PLOW-SHOP SCHEDULING FRUBLEMS

RESTRICTED coLLECcTION

N.R. ACHUTHAN

Indian Statistical Institute
Calcutta

A tnesiq§§ubmitted to the Indian Statistical Iustitute
4n partial fulfilment of the requirements for
the degree of Doctor of Fhilosophy

March, 1980.
3

http://www.cvisiontech.com

ACKNOWLEDGEMEYNI

—— — — A A m— s e m— — — A — — —

I am indebted to Ir. 4A.T. Mukhopadhyay, my thesis supervisor,
wno promptly and cheerfully went through the mnuscript and offered

many valuable suggestions.

1 express my thankfulness to Mr. D.T. Ghosh, Dr. J. Grabowski
and Dr. J.B. Sidney for permitting me to include our joint work in

this thesis.

I thank, my colleague and friend Anndi (br. T.5. Arthanari),
who introduced me to this branch of Operations Research, for permitting

me to include our Jjoint work in this thesis.

I thank Dr. A.H.G. Rimmooy Kan of Erasmus University, Rotterdam
and Dr. K.R. Boker of Duke University, Durham for their critical comments
and suggestions on my work.

Mr. Jyotirmay Sarma typed this thesis very elegantly and quickly.
Mr. Apurba Guha duplicated this thesis very meticulously. I thank both

of them.

I thank my colleagues at the SQC and CR division for their share

of association with this thesis.

¥N.R. Achuthan

http://www.cvisiontech.com

CONTENTS

INTRODUCTION | "Iyl
GHAPTER I :‘ FLOW~SHOP PROBLEM : DEFINITIONS AND NOTATICN 800 1
1,0 : Scheduling Problem SoEN 1
1.1 : Common Objective Functions ’ S 3
1.2 ¢ Flow-shop Problem e 5
1.3 ¢ Purther Definitions and Notation see .9
1.4 3+ Lower Bounds in a (“/hVF/Fhax) Problem 7.5 17
1.5 Cpmpututional Complexities ol oL 20
CHAPTER II (n/B/F/Emax) PROBLEM | e 25

2.0 3+ Introduction .es 25

2.1 + Special Cases with Polynomial Time Complex

Algorithus § ‘ cee 26

2.2 ¢ Heuristic Rules o o 58
CHAPTER III (n/m/F/Fmax) PROBLEM e 76
3.0 ¢ Introduction vos 76

3.1 ¢ Sufficient Conditions for an Optimnl Solution ... 77

3.2 3 A Special Case of the (n/m/F/Fmax) Problem o 86
3.3 3 Use of Szwarc's Dominance Oriteria oY 3 100
CHAPTER IV : OPTIMAL FILOW-SHOP SCHEIULING WITH FARTLINERS

AND TARDINESS PENALTIES PN 115

4,0 : Introduction 500 115

http://www.cvisiontech.com

4.2

4.3

4.4
4.5

CHAPTER V

5.0

5.2

5.3

REFERENCES

as

The MaXimuﬁ Ponnlty Problem
The Moximmm Penalty Floweshop Problem

Sufficient Conditions for an Optimal
Solution for the (n/m/F/f) Problem

Complexity of the (n/m/F/f) Problem

Eranch-and-Bound Method for the

(n/m/F/f) Problenm

SPECIAL STRUCTURED (n/m/F/f) PRORLEMS
Introduction

Known Special Structured Flow-shop Problems

Aggregate Cumulative Dominance Conditions

New Special Structured Flow-shop Problems‘

116

130

154

170
170
170
178

184

198

http://www.cvisiontech.com

INTRODUYUCTION

Researchers' attention was drawn to the study of scheduling
problems through mathemtical mﬁdelling, probably for the first time,
when Johnson (1954) published his famous paper in mval research
logistic guarterly. Thereafter, many authors have continued to
contribute to the growth of the theory of scheduling. A wvast collectiom
of papers related to this area is regularly published by journals like
maragement science, operations fesearch, operational research quarterly,
naval research logistic gquarterly, opsearch ete.. 4 good grasp of the
literature in this area can be had from the books by Conway et al,(1967),

Baker (1974) amd Rinnooy Kan (1976).

This thesis restricts its attention to the well known detérmi—
nistic flow-shop scheduling problems which include the two machiﬁe
flow-shop problem handled by Johnson (1954). The main feature cf the
flow-shop scheduling problem is : "There are m machines and 1n jobs.
Each job consists of m tasks such that ith task can be performed only

on the ith machine named N&. Further, ith task of 4 job can siart on

machine M, only after the completion of (1-1)* task of that job on
nmachine Mi-‘! sy 2< 1% m."

In the following we briefly outline the contents of this thesis

chapterwise.

http://www.cvisiontech.com

(i)

Chapter I deals with the basic definitions and notation used
in this thesis. Under sections 1.0 and 1.1 we provide the definitions
of the scheduling problem and the commoﬁ objective functions used,
In sections 1.2 and 1.3 we state clearly the flow-shop assumptions
and define most of the symbols and concepts used in the later chapters
of this thesis. In section 1.4 we introduce the lower bound clasgifi-
cation and nOtafion due to Iageweg ot al. (1978). TUnder section 1.5

we provide a lucid introduction to NP-completeness following the

presentation of Horowitz et al. (1978).

Chapter II deals with the (D/B/F/Fmax) problem which is proved
to be NP-complete by Garey et al. (1976). Under section 2.1 (based on
Achuthan (1978)) we discuss the known special cases of this problem
with polynomial time complex algorithms and subseguently discuss four
new special cases and give polynomial time complex algoritims for
them. To describe the new special caées we define g tc be the smllest
integer such that the sum of any g processing times on machine Mi is
greater than or equal to sum of any g processing times on machine Mk'
This condition is dencted by Bﬁ g_ Mk. The four new special cases
of this section are : (1) H, 3_ K, (2) I, % N% (3) 1, % M,

o q!
and I, > My ond (4) the processing times of all the jobs on second

2 2
machine are equal and either M1 > M2 or Mé 2 M2 holds. In

section 2.2 we discuss the heuristics proposed in the literature for

http://www.cvisiontech.com

(1ii)

the (n/B/F/FmaX) problem and conduct an experimental investigotion
with the aim of comparirg the polynomial time complex heuristics for
their performnees. The experimental study includes six new basic
heuristics and two new improvemeﬁt procedures. On the basis of
restrictions on processivg times the problems are c¢lassified into
three disjoint groups, In the case of two groups we provide a
combinntion of-heuristics with computational complexity 0(3n log n +
(12n - 5)n) and this suggested heuristie solves more than‘?S% of the
problems optimnlly and around 96% of the problems within 5% error.

For the third group we suggest the linear branch-and-bound heuristic
ineorporating a lower bound due to Iageweg et al. (1978) and dominance
criteria of Szwarc (1971). This heuristic has computational complexity
O(n4) and it solves about 63% of the problems optimelly ard 97% of the
problems within 5% error. The material of this section 2.2 (basedkon

Achuthan et al. (1979)) is a joint work with D.T. Ghosh.

Chapter III deals with the (n/m/F/FmaX) problem. In section
3.1 we prove the following result : "If n = (n{1), “oes n{n)) is a
Johmson's permutation for every two machine flow-shop problem constructed
with machines Mu and Mv (in that order) 1 Lu<vm then 7 is an
optimal solution for the (n/m/F/Fmax) problem." We provide examples
to show that the conditions for the result canﬁot be weakened. This
result is a genera}isation of the version proﬁed for m=3 by Burns et al.

(1976) who disproved Johnson's (1954) conjecture in this regard. Under

http://www.cvisiontech.com

(iv)

section 3.2 we hondle a special case of the (n/m/F/Fmax) problem, viz.
There is o common Johnson's permutation for every two machine flow-shop
problem constructed with the machines ¥ and M/ (in that order)

1T ¢u (v £m wit (u,v) # (1,m). In this case we prove that there

el

exists a permutation m satisfying the conditions of the result in
section ?.1. Corresponding version of this “gpecial case for m = 3
was hendled by Burns et al. (1975). The contents of sections 3.1 and
%.,2 are published in Actuthan (1977). In section 3.3 we extend the
probabilistic analysié due to Baker (1975) and Gupta (1975) to Szwarc's
dominance criteria apﬁlied to the original and the reverse flow-ghop
problems simultaneously. Subsequently, we provide branch-and-bound
proceduf% for the (n/m/F/FmaX) problem wherein a node represents a

two-sided partiasl permutation.

Chapter IV deals with the maximm penalty problem. Here the

maximm penalty £(0) for an arbitrary schedule O is defined by

f(g) = mx g(max BE.), h(max T.)
1<i<&n 1£j<n ¥

where B, =mx a.-S., ¢ 3 T. = max G.-b.,0 ; S.and C, are

3 J J J J J 3 d
start time and completion time of job j under schedule Jj aj and bj
are given target start time and due date associated with job j and

the functions g and h are monotonically non-decreasirng contimous

functions such that g(0) = h(0) = 0. This objective function has

http://www.cvisiontech.com

(v)

been ihtroduced by Sidney (!977). In section 4.1 we prove the reduction
of the maximim penalty problem to o maximum-tardiness problem under o
very general set of conditions but using a vital translation assumption.
In the subsection 4.1.1 we geuneralise a known procedure for solving
the (n/1/./Tmax) problem with preemption resume allowed to solve the
maximum tardiness problem connected with n Jobs and m machines with
precedence relations among tasks of a particular job;but no precedence
relations among the Jjobs and with some more important assumptionsg.
In section 4.2 we introduce the maximum penalty flow-shop problem and
prove interesting results which show that it is not enough to consider
the permatation schedules alone while solving this problem. In this
section we generalise some of the results of Sidney (1977). In
subsequent sectiions we mke the no passing assumption. Ih section
4.3 we prove a result for the mmximuim penalty flow-shop problem and
this result is similar to the one in section 3.1 for the (n/m/F/Fmax)
probtlem. In section 4.4 we prove the NP-completeness of the maXimum
pemnlty flow-shop problem. In section 4.5 after developing the lower
bounds we provide a branch-and-bound procedure to sOlve the maXimum
penalty flow-shop problem. The results of Chapter IV excluding

subsection 4.1.1 are based on the joint work with J.B. Sidney and

J. Grobowski and they are available in Achuthan et al. (1978a).

http://www.cvisiontech.com

(vi)

Chapter V deals with some'Special structured (n/m/F/f) problems.
In section 5.1 we briefly mention the known special structured flow-
shop problems with polynomial time complex algorithms. Under section
5.2 we define what we call‘aggregate backward (forward) cumulative
dominance conditions. Using these conditionsg we brove certain
interesting results on the shape of criticel paths for an arbitrary
non-delay permitation schedule. VUnder section 5.5 we develop new
special structured flow-shop problems using the results of section 5.2
and for these problems we provide polynomial time complex algorithms.
The material of this chapter is a joint work with T.S5. Arthanari,

which is still in the manuscript stage.

http://www.cvisiontech.com

CHAPTER 1

PLOW-SHCOP PROBLEM : DEFINITIONS AND NOTATION

”J‘I.Oﬁ;gc;ledtllli-ng Problem

: . The‘r‘cj,are 1 tasks 1-:o-be processed on m machines. The 1
ktasks qre partit'iqneq infso n Se,ts Jd IR Jn where set J:i is
fhe set of t_asks comprising job j. The set of Jjobs is denoted
by N = {71 ,‘- SR n} . The m machines are dencted by

Mk’ 1<k ¢m.

A task schedule for task i consists of a finite non-empty

set {(Iq, M)} , where each I, is a finite time interval during
which task 1 is being processed by machine Mq.' A gchedule O

consists of a set of task schedules, one for each task.

Suppose task i has associnted with it a finite number of
tine in‘bervals.{ (Xq, Yq)} - in its task schedule. Then the start

time sy and completion time cy of task i are defined by

' in (%,)

5. =
A
o s ‘ q
om, fp M) f

The start time S, ond completion time G, of job j under a

schedule ¢ are defined by .

i min)’lel i E JJ}
¥x {cil i€ Jj} .

]

8

d '
an CJ

http://www.cvisiontech.com

From among all possible schedules, there is cssumed to he

o non-empty subset ¥ of feasible schedules., In proetiee, this

set F can be defined by o wide variety of constraints, sueh as

By no means the eonstraints listed are exhaustive.

Precedence constraints : task 1 must be completed before

task j is started which implies that in the schedule 6

Conflict constroints ¢ task i and task J camnnot be
processed simltanecusly whieh implies that the time
intervals in the task schedule for task i should be
disjoint with the time intervals in the task schedule

for task j.

Change-over constraints : if task j follows task 1 on
machine Mﬁ, task | eammot start until at least tij units

of time after ihe completion of task i.

be defined through many more kinds of constraints.

The ebjective funetion f is a real valued (usually non-negative)

funetion defined on the set F of feasible schedules.

The scheduling problem is to choose a G* from F such

that £(&) & £(7) for every o in F.

The set F might

http://www.cvisiontech.com

1.1 Common Objective Functions ¢

Agsocinted with job j there is a real number rj called the

release time of job j. A feasible schedule O should satisfy s; > T

for every task i in Jj‘ Assocliated with job j there are a torget

start time a, (> rj) and a torget finish time or due date b, (>aj).

In some ¢f the scheduling problems a feasible schedule is allowed
t0 violate its target start time and due date, with a penalty

expressed by its objective funection.

in defining the objective functions, we use the start time
'Sj and ‘the éomﬁletion Yime 03 of jot] implicitly understonding the
schedule O playing role. Common objective functions studied in

scheduling theory are @

- - DYMoximum completion time : C . = X Cj .
143 £n
- Moximim flow time ¢ Eﬁnx = WX Fj
1{Jj<&n
where flow time of job j = FJ = Cj - r;J .
- Maximum lateness : L . = max Lj‘
1{J&n
where lateness of job J = LJ = Cj - b3 i
-~ Moximam tardiness : T gy max T,
: max A J
1{jsn

where tardiness of job i = T, = nax (O, Cj- bj).

http://www.cvisiontech.com

Moximim earliness & E = nnE B,
‘ 1<ign

where earliness of job j = Ej = mx (0, aj-Sj).

Note that this definition of earliness is different

from that of Conway et al.(1967).

Faximum penalty on earliness and tardiness

x {el8), 0}
where g and h are monotonically non-decreasing

continuous functions such that g(O) = h(O) = 0,

Number of tardy JObS H

Weighted completion time Cw = E Wj c
i=1

where wj is the weight associated with job j.

J

Similarly weighted flowtime, lateness and tardiness

can be defined.

The objective functions we just described are not exhavstive,

but they include the objective functions discussed in future chapters
of this thesis. Follewing the notation of Conway et nl. (1967),

we say that an objective function f is a regular measure of performance

(1) £(5) can be expressed as a function of the job completion

times : f(0) = f(Ci, Cor vee Cn) where Gj is the

completion time of the job j under sehedule O !

http://www.cvisiontech.com

-5 -
¢ ! 1
and (ii) f(C1, '”’,Cn) A B (eL, i cn) only if c‘j >c|_j
for at least one j, 1£ j< m.

It should be noted that all the objective functions listed by us
are regular measures of performnce except for the maximum earliness

and the moximum penalty on earliness and tardiness.

Flow-shop Problem ¢

Scheduling problems can be classified into several classes
such as Job-ghop, Open-shop, Flow-shop, Single machine, Parallel
mchines etc. For details of the definitions of these classifications

we refer to Conway et nl.1967), Baker (1974) and Rinnooy Kan (1976).

In this thesis we will restrict our attention to Flow-shop

scheduling problem which is defined through the following

assumptions.

n

1. The n jobs and the m machines are known without. any awmbiguity.

th

i

Associnted with job °j there are exactly m tasks in J,. and 1

task of job j can be performed only on machine Mi’ 1¢i¢m,

A3, The 1™ task of job j can start on michine M, only after the

completion of (1-1)JGh task of job J on machine M; ,, 2¢igm

Thus the m machines of the flow-shop are arranged in the order
M1, ey Mﬁ acecording to the technological ordering of the

m tasks which is same for every job j.

http://www.cvisiontech.com

A4, The mehine Mi is econtimously available from time Bi (2_0),
for processing, until all the tasks of all the jobs are

completed.

li-’>
=

For mchine K, 1 £i Lm, we have 6i= 0.

AS. All the tasks of job j are released at time rj(> 0) for

processing.
Ab'. We take rj=O for each job j, 1<j<n.

A6, The processing time of the ith task of job j on mmchine Mﬁ
is denoted by Pyg (> 0). Processing time is taken to be

finite, deterministic and includes the set up tine.

A'f. Ho two distinect Jjobs can be similtaneously processed on the

same machine.

AB. Task splitting is not permitted, that is , once a job j
is loaded on o machine M., it is contimiously processed for

duration pji till finish on that machine.

In a flow-shop problem, a schedule can be represented by a

starting time matrix Snx:m = ((sji)) and a job order matrix

qnxxnzz((qui)) where 844 is the starting time of job j on machine

Mi‘and'(q1i, cen qni)T is a permutation of the jobs in N such

that LR is the uth job taken for processing on wmwachine Mi.

http://www.cvisiontech.com

=

Definition 1.2.1 ¢ A pair (S, Q) represents a feasible schedule

if and only if for all j and i we have

541 2 mﬂx‘{?j,(if1} T CORP L S g pki:} -k (1.2.1)
where q . = J i q(u_1)’i =K j SjO + pjo = rj and when
us 1, 83 ¥ Pei = Oy

This definition does not use the assumptions A4' and AS'. For

any feasible schedule (S,Q), the completion time matrix is defined
by C = ({e..)) = S + 2 where P = ((pji))' Note that cﬁi
is the completion time of job j on machine M under the feasible
schedule (S, Q). Thus the start time Sj and the completion time

Cj of job J under the feasible schedule (S, Q) are given by

Sj = 531 and Cj = cjm'

Definition 1.2.2 ¢ A feasible schedule (S, Q)_is called a feagible

permutation schedule if all the columns of Q are some. Thus a

feasible permutatidh'schedule-can-be represented by a starting

time mtrix S (n) wrere ﬁ = (n (1), cae n(n))is a permitation
nxm]

of the jobs in N and the kth row of S(#%) corresponds to the job

n (k) y 1<{k<n. Here = is the order in which all the jobs are

procesged on all the machines.

http://www.cvisiontech.com

Observe that for a feasible permutation schedule S(7W),

the condition (1.2.1) reduces to : for all j and i we have

B3, S DX {%ﬁ(j),(i~1)*'?n(j),(i-ﬁ)’ Sn{3-1),1" Pr{j-1),1 }

- (1.2.2)

WHeTS Su(5),0 ¥ Pr(3),0 T Ta(s) ¥ Sn(0),1 *P(0),1 T Ou-

Definition 1.2.3 : A feasible schedule (S, Q) is called a feasible

non-delay- schedule if every inequality in (1.2.1) holds as an
equality. A feasible permutation schedule S(=) is called a

feasible non-delay permutafion schedule if every inequality in {(1.2.2)

holds as an equality.

Remnrk 1.2.4 ¢ Given a Job order matrix Q, the corresponding

feasible non-delay schedule (S,Q) is unique. Similarly for a
given permutation g, the corresponding feasible non-delay

permitation schedule S(=) is unigue.

We make the following additionnl assumption for the flow-ghop

gcheduling problem.

A9. HNo passing is allowed, that is, the job order matrix Q should
have identieal columns. In otherwords we shall consider the
set of feasible permutatiohﬁschedules as the set of feasible

schedules.

http://www.cvisiontech.com

1.3

-9 -

v

Following the notation of Conwaiy et alJ{1967) we denote o
flow-shor scheduling problem with assumptions A1 to A9 inelusive
of A4' and A5' by (n/m/F/f) where f represemts the objective
function to be minimized, ﬁhen assumption A5' is relaxed we denote

the problem by (n/m,/]:”"/r;j 250 /£

Further Definitions and Notation @

Definition 1.3.1 : Given a (u/m/F/f) problem, we denote by

4 5 wo Mo, b w' B } the two machine flow-shop problem -
u€X vEy ' i ‘

defined in the following lires. X and Y are subsets of {1, ..., m}.

W, and w; are real weights associated with v and v in 51, ey m} s

There are n jobs given by the set N. For every job j in N the
processing times on first and second machines are denoted by Aj

and Bj respééfively, where

A, = % w_ p

& 5 uex 4 M
ad B :
an R — by W P e
J vEY Vo

Definition 1.3.2 : Given a (n/2/F/f) problem, with processing
times of job. j on first and second mchii;es as Aj and Bj respectively,

we callw = (% (1), ...,% (1)) a Johnson's permutation if

mn (y(y)s Bygy)) Smin (gyr Briy)

for every i and j such that 1 < i < j < n.

http://www.cvisiontech.com

= 10 =4

Remrk 1.3.3 Johnson (1954) : In a (11/2/F/me} problem,
a Johnson's permutation g is an optimal solution of the problen,

evenl when assumption A4' is relaxed.

" Notation 1.3.4 : Iet n= (% (1), ...,% (n}) be an arbitrary

permitation of jobs in N and Q g N. The restriction of & to §
is a permtation of jobs in @, denoted by % . and it is obtained

Q
from T by dropping the jobs not in Q.

Remark 1.3.5 Sewarc (1974) ¢+ Let ® be a Johnson's permitation

of a (n/2/8/f) problem. Let QCN. Then ﬁQ is a Johnson's
permitation of the {| Q| /2/F/f) problem where this problem is
obtained from the (n/2/R/f) problem restricting our attention to

the jobs in Q.

Definition 1.3.6 : A permutation o= ({1}, ... , 0{a)) of a

subset of jobs in N is called o partial (complete) permatation

if aq < (=) n. Without ambiguity in usage, we shall denote the
set of jobs in a partial permutation 0 by O itself. Given a partial

permutation O, we call on a completion of O if © is a permutation

of jobs in (0= N -0O.

Notation 1.3.7 : In a (n/m/F/f) problem, given a partial or complete

permitation O, let t(3;0 7% k) denote the completion time of the

last job in O on machine Mk under the feasible non-delay permmtation

http://www.cvisiontech.com

- 171 =

schedule O where 9 = (51,

earliest times the mchines are available for processing the jobs

Nomes Bm) is a m~tuple giving the

in ©. Whenever 9. (O, 5 Ao O) we shnll denote t(a Hl =2 k)

simiply by t(o; k).

" Remark 1.3.8 * It is well known from Conway et al.(1967) that

r‘,‘
$(043 k) = mox 180035 k-1), t(o3 k)} t Py

E

vhere jdo and (¢ : k) =0 = t{aj; 0).

. Notation 1.3.9: Ina (n/mﬁi‘/r_‘_j >0/ f) problem, for a partisl
or complete permitation ¢, we extend the notation 1.3.7. ILet

't(d; r; d' k) danote the oor-"ple‘tion tizne of the last job_in o

on mnchlne Mk under ‘th fe"Ls1 e"e non--delay pemutn‘tlon schedule 0o,
where 9 qnd r are tuples giving the machlne avanl'lble and job

release times respecti :LveJ_y .

Definition 1.3.10 Szwarc (1971) : Let O be a partinl permutation.

Let 1 and j be jobs such that i # jand i,j £ 0. Iet

A =t(0ij; k) - t(0j; k) for 1< k{m Ve say 9ij

k
dominates O j through Szwarc's domimance criteria (spe) ir

Oy ~<_¢sk_<_pik for 2Lk < m.

Remrk 1.3.11 Szwarc (1971) : Iet g1j domimate ¢ j through SDC.

Then
. i . : %‘\LAL I’\i
8(0d5m my 5 m) SH(0gR, ik, ,}}’}% T @ N}\\

2 UEFER igR)

http://www.cvisiontech.com

L2

where T 4 and %, are arbitrary partial permutations such that
J - N_olfi, 51

n 1{1 Ty Qf end %, 4) 7%, N U{l, ij - Thus SDC can

be used as an elimination criteridfor eliminating the partial

permutation ©j in the branch-and-bound search procedure for

the (n/m/F/qux) problem.

Definition 1.3.12 ¢+ In a (n/m/F/rj}_ 0/ f) problem, given a

partial or complete permutation o = (6(1)y «..,0(g)) we define

the following eritical path network. This network is represented
in a matrix form with (g+1) rows and (m+1) colurms as in Figure
1.3.1. Each cell (j,i) of this network represents an activity

of duration

Zero (dummy activity) ‘ if j=0, 1i=0;

ai (the time mnchine Mi is

available) if §=0, T <ig m

Ty (J) (the Telease time of 5 22
job o(3)) if 1<j £q, i=0;

and

. the rocessing time
pd(,]),l (jy 1g
of job o(j) on

smochine Mi) if 1<3£9 1<i <m.

P
v %

http://www.cvisiontech.com

= K% =

Ro Job
W release M M Rele M, ... M
nunhbher | 1 2 m
0

o _55:)1)

j
o %
"o(e)-.——>é—a0—>---—>0—>
R

To (1) —> O—(

G(J)—%g——-?O_) —>O-} -—}

Colwmn 0 1 P
number

Figure 1.3.1 ¢ Critical path network of <.

Fach cell (j,i) has its immediate successor cells as :

(J,k)y, 1<k <m and {1,i), 1<1<q if j=0 and i=0;

Machine
available
times

a(1)

o(2)

o(q)

(§+1,1) ©if j=0 and 1<i<m;

Cj,d+1) i 1<i<a and

i=0;

http://www.cvisiontech.com

(joi+1) and {(j+1,i) if 1< j<q~1 and 1< i< m-1;
(3+1,1) if 1< 3<a-1 and i=m;
and (3,i+1) ' if j=a and 1<igm-1.

Sinee the cell (0,0) corresponds to dummy activity, note that all

thie activities corresponding to the cells in columm zmero and row

Zero can be started simltanetusly at time zero.

Definition 1.3.1% ¢ Consider the ecritical path network of o partinl

or complete permutation 0= (o6(1), ... ,0(3a)). A seguence ¥ of
cells is called a gsegment if each cell (3,i) of ¥ (except the last)
is followed by one of its immediate successor cell. The length of

the segment Y is defined as the sum of the activity durations

corresponding to the cells in ¥ .

In the critieal path network of PFigure 1.5.1 note that any
forward movement from a cell (j,i) can be only of either right-hand
or downward turn. Using this some times it is convenient to describe
a segrent ¥ by a sequence of R and D symbols that indicate its
right-hand and dowmward turns. PFor example Figure 1.3%.2. illustrates

o DRDR segment.

Figure 1.3,2 ¢t DIRIR segment.

http://www.cvisiontech.com

- 15 =

Definition 1.3.14 : A segment ¥ with first cell as (0,0) and last

cell as (j,m) isfcalled a j-path of the network and its lergth is

the lergth of the segment VY. A j-eritical path of the network

is a longest j=path of the network. R

Remark .1.3.15 : Ina (n/m/F/&j 2_0,/f)'problem, for any partial
or complete permutation O= ((1}, ...; 0(q)); t(3§ r;o; m) is
given by the length of a g-critical path of the critical path -

network of O,

Remnrk 1.3.16 : Ina (n/m/F/t) problem, for a partial or complete

permitation o= (<3(1), «++5 6{g)) the corresponding critical path
network is given by dropping the activities in row zero aﬂd column
zero of" Figure {.3.1. Thus in this case tbglgétivitj corresponding
to the cell (1,1) alone can be started at time zefo. Further

t(0} m) is given by the lemgth of o g-critical path of this

~ network. -It éhould be observed that our definitions of” segment

lahd q—critiédl path reduce to the definitions of ségment and ceritical

path respectively in a (n/ﬁ/F/%nax) problem given by Szwarc (1978).

Definition 1.3,17 ¢: Given a (n/m/F/f) problem, we define a reverse

" flow-shop problem denoted by (n/mB/F/f) which has the same get of

Jobs, machines and the processing times. But the techﬁologiéai

ordering of the mchines is M, M 5 «.. , M, instead of Mysoea,d .

http://www.cvisiontech.com

- 16 -~

Definition 1.3.18 : Given a permutation o= { (1), ... , 0(n)),

R
the reverse permutation & of g is defined by

GR = (on), G(Il-‘]),‘ oo 5 6(1)).

th

Remark 1.3.19 Szware {1971) : ILet the k~ machine of (n/mR/F/f)

proklem be denoted by Mk‘ where k' = m-k+1. For-a-ny arbitrary
complete permutation® in the (1;/mR/F/f) problem, let ® (o3 x')
denote the completion time of the last job in © on mochine Mk'
under the feasible non-delay permutation schedule © . It is easy

to verify that for any arbitrary complete permutation ©-we have

R

to;m) = ¢ (oF

s m').

Thus any optimal permuitation 5 of the problem (n/m,/F/F.max) gives

an optimal permatation 2 of the problen (n/mR/FI/FHm[).

Definition 1.3.20 : We call (cs1 ; 52) a two sided partial
permutation if © " and ¢ , are partial permitations such that
01UO'Z¢N y 0.0, = ¢ and |C51|7+ Iozl ¢ n. HNote that in
a two sided partial permutation (Iy 02) the first [01 | positions
are fixed; the last |0, | positions are fixed and the middle

(o-j o, | - [o,) positions are not fixed. o, %0, is called a

completion of the two gsided partial permitation (C51z 02) if n is

a permutation of the jobs in N- (°1UC’2)-

http://www.cvisiontech.com

An17 B

1.4 Tower Bounds in a (n/m/F/Fmax) Problem ¢

Given a partial permutation o, we need lower bounds .on
F oo (<5E).for all possible completions Om of O while solving the
(n/m/F/Fmax) problem by a branch-and-bound search procedure; In
the literature a number of lower bounds have been suggested. Lageweg
et al., (1978) gives a fine dlassification scheme for 10wer bounds

that generates most of the kmown bounds in the literature. Here

wo introduce the notation of their classifications.

In a (n/m/F/Fmax) problem given a partial permmtation ¢ we
define several {low-shop problems, as explained below, for the_jobs
in 0 = N- 0. Choose any two mmchines .Mu and 'MV such that 1< u<v <m.
For mchine M;, 1¢iKm and i #u, v, relax the assumption A7
to say that the machine Mi can perform simultaneously any number of
jobs. Thus these machines Mi, i #uand v become non-bottleneck
machines whereas machines N& and N% remain as bottleneck machines.
Now the non-bottleneck uacﬁines can be replaced by at most three
non-bottleneck machines deﬁoted by Mfu A M:v and M:. where processing

times of job j in § are defined as ¢

(Cou-1

q. = mex {} o) & - B P } 5

JM SR < k=l K
V-1

q,juv - Z pjk !

k=u+1

http://www.cvisiontech.com

= 18 =

and q. = z Doy o
AR

This gives a flow-shop problem of scheduling jobs in 0 on machines
* * * '
¥ o, M,M_ ,M,NM in that order where again F is to be

ST W v SV e V. max

o minimized. Vhen usv this problem jnvolves at most three machines

including the bottleneck machine Mu'

Any lower bound of the optimal F of this flow-shop problem
provides a wvalid lower bound on F (ox) for all possible

completions on of O in the (n/n:/F/Fma) problem. Any such new

x
flow-shop problem can be characterized by a string - of at most

five symbols from {D g 1)) *} where

-]:] indicates a bottleneck machine;

- 0 indicates a non-bottleneck machine on which the various

processing times are taken into account;

' *
~ * indiecates elimimation of a non-bottleneck machine Mtx

by adding T, = {qj } to a lower bound of optimal
. [0 40 S :

min
it
F of the remaining problem. Here note that o could be

any one of .u, uv, v. .

Now we obtain o lower bound LB{C; u, v, 4% by finding the

B _
F ooy Volue (denoted by IB (0; u, v,~™)) of the optimal solution to

the problem on machines Mu and MV of type D and possible machines

http://www.cvisiontech.com

- 19 -

* e

Ma of type 0, and adding te it terums ra for machines Moc of
N ‘

type *. If u#£v IB (g;u, v, L) can be strengthened by

exploiting the fact that M 1s not available until t(O3 V)
v 9

Let 2 :{(u,v)| ‘l_gug_vj_m} . Por any SCZ we get a

1lower bhound

IB(g; 8,) = s ES.{'LB(O u,v,.f'&-)}

Define W = {(u,m)] 15‘u_<_:_m—1}.

Through experimental investigation Iegeweg et al.(1978) estavlished
that computationally efficient results were obtained with search

" algorithms incorporating IB(o; W, *D 0 D *) and the elimination
eriteria SEC. In some of the future qhapters we will use the lower
bound IB(a; W, *[] 0 ﬂ *). A method to compute IB(o; W, *] o[]*)

is described in the following lines.

