tends to O as 1 -~ . (vide Goldberger 1964). y
Alsay from (3¢5.45)% ol T U
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} ,X+'
plim. p = § :
1'1-990 l " 1 7=
‘ | f-:"-q- -+ -1 ‘
50, plim 8" = 8" + W (Ll + Lg) = (3e5.56)
n~> 0o : DR :
Since the second element in the vectors Bt is‘“p*y'L
“ plim 'B* F p* (in general) I il ! ‘(355557)
- 00 : ‘
Let plim ’;* = ¥ + &, (say) ‘ mre (3.5.58)
- NDR - e e By e | OEWL = AT
i ; = 0 ' . ?:'

The. flext.step is to- fit" the éduation‘
f s 1

Ve 6*¥poy = F5CL -5 Bz(xat 2,t_1?+"'*ﬁm(?ﬁ;.j P %y, g1

) ‘-F g - '
+ (et =5 @ et*"l) (3.5.59)
by OLS method. * | N -

wa, as in the general case, here. also, 1t can be shown

easily that

L ..i':

N
+ _ -1 + l +4.
Bp = gt + (xh W ) X1 LA €1 .

P ‘ P

D i B e T : ) !
=gt 4wt Kyt g (7 + )y L (3.5.60)
-/6f - ¥ Lo '-..’ SF J'; s e e #an- ,‘ ‘-\ =
X A s d Ny O Ly : 2 . " e alw i H P

Following the same arguments as in Section (3.5.1) and'?aking

similar assumptions, it can be shown that


http://www.cvisiontech.com

-198~

) + =1 ~ ‘ .
plim E%"i Xt WAl z = plim ?fjfi Fru=Ee D (3.5.61
1-> 00 % N->»0o p* N
o o from (3:.5.60)
A\ 4 - ;
plin g7 =P 8 (3.5,62

n—oo
e +
S50y here ﬁD gives consistent estimate of B e

In the case where X's are stochastic and efs sphericaly
1t can be shown easily from the results derived already that
A ~
B:o’ B;w and ﬁD gives in generaly in consistent estimate of

.

T (=P B), when E (?Z[ ) + 0,5 and give consistent
estimates of B" = ( T B) when the regressions of X on X"
are strictly lincar (i.ee, E('E[Xf) =0 ).
Whe X's are nonstocha~tic and e's follow a Markov scheme;
N A At s
it can be proved easily that ﬁco’ BPW and 5D“ glve inconsisten:

estimates of B+(: P8).

3.5+4 An overview of three alternstive methods of estimation.

From (3,5.1?) we find that in the general case,

-.-.}co

Again, fI‘OI’II (3-5:33)

lim B = D '
plm BPW~ D*ﬁ'

Dot oo
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From footnote 2, 1t i1s obvious that

and thusy, plim ﬁ
" n—->00

= pliﬂl B é
n——co PW

Alsoy from (3.5.52),

R

1 =D, ) s
gimoo ﬁD Plomrny P e

and D(p 1) B depends on ” l

cpm) = Ty Ty

Ny
Soy . plim 6 ¥ plim B:o = plim E
n—>00 . n—>o T

i ¢ 3 3
Mbrenver, all these three methods of estimatlon give inconsistent

estimates nf P Be g e

ECz] X*) = 0, 211 the three Jmethods- give
consistent estimate of B B

If, homever;

b it =)

M

These conclusions remain unchanged in other two subcases
. TR TS ol
mentioned In Section 1. e LR e S

-__.,..»—--—‘“" :
A S T £

A 5 PR |
P = e iR A e

DT . ¥

6. Conclusions - ¥ )

The maln results of this chapter, unfortunétéiynmost’of

which are negative, mey be briefly summarised as follows !

L
[
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(I)(2) When some regressors have been omitted from a regression
equationy in which the regresenrs ara stochastic and the distur—
bances follow a Markov schemey the OLS procedure gives biased but
consistent estimates of the regression coefficients (appropriately
defined) of the regressors inecluded in the misspecified equation.
But the usual OLS formulaze for estimating the sampling varlances
of these estimates may give underestimates, overestimates or
unbiased estimates depending on the relative effects of (i) the
omission of regressorsy (ii) the autocorrelation among the dis-

turbznces of the true model »nd (i11) the autocorrelations of the

included regressors.

(bY In the cazse of a model with nonstochastic regressors and
the disturbances following a Markov schemey the OLS procedure
gives unbiased estimates of the regression coefficients {appro=

\ priately defined) in the misspeeifled model. But the p}rformances
; of the OLS formulae for estimating the sampling rariances of these

estimated regression coefficients are the §hme as described above.

'té) If, on the other hand, the disturbances in the true model
with stochastic regressors are sphericel, the OLS procedure, egain,
gives biased but consistent estimates of the regresslon coefficients
(apprOpriately defined) in the miSSpecified equation. But the
usual 0LS formulae for estimating the sampling Variances of the

estimated regression coefficients will glve underestimates,


http://www.cvisiontech.com

-201-

Y

overestimates or unbiased estimates depending on the effect of

omission of regressors-

“3(d) In the special case where the regression equations of the

omitted regressofs on the included regressors are strictly linear,

the 0LS procedure gives unbiased estimates of the appropriately
defined regression coefficients (in the misspecified equation), in

-

all the cases discussed in this chapter. '

(11} For the caées I(a)s I(b) and I(c)s the disturbances in
the m}sépecified model will have, 1in general, nonzero means.
However, 1n case {d) the disturbances will have zero meanse But,
the disturbances in 211 the cases [(a) to (d)] will not follow
a Markov scheme. But these disturbances will be autocorrelated
and 1T the first order sutocorrelstion coefficients of the
disturbances (e's) in the tru model and/or t1e autocorrelation
coefficient of the vector & (considered as a time series) in
the misspecified model 1s positlve, then in large samples the
D-W statistic may be significantly less than 2 with higher proba-

bility than the chosen level of significance.

(ITI) For all the three cases [I(a) to I(¢)], the usual methods
of re-estimstion {e.g., Cochrane-Orcutt two step procedure, Prais
Winsten method and Durbin two-step procedure) fall to give

consistent estimates of the re-defined regression coefficients of
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the included regressors in the misapecified model. Moreover,
although the probability l1imits of J%Zo and %;W are approxi-
mately equaly these are different from the probability limit of
%E « However, in the specisl cases mentioned in I(d) sbovey all
the methods of re-estimation give conslstent estimates of the

re~-defined regression coefficients in the misspecified equation.
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CHAPTER 4

MSE CRITERION IN¥ THE CONTEXT OF
SPECIFITATION ERROR ANALYSI® WITH STOCHAST ¢ REGRESSORS *

4.1 Introduction

It is well known from Theil's (1967) specificaticn analysis
that when seme regressnrs are omitted from a regression equation;
the OLS precedure gives biased estimates of the regression ceoeffi-
cilents in the misspecified equation. But these bilased estimators
have been used to generate optimal estimators in the case of
different types of econometric prnblems, €a g0y the problem o%

grouped observations dealt by Griliches (1970) and Haitovsky(1973).

Alsoy it is well known that imposition of exact linear
restrictionsy even if incorrect, may reduce the sampling variances
of the restricted estimators. Feldstein ?1973, 1974)s using the
concept of a trade-off between bias and sampling variance on mean
square error (MSE) criterion, has obtained a class of pretest
estimators vo aid the problems .f multicollinearity and errors-in-
the varisbles in linear models. A familiar result in this field
of work has been giveun by Toro~Vizecarrondo and Wallace (1968,1969).
They have proved that in a two-regressor models the MSE of the
estimate of the parameter of interest (Bl) can be reduced by omitt-
ing another variable x

2

"true tﬁ statistic™" (i.ee.y the ratio of the regression coefficient
2 ' \
associated with x2 te the true standard error of its

if and only if the absolute value of the

* Some of the results of this chapter have been derived 301nt1y

with Lahiri (1976).

sl ~
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estimate) 1s less than one.

Toro-Vizearrondo and Wallace (1968, 1969), in particular.
also suggested a way of investigating the problem of multicelli-
nearity through thé MSE criteriond Their test based on MSE allows
one to examine the hypothesis sbout the effect of a pasrticular
restrictlion upon the comparstive properties of the restricted and
the OLS estimators. Very often, the restriction that is used to
remove the problem of multicollinearity is the zero restriction,
- 1.8.y dropping 2 regressor or a set of regressors from the relation-
ships The zero restrictions isy however, the worst possible choice.
Becauses 1if one knew that a particular variable had zero coefficilent,
one would not have included that variable in the relationship. How-
evers by imposing restrictions one may under certain conditions,
obtain better estimators with smaller MSE. Toro-Vizcarrondo and
Wailage'in particu1ar, have given a test procedure for accepting or

re Jecting these’ zero réstrictions.

~The aim of the present chapter 1s to compare the ésymptotic
variancé” and MSE of the qmittedﬂvariable (év)l/ gstimator with those

-

1/ When some of the regressors have been omitted from 2z regression
equationy the OLS estimetor of the regression coefficients in
the misspecified model will be denoted by OV estimator in this
chapter. ' '
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of the OLg#/(f) estimator of regression coefficients for linear
regression models with stochastic regre;sors. This we h;;e done

in section 2 for a two regressor models There we have also dbtained
a condition under which the OV estimator has asymptotically @maller
MSE than the OLS(f) estimator. This result has also been extended
to the case of k(> 2) regressors in section 3. In Section 4, the
question of MSE dé@*aance of the OV estimator over proxy variable
estimator has beed examined. This latter iseue was originally
discussed by Algndr (1974). Section 5 concludes the chapter with

some general observations. ) P

2v  Comparison Qf‘ggyppﬁggicmvariaddes and“@§E*$ of the OV estimator
with those of the OLS estimator in the fully specifiod modele

2¢1 Comparison of asymptotic variancés
Let us consider the following two regressor linear model with

stochastic regressors &

Y = BX +poxt € : (4¢2.1),

where e 1is the spherical disturbance term with mean 0 and
varlance o . ¢ is distributed independently of x; and X,

X4 and x2 are (n X 1) column vectors of stochastic regressors.
Also suppose that each Tegressor has been measured from 1ts respec-

tlve mean. We assume that

2/ Heres the word '0LS(f) estimator! has beén uséd to denote the
0 of regression coefficients in the fully speci-
fied model.


http://www.cvisiontech.com

=2 1 1 -
EOG E mae) =BG Zxg 1) o
R ~ (4.2.2)
‘}j(.l g xg") = g 'E(dl z‘ (x_.%,,)= P -E( 2 xZ Y=o
n o, et T oteg? n 2171177 12 n o711 11
; =1 & 2, _ 2
and. E(E if 81) = g

Supposes from the above model, the regressor z haé‘been
omitted. Soy the misspecified model is
Y= BIXI“" 5+ ) N (4- 203)
where BI is the redefined regression coefficient associated with
the regressor =x; in th& miQSpecified model‘and e 'is the corres-

ponding disturbance term. Let 31 be the OLS estimator of ﬁ
(1ocey Bl 1s the OV estimator). Then ‘

25 o4
By

H

(@iﬂi Jﬂl)f'l x{y

e "“1)‘*1 x{hx, b, + ) | = B (44 244)

i

where x'= (xll’xie"“’xl Y' and z = (le,ngyo..,x )te

.
3

3/ E(x(n)) = 1im E(x(n))
b ' n-»oo0

¥
e‘% S o o D e Tt
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Thus -
A
- Ny _{ n,E Fi %o
E(By) = By + E| ‘ .
n
_l 2 X2 LY
n 57 .li
UJE .
k = By Tt B
‘ 11
= By ¥ 8y By F
2 B‘; (say) =34 (44245)

where 65, 1is the population regression feoefficient in the

auxiliary regression of X5 0n 'xl. g

Nows asymptotic variance of Bi*-is giveﬁ by -
AR -1 + + + +
V(s 1) =0 lim Efals; - B,) (B; - By)!
Mt i BRI L Rl AT

s

E e 678D G- Dy
N . a g
o™ EL {n(xdx)) "xgx,- ?‘E B (%1% aLX Xg- o ‘32:’!’ ]

+n 1 E {n(xixl) =% x4 e}'{(xixl) =~ xy ey

Al

.

n
L e
= pg V B 2 + n 1 E [n(x l) xlee xq (x4 Xl)
z X7y
i=1
O - AN X D'2
=p5 V( 6,,) + n
2 21’ B "
( iZ Xli)
2= -1 g2

- s

. - -
4/ ©Existence of such asymptotic mean and variance of gl+
Tsfsision, 100re vebBptinRaiA LEin@d .
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Again, If the model 1is fully specified, the OLs(f) of By
A =
is By = the first element in (X’X) = X'y 5 Here E B, é B, and

?(Bl) = the (l,l) élement'of o Ha(xrx) X'eetX(X'X) 1

(40.2.0'7-)
v &
S r 0 gy
12 Xoo
where X = &8 =
Xln X2n
From (442.5)y we have -
2 1 =]
- A |
V( Bl)'ﬁ'the (1,1) element of - EG——X)
n n g
_ g2 o0
= = 5
11 Jep(o12) _
_gf L (4e 24 8)
n ° 2 Lo e
"62
CLER Sl 1 g

where
Paz. 7 ey 05
Comparing (4,2,6) with (4,2,8), we fihd that it is not
1‘&1@&?& possible,to say that . 3
A 2 : R VAN N
W s{) is greater than equal to or less than -V(B Y in
all the cases, 8o, we try to develop_ a condltlon under

which T ﬁ{) wlll be less than T( B 6’)

-
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V(B <V {8y 1if gnd only if

— £~ ' 2 , 2 h g ‘
B22~ V (5 ¥ wm, < & L =
10 % @, g, = (0. )%
%12 "o 12
2
- A 2 o
ory B2V (8g) <& M
I (o o - 0o3.) o
11 22 12 11
= QE . - : 1 52.
Q1 .2 ‘. F18
Igetl - p39)
e A0 2 ‘
= V (B5) 691 (where B, is the OLS(f) of By
5 in (4e2:1))
o .
B ¥ -
o 2. o —21
a - S
or, 0§ < Gg' (say) g (4424 9)
2 21

- Rematrk 1.1If ¥ 2 %1%, Jointly follow 'a trivariate normal distribu-

tions then %" o

distribution (vide Anderson 1957 ). Then 1t can be shown that

and x. will jeolntly follow a2 bivariate normal

2
Tioyy - 22022 : |
;L B L B o (4. 2.10)
11
Soy from (4.2.9)y we get
& >
£
9§ < ———1-2?- (4024 11)
2 1-p)


http://www.cvisiontech.com

~-210 ~

In the special case where x_. and X_ are uncorrelated in

1 2
the 1imit,
A a
= , A7 = —=22 :
plz G+ Soy ¥V ( 521) n o . {(4.2.12)
2 i, . .
- A T + T ‘ :
Here  V( B‘;) = Pg’n 32 : - : (4.2.13)
ot 0_2 2 /\+; i :
again, V( ﬂl) SR o=V ( Bl) : (4.2.14)
‘ 11
Remark 2. With nonstochastic regressors,‘however,
a 2 :
T g $§).= — : (4.2.15)
! 11 :

which is always less than the,sampling variance of B T in the

case of stochastic regressors given in (4.2.12).

|
4.2.2 Comparison ¢f asymptotic MSE!s

our next attémpt 1s to find out a condition under which
asymptotically the OV estimator has a smaller MSE than the OLS

estinator in the fully specified model.
~ o _ Mg 2
Nows  MSE( B;") = E( By - 84)

= E (6] - 8] - B} ~pp? (402,18}
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S0y for large. n,

= A+ Hihe = gk Eaw =
1im MSE(B Y =FE OB - 8F e (gt - ) L (4e2.17)
RN i Al oL 1 1
- -+ + 2
g = =V (By) + (] - 8
s 2
— 2 a 4 J
= 52 V(8,,) + —I— 4 L2 2 (from~ (4.2.5)
2 12 noyq 0 42 )
1 (4.2,18)
, : b
when the model is fully specified, ; B
© Thus the  1im MSE( By) = T( B &
n—»eo -
52 e - ,
= rF = (40 Le 19)

2
noy3(1-p1p)
Thus the 0OV estimator has- asymptotlcally less MSE than the
OLS estimator. in the fully Speclfled model if and only it '

Aul“;;

= 2

2 s g2
T > B2 T(s,.) + #2152
(1-p%,) 2 = nor11_ 2 2 ;
Mgy P12 ' 991 s ;
c2 =% V(agi) '
Ory — > 1
Bg O (1- 8') 62
2 22 P12 21
V(e T(o..)
0Ty 22 > gl * 1 "
B %o1
8% i
ory = < —
V(8.) (6,54)
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s 2

[ b g i g

. B e

ors 82 ¢ == (442420)
301, o

Bemark 1. W1th nonstochastic regressoers, the conditien becomes
stringent. In that case, the cnndltion becnmes : g . wl._'
Py S : iy - 2

" Bemark 2.° With O1g = 0s the OV estimator will always have a
larger MSE. than the OLS estimator i the fully Specified moder

e g [

Bemark.é* If x, 'y and 'z follow a trivarlate normal distrlbuﬁions
e A iny BEES N ' T ‘ x
{fa' 92 . 12 e L.  (4e2021)
& : 2 T =i S
21 1 -7,
2 3 =
6<. 2 o
o] np ‘
Soy  —gE— = 12 ' (442022)
9821+1 {n-1) pl e :

S04’ the condition (4e 26 20) reduced to

np\
02 ¢ 12

8 g  (442.23)
‘.:gu. (n—l) 912 : )
S0y thefﬁféfe§t érit¢rion is 3
t2 < £ rl2 E At -'(4 e
B & L ] )
2 (n—l) e +1 ,

12 ‘ N

LR

&/ Even,when the joint distribution of y,. Xq and x2 is not
normal, one can get the conditions (44211) and (4.2.23)

i1f the regression of Xy On Xy is strictly linears
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where tg is the square of the t statistic for testing

2
i 252=0 assoclated with the regression equation of y onn
X and X 5 and LI 1s the sample correlation between &3]
apd X2 ' : o | ‘ '

Thus, if (4.2.24) holds, the- estimator to be used is

Bl+(0V estimator) » otherwise, the estimator is ﬁ (OLS(f)).“

4.3 Comparison of the asymptotic MSE of thi OV estimetor with

. that of OLS eftimater in the fully specified medel for the

k(k > 2) regressop case
In this section we shall generalise the result in (4.2.20)

to the k(k > 2) regressor case. A

Let the regression equation be.
y = Bl X + B2 Xy + .o Bk xk g kO E (4.3.1)

where all the variables areahéésufed from respective means.
Assumptions regarding e are same asmin Section 2. ¥ XprZEgreces
X, are n > 1 column yectors‘of stochastic;regreséors. - SBuppose
from the equation (4.3.1)s X has been omitted. So, the misspeci-
£ied model is | - |
¥ A BI X, +,B; Xy Foees +VB;31 x;:I*f et

" P e (4034 2)
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//;11 ot oSy X 1,1

T2 Fgg  es Xk 1,2
= (XprXg90e .-ssz___l),,

LX)
LEE]

b

wpere X = (
1;!

21’1 -l xk-l,'l’]

e bwo

exdly o5 (BI’ 52 > ﬂk 1)’ and ' = (e;, é; ¢-5;€:)1.
‘The OLS estimate of g% 1s =

Ay y B

Bt 5 (e xhy T gty

Tk X ) X By + (X X )‘1 o (4.3.3)
whe?‘;z'g L = 'e‘(ﬁl" 5,2;,‘,_,,,51{_1):. |
. By = -1 ¥

"E(B)~5*+BKE{(Xlx) thk}

where & 1s the vector of expectations of sample regression

_cnefficients er Xk on X%.

Next,; let us assume that

+ ' ]
1im E( X ) = 3 (a positive definite matrix) exists (4,3.5)
1> 00 -
/\+
S0 IIm FE(p") = B* + B lim E (X‘X)
n—oo k n->00 { xk}

it

5*_+ By 6, (say). y (4.3.6)
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3

4lsoy it can be shown easily that

T

i

Bl‘%-\-f {(X+' X4-)—-1 it xk}

) L 2y gt
ST R e £ &0
2= + | +4 =1 A4y g° _.1-
=By VS X)X xS (2 (443.7)
% ?(f‘-;._g .- + ooty -1 oy
’ 51) = Bk [(1s1) element in V {(X X)) X Xk}]
5 :

+ gﬁ- {_(1,-1) element in (2+)'1} (4e368)

i

So, 1im MSE( ’E}:)
n— oo

o
+ £ J(1,1) element in (Z*)'I}

L

BE [(1y1) element in "'\-f{(f! Xy~ xte x4l

+ ;31% (the 1st element in 50)2 (4434 92)

(AN L
Let Bl be the OLS(I‘) estimator of Bl in (4.3.1).

~

S0 By = (tHe first element of the vector (X'¥) T X'y (4.3.10)

It 1is also known that

ey 2
and V(ﬁl) = -%-' {the(l, 1) element in Z‘“l} = 1lim MSE(@l) (4.3.11)

n—>00

where 2 = E(%l{)s and X = (X, xk).

3
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ere gy = |

-*

) |

Soy 1im MSE( By) = &
>0 n

xfkt %ﬂxif (ilﬂf)— .1xJ [ = ‘ | . A
% - 1x§ szgklxz S Joes )

o
T e

Let-us E6HE et the Yollowing regression equation

¥l 7 %12.340..k *2 ¥ C1ain4e.x T3 o0t Opptan i 1S
is (4.3.13)
£q is the spherical dlsturbance term hav1ng mean 0O and/independent

of % ,xs,...,xk 2.- . - N -
81'23"‘k 121 s '# 1 "M B T X (443.14)

Let

o e '?' ol oL ]
e ik "~-“"‘

| - i)
52 b aghe =258 X'Xz(xz Xz) x
1.23,..k (qd o1g) = Ei,- X2 } (4.3.15)

: S0y from (4.3;13};¥r;}¥- TR - T N T
55, ) o2 oo s S = o
1im MSE( B ) = S i (4.3.16)

2
i ™ L8 ek

PRyl T

Again, the (l,l) element of (2‘ )—1

=
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%
} (4.3.17)

t IR, P P N G
= A% - HHLEE) T X
1 n
where X; contalns only the first (k-2) columns of X5 e
Considering the regression squation

X) = 615,34, ..%-1 X0 * 0130240, k-1 3 F 0% ¥ Oy 108, x0Fu]
' ' + eo (4.3.18)

we get

2 L 2 -1 o+
: = xIx 'X ( ) b ¢ (4.3.19)
Leose.k-1 T,E 0 1‘ | X' Xz 4.3

2 -1+
= XX - XG0 'x

, o . o' %Xy
S °1.23...k-1 N E(" 1§1 °g1) = Ef n ==y
(4.3.20)
Soy from (4.3.9),
= a8 : Loty —1yvty
nlimstg( sl) Bk[(l,l) element in V{(x X)X xk}]
2 . :
g 2 2 ’ :
| B OBy Oaieda ikl (243.21)
e 1e23esa k-1 e
= Bk [(1,1) element in V {( Xty gt rxk}]
: 2
B 02 - . ;3 —li_'z&:.'_zﬁi (4;3_22)
ne g2 k \’-‘1 Ke23esak=1 07 o5 | 31
- 1,23.0.1{"‘1 .' .

P1.Ke23..:k-1 15 the partial correlation coefficient between

X, and X
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’m; ) ) B
S0y 1im MSE( Bl) < 1im MSE( 1)
n—>eo. -, : n->00 -
2 _ = F oy y =l e ) g2 i
Byl (1.1) element in VST 'X;th}J L 2 ’ B
B 91428, o k2
2 =t "“5“' o
+ 82 2 k- 230..1{ 1 [ o T
k P1ke23 souk-1 o2 N e
1- 230 oe K— 1 1.723“‘:"‘1@.. . AP
ﬁ( 1 - 1 ) "L o)l E q,;.!»e-_i:. t..;'..:w—---—
n 0,2 ° 02 4 & , 4-
S 3 . 1'o~23000k s 1.2230001("1 > 1 + 5 1 e —r' (4,8.83)
23 -
' a2 2 ko 23¢e e k-1 8 e
Py PTX.28 Lkl o K EEgam =
Gl. 230 [ ] 0-1.5‘-'1. .
§ t'-‘. 2
N k.23.,.k 1
o P1k.23 veste=T =2
51, ' . 1023---]5 1
where 6° . - “%£53-°-k 1 ...
kel23 o.ok-1 v(akl‘%”.kul ,'x} (l“ln23...k 1y

whergk ‘6k1¢23..,k:;fis-the,0LS estimnte of_ 5kl¢23...k—1 .

NOW, fI‘Ofﬂ (4. 3. 2:3) y We have r J " : '__“__;'_'__‘j__';,."_.:‘::-:‘-' ¥ : "
o 1 Tl oo tof =
A~ ( Z -1 .
8 o b e e 5
r‘.l k 1e23essk-1 pl_k.o_23 "."k"':h"”'” l
- —— - — > 1+ b e
2 i ‘-————-—-—H' 23"“"“ —-'-];- E Kle23e s e k=1

i 1k.33...k 1 o2
1.%0'.1{ 1
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2 /
. g , > 1+ —1
o 62 o2 (- B )y S oE
k };.23...1(—1 plk"za__"'k_l : ckl.EB. s k-1
2
S5 & ; AH.Ql* 1
n B 9 i - kg i B
o'y 9? S_ 1 e s
1 + = S
61{1. L ] k“"l -
§ /o A [ T . . ,"?» s 4
B §kj,23...k41 g ped Reen RS S Tiang od)
14 o7 - - - :
%Llo 23 coe k-@. RSt

Remark 1. Let ¥ xlyxa,...,xk jointly follow a(k+l) variate
normal distribution. S0y XprKgressrdy also JointlyTollow a

k va‘i"’iate normal distribution. Than-,_..;; )

e ¥
LMo g aner e T .

e T 2T e

- % g o K- (1 p o = )
O ) e e e (4.3.25)"
n 610% ...k"’"l ’
So’ e Lo & 2
n p
G? - 1k. %. Mk_:]-. . (4.3. 26)
klﬁ%.‘.k"l 1 = 2 s
L s plko 23...1‘?5—1' i [P
e/ For nonstachastic regr;ssors, this condition reduces to =
9? < 1 (vide Reo, 1971).

It il 9% A
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Sos the condition (4.8.24) reduces to

2o
3 / n p = 1 3 4
5§ = 1_&23...}; i 3, - (4.3.27)
e 1) N

lk.23...k l

S0y the'pretest criterion is

) |

= e Pt s 3

tgk 7 1k.2§2 ST J | Ry
(n-1) Tlk.23 . ;‘.k—l ¥ 1

where- 1k.23 R | is the sample partial correlation coeffi—

cient between X3 and X . If (4.3.28) holds, the estimator to

La
be used is 51 * otherwise, the estimator to be used is *3\1 ,

a I

4.4 Mﬁﬁ domigage of OLS with srrorg of observations _ ' “E

Let us consider the two variable regression equation given

by (4.2.1),_,Sugposer the' variable Xy 1s measured with error |

o O]

. ok e . = oy I A . e 4. )
.24 o e )(2]‘_ - Xzi + u.i.z "J;%-.‘T—' 172’ . ’ n . : . (4 4‘-‘1)

2
and indepeneht of all other variables in Qhe model.

e "

Soy xX¥ ienan observable proxy for x?.ﬂuiﬂs‘afa i}i.d. N{O, UE)

7/ Condition (4.3.28) may hold even when the joint distribution
of v Xy9Egreen s Xy is not normal. The only requirement for

e

this condition to hold 1s that the regression of. xk on
xl,xg,...,xk 1 is strictly,linear, which is obvious when the

Joint distribution of vy xlsxg,.,.,xk 1s (k+1) variéte
normal. L CEU

_J_,__;.—,-r'
£y ¢
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Mc.Callum (1972) and Wickens (1972) ﬁrovec, on the basis of
the asymptotic bias of the regreSqion coefficients on _the left-in
variablesy that it is always Pbetter to use the proxy variable x;
1sstead of omitting :x2 eltogether.- Aigner (1974),‘howeverg
considered the problem from the standprint of the MSE criterion.
He derived a condition under which the MSE of, the estimated
coefficient of x]_obtained by omitting 12 completely is less
than that obtained by using the pToxXy varieble xz. The Important
results 1n his pegeq“supports the:-use of a proxy variabie_in most

*

empf%icai situations. oa ol

oz

Me Callum (1972) derived the expression for the asymptotic

£

bias of ﬂp (the OLS estimate of ﬁ . when, ;xgihas been used in

place of {n the regression equation) as -

2 _ -

( Bypm 8= gy (404.2)
pliﬂl lP = e ) ) . Se
n—>00" 11 oo, t M o1

,2! " .
where* M5, = o0,.,(1 - Y} = the residual varilance 1in the
23 22 g « J d A ;
- et B B
regression of X on % . Since L < ls the asymptotic"”””
2 1 02 + M2 """"
IR | ‘ 21 Togme EE
7\ T
blas.of B s Téss than that,of the OV estimator /.

7 Il el it
migner (1974) derived the expression fcr the asymptotic

lP' He assumed that -~ yyx and x2 jointly

follow a trivariate normal distribution with the variance-

sampling variance of B
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covariance matrix

(4.4,3)

B TR s ' .8/

‘e sampling variange derived by Aigner is

2

; 2 _
2 g +q - 0 Opno + T
q alp) ' %Jﬂ + g5 g A28 @11 12 y Y (4..0)

- 2 2
where {§ = (022 + cu) 019 = 995 ¢ Thus s

2 5 2 2 22 42
A 0 @ 2 o +0° (o

MSE(B]_P):ﬁS(__qu)_J + _....(._22_413 __22#__1_}(_22___1_1)
(4,4,5)
The MSE( ?_.';)_ is given by -

Ay 2 332,2 2\ .
MSE( Bi) = By -~ + 7 (444.6)
914 11

Algner compared (4.445) with (444.6) and obtalned a sufficient

" condition for MSE( BlP) 2> MSE( % ) ‘as

« = > a2, 0 TN (4e4e7)
{1-@Q -85 ° 12 B
where A= =3¢
022+Gu

g/ These results (MSE BlP and MSE Bl) are all asymptotic. But in
~ the paper by Aigner (1974) has claimed them to-.be exact flnite
sample results.
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5 .
Nows MSE( 5{) as given by Algner in (4.4.6) is true only

for nonstechastic regressorzs. Since Algner deals with stochastic
ok
B,)

regressors,aMSE('%ip)should actually be compared with MSE(
fo1 stuechestic regressorse 1In this section we do this for a

k-variable regression equation in which one variable has been

-

mzasured with e¢rrer.
Let us consider the following regression equation

y= X8, + xéﬁz + oeee + X By + € (4.4.8)
Suppose that Xy has beeﬁ'measured with error. Sos instead of

having cbservatlons on X0 We have observations on
P (4 4‘9)
Xk—xk-!-u . » To

where u 1s assumed to follov a normal distr bution with mean O
and variance Jio u 1is also assumed to be independent,bf
X 9Xgre00 K0 Moreover; ¥y Ry AgreeerXy, are assumed to follow
jointly a (k+1) variste normal distribution. e 1s N(0, 62) and
distributed independently of XysXgrecesX; s

Thus the E-V model is given by

Vi = PyXp ¥ Bo¥ogheretby Xy + {65-804)y 1=1,25.00500 (404.10)

In matrix notation this can be written as

y.=" X:.za NP B}*{u - 1y (4. 4o 11)-
where y = (yiryb?io'fy;)i and
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. : *
‘1 a1, T
X0 oo e X,
and X* =
- L ] L ] *
Xln x2n xkn
Y

B = (ﬁl?ﬁg""ﬁk)'! € - ﬁku -= (El-ﬁkul’52—Bku29000,5ﬁ-ﬂkun)‘o

The 0LS estimate of B 1s
N n
By (xxxn L oy
=B (x*lx"‘)':L *te o ﬁk(x*'x*)"l X*tu (4.4.12)
C BB, )= 8 B lyviey - b T (x*1 3%y "Ly
1p v - } k E{ u}
=8 -, E {(x*'}z*)"lx*'u} (4.4.13)
- £ . * * "1 2 - "1
V( sh}))— f{(x 1X*) x*la}+ B v{(x*'x*) X*tu}

PR | N )
= & E(Xn Ly ™ 4 3}2: V(X1 X¥) 1x*'u} (24 4.14)

Nexts considering the term (X*!'X*)~* X*'uy we shall obtain the

probability 1imit and the asymptotic variance of é‘lp (the first
AN
element of ﬁlp)u

Since xl,x2,...,xﬁ,u Jointly follow a (k+1) variate normal
distribution,;the distribution of u (conditional on xl,xz,...,xk*)

is a univariate normal distribution with conditional mean
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* ol *
E(u/xl,xg,...,xk) = 81Xy + 85K, 4 ees + ay Xt (4.4.15)
where A= (ajiagresera )t = zé% 0 (4.4.16)
T /%
o 11\ A
222 E ? (xli’xzi’-..’xki)
V| *o1
‘-*
\\xki

Gll 012 oot Ulk

= : ¥1 514.4-17)
. 2
le ng ton Ukk + Ou
[ ]
and 2.6 = EB(u,) =3 =
12 i .
21
. ¥ i (404.18)
SF
i1

Thus, one can consider the following regression equation

- * —
ui = alxli + agxzi + eee + akxki 4= ni’ i = l’ggcon’n o (414019)

where ni's are spherical disturbances with zero means and common

. ,
variance 0p » M's are distributed independently of xl,xg...,xﬁ ’

The OLS estimate of A 1is given by
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A = (X*: X*)"l X*lu
= A - (xxt L xxig (4.4.20)
. Vit
¢« o E( A ) = A (‘404521)
) Fa A =1 -1
VOA)Y = BECA - 8)( A = At = E(XFUX*) T x*tnmt X(X*1X*)
= E{(X*‘X*)_lX*‘E(ﬂﬂ‘[X*)X*(X*‘X*)_l}
s Oy 1 2 SETye St .
= (3'?7 E( n ) (4:492@)
o — o~ . - |
e o V(A = ﬁ- o E(rrrxe)~h (4,4,23)

Sincey under quite general conditlonsy sample moments give consis-

tent estirmates of population momente,
: = -1
XD = Zpp

pli. (32 = Baxxrxxy~t

n—» o

from (4.4.24)

F(r) = %

i

2
9 299

wnere oo =

2 2 -
n = (0g = g Zgp Zop)
. H
221“ 212
— Y - Fa
Next, for obtsining E( Blp) and V( BlP)’ we

25% T and the (141)

and

first element in the vector 12

(4.4.24)

(4+3425)

(4.4.26)

(4.4.27)

consider the

element in
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s B . _1_{ Q - "'i "':I.L - I e . .
the matrix al% = 345 E,o 221) %95. The first element in the
_1 .
vector 322 812 is
o .
2
v, cofactor of o, in 3 _
i : :].k 22 (.ﬂi'lf ,28}
Det 2522
. How, it can be shown that cofactor of Uik in 292 ig
01k cofactor of 011 in Ai + °zk cofactor o7 F12 in &1+...
+ Gk—l,k cofactor of Ui,k-i in Al
(4.4 .,25}
12 13 v Y4 ey \
i \
%o 793 sr+ %9 peg
where A1= {4 .,%.30)
1,5-1%2, -1 %3, k17" “kop,u%-1
— > ] -
Bet oy = |5,,] = Det T 9, cofactor of Oy in B
= |B] + o7 |a,| (4.5.31)
u 1 L -
012 LN B ) Ulk
=) Jag  eee oy
where A = (4.%,32
ng > 0 Ukk



http://www.cvisiontech.com

~-228~

A . . 1 2 "'1 .
The (1,1) element in the matrix H(Gm - 2 zpi 91)822 13

given by
3(02 AN z"jz )“cofactor °f4311,1“ 822
¥y 12722521 Tl (7 ,4,.3%
22
o cofactor of (o +02) in ¢
Now, 31229;‘801 2 Eh u 22 (%.0,34)
' |322|
02 '
TNy u_- 2 2 ,
So, V(a,) = zT:——Tjg (1322[ - o, cofactor of (Ukk+0u) in 1,,)
29 g = om
X eofactor of 944 in 222
2
O’u i : Ay
= T 1) |A| X cofactor of 044 in By, (4.4.35;
422 s
So, from 4,4,28) and {(&4.,%,35
U ‘cofactor of 944 in 229 Bi Gi -
lim Msu( B ) = — =T . : Al
e e n . o : = n
18] + o lag) - lAI+c wlty !
2 V2
" e (cofactor of o4 in 5,0
X cofactor of 944in 222+§3K = S 5
([B+o,, 12a,1)
L ot 35}

lNow, consider the case where X, has been totally omitted

fron the model (4.4.8). Following the derivations given in
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Sectvion 3,

j 2
lim MSE(py) = =

cofactor of Uiiln Ai
00 n

] +§§ {(1;1)e1ement in
A
1 /

Tt ixhy~L x*:xk}+§§ ¢he 1st element of Aziﬁlq) (2.4,37)

1;:: . (Kkllxkgﬂ ...’an)'

W

212 = (Ulk’ ng".',ck—iyk)'

sy ot cofactor of o in E?n

The 1st element of A~ %, . = — 2 et {4 ,38)
iz la, | LR
Sy " ‘

§ iy g o . =3 ., A7- Tt
{t,1)element in V (x"'tx"') 1x+=xk= ( ke 12 "1 12 >
n

y cofactor o; o, in A,

1oyl

(4,4,39)
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, o 6 : Ny
5o, 1in MSb\ﬁip) > iim MSE(BI) if and only i?
n— o - ne> o
. 2 2
2 cofacior of o in ¥ B o
-4 | ——
= == 2 u |A] cofactor of
- - 2 2 i | D 2
[A] + o la, ] Clak o2 18,1
011 in qu
2 9 {cofactor of o, in 22,2) ;2 cofactor of 944 im A,
Aty 5 Ay
(3] + 2 1a,]) la, |
%2 (o, - T, a7l ) cocfactor of o ., in A
Lok k%12 % 10 11 1
i la, | '
1
5 (cofactor of Ty in 52?)2
+ Bz = < (& ,4,49)
2
(lag D)
R
Mow, le% us pertition the matrix A in the following way,
by T By \
-A- = ..ll.lls..l:ill (4.4.111)
T % ~
12 : Ek
E] — w = - "’i _, i
oo (8] = fag ] (o = T, AT F1,) (4,4,42)
£ r of i = in A
also, cofactor o 044 IR I, cofactor of Gfl in A

+ oi cofactor of o,, in Ay (4,4 ,4%)

i1
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G

from (4,4.40), using (%4.%,42) and {4.4.43) we get the conditin

g (]Ail cofactor of g,y in A - |A| cofactor of o4, in Ai)
2
I |31 (coz £ )
cofactor of o in % N
(Iail)z(l lmfj) .
A . 2
1 (lay D
2 N -im :
Ll IAi[ (o, - S0 A;7El,) cofactor of 0,4 in Sy,
n P
5 18] cofactor of o, in %..)>
(18, (= + o7) ( e 22
s A, | u (lail)2
1
. -1 A - ;
Gi , (Ukk— B9 O Eiz) cofacter of o, in A,
1 +=
2| - - (cofactor of o, in B..)°
(I 1 - 0,?];)2 [51 ik 22
A
1 (la, 1) !
(4.4,4%)
(cofactor of Gyq in A s cofactor of 0111n Ai)
N ;
n Py 18y " cofactoxr of Type 1N 5, 1\ 2
lay
3] 5 I3
ALUNCIL IR "
|A1| ]Ail v . i o, ¢ofactor of o . in 3,
= 5 =
|A | 2 06 14 ] 2.9
+ o, k1,23...k-1 +c;)“,cofactor of 44 in
18,1 la, ! A
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2]
0 %k1,23 ., . k-1
whiere 95 = o
‘ 21,23, . k- V{ :
Boodi=t V(byy oy g)
a A
and  bia o3, k-1 A 8y o
Section 3,

« o from (5,4.45), we get

cofactor of o

.. dn A
LA
e

L s
: cofactor of 011 in Ai )
i 4] la, |
n 87 A, | " :
k 1 {‘,ofactor of UiL in 222)2
‘Al‘ L
A} 2 oy Y,
(=) 42— F
8,41 |4, |
y ,
+ O’u
8, ]
(( Z\'] )2+ 202 Zl 02 cofactor of Cii in A
1 }Ail u IAil Y cofactor of Bl A8 A
x1.23%, . . k-1 IZ‘ 2
+ Uu
ia,l
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ke

i
cofector of 0, in A cofactor of o_. in A

¢ _ 14 1
2 A Bnel
32 3| | oy
n B ,
k cofactor of Gik in 222)
18,1
|5
I [ +262 .
A
2' 1
Y 5
* %
18,
. 1a] e o B} 5 cofactor of £,4 in A
1 ((|A1[) i zgu |A1] ~ % Cofactor oFf 0,4 in A,
+
2
e = e
5 [A] 2 Ky
k1,23, , k1 ( 5 Ui |
A A
; | 1l | - (4.,4,46)
S
Now, from (4,3 )ABy,
~
cofactor of 044 in ry ) cofactor of_ 0,, in Ai)
2 ¥y la, 1 A
o 1 ™
'ﬁ-( . V(Bk)
cofactor of Uik in 822)2
}A I (4040@7)
1

So, from (4,4,46),
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e e
=Y < ki 23 -1
-, SN -
V() 52 2/ e
9§ “ (i:rm 5 Yo _u » cofactor of T, L
ki 23,,.7-1 Al . 2 IA] ?K cofactor of o, i ..
o —— ol e, e
u = .
4, la, 3]
8,1
- (&,L.00
ccfactor of 44 in A
, cofactor of o in A
Again, 1 -- - 11 X
£}
14,
i |Z]| cofactor oz °,4 in &, - |A1[ cofactor of o, in 3
|A] cofactor or .4 %? Ay
3 ]Ail |A1[ N | (cofactor of s, in 29?)9
R ' — : T
[4] cofactor of o, in A, | (Idij)
i :
95

Tr

o 2 LS
= - j-a 3scok 1 (using (4.1‘,.42)) . L (L‘f_.i:' 9—9}

il
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«» Tor large n,

%
eg < 1,23, ,,I-1 .
iy ] 2
- 9 1+ & + 1
®x1.23, ... k-1 7] ) ]
+ 051
14,
%
= ki.?‘_}...k—i
2 - -] =t 2
s o /O Typ 2] Typ) + 0y) +1
Ho &
s [vide (4.3.24)7]
k.123..,::§-1
A 2 \
=R/~ = (%.4,51)
.;.g’*’og (1 = p? T
: K‘P"B"'k_i pl,l{.Qﬁ,,.k—i)
7| [vide (4.4.42)]
and — = Ui 123 i
TR P -t
14 |
= 02 ' (1 2 -
k.23, k-1 ‘1 TP g 23, xeq) (%.4.52)

So, the condition in (%.%50) can also be written as
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9; P;i 62 § i
p= K/ 5, 2 2
8 Eﬂcku%.”k-l(l P1k.2344.k=1)
%
'1]:{023...19-1
s CH -

2 4 “u {
91k, 23. . .k 71+ = B :
et o 01,23, o0 ko1 (] "1k, 23. .. k-1)+0"

o

-~

(4.4.53
62 .2
. 1’k.230-qk-1
e plk.as eseK-1

Next,Comparing (4.4.53) with (4.3.29)y we find that the condition

to omit x* 1g stronger than the condition to omit Xy o Thisy

k
nowevery does not admit any easy intuitive explanation.