For every (u,m) €W note that * D 0 D * actually reduces
to * D 0 D since there are only m machines in the original problem.
Now solve the three machine flow-shop problem for jobs in ¢ on
machines Mu, Mum’ Mm (Genoted by D o) [:I + This problem can be
solved (Conway et al.(1967)spages 94-95) by obtaining the Johnson's
permiiation 1 of the two machine flow-shop problem where processing

times on first and second machines for job j in § are defined as

http://www.cvisiontech.com

= 2 =

- [. + . i i - [o
P t Qo and Uy * Pin respectively. Bvalvate the F_ {n)

. ¥
for the problem D 0 D and denote it by 1B (0;u, m, * D 0 D * 7,

To this

o]

4d r and get IB(osu, m, *[JO[]*). Now

-

1B (o W, * [lo D'*) is easily obtained from its definition.

Computational Complexities

For years, optimization problems have been studied with the
view t0 provide algorithms for solving them. The subject of
computational complexities has developed significéntly in the process
of understanding the computational efficiéncy of an algorithm. For
rigorous definitions of the terms and concepts related to computational
complexities, refer to Aho et al.{1974), Garey ot al.{1979) and
Lenstra et al.(1978). For recent results on computational complexitiesi
of the scheduling problems refer to Garey et al.(1979), Rinmocoy Kan
(1976) and Ullmen (1976). Fere we provide lucid definitions of the
terms we use, following Horowitz et al.{1978), without formnlly

defining an algorithm.

Given an algorithm to solve a problem our interest is io study
the frequency of execution of each step, assuming the time for one
execution of each step t0 be a constant. More precisely, our
interest is to derive an upper bound on this frequency of executions,
in the worst case (i.e. when the algorithm is applied to an instanse

of the problem leading to maximum mumber of executions of a step).

Usually these bounds are expressed using the following '0' notation.

http://www.cvisiontech.com

- 21 =

Definition 1.5.1 1 0O (f{n)) denotes the set of all g{(n) such that

there exist positive constants C, n_ such that lem)l ¢ ¢ £{n)

for all n Z no 2

An algoritum we have been talking about has ®he property
thnt at each step of the algorithm, the next step to be executed

is uniquely determined. Such algorithms are termed as deterministic

algirithms and they can be executed by any of the computers available
“in the world. Let us relax this deterministic property and ﬁermit
an algorithm te choose any outcome out of a limited but specified
set of possibilities in some steps of the algorithm. Such steps

will be specified by a choice function "Choice {(5)" where S gives

the set of possible outcomes. Algorithms using this choice funetion

are termed as non-deterministic (n-d) algorithms. Conventionally a

n-d qlgorithm is such that it provides the answef to a guestion in
the form of 'yes' or 'mo'. Hence every optimization problem of
interest should be framed as a decision problem with 'yes' or 'no'
answer, so that we can conceive a n-d algorithm to solve the related
decision problem. In fact one can claim that solving an optimization
problem is at least as hard as solving the related decision prob;em.

A computer which can execute a n~d algorithm is called a non-deterministic

(g:d) computer. The concept of n-d computer ig fictitiohs since such

a computer is not available in the real world. We assume the following -

http://www.cvisiontech.com

- 22 -

about a n-d computer. A n-d nlgorithm terminates with answer "no!
to ao decision problem, if and only if, there exist 1O set of
choices leadiing tO an answer 'ves'! to the decision problem. In
otnerwards a n-d computer is capable of making correct choices 1n

n n-d algorithm whenever the answer 0 o Gecision problem is ‘yes'.
Further we assume that o n-d computer is capable of making shortest
seguence of choices that leads tO an answer 'ves'., PFor a decision
problem with answer 'no', a n-d algorithm is capable of terminating

with answer 'no' in one unit of time.

We use n as a uniform parameter to measure complexity and

usually we will take n as the length of the input to the algorithm.

Definition 1.5.2 : The time reguired by a n-d algorithm performing

on any given input is the minimum muber of steps needed ¢ reach
an answer 'yes!' if there exists o sequence of choices leading to

such an answer. A n-d algorithm is of complexity O(f(n)) if for

all inputs of size n, nd> N, that result in an answer 'yes' the

time required is ot most C.f(n) for some constants C and n.

Definition 1.5.§ Satisfiability problem : Let Xys Ky eeey denoté

boolean variables (i.e. they take values true or false). Tlet Ei
denote the hegation of x;. A literal.is either a variable or its

negation. A formule in the praopositional calculus is an expression

http://www.cvisiontech.com

g 2% e

that can be coustructed using literals and the operations and and
or . An example of suchk formilas is (x1 /\xg) vV (}c3 A 554) where V

denotes or and /N denotes aund. The gatisfiability problem dis to

determine if a formula is true for any assignment of truth values

t0 the wvariables,

Definition 1.5.4 : An algerithm is of polynomial time complexity
if its computing time is O{p (1)) for every input of size n and

some fixed polynomial p{).

Definition 1.5.5 P is the set of all decision problems solvable
by a deterministic algorithm in polynomial time. NP is the set of
all decision problems solvable by a n-d algorithm in polynomial

time.

N

Remark 1.5.6 ~ Cook (1971)+#: Satisfiability problem is in P

if and only if P = NE.

5 are problems, L1 reduces to L2

Definition 1.5.7 3 If L1 and L

(written as L1a{1?) if and only if there is a way to solve L,j by
a deterministic polynomial time complex algorithm using a deterministic
algorithm that solves L, in polynomial time. Note that 'ed' is a

transitive relation.

http://www.cvisiontech.com

= a7 o

Definition 1.5.8 ¢ A problem L is NP-hard if and only if

satisfiability'cK:IL A problem L is NP-complete if and only if

it im HP~hard and L €NP.

Remrk 1.5.9 ¢ Generally nmost of the optimiration problems

reworded ag decision problems would be trivially in NP. Hence
to prove that the decision problem is NP-couplete, we need to
prove I;cx:the decision problem where L is a known NP-complete

problemn.

Bemark 1.5.10 In view of Gook's result in Remark 1.5.6. and

the tremendous futile effort by many peoplg\it is very unlikely
that a problem in FP will possass polynomial time complex
deterministic algorithm. The reason for ocur interest in polynomial
time complex algorithms lies in the difficulties face@ otherwise
(for example, in the case Of exponential function) when n, the

input length becomes large.

http://www.cvisiontech.com

2.0

CHAPTER IT

(n/}/Ff?max) TROBLE:

Inftroduction

The three moechine flow-shop scheduling problem was first

considered by Johnson (1954) and he solved two. specinl cases of

the problem. Wagner and Story (1963) gave an integer programming
formlation of the (n/B/F/FmaX) problem. Iommicki (1965) suggested
a branch-and-bound procedure to solve this prpblemJ Ignall and
Schrag e (1965) also proposed a branch-and-bound procedure to solve
the (n/B/F/FmaX) problem. A good account of the basic work done
on this problem is available in the bpoks by Conway et gﬂ11967)9

Baker (1974) and Rinnooy Kan (1976).

Garly et al(1976) proved that (n/3/F/F) problem is
NP-~complete and hence it is very unlikily that o polynomial time
complex algorithm could exist for this problem. Thus it becomes
important to characterise special cases with polynomial time compléx
algorithms and/or develop heuristic rules which work satisfactorily
in the general set up. Many authors have contributed in these two
aspects of the (n/B/F/Fmﬂx) problem and we will cite their references
in sections 2.1 and 2.2, In this chapter we discuss four new special
cases of the (n/3/F/FmaX) problem under section 2.1. Subseguently
in section 2.2 we suggest six new heuristic rules and compare their

performances with the known heuristic rules in the literature.

http://www.cvisiontech.com

- 26 -

Out of the assumptions listed in section 1.2, we mnke only
the assumptions A1 to A7 inclusive of A4' and A5'. Under these
assumptions we know that (Conway et nl{1967)) it is encugin to
consider only the non~delay permutation schedules while solving
a three machine flow-shop problem with the objective t0 minimize
Fmax' Ye devinte from the notation'introduced in Chapter I and
follow the original notation of Johnson (1954) for the (n/B/F/FmaXY
problem. I = -{ﬁ, seny n}- is the set of jobs. For each job j
in W, Aj, BJ and Dj are the processing times (2 0) on the

1 Mé and M5 respectively.

machines M
(n/B/F/FmaX) problem is : Find a permutation n* which minimizes
Fmax(n) over the set of all permutations & = (75 (1), cosy B {n)) off
the jobs in N where Fmax(n) is the length of the n-eritical path

(Definition 1.3.14.) of the critical path network of @ .

Special Cases with Polynomial Time Complex Algorithms :

The Table 2.1.1 describes the known special cases of the

(n/B/F/Fmax) problem for which polynomial time complex algorithms
have been proposed. The exact description of the algorithms can

be obtained from the respective refereénces.

http://www.cvisiontech.com

= P7 1=

TABLE 2.1.1 ¢

Known Special Cases of the (n/B/F/?maX) Problem

Gose Description of the conditions — Refereuce Remarks
1 either B. ¢ A, ¥ 1 #£] Johnson Burdyuk(1969), Arthanari
S—= i = .
J (1954) (1974) ard Grabowski et &l.
Lo BJ'.—<- Dj ¥ i#3 (1975) generalised this
case to larger mumper of
machines.
2 Any oune of the following three Szwarc%?968) solved the
. ase 2{(ii). Grabowski et al.
1455 case T
CORALE 602, Hosk (1975) deals with a genera-
(i) Bi_ﬁAj, Bi+DiJ£ Aj+Bj Grabowski lisation of this case to
_ et al. larger number of machines.
for all 1 # J. (1975) Burdyuk (1969) and Arthanari
(11) A. <B D. < B (1974) solved certain gene-
e L T B ralisations which imply the
flok, 511 B # je conditions of Grabowski
et 2l(1975) in the case of
(1i1) Ayt Bi_SBj + Dj’ B;‘LSDJ larger number of machines.
for 211 1 # j-
3 B,> A, ¥ 1#£ Arthanari Szwarc(1974) and (1974a)
= et al. streamlined the algorithm -
(1971) of Arthanari et 21(1971)
under this case.
4 B.> D. ¥ i £ - do ~ = do
LE]
5 Let m be an optimal permuta- | Szwarce 1 is an optimal permuta-
tion of the two machine flow- (1974)

shop problem (M1+M2, M%+M)
with mpximum flow as t 1£g.
} i

Let Fm&x(n):z t(n) - i?1 B, .

tion of the (n/z/F/Fmax)

problern.

contd. ../

http://www.cvisiontech.com

TABLE 2.1.1 {continued)

~

Case Description of the conditions Eeference Remarks
6 For i # j, define Burns Szwarc{ 1977) modiiiel
et nl. Burns et 2l(1975) ai orii
Ees min(Ai’Bj) r Hﬂn(Aj’Bi)’ (1975) Further Szware's{12 3}
n - T I Y
R = min(Bi,Dj) - min(Bj,Di). case Bi:1j¥1.ana =
A G g |
1 e =1 2
for all 1 # j, of > O. . (1) m ()
i EEre Ak i
(1) 2 2 Py
implies the conditions of
this case. In fact
S max(Ai,Di)Jﬁ i implie
the conditions of this cal
Achuthan{1977) generalise
this case t0 larger numbe
of machines. ;
7 B, L min (8, D)% 3 Szware
i-= 3 i /
{1977a)
Let (11, cany 1n) , (ii’ e in) and (k1, Sow kn) be sequences of
13 25 «..y n such that Al1 £ oo Aln 5 Bi1 £ -ee £ Bin and

Dk < +ne < Dk respeciively. The new special cases will be defined using

1 n
these seguences.

a g-1
Case I : n B, > = Al for the smllest possible q .
=1 T =0 NI

This condition implies that the sum of any q Bi's is greater than |

or egqual to the sum of any g Aj‘s. ¥hen g=1, this case reduces to case 3 |

http://www.cvisiontech.com

= 294

of Table 2.1.1. The following Example 2.1.1 is a (4/3/8/8) problem
satisfying the conditions of this case with ¢=2. It is easy to verify
that Exomple 2.7.1 does not satisfy the conditions of any of the cases

from 1 t0 7 in Table 2.1.1,

Example 2.1.1 ¢

Job ;rocessing times on

1 M M

1 4 15 5

2 6 11 10
3 g 12

4 10 7 9

Given any permutation g= (n (1), ..., ©(n)), let Figure 2.1.1
represent the critical path network (defined in 1.3.12) with reference

to 5 and the (n/B/F/Fmax) problem.

Machines
" ¥ 9
n(1) Q~ >_? ;\
(@) OO
= PR v

. \%a‘ \i: 7
Jobs 2 . ; .
pA A %
w(i) L >) >
. v { ¥

d _
) Qs §-mslS
Figure 2,1,1 : Critical path network of n for the (n/3/F/F”ﬂx) problem,

O ——— i — e ' - -

http://www.cvisiontech.com

- 30 -

Proposition 2.1.1 ¢ Under case I, for any 1 and j suck that g+1 <1 3
i ¢n, the DRD segment (vetinition 1.3.13) comecting the end cells
(1,1) and @,2) througn (i,1)-and (1,2) is of smaller length than the

RD segment connecting the end cells (1,1) and (j,2).

Proof : Length of the DRD segment comnecting end cells (1,1) and (3,2)

. i J
through(i, 1) and {i,2)= = Ap(py * B Br(e)
=i r=i
i-1 - 3

|~

L, v+ = B + % B , {(by case I)
(1) T L,) T)

= Length of the RD segment connecting end
cells (1,1) and (j,2).

This completes the proof. // ;

Proposition 2.1.2 ¢ Under case I, for j such that gq+1 ¢ 3 {0, any
joeritical path of =w (Definiti n 1.3,14) should make a right turn in

column ‘one' at a cell (i, 1) for some i such that 1< 1 <q.

Proof : Suppose the contrary: Let a j-critical pathlbe a IRIRD segmeni
with end cells (1,1) and (3,3),first right turn at (i,1) and seccnd
right turn at (1,2) where gq#1'< i< 1< j- Then the length of this
J-critical path is egual to thé sum of the lengths of the IRD segmenﬁ
connecting end cells (1,1) and (1,2) and the D segment éonﬁec%ing end

cells (1,%) and (j,3). Kow by Proposition 2.1.1, the DRD segment has

http://www.cvisiontech.com

2 30 &=

jength less than the RD segment connecting end cells (1,1) and (1,2).
Henee this j-eritical path bas length smaller than the RIRD segment
connecting end cells (1,?) and (j,3) with its second right turn ot (1,2).
This contradiets the definition of a j=critical path. Hence the

proposition is proved.//

Theorem 2.1.3 3 Tet & = (& (1), +..,%(n)) be a Johnson's permutation

(Definition 1.%.2) of the two mnchine flow-shop problem (MQ, M5)° Let

QG be an arbitrary subset of N such that l @} = qg. Then under case I,

(a) from among the set of all permutations of the n jobs with first g
jobs restricted to Q, we need to consider oizly the permutaticns of

the form (g . @ ﬁ\l where O is an arbitrary permutation of the

jobs inQ, Q@ =DN-Q and %5 is the restriction of o to §

(Notation 1.3.4).

b f = i . s i ;" . o
(b) Define I {}1, ; %1} ¥ K}n’ L qs eee L gt Jz

Let I = §-I. If Q< I then from among the set of all permutations
of the n jobs with first q jobs restricted to be in Q, we need to

consider only the permitations
(u(j)’_ ‘Jr(1)) seey U.(j-i), u(j"”)& o0y u(Q)! aé")’ 1 £J L4

and P £ 1
arH Au(j) <'Au(1) fo? j#1 where

g = (u(1), «.vy ulq)).

http://www.cvisiontech.com

Proof : Partla) : For an arbitrary permitation 0 of jobs in ¥, let

or be a completion of O (Definition 1.5.6). from Proposition 2.1.2
a n—critical pathlof on should pass through either cell (q,E).gg
cell (q,B). Therefore finding an optimal coupieticn of o reduces to
solving a two machine flow-shop problem (ME, Mﬁ) for the jobs in &

given that machines M2 and MB are available only at times 62 = t(c5;2)

E

and 0y = t{o 3 3) respectively. Now by Remorks.1.5.3 and 1.3.5 @

is an optimal solution of this two machine flow-shop problem (ME,M3

Q
)I
Thus the proof of Partla) is complete.

Part(b) : Let v and v' belong to I. From the conditions of case I,

we have,
q-1 q-2 q-1 q-2
L B, < I A and £ B. +B > B A 4 Lirp e
i i i — v
r=1 ars =0 N-r r=1 r r=0 n~-r

Therefore Ev > AV' for any v and v' in I.

Consider « = (O, aé) where O is o permutation of jobs in Q. Using

' B+"> Av, in Figure 2.1.1 with reference to n note that : For any 1
such that 1< 1< n, a IRD segment connecting the end cells (1,1)
and (1,2) ig of smallef length than the RD segment connecting the end ;
cells (1,1) and kl,2>j Consegquently the length of a n-critical path |
of n is équal to the sum of ACX1) and the length of a n~critical
path of 5 with reference to the two machine flow~shop problem (Mggi)i

Now Part(b) follows frcm the properties (Rerark 1.3.5) of the

Johnson's permtation c. //

http://www.cvisiontech.com

- 33 -

Using Theorem 2.1.3, we present a branch-and-bound procedure
t0 solve the (11/5/F/Fm) problem under case I. After introducing
the required notation we present the procedure in a stylistic conwventiocin
followed by K’:nuth- (1973), Kernighan and Plauger (1974) and others.

The notation in general feollow Rinncoy Kan (‘!9’?’6).

¥*
- Throughout the procedure, the best solution ™ found so far

*
provides an upper bound me(n) on the value of the optimal

solution.

- A branching rule b associates with a partial permtation

G = (o (1), AN 0(s)) a family (0)} of partial permutations
where b{(0) ={Oj] jf(c}. Note | b(0)| = n-s. The elements

of b(0) are called descendants of O.

- A bounding rule 1b associates with a partial permutation

6= (9(1), ..., 0(s)) a lower bound 1b(S) < Fm(cn)

for every on, a completion of G,Where

15(0) = {mx {16(0(1), ...y 0 (s=1)), WOV, 3T 5 21
1), 1t s=0

and 10'(0) = 1B(o;W, *[J 0[] *) defined in section 1.4

of Chapter I. Note that 1‘51(5) itself is a lower bound.

Al *
Elimimtion of ooceurs it 1o(o) >F (n).

http://www.cvisiontech.com

- 34 -

A dominamce rule 4 associates with a partial permutation © a

subsot of b{0) dencted by 4@). Deline a(c) :‘(Gj[oij
domirates oj through SIC j’ (see Definition 1.3.1'-0.). To
construct d(O) we have to check SDC foir each pair (i,j) such
that 1 ;! SLptmg, e 5. Dominance cycles can occur and have
to be aveided while constructing d(c). IHote that the partisl

permutations in a{c) can be eliminated.

A predicate £ associates with a partial permutation

g= (0(1), T 0(5)) a true or false value. Define

P(o) = ifftr'ue, if lg‘ = d,

4

1 false, if 1 G ! < Q-

When p(o) is true, p= (o, Oz) is a éomplete permuitation
for which F . () is evnluated. Here %3 ig the restriction

of @ to 3 where a is defined in Theorem 2.1.3. Improvement

* . * ;
of n* occurs if F (%) > Fnﬂx(#).

A search strategy chooses a partinl permutation 0 from the

collection of generated partial permitaticong which are &0 far

neither eliminated nor led to branching. We use frontier searg

where a partial permutation with minimnl lower bouné is selectl

for further branching.

http://www.cvisiontech.com

- 35 -

During the search, parameters 12 and nb ccunt the number of

partial perrutations that are elinminated and that lead to branching

respectively. We define the operation " : £ ¢" in the stotement

"y i f €8" to mean that s: = s*¥ where f(s¥) = min £(s). Note
8 €8

that ':€' indicates oan arbitrary choice. ILet X denote the set of

all partial permutations. We assume that ”Proéedure JP (A,B,N, 5)V
gives a Johnson's permutation n of the (11/2/F/Fmax) problem where
processing times of job i on first and second machines are g&ven by

Ai and Bi respectively. In the search procedure we use Procedure

JP (A,B,N,}I) as a subroutine. It is well known from the literatu;e
(Rinnooy Kan (1976)) that Procedure JP (A,B,N, 1) can be stated such
that its compl_xtational complexit:y is 0o(n log n) (see Deiinitious Te5.1,

1.5.2 and 1.5.4).

We have presented the branch-and-bound procedgre for case 1
in a simple way, assuming that g set of-computations are done at the
rcot node (@) and the remaining at the hode o when it is generated.
Further, with reference to a generated node U, we assume that, we
store |0‘l s (03 k), 1 <k < 3 lb1(d) ; 1b{(0); 0 and &. This

storage helps in simplifying computations while branching from <.

Procedure 'B & B for case I' (Q,A,B,C,Fmax,a, i*,B, b)lb,lb1?d,p, na,nb)

1. Begin Tocal Y;Y';¥";BeX; DeBid, Y€ IB ¢ X—>R;
2. call 'Procedure JP (A+B, B+D, N,B)';

B ¢nll 'Procedure JP (B. D, N.w)':

http://www.cvisiontech.com

- 36 -

*
4. T ’Fﬁaxe{ﬁ"a}; na s=nb: my Y3 =0

5. 1B'(g) + = 10" (8); D) s = 1b(2);

if 5 s = ; A= 1.
6. it LB(ﬁ)?_Fmax(n) then nas:= 1 else Y.._{ij,
s Yhile Y # & do
A L s
8. begin Y ::;!GIO':'LBGY g
“| i
9. o s IBECY
10. nb: = nb+1; 'B::b(o);'li::d(cr); ’_Y:=(Y—G)U(f§— ﬁ);
119 while B-D #¢ do
12% begin ,?:eB_J’J;E—i‘)::E-J’)-{?]—;
@ _ -
13. if 0 (¥) is tme then ¥ 1 B ¢ n,?oc-i};
14. etse 1B'(7): =167 (7)5 IB(Y): = 16(7);
15. end‘
e o : 91,
16 Y._{o'|cr!€Y, LB(G')ZFM("‘)J!
17. ‘7 na==na+|Y"| s s EOYE e
18. end

19, end 'B & B for case I'.

The computational complexity of the Procedure 'B & B for case .
is analysed in the following. Recollect that W = {(1,3), (2,5)} in
- L™
the definition of lower bound IB(o ; W, * DO D ® Note that for
a given permutation x the value of me(n) in a (n/m,/F/Fm) problem

is computed in O(mn) steps.

http://www.cvisiontech.com

- 3 -

Computations performed once at the root node : GCbtaining Johnson's
permutations § and o of the two machine flow-shop problems (M R M2+M_5)
and (Mz, MZ) respectively, This involves a procedure in o(2n 1oz n)

steps.
Computations pej:'formed at the node corresponding to O:

(i) When lol = s ¢gq, calculation of 1B(0; W, *[] 0 []#) involves,
constructing 66 _and Az and evaluating Fmax (ga) and
Fmax(0'.5) for the flow-shop-problenms D 0_']] and U D respec~

tively. This is accomplished in O((2n+5)(n—s)) steps.

(i1) When]0] = g ¢ q, construction of the set (o) is performed

in 0(3(n-s) (1‘1—5-1)) steps.

(iii) When P (C) is true the construction of = (O, a=) and
7 5

caleulation of Fmax(p;) are performed in O({(n+3)(n-q)) steps.

¥ow +the mumber of nodes generated with s jobs fixed can be at
most equal to s ! nCS. Further due “to predica‘t:e' P n generated node
has at most (q—‘1-)h jot;f; fi&céd. Let f(s) denote the computational time
for the calculations perf ormed with reference 0 a node with s jobs
fixed. Then the total éomputational time with reference to the nodes
genernted can be at most egual to q; sl nCs f{s). Purther, the
time taken for the computations per;;;med with reference to the nodes

with g jobs fixed can be at most q! ncq £(q). Note that £(s) is a

211d degree polynomial function of n for all values of s < g. Thus

http://www.cvisiontech.com

- 38 -
¢y I . b o) . . L

for s <q, st O f(s) is a (s+2) " degree polynouinl function
of n. Therefore the computational time complexity (Definition 1.5.2)

. t =3 LI o~ q+2 T = ! A A
of the procedure B & B for cose Iis Ofn). Hepnece for a {fixed ¢
ond n much larger than g, we have a polynemial time complex algorithn
{(Definition 1.5.4) for case I.

q q-1

Case I1 1 5 Bi S © D for the smnllest possible q.
r=1 T =0 n-r

- This cbndition implies that the sum of any g Bi's ig greater
than or equal to the sum of any g Dj's. When =1, this case reducesj
to the case 4 of Table 2.1.1. The following (4/3/F/Fmax) exomple
satisfies the conditions of this case with q=2 where-aus it does not
satisfy the conditions of any of the cases 1 to 7 in Table 2.17.1

and that of case I for g £ 3.

Example 2.1.2

Processing times on -

Job M m
1 2 "5
1 4 15 5
2 12 11 9
3 9 12 6
4 10 7 9

This case reduces t0 case I for the reverse flow=-shop problem
(n/BR/F/FmaX) (see Definmition 1.3.17). An optimal solution of the

(n/S/?/Fmax) probler under this case can be obtained by solving the

http://www.cvisiontech.com

-39 -

(n/SR/F/FM) problem through the procedure of case I (see Remark

1.3.19).
q q-1 ‘

Case III : b Bi' R I for the smallest possible q ;
r=1 r T =0 n-r |
ql q'l_1 E
P Bi ». B for the smallest possible q'
r=1 r r=0 n-r

and g + q' { n.

This case is a combination of cases I and II. PFurther,when
g = q' = 1, this case reduces t0 case 2 (4i) of Table 2.1.1. The
following example demonstrates that this case with g - q' = 2 does

not satisfy the conditions of the cases 1 to 7 in Table 2.7.1.

Example 2.1.3 : 2

Job Processing times on -

e, M, Iy

g = 4 15 5

2 6. 11 9
3 8 12 6

4 10 7 9

Given any permutation ® = (% (1), ..., n (n)) let Figure
2.%.2 represert the critical path network of t with reference to the

(11/3/F/Fm) problem.:

http://www.cvisiontech.com

= M0 s

Machines

M1 M2 M3

(1) Q > S

‘\Ef Ny \‘[f

;b N \L

jobs w(a) % TN v, TSV
\i '\}/ \il‘

j N
n(n—g'+1) ?5) > >
J <&

Ficure 2.1.2 ¢ Critical path network of = for {(n/3/F/F) problem.
ig P /E 2 P

%

wo a q'-1 "
Under the condition T B, > & Dk , ‘the followirg

il
r=1 r r=0 n-r

proposition is analogous to proposition 2.17.1 and hence we omit its

proof.
g' q'-1

Proposition 2.1.4 ¢ Assume & B, » & for the smnllest
r=1 T r=0 n-r

possible q'. Then for any i and J such that 1 €1 {Jj (n-g', the
DRD segment comnecting the end cells (i,2) and (n,3) through (j,2)
and (j,3) is of smaller length than the IR segment connecting the

end cells {(i,2) and (n,B). W

http://www.cvisiontech.com

- 41 =

Proposition 2.1.5 ¢ Under case II1I, a n-critical path of x should

moke o right turn in column one at a cell (i,1) for some i such thav

1<i £q and another right turn in column two at a cell (j,2) for

some j such that n-g¢'+ 1 £ j {n.

Proof : Using Propositions 2.71.1 and 2.7.4, the proof proceeds in

the same lines as that of Proposition 2.1.2.//

Theorem 2.1.6 : Tet B = (5(1), ey B(n)) and o = (oc('i)3 IO a(n))

be Jomnson's permibations of Thne tTwo machine T1ow-shop provlems G 1,‘&&23
and (Mz,Mé) respectively. Tet Q and Q' be arbiirary subsets of N

such that QilQ' =4 , |Q| =g @nd VLQ'l = ¢g'. Then under case ILI,
from among the set of all permutations with first g jobs from the

set Q and fhe last q' jobs from the set Q', it is énough to consider

one permutation (Brs O aQ,) where ¢ is an arbitrary permutation of

fhe jobs in ¥ - (QUQ').

Proof : Consider an arbitrary permutation w such that the first g
jobs and the last q' jobs are from Q and Qf respectively. Invoking
Proposition 2.1.%, n n-critical path of x pésses through the cells
(q,2) and ((n—q'+1), 2). Thus the_lgngth 0% a n-critical path of =

is the sum of the lengths of :

(1) a g-critical path of (n(1), ..., n{g)) in the two machine

flow-shop problem (M1,M2),

http://www.cvisiontech.com

L 4D

(11) segment D connecting the end cells (q+1,2) and (1-q',2),

and (dii) & q'-critical path of (x (n-q'+1}, veey T {n)) in the wwo

machine Tlow-shop problem.(N%,MB).

For a fixed G and Q', use Remark 1.3.5 and observe that,

minimizes the length of a g-critical path in (i),

5 BQ

3 B. :

- +the length of the segment D in (ii) is o constant = 7
' jen-@Que'’

minimizes the length of a gq'-critical path in (i ks

Now Theorem 2.1.6 follows.//

Using Theorem 2.1.6 we suggest a branch and bound procedure
for case III. We discuss only the salient features of the branch-

and-bound procedure avoiding o formal presentation of it.

~ The best solution m* found so far provides an upper bound
Fmax(%) on the value of the optiml solution. Initially n
is taken t0 be the best among the Jolnson's permutations of
the two machine flow-shop problems (M1,M2), (M1+N%, Mé+M3)
ﬁnd (Mé,MB). This is performed in O(Bn(5+log n)) steps at

the root node (#, &).

-~ A branching rule b associates with a two sided partial

)

permutation (O,) (Definition 1.3.20) a family b S 9

of two sided partial permutations where

http://www.cvisiontech.com

- 43 -

£
{(611,302) [1£5,1 and jfi’vquvg}-if 9, 1<a, I, 1 <ar,

s

L{(GI, J 0’2)[jﬁ’GTUGQ}’ j_f| g1| :q?, C‘QI(Q‘.

b(9y, G,) = {(011, c,)| i¢o1uo2}, HEE |o1b<q, |o2j = gt,

A node representing a two sided partial permutation (O , Oé)

such that }g1l> qa and [02| > q' will not be generated in our

procedure. Note that
lplo,0) {= {(a-lg -lo, Da=-lo,l-1o,] -1) 1f]e,l< o, |,

I o=]01 |- 102 | otherwise.

- A bounding rule lb associntes with a two sided partial permutation
g.,o Jd 7o
(01 , 02) a lower bound 1b(o 2) < Fmax(; 2) for every
01 n02 , a completion of (01, 02),where lb(01, 02) is defined

in the following lines.

Define (1) 10 (O 3 1) = t(C&‘; 1) + z A

0 01L502

2

-I?

i

(i1) 18 (01,02;3) = t(8;8 ;2) of Notation 1.3.7 where

010
1M

9= (t(ci;?)’ t(01;2), t((ﬂ;B)); p is as defined in Theorem 2.1.6

and f3

(ﬁﬁicg is the restriction of B to G1L102 and

http://www.cvisiontech.com

- 44 =

(1ii) 198 (0,5.; 3) = 18(S; W, *[Jo[] *) defined in
1

o1

section 1.4 of Chapter I with the slight chaunge that the jobs

not yet fixed will be 51{}52 instead of 61 . New 19 (G13 Oéf KM
1 {k {3 defined above is a lower bound of the earliest time
the machine Mk is available, after processing all the jobs 1u

0. with the restriction that the jobs in ©

5 are processed Ifirst

1

in that order.

”~
Define 1b (01, Gl =

™~
5= 39,9,

It is easy to verify that 1b(01,0'2)_§ Fmax(cxlmoé) for every

G m0,, a completion of (01, 9,). FElimination of (OH, 52) oceurs.

it 6] o] * TO—a1 n i +A+q
ir 1b(1? 2) B Fmax (=). For o two-sided partinl permutati

(OA, 32) let us assume that we store |G1’;l 02[, t(Oﬁ; k),

1<k <35 1b(9, 9,); (, 9,) and O,U0,. Then the computatii
n

of & is performed in O((3n+8)(n~|01| -!(jzl)} steps. Thus the

computation of lb(G1, Gé) is performed in O((3n+8)(n—|cj1|—|02H

+ 3 j02|) steps.