For k 2y the conditlion for the asymptotic MSE of Bl

[l

to be greater than that of B; haga been derived o

Hdre, the true model is

¥ = X B +% + ¢ (¢.4.54)

ol

a1C

= X_ + u (4.4.55)
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The assumptions regarding e

case given by (4v4.8) and (2.4.9), ¥ x, and Xq

a normal distribution. xl

and X

2

variance-covariance matrix given by

i N

25 12
912 %0
2
2 g + g
Herey, lim MSE(B %; { = = }
11 =00 (0 + 0,2) 0' 2
u 12
2 2 o2 2
+ G
P2 Al9ep0y - 1) R
i Gge 5 03) U%l— 652‘ %(c + 02) g o2 }
oz - 9927 e
2
g g
- 32 { 12 “u B ?L
2 (o o+ 02) o IS 02 )
22 u 11 12
2 2 2
2 gr) S N (1 =D ) J
and  1im MSE(ﬁl) = L g Bt . 12” gg _%2
n—»oo n 611 11 011
Soy 1lim MSE(BlP) > 1lim MSE(Bl) if and only if
1] =~ OO 1 —>00
o
493 _ 21
e (1 + b S
521 2 M2 + 02

have zero means and the

and u are same as in the general

jaintly followed

(4e2456)

i

(444457)

(4e4458)

- (444459)
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2
(1 -5
where for large n, ! 82 = 12) ’ p2 being the squared
i . 521 2 12
" Pig
papulation correlation coefficient between Xy and X; e

~
Howevery for this simple casey the exact results for MSE(ﬁlP‘

A
and MSE(B;) are available.

) (4444 60)

/
V() = ¢ E("—]"—‘) + 82 V(s
1 21
xli
and  V(6,7) = 0,,(1 = 52.) E(—2L—) (4.4.61)
; 21 22 P12 "n o, *E.
, z X7y
4 i=1
2
L 151 11 2
Now y ~ A7, (chisquare with n degrees of freedom)
\ g
11 (4.4462)
S0y B(—L—y) = —1 (40463
: a 2 (n-2)a
z X714 11
i=1
) (1 '
S04 MSE(’B{) =g 4 g2 u + 52—'@ (4e4e64)

- 2
(n 2)611 (n_2)g ll

F -
Also, V(ﬁlp) = g% E {(1,1) element in (X*' X*) 1}

2 2
P (019 9g9)- 97 1
+ B E{(l,l)element in (*tx*) }
(02 + 02) 2 - g
22 u 11 12

(4e4e65)
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i =K
| / £ 2L )
where X* = / 0 .
Ve g )
. *
\\\?ln x2n
LY "‘1

Nows E{(l,l) element in (X*¥'X*) } = the (141) element in

ol g e (vide Anderson(1957); pp. 170-171)

o 2
el
= the(ly1) element in 2*"1. 3%3 ”
W o i s . | (4e4468)
7o \
%11 912
whare 3I* =
0'12 6722 4+ O .

A g Gy + O .
Sos MSE(B,) = == 22 2 "u("M
1B n-3 (g -+ 02) § - g n-3 (o + 52 o - 2
22 WS pp 12 {(og5" %) %31 - 91}
o < ay, 05 Tl .
+ Po o ' (4e42467)
2 (o +02) g g2 '
22 u 11 12

N "
A sufficient condition for MSE(ﬁlp) Q-MSE(QE) is
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24 2 2 2 4
L 03{005910 97p) (Tpgt o) i 912 %
n - ;
! 2 | o . B = ) i o2
. {(022+ cru) 017 - 012} 1.'(cr22+ cru) 011 012}
2 2
g (1 - o ) g
2 o 2 an i ; (4444 68)
(n-2) 015 911

For the” above inequality to hold, it is sufficlent that

2 2 2 2 4
= + g
1 Fyl0990y1 - N1 ot ‘.’122% ‘
n-2 P o 2.2 (o + 0 o _ - o2 1.2
{(og5t 9 911 7 %12} 1% " %W ‘11 7 “1as
\ . 2 2
> 225 Hlz 342 ‘ (4e4465)
Lt 2,2
- 1 Ma-"p9g) » Ogo T3q <" 910 A
’ n""2 b 2 \:2 B ( I 2 2
2 912 3. o e AJo
01171# 010,402 11T 012 (0t 0)
"L 11722 "u 11722 "u
2 2
| Xog Wiyl Pz
: - g
* . (I’l—g) 0‘1-1 ll
2 ) 2 2 2
2o o ACh Mool 8 L e -39 o 2
or, 2 2 n - 2 912

O € B S T
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1 - f1--2)np3p 4 -p70)
OI" o 5 2- ? - Y]‘»G e n - 2 ‘ 2 912 (4.4070)
el 2 ) I
%
wheTe A =Fm——— 2 5
n 012 + cru
It can be shown easily that for n*{=n-2)= 5,10y155.4+ 50,
pia‘:. 1"2100‘3 ;7, and X 3'19-2,“03-9’ the inequality in (4.4-7’0)

1s not satisfieds Thisy however, does not mean necessarily that

MSE(BIP) < MSE(£3+) s ) 4

3 FAN
The sufficient condition for MSE(BlP)< MSE (Eﬁ) is

2 2 2 2 4
1 950y, - 0 ) (o, + o) . ‘12 %
n-3 2 -
2 .2 2 .2
{(ope+ o % % - 95} {050+ ooy - o}
1 N
2
n 0'11
o (1 - p - 24
20 12 L e .
(n-2) o, PgEpwl o8
< > 5 . (4.4.71)
1 Yo + 9y
(n-3)

5 5
AC TR TRC Ty ¥
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2 2 ; 2
917 9,(0550 12 o1 Lot 9) : 12 %
n-3 (6_+ 02) ¢ o2 12 2 2,2
{ 22 s 12} {(022+ Uu) 014 012}
i p : /ﬂ 2 n-13
| G Ooll-p%y) 0 2 s
ﬁ 22 012 i 1 twhane Mo -2
x_, 1]y )
<
2
022 + oo
{(opg+o ) o Uia}
2 2 2
. (1 - o7.) a Iq
Nog Ofp 1y R B (200 12 o,
(n-3) 11 (n-;a) %11
Br p Y1e
; , S ‘
2
2 2
2 12
o s S -
11'7u 011  s
$_ p . (-7 SRl 2
poy Xt P Apis)
(1-n2 P12t™ o 2 } { T e L3 12
OTy :
' e Nt ™ .
Tox = & 912) T-A
2
o, (1~ f1-(n-3) 32\913&] L_l.z) pfg g N
N " 3
- (-2 pppk
- = . L 2 _ ~'; 1
‘FOI‘ n'' (= nt'-1) —al5’10,$’0.. 350y ees P1o = 019‘%)*\"2'?»0 é’?‘f,hZéﬂﬁ%
and A= -1”2,-..,.9 and for n" "25)25’36’...350’0.. yplg 68.!"1(1
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A=el3425 ses9.8 the above inequality is,élwéys satisfied. Only
for 7, =Jls A =% this inequality is o satisfied for o el

of n'', =-30y-16, vey—56—{seo—tppondix By 5‘*kﬂfb4¥ 51““%&5'
& valug cj’)\,ﬁa—w& veluao m! i M? e W—“LML‘L}(M
Based on these results we conclude that there is evidence to
broadly support the use of the proxy in a multiple regression on
: e -
. ¥,

X‘Land x2

| Moreovery 1f one 1is able ahd-willing to specify 52 in addition,
the equation (4.4.57 ) and (4.4.58) can be compared directly,lg/

4.5, Gonclusions | ==

1

The main results of this chapter may be summarised as follows.

We have considered the problem of omitting regressors for the

regression models with stochastic explanatgry variables.r We have

RS
g 07

2/ This conclusion also eacily épply to the case of k regress-
ors discussed at-the beginning of this section.

10/ In the book by Griliches and Ringsterd (1971), sufficlent data
available for an examination of the effect of capital measure-
ment error on the estimates of the returns to scale with a

Coble - Douglas production function. With leg(%) = Bllgé L

+ 82108 (%) + Uy the upper bound of § for 16g K has been
taken to be 0.13 (p. 99)¢ Then using the factor share

' 4 : AN
estimates of Py Algner (1974), in his paper; compared MSE(BlP)

and MSE (!B\I) . ‘ . . =y
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derived the condition under which the omitted variebles (ov)
estimetor‘ef a regression coefficient may be better than the GLS (f)
estimator by'mean seuefe'error criterion. Comparing this with the
case ef noeﬁfecﬁastie regressors, we find that the condition'here

w

becomes stringent.

mext, censiderlug a regression model with errors- in—the
variables (E - V) we have derived the condition under whlch the
proxy variable estlmator is better than the OV estimatoro We

ohtain results analogous to but more general than those derlved

by Aigner (1974).

]
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CHAPTER O
MODE L S™

HANDLING OF ERRORS IN V/RIABLE® WITH TPENDING OR
AUTOCORRELATED ERRORS

5.1 Introduction

Tn the literature on econometric methods, 1t is shown that(
when the regressdrs in a single equation“regression model are
measured with errorsy the estimation of regression coefficients
poses a serious problems In the standard model with errors in
variables, the Ordinary Least Squares (OLS) method of estimation
gives inconsistent estimates of the regfeséioﬁ coefficients. Here
we can get consistent estimators either by méximum likelihood
methods or by instrumental variable methods.l Howeversy for the
estimators based on maximum likelihood methéds;ﬁbne hgs to. make
strong agssumptions about the distribution of errors and also about
the dispersion matrix of the measurement errors. The technique
of instrumental variables can yield consistent estimates provided
the instruments are suitably chosen. Here the underlying assump-
tions are that the instruments are highly correlated with the true
values of the regressors but uncorrelated with the measurenent
errors in all the regressors. Wald (1940), Bartlett {1949) and
Durbin (1954) have proposed different types of instruments to get
consistent estimates of the regression coefficientss However;
underlying assumption in all these methods is that the measurement
errors are too small to affect the grouping or ranking of the
regressor-values 3 ory in other words, the grouping or ranking of

the true values is the same as that of the observed values.

-245~
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' +There-1s extensive literature on the grouping methods 1ike
those‘due‘tb Wald amd Bartlett. It has been -found that the effi-
'clency 9f, Eartle§}s estlmator is blgher than that of Wald's esti-
mqu;.f Thell and Van Yzeren (1954) examlned how ‘the efflciency nf
the Bartlett type estimator depends on the grouping of the observat-

lons. - '0f these three estimators mentioned zhoves Durbin's estimator
is likeiy to have the higheét efficiency [vide Jrhnston 1972,p.285].

‘In generaly in the errors-in-variable models,; errors in the
regreésdrs are assumed to be spherical with zero means. But thls
assumptlon may be violated frequently in econometrlc pr?ctlce.‘

The regressors may be measured in such 2 way that the errors enter-

ing theé may contain some'systematic element 5 e.g.s the mean of

the errprs may be nonzeros or the mean error may have a time'tfendé
also the’errors may form autocorrelated time series. This is
111ustrated by the data presented in the follow1ng table reprnduced

~from MukherJGQ and Chatteraee (1974} ¢ F=rr 5 J el
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Table 3 Two series of official estimates of private consumption
* expenditure in Indis st current market prices. : Rs.lOg.
_ e ‘ - T
Year .Revised Series Conventional Series  Differences .
)50 . . cole (3)-col. (2)
(1) (2) (3) - (4)

1954 -55 8.1 EY T iesto SRR
55-56 8241 - 88.3 _ . 6.2
56-57 9542 101.7 - s e S

57-58 - 98.4 el 10Bed L, RLEA:

© 58-59 10945 A 116.3 . - . 6.8,
59-60 11042 117.2 | Al B
60-61 1188 i 1274 8.6
61-62 1254 4 0 18867 - . 743
62-63 131a1 136.1 k 5.0
63-64 1478 st o el Tt TR G
64-65 17641 3 W PG Re ak g SV g B
65-66 7 178.4 L TR1TRad T 0s7
66-67 . 206.3 . 206.3 , i 0k 0
67-68 = 0 24B.7 ﬁ 24144 . =73
68-69 - 242.4 BEY 235.9 645

If we examine the differences between the revised series and
the conventional series of estimates for Indias both emanating from
the Central Statistical Organisation, India and both based on the
same kind of methodology and material, broadly speaking Y we find
that these differences do not strictly follow a random series with

zero mean. In fact, they reveal a clear trend over time. In the
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beginnings the revised series is lower than the conventional sericsg,
but the sign of the difference changes during the perind. If the
revised series be taken as trues for the sake of arguments the errors
in the cnnventinnél series appesar to have a clear time trend. OFf
coursey even the revised series is not perfect, and the illustraticn

is only to be taken as suggestives

The aim of the present chapter 1s to suggest some methods of

estimation for regression models with eoors-in-variables showing

&

systematic movements in errors over time. In section 2 we héve
considered some models for the errors-in- variables problems where

'tﬁe'errors contain linear or exponential treunds over time and
examined the efficiency of some instrumental variable (IV) estimsto-s
suggested in this paper. In section 3 we have examined the small

~sample bias of both the IV estimator and the OLS estimator. We have
studied these in the simple case of two variable linear regression
relationship. In section 4 we have briefly extended some of the
results of section 2 to relationships between more than two

' variables. Section 5 considers some methods of estimation for
situations where thezerrors in the variables are autocorrelated.

Section € concludes the éhapter with some general observations.

5.2 Model with trending errors

The standard two-verisble errors-in-variables model (E-V-M)

is
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yt Yt + Vt (50 = 1)

]

o
X3 Xy + Uy (P02.2)

where Yt and Xy (considered stochastic) are true valuess yi
and X% the correspouding observatiouns at time €, and vy and

, ‘ . R 2
uy are random disturbances having zero means-and variances g,
2

and % respectively. These disturbances are serially and mu@ualh

independent and also independent of the true values of the

varishles, Also,
Yt:Q(+ 3Xt+ et (5-2.8)

where ¢ is the spherical distufbance term with variance UE
The se et‘s are independent of us v and x. The model to be

discussed here relaxes some of these assumpltilons and lays down

that
7
uy = ¢ + 02t + t (5.2.4)
o . :
and v, = dl 3 d2t + vy (54250
where ’E; and r?% are spherical errors with zero mean and
variances q?’ and qi respectively. These ’ﬁ%‘ and V%‘s
u v

are serially and mutuslly independeut and independent of x and
ve These are also independent of~_et‘s. So, the relatlonship

among the observed variables can be formed as follows .

|
|
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L
¥y = g-f B Xy + Et.+ Vi

o At - | =
o« B(xt utl + e +d, + d2t + vt

i

il

. ' .--J— ~
« + B xf :B(cl + qzt) + dl + d2t + (et + Ve B ut)

_ N * - A fan'd i a4
= (« #d;-B cy)+ B x} +(d2n:B c2)t1+(et + v, - B ut)

]

&3-8x§+ Yt+—£t (say) : (5.2.6)

4
vhere & = (e + d; - pe,)

and Et: (st + r{;t e B (ﬁ‘t)

52:1 ' The I-V estimator

From (5.2.6), we find

cov(xgy Et) = COV(Xt-+ utf €y + ?; - 5‘3;)

i

o Al
ucov(xt teptegt Uy e+ vt - B ut) —sga.$ 0

(5¢2.7)

Hence, here even if one regresses y on x and ts the
: o t :

standard OLS'methdd of es%imﬁtioﬁ:wili'féii to givé'bonsistent
estimates of & p and ¥ o Maxtmum likelihood methods need
agsumptilons aboutrthe distribution of the error variables. They
also need _strong assumptions abnut the covariance matrix of the

measuremant errors (vide _Kendall andﬁstuart, Volume 2, pps375-418).
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4

Soy we may try to find some suitable instruments to get consistent

estimates of the regression cocfficients in model (54246) by the
e

E-V technique.=

Following Durbin (1959) one opyioﬁs choice of instruments is
the n X3 matrix where the j—th row is given by (lsr(xg)a i)
where r(xg) is the rank of x§ in ascénding order {say)s But,
for thiss we have to assume that the measurement errors in x*

are so small that the rank ordering 1s not affected by these errors.