A dominance rule @ associates with o two sided partial permuta-

tiol’] (01, 02) -19

Given (©., ©.) let B (r,) (i.e. the job in the P position of B‘
1 2 1 1 |

a subset of b(C 02) denoted by daf S 02),

defined in Theorem 2.1.6) be the last job in 0.} and a(rz)

http://www.cvisiontech.com

(i.e. the job in the rgh position of ¢ defined in Theorem 2.1.6) be

the first job in 0,. Given (G 02), a job i€01U"02 is said to

satisfy Property P(1) if either i = B(r!) where r' < r,
or i =@g(r') where r' > n-q-!-’(j1 [+ 2.

A job € 01UG2 is saild to satisfy Property P(2)

if either j = g (r') where r, <!

or j= o« (x') where i"s q"—loel - 1.

Define,
{(9, 302)1 i satisfies P{1) or j satisfies P(2)}
i 1ol <al ol <ar,

a(0,,9,) = {(011,02)[i satisfies P(1)} itlo, [<a,lo | = qr,

({(01, ,jUZ)I j satisfies P(2)} if|01| = q,' 02| & g

The two sided partial permutations in r;i(g1 ,02) can be eliminated.

Given a two sided partial permutation (61,62}, B(TT) and a(rz) can
be Located in O(n+2+(n-| 0| ~[o,])) steps and the jobs j€31u—02
such that J satisfies either ‘P(1) orrP(Q) cann be collected in |
o{2n(n- [G.II -fcﬁe |)) steps. Thus d(01, 02) ca.ﬁ be constructed in

O(n+2+(2n+1) (n- o, | - [o,]) steps.

http://www.cvisiontech.com

=y G e

- A predicate P associates with a two sided partial permutation

(01: 52) a true or false value. Define
{ true, if ,51| - g ondl I, | = g
9(01, 02) =
false, otherwise.

W aer 0(61,02) is true, u = (G1T£ 02) is an arbitrary completion
of (01,0 2) and this is constructed in O(n—|o1] -[02|) steps.

| ¥
Fmax() is computed in 0(3(n-| c, | }) steps. Improvement of =

oceurs if Fmax(F)> me(K.

~ Prontier search selects a two sided partial permutation with

minimml lower bound for further branching, from among the partial

permutations which have so far been neither eliminnted nor led %o

branching.

Now we shall amnlyse the computational complexity of this brandh{

and-bound procedure. Belore we proceed further observe the folliowing

features of the procedure.

(1) A two sided partial permitation (O,, J.) generated by the
1?7 2
procedure is such that either f01| =|02] £ min (q, q')

or [o,| =a ana a<lo,l< ¢ if q <aq

or ¢'<lo,lga and Jo,| =q' i ' <aq.

http://www.cvisiontech.com

(i1) As a consequence of the dominance rule d, a two sided partial
retmtation (o » 02) generated by the procedure is such that

= fs o = e Ix i i 6]
Ty 801 and 5 acg Further the last job in

o

] will
be B(r) where r < n-q+|c,| and the first job in o, will be

a(r) where r qu402|+1.

Let N(s1, 32) denote thz rumber of two sided partial permutations

(01,<52) generated by the procedure such that| 011 = 8, and, hjz l:

82l
Then we have
N(s,s) = 248 |, BEUYE, _ Ty | T yr s(min(e.a'),
s ‘ g s s
-0 =-0"'+
N(q,s) = ncq.nq.q c., if a<dsga,
——q ! + .
Ws,q') = n0q| a0 qGS s> if a' <s <La,
N(s s8,) = © otherwise.
Denote the computational time by f(s1, sz), for the calculntions
performed with reference to a two sided partial permitation (0.,9,)
, : 12
with |G1l = s, and ‘ 52‘ = 8,5, Then the total computational time

with reference to the nodes generated can be at most equal to

min(g,g')]

3 =3 +8 . i !
S C, Sy f(s,s) + 1

http://www.cvisiontech.com

- 48 -

where,

;7 q’ n n-g~-q'+s
z o st C, - flays) if 5 <q

=]
1
(&
fr
T
It
'.O—-

q = —a-q!
o3 Ho o, B +SCS. f(s,q') if g > q'.
=q

s=q'+1

Clearly this computational time is of order O(nQ+q'+2) since f(s,s),
f(g,s) and £(s,9') are of order O(n2). Thus the computational
complexity of this procedure is O(nQ+ql+2) and hence for fixed q and
9' the procedure is of polynomial time complexity. Observe that the
procedure of either case I or Il is applicable to case III as well.
In the worst instance,from the above analysis it is clear that the
method of oase III regquires more computational time than that of the
methods for cases I and II. However it should be observed that, on
an aﬁerage, the method of ease III is expected to work better.

Q-1

9
Case IV : either T A D> % Bi for the smllest possible g
r=1 r r=0 N1

q q-1
> & B, for the smllest possible .
r=t r =0 n-r

When ¢ = 1, this case reduces to the case 1 of

Table 2.1.1.

http://www.cvisiontech.com

- 49 -

Theorem 2.1.7 ¢ Under the cage IV, for any arbiitrary permutation g,
if 2 n-critical path of n mkes a right turn at cell (131)5 1<¢1¢n-1,

then it will mnke another right turn at cell (392) Tor 1< 3K

min (i +q « 1, n).

Proof : The proof is simple using the given conditions of case IV in

Figure 2.1.1. //

Now we discuss in greater detail a subcecase of case 1V when

q=2 and B, =B for every i €N,

Subcase of IV : q= 23 Bi = B for every i€ N.

At first look, since there exists exactly one Jjob 1 such that
Ai < B, one notices that deleting Jjob i the problem satisfies

conditions of case (1) in Table 2.1.1. Hence one might feel that a

Jdohngon's permtation of the two mehine flow-shop problem (M1+Mé, M2+M3

provides a 'good' near optimnl solution for the (n/B/F/FmaX) problem
under this subcase (see Johnson (1954)}).
The following Example 2.1.4. shows that o problem under subcase

of case IV need not imply any of the cases in Table 2.1.%1 and cases I,

1T, and 1I1.

)

http://www.cvisiontech.com

- 50 -

Exomple 2.1.4 ¢

 Processing times on

7 i i
M) 1\i2 MB ;

1 3000 500C 2000
2 7000 5000 3000
3 7000 5000 5000
4 80CO 5000 7000
5 9000 5000 6000

Note that for the Example 2.1.4, the Johnson's permutation of (M1+y5,
M2+M3) is n= (4,5,3,2,1) With-Fmax(n) = 43,000 where-as the
optiral solution is «= (4,5,3,1,2) with F__{a) = 42,000. Ihus
it pight be useful to discuss an exact mefhod for solving this

subcase.

For an arbitrary permutation #, we dntroduce the following
notation in the critical-path neiwork of 5 . A path from cell (‘i,?}’
to cell (n,3) having its right turns in the first colurm at cell (4,1
and in the second column at cell (1,2) ig denoted by Pi‘l g 1T {1y
A path from cell (1,1) to cell (n,3) having its right turns in the
first columm at cell (1-1, ‘l) ane in the s¢cond colum at cell (1,2)
iz denoted by Pios 2 ¢1i ¢u. The length of a path P is denoted
by L(P). For an arbitrary permutation g, invoking Theorem 2.1.7 ,
we get

B, (rn) = max L(Pi)
1<in

http://www.cvisiontech.com

= 51

where L(Pi) = InX i(Pi1)’ L(PiE))L

for 1< i <n with the convention that P, = @ and hence L(P12> = 0.

We will use the following theorem due to Smith (19%6) in our

subsequent theorems.

Theorem 2.4.8 Smith (1956) ¢ Assume f is a real valued function

defined on the set of all permitations of n objects. A sufficlient

condition that £(x) ¢ £(n) for all permutationss is tuat

(A) There is o real valued function g of ordered pairs of elements
such that if x is any permitation and g' a permutation obtained
from ® by the interchange of the ith and (i+1)th elements in W,

then

£(n) ¢£(n') if gln (1), n (1)) < gln (2+1), n (1))

and

* ¥*
(E) n is such that the ith object precedes the jth object 1n =

i g(i,3) ¢ &(3,1).

Theorem 2.1.9 ¢ Under the given conditions of the subcase of ease IV,

g(i,j) = min (Ai+B, B+Dy, Ai+Dj) satisfies the condition (A) of Smith's

Theorem 2.1.8., where f(n) = Fmax(n).

Proof : Let n=(n{1), ...,n(n) } be an arbitrary permutation and

< ' be obtained from n by interchanging n (r) and n {r+1) for some r

http://www.cvisiontech.com

= Bl

such that 1 ¢r (n-1. Rurther assume that g(‘ItSI‘), n (r+1)) £
. .o .
g(n{r+1), n(r)). Then we shall prove that Fmax(n) £ Fma,x(5l

3 t 1
Denote Pi‘l’ PiZ and Pi corresponding to n' by Pi

1 1
49 Pj_:2 and Pi

respectively. From the critical path networks of m# and =n', using

the fact that Bi =B, ¥1i, it 1s easy to show that

L(Pi) - L(P;) for 1 <i £n, ifr, v+
i
3 cx raI R = i <P
Further observe that L(Pr2) L(PrZ) Thus to prove Fmax(ﬂ:) <E
we should prove that
mx AL(2), I(P), L(P)3< max fL(P'), 1P), L{P'
?_ o4 r+1,17? r+1,2°f = e P r+i, 17° r+1,2

From the critical path networks, we can write that

_ P)
T {L(“m)’ I'(PJ:-+‘],1)’ L(Pr+1,2)n}

r+1 n

= 12;1 A?T(:L) + 2B + izzr Dﬂ(i) + WX {-— AT‘L(I‘*—T)—Bj -B- D'II(I‘)S
™ A (1) T Dn(-:}}
and
1 ' !
P
- {L(Pm) r+1,1)’ L(Pr+1,2)}
T+ n f ¢
= A .y +2B+ Dy ytmx 4 — - B, - ~B
A WLl iU el e e T

") T B
Now using the hypothesis g{ n(x), n (r+1)) < g(n(r+1), n(r)) the

thaorvem follows. //

http://www.cvisiontech.com

- 53 -

In the following theorem we use the notation —"' where

i¢——J if and onmly if g(i,j)< e(4,1). ’
Iheorem 2.1.10 : Under the subcase of case IV, let N1E N, A = min Ay
y :) . iEN1
and Ds = min D,.
iEI‘T1

If A, <D , define
Y »= 8
W= {3€N,|1£sandr, A, +D_ < min (B, D.)+Ar}.

Then, (a) 1€ M =—=—> id— 1.
(v) idm, €N, =T ¢ i.

(c) 1€M, 3N, JEN, =i —i

') s
Ir Ar Ds’ define

g . . 1
IklI1 = ilEN,{Il;ésand ry A, +.D; <min (B, Ai)+Dsj'
Then, (a) ie€ M1=>s 1.
(e) ifM,l, 1EN, = i¢—s.

(£) 1€m, igm, jEN1#>jé_i.

Proof : ILet A <D . Prom the properties of A , D_ .al_lldA M the proofs
of (o) and (b) are trivial. To prove (c), for any pair of Jobs i and j
such that i€ M, j€M, j€ N,, we should show ttat g(i,3) < g(j,1).
Since i€ M, we have

Ay + D, Lmin (B, Di) Sley © M (2.1.1)

http://www.cvisiontech.com

- 54 -

Tk e + .
Thus Al + I} & Ar +B B+ Ds B Dr
Hence Ai‘g B and therefore we get

gli,j) = min (B, DJ.) R (2.1

Since j¢M and 3 €N, we have

1

Aj + D> min (B, DJ) * A

that is

min (B, Dj) =2 5Dk I Aj -A. . ' (2.1.2
Adding (2.1.1) and (2.1.3) we get
min (B, Dj) + 4, < min (B, Di) +Ay - {2.14)
Adding the known relation B - Ihig B - AL to (2.1.1) we get
A, +B ¢ min (B, Di) *+B <D +B (2.1.5

Combiration of (2.1.4) and (2.1.5) using (2.1.2) gives g(4,]) < g(j,i

and this proves (c).

The proofs of {d), (e) and (£) are in similar lines. This completes

the proof of Theorem 2.1.10. //

Using the results of Theorems 2.1.9 and 2,1.10, we provide n

Procedure 'subcase of IV' which vields an optimal n° to +4he
J

(n/B/F/FmaX) problem under subcase of IV. In the procedure we use

http://www.cvisiontech.com

- 55 -

the fcllowing notm.:ion‘ q

N, stands for the set of jobs not yet fixed in the positions

of .
r + A. €N, stands for choosing a r such that A ¢ = min A..
i 1 T X i
. J_€1\T1

Similarly s: DigN is interpreted.

1
Ik stands for the last fixed position of the initial fixed
portion of ¥

Ik stands for the first fixed position of the last fixed

. 3
portion of ® .

The sets M and M1 are as defined in Theorem 2.1.9.

Procedure 'subcase of IV' (A,B,D, n*, N)

1. Begin Iocal N‘i; W M1; Ik; Lki

2.

3.

4.

5e

6.

Te

N osaNy L =0y Dy#= IN| +1;
while N, # ¢ do
r: A €N s Di€N1;
ig A <D then M=fi¢N, |i#sand r; Ai+Dr$m1.n(B,Di)+Ar} ;
i€ M £ ¢ then call Procedure 'subcase of IV'{A,B,Df,M)
do i=1I + 1, Ik+|M|
i) =BG -I),

end

http://www.cvisiontech.com

56 =

10, Ik==I3i+{MI; N1:-_—N1_-—M;

*
11, s (Ik+1):,=r, Is =T +13 Nt = N _{}L

- T_ * o r,i'
12. else (i.e.M=¢g) 7 (Ik+1). = 1 k.._ Ik+1, w ._.L1 £
13, elge (i.e. Ar> Ds) then M1=-{} €N1fi¥s ard r; AS+IE <min(B,Ai%®}
14. if M # & then call Procedure'subcase of IV'(A,B,D,u,ﬂA
15. do i=1L-|m i, 11
16. n*UJ :=(x(i-Ik+|M1|+ 1)
17. end
18. L= L - [, [; Nyt= N -M;
119y, i T (Ik- HEIE Ikzzl.k-1; N1:.-:N1-»ts};

* .

20. else (1.e,M1=:ﬁ) ® (Lk—1).: 53 Lk’z Lk—1, N1.= N1—{S};

2195 end

22. end Frocedure 'subcase of IV' (A4,B,D,p%, N).

Theorem 2.1,11 ¢ T generated by the Procedure 'subcase of IV (A,B,D,Wﬁm

is an optimnl solution of the (n/B/F/F) problem under subcase of case IV,

Proof: The Theorem follows trivially if we show that m satisfies the
condition (B) of Smith's Theorem 2.1.8. We accomplish this by induction
on | NI + For the basis of induction we prove the theorem when 'N|=:2.

Now Procedure 'subcase of IV' termimates after executing either C»Se(l)

http://www.cvisiontech.com

- 57 -

lines 5-12 or OCase(ii) 1lines 13-19. 'Under Case{i) note that if
*
M#£@ (M=¢g) then in lines 6-11, 1 (1) and . (2) are (in line 12,

n* (1) ig) fixed such that
Cg(M(1), o*(2)) <e(7 (2), x7(1)).

This can be checked under €ase{ii) as well. Thus the condition(B)
of Smith's Theorem is satisfied for @ when | N| = 2. Now make the
induction hypothesis that the condition (B) holds for n® for all

|N| < n. We prove it for | N| = .

Now either lines 5-12 or lines 13-19 will be executed. Suppose
lines 5-12 are executed whep qu N. Then note by the induction
hypothesis that the jobs in M are fixed in correct order among themselves.
Now by the results (a) and (b) of Theorem 2.1.10, we observe that job r
is Tixed correctly relative to all other jobs. Further from result(c)
of Theorem 2.1.10, we get that the jobs in M‘are fixed correctly
relative to all other jobs not in M. Similar arguments. can be repeated
when lines 13-19 are executed. Subsequently the mumber of jobs in N1,

yet to be fixed is strictly less than n and by induction hypothesis

the result follows. //

It is easy to check that the computntionnl complexity 6f the

Procedure 'subcase of IV! is O(n).

http://www.cvisiontech.com

= 58 &

2.2 Heuristic Rules 5

We define certain general terms before discussing the heuristics

for solving the (11/3/F/Fmax) problem.

Definition 2.2.1 : Given a permutation g = (n (1), vaay L (n)) we

say that ' is o Contiguous Bimry Switchivg (GBS) neighbour of =«

if x' can be obtained from m by interchanging n(i) and n(i+1) for

some i, 1 £i £ n-t.

Definition 2.2.2 : Given a permtation %= (=n (1), ..., n{n)), we

call n' a Forward Push Switching - FPS (Backward Push Switching - BPS)

neighbour of x in case ' can be obtained from by placing n(i)

for some i, 2 < i€ n {1 £i<fn-1) in the first position (last
position) and pushing n{k), 1 ¢ k <i-1 one position forward
{ n(k), i+1 <k {n one position backward) where-as the remnining

jobs Occupy same positions under n and w' .

Definition 2.2.3 : Given a permutation m., generate all its (n-1)

CBS neighbours and choose the permutation with least Fmax out of the

n permitations in hand. This procedure is called CBS improvement

procedure. Similarly FPS and BPS improvement procedures are

=

defined.

Table 2.2.1 pregents the commonly used heuristics.

http://www.cvisiontech.com

= Bl

Table 2.2.1 3

Common heuristics for (n/B/F/FmaX) problem

?izz Description Reference Remnrks
tic
H1 A Johnson's pem1utdt1011 of Giglio et al, Hutchinson et al. (1977)
the two machine flow-shop (1964) also investigated this
problem (M1+Nb, M2+M3). rule. Computational com-
plexity of this heuris-
tic is O(n log n)e
H2 Decreasing sequence of Palmer Its computational com~
D - Ay (1965) plexity is O(n log n).
H3 E3.1: Increasing segquence MeMahon Each of them is of compu-
of A ?t Zli tational complexity
H3.2: Decreasing sequence e 0(n log n).
of Di'
H3.5: Increasing Sequence
of (Di-Ai)/(Ai+Bi+Di).
H4 Find Johnson's permutationé Campbell ites computational com-
of the two machine flow-shop et al. plexity is O(2n log n+6n).
probl ems (M1,M3) and (M1+EL, (1970)
Mz+M3)‘ Choose the one with
least Fmax out of the two
permtations.
H5 Iinear branch-and-bound Ashour Dannenbring(1977) nodified
rrocedure. Here branching (1970) this heuristic by using
ig always done from one of the lower bound due to
the newly generated partial McMahon et al.(1967). This
permtations with least lower heuristic is of polynomial
hound " of Lomniéki'(1965). ?omputational complexity
' in n.
H6 Jchnson's permitation of the Dannen— This heuristic is of com-

two machine flow-shop problem bring

(3M1+2M2+M3, M1+2Mé+3M3).

(1977)

putational complexity
O(n log n).
(See Noze 2.2.4(ii)

http://www.cvisiontech.com

60 =

Note 2.2.4: (i) The heuristics H1 to H6 are of polynomial time

complexity. The literature includes heuristics which are not of

polynomial time complexity such as 3

- Baker {1974) # Construct permutations by random sampling and

chooge the best out of them.

- Page (1961) 1+ Construct permutations by any one of the techmiques:
Merging, Pairing, Individual exchanging and Group exchanging.
Chooge the best out of them.

(ii) Dammenbring (1977) applied the CBS—improvement procedure

t0 various heuristiecs and he termed it close order scarch. He also

applied an improvewment procedure termed extensive search : If the best

permtation 8 ' given by CBS-improvement procedure applied to % is such

that n' # n then once again apply CBS-improvement procedure to n'.

(iii) &11 the above mentioned heuristics except H1 and H3 have
been generalised and applied to larger number of machines by the

respective authors.

Dannenbring (1977) has compared most of the above mentioned
heuristics. He observes that the extensive search applied to HE
provides the best heuristic in the sense that moximum number of
problems are golved optimally by this heuristic. However, it should
be noted that this heuristic is not of polynomial computational
complexity and in fact it eould lead to o complete enumeration as

illustrated by the following {3/3/F/F_) example.

http://www.cvisiontech.com

Bxample 2.2.1 ¢

Processing times on

Job M1 M2 M3
1 5 13 9
2 1 15 2
3 11 19 24

For the corresponding two mchine flow-shop problem (3M1+2M2+M39

M1+2M2+3M3),presented below mn= (2,1,3) is o Johnson's permtation.

Job 3M1+2M2+M3 M1+2M2+3M

3
1 50 58
2 35 37
3 95 121

In the following graph of the (B/B/F/Fmax) problem, a node represents

a permtation and two nodes are adjacent if the respective permitations
are CBS neighbours. The number given above the node represents the

F corresponding to that node.

max
72 ' 68
213 231
76
63 65

http://www.cvisiontech.com

2.2.1

=] 62 =

From the graph it is easy to see that the extensive search applied to
H6 starts with permuitation (2,1,3) and enumerates permutations (1,2,3);
(2,3,1); (3,2,1); (3,1,2) and (1,3,2) in that order. Purther note that
(1,3,2) is the unique optimal permutation which is obtained after

compiete enumeration.

Important desired aspects of a heuristic rule are its nearness
to the optimzl solution and easiness in the involved computations.
Keeping this point in view, our investigation has been restricted to

heuristics of popynomial computational time complexity.

Heuristics under investigation :

Iageweg et al.(1978) observed that the lower bound IB(OC ;':@?, *D *)
associated with a partial permuitation O where ?:{(u,u) 1< _gm}
(see section 1.4 of Chapter 1) is slightly stronger than the machine
based bound due to Lommicki (1965). Further, the lower bound
IB(o; W, * Uo [J*) with ¥ = {(u.,m) | 1 <ug m—‘l} is stronger than
the job-based bound due to McdMahon et al.(1967). Through experimental
investigation they established that computationally efficient results
were obtained by the seai‘ch algorithms incorporating the SDC as
elimination criteria and LB(¢; W, ¥ D'O D*) as a lower bound. Hence
we modify the heuristic H5 as a linear branch-and-bound procedure using
1B(o; W, ¥ D 0[] *) and SDC. We have already seen under case I of

section 2.1 that use of SDC and IB(o; W, * [] 0[] *) imvolves

http://www.cvisiontech.com

- 63 =

computational complexity of 0(3(n-s)(n-s~1)) and 0{(21+5)(n-s))
respectively when |0f = 5., HNote that linear branch-and-bound procedure
generates ot most (n-s+1) nodes with corresponding partial permutation
¢ satisfying [o| = s. Hence the modified H5 will involve b(2n log n)
steps at the root node to find the Johnsoﬁ's permbtations. AThe

computational complexity for the remining nodes put together can be

at most 0 ((2n+5)n + B&E:l%iﬁill (2n+8)) il.e. O(n4).

Apart from the remaining heuristics of Table 2.2.1, we include

in our investigation the following basic heuristics:

H7 : Johnson's permitation of the problem (M1,Mé).
HE Johnson'é-permutation of the problem (Mé,M3).
H9 : Johnson's permitation of the problem (MT’M3)'
H1i0: Johnsoﬁ's permitation o% the problem (M1+M2, min(M1?Mé)+ﬂ%).
H11: Johnson's permutation of the problem (M1+min(M2,M3), Mé+M3).

H12: A precedure for solving o special case due to Burns et al.

(1975) which we describe below.

In the following procedure, for arbitrary N{;;-N we use N1 X N1

to mean the set {(i,j), i# jand i,3 €N1}- . We use Proceédure

'J7P (4,B,N,n)' as a subroutine to obtain Johnson's permtation x of

a two machine flow-shop problem.

http://www.cvisiontech.com

- 64 -

Procedure 'H12 (4,B,D,N, %)!

1. Begin Tocal N.l;- M,I;M;' Ik; Lk; o Bs

2, call Procedure 'JP (a+B, min{A,B)+ D, N, a)';
Za call Procedure 'JP (A+ min{B,D), B+D, N, B)';
4. N1: = N; Ik::= O3 Ikzz I-N't;-i-, 1%

5. while N £ 9 do b

6. q: (A+B)€N1,r (B;+D;) € ,(s,t) (A+D)EN TN
Te Qmin : = min{Aq+Bq, B +D_, AS+D1:}; |
q i " * " P . . » 0_'7 = o
Ba _J_i‘_Aq+Bq=Qm1n then 1 (Ik+1).r..q, Ik'_ Ik+‘|, N1._.N1 {q} 3
1 3+ * 2 — e P -l - -

9. else if B +D = Qmin then n (Ik"1)"_ rs Lyt= L1 Nos=N, {r}
10. elge if As_g Dt then M:z{j [AstAj,’ j€N1, j%t} 3 0 i=0y
11. : do i=1IL41, I+ |d

12. r (1)s= 0 (i-1,);

13. énd

14. Ie= I WFlols W= moeug
15. elge (1e.A>D)thenM {]]} D,JEN?,J,{} 0 4= By
16. do i=1I-|o Ly -1

Tl (1) 2= o (2-I +{o] + 1);

18. end

19. Ik:_—_l.kalg_ ¥ N13=N1-—M];

20. end

21. end Procedure 'H12 (_A,B,D,N, w e

http://www.cvisiontech.com

= B &

Procedure 'H12(A,B,D,N, ¥)' is of computational complexity
O{n+2n log n). BHach of the heuristics H7 to H11 is of computational

complexity O(n log nj.

To each of the heuristics H1 to H12, the FPS and BPS improvement
procedures were applied. We denote the application of FPS aind BPS
improvement procedures to heuristic Hj by new heuristics Hj(a) and
Hj(b) respectively. Dannenbring (1977) observed that application of
CBS improvement procedure (close order search) to H6 also provides
satisfactory-results. Hence we include in our investigation application
of CBS procedure to HE alone and denote the resultirg heuristic by
H6(c). Each of the FPS, BPS_and CBS improvement procedures when

applied to a permutation g, involves computational conplexity of

O(3n2).

It should be observed that the following heuristics solve

optimnlly the corresponding specidl cases of Table 2.1.1:

Ht : case(1), case(5) and case (7) ;
H7(z) : case (3);
E7(b) : case (4);

and H12 't case (6).

2,.2.2 The BExperiment 1

The experiment included 300 problems where the job size n was

varied from 5 t0 16. For each Job size n, 25 problems were generated.

http://www.cvisiontech.com

S0 -

The processing times for the problems were drawn from integer valued
discrete uniform distribution in the interval [:1,106] o It is felt
that the uniform distribution provides the more diificult problems to

solve (see Dammenbring 1977).

For the computations involved FORTRAN programmes were developed

and the computer Honeywell 400 was used.

The heuristic solutions to all the generated problems were
obtained. All the problems were solved for exact solutions, using the
branch-and-bound method. The best known solutions from the heuristics
was used to discard some of the partial permutations during the search
procedure of branch-and-bound method. Further the search procedure
included SDC as elimination critaria. At any stage of solving o
problem, if the number of active partial permotations exceeded 50,
the search method terminated without getting the exact solution of the
problem. Out of the 300 problems, included in the experiment, 13 were
not solved for exact solution and in these cases the best lower bound
of the active partial permutations at the termination stage, was taken

to be the optimnl value of the completion time.

For a given problem, percentnge error of a heuristic H is defined

* *
by E; = 100 (FH-F)/ F where Fy is the F evaluated at the

permutation given by heuristic H and F' is the F,, . evaluated at an

exact optimal solution. The percentage error By 1s used as the index

for the comparison of various heuristics.

http://www.cvisiontech.com

=1 167 &

By Chi-square test, it was ckserved thaf the performance of a heuristic
does not significantly vary with the number of jobs n (at level 10%). Hence
the performﬁnce of heuristics was studied usingrﬁll the 300 problems
independgnt of job size 1. Tabie 253 .2 provides a comparison of various

heuristics on the basis of Eh.

Table 2.2.2 ¢ Comparison Of various heuristics

7 Heuris?ic i Perg?ntage Occurrence of Mex EH Mean i:ﬁ?giign
. irm- - 4 , =
Boslo | ooveq m = OF O IE OLE(SE (g (%) ()
H1 : 42,9 48.7 71.0 - 23.34 3443 4.63
CE1(a) 50.0 57.0 8447 20,93 . 2.8 3.34
H1(p) ~ 50.3 60.0 82.3 15520y 1. ¥ 8206 3.13
H2 15052 w210 5543 24,58 4.9 4,30
H2(a) . 29.7 42.0 79.0 18,97 2.68 3.05
H2(b) 25 34.0 78.0 19.83 - 3.25 . . 3.56
3. 1 8.0 12.0 - 28.3 26.54 9.64 6.58
E3.1(a) 13.0 18.3 40,3 - 26.54 - 7.83 6.28
H3. 1(b) 22.3 33,7 6347 17.58 4.20 4.18
H3.2 5.7 9.7 26.8 32,93 © 9.86 6.77
H3.2(a) 21.3 30.0 65.7 22.16 4.10 4.26
H3.2(b) 12.3 17.3 3447 Bl 7.89 6.19
H3.3 0.0 0.00 0.0 73.88 38,32 11.55
H3.3(a) 0.0 0.0 = = 0.0 - 62455 27.06 9.86

H3.3(b) 0.0 0.0 0.0 56.79 26.3%9 9,12

http://www.cvisiontech.com

- 68 -

Table 2.2.2 (c ontinued)

Heuristic. Percentage occurrence of Vs EH Mean Stoandard
, } MM = A s deviation
Basic o B 0% OSEHSj% OS'FHS‘57 (%) (EH) (%%)
proved . EH
H4 52.7 58.7 80.3 23.34 2.42 3.92
H4(a) 57.0 63.3 87.3 20.13 1.82 3.20
H4(b) 59.0 66.0 88.0 16,62 1.68 2.9
H5 65.3 78.0 96.0 14.49 0.76 1,82
H5(a) 68.3 83.0 97.3 11.67 0.64 1,61
‘ E5(b) £68.3 82.0 98.3 8.57 Q.57 1.30,
H6 (o) - 38,7 48.4 86.3 18.20 2.24 3. 16
H6 (b) 41.3 52.0 84.7 15.20 2.01 2.9
H6 (c) T 53.0 61,7 87.7 17.35 Tait> 2.8
HY | 2.3 3.3 16 .7 43%.20 14.12 9.54
H7(a) 7.7 11.0 31.0 35.14 10.26 7. %
u7 (b) 14,3 18.0 41.0 32.47% 7.60 6.71
Hs el RIS 0 o i o = 10604 14.98 9.84
E8(a) 11.3 14.3 38.7 32.98 8.18 6. 93
Eg(b) 8.3 10.7 31.3 36.62 - 10.25 7.88
HY 17 .0 20,7 - 48.3 29.97 4.16 5.56
H9(a) 24,7 31.7 70.0 18.20 3.72 3.9
H9(b) 30.7 36 .4 69.7 21.71 3.58 4.00
H10 25.7 31,3 . 47.7 3457 7.65 7.87
H10(a) 39.0 47.7 76 .0 19.23 3.28 4.33
H10(b) 30.7 37.3 Gi7 .7 4 27.1 5.60 6.21
H11 27.7 32.0 45.7 33,92 7.39 7.82
H1t(a) 32.3% 36.7 56,0 28,32 5e41 6. 13
7 H11(b) 35.7 44.7 76 .0 19.39 3,10 4.0
H12 35.7 44,3 71.3 29.97 3.35 4.32
H12(a) 42.0 54,3 . B83.0 20.13 S 2.12 3.26

H12(b) 46,7 57.0 87.0 21.71 . 1.87 2,93

http://www.cvisiontech.com

- 69 -

The following remarks are made from Table 2,2,2. To. simplify notation
we use‘Gﬁ t0 mean gﬁﬁ . ILet g denote the conditional mean of the
digtribution of EH given Eh > 0. gy will provide an idea of fhe

performnece of heuristic H when the heuristic does not give an optimal

sclution for a problem.

Bemark 2.2.5 : Comparison between the 14 basic heuristics :

(a) H5 is the best heuristic under any basis of comparison possible
from Table 2.2.2, It is interesting to observe that H5 solves
65.3% of the problems optimally and 96% of the problems with

H5
fact that H5 involves significantly high computational effort

By £ 5%. It has Byp = 0-76 and O = 1.82. However the

compared to other heuristics, urges us to look for satisfactory

heuristics other than H5. This leads to the following observations.