Another choice of instruments is represegted by the n X3
matrix whose J-th row is given by‘(l,j,jg), 3 = 192yeee3n. Here
we need not assume anything about the'magnitﬁde of measurement
errors. But to achieve higher efficiencyy we may exploit the
serlal correlation of_the {xt} series. This was done by Relersel

{1941); fcr a two-variable cass when the relationship is
v, = B xth+ ey | (5.2.8)

so that the relationship amoung the observed variaﬁles is
= Bxg + (g¢ - But) (vy mergéd yiﬁh ey) (5.2;9)

If x.'s are serially correlated then the-lagged value of the

e g if ey = d2 = 0y the term involv1ng t ~1s absent from model

(5.2.6). Here we get almost the standard E-V-M as given in
the toxt banks (vide Inhnston 1972). :
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2/

observaed x%is can be taken as instrument .« So for our problen

we can tse the following matrix of'instrumental variables

\

/1 X{ 2
i x

( 1 x5 3
*

L3 - L ] * ) L ]

\\\} xh_l n

The equation (5.2.8) can be written as

y%‘ = ((+ B ¥+ YR +{3(X%‘ - %) + Y (t _J‘E)\# Et

i

o+ B(xE =T 4 Y (5 -F) 4 By 6= LiZiecern (502011)

n n
_ . ) Xy z t
where § = =2 and t = =2 .
n - 1 -1

Soy the matrix of observations can be written as

// il XE = SE* o .t
. 1 =3 - X 3 -t
I

T XF o p =%
n

2/ This instqument cannot, however, te used if 'E;ts are serially

correlated. In that cease the instrumeat will mot be indepen-
dent of the nbservationalserforslfﬁ%fSc This ‘case of serially
correlatgq‘qbservational errors has been considered in"section

Se
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Let 6§ = {a'y By Y )t
Let ¢
v = (Y;yy§a---,y*)' and E = (E27 ES’ soey E ).
(1) @ (5.2.12)
The instrumental varable (I*V) eqtimator of 6 is .
~ —'1 St k.
1y = Bl By T Gy vy
= 6+ (28 B (2 Eqy) g (5.2.13)
ffn-l 0 0 \\\\
/'n—l ' : n~1
N T oaxain o0 e .. T xFle+l- -t)
Nows (2}13%%(13) =| t=1 t=1 j
n-1 n-1 . n-1
T (1) TG, -B) (e1) 5 (417
t=1= O t=1 =1l
{(5.2414)

3/ Since t is included as a regressor in model (5.2.6) and
since xg also contains a trend component, it is not possible
to write

plim 5

. n—=00

2
(1) T O g};§o< 2ty Xﬁ(l)) gliﬁo( 2ty

because the probability limits of the terms ( zl)xb(l))
(% Z(l) E(l)) do not exist separately. Soy to obtain the probabi-
) x 5 o == oG
[ * ry
lity linit of &1,y We consider the term (Z(l)xb(l)) (ukl)i(l))
as a whole.
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11—1
where ¢ = tfl y*(xt+1 - X*)
S0,
t(z' X* (n-1)[ n%1(t+1 T)© nil(x* X*) (t+1) n§1 ¥(t+1-t) %]
= - - - - v X iy
> (1) O(l)) : ) ct-:l {t:]_ T+l . ] }{t—"—-l t }
(542 15)
S0 (gl(l) - B) = the 2nd element in vector
. (z' X+ )6'1( ) (5..2. 16)
o’ @t
How, (Z(l) 0(1)) : |
o g,
n-t, & oE g - Y
/ (e 2 (m_‘) .[ z( .i*)(u;) Hﬁx’;(m_a }) 0 o |
{ n~1 | | . n—i n--l B
—[( 2 X*) z (t+1-t) - 2 (t+1){ EX*(t+1—-3 }] (n—i) 2 (t+41-T) 2 —(n—l) z X"(t+1-*‘,’
k.’ =" ey ke A SR R /
¥ Ib-l ; n-1 B 1 R d

{2 (xt 1—x*)(t+‘1)—. g (t+1) ] -(n—l:) z(x* -x*)(t+1) (n—l}c /

N Det(Z! -xX* )
freiai # e (1) o(1) - & ablgs NI
n - (542017)
S0, ( ﬁI(l) ~ ﬁ) X s
g n~1 n-1 - G o T MR Py [ s T
[- {( 2 Xt) $ (t+1- t) - Z (t+l) Z X*(i‘ﬁl-t}} k.
t=1 Cg=1 t=2 ©
+(n-1) 2 (6£7-T) (-. z. £.) - {(n-1) 2"‘-:::*.(1:4*1-'1’:-),' o]
_ 5 t-1_1 #'1 R 3 t—_‘l"z"'g-“‘* Sel
d n-l- - b
(n—l)[c S (b1l t)2 = z (xf, 1 59 (41} 2 x*(t+1-E
5 t=1 '[ B H_t:;xt . )}

(5.2,18)
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Novws x% = X+ eq + et o+ ’{1'; L

S04 the expression in the numerator of (5.2« 18) becomes
=0 5 -
‘”til(x +cl+02t+ ut) 2 (t+1-t) &l(ml) Z (xt+cl+02t+ut) (t+1 t)].

n
Xtiz Et + (nnl) 2 (t31.-F @‘t +¢,+}:}t’4—tt:§) ?,H‘B

n-1 ¥ L
+(n-1) 2 {(xte e u ) (H1-E)y 2t ¢ (542.19)
| S D AR }2 t }t=2 t \ ‘

As n -» ooy the expression becomes
n -1 n-1 n-1 o n-1 n-1
1 Xy Z (t+l- t) + Z ut b (t-!-l—t) - 2 Xy (t+1) Z xt(t+l t)
t=1 Y t=1 t=1 b=l I el N
1’“’( BT (61 z ( ':)zc )= nl}( ot
- 2 u.(t+1-t 1 E +J{n-1 t+1-t Z (x+u.)E
g e =1 } £ '[ | pon £ OtREY

) 1 -‘ )
—(n—l).{ Z X4 (t+1-%) Z' (t-!-l){t+(n-1) 2 u (t+1- t) Z (Hl){t}

e e (Saé; 20)

The expression in.the_denominaior. of.,..(s..z., 18) for large n

n-1
(n-l) .ch 2 (t+1-T)2 - 2 (xt_'_l—x*) (t+1) 2 x%"(t{-l-?:)}

{ )[nilc Ty 4¢ D+ (@ “"’)""’nilcm t) 2
= -1 5 . - j"’ u q=-Uu i A -
Bl Xt*ut..f Fap o d Wy} 2 _.

{(x -X) + ( i -Tﬁ].(m-l){ 2 (Kt-!-u )(t-i-l t)}]
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Under the assumptions that™

T " .
plin > =0 (5. 2021)
n"">09 O, e , )
- ¥ 3 - .
Ty (. 2 2 _I
2 (xl-x)+(u1~u) 2~
F NPT 3 _%
e L (g m) (1p-0) n " n
"’)1im - . L. .
n-00 -, v e el I
el .-my b _t
(xn_l-x)+(un_1~u) n n
, | o (5.2.22)
exists and ig nonstingular, 1
. 2fd plim <3, £ = o, (5.2, 23)

n-—>00

dividing both the numerator and the denominator of (5.2417) by
n5; it can be proved that
Brey -8 =0 (50 2. 24)

plim (
n—o00

Similarly, it can be proved that

ﬁiﬂ Gy ~ R =0 - | i (542.25)
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N

d ] N - = . e
an gi;i; 11 Y ) 0 - (5424 26)

FAN
S0 51(1) is a consistent estimator of ¢ ,

9»2.1 Comparative efficiency of IV and oOLS estimators

. ;
Next we consider the case Where OLS gives consistent estima-

e , rJ
tors, ise., where U = 0 ¥ t. In this case we compare the effi-
J01ency of the instrumental varlable estimator of 8 with that of
the corresponding OLS estimator. The asymptotic covariance matrix

A .
of 61(1) 1s given by

g = lim Ef(z' x* )l g1 2, (x*xt -z -1
A (1)
51(1) n—->00 (1) 0(1) (1)_ LoD Cl)
: f (5¢2.27)
wheré T = :é»+";J and
n ! 7 |5
2 n(Z(l) g )( £ ZCl)) s
n-1 n-1_, n-i n-1 n-1
(£ %, )2 Y E z;c"‘ Sy 2(b+1)e
t=1 U1 t=1 1 =1 £ S =] t+l t+1
n-1 n-lﬂq n-~1 KJ n-1 n-1
o~ 2 /\‘
= Zal R Z L e Fpd” 2 Xt tr1,2 2 (e
n-1
-1 ] o
T aly Py neleg ¥ sk . CE (1) 3 T
t=g D m&tﬂ | t=7 B matﬂ-t ml t=1 ,

(5 .2 28)
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n-1 0 : 0
n-1 : n-1 -
z xf & Z x(t+rl-t)
- _ t=1 t=1
1%y~ -1 n~1
"3 () g (xt.,+ ~x*)(t+l) T (tr1-5)2
t=1 = Ll .
"’ y  (542.29)
n-1 ' ‘

where- ¢. = F. xF (x¥ . - %),
were T g gy ~ X
Let = Det{Z ) —(n-l) c 2 (t+1—t)2 s
(%) AT
n-~1 il . n-l )

- 2 (x¥ J=x¥)(t+1) T x*(td-'i-f)
iy et e e
Let xg—':xt"'cl"‘cet ™ (5- p2 30)
Substituting ut =0 10 (5.2.27) (5.2.28) and (8.2.29), we

have

the (2,2) elemunt in V

il

asy var(BI(l))

= E [{~. }L‘xt z (1 2. >: X (41 = "5 (t+1)}
E Al t=1 e =1
(n 1 )
X
t= Bl
+(n-1) z (tr1-D)2 '3 xT ry nﬁl <
12 g1t f1E el
n-1 T n-1 n-1_,
-{n-1) 2 Xy (t+1-%) 2 (t+1) T z €rrl
t=1 t+1 t=1
n-1 o n-1 o T n-1
X ~{ T x T (t+1-D)2 z X (t+1-%) ¥ (t+1)}
t=1 Ct=1 =1

B corfpressiont OCF: weh ogtimiziiion using A waley in vhapters 3 and 4.

\ I
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— n~1 n«1
r g - 2 X
EA =] t=1

+(n-1) z(t+1 e (Zx e e
t=1

n-1

n~1
ﬂ(n_l) z xT(t+1—t) 3 (t+1) %,
t=1

T (t+1-T)%

~259..

n-1
e z xt(t+1—-t) Z (t+1)}( 2 Sy ltz Xt €1

£41)

rd

b+1 2 xt t+l] (n-l) 2 (t+1- t)2

5 ©  Eg
EAE,[{- >: (t—a—l—t) . 2 xT(t+1 t) i {t+1) |

¥ (n-—l)tz (f&»l

n-1

= }(Ll tr1, 2 (e, )

t)° zx % z (+1) o7,

wn-1

~(n-1) :»: x, (t+1-t)( £ t %

L b+1) %] x ~(n-1) z: xt(t+1 -t)

-1
=(n-1)7° L[ {- Tn =

n-1
+{ 2 (t+1- t)

'

=1 t=1

n-1
tZ

S (a1 t) + z: xT(t+l 1) z (b{-l)}
M2y

n-1 n-1

T
ti xg - tz x (t+1—-t) Z (t+1)}}

—

(182 « 5 2ee1T) "5 (be1)
t=1 xt B =1 }]

N~ i
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L Ti2 7 2l g — ozl
tj Z (t+1-F) 2% 2 X 2 x (t+1-t) £ (t+1)
] t=1 IR R | =1

1-T A '1' " n-1
1x (t+1) z xt(m-l t)}(rr—l) Zl(ta-l STy @

1 p22-1

+{n-1) 2 X} ¥ (t+1-1) —(n 1) z
=1 © t=1 t=

."-42 n-1 n n-1 T B 3
= { -( 2 X, ) 2 (t+1—t) z (t+1) +- 2 xt(t""l t)( T (tr1Y)% -
E s =l t=1
n-1 L '
+(n—1)t§ (t+1-5)2 2 xt(t+1) ~ (A1) z xt(t+1 -t) z (t,m },

. e 1 T v I
X (n—l) Z Xy (t+1 t)

. [where T = var(- ;_t-:'t) V tj :

~ n-1 5 2 n-1 n-1 Tz g iy

=2 (>: E(t+1t)+ b T (t+1-T)°
i E[{ xt) b=1 nt_lxt t=1
e, T nﬁl( DR G Feiony
v e 1T T GT < 2 (L v 1
n Xy > X)) (b+ 3. n 20
(n-1) 1( t) '8 ( )( t)
$(n-1) T (b+1- Ty t+1-
o0 E -
n-1 n-1 = -l o
(a-1y 2 xt(t+1 ) T (t+1-T) } < —(n-1) z (x; (651 48) )
=1
.

LI _ =1 F
where & =
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(n—l) n-1 n-1

o 20
:-f:—————— H z (25T z (4+1-%) Z (% ) (5+1-5)12]
Eoa2 { b A1 } { }
X . ' n-1 2 v
: ; X 2 (t+1-%)
| t=1

n-1 2
S o2 o 2 {(x ~XtYy woey (t t‘)} 2 (b1~ )

n-1
- El(x - )e (tﬂt’))(t+1 By ] 2 (t+1~t)2

T

-

= x -1
(n—1)2 B z {x (xt+1—x) + c‘t(t+1 t)} 2 (t+1 T)2

1 .= ’\_~-.. 3 - 1 - I
{( s (= -X‘)+c (t&l—t)}(t&l)\x’(xt+02t31t+1 t)}]

where ’E‘::(Eit)/n (5¢2431)

Under the assumption that {;ct} is stationary,
- n-1 , n-1 .
¥2F % (x, -% )2{ 3 (t+1-t)232
=1

asy var(Pp,1y) = e
: ‘n
.{ Z xt(xm_l—x) Z (t+1-%) }

Ay g_____ bk g% (502.32)

where P71 = —E-’ —l
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™ — 1
and 0% = E % " (x, - X%,
=1

Againy we know that the asymptotic variance of the 0LS

estimator of & ig giVeTi by

LS) = { E (n o o)} s = ' - (5.2.33)

V(
- \
/1 xl_an : __1_,_35u
| |
( 1 Lzl o gge n
where Xg”—" ine ™ Wt 5 LR "":‘ " where Xt 7T_ l—l—‘“

E“T=1—1—

':sT»-a
ol
T3
3
I
et
=2
Dl Mo
ot m

E( -I]i" XT‘KT) 1s assumed to exlst and 1s nonsingulare

= 2 :
n Z‘ (t-’c'")

w2 =

- A"
80y V( Bara) = O°F —
’ FoLs n o i Ot N
: n xt - X1) Z (t - t)

[ 2 2 (x - x"T) {(t - Ev )}2

t=1 (542.34)

Under the assumption that {xt} 1s stationary, it can be
shown that the expression in {5¢2434) becomes

G2 L
2
gl Z(X -x")2 ek
L 5 ]
S50y assymptotic efficiency E1 of the ingstrumental variable

" " 2
estimator of B8 with respect fio that of N19 aatinp-tar - ".L

(542435)
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5.2.2  Exponential trend in the error component

In the model considereua so far, the error_components (4, and

't

vt) in Xy and ¥y are assumed to contain linear trends. Buts,

when sample size (n)_is large, this assumﬁtion-may not -be correct.
Because, this iﬁpii;s thaf as n increases) the systematic parts
of vy and Uy increase or decrease without 1limit and as a

result the numerical values of errofgfgo on'increasing in&efinite-

1y.
To do away with this difficultyg a more reallstic assumption

is that the systematic parts of Uy and Vi decrease to zero

+
*

.

with time. For example, suppose

By = A exp[-dut] + uy - (5.2.36)
ve = A, expl ~d_t] + ’x?’t | (542.37)

The true model is given by

,‘f' o Dk

Y, = «+ B Xy + oy {f : . (5.2.38)

The relation between X%‘ and yéﬂ is

wdut —dvtA
VE= =+ B xf-Ye + & e + By (542439)
where Yy = B b,
5§ = A
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and E;t:: et+?r’t-{3’ﬁdt

Although this model may be more realistic than the previous
one for practical purposess; it is not easily estinﬁable unless d.
and d are knowns Sos let us assume that d and d are

known-/ Moreover, for conveniencey let us also assume thst

du = d*v = d (The general .case can be treated without much additional

difficulty). The model in (5. 2:39) now be_comers
_ e - '
Y = &+ Bx, + Ve + Ky _ (542440)

where ﬁ)j:()/ - &Y

The matrix of instrumental variables can be taken.as

/l x; ‘2

; x
e ox 3
4y = R - H(5e2a41)
) ) [} . g .. . . SN
1 x,;n /
Again, the model (5+2.39) can be written as
) . ~ o Lind A+
Ve = (k+ B X+ Ym) + ;3(;1:i -x) ) e A m) + gy
* _\3 ~ t i V -
= ! 4 ﬂ(xt -X)+ Y (e L - m) + ‘Et r & ”—'—_:?1,2:,3,-0031’1

| A (5.4442)

2/ One can suggest search procedures for estimeting d, and d 3
but it would be difficult to prove that they are reaeonable.


http://www.cvisiontech.com

(Sh,

265~

4 ¥ A
n g =
. z xé b e—dt
where ?czE?‘-—— = m:tzz
n -1 n - 1 o
S0, the matrix of observations can be written as
vb )
-SL !,/ 1 J(g _ 5{‘* (8*2(1 ip m)
- -34d
x _ Tk 1
B 1 Xt - X {e m)
X* = _
e : ; ;
1 Xt - x* (e _ )
Theny the IV estimator is
~ =) i
o3 = ( Al X > ) ( zt Y(l)) (502.43)
I(1%) (1) o1 (1)
p .
As in the case of & ( here alsos it can be proved that
_ I(1¥)?
AN —~ .
plim & =06 = («K'y By ¥) (5.2.44)

n->oc0 I(1Y)

As in the previous case, if Ei = 0 (decey OLS is consistent),
it can be shown that the asymptotic efficiency of BI(I'} relative
to that of Bors for the model (5.2.39) is given by

‘El .= p% {provided {kt} is stationary) (5. 2.45)
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5:2¢3 An alternative IV estimator

Recentlysy Karni and Weissman”(19?4) have shown that in the

"y graddara E-V-M, when'{xt} is serially correlated, then using

(x%+1 + xt_l) in%tead of X, OT X, , as instrument, we get
more efficient estimates of the regression coefficlents. We

exploit this jdea to stuggest dn alternative choice of the matrix

=)

et

of instrdmental variables.

Lef;ﬁs consider the model (552$12). The matrix of instrument-

al variable may be

x5 + xi
x5+ x5 ‘ o
’ 8 C (50 2,467
S ek ok
XHAT o
" The matrix of observations can be written as
4 : B
// X ‘.xg-—“x*
*
X0(2) Y \ f . “aii (54 2e47)
Kﬁ Xy~ X
n-1 n-1
r * E &
= "l t=2 ‘ . t=
wheres now X* = =73 and t =723
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A * fil t *
S0y I(Z) = (Z X ] 2

i vr o) ”(5.2.48)
JEhs 02, \_?‘(2) (2)

is-the .1V estimator of & ?Tﬁhere yfz)‘= (ygg yg iee yﬁ;l)t."
hs in section (5¢2.1), here also, 1t can be proved similarly that

31(2) s a congistent est;mator of & .

Under‘fheléésuﬁptibh that fx,.} 1s stationary, it can be
shown that

1 :
R '\A-'cz E- {(xt+l—x ) + (x% 1 - % )} |
= 1z - L 2
E tz;[{(xt+l—x+) + (x4 - X} %]
n-1 n-1
z X1 2 xtul
where X, = ¥=2. " and X = X=2_
n -2 - n -2
The expression on the right hand gide of (6.2.49) is F
2 2(1 + ) )]
g- 2 B
= T el = “ (5¢2450)
L b AT Ly ' i
n-2 .
E 2 [(xb+l - x ) (xt 1 - xﬂ)
where Po =
2 92

6% " ana p; have been defined in (542.32),

o
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f\.

Sos the asymptotic efficlency of 51(2) with respect to that

of the COLS estimator of B 1s

Fam]

j— 2 ) —) 2

We can obtain similsr results for the model (50240) alsc.

5.3 OSmall sample bias of I-V and OLS estimators

In the previous section we have examined the efficiency of
some I-V estimators of B in models (5.2¢6) and (5.2.40) relative

to corresponding OLS estimators in the specisl case where the OLS

estimator will be conslstent.

It 1s well known that asymptotic results may not be a perfect-
1y reliable indicater of small sample performance (eeges; small
sample prrperties of TSLSs LIML and OLS studied through Monte-Carle
experiments in simulteneous equation systéms). It ig therefore
of some interest to examlne the exact {small sample) blas of the
TI.V and the OLS estimators of B 1in models (5¢2¢6) and (5.2.40).
We do this in the present section. Here we have also obtained the o_
of the coruesponding 0LS edtimstor when the time varisble has been

pomdtted frem the models (5:22.8) 2nd (542040)(ieceyy* is regreesed on
x* alone). Although we have been able to obtaln the exact blas
of the OLS estimator (both including and excluding t), for the

I-V estimator, we have been able to evaluate the blas term only

upto order -%(n being the sample Size)s
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5+3.1 Gmall sample bias of IV estimator

First let us consider the model (502.6)e From (5.2.13),

A =3
8 = (Z X* Al y
(1) (1) “o(1) (1) (1)

=5+ (2! x* )1 g g
(1) o) (1) (1

Nows (2%  X* = Z £
(1) o) (1)
= [(zig) + 7 ) (Xg(l) + n)]"l (Zfl) + I £(1) (543.1)
/""1 xg - %L o _F \
i A=zt 5 D L | | .

1
and xt = xt + cl -+ 02 t
~ o, \
S0 - WP
0 W, -1 o - LAy
77: 3 5 f{;:Lz___
» e +« ! n—l
g . :/
o~ -~
0 un - u 0
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' ‘\ \
/1 xf 2 \\ u1 0
T
; / 1 Xg 3 ) ?2 Q
o N TE, e S il
‘I‘ i
\il xn—l n un—l 0
Yows the rehese of (5.3.1) can be written as
e T T T T -1
(Z(1y Foq1y) ™ [T+ (203, ™ (2(1y %oguy) 7% 1) By %1y

Gy eyl - S1)

{5.3.2)
Expandlng the expression in the third bracket of (5.3. 2) as
(I + 4~ , we have the expression in (5.3.2) as

hl T T T -1
@ By - gy @y gy A P % @y %oy

& nt n(Zgi) Kg(l))" + other terms](z(l) + 7 )E(l)

(508.3-)
S0

-1, ) Tt T -1,,T! Tt T (&1
B2y % (1)) T3y E )= BINE(1yXg (1) (ZyM 2y Xy (19) ™ x
. =
Z(1y Byl
Tt T L -1- J L, SR
B (Z(1yX5 (1)) e (Zy% (1)) 7' qy]

+ other terms
{(5.3.4)
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—
Here the underlying sssumption is that ui's are mutually indepen-

dent and have symmetric distributicn.