(b) H4 is the next best heuristic with EH4 = 2.42 and 0H4 = 3,92,

(c¢) H1, H6 and H12 are moderately comparable to H4 with their EH

around 3.5 and GH aroﬁnd 4.5,

(d) Comparison of the relative cumulative distribution of By (not
presented in the text) for heuristics H1, H4, H6 and H12
suggests that @ ‘

- in the fangeﬁqrs_EH £ 4%, H4, H1, H12 and H6 are preferred

in that order.

http://www.cvisiontech.com

= 70 &=

- in the range 4% <E; < 10%, H4, H6, E12 and H1 are

preferred in that order.

(e) It is of interest to note that

(1H5 = 2,21 < qH6 = 4.82 < dH4 = 5.11 ¢ QH12 = 5.21 < GH1 = 6.02

(£) On the basis of computational complexity heuristics Hi, H6, H1Z2,

H4 and HS will be preferred in that order.

Remrk 2.2.6 : Comparison between all the heuristics :

() H5(b) is the best heuristic and H5(a) is the next best.
Congidering the point that these two heuristics involve
gignificant computational effort, we look for heuristics

with lesser computational effort and observe the following.

(b) H4(b) is the next best heuristic with EH = 1.68 and

[o J——
g = 2.92.

() H6(c), Ha(a) and H12(b) are moderately comparable to H4(b)

since they have 1.73 < By < 1.87 and 2.93 { o < 3.20.

(d) We note that,

H5(a) E12(b) H6 (e

< OCHL].(b) = 4,10 < Gﬁl‘ﬂi(a) = 4,23,

“H5(b) =

(e) On the basis of computational complexity E6(c), H12(b), H4(b),

H4(a), H5(b) and H5{a) will be preferred in that order.

http://www.cvisiontech.com

T

Remnrk 2.2.7 : Impact of improvement procedures

(a) The benefit realised by the CBS—improfement procedure applied
to HE is significant.

" (b) The improvememt procedures interact with the basic heuristics.

For instance FPS~ iﬁprovement procedure betters H3.2 signifi-

cantly and BPS—:improvement-procedure betters H3.1 sighificanxly u

whereas the otherway is not true.

(c) The FPS and BPS improvement procedures do not better H5

appreciably.

(8) By applying selective improvement procedures to H4, H6 amd H12

we can solve about 88% of the problems with E, < 5%-

3 Combination of heuristics :

By a combination of heuristics in set S we mean the selection
of a permutation (where minimu Eﬁax is attained) among all the
permutations generated by the heuristics in 8. Thus a combination

through set S defines a new heuristic denoted by CH.

Certain combinations of the basic and)‘or the improved heuristics
are considered with a view to obtaining a computationally easier
“heuristic than H5 and simultancously performing nearly as well as Hb.
Their performances are summarised in Table 2.2.3 which is self

explanatory. .

http://www.cvisiontech.com

Table 2.2.3

- 72 e

Combination of heuristics

I;::: Desc;;pt.itm Percenibage occurrence of Max “ﬁ?_an G aH COmpz;?;ri:ml
k- ‘CO?EZ?;:S'O“ EHHO% O—%<1% O_EH-B% (7) (EH) niia"t:?;n
CH1 Hi(a), H1(b) 58 3 66,7 91.0 13.28 1.35 2.31 3.23 4 log n+3(2n-1)n
CH2 H4{a), B4{b) 64.0 70.3% 91.7 13.28 1.20 2.24 3.53 2n log n + 6n°
CH3 H6{a), H6{(b) 49.0 60.7 91.7 13.28 1.45 2.26 2.85 n log n+3(2n-1)n
cH4 H12{a),H12(b) 50.7 63.7 9.0 14§?§ 1.36 2.28 2.76 2n log n+2(3n-1)n
GH5 Hi(a), H1(b), 68.0 © 79.0 97.0 13.28 o;f2-1l56 2.25 3n Loz n+{12n-5)n
H12(a),H12(b) -
CH6 H1,H4,H6,H12 60.7 68.7 91.3 23:34 1.43'2.94 3.65 130 + 51 log n
CH7 CH6(a),H6(b) 67.7 75.3 9%.0 13.28 .0;8911.52 2.62 5n 1ogi1+6n2+mn
s), Ean), 72 - 81.0 9.0 13.28 0.57 1.47 2.07 51 lOg11+1'_2n2+ n

-H6(c) H12(b)

Remark 2,2.8 3

From Table 2.2.3 we note the foIlowing.

(a) Both FPS and BPS improvement procedures put together have significantly

bettered the performances of some of the basic heuristicss For instance,

CH1 has optimal soiutions in around ‘Ip% more of the ¢ases compared to

HA (frOm Table 2.2.2) and infact reduces EH" GH and 0&{ significantiy.

Thig phenomenon is common t¢ CH2, CH3 and CH4 as well. However. this

ig at an additiomal computational effort of about -0(6n2),-

http://www.cvisiontech.com

- 7%
(b) CHB is the best heuristic solving 72.3% of the problems optimally
and 98% of the problems with E < 5%. It has E; = C.57 and
Q% = %47, This heuristic needs much less computational effort
than H5(b) and performs almost as well as H#5(b).

{c) CH5 which is of much less computatiomal complexity than H5 performs
better than H5 and infact compares very well with H5(a). Tnis

heuristic CH5 is of less.computational effort than CHS as well,

2,244 Bestrictions-on_processing times

Butchinson et al.(1977) studied the performonce of H1 for problemsg
with restrictions on processing times. The restrictions were of two
types viz. (1) B. < an(A.,D,) for every job i and (2) B, ¢ min(A.gD.)

g =" i’ = 1771
for every job i. Iater Szwarc (1977a) proved that H1 finds optimal
solution under the restriction (2). Here we study the performances of
Ef, H12, B5 and combinations of H1 and B12 under weaker conditions on
processing times. The 300 problems were classified into one of the

three mtually exclusive groups defined in Table 2.2.4.

Table 2.2,4 : Restrictions on processing tinmes
' — Number of
Groups) Restriction pEobllens
. % B <min{EA., zn.} 107
o A A LA i i
i il !
2 min{z o ED.}.(EB. (B}ax{z A, ED.} 111
SO ;1 P
E mx{z. A9 2 Dip <2 By s
L 1 - i
Total ' 300

Table 2.2.5 provides the comparison of certain heuristics under the

grouns defined jn Takle 2 2 4

http://www.cvisiontech.com

= A

Table 2.2.5 : Comparison of heuristics on problems with restriciions

Heu-

Forcentoge L
Group ﬂi- %_g%cugri%ie 8f<EH Max %—I Iz’i}%;u): GH o Czlgpn;}t—z;?_:;al
g_]% | 25% (%) _ 0 of
H1 67.3 78.5 88.8 13.19 1.18 2.49 3.61 n log n
E12 46.7 STerD = 115 < 15.92 2.44 3.61 4.57 n+2n log n
CH1 T74.8 84.1 93.4 7.47 0.78 1.84 3.08 1 log n+ 3(2n-1)n
h H4 57.0 69.2 88,8 10.74 1.40 2.33 3.27 2n log n + 2(3n-1)n
CH5 78.5 87.9 95.3 7.47 ©0.59 1.64 2.76 3n log n+ (12n-5)n
H5 72.9 80.4 96.3 7.46 0.62 1.45 2.28 n*
H1 45.9 51.3 76.6 18.43 2.81 3.87 5.19 ‘n log . n
H12 33.3 37.8 66.7 13.71 3.74 3.80 5.61 10+ 2nlogn
CH1 69.4 T0.2 94.6 7.58 1.03 1.94 3.36 1 log n+ 3(2n~1)n
CH4 55.0 64.9 93.7 7.89 1.13 1.86 2.52 2n log n + 2(3n~1)n
2 5 73.0 76.6 99.0 7.0 0.57 1.17 2.11 3n log n + (12n-5)n
H5 60.36 75.68 94.59 14.49 0.9 2.30 2.42 nt
H1 2.4 6.1 39.0 23.34 7.22 5.41 T.42 n log n
H12 23.2 35.4 68.3 29.97 4.02 5.49 5.24 n+ 2n log n
CH1 22.0 '39.0 81.7 13.28. 2.52 2.% 3.23 nlogn + 3{2n~1)n
3 G4 3.6 54.9 93.9 14.73 1.62 2.66 2.56 2n log n + 2(3n-1)n
CH5 47.5 70.7 96.3 13.p8 1.08 2.16 2.07 3n-log n + {12n-5)n
H5 62.2 78.6 97.6 9.64 0.67 1.47 1.75 nt
Remark 2.2.9 : From Table 2.2.5 we observe the following :
() GCH5 is the best heuristic for. problems under groups 1 and 2.
(b) HS5 is the best heuristic for preblems under group 3.
{¢) CH1 which is of lesser computational effort than CH5 performs

satisfactorily for problems under groups 1 and 2.

http://www.cvisiontech.com

- 75 -

2.2.5 Conclusions of the experimental investigation :

Without restrictibns on the processing times, CH8 perforns
the best aond is of moderate computational effort. Taking note of
the restrictions on the processing times we recommend the following.
Use CHS for problems under groups 1 and 2, While applying CH%, the
property of case 5 in Table 2.1.1 can be exploited. An attempt,
for problems under group 3, to combine some heuristics with & view
to keeping the computational effort arounﬁ that of CHS and still
get satisfactory performince, turned out to be futile. Hencé we

recommend H5 (with more computational effort) for problems under

group 3.

http://www.cvisiontech.com

CHAPTER 111

(n/m/E/Fmail PROBLEM

3.0 Introduction :

The first branch-and-bound method to solve the (n/m/F/Fmax)
problem was provided by Brown et al.{1966). This problem for m > 3
is proved to be NP compiete by Ga;ey et al,(1976) and Lenstra et al.
(1977). Diring the period 1966 till date, probably the (n/m/F/Fﬁax)
problem has enjoyed maximum attention among the scheduling problems.
A vast literature on this problem is available. But we do not intend
to survey this area. The basic work related to this problem can be
obtained from Baker (1974), Comway et al.(1967), Coffman (ﬁ976),
Rinnooy Kan (1976) ard Lenstra (1577(a)). PFairly good understanding

of the recent research on this problem can be had from Iagewez et al.

(1978), Szwarc (1978), Gonzalz et al.(1978) and Gupta (1976).

In section 3.1 we provide sufficient conditions for a particular
permitation to be an optimal solution of the (n/m/F/FmaX) problem. A
special case of the (n/m/F/Fmax) problem is studied in section 3.2.
Subsequently in section 3.3, we investigate the application of SDC

to the (n/m/F/FmaX) and its reverse problem,

In this chapter we mnke the flow-shop assumptions A1 tc A9

inclusive of A4' and A5' (given in section 1.2 of Chapter I).

http://www.cvisiontech.com

- 77 =

Sufficient conditions for an optimal solution

Johnson (1954) mkes the following conjecture for thne
(11/3/F/Fm) problem : "If = (n{1), «v., n(a)) is a Johnson's
permatation for the two machine flow-shop problems (M1,1\/12) and (M2,NL5),

then n is an optimnl solution of the '(11/3/F/me) problenm".

Burns et al.(1976) show by a counter example that the above
conjecture 1s not correct. Further they prove the following modified
form of the conjecture: WIf 1 = (n:(1), SO 11:(11)) is o Johnson's
permitation for the two machine flow-shop problems (M1,M2), (ME’MB)
and (M1,M3), then n is an optimal solution of the (11/3/F/me)

problem.”

in this_ section we prove the following generalised version
of the above result for the (n/m/F/FmaX) problem where m > 3,
"If n o= (n(1)y ..., n(n)) is o Johnson's permutation for every two
machine flow-shop problem (Mu’Mv)’ t{u<v<m then n is an optimal

solution of the (n/m/F/F_) problem."

Before we proceed to prove this result we show by the following

(2/m/F/Fmax) example that these conditions camnot be weakened.

Example 3.1.1 ¢ Let a be a positive real number. Choose any pair of

machines M and M such that 1.{ uw< v { m where m > 4. Define the

processing times of Jjobs 1 and 2 on mchines Mu and Mv by

http://www.cvisiontech.com

- 78 -

processing times

jobs

piu . piv
1 a+3 a+1
2 a+4 a+2

Define the processing times of Jobs 1 and 2 on machines Mr, IS &k

r#uand v as : = Ds_. = a. Now observe that n= (1 2) is a
2r :

Pip _
Johnson's permitation for every two michine flow-shop problem (M ?Mé),
L i m.,(r;s) £ (u,v). But nm is not an optimal solution of

the (E/m/F/Fmax) problem, since for g' = (2,1) we have,
1 — =
Fm('} = (m+t1)a + 8 < (mH1)a + 9 = Fmax(n).

Let Figure 3.1.1 be the eritiecal path network of (31), given
the m tuple 8 = (CHPRT am) where 8, is the time machine M, is

available for processing the jobs, 1 £1i < m.

=
=

M
m

o) SHC] machine

Jjobs o

4 available times

O

.__>'__:}%

l
| l

<w~—-i)<-—.4°’

Figure 3.1.1 : Critical path network

http://www.cvisiontech.com

= o) =

q k
t(0; j1;k) = 3 + mx (% p. + T p)}
‘l(r(ki - _q 18

r_'gqsk s=r J8 5=q
k (k q-1
= mox a+z(p)- min L p. + B p,)F
1<r<k o s=r P1s rﬁq_gk s5=q+1 48 s=r lsf
k
= mox {a + I (p < Pig)-g (J,l)} eee(3.1.1)
1<r<k S=r
where
K k q-1
g,(3,1) = min (B p. o+ T p) 1<rlk<m LI A
r_(_q__g_k s=q+1 s=r
v
with the convention that I p.,_ =0 for v < u.
s=u 8

Temma 3.7.1 3 For a given pair of jobs j and 1, and for every pair of

machines M . and M such that 1 <r <k <@ Ilet

min(Pjry plk) Smil'i(Plra ij) e (3-1-3)
Then

k /. k .

g, (3,1) 2 &, (1,j) for every 1 L Lk {m
Proof : Before proving the lemma, we prove the following 1

k-1

2 op, 2 g (1,5) for i1 (r (kgm
5=r

http://www.cvisiontech.com

- 80 -

First note that for M and M_such that r {u <k, we have

g . 1
Pry 2 min(py, Py) 2 min(p, pyy)-

Hence,
u-1 k=1 /u—? k-1 u-1 k-1

T Pyt 2 op dmin{ T p,_+p. + B Pyos 2 Do +DPpt % p.).
s=r 2 s=n e s=r 9° 4 s=u+1 g5 g=r I8 i s=u+1 s

Here note that the second term in RHS corresponds to the term for
k-1

g=u 1in the expression for gi (1,j). Thus starting with 2 Py g
s=r

i.e. u=r and repeating the above arguments with reference to the

first term in FHS for u = r+l, ..., k-1, we get

k-1
) P1g 2 gl; (1,3) for 1{r<k<m ol (3.1.4)
g=r .

Now we prove the lemmn by induction. Consider any r and k such tkﬂat

1 {r <k £m Note that

(1) ep (1) = 0= &7 (1,3)

] r+1 q-1
(11) g (§1) = e () Pjg * =7 Dy)
r<q __<_r+‘] s=q+1 g=r
= R (-pj,r+‘[! plr)

r+1 .
= g]‘" (lsJ)°

http://www.cvisiontech.com

- 81 -

Therefore the lemmn is true for k=r and r+1. DMake the induction
hypothesis that
g; (3,1) > g:—(l,j)_ for v=rT, ™41, «ss, k-1,

Now we prove the hypothesis for v =k under two ecages

: \ . k-1 /. -1 .
Coge(i) : Pig 2 Pq+ Adding this to g, (3,1) > gf (1,3)

(given by induction hypothesis) we get,

B Al e =l 2
8. (J.l) + p;jk > g, (l,;j) + Py °E (3.1.5)

From (3.1.2) we can write

k . . k-1 7
g. (3,1) mm{gr (351) + by » pls}.

1 i k-1
min{gr (ng) + Plk ’ z pas} -
S=I

From these, using (3.1.4) amd (3.1.5), we get

1]

(]

W3 .
and gr‘(l,J)

k . k .
g, (3,1) > &, (1,3).
This proves the lemma under thig case.

Case(ii) : p. < Py+ Using this in (3.1.3) for 1 {s k-1
sl e

we have R 2
’ P1s 2 P58 ()

6-1.0 301-6
‘and Pix) Pig

http://www.cvisiontech.com

= 82 &

k q-1
Now consider a general term of gk(jyl) 80, by p._*t & p
T Jjs 1s
S=q+1 s=r

for r <(q <k. Using (3. 1.6) we have for every g such that r<{g <k,

k g1 k-1 q=1 k-1

s=?1+1 pjs) sir pls }_ siqﬂ p'js) p'jq i s}:;r pjs) sﬁr Pjs_> g? (l’j)-
Therefore gg (3,1) b gi {15, Gpa

This completes the proof of Lem 3et.1. f/

Remark 3.1.2 3 Our proof of Lemmsa 3.1.71 is the direct proof given

in Achuthan (1977). BRecently Szwarc (1979) provided a simpler proof of
Lemma 3.1.1 , using the property of Johnson's permutation of the two

machine flow-shop problem obtained by viewing the mnchines Mr’ —- Mk

as jobs and jobs j and 1 as first and second machines.

Lemme 3.1.3 ¢+ Let 8 = (a.], S am) give the machine available times
of the m machines. PFor a given pair of jobs J and 1, and for any
pair of machines M and M, such that 1 Lr<kx<m let

min (pjr’ plk) < min (plr, pjk)'

Then (83 J1; k) <t (@5 135 k), 1< kgm

Proof ¢ Temma 3.1.% follows immediately from Lemma %.71.1 and

equation (3.1.1)//

http://www.cvisiontech.com

- 83 -

-

Theorem 3.1.4 :

Let 9= (045 =eey am) be the machine available times
of the m machines.

For a given pair of Jobs j and 1, amd for every
palr of mochines M and M such that 1 <r < k £m, let

Let) be any partial permutation of jobs in N—{j,l} . Then

(05 31Y5 k) < (a5 15); k), 1<k <m.

. i

Proof : Let 3 = (31 s +++» ®_) be such that
* .
8, = t (a5 j15 x),

1(1{_(_111.

Fa)

~ Fal

a1 r i am) is such that
e
9

i =t (9; 15; k), 1<k <{m.

Now using the eritiecal path networks of j1y

and l,j)/ One can easily
see that for

1T<{k<m we have,

t (05 J1) 5 k) = “t(&5 ¥ x),

t (8 13Y ;5 k) = (%5 V; k).

-

. (3.1.7)
and

¢ . (5-1-8)
*
From Lemmo 3,1.3 we have 8; <& 0, for 1

i < m.

http://www.cvisiontech.com

- 84 -

Again using the critieal path network of ¥ we have
* A
(8" 5 Y5 k) < (B Yix), 1< k< m

Now from (3.1.7) and (3.1.8) Theorem 3.1.4 follows.//

Corollary 3.1.5 ¢+ TFor a given pair of jobs j and 1, and for every

pair of machines M and ¥, such that 1 < r< k<{m Ilet
min (Pjrs plk) S_ mn (plr’ ka)°

Let O be any partial permitation of jobs in N-{j,l} and Y another

partial permutation of jobs in N- oa {J,l} + Then

t(oily; k) < tlorjy; x), 1< kg m

——

Proof : The corollary follows from Theorem 3.1.4 if we choose 8

such that Bk'—“ t(o; k). ’ 1< k< m 7

Remark 3.1.6 Corollary 3.1.5 gives a dominance rule which could

be used while solving a (n/m/F/Fm) problem by a branch-and-bound

search method.

Theorem 3.1.7 : TLet the Permatation n* = (1,2, ceey n) be satisfying

the following condition ; If 1 £3<1<&n, then min(pjr, plk) <
min(plr, pjk) for every pair of machines M, and M_ such that
1<{r< k< m.

Then n° is an optimal permitation for the (n/m/F/Fmax) problem.

http://www.cvisiontech.com

- 85 -

Proof : We want to prove t{ & s m) < t(n; m) for every permuta—
‘ Sa = i i *

tion m of the jobs in N. Consider any n= (n(1),...,n(n)) £ 1.
There exists i such that n(i-1)>n(i), for,otherwise the permutation

™ has the property m(1}<n(2)<...<n(n) which implies n(il)= i for

*

every i and hence m =mn , Now construct n' from % by interchangiing
n(i)and n(i-1). Using the given condition of the theorem and the

result of Corollary 3.1.5, we get

t(ni;m)s t {n;m).

-

Now n' either coincides with 7 or it has one fewer pairs of elements
which disagree in ordering with tl;lose of n*. One Iﬁay proceed,
inductively, decreasing the number of pairs of elements which disggree
in ordezzing with those of * and at each step without increasing the

value of the completion time of the last job on the last machine.

This completes the proof of Theorem 3.1.7. //

Corollary 3.1.8 : In a (n/m/F/qux) problem, let w be a Johnson's
permutation for every two machitie ‘Tlow-shop problem (Mr’ Mk)',
T<r< k< a Then n is an optimal permutation of the (11/m/F/F]m)

problem.

Proof : HNote that without loss of generality jobs can be repamed

such that Theorem 3.1.7 is applicable. Then the corollary follows. //

http://www.cvisiontech.com

s 86 =

3.2 A Special Case of the (n/m/F/F) Problem :
{IaX

The specizl case considered in this section is g (n/m/F/qux)
H L &

4

problem where the following conditions called (*) nold for any pair

of jobs j and 1 :

Either
min(pjr, plk)_‘_)_ min(plr, pjk) for 1<r <k<m W
(ryk) # (1,m)
Or (*)
min(pjr, plk).s min(plr, pjk) for 1{ r<k {m

(I'&k-) £ (1,111) J

Henceforth we refer to thig special case as (n/m/F/*/Fmax) problem.
When m= 3, this special cagé réduces t0 case 6 of Table 2.1.1 hondled
by Burns et al. (1975). We later use the following 1 emma due to

Johnson (1954).

Lemmn 3.2.1 Johuson (1954) Suppose Ai, Aj’ Al, Bi’ Bj’ Bl are
numbers such that

min (Ai, Bj) < min (Aj, Bi) EBrea)

i i .o 2.2

and min (Aj, Bl) < min (Al, Bj) _ (3)

Then, min(Ai,Bl)g_ min(Al,Ei) unless Aj=Bj, BJ. < Ay Bj < By

Ay <B) and A; <A . //

http://www.cvisiontech.com

- 87 «

Remark 3.2.2 : Suppose (3.2.1) and (3.2.2) hold, If min(a_, Bl)>
ER

min(Al,.Bi) then both (3.2.1) and (3.2.2) hold as equalities.

Remark 3.2.3 ¢ If both (3.2.1) and (3.2.2) hold as strict inequalities

then min(Ai, Bl) < min(Al., Bi_).
Define the index set I by

1= {Eu‘v) £ (‘t,m\\lsu & S“‘*‘%‘

For a fixed (r,k) such that 1< r< k o define

I ==,r(u,v)€l‘[1_<“-u<r or u=r<v<k_1},
52

r.,k =
and a collec¢tion of two machine flow-shop problems by

frk = {(Mus M‘_’) | (u, v)€ Ir.}k}.

u,v
In order to simplify the notation we use J: 1 t0 mean

mialp, 5 py,) < min(p, ,p.).

J Jv
FPurther in the above expression if ! <' is replaced by {342 ,> or =
u,v
. - UV . } ¢ u,v
then we denote it by j }._ 1 §J =3 1; __‘ 1. or
u,v :
J 1 respectively.

Lemma 3.2.4 : Consider ao (n/m/F/*/quX) problem. Fix (r,k) such

that 1L r < k< n and (r,k) # (1,m) and (1,2). Let 2 = Zr k
]

http://www.cvisiontech.com

Iet n= (n(1), eeey n(n)) be o Johnson's permitation for every two
machine flow-shop problem (Mu, Mv) in Z. With reference to the problem
(Mr,’ M) and permutation n, assume that there exists at least one

pair (i', i) such that 1 i ¢i <1 and

w(ir) —ZE | o (s) (3.2.3)

¥

Amorg such pairs (i', i), choose a pair (i', i) such that (i - i)
is minimum.

Then,

n(i') n(i), ¥M,0)€z (3.2.4)

Further if i - i' > 1, then

x(it) L,k n{s) ;Li‘ s such that 1'< s ¢i ...(3.2.5)

n(s) f_r—kgl'n(i),-j

and
.) L ULV . i
either =n(i') __' T (it + 1), *‘(Mu’Mv)€Z f

eee (3.2.6)
or m(i-1) f~“—_"_—’ (1), ¥ (MM)€z . |

Proof : Since n is a Johnson's permitation For ever two machine
ZTO0L p

flow-shop problem (Mu’Mv) in Z, we have

(i) Y n@'e 1), ¥ (4, M)€ 2 e (3.2.7)

http://www.cvisiontech.com

= 89 =

7 (i-1) }:}u": w(i), 'V(Mu,MV)EZ " (3.2.8)

and n(i') B w(i), ¥ (Mu,MV)€Z : (3.2.9)

It is easy to check that condition (*), (3.2.3) amd (3.2.9) together

prove (3.2.4),

From the choice of the pair (i', i) with reference (Mr’ Nﬁ{) when

A > 1, we have
") e,]
and 7 (s) i:rk’: (1) J

Now for every s such that i' ¢ g ¢ 1, invoking Remark 3.2.2, to

¥ s such that i' < s < i. ...(3.2.10)

-

(3.2.10) and (3.2.3) we get (%3.2.5).

It remains to prove (3.2.6). Suppose (3.2.6) is not true. Then in

view of (3.2.7) amd (3.2.8) there exist (Mu‘, M#,) and (Mu"’ Mv")

both belonging to £ such that

n(it) VD (i) (3.2.11)
end n(i-1) JM (i) (3.2.12)

% 1)
First note that, n{(i'+ 1) % w(i). (3.2.13)

Otherwise, since n is a Johnson's permutation for the problem (Mu" Mv')

we will have n(i‘+‘|) !r_u'_ni n{i) and to this and (3.2.11) we 1nvoke

http://www.cvisiontech.com

Remnrk 3.2.3 to get a contradiction to (3.2.4) for the problem

(M5 M,).

Similarly for the problem (Nh", M), we have

(1) B n(i-1). ves (3.2.14)

Next we will prove

Pr(i),u < Pr(iv),v'

B - (3.2.15)
S Pra)ut T P(a),v
Proof of (3.2.15) :
.FiI'St suppoése pﬂ(i),u' Z p’l’[(i'),v'
= M5l) 0 Paga),w) = Paar),y 0 (et (5:2.4) for \
| (i, 5 M,)€ 2)

u'’
=> min(pn(j_'),u’ ? pﬂ(i'+1),v') < Hlill(Pn(ir+1)’ur ' p'ﬁ(i'l),v‘)
S Pr(yr),v!

& min(pn(i'),u‘ 2 pTt(i),V')"

(using (3.2.11))

— pﬂ?(i‘+‘]),v' < min(pﬂ(i'-i-‘l),u" pﬂ(i'),v')-\: pﬁ(i‘),v'

= mill(pn(j_'),ul ’ -Pn(i),vr)

(otherwise we will have pn(i') i < pﬁ(i‘),u')
2

http://www.cvisiontech.com

= S 1

= Pr(grsq) 41 € min(p“(i'+1),u' Py,
= min(pﬂ(i),u; g pn(il+1),vi) S_Pn(i!+1),vr
(vsing 3.2.13)

==> ¢ontradiction =—=3 Pr(i) < Pr(it), vt
- ¥ H

Now using Pr(i),yur < P (it), vt in (3.2.4) for (Mu" Mv,)
"OET Pa(s),ur £ Pafy) e

Now suppose pn(i),u' < pn(i),v'

= Pr(s),y = pﬁ(it),u, s> from (3.2.4) for (Mﬁ,,Mv,) and

Pr(i),ut < Pafir),vs

=) mill(pn(i)’u; 9 pn(i|+-])’vl = mil'l(pn(it)’uT ¥ pn(if+‘]),vl)

< pﬂ(i|+‘]) u! y from (3-2011)
1

—_— mll(pn(i)9u| 1 pn(i|+1),vl) <'m2_i.11(13n(i;+1)’u1) pn(i)gvl) 3

==> contradiction to (3.2.1‘3)“'—5 pn(i) o = pn(i) A
? 7

Thus (3.2.15) is proved.

http://www.cvisiontech.com

- 92 -

Similarly using (3.2.4) for (Mu", M), (3.2.12) and (3.2.14) we can

prove that

Prjr),yn < Pr(i),um }
. eer (3.2.16)

and - pn(il),vtl = Pn(if)’un f

Now using (3.2.15) and (3.2.16) note that

min(pn (i),u" ’ Pﬁ (:i.)’v') < min(p Ti(ilu" s P (i lvl)

i.e. n(i') }.JEL&LL_ n(i) . -l (3.2.17)

Now it is clear from (3.2.17) that u" #v'. If u" ¢ v' then (3.2.3)
and (3.2.17) together contradict condition (*). If u"> v', then

note that u' < v' <u" <v". Therefore (Mv, ,Mu,,)EZ. Now (3.2.17)

contradicts (3.2:4) for o, , M) ;

Thus (3.2.6) is proved. This completes the proof of Lemma 3.2.4.//

Remark 3,2.5 : In Lemma 3.2.4, fix (r,k) = (1,m) and assume all

other given conditions of Lemma 3.2.4. Further assume that (3.2.4)

holds. Now if i -i' > 1 then (3.2.5) and (3.2.6) hold. //

Lemma 3.2.6 ¢ Ina (n/m/F/*/Fma.x) problem, there exists a
x=(n{1)y +vvy n(n)) which is Johnson's permutation for all the

two machine flow-shop problems (Mu, Mv) € th .

http://www.cvisiontech.com

- 0310

Proof : We provide g constr ctive proof of this lemma. The general

step (r,k) explained below corresponds to the two machlne flow-shop

problem (M . Mk) Al'ter performing the 1n1t1al step given below,
the general stens (r,ﬁ) are performed in the order (1,3), (1,4) re oy

(1, m-1); @3L(2M,“”(2m,.“,h 1-4»1),...,,(:L»,m);...3

(m-2, m-1), (m-2,m); (z1,m).

Initial Step : Find a Johnson's permitation n = Cn(1), i, m(n))

for the two machine flow-shop problem (M1,Mé) and go to general step

(1,3) with this x.

General Step (r,k)

(a) Iet n be the johnson's permutation for every two machine
flow-shop problem (N&,M&)E Z. . » 80t from the preceding
b

general step. Note that (M},Mk) 4 Zr,k .

(b) If x is a Johnson's permutation for the problem (M}’Mk)’ go

to the next general step with this w.

(¢) If ®is not a Johnson's permutation for the problem (Mi,Mk)s

then there exists atleast one pair (i',i) such that

1T¢i' <1i{n and =n(i') ——ELE_—1 n(i). Amorg such pairs

(i‘,i) choose the one for which (i-i') is minimum.

Case (i) 1-3' = 1 : Obtain % from g by interchanging =#(i') ana

n(i). Invoking Lemmd 3.2.4 mnote that (3.2.4) holds and hence % is a

Johnson's permutation for every problem (Mﬁ,M&) in 2, . -
H

http://www.cvisiontech.com

- 94 -

Case(ii) i-1i' > 1t pgain invoking Lemma 3.2.4 , we note that

(3.2.4) and (3.2.6) hold. Hence observe that «' = (n'(1), eaayTt! (n))

is Johnson's permutation for every problem (Mu’Mv) in Zr I where m!
?

is obtained from = by intérchangilg.

either "(i') and w(i'+ 1)
or (i~ 1) and n‘.(i).'