R,
7/ 0 0 0
/ n-l oL vt
L ( O B ey B ’
A . . .
5 4 g
\0 C 0
;’f 0 \
=4 { n-l \
and TE, Em e ey Eons
voE=1 /
\\ 0 N
/,f_ n_l O O \
T S =38
Toxg  Ioxplxg %) ZX(t-f-lt)
Tt i
(z Joee ;
@ ) S ] )

Vs (1) nél(t‘l'l)( 27y nz (t+1) (b+1-E)
~ - +
po N <X o

s \\

‘/ a 0 0 \\

- i b C d : say

\e f g //

Nay
%
/’ cg-fd 0 0 \ j
S0y (2! Lo | “pg-ed ~ad /a( £a)
y (1) Xb(l)) l ( g2 ) ag o ; Cg


http://www.cvisiontech.com

270

/a1
tfl ST
_ L 6 Sl
‘Z<1>5<1>)?m =l
tﬂfh&)EHJ

R o\
0 z:l T( S
X u u )
Z‘T 7 == t=1 1™
(1) -1 -
0 Z(#1)(ua

t=1

i
[}
]

g1 O

1,7t 7o [
<1> Xb(1)> (3(1) mYF (2(1) % 1)) (ZE§)~§(1)? 1 &

4
0
n-~1 n-1
.}(_bg+ed) Z Eb+1+>ag Z x; 5t+1 = 9 =g 2 o - S
, - ‘b“*l
( B n-1 }rT nel
-v' -bg+ed) ¥ %; 1+ 2
= 3 ag.2 tth-l .4 ac} tf Qt-i-l)ﬁ
. é = 3 il e
] Q nel n-1 (5.3.5)
where =ag 2 X‘c( ut+1- u) -,_ adti‘:l(tf-}} ( uml— u)
Y 5 T( 2 o
s = g = xp( Uy, g~ u) + actfl(t-!-l) { utd-l" 11)
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n-1
E(N ag I xT E,, ) / 8.2(Cg = fd)g
g=1 © W10 L

= -
n-1 2 n~1 n-1l "
(x ~x7t Ty 2 (t+1-T)21,2. 2 (t+1)( wx‘T
e {2 ¥ X,
n-1 n-1 -2
Xz (b+l)(x 0y (8121
= -B%E - . i
u n-1l n-1 n=l oo :
T : T R, 2
Zoxp (x -X- ) 2 (t+1-8)°- 3 X} (tr1- t) 2(x S =XTY(B+1)07
=1 U B t=1 U t=1 ¥l ¥
oy . S
T (5.3.8)
Nows s Ly
n-1 [ n~-1
2 xg-21% = 3 -70%eZ B (88 hne, z (g2 (6E0)
t=1 t=1 . . . - e
- (5. 3.9)*
n-1
‘ g %
where T = 3:__]:_1

B e B

{ z <t+1)(x ¢RIy =

n-1 n-1

{E (t+1) (xt—xi)+c 2 {

-1 -

-

t+1)(t-t')} (5.8410)

Z 22 (K N z xt(xt+l—x) 56 | 2 t(6+1E) (5.3.11)
n-1 n-1
"3 Xg(t+1 t) E (x - §D)t y (543412)
=1 . v S = -
and gl v Cic
( S (k1B (6102 B (60 1E (e 1) (5.3:13)
2 (x g By(er1)= 5 “X) (B+1MeS T (641-T) (ta1 543513
oy k1 i Xor1 2 5 ‘ ”
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Sos the expression on the rTehese Of (5.3.7) becomes

-1 o n=-1 -2 5 n-1
E (xg -2 2 (1B E (D) (x -"')} z (o+£-%) 2 |
g2 151 t=1 LA N |
! 2 in 1 ( n-1 —.o n-1
T (B1-E)2- T (t+1) (x, - E
T ® E 0D E w2 T z(::m 32 {

epefd zl(x 512 5 g (t+1-;t) }2 ‘
W * E=l n t~l

n-1 n-1 _
- BT oy
el M st B 3t oy o\ .2
& tilxt(xmlﬂx) 2 SO RIS )— z (t+1) Gy 18}
= By (of order %) | (5+3.14)
n-1 ) ) _ B
E(-ad) 'tzl 't’gt¥1 3
-1
.[ g (xt—- x'T)(t+l)8g - z (#+18) %adpe -
-8 o Sp—=1 }-,
: a (cg - fd)2
=5
{:Elxt(t-i-l—t)} z (t+1-%) -{ 2 xt(t»i-l-t)} 2 (t+1—t)
-—ﬂng [ ]
a (cg - fd)

4
s

g ' Vo C (5.3.15)
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Againy 1t can be shown easily that the second element in the

vectonr:

1 — % o] —
E[(Z%l) Xg(l))‘l i (Xg z%l)) Y Heg] s

Y

(n-1)2 ni*l( 22 x5 E T \
n-1 D (1 X B u u - u B " i
i | ¥ '{t 1ot TeRlT E 2 B S l
q_l T > n-1 T n-1- T 2
(n-l) { t(xml—x )ti:l(t+1 i T z-ac (t+1-T) 2 (“1)("1:4-1 : _g
n~1 o .
(b1~ '13)2}2 | 7
4 t=1 ' i ol e
= 'Cn“?).ﬁggu,E | n-1 -1 P -1
L { z X (xt+l ::_c)tzl(ml %2z 2 xt(t+l ) 2 (x,%l-x)(ml)}
— n-1 ;.
2 - e
T (t+l- t) 2L, -
_ 4 : fr% td s } '
= *(n-E)BCE,&.E s 1’1 1
u
TRl {n .Z x (xt_l_l ~X)e—g 3t§l(t+l t)
0 ] - % L1 BB, (g
- . I t=1 : Tl t—-l l
= - Bg(of order %)- | (5E§gié)“
Sos E( E&&l)“ B) = +B + other terms. g ¢ o T (543.17)

It can be prnved ea51ly that other terme will be of order lower
B | '
than n e 4

Let us now consider the moded’ (5.2.40). Here, proceeding

in the same way as in the previous case, it can be shown easily
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that the expression in (543.7) is again 0.

(6.3¢14) now becomes

The expression in

e , ‘ «d(t+1)
ntf(x-x){:é Z(t+1t)( )}
1 971 La(ee1) g d(t+l)
- Z ( —-)( ') 2(13+1 t)(e —m;
2| B I menpd T }
G .[l ngll:‘(x x) 2 (t+l t)( d(t"'l) m)
-4 nil(e‘d“*l)-m)“(- 53k "E (ee1ytx,, -5 42
o T t=1 o =0 e S0 L
= Bpi (sor .6i;dér %1) - (543.18)

FERS

The expression in (5.3:16) Bé_c«;iiiés

1

..... CHlL T
s 2T nz (i1t 2D, oy
l .
n {l 2 Xy (x )-l- 2 (t+l t) (e‘d(t"'l)-—m)
n

1 x, (e74(+1)
e .

—

of ) tis of order -}1)

SOy E(B\I(ll)-ﬁ) = -B + B

1s

n-1
-

T ) o (xt+1-§) (t+1) }2

oy, .*.terms of order lower than o

(5.3.19)
1

(5434 20)
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5¢3.2 Small sample bias of OLS estimator

(a) L.et us now compute the smail sample bias of the OLS estimator

when t  is included as regr'éssor. Sos the model considered is

(5:2¢ 8) &

N = oW G
Sors = (K" XD T AE v (5.3.21)
/ BB=c® et .
Y 8 ., AD=z
Now (X;' X;), - ' 5 % (5.3.22)
0 -4C
where A=mny B = & (x¥-x¥u) “y-* g 2 (x*—x*" Y{(t-t'),
t=1 U T 1
n N S,
L= X?_: ‘ '2 t
b= B (s, gno LY oy ge_ L

t=1

L

n —-_n n N n i e | n -
A TR (xf-5*19y%- 2 (xF-x*t1)(t-t7) T (t-t"9y}
<=1 t=1 =1 b=l

SO 50LS

%'(X%—i*“) 2 (t tf‘)g { Z (X* ~XET) (t t")‘}z .
= B t=1 L

(5.3.23)

A :
s . E(BOLSIX;ix‘;’"Q-’X; ’ Xg,xg,ooogxg)
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n '
{ 2 (tEDZ P (xE-EUYBa Y B)
p=gl s

1 ‘ et
- (x%—i”*) SN z (6 (5 xgr ¥ )

n
E (X* Xt T (t-tt)~ A_FHRILY L Tmyao
=" vz 1( )2 {5 Rk T

n
o, 2 z SN (x*—x"*th— z (EE1R) (881) 3 (8- E)x(Y

B t=1

n € " .

-z (x* XUk ) 2 (t t”) ~§ T (xEF-xE1) (0

t=1 {£“1( J.C )} ‘

(5.3 24)
< 1L
T P
Let /(t = Xt 5 t y £ = 1,2,0t.0";hi

it

Ycwy let us consider the following orthogonel transformation of

,,,,, - R p

hl,uz,..o,un to W sWoseeesW, Jhere

2 (t = t“) /(t )
=l (5434 26)

/fzt;%n)Z

k;,
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y Blee

n T 1f- ; lT n -
26BN 2 (I A- T AN T (6EN 4
b=k t=1 - 7 t=1

= Iy N R S e 5 hascs

n - n . & N _ oW n - ,

' T (t-t192 i 2(t—t'02 3 (xz_xu T)Z*{ E—(t-t'ng}z
t=1 t=1 t=1 t=1

(5, 3.27)

Hb‘i

LI N

=
=

Undén.the1assumptibn-thet uy's are 1o1ede N(O;'Esyf;ééch of !

Wyts 4 = 1,2540e9n 1s N(0,1) and wy'ls are mutually independent.

It can be easily shown that ™ : Q;&-aﬁ
= g B0
T . I N - *
B BDLS[xl’xz”"’xh’ X0 For i) e ezt L
S, . e T
P / : =V N RS T A "
ks ¥s %ﬁ/& ‘>J:E e
=1 48 = e ” ‘ _(’5-.'30 28)
n . . £ = i
- Kwgt /~* )2 + .2 wi SR (U TR -l Q.
Corme . 1=4 T _— DU T IR

g2 3 (xp x" T)Z {2 (= t")xt}
1. —t=l ”;_- - ‘ - (5+3.29)

T’Ms
/-\

where ’f

I ST L
15 t=1

H

T
and Xy Xy + ¢y + 02t
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W
Gurian and Halperin (1971) obtained
) gt Ty Cmd
{ (wé*hfoﬁﬁa"'fo % /2 o o s P
By AT N ) S IS ey
i -~

20
K\(Wé*{?i);ti§4-W1 2 o N

b

where wi’s are WN(0,1) and wi’s are mutually independent and

G is a fixed constante.

Lo
S0 .
5, T xF T < - /2 n-g n-2 ~
E(BOI':-S[ xl’xg’.‘ * ’xu) = ﬁ__..‘.-é e lFl(‘""z"‘! CH + 1y M/2)
. ¢ o o . i L s IR g . . ) ) ‘ s o ) = -
(5+3430)
80s,7e i : T 1/2 baw B : cesaihnd 2 = ;-
’-C ‘ - - B
E(ﬁOLS) = P E{ o8 © lFl('g‘""‘gzs Hzs 2_2 + 1;%)} k. ='__l(§,.‘3.3]_)

For large positive value of‘:'j the asymptotic ‘expansion of
the confluent hypergeometric fuuction lFléggg, Q§§;+ L ﬁvg)
is given.by (vide Ilataer (1960)) T P

S/ Richardson and Wu (1970) considered the model yi=d+ﬂx§+ei,
xg = Xytuye €4 and u; are serially and mutually independent.
For each 1, e, and uy are distributed N(qu?awgpd N(O’GS)
rospectively: For suth a model, Richardson and Wu (1970)
obtalned the exact bilas of the QLS estimator of Be Gurian and
Halperin (1971) extended this result to,the case where ¢ and
u Jointly follow a bivariate normal distributjon Né( 012}
where 0 = (040)' and ¢ .

-

02 paa,
and £ = o 5 .
poo, Ty

"~
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; [ @Eay e, T, (1- 82%) .
. (A=2 n=2 _, ~ e =
(2 » 5o +1 _/2) e R [ 1+ 1; T
i 1N 2 7 ) /Z .
-2 n-2
(1- 2=y (2 - Bz 2
> SR
+ 2’; (t) + ocssee ] .
(543.32)
i N (1- 252) |
o E(Bype-B) = Bl1- —— BEE) + (1 - B5F (e --r*-—5)E(--) *ouo]
| ‘(5,3.33)
For the model (5.2.40),; it can be shown that
“g;, = VB e psfs a2 = ;
n 2 ﬁ
» b3 (e"dt—m) 2 (x g L { E (e’ dt—m)xt}g
where T = =1 =1 ‘ —  {543+35)

n 2 ez
5 (e™dt_ 2 o2
t=1

L
T L—dt
and here X = Xt + Au a ;

-~

(b) Let us now consider the case where t has been omitted

from the model (5.2.6). So the misspecified E-V model is

»

oy st gt gt 5 T (543.36)
where g

7 and  x* are same as in (5¢2.1).

is the disturbsnce term in the misspecified model.

Eqﬁaﬁion (543-36) can be written as
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v = o - pTER Y 4 pT e LRy 4 gF (5.3437)
S O 3 - }
Sos the OLS estimator of § 1s B :
n
* =3
Lt -
A =1 sl
(ER Rl z (x* - xi )2 . ‘
t=1

i e o : Ao
LI E( ﬂ+IX§9 Xg’ii&’lﬁ? 1 X{,Xﬁg..,-j}{;)m

] n
2 (x* - X"*) T (x*-x" *) XE
o YaadSL + g —=1 (543439)
T - Em? LE (xp - Enw) 2
t=1 Mo -y
Let us consider the term
Iy
E ‘ '(X't - X : ) i - r:‘;"}
Y . (543i40)

(x* ~ xd*)
t—l

This term c¢an be written as

n-
b ( - xu )t-+ 23(11 - u")t

t=1 % g=1 ¢

Y
ied
T =T 2 T
_ 2 (xp-x"1)“ - 2 Z (x -~ xrhy W ( u u" b=
¢ B t t”

t_l
' (5¢3441)
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- : -
Since 2 ( -T") t and E (x - xt) u, Jjeintly follow
) =1 t=1 ~ g ¥

a bivariate normal distribution,

E(: Z’ ( U. = ’Efn)t [ 2 (X -f_',L;"{tl T) "{;t)

t=1 t=1 N
/ T { g ( ) (
= /¥ (t%
151 t(x xt 2 V=1 Bl g
=2 , = x - T (x-Erh g2
: T / n 1 T 2 =1 ‘
Zﬁ ftﬂt“) (Xt_xn ) Z (x L] ) /
twl
S
"n
s t(xz - zuf )
t=1 T &
= = 2 (x - XU )ut) T (543e42)
A o e ) |

f—‘ % (x*-x"*)t

i | n n =
P Y tgl ~ X]-’Xe’ooo WXH’ 2 (XE"SE“T) {i;’! 2 ( ﬁ%-u“)g
(X* x!"ﬁz oy b=l t=1 e
2 | -
n ™ n oy ne '
- E (xE-En Dt g (xt xuly 2, Z (x-5"D T,
= Y t=1
n i
T - 2 n n
Z (x, = X"T) l T T\ 2 T wiT 2
i 2 (X, =xT)%-2 E (x,-X") u+ & (W -am°
e | t=1 : t=1- © Ehpsy | 10T s
n n
‘ 2.(]{%'__‘nT)t > (XT - x"T)X*
=1 t=1 °
-y . (543443)
2,7 - 7.2 q ok L mgen?
Z (X -x1) z (x X 1P}
F o
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Guriah and Halperin (1971) obtained

Y
. -
(’ 3 (XT_,XITT)X* \
r.n_ 1 t r‘(‘t PJ/B o j_ l ,,L,t
i j— [ dmbainee LA k—. = st
Bl 27 e T 2 1Py CEHi5 e g)
= (x} - FHEy e WV e
Lt:l ) __ | =g (5.3044)
n n n
E(E=ar )4 | (x,~Em Zage z: TRy 4 c2 T8 (t;w v
e el g1 2pmy L | ~'t—1 S
: ~ 2 e L
\s L5 v
Uu O"l’l‘

(553045)
SO, fI‘OE’H (508.89)

i Z (X Xt )t - ﬁ{-'[ __f"{/é r_,,.l.,, p o !
L=l Dl
E<l3 Y=g 1 % + B o3 e lFl( S TS +1, 2)
2 (X -X ™y
t=1 (5 3. 46\’

a——

As 1r1 (5 3e 31), here also for 1arge posi’ ive value of f-v s '

asymptotic expansion of (5.3.46) can be obtained.

i

When the regressor _e—‘"Qb 1is omitted from the model (5.2.40),

eV s - n o oo - . T R T PR .-
r Z'(X —x“)e t.:,. L ?C‘;’j b, |
B(8T)=B = T S“Ti‘e e 1(n21’n§l+1,7f£
2 (xt-x“) 7
L t=1
Y e (5e2.47)
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n n I —
b2 (Xt~§":)2— 2c, ¥ (xt_f&u)e‘dt - cg 3 (£-1)2
: nt t=1 t=1 t=1
where ft‘ =
“
dJ
LTS (5¢2.48)

5.4 Extension to multiple regression’

b s o Gl &
. %

Tt is not at all difficult to extend the results of Sectlon
532 to the case of multiple Tegression equations. Let the true

'rel@tionship be

TS Poe™ X1y * X eeotr S B choe 3ET (5:4.1)

E
. B ) . 2
where the disturbance term € has mean zero and variance o¢° .
Moreovers ='s are independent -f x'!'s which a e stochastics

Nows suppose that is measured withzanmerror v lecey
p Yy o 1 ;

%

t,

B = L f ‘ i
' ?t = Yt‘+ V. nlE | . (54442)

.

Let m of the % regressors-be measured with errors ui;f;

i =] 1250800 3Me 50

CXTp = Egp Uy 252
Let vg =dg o+ dgt o+ Ty ( (5.4.4)
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e~

and uit = Cj'_l + Ci2t + uitg , i = 13250-0,111 (50405)

o~ ]

~ . el | )
vhere uit"and Vi T = 142yeee9m  have Zero means and varilances
o2 and O,* 1=1y25¢c00ym respectively. These errors are

o

v .
ul

independent of true values and also indepehdent of themselves.
¥

50y the relationship among the observed variables is

e s T * * *
Vo = So ¥ PiX gFPoXEet cee + By XucrB aX ghe e et By

& ]

+ Yt g, L (5ea)
® iy
pJ m
where b = By 7 .g 9 Ci1 * dl
. i=1
Py m j
}/ = g - Z B c
o 1=1 . S 24 .
/;/ - m | . V L
L A T s

- . Here also the OLS regression of y* on xf’;‘;’kg’xﬁ%l""’xk
‘gives inconsistent estimates becnuse X;t’ 1 ='I?2yraerm==ar§

correlated with E; for 't = 1525404910 g

Under the assumption that xig‘Sxara seria1ly correlated

and G;t!s and ?; are serially independent;Athe matrix of

instrumental variables can be taken as
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*
/ 11 ml Kt 1,1 TS ] 2
* — -
/ 1 }:12 Sie o Xm2 Xn?rl-2,2 PP xk2 3
Z=| : ¢ ; E : :

= ) = ss s 1
\l Xl; n-1 Xm, n-1 xIIH“ly n-1 xka -1 .

The regression equation may be written as

*

= ul N - _ Lo
T3 = (PP Rf-BoRE—w e oB KEup 1K e e B K Y D)

P (K KD+ (Rg-RE)+e ety (r V4 () gk

teoeet BRCﬁt—ik)"f‘ n)’ ('t"'ﬁ) + ﬁ,t, t :.2,3300031'1 (50408)
n n
* DI
= t§2 it e = _ t=p It
where X¥ = —5——— i=l13thessm 3 X3 ="n=1 ' ¢ B
n-1

t=2

S0y the matrix of observations will be \
i ik
& * ¥ ~XE .. xF I% =X s X - \
) S e B P w2 Fmd, o Fm et R0k, (2-1) i

\
/ i ij—XT 142*3—»‘8?*2" ses xgj—x; xm_'_l’ 3—-§m+1 I asas ﬁ[jwik (3 -E) \

- - L] *

* &

X * e X o o
\i\\xin‘xf TR T Tn Foeda e tce KX (“"53(5 Ao
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As in (5.2.40), here also, we can consider exponential trends

r—~

-
for Vi andl Uy 8o

; : * *
Like (5.2.46)y here also we can consider XY ot ¥ b1

i = 1425eeesm and (xj,t—l + xj,t+l)’ J = m+lsesssk as instruments
* L
for Xit s and th S« ;

.