Now x' is still not Johnson's permitation for the problem (Mr’Mk)'
Hence there exists at least ome pair (s',s) such that 1 £s' <s<n,
and w(s') r%{ | a!' (s). Among such pairs (s',s), if we choose
the one with smallest (s— s!), then we have s-g8' = i- i'=~ 1, Once
again the procedure of Case(ii) can be repeated with reference to gt
if necessary. Thus after a finite number of repetitions of Case(ii)

and finally by Ca.se(:i.) we will get,

o= (n(1)y eoey n(@t=1), n(d'+1), cooyn(s*), n(d), n(d'), nls*+1), ..,

¢

n(i-1), ®(E+1), «..y %(n))
such that = is Johnson's permutation for every problem (Mu’Mv) in

Z Note that i' < s* (1i. .

r,k °

Now if T is not Johmson's permutation for the problem (Mr,Mk),
we get by (3.2.5) of Lemm 3.2.4 that % has one less pair of elements
than %, not satisfying the condition for the permutation to he

Johnson's permutation for the problem (Mr’Mk)'

http://www.cvisiontech.com

= 95! ks

Now step(c) ean be repeated with reference to R if necessary
and thus in a finite number of steps we will end up in (b) leading to
the next general step. Thus at the end of the last general step

(m-1, m) we will get the permutation required in the lemma. This

completes the proof of Lemma 3.2.6. 74

Lemma 3.2.7 s Ina (n/m/F/Fmax) problem, for g given pair of jobs

J and 1, assume

u,v

J L, ¥ (u 1)€ Zym (3.2.18)
. 1,m -
i 3-————1 1 then Pjy = Ppy » 2L ul -1 ang
3 - 1, x(Mu,Mv)re zT,m

Eroof : From (3.2.18), for 2 <u { m1 we can write

1 bl u f cee (3.2.19)

and u }:ﬁk%:: m. . ro (3.2.20)

Further we can write j —1m |1 a4
i 't

1 —l’-l—-’ m e (3.2.21)

Bow invoking Lemmn 3.2.1 and Remrk 3.2.2 to (3.2.19), (3.2.20) ana

(3.2.21) we get Pyy = DPpy s

1=l)y amd w b p e 2< ug mi.

http://www.cvisiontech.com

ju=Py s 2 Sugmt in (3.2.18) we get

k| —— 1 for 2 ¢u <v {m-T.

Thus Lemmn 3.2.7 is proved. //

Theorem 3.2.8 : In a (n/m/F/*/FmaX) problem, there exists a Johnson's
permutation of the two machine flow-shop problem (M1,Mm) which solves

the (n/m/F/*/fE‘max) problem optimnlly.

Proof : 1In the problem (n/m/F/*/Fmax)’ by Lemma 3.2.6 , there exists
n=(n(1), ..., n{n)) a Johnsom's permitation for every two machine

flow-shop problem (Mu,Mv)G, Z, n + Oonsider such a permutation =.
?

if n is a Johnson's permitation for the problem (M‘I’Mm)’ it
is clear by Corollary 3.1.8 that x is an optimal solution for the:
(n/m/8/*/F) problem. Otherwise we know that there exists a pair

g !
(i', i) such that 1 ¢ i' ¢i {n and

n(it) —i'“‘;—l % (1) cee €3.2.22]
' 4

Amorg such pairs (i',i), choose the one which corresponds to the
smallest (i-4i')., Since p is Johnson's permutation for the problems

(Mu’Mv) in th we have

. u,v Ry ‘
n(i') BE==2— n(i) , ¥ (Mu;Mv)G th .

http://www.cvisiontech.com

< g7

Invoking Lemma 3.2.7 to this And (3.2.22) we gat ,

=
)
&
—

ok n{i), ¥ (w&,m%)e 5 veo (3.2.23)
1

Fow invoking Remark 3.2.5 we get that when i-i' > 1, (3.2.5) and

(3.2.6) hold.

Now the arguments of General step (r,k) of Lemms. 3.2.6 can be
repeated with reference to general step (1,m) to give the required
Johnson's permutation for every two machine flow-shop problem,(Mﬁ,Mv),
1<u<v {m Then by Corollary 3.1.8 this permutation is optimal

for the (n/ﬁ/F/*/Fmax) problem. This proves Theorem 3.2.8. //

FPor m=3, the (n/hVF/*/qux) problem was handled by Burns et al.
(1975) and they obtained Procedure 'H12! (given in section 2.2 of
Chapter II) to solve the problem. Iater Szwarc (1977) proved Theoren

3.2.8 for m=3.

Using the results of this section, we provide a procedure to
* N 3, 3 H
solve the (n/ﬁ/FV'/Fmax) problem. For arny given (n/m/FVFmax) problem,
the suggested procedure finds an optimal solution if condition (%)

holds and otherwise the procedure terminates without finding an
optimal solution but indicating that the condition (*) is not satisfied.

In describing the procedure we use the following notation.

- ((3,1)) and (j,1) denote the unordered and ordered pairs of ele-

ments j and 1 respectively.

http://www.cvisiontech.com

- CBS(i) of n denotes the permitation obtained from ® by

interchanging n(i) and n(i+1).

- Procedure 'JP (pj1 ’ ij’ N, n*)' finds a Johnson's permuitation
n* of the two machine flow-shop problem with job set N and

processing times pj‘1 and pj2 on first amd second machines

respectively.
Procedure ‘(n/m/F/*/Fmax)‘ G s1c? n*)

1. Begin Iocal x : Y; ¥; Y3 u; V3

24 call Procedure 'JP (pj1, Pios W, n*)t
. To= {(Gan] 322 e }
4
4. do for u=1, m-1
5. do for v =u+l, m
6. Tt o= ¥ Y::{((Tﬁ(s‘), n{s)))]| s (s, n(s')}iﬂ_ Ti(s)};
Ts Y: = T-71; ?::{(s',s)ls'(s,n(s') _u,v_‘n(s)l;
8. While Y £Z ¢ do
9, (i',i) ¢ (s-s')EF
104 if ((n@@), n(i'+1))) €T then n*: = CBS (1') of =n;
1. - if else ((m (i-1),m (1))) €T then n'i= CBS(i-1) of n; :

|
12. else print 'the problem does not satisfy (¥)' and stop; J

http://www.cvisiontech.com

= 0

13, waen (i-i') = 1 then ?::?uﬁ(i',i))};

14, T =q¥ Vi {(s;,s) !s’<(s, rn{s®) ——Eiz——i n(s)};
5. end

16. end

7. end

18- end Procedure '(n/m/F/*/F)1,

Remark 3.2.9 : In the Procedure '(n/m/F/*/Fm&X)' the set ¥ can be
constructed in O(n(n—1)) steps. Similarly the sets Y and Y can be
constructed in O(n(n—1)) steps. Thus we can prove that the procedure

is of polynomigl computational time complexity.

The special case of this section is claracterized through
condition (*) where g distinguished pair (1,m) is not warrented to
satisfy certain conditions. The following exanple illustrates that
there may not exist & common Johnson's permitation for all the two
machine flow-shop problems (M}, Mk), 1‘£ T < k.ﬁ o, 1f the distinguished

pair (1,m) is replaced by any (u,v) # (1,m) in condition (*).

Example 3.2.1 : Tet a be a positive real number. Choose any u and v

such that T<u<dv<{m where m > 4. Define the brocessing timeg of

Jobs 1 ond 2 on machines Mﬁ, N% and Mm by

http://www.cvisiontech.com

3.3

= 100=

processing times

jobs
piu- piv pim
1 a+3 a+1l a+1.5
2 a+4 a+2 a+1

Define the processing times of jobs 1 and 2 on machines Mi, 1 £{r {m,

r#u, v and m as a. Now note that condition (*) is

Py T Ppp T
satisfied when the distinguished pair (1,m) is replaced by (u,v) in
condition (*). But neither == (1,2) nor wn' = (2,1) is o Johnson's

permitation for every iwo machine flow-shop problem (Mr’Mk)’ 1{r{k<m.

Similarly examples can be constructed to tzake care of the case
when the distinguished pair (1,m) is replaced by (u,m) for some u

such that 2 { u < m1, in condition (*).

Use of Szwarc's Dominance Criterin

~

Severai combinatorial methods have been suggested to solve the
(n/w/F/F_,) problem. One of the methods is to generate the undomimted
permitations and select the best out of them. Different authors
generated the undominated permtations by using different dominance
criteria.. For details of these methods we refer to Baker (1974) and
Gupta (1976). The nost effective dominance criterin in use has been

SDC given in Definitiom 1.3.10.

http://www.cvisiontech.com

- 101 -

Given a partial permutation O, if o ij dominntes ¢ through
SDC note that the partial permitation O 3 can be dropped while

generating the undominnted permaitations.

in the reverse flow-shop problem (n/mB/F/Fmax) of Definition
1.3.17 , let tR(O; k') denote the completion time of the non-delay
partial permutation schedule < on the machine Mk' y where k'= m-k+1,
1 {k<{ m. Using the symmetric properties between the originnl and
this reverse probiem (Remark 1.3.19), Szwarc (1971) suggested the

following symmetric dominance criteris.

Definition 3.3.1 ¢+ Let 44 be o partial permutation and i,j jobs

such that 1 # j, and 1,jdp . Tet z_\i, = B g) - BBy)

where k' = m-k+1, 1€ k< m. We say that jil dominntes ji through

Szwarc's Symmetric Dominance Criteria (SSDC) in case
J

R R
A(k_‘])‘iék's‘ Pik, I 251{_{_111.

Remark 3.3.2 Szwarc(1971) : Iet jii dominnte jAU through SSDC.

Then
TN jipes 7, i i L3
where mn, and n, are arbitrary partial permutations such that

1 2

n1ﬂn2 = # and YW, = N-uu{i,j}.

http://www.cvisiontech.com

- 102 =

If jiM¥ dominntes jHM through SSDC then the permitations ending
with jg¢ con be dropped while generating the undomimnted permutations.
Thus SDC (SSDC) can be used to identify jobs that are dominated in
the first (last) unassigned positions of a two sided partial

permtation (01,02).

Note that for O ij to domimate oJ through SDC it is necessary
for job i to satisfy Property A. Similarly for jift to dominate ju
through SSUC it is necessary for job i to satisfy Property B, where

Properties A andB are given below:

Property A : Piq < Py o 2<{ k<m . ees (4)
Property B ¢ Py < Pipr o k' = m-k+1 and 2 k < m,

that is, p, < 1<k {m-1. (B)

Pix ?
Gupta (1975) computed the probability that a job will satisfy

the Property (A) assumirg that the processing times for the jobs are

drawn from a discrete uniform distribution in the range [O, B]

where B= 9, 99 and 999. Then he computed I:(S)’a lower bound of

the expected mumber of undominated permutations. Purther Gupta(1975)

compared his results with those of Baker (1975) who assumed contimuous

uniform distribution for the processing time. '

1

http://www.cvisiontech.com

- 105 -~

‘ Boker (1975) indicated that one could perform probabilistic
analysis,\similar to the one done by Gupta (1975), for the me thod
of generation of undominated permitations using SDC and 8SDC. Here
we study this problem and subsequently compare our results with thosge
of Gupta (1975) and Baker (1975). In the following we present a
procedure for generating the undominnted permitations using SIC and
SSDC. This procedure is in the same lines as the Algorithm 6.3 in
page - 160 of the book by Baker (1974). This Procedure ' UPM for the

(n/m/F/Fmax) problem’ uses the following notation.

~ At any stage of the procedure ' ©¥* is the best known solution

found so far and it provides an upper bound ¥ (n¥) on the

value of the optimal solution.

- A branching mule b a83001at98w1th a two-sided partigl rPermitation

) (01, 02) a family b(61, C,) of two sided rartial permutations

where
b(011 02) = {(G-]ia 362),i # Js 1 and jfdeGz}
if |01] + o,| < n-a.

In our procedure we will not be branching from a two-sided
partial permitation (o 17 I,) such that]G l +I 9,] > n-2.

Observe ﬂmtl b(G ,0), _(n-l G I-IO l)(n*lﬁ,-l '-1)

http://www.cvisiontech.com

- 104 -

~ A dominance rule d associates with a two sided partial

permatation (T 02) n subset of b(9, 02) denoted by d(9,,0,

when | o +lo,| <ne2. . Tet 1(0.) and 1(9,) be subsets of

1(o,) = ' _jﬂ'dﬁjozl 3 i¢01u02, 1#j end O,ij domimtes
Gi j‘l- : ‘through SDC]
and
1(02) = jfo‘ong | = lﬂ' 01U0'2, i#£ jand ig, donﬁrntesl
J O, through SSDC ’J
- Define)

40, 9p) ={ (033, 19,)] 5€3(0) o 1€3(5,)}.

- At any stage of the proeedure,’f denotes the setr of two-sided
partinl pefimztations from which branching is yet to be performed.
At the initial stage of the procedure,Y has the singleton two-
sided partial permutation (¢, #). At the term:itmﬁiou stage of

the procedure, Y = (.

- 4s used in the earlier chapters, the operation ": £ €" in the

statement "s : £€S" will mean that s:= s* where

.

£(s*) = min f£(s). Similarly ':€' indicates an arbitrary
8 €8 L& ' :

choice.

http://www.cvisiontech.com

= 105 ~

*
Frocedure 'UPM for the (n/ﬁ/F/FmaX) problem' (pjk’)
1. Begin Iocal F .5 (0,0,); o*; ¥; I§(01,02); 5(01,02); NS
2. G={0 N} wtme; B (%)=

3. while Y # g do

4. (Op%)€¥; Y= v-{(0,,0))} 5 5(0,0,): = b(o,, 0 ,);

Bs D (5,,9,): = a(%,,9,); B(9,,0,)1 = B(9,,9,) - B, %)

6. _:'Lf_f01'+|02f<n—3 then Y: = YUE(GT, 9,);

e if else | 01] +| Oél = n-3 then

8. *hile B (0.,9,) # ¢ do

o SRTEPOEL B(Op%)s B(0,,9,): = E(G1’62)'{;(”1 ’“2).}'5
10. Bi= (M, j#,) for A,

. AR SEE E S B

12, end

134 else (ie.lql 4]0,] = n2) then «*: LI ﬁ(ﬂ,%)UETﬁ*};

14 . end

15. end Procedure 'UPM for the (n/m/F/Fmax) problem.

http://www.cvisiontech.com

3.3.1

- 106 -

-

Probabilistic Analysis

Define a job i to be a potentially dominant Job if it satisfies

either Property A or Property B. Assuning the discrete uniform

distribution for the processing times, the following theorem gives

the probability that o job will be a potentially dominant job.

Theorem 3.3.3 : Iet X, 1 £i £m be independent, identically

distributed random variables having uniform probability distribution

defined over the discrite sample space {0,1, ...,B}.

. . }
Then the probability p = Pr Lmln(X1,Xm) L%, 1£{k<m

is given by

p = —17,1 {(B+)=t g (et)2 4 2)}-
(B+ 1) S k=1

Proof : We know that

1 1
Pr =u = y 0L uglp, 1 kL m,
{%=u} 2 1
and
Pr{Xk>u}=-&_—u—+i,o<u£8, 1¢ k¢ m
A . B.q.';
Now,

e B
p= 15 13 Pr{min(x1,xm)_gxk, 1<k gm | X =u, xmzv}
u=0 v=0

http://www.cvisiontech.com

- 107 ~

B uel 3
= z . PryX=uf. Pri{X=vi. PreviX, 2 £k {m1}
‘ u=oEv=o {1 } {..m J { B }
+ g Per =u} . Pr{X_zv“' P Pr{u < Xk’ 2 <{k< m-1*t'j
v=u = i [J
8 fu-t m-2 B m—2}
B 1 1 B~ v+1 1 1 8~u+1
) uio{rio 1+ﬁ°1+s’(Tl = wE W (e
B u-1
= 1) {E (g-v+ 1)™2 + (g=-u + 1)m'1}
| (1.+B)m u=0 1! v=0

8 B
P PO {8 k(e + 1)2° + BE km“‘1}
(1+8)" k=1 _ k=

Hi

B
1 b . m-2 m-2
_) + Ik ((k+1) 7
p) {(B+1 A k+1 + Kk }

This proves Theorem 3.3.3. //

= 1
Let Py = Pr {X1 £ s 1<kg m;. Gupta(1975) computed pg for
vapious values of B and m. Note that pg gives the probability that
o job will satisfy Property(A). Eaker (1975) alse computed Py with

uniform discrete distribution replaced by uniform continuous

distribution over the interval [0, 8],

Table 3.3.1 gives the values of p for different m and compares

them with the values of p, given by Gupta(1975) and Baker(1975).

http://www.cvisiontech.com

- 108 -

Table 3.3.1 : Probability of a potentially dominant job

=7 Y S 0 B = 99 B = 999 p_(Baker)

p p_{Gupta) p p_(Gupta) p p, (Gupta)
g g i
2 1.0000 0.5500 1.0000 0.5050 1.0000 0.5005 0.5000

3 0.7150 0.3850 0.6717 0.3384 0.6672 0.3338 0.3333

4 ' 0.5665 0.3025 0.5067 0.2550 0.5007 0.2505 0.2500

o] 0+4764 0.2533 0.4075 0.2050 0.4008 0.2005 0.2000
6 0.4163 0.2208 0.3365 0.1717 . 0.3336 0.1672 0.1667
7 0.3736 0.1978 0.2%1 0.1479 0.2866 0.143¢ 0.1429

From Table 3.3.1 , it is observed that Baker's computation of pg
can work as good approximation for the discrete case onmly if B > 999.

The values of p computed according to Theorém 3.3.3 are approximately

twice that of pg(Gupta‘s).

Suppose there are r pouentially domimant jobs out of the n jobs
and they occupy ‘r positions of a permutation under most favourable
éonditioQS;' Then there will be no other job that can reduce the set
of undominated permutations. Thus when there are r potentially
dominant jobs, there will be at least (n-r)t permitations generated.
A job is either pptentially dominant or not. Therefore, the
probability distribution of r potentially dominant jobs is binomial

with parameters p and n. Thus the probability of r potentianlly

http://www.cvisiontech.com

- 109 -~
dominant jobs out of n jobs is b = nqr o (1-p)*F, o« r ¢ n.
Now o _loweri -bound for the expected number of permtaﬁtiong; inr the

: P k
undominated set is given by L(S) = 3 br {-r) !
r=0

k 5
=nt Izo {pr(lT-p)n-r / r!}

where k is ‘t?l_'le mzmbe‘r of fixed positions in a two=gided partial
pernmtatitl)n.__up to which SDC or SSDC is used. When n is even, for a
‘twof-sided. pgrtial permitation (01, 02) Wifh 101’ +| 02l = n-2, we
. shall not uge SDC o;r SSDC in our procedure.: Instead we evaluate the
P oy Value for the two possible completions of (01, 02) and choose
the best- out-.of thém. Thus _When n“is even we will take the value of
k as n-2. When n is odd, for a two-sided @rti&l permitation '('61, 0’2)
with | , | +] G, | = n-1, without using SDC or SSDC, we evaluate the
P value far the unique completion of (01, 02), Thus when n is odd
we take k as n-T. We compute the value of L(S) for ranging values of
m, n and B. The values of L(S) are presented in Table 3.3.2 along
with the corresponding values given by Gupta (1975) and. Baker (1975).
Table 3.3.3 presents the detailed behaviour of the L(S) for various

values of m and n when B = 99,

http://www.cvisiontech.com

~ 110 -~

Table 3.3.2: Iower bound on the size of the set of undominated permutations

- L(s)
nxm B=29 B = 99 B = 999 Baker
Gupta - Gupta Gupta
5x73 2.47 19.73 5.3 25.37 3.14 25.98 26.0
5x5 11.70 39.10 17.42 49.31 18.09 50,37 50.5
6x3 4.22 72.82 6.56 100.72 6.88 103.85 104.2
6x6 58.05 213.90 101.99 286.06 105.99 293.66 295.5
7x3 9.32 313.64 15.96 466.57 ‘16.85 484.353 486.3
7x7 346.27 1378.38 657.32 1955.35 708.62 2017.00 2023.8
10x3 157.49 52527.75 408.67 97304.13 449.23 1030.92 -
10x7 61278.76 512249.75 165075.70 870997.94 185284.43 912928.25 -
Table 3.3.3 1 Values of L(S) whenB = 99
m 5 6 7 8 9 10
3 3,34 6.58 15.96 41.91 124 .34 408.67
4 9.59 28.87 100.03 395.05 1754.09 8653 .60
5 17,42 61.91 256.95 1217.98 64%4.78 38480.53
6 25.58 101,99 473.78 2514.% 15017.84 9943, 94
1 31.56 133.39 657.32 3701.61 23450.82 165075.70

http://www.cvisiontech.com

= N i

Table 3.3.2 shows that as ‘t_lzle numberi?:f" jobs inereases the
size of the set of undominated permutations increases. It may be noted
that for machine size 3, the lower bound L(S) is consi&erably low even
for job size 10. Om the basis of L(S) one might conclude that the
procedure based on both SDC and SSIDC may be used for number of jobs
less than Or equal t0 7 and number of machines less than or equal to 7.
Gupta (1975) observed that his L{S) mny be an underestimte of the
actual realisation. Similarly the L{S) computed by us my also be an
underestimnte of the actual realisation ?y‘tpe procedure suggested.
However, suppose we make the aszumption that the ratio of Gupta's L(S)
and our L{S) remins the same when L(S) is feplaced by the actual
realisations of the respective procedures. Then from Table 3.3.2 it
is clear that the procedure using both SDC and S5DC is far better

than the procedure using”SDC alone. Iﬂééweg et al.(1978) observed
that a branch-and-bound search procedure solves a (n/ﬁ/F/Fmax) problem
fairly efficiently when SDC is used. Thus from the preceding comment,
we expect that a branch-and-bound search procedure with SDC and SSIC
incorpornted, will provide more computatiéﬁﬁlly satisfactory performnce.
An exgerimental comparison of these two branch-and-bound procedures
could 1ot be accomplished as a fast computer is not available.
Eowever, in the following, we present the salient features necessary
to write down ﬁhe branch-and-bound procedure using both SDC and 3SDO.

In this suggested procedure we maintain many of the useful Teatures

present in the best procedure given by Lageweg et al. (1978).

http://www.cvisiontech.com

= 112 =

The best solution ™ found so far provides an upper bound

0 (n*) on the value of the optimnl solution. Initially w*

is taken to be the best permutdtion among the Johnson's

permutations of the two machine flow-shop problems

1 m
(= . 3) for 1 <1 <m-1. This requires a
k=1 Mk k=m+1-1 Mk

procedure in O(mn log n) steps. This rule was suggested by

Campbell et al. (1970) as a heuristic.

Branching rule b is as defined for the Procedure 'UPM for the

(n/m/F/FM) problem' .

A boundirg rule 1b associa‘t;és with a two-sided partinl

: 3 o ‘ g
permitation (P G,) a lower bound lb(O'.l, 02) i Fmax(o1 T 2)

for every O,nC, , a completion of (01, 02), where 1b (0'1, 0'2)

is defined in the following lines.

Define 16'(01, 02; 1) = t(01; 1) + &
! J€ 1'\.‘"'02

For 2 {u £ m define,
123(%, 9% 5u) = IB (9.3 (1,u), 1 o})
givefi in section 1.4 of Chapter I with the slight charge that

the jobs not yet fixed will -be 011.)02 instead of 51 and

the machines under consideration are N, , 1 £i £u where

’ M1 and Mu are the bottleneck machines.

http://www.cvisiontech.com

- 113 -

Jote that 10 (01, 62; i'y 1 <1 <fm defined above is a lower
bound of the earliest time the machine]!.fI:'.L is available, after
processing all the jobs in 52 with the restriection that the

jobs in 01 are processed first in that order.

n A A~
Let a = (51 [} -n-,am), Where
A .
e:‘!:.L = 16(01, 02; i3, 1 <i< m.
A
Define 1b (01, 02) = t (d; 02; m).

.) 50 5
It is easy to verify that 1b(1 2) $FL (G_[ﬂ:OQ) for every

0O no ; o, o). i nat i &L o
17 9% s a completion of (» 2) E11m111¢.t1011 off (3 2)

*
' i c,ao > =
oceurs if 1b(" 2) 2 me(ﬂ:). DNote that to compute

18 (51, 02; u) we need to find the Johnson's permutationsof the

! U1 u
two machine flow-shop problemg(= Mk’ o Mk) for 2 ¢u ¢m
. k=1 k=2 LA &

e assume that this is performed at the root node (¢, #). Then
this requires o procedure in O (=-1) n log n) steps. PFor a

two-sided partial permutation (Gq, 02) let us assume that we

2

and 01() 9, « BSubseguently when the two-sided partial permutation

store ‘O’_]’ i ol ; t(o1; k) , 1<k <mn; lb(cq, a,)s (01,)

FaS
(O'?, 02) 1s generated, we nced 3 to be computed and this will
be done by a procedure in O((2n(m——1)+m(m+1))(n-—,01i o] 02“) steps.

Thus 1b(01, 0'2) will be computed in

o((2n(m-1) + m(m+1))(n~|61f -’ 62,)+ m,GQ') steps.

http://www.cvisiontech.com

- 114 =

- Dominance rule d is as Jefined for the Procedure 'UPM for the

(n/ﬁ/F/Fmak) problem'. In addition to the already mentioned
gtorage we aséuﬁé that we store tR(OéR; k‘) for kX'=m- k+ 1,

1 ¢k {m. Then it is easy to see that comstruction of d(01, 02)
requires a procedure in O(2m(n-|ﬁ% {=loy 1) a=loy |={o, [= 1))

steps.

-~ Frontier search selects a two-sided partial permutation with
minimal lower bound for further branching, from among the
partial permutations which have so far been neither eliminated

nor led to branching.

- A predicate P will be used to recognise a complete permutation

50 that #° can be improved, if possible.

Now it is easy t0 write down the branch-and~bound procedure under

consideration.

http://www.cvisiontech.com

CHAPTER IV

OPTIMAL FLOW-SHOP SCHEDULING WITH
EARLINESS ANL TARDINESS PENALTIES

4.0 Iantroduction :

 Sidney (1977) indicated situations of scheduling problems where
costs involve both earliness and tardiness of the individual jobs
being scheduled. For example, in PERT-CBU projects each job Jj has
an associated early start time qJ and late flnlsh time b such that
(1) the entire project will have to be started early (Or alternatively,
extra resources will have to be applied to the predecessors of job 3)
in order to begin job j before timge ay; or (2) the entire project will
be delayed beyond its due dnte unless job j is completed before time
b.. Another example of suych scheduling problems arises in the

J
production of perishable £oods.

Siduey (1977) handled the single machine problem under certain
assumptions on the target start times, the due dates and the penalty
functions of the earliness and tardiness. His objective function was

the maximum penalty.

In gection 4.1 of this chapter using the sane objective funetion
we study the scheduling problem under very general conditions. Subse—
quently in sections 4.2 to 4.6 we restrict our attention to the flow-
shop version of thig gcheduling problem. In section 4.2 after proving

some inﬁﬂluéging results, we show that it is not enough to consider

http://www.cvisiontech.com

- 116 -

the permitation schedules alone while solving the flow-shop version

of this scheduling problem. In section 4.3, for this flow-shop
problem we provide sufficient conditions for a particular permutation
schedule t0 be an optimal solution. We prove in section 4.4 that this
flow-shop problem is NP-complete. We develop in section 4.5 a branch-

and-bound method t0 solve this flow-shop problenm.

The Maximum Pennolty Problem :

Consider the scheduling problem defined in section 1.0 of
Chapter I along with the relevant notation. Recollect that F denotes

the set of feasible schedules.

Under o feasible schedule O, the start time and completion

time of job J are denoted by Sj and Cj respectively. Asgociated with

Job J are its target start time aj and its due date bj such that

e..j < bj' The earliness Ej and tardiness Tj of job j under a feasible

schedule 0 are defined by

E, = mxd a, - 5. , O:}
J J J

D, mx C.-b., é}-.
J J J

Earliness and tardiness pennlties for job j are given by g(Ej) and

£
—
jah
[
fl

h(Tj) where g and b are monotonically non-decreasing continuocus
functions such that g(O) = h(0) = 0. For any feasible schedule O

the cost £(J) is given by

http://www.cvisiontech.com

= 1‘]7 =

(o) = max{g(E1), sang g(En),-h(T1), h(Tn)}

mex{g(mx B_), h{ mx Tj)} 25 Wag i D

1¢3¢n 9 1¢ign

The maximum penalty problem is t0 find a schedule which minimizes

the cost £{ o) over the set of feasible schedules F.

The moximum tardiness problem is a modification of the maximim

penalty problem obtained by treating the aj's as strict release times
of the jobs and taking as the objective the minimization of maximum

tardiness. Symbolically the maximum tardiness problem is :

minimize {- max T_}
, L 1¢i%n 4

over the set of feasible schedules P' where

jok ={ GEFI mx {E} = O}.
_ 1R j[gn = ¥

Note that in the discussions of this section, we do not exclude
the possibility of task splitting, simultaneous processing of one job
by several machines, job overlap on a machine, ete. in a feasible

schedule.

Fé’le following two theorems prove the reduction of s maximum
pexmltylgproblem to a mximum tardiness problem under the translation

assumption given below.

http://www.cvisiontech.com

- 118 -

Translation assumption : If O€TF and v is a real number, then

(0+y)€F, where O+y is obtained from C by adding y to the lower
and upner bounds of every interval describing the tosk schedules of
every job.

Tnils assumption excludes arrival times and due daiéls which
cannot be violated, but permits arrival times and due dates which

can be violated subject to penalty._

Using the properties of contimity amnd monotonicity of g and bk
it 1is emsy to see that for any givemnon-negative £ , the Following

system (4.1.1) is feasible.

=

N

=
i

g

n(r*) | (4.1.1)

g
=
*
S
|

E ,T > 0

The system (4.1.1) has & unique solution if the assumption of non-
decreasing monotonicity of € and h is replaced by strictly increasing

monotonicity.

Theorem 4.1.1 : Suppose £\ is the optimal value of the objective

function for the maximum tardiness problem. Then there exists a
solution to the moximum penalty problem with the objective function

* * *
value g(E) = h(T) where B and T* are a solution to (4.1.1) .

http://www.cvisiontech.com

% 1 15k

Proof : In an optimal schedule O to the maximim tardiness problem,

By =0 and T, <4 for all jobs j, with T, = £y for at least one

job (say) i. Corstruct a new schedule from ¢ by reducing the start

time of every task (or in the case of Job=-splitting, every segment of
every task) by E*. In otherwords consider the schedule O - Eﬁ. Clearly,
the maximim earliness in this new schedule O - E* is no greater

than E*, and the maximim tardiness is precisely £\ - E* = T*. Since

*
the new schedule g - E is in F(by the translation assumption), the

theorem follows immediately.//

Theorem 4,1.2 ¢+ A lower bound on the optimnl value for the maximm

L ¥ Ky .
penalty problem is given by z(E) where (E y T) is a solution of (4.1.1)
for [, the optimal value of the objective fumetion for the mnxinmum

tardiness problem.

Proof : Suppose that a schedule ¢ for the maximum penalty problem
* *
exists with meximum penalty less than g(8) = h{T). ZIet the maximun

°
?

arli al i i i b a T
earliness al :tardlness in this schedule T be dencted by Emax and —_

* *
it follows tent E ¢E and T ¢ T . Construct a new schedule
max max

by increasing the start time of every task (or in the case of job-
splitting, every segment of every task) by Emax' In the resulting

* %
schedule o© + E we have, E,. =0 and T. < T + B <T +E =D

max J J = Tmax max

for all jobs j. Since this new schedule O+ E is in P', it
contradicts the optimnlity of /> for the maximum tardiness problem.

Hence Theorem 4.1.2 is proved. //

http://www.cvisiontech.com

- 1320 -

Remark 4.1.3 : Theorem 4.1.1 provides an algorithm for converting

an optiml solution te the maximum tardiness problem into an optimal
solution to the meximum penalty problem. The complexity of this
algorithm is no greater than the mximum of the complexity of calculating

*
E and the rumber of intervals in the optimal schedule.

The translation assumption is violated when a% the jobs and
machines are available only at time zero for scheduling. Under this
' situation, the results of Theorems 4.1.1 and 4.1.2 cannot be proved

as shown by the folloﬁing counter example. In this exomple, we assume

that the machine cannot process two distinct jobs simltanecusly.

Exnmple 4.1.1 3 3ingle machine maximum penﬁlty problem with
o g(x) = x = h{x) for x 2 O.
Job Processing time Target times
J P P s
T 4 0 9.5 :
2 7 3 8 ?

The unique optimnl solution (with 2 = 2) of the corresponding single
machine maximm tardiness problem with strict arrival times is presented

in the following figure.

§,= 82_-=5 G ide wGe=1

http://www.cvisiontech.com

= 121 =

Application of Theorem 4.1.1 to this schedule does not produce an
optimal solution to the maximum pemalty problem as the following

figure represeunts o better schedule © with f(O) = s Die

S1=O 82:2 . 02:9 01:11

Application of Theorem 4.1.1 fails to produce an optimal solution to
the maximim Penalty problem, since shifting backwards the starting

*
times by E > 0 is impossible for some Jjobs, when machines and jobs

are 10t available earlier than time zero.