5.5 The case of autocorrelated errors in variables.Grethef

and Maddala (1973) considered the case of autocorrelated errors i
in variables. They examined the consequences of 0LS methods of
estimation in the presence of autocorrelated measurement errors.
Hdere also the method leads to inconsistent estimates of the
regression coefficientss They observed that for models with no
lags or finite lags, measurement errors in exogeneous wvariables
may lead to appearance of spurious long lags in adjustment.
Mutocorrelated measurement errors may produce autocorrelation
among the true disturbances even when they are not originally
autoéorrelated. Generalised least squares method of estimation
which is used to increase efficiency when the true disturbances

are autocorrelated are likely to result in increased inconsistency-

This section intends to give some coﬁSistent methods of

estimation when the measurement errors are serially correlated.

Let the true relationship be given by
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.Jyt = «+ B Xt + et | (5‘5.1)
where e.'s; 't = 14254.03n  have meén zZero énd variance o
Let

VI E Vgt Vg
and =X, +oug (545.2)

where E(ut} = E(vt) =0 ¥t uy and v, are mutually indepen-
derit and independent of true valuss. But both the series {ut}
and {vt} are serially correlated.

Let

S T 0L e T Vg
(54543)
and ‘ Vegu s 2 By Ve g * Yoy

where [py[ <1 and [po| < 1. w,. and W,y are serially

and mutually independent disturbance terms with zero means and

variances cg and qg « The equation (5.5.1) can be written as
1 2
y% = &« + B xg + (vt - Bu, + et)

]

< + ﬁ}[t + Et | (505.4)

»

Let €y also fellow a Markov scheme given by

BE = By Sgel ¥ Yog ™ ol o< (5e5.5)
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_and w t‘s are agaln serially‘inéeﬁendent with a common mean O
nd variance '03 . OLS will obviousiy yield inconsistent estimate
TR g, ‘
nf B. v techniques, however, holds greater promise.

o Supposes as in Durbin's (1954) method; u's are so small that

rank ordering of the observed xﬁ*s gives’ the rank orderlng of the

true X'se Under the above assumptians, let us use the following

matrix Z f as the matrix of 1nstrumenta1 varlables.Z/

Lot [
o

z = (54546)
where ri is the rank of x¥ . SR S ol
Here the covarilance matrix of Et is " el ,' .
V=E ({gt) S 0l n-i‘ n-1, \
2 2 2 5 lnefs 2 2 2 2 2 2 2 2 .
'_‘// 1 P ol +p lﬁ a +92 S pOG + lB o] +p @V ¥ Pip® +p1ﬁ g +p O ‘
; 2 2 b = 2
! U£ . UE E 1
! 2, 22 2 02y 8202k 02 —§2+n-2202+n—202 ]
/D 0 +p 1B 05+ o0 P9 *p1P-Oytp o0y P FR B Otes Iy
21D 1" "drF2v | — = o = S .
".:Q‘E / ) = 1 N = 0,2 : . 02
( Ll UE ' E.‘/ 2 5 = E ;‘
n-1_ 2 01522, n-1 5 i sig | - SR
Po p1 Bogtee 42 0 e v e
2 Vg 5 @ el %l 6 @ . 3 = » 4 /
\ % . e '
= o2 4% sy |  (8.5.7)
£ o . 5.

7/ Here, even if {xt} gseries 1is serially correlated, we cannot use]aggé

k.

values of xg as instruments as suggested by Reiersol (1941). The

reason 1s that, here 's are serially correlated and so, the
lagged values of x? wili not be independent of Uye
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‘ 02'
W
where 02 = 02+8202+62 and 02 =] ——Q§ ’
13 u v 1
Po
2 2 Ny
O T
cr2 - 1 - U2 g 1 ;
u 1 2 1- 2
Pl Po

Yows the usual IV estimator of & 1s given by

’“\ T
b1(1) = L% = (2! X¥)7 ztog* (5¢548)
: *
/ﬁ. x}
5 1 R
where X* = { . ?2

iy =
Nowy since Z 1s independent of g, 1t can be shown easily that

i : '
pm ‘fmrf\ﬁ} C) (5.5.9)

n—>o0

and asymptotic covariance matrix ofsrrl)is given by

~ S '
V 5y plim [ (20 x9)7L 2t v z(x0 27N
i n__>oo

= 4 x1 plim @& z'vz) 2‘1 (545410)
ZX* n->oo X*z :
provided 7
.sz* = plim (l Z'X*) exists and is nonsingular. (5¢5411)
. n—>oa
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Z}(*z = (thx*) —l

and plim (2' V 2) exists C (5.5.12)
n—=00 .

.
S0 v(al(l) is estimated by
V(gE(15)= %@% VAD b1 1(% z'' Vv z) (% x*1zy~t : (545413)

where V is a consistent«estimatorfof; V.

Let us now discuss the method of obtaining V . Let

FaN LAY

Et = ¥E - % - B Xg oo | ,;(5§5'}4)
. . A ~ " -
Y plim &= and plim B =
‘ ‘n-»o00 n-> 00 |
el Ao BRAE § A2 Z ompomef I oeg T WA TRy A S o
; L W E TR RN
o 13 04,51 E Bk
S0 = 13 § —> = »
7 = (565.16)
and % z 2% EﬁSV% 2~~£§ ‘ B
t=1 t=1
] n e e e Y
Now, “plim T E g, Et e E(n 2o ) (5.5417)
n->oco N f=i+1 t=i+1 .
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provided the covariasnce between (Et €t—i) and(gth Ep_irg)?
S = 2933eeeynn has the limiting value O(yide Goldberger 1964,
p 148)

n
2
and, plim % ) g, = Eﬁ% t

g B 32
E,) =0 (545418)
N5 00 t=1 &

=1

provided the covariance between Ef and £E+S, 8 = 233yeee901

has the limiting value zero (vide Goldberger 1964, p 146).

Thus, ,
/ £ é> 2
o L
plim = ¥ g = 0
n—oo O \t:1 t &
A
and
1 n
= 7 £
n = t “t-1  E(E, £, .)
ST t“fl 5 e ==l , t = 2,3y4009n
e "rl‘i 2 &2 e 1= 1y2e00yn
N g=1
(545.19)
FaAS

Obtaining Vv in this ways we can'also'suégest a new type
of IV estimator snalogous tn Ceneralised Least Squares methods
of estimation. The estimator is given by

-

& | -1 OB
81(2) = (Z! Vv X*) (Zt v v*)

z

6+ (20 v L yxl gz 71 gy (545420)

i

N\ :
Since plim V = V, under the assumption that
n—>00
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/
(a)pl¢m§" 7 X*) exists, 1t can be shown.that
n—>00 : e,
~ _
plam = (20 v L x%) = pitn 2 (g0 vl gm  (5.5.21)
a—>oo ° a->oo 1

Al('s'o,"uﬂder the assumption that the covariance matrix of

_l__"(z’ V-_IE) exlists, l.e.
/n . A

() 2421 v 2) extsts,
it can be shown that

plim —i= (g P 1oy = 0, " % (545422)
n-> oo /n I

Since; under the assumption that E(X 212.) exists,

R e 8 ‘_ = .4 o)
plim "‘l_"—..(Z‘ v 1{) = plim —_L_ (ztv l{) (vide Appendix 2(b))
n—=o00 /n - n—>co /n ol
(5¢5423)
.+ from (5.5.20);
plim 1 oy 7 -1 | = o 5¢5024
o.a plim 6 = 6 =% e . . (5-5025)
- I(ey ~ | .
o

‘The asymptotic variance of 8y '('2) is given by

”~ ‘
vV v £ Foed o "l* ll ! "1 Ly ~L oy =1
V(=g B 3V TN THE 2 2) G XV Ty

=2 F Gz v Bds vln Bd xv o vinl (ses.oe
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Though we have not been able ta prove whether the variance of

A A

51(1) is smaller that that nf or noty yet we can, however, give
ey A |

a/V fﬁ%le example where the variance of 51(9) mey be smsller than

/

ct

hat of I(l)

Let us consgider the simple model
Yy = B X + ey (545¢27)

where the assumptions about €; 2re same as in (5.5.1)

Vi = Vet Ve

and X%‘ - Xt + ut (505028)

where the assumptions about v, and Uy are same as in (5.5.2).

Let us further assume that Po S P1 = Po =p +» S0s here

y ""lu
{-tZ Zt(l+2ppl+2p Do * see + 21 pn)}

=
V(ﬁl(l)"n Ve (8.5.29),
{E (t?:'l Ay *£)}
t§ Zt t+1
o~ - T l =
where By [F E = 7 1 = 1325eeesn
> z%
t=1

”n —
and  E( Z z_x¥) =E( ¥ z_x) since Z; 1s independent of
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/
2 421 92}+; g TP
$(6, 0= B Ff ngmp v P Pt
T2 m ETRE
=0l .02y &
Ef zlxlfl o <)+ B t—E-:p (Zt o ZU_ 1)(X -0 X, 1)}
12
o ttz (Z =P Zt—l) }
o - n (o}
I E tf (Zg= 0 2y ) (gm0 2 )37 7
—('n .. 2 £
EC T ) (1+ p“-2 ) ;
" oo b Ml X
= - (54 5430)
o it 2
B K ) 0 )} 'Lm' > 0 (o5 * pxz }
= }
"z
] — 1‘:52 t Xt;-l : >
where p . = E (5454317
- n
S oz, X
t=gr- ¥ b ,
and o S .
n i - .““l G
o w2 T B
= E
Pxz THT " a0
Z. z,..%
2 t. €
both - a._nd I are ass;@iﬁéﬂ %o be less than 1.
Under the assumption thatgzx_ * pyy < 2572 then from
(505.30)’ ) n ' 2
2 BE zt)z
T3, < O =2 - (5.5042°
1(1) == - 1. 1 e o a .:;
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-~ D =1 - B -
=E (L =) (1+,% -2 7.y BT 2 %)y

(505.33}

- n
E& RAERICEREE PR

" > V(51(2)) (5.5434)

= 1 "o
= z z, x)
{8 G 2 2 %)Y
Next, let us consider the methods of nbtaining V in some

special cases o -

Here we consider the following four egtions in four

unknowns 32 cﬁ, ag, fq and Ly

£ 2
62b105 +9205 = =2 nt i = eq tsay) (5.5.35)
!
E %%
320§°§ + pgcf t%? nt = = ¢, (say) ‘ (545436)
LY f
BBpgcg + pga§ == Z i = ey (say) ‘  (5.5.37)
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. A

2 55 8t g .
2. L= = ¢, (say) B (545,38

n

242 4
2

B P19 T 050

Multiplying (5.5.35) by pq @and subtracting from (5.5.36)y we ge=

P2 9.~ Cg
£q = - 02 _-c' 5 (505039)
Pz "y 1

Similarly, multiplying (5.5.36) by Py and subtracting from (5.5.37)

we get
3 2
o g - C
pg = —=—Y 3 (505440)
2 .2
Po 9y = Cg

Againy multiplying (5.5.37) by pq and subtracting from (5.5.38)

we get
4 .2
0 o~ - C
o1 = 2 v 4 (5+5441)
32 ¢ .
b vy 3
« '« From (5.5.39) and (5.5.40), we have
2
c, C -
S 13_ 2 (5.5442)
v 3 2
CgFa T C1pp T 2Copg

From (545.37) and (5.5441) we get

3 2 4 2 *
Pp % “ %  pp 9, - ¢,
R 55

Pe % ~ C2 P2 % = €3
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= (308 - cp) (%2 - o) (5.5.43)

ory (QSGE - 03)2

subetituting the value of q? from (5.5.42) in (5.5643Yy we get
e 4 I ZHe 2
u2(02—c1c3)92 + (c1°2c4+°1c8'2%§£9ﬁ.— (c4c2—20302+c103c4)92

+ (g, = O

Since . # 0y

2 3 =AY TV 2 2 5.2
02(02=c103)92 + (cl°2c4+clc3*a%FR%i" (0402—2C302+016304)92

+c3,@4c§-. c;): 0 (5¢5444)

Solving this cubic equation by Cardan's method we get three
roots of P We shall consider these roots only which lie

in the region (-1,1). Subetituting values of in {6.5.39),
P2

we get values of a2\ We shell consider tha* value only for

v
which og > 0. From (555687)5 we get estimate nf Py Here

also we shall consider thoa- ralvss oF pq which lie in the
262

_ In

region {-1y1)se TFrom (5.5.38), we get an estimate 3
the expression for V in (5.5.7), putting Po = 0» taking

n
5. %= 2 Z

£ o Etg, and using the estimastes of plypgyﬁzcg- and

~ Fi
63, V can be obtaineds This V will give a consistent

estimate d? Ve

L3
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This method 1s, however, not fully worked out. Empirical

trial is necessary to justi”y the workability of this methods

§

These results can be extended to the case where o, £ 0.

But that will be algebraically more laborlous.

Case (b)e Py = Crp, =0
2 2 2 222
/// %% B 010y P p1%
Here V = [ 529105 og 829105
. . e
o n-l2 2 n-s 2 o n-3_2
Bo1 9y Boy 9y Po1 9y
S,
E. Eo .
A t=3 ¢ . -2
SO'J pl = n A -
z
n A A
" 2o &t g1
o o %
and B o, = ;
1
o n
and og = =X /22 / n
o g=1 T

These ares clearly conslstent estimates of

meters.

2 n-1 2
s B pl Uu ‘\
2 n-2_2
Bpy1 9y
. (545445)
o
(545646)
(5.5047)

(50 5-4:8)

the population pard—‘
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2
g
Case (c)e *% = A (known), p_ =0 and o, =p,=p%.
o ]
Heres " = “\?
2 2, 9 2 2 L \
/05 p¥o (1+8°N) p* 0*3(1+B Neoo p*t lcg(lwgk) \
) \
j 9*03(14-;322\) cg p*o$(l+52k) ool p*n 203(1&-323\) i
W'l o ]
2 : : P
Aok N : 2
0T 0PN ¥ E0l (18BN p*n'*gag(lwzz\)-... o2 /
g
where G? = c§+ 05 (1 + BZAJ . (5.5.49)
n A A
sk =) =
= = N =5 . (5+5:50)
2 E, F
: n -
RV} =g ool f
&g (I+B°N) = = (545.51)
*
0
n
2 22 /\
2 e gdaleuts - 32 (1 + B%N (5.5452)
a, n \'s : oV

These are all consistent eestimates of population parameters.

Let us again consider case (b) which is alsc somewhat
-
tractable. Here we can obtain instrumental varisble estimator

of & .
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The matrix of instrumental variables can be taken as

(545453)

-+ 7
F > 1

Note that wy% = o + th + g+ Vt ’

and ') are uncorrelated..

Boo1 = ey

t-1 " A%

AN

The instrumentsl variasble estimator of & .is

b

5; = {21 X¥y"Zry* oo (5.5454)
3 . *
1 xi
1
where X*¥ = . fg
.- LY *
e p-l

Under ususl assumptions similar to those in (5.5.11)'énd (5+5.13)

N\

SI is a consistent estimator of & .

= WL

5.6 Goncluding remarks iy Y

Although the literature onm errors-in-variable models is quite

extensive, yet some simple problems still remein to be investigated.

s,

In this chapters we have mainly considered the cases Whereethe -

v i
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b - E e
errors Of observations contain a trend part. Two simple cases

of linear and exponential trends have been.take§~iﬁto‘aécount.
Other types of trends may also exist- For. such errors—in—variable
. models, 1nstrumental varlable estimators ‘have been proposed.

These estlmators cgn be used ea511y even when the term involving

3
T

:the time varlable is insignificant.. :;~ gﬁ

, Infghis“chapter, we havie algo 00néideﬁé§€ﬁﬁe caee‘ﬁﬁere
the errors of Qbserwations~are“autoc0rrelated{?"This’Ei%ﬁeticn
is much more. complicated than the previous dﬁé:wifh ﬁ%eﬁd&ng
_errors and.our study in this respect is ver&emﬂéh‘insﬁ%fieiento
Here also a. few instrumental variable estimétors have ‘been.

- suggested, but their workabllity remains to be- experlmentally

verlfied.;, o4 o e g S R B S
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CHAPTER 6

' GONCLUDING OBSERVATIONS

N I i ER
O AT L

6.1 Introduction. . . : ‘ e

In thisﬂehaﬁ%éf”wé'ﬁéké an'bvérview of the entire investiga-
tion and.stress: the results resched an&%their significanée. We
also point out to the directions in thchhfurthef'féséarches'are
needed. It,appears.that many of the rggqlts'on the?problems-bf
testing and estlmatlon relating to 31n§&erequation econometric
models from which some of the regressors have been omitted {discus—
sed in Chapters 2 and 3) are negative 1n the sense that they point
to weaknesses of.standard»techniques which cannot_be easily
removeds Results in Chapters 4 and 5 are, however, to some extent,ﬂ
pogitive. In Chapter 4 we have defiﬁed conditions under which the =
0LS estimator of a regression coefficient in a misspecified model
(misspecif ' cation due to omiss on of regresso:s) with stochastic
regressors may have a smaller MSE than that in a fully specifiled
models In Chapter 5 problems of estimation relating to errors in
variable models with trending or sutocorrelated errors of observa-
tions have been discussed and Instrumental variable technique have

been adopted for handling such problems.

6«2 Problems of omission of regressors from a single equation

econometric model.

The study on the problems arising out of the omissilon of

relevant regressors and autocorrelstion of disturbances in

o3t
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“Chaptérs 2 and 3 reveals that these problems péquire motre careful
investigation than ie ueueily made by researchers- Techniques

] avallaole fnr handllng autOﬂorrelated dlsturb ancgs dn.nnt seem to
!be sazfe when: regrecsnrs nave been omltted.‘ It 1is very widely

‘KWOWH in econometrics th at when eome relevant .Tegrossars, are oritted
 from an econhmetrlc model,ﬂuhe dlsturbances in the misspecified
\‘model become autocorrelated. For testlng the hypothesls of random-

i

ness of disturbances, one performs the Durbln—Watson (1950, :1951)
test w;th thegOstreslduels.- If_the test statlst;c comes nut to.be
,ﬂsigg}ficantione genepall§7proceeés by assuminé a Markov schems for
t?e_distuytances in the'ﬁisspeeified model. fhis_metﬁpd, which 1s
available in all the text booketih-ecnnometrics and which is also

equently used 1n practlee, Seems to be wrong if we proceed from

the p01nt of v1ew of Thellfc (1957) spec1flcatlon analy51s.

TR ELN

_ . It has been observed that when some relevant regreqsors are

~ nmltted from.a- regree51nn equation . (w1th stnchastlc or nonstochas-
"tlc regreqsors}, the dlsturbances (e ) of the mlespeclfled equation
may have nonzero'means and the glsturbences de not follow a first
order_Merkov scheme;eﬁ the form . .. !

S = * i 8+ e + ‘ “-.' E ] RS- S al '(64.“2. i)

=l L K

2
g g R IR : ’
where: {p| < 1 - and “uy 1s the spherical disturbance term with -

mean zero and varisnce GS ¥ t.
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Howevery the disturbance vector may appear to be autocorrelated

even when the true disturbances are sphericale.

If the regressors are nonstochéstic, the OLS method ofiestima—
tion gives upbiased estimates of the suitably defined regression
coeffilcients in the misspecified equation. For the case of

stochastlc regressors, the 0LS method gives consistent estimates

of the sﬁitably defined regression cOeffiéients in the misspecified
equatione But in all the casesy whether the regressors are stoch—.
astic or not and whether the disturbances in the true model are
spherical or follow a Markov séheme, the standard OLS estimates of
the standard errors of the estimated regression coefficients in

the misspecified model are blased.

Since the disturbances in the misspecified eguation have
nonzero meansythe D-W (1950,1951) statistie frr testing the random-
ness of disturbances in the truélmodel are not at all autocorrelat-
ed and the appareut autocorrelation'is due to omission of regress-
ors. The D-W test would lead fesearchers to estimate the regress-
ion coefficient by some technique based on generalised least
squares estimation. The standard methods of such estimation in
the presence of autocorrelated disturbances {e.ge Cochrane-Orcutt
(1949) twe step procedures Prais-Winsten (vide Raos, 1968) method
-and ‘dburbin (1960) two-step procedure) are found to give inconsis-

teut estimates of suitably defined regression coefficient in the
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misspecified medele Only in the special case where the regressions
.of the.?mittedregressorson the included ones are strictly:linear,
~_the above twowstep procedune”giye”consistent estimates of the
sultably defined regression: coefficients in the misspecified model,
But, in practice one may not be able to test the hypothesis of -
linearity of such regressions owing to lack of observations,
Vinadequacy of sample size etc.. Ifs however, no. Tegressors have
been omitted, and the disturbances follow some AR processy conve-
nient methods are. available for estimation and testing in the

context ofrsingle equation econometric models.