The Moximum Tardiness Problem :

In this subsection we provide a procedure to solve the maximum
tardiness problem under certain specific assumptions. Using the
hotation of the scheduling problem introduced in section 1.0 of
Chapter I, we define the set of feasible schedules F through the

followgﬁg assumptions
P

B1 : There are no precedence constraints between the Jobs in N, to

be satisfied by a schedule.

B2 3 Associanted with task i in Jj the processing time is a non—

hegative real number denoted by pij.

12

B3 There moy be precedence constraints between the tasks in Jj’
These precedence constraints are expressed through & precedence

o~
network Gj = (Jj K Aj) where

http://www.cvisiontech.com

- 122 -

e :
I, = Jju{o', 11} is the set of nodes such that 0' and 1’

represent start and finish tasks respectively each with zero

1

processing times.
- (o',i) ana {i,1') belong to Aj for every i in Jj.

~ For i and k in Jj, (i,k) ig in Aj if and only if the task k

can be started only after the completion of the task 1.

- 'There exists no cycle in Gj’ i.e. there is no %‘iuence of

nodes i,, 1
]

'2, & oK) ik such that k >3, i =1, and

k 1

(ls’ ls+1) is in Aj for 1¢ s < k-1,

B4 : Task splitting is permitted. In otherwerds pre-enption resume

is allowed.

B5 3 Simltaneous processing of a task 1 in Jj by two or more distinct

mnehines is not allowed.

B6 : Associnted with job j in N, we are given target start time dj
and due date bj such that aj < bj' All the tasks in Jj can

be ssarted only afier aj-

Recollect from section 1.0 of Chapter I that under a schedule O,
we denote the starting time and completion time of o task 1 in Jj by
=h ana c. respectively. Further the starting time and completion
time of job J are denoted by Sj and Cj respectively. Thus a feasible

schedule ¢ in F satisfies the following conditions :

http://www.cvisiontech.com

- 123 -

- Sj z_aj for every job j in N (by B6).

~ Given the precedence network G;i .. GE (i,k)GAj then

s, 2 ¢; (by B3).
i i - : .
- Let{(){;) Yq)} be the finite collection of intervals
describing the task schedule for task i in I+ Then the

intervals in this collection are disjoint intervals (by BS).

Burther, p;; = 3 (Yé‘ - X;') (by B2, B4 and B5).
' 3

The maximum tardiness problem is to find a schedule O that

minimizes mmax(o) = max T. over the set of feasible schedules F.
1< j<n

Note that in this subsection, we do not exclude the possibility
of similtaneous processing of one Job by several machines in a feﬁsible

sched W

Given precedence network Gjr, start target time aj and due date

ﬁ »
bj We assocliate with every task i in Jj target start time ag and

due date b:'.JL as follows

Define,

a1 =a.j ’

ad = max{gf{+pkj[(k,i)€Aj} , ¥ 1 £ 0' and 1€Jj

()

o
.
il

1! bJ ’

min {bli = Py | (1,k)€Aj} y ¥ 1.£ 1 ang 1€Jj i

o
e
1}

http://www.cvisiontech.com

- 124 -~

Define a set of feasible schedules F' by
P! ___{ G €F lsiza:'.jL ¥ ia.nq j such that i€Jj}.
Lemma 4.1.4 Given any mximum tardiness problem we have
B = F,

froof : By the definition of F' we know that F'S F. Thus the lemm
is proved if we show that for any o €F we have 4 2 ag , ¥ 1iand j
such that iEJj." For a fixed j, from the precedence network Gj note
that ai Z_aj ¥ i€ Jj and there exists at least one task i* in Jj

such that ai* = aj. Now let O be an arbitrary schedule from F.

Then 8. = min s, > a. . Therefore we have sﬁ?{aq* ror all i#*
i, €. g LR s
. d

such that ai* = aj. This provides a basis for induction. Make the
induction hypothesis that Sy > ELE£ for every predecessor k of i in

the network Gj‘ Now we will prove the hypothesis for = i€ Jj' For

every k EJj such that (k,1) €Aj we have,

5, > © (by B3)
> ai + pkj (by the induction hypothesis)

Now invoking the definition of ai we get g, > a"Ji + This completes

i
the proof of Lemma 4.1.4. //

http://www.cvisiontech.com

Under

given by T;-.L]

any schedule

~ 125

oer,

the tardiness of task i in J. is

mx{ c; - bg_ 5 O} and the tardiness of job) is

given by T, = max{c. ~ b, , 04} where C. = max ¢, .
J J J > d 1
1€ d.
J
Lemmg 4.1.5 : For an arbitrary schedule ¢ in F,
. Sy
me(o) = max T = irabe max TJj .
. gam 2 1¢ j<n iEJj 1
Proof : The proof of this lemmn immediately follows, if we prove
that T. = max TJi for every j, j€N. For a fixed j,
d 1€7,

let D :{ 14 J,j J in = bj} . From the precedence network Gj we note

that DZ @. If D= Jj we have nothing to prove.. Further, for

and iQD there exists a sequence of nodes i

in G such that 1> 25

every i€ Jj
J
pd = p?
lr 1r+1

the fact that (ir

and hence,

Thus we get

pd
1
1

max
ig¢d.
€J

i
T+

[P

b A

r+1,‘:l

)

i

for every r,

1

€A
J

e
r+1

i
r+1

=T

?

il €D and

we have

i~
o
._l.

(lr’ lr+‘l)

1¢ r< 1-1. Now

1’12, l..9 il
€Aj >

using

(4.1.2)

http://www.cvisiontech.com

- 126 -

Again from the precedence network Gj note that for every i€ Jj and

e, for some k¢ D. Therefore

i¢D we have ey

C. = mnx ci - max C. - LI) (4-«1.3)
: i€d, i€D

How from (4.1.2), (4.1.3) and the definition of the set D we get

This proves Lemmn 4.1.5. //

In the following we outline a procedure to solve the maximim
tardiness problem. Now we replace assumption BS5 by a more stringent
assumption B5' : There is exactly one michine out of the m machines,
which can pexform the task i in J. y J€ N. In otherwards the set of

’ J B
all tasks can be partitioned into m sets comeépozgﬁ% to the m

michines which can perform then.

We mke one more assumption B7: No two distinet tasks can be
simltaneously processed on machine Mq y 1< a< m Tet the collection
of all tasks be denoted by B :{(:L,j) I i€ Jj’ Jj€ N} .« Suppose there
are ¢ distinct target start times ag agsocinted with the tasks in B.
Let these o distinet target start times be arranged-as 61 < 62 W

aa . In the construction of an optimnl schedule, we review the schedule

at time points 31, ...,aa ~and at the completion times of the tasks

http://www.cvisiontech.com

- 127 -

in B which are already scheduled. At the time of reviewing we will be

fixing some of the intervals of the task schedules of the tasks in B.

Let a typical time of reviewing be dencted by 3. We introduce

the following notation with reference to the time point 3.

Pyj

pij(a) is the balance processing time associnted with task
(1,j) at time point d . Note that Pjy- pij(a) gives the
portion of the processing time of task (i,j) completed before

time point 9.

F(d) ={(i,j)€B | pij(a)= cl} is the set of tasks which

are completed on or before time point 3 .

D(d) = {--(i,j)GB - F(a)] a]?_;_ 0 and (k,j)€P(3) ir (k,i) €Aj}

glves the set of uncompleted tasks available before time 0

such that all its preceding tasks are completed.

T(a) = {(i,j) lpg = m.in{bi | (k,1) €D(a)}} gives the subset
of D(3), which has tasks with least due date.

~
g = min{ai !ai> 9, 1< i__<_oc} is the next possible review

time among the various 8y, 1<ifa.

At the initial stagp .of the procedure set a= 81 and pij(61) =

for every i €Jj and jJE€N. At the review time § if F(d)= B

then we have scheduled gll the tasks and hence we stop. Otherwise,

http://www.cvisiontech.com

= 128l

at the review time 8, we schedule the tasks by the following rule :

(1) Schedule as many tasks as poss:l.ble from D(3) on the appropriate

mach:l.nes.
(i) If all the tasks in D(d) are scheduled then redefine B(d) with

the tasks in D(3) - D(3).

Repeat the steps (i) and (ii) until either no more jobs -can be scheduled

or all jobs in D(d) are scheduled.

Let S(d) be a subset of D(3) such that the tasks in 3(3) are

scheduled on the appropriaté mchines at time point 9.

* ~
Now fix the next time point of review ng 3 = min{a 2 0 } where
5= mnqp, ()] (i,j)GS(a)}.

Then for each (i,3) in S(3) we 1nc1ude the time mterval (Xq a g
=3) on the appropriate machine M in the task schedule of task
(:L,J) Further we update the balance processing times of the tasks,

S R N

p;,(37) = (b, (a) - (8*-2), (1,3)e5(a)
py;lo) ,» (1,3) ¢s(a).

The above procedure is repeated until all the tasks in B are completed.

http://www.cvisiontech.com

- 129 -

' *
Theorem 4.1.6 ¢ A schedule o constructed by the procedure Just

described solves the mxirmm tardiness problen.

Proof : Using Zemma 4.1.4 and the definitions of af.; and bi it
is easy to see that the schedule O is in ¥, the set of feasible
scheduies. From the construction of ¢* observe that at any point of
time 8, on mchine Mq we schedule the task with least due date from
among those which can be processed at time @ on that machine. We
show in the following a.r_gument that any arbitrary schedule o violating
this property need not be considered, while seai‘chihg for an optimal
solution of the maximum tardiness problem. If o is an arbitrary
schedule violating this property, then %:here ‘exigt tasks (i,;j) and
(k,1) and machine My suck that under the schedule ¢ we have

(i) (X;: = 31 , Y;‘ - 3.2)‘and (X]; = 763 , ‘Yg.,: 34) are intervals
during which tasks (1,,]) and (k,‘l) respectively are processed on

zachine M (ii) 8, < 83 (ii1) bi <rbi and (iv) both tasks (i,j) and

(k,l) are available at timrla 3 for processing them on machine Mq.

First observe tuat (32 £ 33, since the machine Mq can handle atmost
one task at a time. Now define a new schedule o from o by modifying
the intervals (31, 32) and (53, 64) corresponding to the tasks (i,3)

and (k,1) on machine Mq as explained in the following figure.

http://www.cvisiontech.com

4.2

- 130 -

Case (1) 64-63 _<i?:2-ifs1 Case(id) 64—03' >8, - 3,
(1,3) (gy1) (333) (,1)
C on M - | — i | |
13) 3 2 3 3 9
e 2 3 4 1 2 5 4
o' on M L(k’l)u G.9) , (1,;3_‘) ; ey)n : s)l (4,3)
q i i i I ¥] 5 é | ‘|a
04.8_0 a3 2 a G} i‘.|4..£452+a1 1

S o T - S S -

(a)

since o' is same as O except for the above change in task schedules of

Now using Ie «1.% it i : hat T ! T
using lemm 4.1.5 it is easy to see that max(c)_<_ —

tasks (i,j) and {(k,1); Thus, starting from any arbitrary schedule ©

repeating the above arguments as many times as réquired, we can reach a

schedule ©* that can be generated by the procedure.

1

Using similar arguments with bk

= b:‘?_ - we can show that afEeess
two distinct schedules, generated by the procedure,have the same

objective function value. This proves Theorem 4.1.6. //

Remark 4.1.7 : It should be noted that when m=1 and | le = 1§ JEN,
the suggested procedure reduces to the procedure of solving the single_
machine maximum tardiness problem discussed in page 82 of the book by

Baker (1974).

The Maximum Peralty Flow-Shop Problem :

The moximm penalty flow-shop (MPF-S) problem is the maximum

penalty problem with the flow-ghop assumptions A1 to A8 inclusive of

http://www.cvisiontech.com

L 4

- 131 -

A4' and AS' given il section 1.2 of Ghapter I. Given a MPF-5 probvlem,
there are two related problems viz.
(1) moximim tardiness strict job release time flow-shop (MTSJRF-S)
problem obtained by relnxing assumption A5' and taking

Ty=ay, ¥ j€N in the assumption A5.

(ii) moximm tardiness flow-shop (MIF-S) problem obtained by

ignoring the aj S.

In view of the assumptions A4' and AS' and the Example 4.1.1.,
note that the MPF-S problem cannot be solved by solving the related

MTSJEF-S problem.

Henceforth, we discuss the maximim penalty flow-shop problem

in greater detail.

Iet (8,Q) be a feasible schedule (Definition 1.2.1.). Then the

earliness axd ftardiness of job j will be given by

‘ .

. max a. - s, 0%

J 1 j il 2 ;}

and T. = max‘{:c‘ - b. , é}'.
J Jm J ,

The meximum penalty associnted with a feasible schedule (5,Q) is

B

given by

£((s,Q)) = mx{\g-(m..'_Lx Ej) , h{ mox Tj)}.
1<j<n 1<3ign ;

http://www.cvisiontech.com

152" =

Remark 4.2.1 3 Consider a MPP-S problem. If (S,Q) and (s',0') are

two feasible schedules such that

mx T, ¢ max ! and max E, ¢ mx- E

1¢i<n 97 1¢j¢n 9 1<j<n 4 T 1¢i¢n
then £((s,Q)) < £((s',Q")).

Proof : Using the properties of penalty functions g and h the procf

of Remark 4.2.1 follows immediately. //

It is easy to verify that f is a regular measure of performance
if g(x) = 0 for every x >0. Couway et al. (1967) have shown that,
while solving a two machine flow-shop prbblem for a regular measure
of performance, it is enough to consider the permutation schedules
alone. Now a natural question arises ! can we consider the permtation
schedules alone while solving a two machine MPP-S problem? In txuhw

following we prove results related to this question.

Lemma 4.2.2 3 Consider a MPP-S problem. Iet (S',Q') be a feasible
schedule such that jobs i and j with aj.ﬁ ai (bj.g bi) aprear on
machines My and M, (M . and M) as explained in Pigure 4.2.1 (4.2.3).
Construct a schedule (S,Q) from (S',Q') where i and J are interchanged

on machine M1 (Mm) as explained in Pigure 4.2.2 (4.2.4). Then

£ ((8,2)) < £ ((s', Q')).

http://www.cvisiontech.com

=~ 133 -

i idle 3
' 1 1 '
511 i1 %31 %44
[I) J - 88 1 - e
1 1 1 1
%512 %32 Si2 12
Pigure 4.2.1
LI N] J idle 1 L N]
1
$31794 4 ®117%51
Figure 4.2.2
sse j an e i .:‘.--

Oge1) %, (me1) %L, @) °, (ae1)

b 1 Tl iddle | 3 ‘
1 1 1 1
8, .
im im jm jm
Pigure 4.2.3
~ i 3 idle 1 m
— ! g
s;jm—‘sim cim"c,jm

Figure 4.2.4

http://www.cvisiontech.com

- 134 -

Yroof : The result follows easily from Remark 4.2.7, if we notice
that s, =s,, and c,, = c., from Figure 4.2.2 in the case a, £ a.;
1 it 11 i1 j = " H
¥ t
= Lo, i 2.4 1 2 b, .
Sjm Sim and i Cgm from Elgure 4.2.4 in the case] < bl and

in both the cases all other jobs remnin undisturbed while defining

(5,Q) from (8',Q').//

In Lemma 4.2.2 the case aj‘i ay (bj < bi) is similar to
Theorem 5.1 (5.2) proved for any regular measure of performance (Fmax)’
in the book by Comway et al. (1967). It is easy to see that Lemma

4.2.2 holds for the MISJEF-S5 problem as well.

WWhen |N| = 2, using lLemmn 4.2.2 one can easily note that it
is enough t0 consider the permutation schedules alone, while solving
a two machine MPF-S problem with the property that ”ai < aj = bi_gbj“.
The following Example 4.2.71 shows that it is not enough to cousider the

permutation schedules alone when this property is relaxed. &

Example 4.2.1 : Two machine MPF-S problem with g(x)=x = h(x) for x 20.

Job Processing times Target times
v P Pip 04 by
1 3 3 0 10

2 2 2 3 ol

http://www.cvisiontech.com

= 135 -

The unique optimal schedule with objective function value as zero is

sketchéd in the following figure.

M, 2 1

After proving some relevant results, we provide an example of
three jobs—two machines MPF-S problem to show that even with the

property "ai‘< aj =% b. bj”, it is not enough to consider the

i

permmtation schedules alone when the number of jobs is greater than

or equal to three.

Now, for a MPF-S problem we shall develop a method to get the
best permutation schedule for a given permatation j = (n(1), ...,'n(n)).
.Given a MPF-S problem we note the following for the related MI'SJRF-S

and MIF-S problems.

In a MISJRF-3 problem, for any arbitrary permutation
n= (n(t)y, ...y w(n)) the corresponding best pemutation schedule is
provided by the non-delay permutation schedule consistent with g
et Definition 1.2.3). Using Notation 1.3.9, in a MDSJRF-S problem,
under a non-delay permitation schedule wn, the tardiness of job % (j)

is given by

http://www.cvisiontech.com

- 136 -

5n(j) = mox {t(o; asm (1), eouy n(j); m) - () 9}

where 0 = (O, cve, 0) anmd a = (31’ seay an) are tuples giving the
machine available and job release times respectively. Given the non-
delay permutation schedule consistent with n the corresponding objective

function value in the MISJRF-8 problem is denoted by

AD(n) = mex T . & (4.2.1)
1¢ign M)

In o MIF-S problem, for any permuitation gx= (n (1), ‘ ceay (n))
the corresponding best permutation schedule is provided by the non-delay
permutation scheduie consistent with g and the corresponding cbjective
function value is given by l

/T\(TE) = max /TA'(J) . (4.2.2)

1<j<n

E-.

s
where Tn(j) is the tardiness of job n (j) and using Notation 1.3.7,

we have, -/T\n(j) = max{'t(n(ﬂ, — T;(J')} Tiig)l S bn(j) = O} 4

In a MPF-S problem, given ally permutation p = (n (1), eang T (n))
and a corresponding arbitrary permmtation schedule S(n) we note the
. . £ . a . . - >(_ =
following. For any i and j such that i j we have, En(i) —rtn:(i)
) ognd R A B oe, - b_,.y . Addirng these two in lities
(i), 1 ()= "nl3)m T "n(y) sk —

we get,

http://www.cvisiontech.com

= 157

1) T TRG) 2 () T PRG) T Se(g)m T Sn(a), gt cer (40203)

From Definitions 1.2.2 and 1.2.3 for i { j, we see that C‘It(j) .
. : ?
S1(1), 1 > the completion time of the last job in (n (i), ..., n(3))
] . .
on machine K under the non-delay permitation schedule (n (i), ...,n(il),

= |

Cu(j),m - Sn(i),1 2 t(n (i), vveyn(3); m). oo (4.2.4)

Using (4.2.4) in (4.2.3) for any i and j such that i < j we have,
E (1) * T.(3) 28y (n(i), ceeyn (3); m) = Pr(y) veil(4.2.5)

Further, using the critical path network of g (Pigure 1.3.1) we can

show that

t(0; a; ﬁ(1), eeey w(3)sm) = | ax o\ + t(('),-;-,n (3); m) 7.

eee (4.2.6)

Now using (4.2.1), (4.2.5) and (4.2.6) it is easy to see that there

exist i* gnd j* such that i¥* < J* and
> 4 T = 2.
Brar) * Tugm2 B () Ry

* *
Let Eﬁ and CL‘Tt be non-negative numberssuch that -

o+ T =A(r) (4.2.8)

T
a(T") .

and g (Ef)

http://www.cvisiontech.com

o 938 =
Lemmn 4.2.3 In a MPF-S problem, for every permutation schedule
S(n) with job order n = (n(1)y vouy m(n)) we have,
e o
£(s(1)) > max{g(En), b T(u))} e (4.2.9)
.
where E_ is given by (4.2.8).

Proof : For any permutation schedule S{ 7) with job order %, from

(4.2.7) and (4.2.8) we have, for some i* (j* ,

En(ix) * Tn(j*)?—& (n) = E-:; + lTi; .

.) ¥* ¥*
%us it must be true that either Em(i*) > En or Tn; (,j*) _>_TTn :

. ¥* ¥*
Hence, either g(Eu(i*)) > g(ETt) or h(Tn(j*))}_ h(Tn). But we

know from (4.2.8) that g(E; | h(T*&) and therefore we get

g(E;) < max g(E“(i*)), h(T“(j*))} < £). el (4.2.10)
In (4.2.4) setting i=1 and using 1), 1 >0 we get
cﬂ(j),m > 50 7(1), vuu, n(5); m).

ot
Therefore, T“(j)z Tu(j)‘ y 1 £J <n, and hence

B(7T (x)) <h(mx T (5) S EECR. o (4eze1n)
1 <3 <n

Now combining (4.2.10) and (4.2.11), Lemma 4.2.3 is proved. //

http://www.cvisiontech.com

- 139 -

Remrk_{{.?;fg: Lemma 4.2.3 holds with reference to a partial permi o~

tion 7n=(n (1), ...,n(q)) and o corresponding arbitrary partial
A~

permitation schedule S(z) when T (7) and & (n) are defined just

with the help of the partial permutation .

Henceforth, in a MPF.S problem, for a given permitation
1 = (n (!), ey n(n)) we consider only the non-delay permutation

schedule consistent with n where the machine avai_lable and job release
times are given by the tuples 0 = (0, ..., 0) and T = (r1, cees rn)
respectively with TS = mx (aj - E:; g O),_ 1 £J < n, where E: is
given bj (4.2.8). This non~delay permitation schedule will be denoted

by ${n) without any ambiguity.

Theorem 4.2.5 In a MPF-S problem, for any given permtation

n o= (T:(1), caey T (n)), the non-delay permutation schedule s(n)

i ¥*
consistent with the job release times Ty = max (aj -E , 0)y 1<j<n,
is one of the best among the permitation schédules consistent with

the job order n. That ig
% ~
26 (x)) = mxq{ eG), a(T (x))}.
Proof : From the properties of S{n) we have
s > > B £ |
. o 8 : iy 3 R -— o]
n(j) n(3)1 = Tn(3) = e(y) A

which implies that En(j) < E: for évery J and hence we get

http://www.cvisiontech.com

"= 140 -

g mx "En:(j))g g(E:)_g m{g.(E:), h(?(ﬁ;))}. cer (4.2.12)

1<Jj<n
Now for the schedule s(n), using (4.2.6) we have for 1 € j £ n

| £(0; r5 = (1), +ouy n(§); m)

((19 erey Tt()9 }
‘1(1(3{ n(d)+t w) ’
say |

To(w) +t(n(u), ceeyn (3); m)aoe. (4.2.13)

3

Cr(3)

1]

Case (1).._ rn(u) = an(ui) - Eﬂ - Now from (4.2.,13) we - get

Culy) = %)~ Fx* (@) s 3 () @)

< +(0; a; = (1), cees T (3); m) - E_, using (4.2.6).
Thus
= . :
== *] - - Iy =]
4 Tn(,j) -E » |using definition of Tn:(j) 5

*

<O (n) - E. , using (4.2.1).

: *
Now using the fact (4.2.8) that T: = (n) - E 2. 0, we get

*
Tn(j) S-Tn « Thus under case (:L) we have (01_;ce again uging (4.2.8))

h(Tn(j))_ ih(T:) = g(E’;) gm{g(ﬁ;); n(T (n:)-)} e ves (4.2.14)
By

http://www.cvisiontech.com

- %1~

Case (ii). r“(u) = Q. Then from (4.2;13) we have

% (3) = (rcl(uﬁ), cves 1(3)5)

I~

t(%(1), vvu, %(j); m), from the definition of

v

t(w5 m).]

But we kmow that Cn(j) Z t{ _3(1), eve n(j);},m) and therefore
cn(j) = t(T“:('1)3 veny T‘(j); m).

N i

ow we get Tﬁ (1) = n:(j) and hence

B(T (5)) = h(;;(j))" 4 }}m{g(E’;), h(T n)lg : e (azets)

Combining cases (:L) and (ii) ‘through‘(4.2.14) and (4.2.15) we get
* N .
n(mx 1) < m{g(E a0} L (a2
Now (4.2.12), (4.2.16) and Lemmn 4.2.3 together give us

r(«) = mxd o), n(B)}.

This proves Theorem 4.2.5. //

Remark 4.2.6 3 In a MPF-S problem, for a given permitation n ,'the
construction of S(n) can be done with computatiomal complexity no

: _ P
grenter than the mximum of the complexity of computing A (x), T(x)

*
and E .
i1

http://www.cvisiontech.com

B 142 =

The following Example 4.2.2 shows that while solving a MFPF-8
problem it is not enough to consider the permutation schedules alone

for n 2 3 even if the property "ai <aj ==> b, _<_bj“ holds.

Example 4.2.2 Three job- two rmnchine MPF-5 problem

with g(x) = x = h{x) for x '>".O

Job Processing times Target times
L o P 1 Pio B by
1 12 2% 0 21.75
2 3 20 3 3

3 4 8 6 39

For various permutations m one can get the corresponding non-delay

permitation schedules S(ﬂ) and note the following.

0 3
(i) The permtation schedule S() = 3 23 where
i 15 25

n¥ = (2,1,3) has f£(sS(m*)) = 3.25 and

f(8(n*))< £(s(n)) for every permitation ® # n¥ .

. - 7 19°
(ii) The feasible schedule §' = 0 21 with job order
3 7

mtrix Q' = (g ? 21) nas T((8',9')) = 3 al

LI p
£((5',Q'")) ¢ £(s(w*)). This shows that while solving a MPF-8

http://www.cvisiontech.com

- 143 -

problem for =n 2> 3, it is not enough to consider the DeTIli-
tation schedules alone, even if the property ”ai < aj —_—

b. < b." holds.
d=

Henceforth we make the agsumption AG (of section 1.2 of
Chapter 1) as well. Therefore we will consider only the permutation
schedules while solving the MPP-3 problem. Following the notation of
Comway et al. (1967) we will denote the.MPFns, MISJEF-S and MTP-S

problems with assumption A9 by (n/m/F/t), (nﬁm/F/éj > O//Tﬁax) and

(n/m/F/Tmax) respectively.

Sidney (1977) introduced the (n/1/./f) problemn and developed

an O(nz) optimal algorithm assuming that "ai < aj > bi < bj”
for any pair of jobs i and j. Iakshmaan et al. (1978) stream~lined
Sidney's algorithm into an o(n log n) algorithm for the (n/1/./f)

problem.

Using the Example 4.2.2 we make the following interesting

observations.

0 12
(1) The permutation schedule s(r)= {12 15 where T = (1,2,3)
19 GO 4

has £{S(7)) = 4. TNote that the permitation % is the non-
decreasivg arrangement. of aj's and bj’s. Further, f(S(ﬁ* DA<
£(s(T)). Hence there does not exist an optimal permitation

schedule (among the persutation schedules alone) that hos the

http://www.cvisiontech.com

443

- 144 -

property that jobs are ordered simultaneously by non-decreasing
aj and by non-decreasing bj' This shows that Theorem 1 in
poge 64 of Sidney (1977), which is true for a (n/1/./f) problem,

does not hold for a (n/2/F/f) problem.

(2) For a related problem (3/2/F/aj.2 O/Tmax); from among the
permutation schedules, the optimal solution is unigque and it
is given by the permutation & = (1,2,3) with ZM (7) = 4. TFor
the other related problem (3/2/F/Tmax) also, the optimal permuate-
tion schedule is unigue and it is given by the permutation

~~
a= (3,1,2) with T (o) = 1. Now observe that

£(5(+)) < min{ £(5(7)), £(s(a))}

This shows that neither of the optimal permutation schedules of

the related problems gives rise to an optimal permtation schedule

of the (n/2/F/f) problem.

Sufficient Conditions for an Optimal Solution for the (1/m/F/f) Problem

Recollect that we are denoting the MPF-S problem with the
additional assumption A9 by (n/m/F/f) problem. In this section we
provide sufficient conditions for a particular permutation m to yield

an optimal solution for the (n/m/F/f) problem.

Let Figure 4.3.1 be the critical path network of (j,l), where
the n-tuple o = (aT, “ouy an) and m-tuple O = (O, S0 O) give the job

release and machine available times.

http://www.cvisiontech.com

- 145

Job
Jjob re} ense M1 L Mi ‘e Mm
time
J aJ }O = ‘e -——-—) C/‘% ‘e —_}O
| | |
W \L e
l 8.1 ._..-_._._.;;7-@ ; I Y ;{‘) } .« —"“‘%O

‘Figure 4.3.1 ¢ Critical path nebwork of (3,1)

From this critical path network we can eansily see that for 1<k<{m

we have,

‘ -) ; , k
$(0325325k) = mx{ajft(jl;k)l, al+u§1 plu}. cee (4.301)

Similarly for 1< k<{m we get

k

t(0;8;155k) = ma:x{a. +t(13; k}, ay+ I pjl}, (4.3.2)
u=1

The following Lemma 4.3, 1 is a generalisation of Lemma 3.1,3,
Lemma 4.3.1 : Tet 3 = (01, . il am) and a = (a,], .ty _an) give the
machine available and Jjob relense times respectively. For a given

pair Of jobs j and 1, and for any pair of machines Mr and Mk such

that 1 {r <k <m, 1let

http://www.cvisiontech.com

- 146 -

Further assume that aj 3 al.

Toen, t(8;a; 31; k) < (83 a; 135 k), 1<k < m.

Proof : From the corresponding criticanl path networks note that

for 1< k< m we have,

+(0; a; jl; k)

I

‘max{t(a; i1 k), t(05 a5 J1; k)} .o (4.3.3)

and

H

t(d; a3 1j; k) max {t(a'; 135 k), (03 a3 1j; k)} o eee (4.3.4)

Now invokirg Lemma 3.1.3 when 8= 0 we get t(jlsk) < t(1j5k). Using
| ‘)

this along with the facts aj (&) and a) + u_2_1 py, < ot $(135k)

in (4.3.1) and (4.3.2) we get.

$(0; a; 313 k) < (05 a; 1j; k).

Once again applying Lemmn 3.1.3 for any 8 we have +(d; jl; k) <
+(d; 1j; k). Now {J.sing these in (4.3.3) and (4.3.4) the proof of

Lemmn 4.3%.1 follows. //

The following Theorem 4.3.2 1is a generalisation of Theorem

3.144.

Theorem 4.3%.2 3 Iet 8= (01, ...,am) and a = (a1, - BT an) give

the machine available and job release times respectively. TFor a given

http://www.cvisiontech.com

- 147 ~

pair of jobs j and 1, and for every pair of machines Mr angd Ml& such

that 1< r< k< m let

min { Pyps Py) < min (py Pk I

Purther assume that ﬂ £ a Let ¥ be any partial permutation of

b
jobs in W - {J, J}

Then, +(0; a3 J1¥; k) < +(8; a3 137; k), 1 <k < m.

l »* AN
Proof : Define 8% = (O: y ooy am) and 8 = (

by a; = t(3; a; 315 k), 1 k< my
~
and 3y = (98505 155 k), 1<kgm

Using Lemma 4.3.1 we get 9 £9 K ? 1 <k {m. From the critical
. :
path networks of jly and 1j7 we can write for 1 <k <m,

LN S Sy
(935 a; i1y ;5 k) t(d8 ; a2;7; k) (4.3.5)

and

t(d; a3 137 ; k) (35 a3 ; k). Wk fat3.60

Now using the fact ‘a*i‘g_’éi sy 1 <i<m in (4.3.5) and (4.3.6) the

proof of Theorem 4.3.2 follows. //

Theorem 4.3.3 ¢ Suppose n = (n(1)}, «.u,n (1)) is & permitation such

that an(‘l) i see g a“(n) and bn(1) & Further assume

o< bﬁ(n)

http://www.cvisiontech.com

- 148 -

that ®= is a Johngon's permutation for the two machine flow-shop
problems (Mu-’ Mv)" 1.{ v v {m. Then the non-delay permutation
schedule consistent with = and strict job release times is an optimnl

permitation schedule for the (n/m/F/aj > 0/t __) problem.

Proof ¢+ Assume to the contrary, that a non-delay permutation schedule
0136 minimizes T_ (in the (n/m/]'i‘/o.j > 0/F) problem) where j
precedes 1 in n. Note that a, <a, ond b; < by In the non-delay
permtation schedule consistent with Jlj6 , job 1 camnot start on

machine M. until

k
9, = (052505 k), 1<kgm
Now applying Theorem 4.3.2 we get, for any partial permutation ¥

of jobs in €', fhe inequality
(35 a5 J1v; k) t(33 a3 1375 k), 1 <k {m

But frdm the critical path networks of ¢jlY and O1j¥ we have

for 1 £Lkfm ..

£{0; a3 Oj17 ; k) t(3; a3 3§17 ; k)

A

" and

t(d; a3y 1ij7¥ ; k).

i

£(0; a; 0137 ; k)

Thus we get t{0; a; 017 3 k) < t(0; a;013Y 3 k), 1 £k {m

http://www.cvisiontech.com

- 19 -

Frow this result and the given facts a,j < a; and bj < bl it
follows that, the maximum tardiness of the non-delay permitation
schedule consistent with 0316 is no more than that for the nen-~delay
permitation échedule consistent with C13j6. Now Theorenm 4.5.3

follows. //

Corollary 4.3.4 + Ietn = (n(1), ..., n(n)) satisfy the conditions

of Theorem 4.3.3. Then the non~-delay permutation schedule consistent
with n(ignoring the job release times) is an optimal permutation

schedule to the (n/m/F/Tmax) problem.

*
In the following Theorem 4.3.5, we use E defined through
. n

(4.2.8) for any arbitrary permitation =.

Theorem 4.3.5 : Suppose n= (% (1), ..., % (n)) is a permitation

such that an“) LR Y aTE(n) and bn(” Leee X brr.(n) . Yurther
assume that n is a Johnson's permutation for the two machine Tlow-shop
problems (Mu’ Mv), T <u <v <m. Then the non-delay permitation
~schedule S(n) consistent with 5 and the job release times

rj = max (aj - E;; . O), 1 £J £n, is an optiml permutation
schedule for the (n/m/F/f) problem.

£roof : Using Theorem 4.3.3 and Corollary 4.3.4 we can see that

produces optiml permuitation scheaules to both the related problems

(n/m/F/aj > O/Tmax) and (n/m/F/Tmax). Therefore, for an arbitrary

http://www.cvisiontech.com

4.4

- 150 -

permutation ¢ we have,

A(A) s Bx) < B,

Using A (7) < A(C) and the monotonically non-decreasing property

* 5 k3
of the functions g and h in (4.2.8) we get g(E}) Lg(Eg).

Now invoking Theorem 4.2.5 we have f£(S (x)) < £(s(0)).

This proves Theorem 4.3.5, //

Remrk 4.5.6 : If there exists a pair of jobs j and 1 such that
aj < al and bj > bl then no g sdtiéfies the conditions of Theorems:

4.3.3 and 4.3.5.

Complexity of the (n/m/F/f) Problem :

For a (0/1/./f) vroblem there oxist (as shown by Sidney (o)
and Lakshmanan et al. (1976))polynomial time complex algorithms if we

make the additional assumption that "aj < 8] =) bjg bl". In this

section, we prove that a general (n/m/F/f) problem is NP-complete

(see Definition 1.5.8) when this additional assumpiion is relaxed.
In fact (n/m/®/2) provlem is NP—ct‘:}mpi.éte for m 2"2, even under the

additional assumption.

In order to prove the NPQCOmpletelqess of the (n/m/B/£) problem
we reword the problem as follows : Given the data of the (n/m/F/f)

problem and a non-negative number T we nsk the avestion - does ¥nere

exist o feasible permitation schedule S(%) such that £{s(™)) <p°

http://www.cvisiontech.com

- 151 -

From Remark 1.5.9 we observe that the essential pait of a
proof of NP-completeness is : Given a specific inpﬁt x for problem X
(which is known 10 be NP-complete), we must"éﬁow now to construct a
corresponding input y to problem Y (which is to bé proved. as NP-complete),
such that the answer to y is "yes" if and only if the answer to x:is
"yes". Purther, the input length of y, as well as the time taken to
construct y, mist each be bounded by a polynomial function of m(x),
where m is the input length measure for problem X. We . do only this
- part of the proof of NP-completeness for the results we derive. Once
we prove thié for our problems, Theorems 4.4.1 and 4.4.3 will follow
from the factsthat the (n/m/F/f) problem is in NP (see Definition 1.5.5)

and the relation { (see Definition 1.5.7) is transitive.

The known NP-complete problem X used in our proofs is the

following form of the partition decision problem in Karp (1972).

Partition decision problem : Given n non-negative weights wj ’

1£J<n, determine if there exists o subset A of{1,2, pmal ey n}

such that

Theorem 4.4.1 :* The (n/1/./f) problem is NP-complete.

http://www.cvisiontech.com

- 152 -

Proof : Given a partition decision problem we construct a ((n+1)/1/./%)
n-

problem as follows. Let W= & w,. Define the set of jobs by
J=1

N _—.{j | 0 {j<£ nj. The processing time pj of job j is defined by

W/2

1l

Po

I

P W, i£0 and JEN.

The target start fimes (aj) and due dates (b;j‘) are defined by

W/2 H b = W

)
H

ay = 0, 3#0 and € N; by = /2, j#£0and j€HN.

The value of D ::Ls defined to be 2zero. The penalty functions g and h
are as defined inr the (n/1/./f) problem. In this construction, the
input length of the prqblem measured as the sum of the input data is
%W (n+2), which is clearly bounded by a polynomiala'in W and n, as is

the time necessary to construct a description of this input.

Now it remains to show tha;t ti:le desired solution to partition
decision problem exists if and only if there ié n schedule S(n) of
the problém (/1/./£) such that £(8(n))<{ D=0 (i.e. £(8(r))=0
since we know that £(3(%))> 0 for any arbitrary schedule S(n)),
If there exists a schedule S{ =) with f(S(x)) = 0, then the job '0'

mist be scheduled as in the followir_;g.figure.

A 0 B
0 w/2 W W/2

http://www.cvisiontech.com

- 153 -

Now it is clear that £(S(n))= 0 if and only if the jobs 192y 2025
are partitioned into two sets A and B such that each set has W/2 as
the total processing time of ,jobs" in that set. Thus it follows that

the answer to this (n/1/./f) problem is "yes" if and only if the
¥

auower 0 partition decision problem is "yes". This proves Theorem
P y

4.4.1. //

Corollary 4.4.2 : The (11/rr1/F/f) problem for m 2> 1 is FP-complete.

Theorem 4,4.3 : The (n/2/F/f) problem with the additional assumption

that "aj < ay S bj K bl for any pair of jobs j and 1" is

NP-complete.

Proof : For any instance of a partition decision problem with

W =

W, , define a ((n+1)/2/8/%) problem as follows s
j .

[

1
Let the set of jobs be N ={ J fO £Jd n&. The processing times

of job j are described by the two tuples P,j = (pj1 , DL where

32)
PO = (W/Z, W/2) and Pj = (o, Wj)’ Jj#&oO z.md J€ N. The target start
times and due dates of the Jjobs are defined by aj =0, J€N; bO =W
and bj =3W/2, 3#0 and j€V. D-is defined as zero and the penalty

functions g and h are as der ined earlier.

Note that this problem satisfies the additional assumption in
a vVacuwous sense. The proof of Theorem 4.4.3 can be completed by using

arguments similar to the arguments in the proof of Theorem 4.4.1. //

http://www.cvisiontech.com

4.5

- 154 -

Corollary 4.4.4 ¢+ The (n/m/F/f) problem for m2? 2 with the additional

assumption "aj < a) = bj] bl for any pair of jobs Jj and 1" is

NP-complete.

Branch-and-Bound Method for the (n/w/F/f) Problem

Before discussing the branch-ana-bound search procedure to
solve the (rn/m/F/f) problem, we develop the lower bounds required in
the search procedure. Recollect that :_/;X (O) denotes the objective
function value of the non-delay permutation schedule consistent with
the permutation o in the (:L’),/m/l?‘/aj > O/Tmax) problem. Further in the
(n/m/F/f)} problem, S(o) is the non-delay pe:rmutation schedule consis-
tent with pefnmta.tion c and ‘tﬁe job release times rj = max (aj- E: ’ O),

jEN where E; is given by (4.2.8).

Proposition 4.5.1 ¢ In a (n/m/F/f) problem, for an arbitrary comple-

tion on of o suppose O (ox))> BH , o non-negative number. Further

let FH and 'L‘H be non-negative mumbers such that EH+ TH = AH and

g(E‘H) = h(TH). Then we have f(S(Gn))2 g(EH).

Proof : Proposition 4.5.1 easily follows from Theoren 4.2.5, the

monotonically non-decreasing properties of g and h and the relation

(4.2.8). //

Given the (1'1/m,/]1"/a:i > O/Tmax) problem, for any partial permuta-

tion o= (o (‘I), ceey O (q)) define with the help of machine Mu F

http://www.cvisiontech.com

- 155 -

1<v<m _%1(1 jobs in &, a single machine problem ((n—q)/1/./z:lj1 2 O/me)

as follows.

For every job j in ¢ = N-o we define :

u--1
-~ striet release time of job j = r? = mx{z, aj + X pjv}

v=1
U=t
where 2 = max t(0; a; 0; k) + 3 p'.v} ,
1<k<u v=k 9
u m
~ due date of job j = 4. = b, - 7 P.. s
J J v=u+tt 97

i

- processing time of job j pju'

TLet the optimal objective function value of this ({n-g)‘/1/./1:-;.1 ->-O/T1mx)
problem corresponding to the machine Mu be denoted by

11 u
LB, (rj » Py 0 dj), 1gug m

Define,

&Ga'mx{ﬁ_(o), i mu(r‘g,pju,a‘;)}. e (4051

Remrk 4.5.2 : In the ((n-q)/1/./r‘§_>_ 0/%,) problem just defined,

suppose rlg < rl;: e d‘; < d‘i1 for every pair of jobs j and 1 in T,

Then there exists a permatation n= (n (1), RS n(n-—q)) of the jobs

L= u u u u
in 0 such that rn(”_(_ ces £ I;'i(n—q) y dn(1)-<- see < dn(nmq) and ©

yields an optimal non-delay permutation schedule of the

http://www.cvisiontech.com

- 156 -

((n-q)/1/./1"3‘ B O/Tmax) problem. This result follows from Theorem 1

of Sidney (1977). Thus in this case IiBu(r;l 5 pju 3 d‘;) can be worked

cut exactly in polynomial time. Otherwise this problem is NP-complete.

Remark 4.5.3 : In the ((n-q)/1/./r‘3 g_o/TmaX) problem, if we take the
job release time of job j as 3 = t(0; a3 03 u) instend of rlg , then
we get a ((n"Q)/V'/Tmax) problem with simultaneous release times for
all the jobs. We know from Baker (1974) or Comway et al. {1967) that
the earliest due date sequence of the jobs in 3 is an optimal permmta-
tion of this ((11-q)/1/./Tmax) problem. Let IB; (au ' Py 7 6.1;)

denote‘ the optimnl objective function value of this ({n-g)/1/./Tmax)

problem.

Define,

= 1 u oy
By = wxiA @), TN A LINE IOR. B e @s2)

o

Now using the fact that T >4(0; aso3 u) = 0, for every j in G,

we get for 1 {u {m

u u 1
LBU. (rj,p. ’dJ)zLBu(aU.’p

~ Therefore, FARND & .

Remark 4.5.4 ¢ In the ((n-q)/‘l/./rg ZO/TmeX) problem suppose

preempt - resumption is allowed for the jobs. Then’we can find an

http://www.cvisiontech.com

- 157 -

Optimal solution of this problem by the method outlined in Remark

4.1.7. Call the optiml objective function value of tais problem

b4 1 u .
LBu (rj s pju 7 dj Y. Define,

2, u u
A, - mx{p @, Jmr G e d0h L G

How note that for every u such that _ ‘!3_ u< m we have,

u u 2 /.u u
B, (ry 5 by, ») > 1B (r3 s Py v 4.
Therefore we get ae 2_&5 .
. i ’ 3!
It is easy to see that/_’lﬁ?__ﬁa, since ry > t(0; a;o;, u) = Gu

for every j in & and Tmax is a regular measure of performance for
which it is enough to consider permitation schedules alone when all

the jobs are released simultanemisly.

Lemma 4.5.5 ¢ Ina (12/m/F/aj —ZO/Tmax) problem, for an arbitrary

completion on of & partial permutation g we have

Dlan)2 pg 2 Bg 2 Ay

Proof : From the critical path network of on {see Figlure 1.3.1) it

is easy to see that for I<k¢{m and 1< j<{n-q we have

t005 ason (1), voeym (3)5 k) = t(85 a5 =(1), v\ n(3)s k) oo (4.5.4)

(n (1) vevyn(ng)) is a permitation

where g = (G(T), ---,o(q))? T

http://www.cvisiontech.com

- 158 -

of jobs in & and 8= (01, SO 6m) is such that ai = t(O; a5 o3 i),

1< 1< m. Figure 4.5.1 gives the critical path network of = where

and a provide the machine available and job release times respectively.

Job
release M .« M. 5w M : 3 M
. 1 i n m
tlmes /‘J wwwww —_‘-‘_‘HM_‘_\
P a N e . i~
ff—ﬁ’ : o= -~
ey m) 3
" B g Ny LT u . %
i

e,

= O
\.t
[
.
O

o 4 |)
"an(n—q)—"% O"‘”ﬁ L ﬁém;) o '__>O_—_}. . —_—ﬁ

Figure 4.5.1 ¢ Critical path network of T,

Mochine
available
times

(1)

.

.

n(l)

n(d)

n{n-q)

http://www.cvisiontech.com

- 159 =

From Pigure 4.5.1 we see that

£(8; a; n(1), ..., ®(j); m) = the length of a j-critical path in the

figure

(A

the length of the cireled j-path in the
figure

% .

> 0, + T p %P
1

+
r- i k=1 Ti(l)!k v TE(V),U.

m

+ 2 p R . *en (4-505)
k=u+1 n(3)yk

This inequality (4.5.5) is valid for every i, u, 1 and j such that

1_§_i_(=u<m and 1_<_l_§_j_§_11—q.

Similarly for every 1 and j such that 1 <1 (Jj {n-a we get,

u=-1 J 3
085 85 1 (1)y vy (3D m) 2 ang) * g Tl)k +v§l Pa(v),u

m
+ Z P/ C
k=u+1 K(J)’k

Combinirng this with (4.5.5) for fixed u, land j, 1<ug®m and

1<{1<Jj<{mn-q wehave

3 m

6005 a5 w(1), wens w (@i m) 2)+ B oyt

k=u+1
Using this, (4.5.4) and the definition of 2\ (on), for u, 1{ugm

we have,

http://www.cvisiontech.com

- 160 -

> max max .;a; (= o (3); m) - e
I\ (on) 2 B (t(9 (1) n (J) br () o)}

1 : u 3
3 < {M me L0y« 2 ngd - S 9df
1 L3 Sn-g { 1£1< 3 AL v=1 ")hu n(j 2

[

> 1 e

Combining this with the fact that £\ (on) > £ (0) we get
Ay D, .

Now from Remark 4.5.4 we know that &g > /__B }_&a and hence

Lemma 4.5.5 follows. //

In a (n/m/F/Tma.x) problem, given any partial permutation
oc=(o(1), ..., 0(a)), define with the help of machine § o (1<ugm)
and the jobs in § a ((n—q_)/V./a?j' > O/Tmax) problem as follows.
For every job j in © we define :

- ' u-1
- sirict release —— {t(o; i) + S p.k} 5
Joagicu k=i Y

time of job j

i

i
[}
)
]

li
o
H
l:'J"
i
gt
3

- due date of Jjob j

-~ procegsing time of job j = pju .

Denote the optimal objective function value of this

u ‘ u u
((n-q)/i/./ajz O/Tmax) problem by IB (aj P Py, dj).

http://www.cvisiontech.com

- 161 -

Define, wh _ ’ " ;

-
T, = max{?(o)y max ;IBu(al‘.l » Py 0 d?? . eeo (4.5.8)
" 1fudm V.9 !

Recollect that T(G) de’hotes the robjective function value of the
non-delay permutation schedule consistent with ¢ in the (n/m/F/T)

A p:l."obleru.‘E Correspondmg versiong of Remrks 4 5. 2 4.5.3 'Lnd 4.5.4

are valid in the present s:l.tuat:l.on as well S:Lmllar to the definitions
Of. Qa and &B we dLefilj.e_ Toc ~and ’T}B‘ by

T - hnx{ f['\(c-), max I.BI:I1 “(t.(o";l‘u), phju., dt;‘)} eee(4.5.7)

1<uim

S 2 ‘u‘ u)

: .‘1‘_<m-u_gm'-\

e AN A A
It is easy to verify that TQ > TB > T

o

From Lemma 4.5.5 We can assertain the following corollary.

Corollary 4.5.6 ¢+ Inn (n/m/F/Tm) problem, for arbitrary completicn
" on of the partial permutation & we have

~ A A A

T (on) > T TB}_TG.

Theorem 4.5.7 ¢+ In a (n/m/F/f) problem, for arbitrary completion or

of the partial. permtatiop 0 we have

http://www.cvisiontech.com

- 162 -

£s(on)) 2 max {(x), n(T,)}

> max {g(EB), h(T\B {}

> max {g(Ea), h(ﬁf\a)}

where EO’ E‘3 and Eot are obiained from Eh of Proposit'idn 4.5+1 when

H takes the values 6, 8 amd ¢ respectively.

Proof : Theorem 4.5.7 follows easily from Proposition 4.5.1,

Len]m.a 4.5.5, COrOllaI',Y 4.5.6 al‘ld Theorem 4-2o5. //

Remark 4.5.8 : Ina (n/m/F/f) problem, for any partial permutation 0,

assume that we use Remark 4.5.2 whenever possible and otherwise
use Remark 4.5.4. Then we will get a lower bound of f£(s(on)) for

arbitrary completion on of ¢ such that this lower bound lies beiween

naxd g(Ey),s h(’T\Q)} and max{gk‘EB s h(%B)}. e

TonerE 4.5.9 4+ Ta o (n/n/B/f) problem, given a partial permutation

6 4 for A ugm we hove,

u AV 2 \VE
I;B'U. (I'J L) ‘Dau] d;}) _>_ I-Bu(aa ’ pau ’ aas ?

1 3 u‘

v

I.B;(t(d s u), Piy ? at)

2 T 71 u u
d > 1B)] d”.).
and IuBu (rj ’ pju ’ j) 2 u(a.'l ’ p;|u 1 ;1)

http://www.cvisiontech.com

- 163 -~

Consequently the expressions in the RHS of these inequalities ueed

be computed only when the IHS expressions are strictly positive.
Pl ~
Further these inequalities lead to £\ o > 7 ZLB > TB and

[b
A AN oA
Qoﬁ 2. [y + Hence note that T T, and 7 -need be computed only

e’ B
if the resgpective QQ ’ Q’Band,ﬁa are strictly positive.

Remark 4.5.10 ¢ In a (u/m/F/f) problem, for o given pair of jobs j
and 1, and for every pair of machines Mu and M‘k such that 1 <u <k {m,
let

min (py, » Pp) < mn oy, 5 Py

Further assume that a.j < aq and b. < bl'

Then f(S(Gilxw)) £ f(s(Slim)) "where O and T are arbitrary

partial permitations of jobs in N -{j,l} such that Gmn =¢.

Proof : Define 3= (61, o) aﬁ) ‘by ﬁk = +{(0; a3 0; k), 1<k {m

and use Theorem 4.3.2 to get
$(0; a3 0317 5 k) ¢ (05 a5 0Li¥Y 5 X))y, 1<k m

where ¥ is an arbitrary partial permutation of jobs in x. In the

same Theorem 4.3.2 if we choose 9@, = t{oj; k), 1< k< m and

K

a, =0, 1< is‘n' weget

t(oj1v; x) ¢ t(olivs x), 1< k¢ m

where again 7 is an arbitrary partial permutation of jobs in n .

http://www.cvisiontech.com

= 164 &

From these results we can prove that O (ojln) _(_-Q (c1in) and
T o3l n) i ™ cljn), using bj < bl; Now using Theoren 4.2.5 and

the relation (4.2.8) we get

e(s(oiln) ¢ f(s(ogm). H

Remark 4.5.11 ¢ If a pair of jobs 1 and j satisfy the conditions

of Remrk 4.5.10 then we bave a dominanée rule which can be used in
the branch-and-bound procedure by eliminnting the permtations of the
form oljn . One can verify the conditions of Remark 4.5.10 at the
begimﬁﬁg of the search procedure and elimimte permitations of the

form aljn while generati.ng +the new nodes.

Using the results of this gection one can write down the
branch-and-bound procedure. In the following we solve a (5/4/P/F)

problem for illustration.

Example 4.5.1 i+ (5/4/F/f) problem with g(x)=x and hix)= 2x for x 20,

Job Processing timeé | 'i'arget times

B P;y Py Pyz Py %y b,
1 2 4 3 7 0 16
2 3 2 8 4 5 21
3 5 3 5 7 & 30
4 1 4 3 2 10 Edl

2 2 1 4 2 11 37

http://www.cvisiontech.com

- 165 -

Let =n* dencte the permutation corresponding to the best lmown solution
at any stage. At the root node we take n*= (n*(1), ..., n*(n)) where

bn*(‘l) £ oo £ bﬂ:*(n)' In this example, at the root node we find
A
i = (1,2,39415) with A\ (n*) = 4, T(x*) = 4, g(E:*) =% o

: h(?(n*)).—_ 8. Hence f(S(n*)) = 8.

In Figure 4.5.2 we present the tree generated by the branch- and-
bound procedure along with relevant information. From Figure 4.5.2,
it is clear that the best known solution g* constructed at the root

node, gives an optiml schedule S{n*) with starting time matrix as

! 0 2 6 9
2 6 9 17
5 10 17 26
10 13 26 33
11 17 29 35

and £(5(n*)) = 8,

In solving this example dominance rule of Remark 4.5.10 bas
not helped. The lower bound IB(©) associated with a node representing
the partial permutation o is taken to be max g(EB), h(‘E’[‘?3)}’ given
in Theorem 4.5.7. Note that IB(o) is not exactly computed for some
“of the discarded nodes. The computation of IB(¢) is terminated as
soon as the optimal solution of a single machine problem corresponding

to o machine M, provides a lower bound > £(8{ x*)).

http://www.cvisiontech.com

- 166 -

]
1 4
I
1 2 3 4 5
2 2
21 6 3 424 4 | 28 5 .l i B 6 [28%
D D D D
12 13 14 15
7 6 8 ' }_9% 9 l > 8 10 |> 8
D D ' b
123 124 { 125
i
{ 11 Ig_ 8 12 1 >12 ' 13fl}_16
{
D D D
- k : FNode number, o : Partial permutation,
o}
e IB : Iower bound, D : The node ig discarded since its
k | LB lower bound is > £(S{n*))h
R

At the termimation stage x¥* = (1,2,3,4,5) with £(s{ %)) = 8 and thus n*

provides an optiml solution.

Figure 4.5.2 3 The tree generated by the branch-and-bound procedure.

http://www.cvisiontech.com

- 167 -

Computation of IB(0) is illustrated for node number 2 which

corresponds to' the partial permutation © = (1).

t(0; a; 0 ;k) 2 6 9 18 t(o 5 k)
&(O’):O - '?(O’):O

a¥]
(o)
(Yol
-
3

Note that for o partial permutation ¢ and uy, 1 {u g ‘m, we can compute

rlg : ag and dlg using the Tollowing relations.
r. = max (t(0; 83503 1), a.) : a.=t(c5; 1); A, =b,. - T p. ;
J J 3 5 d J y=o JV

for 2¢ugm

u wu-1 =

a? mx‘{ra?_‘] +pj’(u_1) y t(o; u)}',

I}

and d. = 4°

. 1 Y | .
For instance, T, = mxit.(o‘; a; o; ‘1), a%,’} = max{2, 3}- = 9y

= max{r;, +p2-1 ’ t(.O; nio 29
= lma.x{3+3, 6}: 6. ’

H
n o
|

http://www.cvisiontech.com

- 168 -

The data and the optimnl objective funetion values of the single
machine problems are presented in the following tables and subsequently

they are used in computing the required lower bound.

1 y YE.
(4/ 1V/e/rg 2 O/ T (4/1/ /TS 2 o/)
j 2 3 4 5 3 2 3 4 5
1 - 2
! 6 0 1 - 6 :
r 3 1A r 11 11 13
P34 3 9 1 2 Pio 2 7 4 9
1 2
dj 7 11 22 30 aj 9 14 26 31
2 e i 2 (2 Tl
3 4
@/ /x5 2 0/T) | “/1e/75 2 0/)
j B 3 4 5 3 2" g N5 4 5
r? 9 14 15 14 r‘§ 17 23 18 18
3 4
dj 17 23 29 35 dj 21 30 31 37

2 3y _ 2 (4 4

http://www.cvisiontech.com

- 169 -

Therefore using (4.5.3) we have'AB ="3, Now using Proposition 4.5.1
we have EB =2 and g(EB) = 2. Note that invoking Remark 4.5.9,
we need not solve the ((n—q)/1/./a1§ Z_O/Tmax) problems for u = 1,2

and 4,

3
@/V//a320/T, L)
J .2 3 4 5
2] 9 10 - 10 9
Pj3 8) 3 4
o3
a 7 23 29 35

2 (3 3y .
1B; (0] » pyz 0 43) =3

. ~ .
Now from the above table using (4.5.8) we get T3= 3 and h(’%): 6.

Therefore, IB(g) = max{g(EB), h(!j['.‘B)} = mmc{?l,G}“ = 6.

http://www.cvisiontech.com

CEAPTER V

SPECIAL STRUCTURED (n/n/F/f) PRCBLEMS

5.0 Introduction @

In this chapter we deal with the flow-shop sheceduling problem
denoted by (n/m/F/f) under +he assumptions A1 to A9 inclusive of A4!

and A5' (given in section 1.2 of Chapter I).

Many of the scheduling problems have been proved to be HP-complete
(see Bruno et al. (1974), Garey et al. (1975), Garey ot al. (1976),
Karp (1972), Karp (1975), Ullman (1975) and Ullman (1976)). In view
of the complexity of the {n/m/F/f) problems which are NP-complete,
significant research has progressed in characterizing special

structured (n/m/F/f) problems with polynomial time complex algorithns.

In section 5.1 we present the known special structured flow-shop
problems, citing the relevant references. In section 5.2 we discuss
definitions and results required for characterizing a new set of
special structured flow—shop,prob;ems. In section 5.3 we deal with
the special structured flow-shop problems having polynomial time

complex algorithnms.

5.1 Kuoown Special Structured ¥low-Shop Problems

Szware (1978) observed that most of the known special structured i
(n/m/?/?max) problems with polynominl time complex algorithms possess

the following property : The type of a n-critical path Pn(n) in the

http://www.cvisiontech.com

1) =

critical path network of n rerins the same for every permutation

= (=(1), +vv, ={n)) and Pn(%) is one of the types given in

Figure 5.1.1.
.a g RD) ‘a'-DR 'b:DRD. b':RDR
¢:RORD e +DRDR . : _d : BDRIR

Figure 5.1.1 : Special types of n-critical path P ()

Remrk 5.1.1 ¢ :Whenever a n-critical path Pn(n) of an arbitrary

permtation n is one of the types given in Figure 5.1.1, the
(n/m/F/F) problem can be solved by a polynomial time complex

o.lgorlthm. For details of these algorithms we refer to Szwarc (19718).

We in'i;roduce the following two definitions due to A.rthanari(1974),

for describing the known special structured flow-ghop problems.

http://www.cvisiontech.com

2 T2

Definition 5.1.2 ¢ We say that backward cumilative domivnance Conditions

are satisfied for the pair of machines M and B, 1<u v Ln-1,

‘ v, v+1
in case I po & I pjy holds for every pair of jobs j and 1,
k=u ° k=u+1

j #1 and denote these conditions by BCD (Mu’ Mv)'

Definition 5.1.3 ¢ We say that forward cumulative dominance conditions

are satisfied for the pair of machines M ond M, 1 Lu £v Lm-1,

v v+1 ;
in case Z P, 2) P holds for every pair of johs
iE ik = 1k
=1 k=u+1

jand 1, j # 1 and denote these conditions by FCD (Mu, M,).

Remark 5.1.4 :° If BCD (Mu, Mv) holds in a (n/m/F/f) problem, then

FCD (M(m-v)' ' M(m—u)‘) holds in the reverse problem (n/mR/F/f) where

k' =m~-k +1, 1 £k {m. The comverse is also true.

Remark 5.1.5 ¢ In a_‘(n/m/F/f) problem, for every permutation

= (x(1); ..., i(0)), & n-critical path P (%) is of the type RD
in Figure 5.1.1 (a) (DR in Figure 5.1.1 (a')) if and only if BCD

(M, M

t, M,y 1 <u Km-1 (FOD (, 4), 1£v <m-1) hold. This

vemark is a rephrasing of Theorems 1 and 2 by Fannmthy et-al.(1978).

We describe below the known special structured (n/m/F/Fm)

problems with polynomial time complex algorithums.

http://www.cvisiontech.com

=73 =

Cose 1t For some Ay, 1€ N<{m assume BCD (Mu’ M, 1),

1"<u A1 o.nd ":'FG'D '(M}; , Mv), A v<m1.

This cage was _independé:ntly h'c:ndléd by Arthanari (19’74) ;mgi Grabowski
et al. (1975). Note‘thatjofi: 1. the given col;ditioﬁ;.redﬁces to
only ¥CD (M‘I’ Mv) A s_v < me1. Siml;ilar interpreto.tim; will be
given when some conditions are required to be satisfied in aninfeasible
range. For subcases of this case sée Seware {1978) and Burdyuk (1969).
It can be ensily shown that for an arbitrﬁi‘y faermtation 1, at least
Ohe n-critical path._,,'l?n(__ﬂ,r) is of the type a', b! and a of Figure 5.1.1
for A=1, 2< Agm1 _.anl_d A=m respéctivély. Purther, for a
given A, at least one n-critical pé,th fll(n) passes through all the

cells in columm A,

Case 2 : For some A, 1“5_"2\'_<_m-1 assume FCD (M1, Mv)’)

1 ;vs'X-1"' and BCD (u_, Mm_j),_ A+l Cu {m-1.

This case was solved by Grabowski et al. (1975). Arthansri (1974)
independently solved this case for A=1 and m-1. For subcases of

this case see Johnmson (1954), Burdjuk (1969), Arthanari (1974),

Gupta (1975a), Nabeéhinu (1977), Szwarc (1977a) and Szwarc (1978).

Under this case, for-an arbitrary permtation %, at least one n-critical

path (1) is of the type b of Figure 5.1.1.

http://www.cvisiontech.com

- 174 -

Cage 3 ¢ For some M and M guch that 1 < ASA' {m-1 assume
BCD (Mu, M}_1), 1 <ua-1; FeD (M, , Mv), ALV <N

and BCD (Mu,' M

\J
m-1) sy N+1 <u 1.

Romamirthy et al. (19’_78) solved this case. Arthanari (1974) handied
this case for A= N = m-1. Subcases of this case were tackled by
Arvthanari et al. (1971), Szwarc (1974) and Gupta (1975a). Under this
case, for an arbitrary permutation n at least one n-critical path

P (n) is of the type ¢ (of Figure 5.1.1) with its downward turns

at columns Aand m.

Gase 3' : For some Aand AN such that 1 < AL ML m-1 assume

FCD (M1, Mv)’ 1<v £A2; BCD (Mu, MN_1) '

Agu < N-1and FCD (M, , M), N vg m-i.

This case was solved by Ramamurthy et al. (1978). When A= N = 2,
this case.wﬁs handled byﬁ Arthaﬁari (1974). TFor subcases of this case
see Arthanari et al. (1971), .Gupta (19752) and Szwarc (1974a). Here,
for any arbitrary permitation n, at lenst one n-critical path Pn(n)
is of the type ¢! of Figure 5.1.1. Further Pn(%) makes its downward
turns at columis 1 and 2'. Using Remark 5.1.4 one can show that this

case reduces to case 3 for the reverse problem (n/mR/F/F).

http://www.cvisiontech.com

- 175 -

Gase 4 : For some A and N such that 1 < A< N < m-1 gzssume

BCD (Mu, IMTL1), 1 £u <A=1; FCD My, M),

ALv < N-1 and FCD(MN+1 ? Mv)’ N+1 (v {m-1.

Rammmirthy et al. (1978) solved this case. Subcases of this case

with A= N were solved by Szwarc (1977a), Szwarc (1978) and Nabeshima
(1961). Under this case, TOor an arbitrary permutation 7 at least one
n-critical path Pn(n) is of the type d of Figure 5.1.1. Purther,

Pn(ﬂ } makes its downward turns at colums A and N+1.