. Soy need 1s felt for some proper metnﬁd-of testing whether
the autocorrelation among the disturbances is due to omission of
releyant regressors and/or due to autocorrelatlon among the true
disturbances. It appears that discrimination between the two
cahsesjof autocorrelation could be quite difficui% at least for
moderate sized. sampless - Proper methods of’es;imaxingdtne regress-—
ion coefficients (suitably defined) in the misspecifiad medel need
also be developed for the case where there has been soma omission
of regressors} it is also necessary to find unbiased and consis-

~ tent estimates of’ sampllng variances 'of such estlmates."

Bse2s1 Tests of misspecification due to omission of regressors.

'Ramsey (1969) proposed different tests (RESET, RASET and

COMSET) of omission of relevant regressors from single equation
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. regression models. These tests afe‘bésed on. BLUS residuals of the
misspecified equation. Later, Ramséy and Schmidt (1976) simplified
the test RESET using the OﬁS'residdéls of the misgpedified equation.
These tests have been discussed in Chapter l. Ramsey (19269) and
Ramsey and Schmidt (1976)y however, considered the case where the

disturbances in the true model aré‘spherical.

Ify howevery it is known beforehand thét the disturbances in
the true model follow a Markov scheme with the first order auto-
regression coefficiént , (assumed to bé known), then, in the
fnllowing ways the above test can be easily modified to yiedd more

general tests of misspecification. Let the true model be .

-

Y6 = P1X1g T Pofpy Froee + BXyy g (6. 2.2)

and

€ = €p g + ut ’ (6.2,3)

' <1 and u, 1is the spherical disturbance term with mean 0
P t

and variance 05 ¥ t.

From (6.1.2) and (6,1.3) we have

Ve~ o¥eoq = Pr(Xpem oXy, ¢ g M4 Be(Fppm pXg ¢ g lre et By (5 op ¢ )
—+up
(64244)

Considering (xy,- p X,5.1)0 (Xgp -0 Xg, g.1) etcssto be the
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regressors and Ve -0 Vi1 to be the regressand, the tests can be

used as tests of omlssion of regressorse.

‘. But in most of the cases, nothing is actualiy known about the

nature of ¢ So, what is necessary ls the simultaneous test of

t.
autocorrelstion of disturbances 1in the true model and omission of
regressors from the true mppel. ‘But, it seems very difficult to

* El

develop such tests.

Some work by Sarkar (1978) currently underway at I.S.I.).
Calcutta, seem to have thrown up useful results in this area.
Sarkar tried to discriminate between autocorrelation among OLS
residuals arising due to omission of regressors and pure autocorre-
lation among the disturbances of:the. true .models The true model’is
given by‘(6.1,2)‘and ﬁt's&fqllqw-the Markov -scheme given by (6.1.3).
The misspecified model is gilven by.

+ +
Vg = B;xlt + B;xgt + eee + PoX .+ £y {(m < k) (6. 251
where B;, i= 192y.ee9m and éf have been defined in Chapter 3.
Sarkar assumed that
%, = Z, 4 47V (6024 6)
LAV 2 S . | ’

where 2 = E(e')) lp.] <1 and v, 1s the spherical disturbance
> ,
term with mean zero and varilance c? ¥ te
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ra

E( }Z’t)--: 0¥t

0 2 (6.2.7)
and plim CE z2' 2 )= o,
n->o00 Z -
Nexts Sarkar defined
0, = ey Lp* -‘e;__l (t= 213y0e09m) . (6.2.8)
o t Tt-2 .
where ’a* = =3 3 £
Ao C i g - + :é- ' .
t=o °t gt—l T e = STR

e; being the‘OES'fesiduéi“iﬁ'the-iisspecified equations A large
sample test based on the autocovarlances of Qt of different

orders has ‘been developed in an attempt to discrimlnate _among the

following cases 3%
1 - 2,0
L] p — 03 p’_‘:{: 0’ UN> 0 -
- ={: 0, p_= 0Oy v >0. =
| Z z
3. p : 0’ 02 = 0. =
z
4. p = 0’ 92‘2 0} gi} 0 [}
5
5.' ,pr 4‘-‘ O, 0’3= 0.
b4
6 OFp$o %0, ¢250.

l

7. p"‘o“‘*:o, 0">0-
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Sarkars howeversy has been able to discriminate among the follow1ng

four groups only.

Group l'iarﬁf=§a$?5 1 and .2 ‘

Group 2¢e ;w‘-deses 3 and 4

Group. 3. . Cases 5 an@ Vs - oy TEEEGS
éroup 4“-_ ke stes 6 o

Followihg7geherelisedl1east“3quares metheaybf estimatfﬁn?
Sarkar (1978) alsn obtalne& consistent estimate’ of B, " But 1n

doing tggs, he 1mp11c1tly "assumed that ‘E“ is lndependent of

X" or BEZ|X") = pis o s e

HoweVer, in practice, E% need not follow a Markov scheme.'

In fact, E('xt) O'V t and Z 1is 1ndependent of X"

_"j

oversimplified assumptions. It these could be assumed, then, all =
the standa“d methods of estimatlon in the’ presence of eutocorrela~
ted dlsturbances will give consistent estimates of B under

falrly’ general condltions.- o

6.2.2 Estimation when some regressors have been omitted.

————
¢ 5 S e PR

When the :D-W--(195041951) statistic comes out.to be signifi-~
cantly less than 2, one generally fits a Markov schemé of the form -
(6e241) to e; and tries to re-estimate the regression coefficients
(") of the missp’eeijfied'fnodel by various two-stép methods of

estimation.
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i

IE has‘peen observed in chapters 2 and 3 that these methods
of estiﬁétionr(e.g. Cochrane-Orcutt two-step procedures Prais-
Winsten method and Durbin two-step procedure) give inconsistent
estimates of the regression ceeffiéieﬁts B+. These results are,
howevery, large sample results. In actuél’eelculation with numeri-
cal data, the large sample bias may be negllgibly small and the
usual two-step methods of estimatien can then be usearf;f estima—
tion without‘much_risk. Mbnte—Carlo experiments should be 4
conducted te study the small sample bias of these methods of esti~-
maticd in case of misspe01fication\as a result of omission of.
regressors. Theoretical and experimental work ' {s also needed.on'
the sultability of estimates of sampling varisnces associated with’
these methods. If. these‘invegtigations point to serious deficiea= -
cles of available methodsm new methods may have to bejdeveIOped
for unbiased estimates of megression coefflclents of the misspeeis= -
fied model and the sampling variances of these-estimated regre351on_

coefficients. . V\ . R

for approximating the fiean of the disﬁurbances in the misspecifled

models The approximatinn 1is

&

+ | - ,
B(ey) o < + o1t * “2“021-, °‘.3 ozt *+ ere (8= LiZseesym)
(6«24 9)
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~3]t=

,whére ”bjt’ J = 112seee. are thé j-th moments about the origin of

;t (the OLS espimate of yt‘ 1s the misspecified model) given x%,

where L
) . le see Xml
F o x22 T X sz
i = : :
xzn‘ sea an‘

_ g y . .
Hoy = ( MOjl’ #0323 ooe MOjn) t%g.estim?tgd unbiasgdly by

«
t

= ( ylj’ yzj, Sare ?hjl?;' This work of Ramsey suggests that
by fitting the model”’

5 A~2 \
_Bllt+ ngzt'l'ooo*ﬂx +c(2yt °(3yt .o-q'*' 6t
(6.2.10)

(where 6y 1s the spherical error teym witn mﬁan zero and variance

2

O ¥ t) we may get better results. However, the validity of the

spproximation (6.2.8) Sﬁggested by Ramsey is not very clears . "

-

Ramsey cansi@eredrthe true model to be ' -y

B ?'= X1Pp + XgBg + & &i_f?kﬂ {6 2+11)

where y, xl, x2 and € are (n ><1J-veéfdr§ and E(e)’# 0

2

E(ee!) = 0°T o ‘ K

The misspecified model is

2
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y= X By 4D | v (642412)
when X, = Xyy Ramsey obtained

1]

%+ o E( yg[xl) o B " (6e2.13)

Following thisy we tried‘to‘examipg'the case wﬁére the true model

~ .

is e
¥ = x B+ XBp + Xy t+ € |

.

yr Xq9 Xy Xg andrre and (n X1) vectors and the prOpefties of

E are same as in (6.2.11).7

;‘ L

The' misSpecified model 1is . = .+«

oy

Y = FR o+ Kby + \ (62 214)

Xy 1s mot orthogonal to x4 anqd X5 0

in this caces it*appeafs that " he approximati(jrgiven by Rémséy
for estimating E(-lel, b ), is not as good as .1t is in the case
(6e2.13)% Also the properc¢eb‘wl “the OuS estlmates based on
models like (6.2.10) are not very clear and the applicsbility of
such models shbulé[be carefully studied for estimation,purposes..

6e2.3 Further problems counected with omission of regressors.’

In Chapter 4 we havegderived conditions under which the
O0LS estimator of a regression coefficlient in a mispecified model

(only omission of regressors has been considered) with stochastic
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regressors may haveﬂa;smallerﬁMSE than that in a fully specified
m'o'dei._ Note that in the former case the OLS estimate is biased
f;f the true regression coefficient and this bias 1s considered
in computing the MSE.' These . conditions can be easily verified
under the assumptions that the: regressors in the true model have

o
2. multrVarlate noérmal distribntion.

In this chapter we have: also cons1dered by means of the

- MSE criterion the problem of using or dlscarding a (perhaps

poor)proxy for a relevant regressor which appears in & multiple
iegression model. ‘This problem was originally cons1dered by

Aigner (19?4) for = twoevarlable ease.‘_The model considered by
g, o o . R -
Aigner was g, B4 ya "

T s Tk L (6e2015)
T b s ke

Y
i

:wnéfé' ys x; and X2 jointly follow a trivariate normal distrl—

¥ \
bution,s ¢ N(Oy o ) and the variance—covariance matrlx of xl

and ¥, 1s given by e 1"MN

x5 has been measured with: error , the ebservation eal¥ed prégy

Ny
Y
e

variable 1is x%.hwhgre g TR ) cnin M

o R L (6424 16)

u o~ N(O,fds}aand. u is independent of all other basic variables,
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X

When %2

has been omifted from (6+2.14), the model can be written
as -
y = B; Xy + er R (6e2017)

D {\"'f"

The OLS estlmator of 51 1s given by 51 P 'Let 31 be the OLS

estimator of p, when the proxy variable XE !has been 1ncluded in
the model (6-2.15)~iﬁstead of X Agner ‘compated MSHE{ ﬁl) with
‘that of MSE( slp). But his result‘for MSE( Bl) was “hot" fully
correct. It ignored seme ‘of thé terms in thé true expressioﬁ for
MSE( Bl). We have compared the éorréct’ ‘expréssion for MSE(’E
with that of MSE( Blp) The conclusion 15 t6 ‘4nclude the' proxy “in
most of the cases. Our .examination covers a wider range of values
of 045 {the correlation‘coefficient between - x, and X5)1 1 {the

2
B U g &= .-.'-~‘ i &
sample size) and A-————E—-—E than that“considered by Aigner.

22+U

Some attempts have also been made to examine this questinn in the

case of k vregressors (k > 2).

643 Handling of trending or autocqrrelated errors in vardlables.

The fifth chapter discueses some problems of estlmation
relating to errors in variablese Thnugh there 1s extensive
literature on the problem of errors in varlables, many obvious
practical problems have not been considered at all. For examples

the er¥ors fd the variables in a regression model may have sone
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trend component or the errors may themselves be autocorrelated.

We have considered a few problems of estimation in such cases.

In searching for methods of estimation for these types of
errors in variable modelss we found it necessary to adopt instru—
mental variable techniques as OLS is fundamentally 1napplicable.

The true model is
Vg = K+ BXy + €y = T {6e301)

ey 1s the spherical disturbance term with mean zero and variance

e for all t. et‘s are also independent of xt‘s.‘ In the case

‘of errors with linear trend, the E-V model 1s

: o vi o= «+ pxf+ Y t+ B (6434 2)
wheré" Y o= oy 4 vtd' ‘:ﬁ K : = 3t | {64343)
S S gt L e TR TR
ut \_‘= cq + c_et_'%'if. ﬁ‘; ‘ (6-:3.5) |
v, =d+ dét;i?;f ) £ . i (6.3.6)
G% énd }3% gaveéero means andrvarignces qi;rénd{ qf,. 'ﬁ;

u v
and 3% are serially and'mu%ually-indépendent-and independsnt

ty yt and St . i

A £ P . ~
g = € & Bty ¥ Ve o

el
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- -

For .exponential trend,

-~

Loy = Ad-expf—dut) + U, ey o (6436 7)

Vt = Av eXp(—‘ilyt) +_.Yt__i £0) 2@ : {643e8)

and the E-V model is
~d,t -4 t J |

yE=x+ pxf-Ye 4,16 es T g Em N (64349)
Under the asswupption that oo '
oty LN el £ ' ' : = et G Ly choe Y

dU.:dV:d’ s

yE = o+ poxt o+ -),"e-dt + g (643.10)

whefe Yy=(06-7).

e

Uﬁder the assumption that the true regressors are themselves
séfiaily correlatedy the methods of using the lagged regressors
or a linear combination of lagged regressors (vide ﬁeierso (1941)
and karni and Weissman (1974)) as instruments have been found to
be suitables These methods ares however; not applicable for
serially correlated B%’s- We suggest that these method§ may be
used rather routinely even though the “drrors may noé Aave any
trend component. | (i

On the basis of instrumaptaljvariable (IV) methods of estima-
tion of B and ¥ in (6.3.2), estimated standard error is obtained.
Using thissy the significance of Y is testeds If ¥ 1is non-
significanty we may drop the trend component. It is afer even

then to include t as a regressors. For the case of exponential
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trendsy also, we may get similar result-s Next problem is tu
chnose between the linear and exponential trende The suggestion
is to fit the E-V model by I-V technique once by assuming a
linear trend in errors and then by using an exponential trend in
errors and :choose that one which has smaller residual sum of

squares.

In the case where the errors are autocorrelated, we have
proposed Purbin's (1954) wellknown I-V technique which uses the
ranks of the observed regressors under the assumption that the
errors of'observations are so small that ranking on the basis of
the observed variables do not affect the rankings of the true
variables..But in the case where the errors of observations are
largey we do not get any solution and the above I-V technique is

also not applicable.

f  In order to carry out the estimation pro:ess in this case,
the first task is to decide whethér the errors are auteocorrelated
or not. This %3y however, not so eas&. The autocorrelation in
the errors of observations can only by suspected on the basis of

intimate knowledge of constructing the data series.

The discussions in Chapter 5 can be regarded as Just a begin-
ning of the investigation with some of the practical problems rela-
ting to errors in variable models. In fact we may have more general
E-V models. The errnrs may have a trend component and an autocorre-

at the same time.
lated error term , The problems of estimation become much more
complicated'in such casese These problems require detailed investi-

gation and further researches should be carried out on these topics.


http://www.cvisiontech.com

APPENDIX 1

4
»

A Here we shall prove the results (2¢4. 1) and (2.4, 24) of
pages 136 and139 respectively. Result (2.4.1%& 1s

plim 1 xt (Q:l - W'l) €= 0 under the assumption

n-»c0 /n-1 Py o

t

n
that * Itm 1. X x2 . .,
n-»c0 n-1 t=g H7V7

h = 1y2ye4e3n exists.

Proof ! Let us consider the h-th element of the vector

—_ X?‘(W'l - W"l) & o+ This is given by
/-1 ry

Po Po

— ZL0me =% X,0.1) (54 = B £o1) =g 00%n, 510 (54 frar)

n n
¥ Po
=@, p, )= I g ~——=— I x £
0o’ =T (5 That-1 Bt AT teg mt-l ft-l
-
3, j#4 po—p n
+ == E(x.~-p e - z CHU |
" T tes bt Po Thyt-1’ %61 ol tep Pt-1%t-1
(1)
The first term in the bracket is a random variable with mean 0
. . 02 n >
and variance = z 'xhgt-l’ Since we have assumed that

t=2

n
1im E%i 2 xﬁ £ exlstsy, the term has a bounded variance and
n—»co t=2 Y

hence the multiplication by '80 - po ensures that it converges
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in probability to Zero. Similar arguments apply to the second

term and the fourth term. The third term in the bracket has Zero

2 n
g 2 '
mean and variance =3 tgz(xht - Po Xp,¢-1) ¢+ Since by assumption
(a)s lim —= % (xh -p. X i existsy this term also has
Sy n-1 =0 t 0 “hyt-1 -

bounded variance. Hences the multiplicstion by ( 30 = po) ensures
that it converges in probability to zeroe. Similarly, it can be

shown that other elements in the vector L K+'(W:l - W"l)e
L Po Po
converge in probability to zero. 5o,

X+

plim L

et ! (W_I-W—l) e =0 o
n->00  /n-1 T

o Po

Next, we shall prove the result (2.4¢3id. The result is,
under the assumption (2.4.H€Da”

.

plin == Xt -vh e= 0.

n->00 /n 6_0 Po

. _n_ a
Proof ¢ Since for large ny =~ 1, end plim Pg = P

b
n-1 s

o

the probability 1limit of the h~th element in the vector

- yFi(y "1—'vgl) e is
~ P
/n ..po 0 : ®

1 ” 2 g r
12y giii’E;éz{(l~€§) - (1- po)} X161 + the expression
o in (1)1 (2)
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1 _;_l._ A2 2 -
-1 plim [0 <3P - (1- oDy %, 6] 3)
(1_ ch)) >0 { pO pO} hl 1
Sincey =+ x, . € has mean O and variance QE X and since
e T 1 B n “hl @B

’

the term ;%:{(1— Ag) - (1- 3)} X1 &1 converges in probability

to zero. Similar arguments apply to other elements of the vector

f%: Xt (Yzl - V"lJ €.» Hencey

/n Po  Pg
plim == X '(v v‘l)ezg.
N-—->00 n L3 po po

4

B Here we shall prove the result {2.4.35) of page 143+ The

result is .

Under the assumption (2.3.4), pllm'ﬁ-—(-+’8p ) = (0y - ,0230,0...0)‘

P
n—> oo o 9

Proof s 'All the elements excepting the second one in the vector

E%T X Ep has mean zeroe The first element of this vector is
0
L 3¢ e B (4)
n-1 € " Po ft-
n-1 S50t o t-1

The variance of this element is

( 1)2 {(n-l)(l + pg) 02 - 2{(n-2) o 62} - 0 as n -» oo
-

(5)
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Vext; let us consider the (2h~1) th (h$1) element of the vector

T . . )
(KY€ ). This element is
n-1 DO

- n

-1 t§2 Xg (B = P Bpoy) €
The variance of this element is

G2

2y n 2 o .
(a2 {3+ eg) Z Hp - 2oy T Fyp Xp,e} (7

n
Sinces by (2.3.3)y 1lim % z th eXistsy and since
n—o00 t=1

L 2 Xt Fp,t-1 cannot be greater than _l_ xht in

n-i t=2 ’ ‘ t"g
abselute valuesy the expression in (7) tends to 0 as n -> o,

Similar aguments apply to the variance of 2h-th (h}l) element of

of the vector 'E%i (i*‘-sp ).
o

Nows; let us consider the element of the vector E%i(x" 5 Yo
¢ o
This element is

R o o |
) t§2 Ve-1(8¢ = P €41)

. |
Z{(Pr*By Xp ¢ 1+Ba¥y, g yte e o+ Py, 610 Spa (e poto)

n

= —1{ Z M (8 poet—l) + tgzst"l 8%-"' f“ t 2 —1} (8)

Where Mt s-‘ + BQ xo 1_“-1‘ + Bq x.‘ t—-l + sae + B-" r + 1 C‘
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The term —%: 2 M (et - p et-1°) has mean 0 and variance

n-1 t=2 t Q
2 R 5
(2 o5 ) Z Mo . - 2 2 M, .9y M (9)
Loop @ ol B e2..2.2 2
R B s R o .S L

Foe et 2By BXye, £ 1 2P v 1%, 1

Foe et P Py 1, £-1%, £-1) (16

By assumption (2.3..3), the expression‘c')n the right hand side of

e n 1
(1) is bounded. Alsch »—l—- cannot exceed —ie 1 3
t= 2 t=2

in absolute value. Sny as n —> oo 4 the ‘expression in (9) teunds

— ¥

to O . )
= i ] —
3 oM_ (e ) =0, | )
Sos plim - T M - 0 E = 0, by Chebyshev's inequality
P e - 1 t=2 -1t T Pofpo1) T A .\_
L : Y a1
o n _ ' ' . o %
The term . E has mean O “&nd variance given
T —J(:‘} t 2 t t"l V y e LT
by o : > 1% TR .
Tk

1 e T “ 3 L=
(n-D? ele Tl Ty L E, T fea

. o
3 r

é £ cov (e,€ Ys (e le‘ Pr )
e as O
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; 1
SOy p%im ) t22 e. e . =C (by Chebyshev's inequality) (13)
n—>co - = i )
o = 5 = N8
The <orm - Py tZg “%:_ 1 has mean - 9062 and variance
given by
92 2
== o 2 L-" - 5 -7 2 2 L 2 4
(0252 Tomp T BRIt T iy SYEpy Bpraast 4o 0
IU
2 .
P n a4 . ps 64(n—1)(n-2} o 4
= _";"_'2 2 E(Et_l) + 2 ' 5 DC‘ a
(n-1) =2 {(a1-1) &
2
" Pa N LA .
—> 1im == z Etat_l, as n -» oo (14)

4
Under the assumption that E(et) =4, ¥t exists; the expression

”

in (12) is equal to zero. go,

. - , 2 2
=P, Plim —k- 2 ¥ l =g o (15)
n- o8 .
) . i N 2
Hence im e R = - oo 1o
3 g];}m i X Ep,. (0, Po T s 0 o 0)
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APPENDIX 2

Ao Here we shall prove the result (3.5.14) of page 185 and
the resd.'fit (3.5.31) of page ;9(1.

The result (3.5.14) is that under the assumption
- n-1l

1im E(——— 2 ) existsy
n-—> o0 -1 xht

Proof . As in Appendix 14, here also, the h=th (h =132ye¢e3m)

element of -1 x ‘(W - Wﬂl) e -1s giir‘en by
] o .
(§* = oM Ik e
- -p 2 - S .’" e ¥ =
At %,
Sl - Dk 3 —_p:_-:_p_ " n
i 2 e M T | T 2o Thyt-l St-1]
: . Lo (1)
The first term in the bracket has mean 0 and the following
variance o
=Y 3
A-1 E{ 5 Ty t-1 Xnytt-1 Eley Egd O} (2)
=1 hen g1 %
_ _a° S o 1e-t |

E X. X
n-1 {t—2 t"“2 hyt-1 h,t'-l}

~527=
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E{tz [Xh,t el Xyt ¥ Fhytel T, bao)

* 0 (i, 6] By ta1 * My pe1 Fpytess ©oeeee 1Y ()
gg 2 ; | 2 n-l
£ T3 E t§ Tyt T+ 2+ 2%+ cii 4 2,57 (4)

Soy as n => o0, the variance in (2) cannot exceecd

2 L. 2
o“ ¢ lim B W Fata1) @ 2 s % )

n-»o0
2. & 2 3B |
=i . 5
g (1 + Ta p) ni’.-;lfx) E(n e xh’t_l) ( )
s .2
S0y under the assumption that 1im EC*-I 2 X p.q) exists,
n—=>oo t=2 ™

the first term in the bracket h-s bounded vari~ncee Since

5\
”~

plim $* = 5 * , the multiplication by b * - p* ensures that
N 0O
it converges in probability to zero. A similar argument applies

for the second term and the fourth term. With the help of similap
algebraic manipulstions as in (2), (3)y (4) an? (5), it can be

proved that for large ny the second term in the bracket will have

A ‘
. 1 N 2
bounded variance if, Egzj E == Sé(xh’t -5 Xh,t-l) exists.

Thisy in fact, exists since by assumption (3.5.2)
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plim —l— Z (Xh £ —'3* Xh’t_l)a.existso S0y multiplicatiSn by
n-3o0 1 i k

°F = p* ensures that thlo tezm a¢so converges in probability %o

zeroe. Similar arguments apply for othe; elements of the vector

-.-.:.l-- X t(w . wﬂl) =g g Henc-‘.';é,
/nel o p * e |
P _:J_ '*'(w -~ e= o0
L : ( ot § g l:‘"fa:_;‘..:,‘ L G

Next, we shall prove the result (3.5,3L) vhich states that

n-oo / n o \”wp$ﬁ“ S e P B

Y

E{-lﬂ eX1sts.
n >oo t=2 xh’t'l} .

Proof ¢« Sincey for large ny hgif:f 1y the 1! -th (h = 1525000 3m)

element of the vector -%: xh (Y:l Q'V"l) e 1s given by
/ Tew S ‘
= A (1. Q%2 %2y - i :
= - ¥ -(1="p*), g, + the eéxpression in {1) (6)
= { : 07 My ¥y o1 _. _
S o . & A ‘
Xpn €9 : 11 En " i
B(BL1y =0 ana vBlly . & B(xp)e
/ n e E b Ak g L #,

: 24 2
S6s plim ‘-i- (1~ 5 A ) 2 (1- ¥ X' 3= 0. Thusy using (5),

= ]
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it can be shown that the exprecsicn in (6) has probability limit

zero. This can be proved also for other elements of the vector.

Hencey plim f%: > QLI vh e= 0.
At €. fa

n->cc / n ) P

B. Here we shall prove the result (3.5.40) of page 198. The

result is

plin -y (X" e ) =005 (o - p*)6% 05 Oseues 011 = Iy
n=>00

Proof ¢ All the elements in the vector E%i G ep*) excepting

the second one has mean zero. The first element of this vector is

n
L 2 (e ~-p¥ ) ("

n""l t=2 t et—l

This term has mean 0 and variance
2 "

= - 1- %2 1 n ot ttlil
(n-1)2 {(n 1) (I+ "2pp*)+2t§q ﬁtgg{b[ l_zp*pl +1)

kY

t 4 ¢ 2 |t-t!
+ p* P!

ly

(8)
as n ~» ooy the first term in the bracket tends to 0. The
second term 1n the bracket is

o 2p(n-—1)
{n-1) {2p + Zp7+ vee } ="1_"-$;— (9)
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' 2 29
So, as n -» oo,y T—_ﬁ e > - 0 . Similarlys it can be shown

that other terms in (8) also tend to'Zero as n - 00,
So, the expression in (7) converges in probability to zero.

The ‘(2h-1) thsy h = 2,35.4em element of tHe vector

1 =+ N ‘ e
nl-,EL--x" 1, eé* is given by ot e
' 1 n e, WIE G
I L T B
n-1 {5‘2 *nt F¢ < P tfg"ht “t1} L= n 1)

The terms in the bracket Have O means. The variance of

the first term in the bracket is

2 n n
g %2 [t-tt]
=—th T + T z (12)
(n-1)° {t-2 ht t= te=2 xht ht' ol
:': -t .* ap
< C E rﬂl x° {1 + 25 + 2024- cea * zpn“’l‘a. a3)
“ (a-1)2  4=p Bt
Soy as n -» oo 3y the expression in (13) becomes
2 n ‘ . 2 P 4
1lim o lim {=== E-'T xZ (1 + =)
n-s>oco 0~ 1 n-}oo{n-l t=2 hy T 1-p } ol
n

Since (3.2.2) implies that  lim B(zi I x7,) exists, the
n->co t=2 .

expression in (14) tends to zero.
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Similarly, it can be showu that
pT R FTT B Fnt g 50 - s

Similarlyy the 2h-th (h = 2,3,..4,m) element of the vector

1 3&1

———

e €,% 2150 converges in probability to zero.

Lastlys, let us consider the second element in the vector

;%3 (X ex)e This element is given by

i T
n-1 2 Vi1 (8¢ = 0™ e y)
L
RS A LU 2y t-1"Pa%3, ponte s oty p_g)vey g Pleg- p*ey o)
. 5 | o :
Tl 2, Mt ose) (ep -p% e ) ‘ (16’

r

(definition of Mt has been given in Appendix 1B).

w o
Nows b E(Z M

n-1 2 & My 5 8) =0,

e t=2

2 M £
. t-1 7t 2 n
R . o 5 E(Z M)
(n-1) t=2
2 n n
P B T F MM, |t
(n-1)° =~ t=2 ti=o s
2 Nl ‘

$I—L— B(E M K142 + 2924 ees 4 2 571

" (n-1) (n-1) t=2 t-1
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n-1 ; 02 : n-l Mf ( 2y (
M, e, )= lim lim B X I+ = (17)
-1 e (n--l)'_2 n-»oo t=2 °°1 -9

soy lim V(zl: 'z
n—>oo t=2

Since assumption (3.2.2) implies that 1lim E(-li X'X) existsy it
n>oo 17
<

n-1l
can be shown easily that 1im E E%i z M% 1 existss Hencey from
n->00 t=2 7

n-1

A |
(;7), we see that Y(n—l t§2 Mt-l et) >0 as n -»oo.
' n
soy plim -k = M, _ e, =0

(18)
nboo Bl =g t-1 T .

Under the assunption that the fourth order movement of ut's in
(3.5.1) existsy it can be shown that the probability limit of the
other term in (16) 1s,

n

q 2
— - ¥ = - .

(for proofs vide Goldberger 1968, pp 142-155)

n
Hence, plim %i PN -}?— E =(0, (p - p*)cz’ 090 eee 0)t.
n->c0 371 t=2 P

Ce Nows we shall prove the result (3.5.53) that

plim —Lo ¥* '5;* =10 Cop =" 0% 3 0503 ees O]

o~
n-—->o00 Z
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when the regressions of X~ on i are strictly linear. In such

a8 casey z 1s indepeudent of A . S0y 2 4 1s also independent

nf X5 ana E¢ 72 1x7y = ¢ Z Y =

O « The first element in the
ot
— ~ A
vector % Xt 'z 1s given by
p*
G AT ) (20)
n-1l S0 " Tt TP %

n
—i— = — * o3 -
E{a t§2 (Zp -o* Zp3=0

n
! ~ = * ~, . i
and VS ] tfz ( Zy - p Zt-l)} - 0 a8 n -> oo
under the assumptions (a)eand (h) of page 196, (for proof, See

Goldberger 1968, pp 142-149)s

1 B ot — \
S0y plim == % (F -,*% ) =0 | (21)
n->co a-1 t=2 t 1-1

The (2h-1) thy, h = 2139440 9my element of the vector
l ) ,,q_' = )
o3 X _zp* is
i

n
— 2. = ¥ g
-1 o2, *nt (2 -0 By ) (22)

This term has mean 0O and variance

1

—L— & 2 By (F-p* 7 )2

=2

=2 t'=2

n n ol S S ~d
R
+2E X z XpgXpe e EC Z=p zt-l)(zt'_p*zt'—l)}
the! (22
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Sincey by (342.4), 1im E(—%i
n-> oo

n n
1 2
cannot exceed = 3 sy In absolute
“nt *nt n oo *ht

I'l
xgt) existsy and since,
t~2

n

i 5

0 tog t=—2
tft!

valuesby fa) and (b) of page 196, the expression in {23) tends. $a ,

Z&I0 A8 1N —» ov. ThuS,

n v 2
plim J_ E: X t ( zt "'p‘* .6_1) = 0s. h= 293’099 m

n>ea 01 ¢ 2 h
(24)

Similarly, the 2h-th (h = 2,3y... m) element of the vector
E%i'ﬁ+' 2;* also converges 1in probability to zero.

Lastly, let us consider the second element in the vector
E%_ (X E;*)s This element is given by

n - e

-1 2, Vo1l 2 = 0% 24 5)
—-—1—§(5"'+3 + + pF + 2, o+ e, M E - % )
Tn-l o 1T Pefapar et By X g B gt e ) E - t-1"
— _L g M+ h ( i * 5 )
T ol 2 Mg+ 7z g+ e ) (F -5 i | (25)

. + +
where Mt: = Bl + 52 x2t + see + ﬁm xmt

Under the assumptions (3.2.2) and (a) and (b) of page 196, it can

be proved easily that >
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n S "y .
o + o~ o~
plim T M ( z, - p*,z Yy =0 (26)
B oo L g b=l S Fp T RS gd =R ey |
oy e o e el §
plim —=% X ORI (e s TR
Lastlf; the term
NOE TR \ i
n ) ¥ A, N T e _ ‘
P’ —~ * o~ - -
e L e R - (29)
’ { 3 w ¥ e . ]
3 4
has mean 0 ‘and the variance '
S ' | P n no .
- v t-t1 |
2 V( Z s ) 2 Ql ; «
(n_l)z { t i ;'“ 3 t-‘l t_z tr_2 B ><
t4t!
ok &y e IS
ooplizy = o7 2p ) Bpe= 0% 20 4)) (20
For large ny the expression in (29) cannot exceed i

2 N by y . : :
1_; - — 2 v( z * 7 2 gt
1 N p z ) '(l+ 2“ +'|2 + esee ) Liel
BT (a-1)? t=2 %-10% P HEp

2p
1-

50 Un g T V(Fe- et ) @O)

n-»oo (n-1)% t=2

it

= 0 under the assumptions (a) ahd (b) of page 196

“

Thus) L oank

——ll-— _+I g = I 7 SO TR—— 2 g s
ng;-iofg ey (X B W)= _f&y-ffp-ﬁ, $02,0505564 0]

%
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. 1 oy .
" Thusy the vector -= X 'e = dy eq + eee + dn £

~337="

F'ﬁ Now we shall prove the existence of asymptotic mean vector

and the variance covariance matrix of 3+ given by

g Frept e (X L@+ o) “ -~ (31)

3 e, f. . | f
For this, let us first desire the ‘asymptotic distributdion of

/a Bt 1l Bizy = {0 Xy % SiRCE

Let '% X"t =D = (dl’dB"" dn) s

Nows since B § 1(x*t X')} = 2 the elements of E(DB') are bounded
n ¥

and soy, the m elements of E(dn) are of order 4% [ for proof, vide
/n

Theil 1971, pp.380-381].

’

Under the assumption that e's are independently and identi-

‘eally distributed with zero mear and variance 62, the vector

dn €n has zero mean and covarlance matrix o< E(dn dé) which is
of order % « Soy the characteristic function of dn €n is
r 1 B
1.2 1, ¥
1 -3 0% tLE@, d)t+ 0() T . . =2

< a has the”fbllowing
/n |

characteristic function o 15 "ﬁr w'.” ‘ .

06%) meansrﬁf order lower than % .-
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Cevi B 12 S '
¢n(;); = El [1 -3 0% t'B(d, aPt + 0], (33)

"~ Taking logerithms and expanding -for large n, we have

log ¢ (t) = 2 log [1 -2 o°

’ i3
1 4 =
o3 61 E(d; dDE + o(d)]

|._:

=.,_,%03 (zdd)t+0(l)
' i=1
= - % o2t g 2 Xt + o(1).
n
sey  lim log (1) = -2 0% &' E @ x0 ¥,
n—>00 '
2/
- _% oZ tt 3t . (389)

This correspénds asymptotically,to the multinormal dlstributlon with

0 - mean- vector and variance—covariance matrix - % 02 1 AL W

~ Since plim(G%‘X+!,X+) = Z {(by (Be2. L )) (a positive
' - ne>oo , a BT
definite matrix)

A (l eoxt ) Cﬁ%; xh £) cecuverges in distribution to

27 (asymptotic aistribution of == X1 &) (yide Theil 1971,

et

g 6% t15t e ) T ald,- -
e ‘ is continuous at t = 0 as is required.

L]

1
o] ()

-
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So

~B

asymptotic Eé(f‘}{"')_l(-/l: Xt s),} = 3
: n

and asymptotic:'\f{%l(x*"x*')-l(% x+lg)} = g2
‘ n "

v

asy E {’b*—ﬂ*-(x““tx")“lx*'!%'}

7 =0,

E{ %"—s*-,(x*"x”)"lff

L
*

1.- =0 =— (.IX-}-'X"')”"]- x
it ~ { n
> (L &)}
b (35)

27t = o Byt Ty

‘ ‘-__— Aty =1
| wvﬁ(x 2>

> (L 5y (36
/n

(R _;,3+)='§{'(5{'+;X+)-1X+:;}= 'ﬁ{(x*tx*)"lx”t (x-x* "‘-ﬁ)} 8

-1+

i

= B o) iy B TR 0 8

3 . =R TRE - ) TRE 00

asy V{‘ﬁ*'-s*'-(x"*tx’”)“lx*'f} ¢

-‘;{ /5+_,,§B+_“(X+,X+) -1 X+,%/}

]

5 .
- 2 el S
n z )

+ . _+. =1
KENNEYoY
(38)

7 e i =g )
. oV{ Aé.’.r-%*)'; %2-1_V{(X+tX+)—1X+tz}+zcov[ (3+—B+){(X+lx+)-lx+,z}]

2 _:r' ._—, 3 — - |
=%—Z"1+V{(X+'X+) lx"‘gz}(usj_ng the expression for -(%+-B+)
’ in (31)). (39)
3
osbioh PO T Rewtinptimization isings e
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APPENDIX 3

Let us consider the term

)\{1 - (10N AR (2T o 2o)n J § V) B R
AEyE ) e e
“{1"(1“ N 912} N |
_?__ _z,{l “(1- n-?\) plgk (1 - 919)?\ ] It
G n{l ~(1-3) 912} e il
\ ot 2 2
1-(1-nd) plé 42 2] nA Pio 3-\{1"‘(1"{”\) 912} 012

dat e PN orph

s e 3 e

e

._{".‘l,- p%é@Eﬂl 952) {1 — (1-1) p?zk -3 J\D%g(l‘ D%g’*’nbhﬂ%g)

afl -(1 - N o}t

(1 - p%) Lf=z-n pTo} + 912(1 - plg)(znx-az.) - n:? p%_zj

nfl -@-w 012}

>0 for n> 2 "r ; (2)

Sos for n > 2y the expression in (1) increases as A increases

3 "{1 gl 912 E= 012)’1:]
S n{l SEES VIS o

340~
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_ 22 9?2 i ﬁ‘l ~(1-nn) o7 Q_ 1- 075)6-)
T P i}‘m} 5

e 1 H
A S I € BV ﬁlz} ] o Pt B

/ qu.\‘)q" : " (3)
n® 1 - (- % pfz}‘? : |

When, A= .9, this is nu?axive FOr o = o1y <2y o3 -gnd upli @b

VOMAL o s aande e oflig mcﬂ,%pmhm %@&W*Aﬂ@“
negative for p = .4, 5 ceey o7

3 ﬂ_ & . -t .,.'*-_

Soy for A= .9, the expression in (1) ﬁ%c_:reases as,; n increases

for o5 = 41, .2, .3 and . decreases as n increases for

p = .4’ .5’-.. ,07’ T . ] i

The sufficient condltlon for MSE’ (Blp)< MSE( ) is
COAJL - kl-na>;§;ﬁi_' S agE dia R i
. I S S, “(- .9.19_- 2.c S (4) .

n+ge pl_c?nﬂ
afi-a-w.gp O

{73 :
To verify this, we have to calculate the expression in (1) only

for the foldowing valuss éTUfﬁ,(Dizand X e
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g g .
PR S ot "
b2l L4 ! . 3

‘ Table showing the value of the expression in '(1_).“ 1
for different values of Pyorod ahd n.

Sy . [P

ey, 08w 2 g ST
e d . o By = Y T
- 3 Y g ! il Z\—-—n

n p?a s Expr@s_sicn in (1) nry Sige
(50,15,1) .1 . (093, 408857833 ”"C"){'ﬁé’;""%,m‘i[
(50,187,000 ;a0 B0 ( 172, 6 17% 5183 7 d (4\'1#. LR RTTY

EuTa  <TE b 3l s
ng \5'0)10), , B ! .z (161 .2"’, 7;) Cﬁl‘qq}twtjlz.‘“

L ' ] . £ I » '51
1‘5 " B 5 % st L‘ zq” ) L' >7s, ¢ 5“!)
D e ] B L]

; (. ) B L _-. ( l?q “‘79 il C '-L‘%‘ _’.-!-q-? é)
(50 qo_) * & . o szt, §8§ ( s-q_q $“M
F:W T\: '_l, oz e ‘2__ 7, mqu W\@ : ‘68 4

For A= 8y 9\5, @nd ’1912 =,_.ﬁ; the value of the

n+1 e

expression in- (1) becomes .5&% ¢ 1ot _"5*7} \

Since for n > 2, the eXpression in (1) increases as A
r
increases and since for p?z = oly 42y «3 and X = +9y-the eXxpression
U 00 A miane ro M St Sl Cbniin \v‘\/‘é‘«a—o},mw Araa' fe

) increases: - n 1ncreases and. for plo = e23455000s o7
and%—- -9y the expmssion in (1) decreases as n increasess - figa?

P

from the above tabley we find that the conditlon (4) holds‘for

2 va}“fﬁ of H =15, 205 3554. #1350 P = Lokt n2go o, = - pv-dud P2
5
M\?oior 'q and n =38, 25; seay 50, ?\- sly «25 seey By 952: 0
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