Case 4' 5 For some A amd N such that 2 < A< M £ m1 assume

BOD (W, M, _,), 1< ug A-2; BOD(M My,), A< u <N-1

and FCD (M, , Mv), AM v < me1,

This case also was solved by Ramamurthy et al. (1978). Under this
case, for an arbitrary permmtation % at least one n-critical path Pn()
ig of the type d of Figure 5.1.1. Here, P (7) makes its downward turns
at columns A~ 1 and A'. It is easy to show (using Remnrk 5.1.4)

that this case reduces to case 4 for the reverse problem (n/mR/F/Fmax).

Case 5 : For all the two machine floww-shop problems (Mu’ MV),

1Lu<v<m (uv) £ (1,m), there is a comon

Johusol's permutation.

This case was solved by Achuthan (19’77) and is contained in section 3.2
of this thesis. For m=3 this case was handled by Burns et al.(1975)

and Bewore (1977).

http://www.cvisiontech.com

- 176 -

Case 6 : Assume (i) Given any pair of jobs j and 1, either Pry 2 P s

1<k m or plkgpjk, 1<kln and

T3 B

i1’ pjm 2 Pik for all j€N and 1<k (m

(ii) min (p

This case was handled by Szwarc (1977a). In fact when m=3, Szwarc
(1977a) handled ihe case just with the condition (ii). Under this
case, fop an arbitrary permmtation n at least one n-critical path Pn()

is of the type b of Figure 5.1.1.

In addition to the cases nlready discussed, there are special
structured (n/m/F/Fmax) problems where sufficient conditions are
derived for a particular permtation to be optimal and these sufficient
conditions can be verified‘thrOugh polynomial time complex algorithms.
For these special structured problems see Szwarc (1974), Szwarc(1977a),

Burns et al. (1976), Achuthan (1977) and Dudek et al. (1975).

There are some more special structured (n/m/F/Fmax) problens
where the suggested algorithms have computational complexity of
order O(2n). For such special structured problems see Dudek et al.

(1976) and szwarc (1978).

Further known special structured (n/m/F/f) problems other than

(n/h/F/Fmax) problems are outlined in the following discussion.

http://www.cvisiontech.com

- 177 =

Case I ¢ Ina (n/wm/F/f) problem assume BCD(Mu, Mm_1)’ 1 u <m-t,

This case was solved by Arthanari (1974) for the following ob jective

functions defined for am arbitrary permutation ¢= (e (1), +e. ,0{(n)).

n
(a) Weighted sum of completion times : & w) s t{a (1) «vo,o(idsm)

: (s 0!
=1 eee (5.3.1)
where L is a non-negative weight associated with job 1, 1€ N,
(b) Number of tardy jobs s | {d(j)l 5(3) > o}l where Ty is
tardiness of job a{j) for given due dates dl agsocinted with
Job lEN-] T sws (50312)
(¢) Maximm penalty on tardiness s 1??::() ho(j)r (Td(j)) where

TO’(j) is tardiness of job O (;]) and ho(j) is a non-decreasing

funetion of %(3) s 1 <ig n. - (5.3.3)

(d) Sum of the absolute deviations of completion times @

2 |t (1)y «eey (i) m) - t(a (1), Souyo(1); m) | ., (5.3.4)

i<1

Case II : In a (n/m/F/f) problem assume FCD(M1, MV),, 1£{ v{ mi,

This case was solved by Arthanari (1974) for the objectives functions

given in (a), (b) and (c) of case I.

http://www.cvisiontech.com

- 178 -

5.2 Aggregate Cumulative Donminance Conditiong

Definition 5.2.1 : We say that gggregate backward cumlative dominance
. conditions are satisfied for the triplet (Mu,-' Y, Mw) of machines,

1¢ugv<wn-1 in case

v W v+ w+l
» Pyt B Py < bR Py v 2 P,
Keu ik Kev s = 1k ik

k=u+1 k=v+1

nolds for every triplet (i,j,1) of jobs and denote these conditions

by ABCD (M, M , M) : e

Definition 5.2.2 : Ve say that aggregate forward cumalstive dominance
conditions are sabisfied for the triplet (Mu, M\;, M'm})"of machines,

1S_u_§v$w_§m-1 ‘in case

v ‘ w v+1 ’ w+1
2 pipt B Do > £ pi+ I D,
weu TE kv T keut e

holds for every triplet (i,j,1) of jobs and denote these conditions

by AFCD (Mu, u Mw).

Remark 5.2.3 1 If ABCD (M, M, M) holds in the (n/m/F/f) problem,

then AFCD (M(m_w), > M(m_v), : M(m-u)') holds in the reverse problem

(n/mR/F/f) where k' = m—k+ 1, 1 <k {m. The comverse is also true.

http://www.cvisiontech.com

- 179 -

We denote the (n/m/F/f) problem by {(n/m, ak > O/F/f) when the

agsumption A4' of section 1.2 is relaxed.

Lemma 5.2.4 : In the (1n/m, akzo/F/f) problem, assume ABCD(Mu, M, M

for all pairs (u,v) such that 1£ufv<m1. Then in the critical
path network of an arbitrary permutation o= (o(1), ..., o(n)),
there exists at least one j-critical path for every ;j_>_ 3 such that

the j-critical path passes through the cell (2, m).

Proof : Suppose to the contrary. Now let 1 be the smllest j> 3
for which the lemmn is not valid. Then a l~critical path Pl(.c) of

O will consist of a RIR segment as its final portion and otherwise
P]: (o) is o DR segm.ent.‘ We discuss the proof when Pl(c:) consists
of"z VRDR segment as its final portion and similar arguments go through
for the other case as well. Let the final portion of Pl(o) be a RIR
segment denoted by ¥ as represented by the following figure where

u <v _{m-1.

Case (i) 1 =1'+41: Consider the following RIRD segment denoted

by ¥t

1

)

http://www.cvisiontech.com

- 180 -

ll_1 ———— -

1t
21
Now, 4
v . me b o Y
the length of 7 = kzuﬂpo(l')ak + kﬁv Po(1),k + pd(l)’#
A vl o o i
> ;iu+1 Poat-1), " k;i+1 po(l')ak " Po(1),m’

(vy ABCD (pzu, M, Mm_1))

the length of 7.

Replacing ¥ by 7¥! in Pl(,c) we get another l-critical path Pi(d)

which passes through the cell (1-1, m).

Cage (ii) 1> 1'+1 : Consider the fo;lowing DRD segment denoted

by Y.

v+1 m

http://www.cvisiontech.com

- 181 -

Again using ARCD (MV, Mv’ Mm._ﬂ,) 1‘101?6 that the length of ' is greater
than or equal to the length of the DR segment (denoted by yry
connecting the end cells (1-1, v) and (1, m) with its right turn ot
the cell (1, v). Purther note that 7! is a final portion of Pl(o).
Now again replacing Y" by Y' in Pl(G) we get another l-critical

path P]!_(0) which passes through the cell (1-1, m).

Now observe that similar arguments go through for the case
when Pl(0) is a DR segment. Thus we have produced a l-critical
path P:'L(O) passing through the cell (1-1, m). Now using the
definition of j-critical path we get a (1-1)-critical path from Pi(c)
by deleting the emd cell (1,m) from P'l(). This contradicts the
choice of 1 if 1 > 3 and otherwise we have proved the lemma., This

completes the proof of Lemma 5.2.4. //

Theorem 5.2.5 ¢ In the (n/m, . > O/F/f) problem, foar some A,
1< X< m-1 assume ABCD (Mu’ Mv’ M)\) for all pairs (u,v) such that
1 £u £v< M Then for an arbitrary permutation O = (0(1), eees0(n))

we have for j > 3,

J
(85 0(1) ooy d3)s A1) = 10 50(1), 0 @) A+1) + B iy o
8= -]

=3
Proof : Consider the critical path network of ¢ with reference to

the (n/A+1,d « > 0/F/f) problem obtained from the (n/m, 0, > O/F/%)

http://www.cvisiontech.com

- 182 -

problem by restricting our attention to the first A+1 mochines. Now

LovoRing Lemm 5.2.4 to the (o/ XA41, 3, > O/F/f) problem we get

Theorem 5.2.5. //

The following remark follows immedintely from Theorem 5.2.5.

Remark 5.2.6 ¢ In the (n/m, a'k > O/F/f) problem, for some A,

1<)\i m-1 assume ABCD (Mu; Mv, M}\) for all pairs (u,v) such that
1< ug v{A. Let g = (0’(.1), 0(2)) be a given partial permutation.
Let x* be an optiml solution of the (|5 /m~ N\, ?fk ZO/F/f) problem
obtained from the (n/m, d w2 O/F/f) problem by restricting our
attention to jobs in O and the machines M}ﬁ-‘l y sany Mm in ‘that'
order where the michine available times are given by %k = 4(9;

o (1), o{2); k!, A+1 { k {m Then f£(On*) < £{ On) for every
completion ox of o. Thus the (n/m, ak > O/F/f) problem can be
solved by solving the n(n-1) related (15|/ m- 2, ,a\k ¥ 0/8/t). problems

corresponding to the n(n-1) partial permutations ¢ = (o(1), a(2)).

Lemma 5.2.7 : In the (n/m/F/f) problem, for some A, 1 <A Iﬁ—‘l
assume AFCD (M, ¥, M) for all pairs (u,v) such that AL u <y <1,
Then in the critical path network of an arbitrary permutation

g = (0o (1), aleral s (O (n)'), there ;Jéglsts at least oﬁe n-critical path
which passes through at least one of the two cells viz. (n-1, A) amd

(ny).

http://www.cvisiontech.com

- 183 -

Proof ¢ Suppose to the contrary. Now let 1 be the largest j {n-2,
such tl;at a n-critical path Pn(O) passes through the cell (3, A).
_ We shall denote the portion of P (0) from the cell (1, A) onwards
by §n(o). Then P (0) has o RIR segment in its initial portion or

P (0) is a RD segment. Let the initial portion of 13n(0) be o RIR

segment denoted by Y as in the following figure where A <u £v <m.

A u | v

It

Case (i) 1' = 1+1 : Consider the following DRDR segment denoted

by .
A u-1 v-1

1l

1t 4

1'+1 —— .
Now,

) u v
the length of V= p B Py + 5 B (1
u=-1 Va1

b

+ % +
L@t B Pea)e L R

1 pG(l|+1)9k 7

-

(by AFCD (M) , M__ D)y

1,

= the length of ¥'.

http://www.cvisiontech.com

5.3

= 184 =

Replacing ¥ by 7¥!' in Pn(c) we get another n-critieal path Pl'l(o)
which passes through the cell (1+1; A). The proof of this fact for
case (ii) viz. 1' > 1+1 and the reminder of the proof are analogous

to the proof of Lemma 5.2.4. This completes the proof of Lemma 5.2.7.//

Theorem 5.2.8 ¢ In the (n/m/F/f) problem, for some A, 1< A< -1

agsume AFCD (M}\, Mu, Mv) for all pairs (u,v) such that A u{vS{m-1.
Then for an srbitrary permitation o= (0(1), +vey o (n)) we have for

253 and A+1 (k< m,.

tic(1), veey0(3); k) = mx{t(o(ﬂ, ...,0(3—1)‘§.;\) +

~ q k
max X Do + X p_r. ‘l,

et

k
Wo(), enralain) + pc(j),u}.

u= A+1

Proof : This Theorem follows easily from Lemma 5.2.7. //

New Special Structured Flow-Shop Problems :

In this section we consider new special structured flow-shop
problems with polynomial time complex algorithms. These gpecial
structured problems are characteriged through the BCD, FCD, ABCD

and ARCD conditions.

http://www.cvisiontech.com

- 185 -

5.3.1 BSpecial Structured (n/m/F/F) Problems @

gage 1 ¢ In the (n,/m/F/F) problem, for some)\, 1<Agm assuEe

ABCD (Mu, M_V’ D/J?_1), 1< U<V EN-1 and AFCD

(MA’

L, 2 Mv), }_gusv-_gm-q_,

Using Temn 5.2.4 and Lemma 5.2.7 it is easy to show that
there exists a n-eritical path P (o) of an a:rb:.trary permutﬂtlon
= (a(1), v.. o‘(n)) which passes through the cells {j, A),
2<j {mn-1. Therefore, if the given A is such that 25)\S m=1

t_heh we have

u ; }_. n =2

t(ﬁ; m) = mnax (E)] .)+) P_r.
Tquga 0(1) kT 2 Pol2)k jo3 003)s A
&)\E?rxg_m .(z %(11-1),}: zv _:p'G(n),k)

for an arbitrary permitation o= (o (1), ...,0{n)). Thus the
permutation (i*, j*, 0 (3), ...,0 (n-2), 1%, s*) golves the

(11/m/F/FM) problem optimlly if (0 (3), ..., 0 (n-2)) is a permitation
of jobs im N - «;i*, 7%, 1%, s*} and

A(i*,3%,1%,5%*) = min {A(l,;;, ,s) | i,5,1 and s are Qistinct gobs}
» in N

http://www.cvisiontech.com

- 186 -

where
(: 5
A(i,jo1,s) = max (B pg + 2 p.) ¥
fudn k=t ke

u n
IH b33
max + - (p.+p.y + + "
<y <m (K A P1x s Pk) (pl}\ Pya™® P ps}\.)
Obviously computational complexity of finding A(d*, 3%,1%,5%)
is 0(114). ‘When = 1{m) note that we have o fix the last (first)
-
two jobs suitably. Thus when 3= 1 or m the computationnl complexity

of the method reduces t© 0(112).

Remrk 5.3.1 ¢ When m=3, the above case 1 for A =2 reduces to the

new case III with q¢ = q' = 2 discussed in page 39 of this thesis.

Case 2 3 In the (n,/m/F/Fmax) problem, for some A, 1 { ALm

assume ABCD(Mu, M, M)\..1)’ 1 €u £vEA -1 and

FCD (M, , Mu), Au £ n-1.

: In this case, using Lemmzi- De2.4 é.nd Remnrk 5.1.5 we can prove
that the permutation (i*,j%, o, 1*) solves the (n'/m/F/Fma.x) problen
optimnlly if O is a permtation Olf jobs in N - €i%, Jj¥, l*}- and

4 (3%, 3%, 1*) = min{A(i,,j,l) | 1,3 and 1 are distinet jobs in m}

where

(1,401) = (o pat's podin Ee G

a(i,3,1) = max $ p.+ T DPol)* B Py=DPia- Pin e
1< ug A - ik e Jjk e N +1 1k~ Yi A NP,

http://www.cvisiontech.com

- 187 -

Case 2 In the (n/m/F/anX) probler, for some A, 1{ A n

assume BCD (Mu, 1\-5_1), 1<u<A-1 and AFCD(M)\, Mo, M),

)\S_ué VS m—-1.

Using Remarks 5.1.4 and 5.2.3 one can easily see that this cnse
can be solved by solving the reverse problem (1i/mR/F/‘E‘mL;1X) which

satisfies the conditions of case 2.

Remark 5.3.2 : Observe that the BCD and FCD conditions are stronger
than the AECD and AFCD conditions. Consequently the special structured
(n/m/F/Fmax) problems satisfying BCD or FCD conditions need lesser

computational effort than those satisfying ABCD or AFCD conditions,

Case 3 : In the (n/m/F/Fm-aX) problem, for some Aand A' such that

1 < MA' ¢ m assuae ABCD(Mu, M, 1‘6\—1)’ 1 <ugvg A-1;

BCD(Mu, MN_1), }\+1g ug A'-1 and AFCD(MN y M Mv),

A ug v {m-1,

In this case using Remark 5.1.5, Lemma 5.2.4-;md Lemmn 5.,2.7
observe that for an arbitrary permutation g = (g (‘}), vee, 0(n)) the
n-critical path Pn(o) passes through the cells (2, A) and (11—1, }\')
and is of type b of Figure 5.1.1 i;'l the columns restricted to the
machines Mu’ Adug A'. Thus if the first two and the last two jobs

are fixed then the remining (n-4) Jjobs can be optimnlly fixed as the

http://www.cvisiontech.com

- 188 -

Johnson's permatation of the two machine flow-shop problem

Al-1 At :
(= Mk y & Mk)’ restricting our attention to the remaining
k=X A+

(n-4) jobs when 1< A< A'< m. ILetn be o Johnson's permitation of

}_r__1)_!
the two machine flow-shop problem (b Mk 5 =B Mk) and
=\)\--{-—1

. denote the restriction of n to the set N - {i,jyl,s} of
1;)51,8

jobs. Now (i%*, j*, 1%, s*) solves this case optimnlly

5 3 * H
i%, 3%¥,1%,8%

for 1< A< A" <m if Fmax(i*, j*, n 1%, s%*)

1S L]
i%*, 3%, 1%,8%

= min s 1ys) 1 iy3,1 and s are distinct

=

} . g

ST E M3,y
jobs in N <

Observe that when N = m we have to choose the best permitation from

among the permtations of the form (i,j, ks j) where i#j and ni 5

b} 9
is the restriction of M to the set N - {i,j} . Similarly when

A= 1 we restrict our attention to the permutaiions of the form

('nl o7 l,s) where 1 # s.
b

Remark 5.3.% ¢ When m=3, case 3 of this subsection reduces to :

(i) case I with g=2 (page 28 of this thesis) when A=2 and

A= 3.

and (ii) case 11 with =2 (page 38 of this thesis) when A= 1

and A = 2.

http://www.cvisiontech.com

189 ~

Remark 5.3.4 ¢ Suppose that the conditions BCD (Mu, My 1),

M1 € u € N-t in case 3, are replaced by

"for some A" such that A< AT At~ 1 agsune FCD{H ’Mv)’

it

ALV A~ 1and BOD@, My,)y A"+ 1L UG N1,

This replacement provides o special sitructure with reference to the
machines M , A1 uN-1 ard this structure is similar to the lmown
case 2 in section 5.1. Further this replacement provides a generalisan-

tion of case 3% where the results of case 3 are still applicable.

Case 4 ¢ 1In the (n,/m/F/me) problem, for some A, 1< A< m-1,

assume ABCD (Mu, M, D'&..-*I)’, 1< ug \-rg A1 ang

FCD (Ml+1 , Mv) , M1V w1,

In this case we can prove that for an arbitrary two sided partinl
permitation (61, 02) with I 01 l =2 and]02 l = 1 the remnining n-3
positions can be optimally fixed as Johnson's permutation of the twe
machine flowl-sho;p problem (M e M?\-l— 1). Hence we can provide a method

with computatiomsl complexity O(n°).

http://www.cvisiontech.com

- 190 -

Case 4' : In the (n/m/F/qux) problem, for some A, 1 < A< m1,

assume BCD (M , My)y 1 &w (A1 and AFCD(MN_T, M M),

M1 u v Lm1. -

Cnse 4' can besolved by solving the reverse problem (n/mR/F/qux)

which satisfies the conditions of case 4.

Hemnrk 5.3.5 3 It should be observed from the discussions of this

subsection that one can comstruct many more special structured
(n/m/F/FmaX) problems of interest with the help of certain other

combinations of the BCD, FCD, ABCD and AFCD conditions.

5.3.2 Special Structured (n/m/F/f) Problems where £ # Bt

In this subsection we deal with specinl strucdtured flow-shop
problems when the objective function f is different from Fmax'
Further we assume that while solving the (n/m/F/f) problem, we

restrict our attention to the rnon-delay permutation schedules alone.

Cose I 3 Ma(mm@ﬁ)pmﬂwhfwsmwk, 1 < A m, assume

BOD(M, My)y 1 Su SA-1 apd F» (8, ,),

Under this case, using Remark 5.1.5, for any given permutation

el #= (‘E(‘i), ey n(n)), for every j, 1< J {n, there exists at

http://www.cvisiontech.com

~ 197 -

least one j-critical path Pj(n) of m such that Pj(n) is of the

type b' in Figure 5.1.1. For the given A, this Pj(7) passes through
the cells (1',71{), 1¢ k<A=-13 (I, A), 1< 1< 3 and (j,k), A+1< kg m.
Therefore, under the non-delay permutation schedule consistent with =
we have,

.] m

% i) =il= | + B + B Yk
(Tl (1)’ ¥ T['(J)! m) kg pﬂ(‘t),k S:T‘PR(S)’}\ k=A+1 pTl'.(J),K

pes (5.3.5)

Given a (n/m/F/f) problem, corresponding to the machine M}\
and a fixed job j in N, we define a single machine pfoblem denoted by

(=1 V14 . F f';f‘) As follows :
P)

- the set of jobs is given by Nj = N -fJ(f .
LA
- tﬂe processing time of job 1 -in Nj is Pyy
A
- fj is the objective function which is to be minimized over the

set of all non-delay permuitation schedules of the {n-1) jobs

S R A .
in Nj. £, is defined by T (n) =7f(jn) for an arbitrary

permtation n of the jobs in Nj.

Remark 5.3.6 ¢ If £ is a reguler measure of performance s0 is fj

' for every j ard A such that j is in N and 1 £ AL m

http://www.cvisiontech.com

- 192 -

Remark 5.3.7 3 Under case I, given a partial permtation © = (3)

finding an optimal completion of O in the {n/m/F/f) problem is

! ' A
equivalent to solving the (n-1/1/./fj) problem for an optimal
sclution. Thus solving n such single machine probleuws, we can get

an optimal solution of the (n/m/F/f) problem.

In the following we discuss specific objective functions f
for which the (n/m/F/f) problem‘uhder case I can be solved using the
known polynominl time complex algorithms for the related gingle

A
machine problemns (n~1/1/./fj }, for all j in N,

() Weighted sum of completion times cw(cs) ;

For an arbitrary permtation o = ((1), «eey 6ln)) the

weighted sum of completion times cw(o) is defined in (5.3.1).

Now for the given A and a fized j in N consider the
(n«1/1/./f;0 problem. Let T = (r (1), «eoyn(n-1)) be a
permutation of jobs in Nj' Using (5.3.5) in the definition of

A
fj we get,

fi‘(n) = Ow(jn) = K?+C*(‘E)
A m

A
where E'= (% po) (T w)+ & w % p is a
J oq 3 Ve Y 1w Y T

constant independent of ©n and

http://www.cvisiontech.com

(B)

- 183 -

2 n-1 : s
= B 7)3 is th s oht
¢ (n) x(s) (pn(l),}\) is the weighted
- 5= 1=1
sum of completion times corresponding to the non-delay permutation

schedule consistent with n in the single machine problem

(n-i/V-/f? %

*
How f,j (11) can be minimized by minimizing C (TE) and note
*
that € (n) can be minimized applying the rule given by Me-Naughton
i &
(1959). Then using Remark 5.3,7 the (n/m/F/Cw) problem can be

solved.

Number of tardy jobs NT(T) :

For an arbitrary permutation ¢ = (6(1), eesy, O (n)) the
number of tardy jobs NT(O0) is defined in (5.3.2). TFor the given
A and an arbitrary completion (j=x (1), ..., n(n~1)) of the

partial permutation (j), using (5.3.5) for 1< 1¢ n-1 we get
Tn(l) = max 'Lt(jn (1), vouyn (1); m) - dn(l) , o]—

= 5 - ad 0
m{sx% Pre)sn ™ %na) 7 0

where
! m A
n() T %) TP L PaG)e T D Py v 181

(5.3.6)

http://www.cvisiontech.com

- 194 -

For the given Aand a fixed j in N, hote that (5.3.6) provides a
new set of due dantes associated with jobs in Nj' Now, for an

arbitrary permutation n of the jobs in Nj we have
A Gl
fj(n) =D(Tj)+NT(n)

wiere P (x) = 0 or 1 according as x £0orx > 0;

B = max{t(j;m)-d.,o};
J . J

and ¥T () is the number of tardy jobs corresponding to the
non-delay permtation schedule consistent with n in the single

A ‘
mchine problem (1‘1—1/‘!/./}?j) with new due-dates given by {5.3.6).

Kow P (TJ) beirng independent of =, we can minimize f;'()
by minimizing NT*(x) which can be done by the rule given by

Moore“ (1968). o

(¢} Maximum penalty on tardiness MPT(O) 3

For the given A and a fixed j in N, define through (5.3.6)
new due dates d.]J_ for every 1 in Nj. Fow for an arbitrary

permutation n of the jobsrin Nj’ we ci:m show that
A
£5(x) = max{ nn), et () §

. Ea ol ,
where Tj is as given in (B) and MPT (7) is the maximum pennlty

on tardiness for the non-delany permitation schedule consistent
: ' 5

http://www.cvisiontech.com

- 19 -

-

A
with n in the single machine problem (11—1/1/./:63.) with due
- dates di . Now this single mchine problem can be solved usiig

the method given by Lawler (1973).

The above problems discussed under (A), (B) and (C) were solved

by Arthanari (1974) when A= 1 or m.

Case II ¢ In a (n/n/F/f) problem, for some A, 1 < A m assume

AB,CD(Mu, M, IVB_,I), 1¢ u€ v< A-1 and FCD (MA, Mv),

ALv <m1.

Under this case, using Remrk 5.1.5 and Lemma 5.2.4, for any
given permutation m = (If(‘l), evey B(n)), for every j, 1 £J £my
there exists at least one Jj-critical pafch Pj (Ti) of n such that Pj(n:)
preses through the cells (1,X), 2< 1< J and (3, X), M1 ¢ kg m

Consequently under the non-delay permitation schedule consistent with

n 4 we have

t(m(1), ...,m(j);m) = t(n(1),1§(2);}\)+ b pl'i(]_)h
1=3 *

m

* B Dog. (5.3.7)

for every j such that 3 < Jj £ n.

http://www.cvisiontech.com

- 19 - v

Given o (n/m/F/f) problem, corresponding to the machine, M,
and a partial permutation ¢ such that | 0| = 2, we define a single

A
machine problem denoted by (1'1-»2/1/./1‘G) as follows @

- the set of jobs is givenby o =8 -0 .
- the processing time of job 1 in O is Py 3

-~ £ 2(n) = £(On) igs the objective fumction defined over tke

get of all permuta'tions % of the jobs in O .

Remorks anslogous t0 5.3.6 and 5.3.7 can be written for the
present case as well. Thus for the,gi_ven Ay by solving the related
ﬁ(n—‘i) single machine ‘pr;blems (n-—2/1/./f6)\)_ corresponding to the
n(n-1) partinl permtations ¢ with |6] =2, we can solve the

(n/n/F/f) problen under case IL.

Let O’-“-=..(_ (1), G_(.2-))-and = (n(1); «uey 1 (n-2)) be arbitrary

partial pem;tations such that O ﬂn= Z. Now for the objective func—~

tions discussed in (A'), (B) and (C) of case I, the corresponding

fc};(n) can be rewritten under case II using {(5.3.7) as follows @

(1) £Mn) = K2+ (n)

a
where
ot A
kg = g(q) kir?.-?(’)’k ft(0(1),°(2);)\) (JEij - (1))

m
+ 5 w, (=

is o constant independent of =,
sen 9 ke M

pj,k)

http://www.cvisiontech.com

- 197 -

n-2 3
*
id C(n =) z is the weighted sum of
ar (m) .ﬁ wn(g) (> pn(s), h) 8 welghted sum o
i=1 s=1
completion times corresponding to the non-delay permmtation

schedule consistent with n in the (n.-2/1/../f§‘) problem.

A i * o
(B) £ (m) = 9(T0(1)) + D(To(z)) + NI ()
where O (x) is as defined in (B) of case I; 'T0(1) and To(z) are
) *
defined as usual; and NT (%) is the number of tardy jobs

corresponding to the non-delay permutation schedule consistent

with = in the (n-2/1/./f ;‘) problem with due date

it
6]
) =d - T p . -t(o(1),00@;A) ... (5.35.8)
1 1 k=21 - 1,k _

for 1 in G.

= T (m
(c) L, (x) mﬂx{ho(.l) (To'(.l))s h5(2) (To(z)), MpT (7)
' +
where T o(1)? Tc(?_ y are defined as u.sual and MPT (*) is the
maximam pemalty on tardiness for the non-delay permutation
: ' N
schedule consistent with n in the (1".1-2/1/’./1‘G) problem with

due dates as given in (5.3.8)‘.

fc}; (n) can be minimized fOr_ the above cases (A), (B) and (C)

b 4
by minimizing the C (%), NT'(%) and MPT*(©) respectively.

http://www.cvisiontech.com

REFEREECES
Actuthan, N.R. (1977) ¢ “A special case of the (n/m/F/Fmax) problen';

Opsearch, vol.i4, pp. T1-87.

Achuthan, H.R. (1978) + "Some speéial cases of the (1’1/3/F/Fmax) nroblen',
Teck. Report Ho. SQC-(R 1/78, Indian Statistical Ingtitute, Coicutta,

India (submitted to Opsearch).

Achuthan, X.R., Grabowski, J. and Sidney, J.B. (19782) ¢+ MOptimal
‘fiow-shop scheduling with earliness and tardinegs penalties,’
. Pech. Report No. SQC-OR 3/78, Indian Statistical Imstitute,

Galcutta, India (submitted to Opsearch).

Achuthon, N.R. and Ghosh, D.T. (1979) : “Heuristic rules for the
(n/3/F/F£aX) problem”, Tech. Report No. SQC-OR 1/79, Indian

Statistical Institute, Calcutta, India (submitted to Opsearch).

Aho, A.V., Hoperoft, J.E and Ullman, J.D. (1974) : The design and

amlysis of computer algorithms, Addison-Wesley, Reading, Mass.

Arthonari, T.S. and Mukhopadhyay, A.C. (1971) s "A note on a paper by

Wo SZWQ.I‘C", Nm. ReS. Ilog. Quarto, VOl. 18, ppo 135"’138.

Artbhonari, T.S5. (1974) ¢+ On some problems of gequencing and £rouping,

Ph.D. thesis, Indian Statistical Institute, Calcuttd, Indin.

Ashour, S. (1970) : "An experimental investigation and comparative
evaluation of flow-shop seguencing techniques", Opn. Res.,

vol. 18, pp. 541-549,

http://www.cvisiontech.com

Baker,

Boker,

Brown,

Bruno,

- 199 -

K,R, (1974) s Introduction to sequencing and scheduling,

John Wiley & Sons, Inc,, N.Y,

K.R, {1975) ¢ "An elimipation wethed for the flow-shop problen',

Opn. Res., v0l.23, pp.159-162.

A.P.G. and Lomnicki, Z.A. (1966) : "Some applications of the

"branch-and-bound* algorithm to the machine scheduling problen',

Opnl. Res. Quart., vol. 17, pp. 173-186.

J., Coffman, JR., E.G. and Sethi, R. (1974) : “Scheduling
independent tasks to reduce mean finishirg time", Comm. ACM,

vol.17, pp. 382-387.

Burdyuk, V. Ya. (1969) : "The m-nachine problem (m > 2)", Kibernetika,

Burns,

Burns,

voi.S, pp. T4-76.

F. and Rooker, J. {1975) : ™A special case of the 3 x n flow-shop

problen", Nav. Res. Log. Quart., vol.22, pp. 811-817.

F. and Rooker, J. (1976) : "Johnson's three~machines flow-shop

conjecture", Opn. Res., vol.24, pp. 578-580.

Campbell, H.G., Tudek, R.A. and Smith, M.L. (1970) : "A heuristic

algorithm for-the n job, m machine sequencing problem",

Mdnagement Sci., vol.16, pp. B630-637.

Coffmn, JR., E.G. (ed.) (1976) : Computer and Jjob shop scheduling

theory, John Wiley & Sons, N.Y.

http://www.cvisiontech.com

- 200 -

Conway, R.W., iaxwell, W.L. 1nd Lijler, L.W. (1967) Theory of

scheduling, Addison-Wesley, Reqdlng, Mﬁss.

Cook, S.A. (1971). ¢ "The complexity of theorem-proving procedures',

Proceedings of the third ammal ACH svaOS1um on tbepry'of‘

computing, pp. 151-158.

Dennenbring, D.G. (1977) ¢+ "An evaluation of fiow-shop sequencing

Dudek, R

Dudek,

Garey,

Garey,

Garey,

heurigtics", Management Sei., vo0l.23, ﬁp. 1174-1182.
y

A+, Panwalkar, S.S. and Smith, M.L. (1975) : "Flow-shop
sequencing with ordered processing time matrices", Managemeht

&
Scio, v01021’ PD. 544-5490 .

R.A., Panwolkar, §.S. and Smith, M.L. (1976) : "Flow-shop
sequencing problem with ordered processing time matrices ¢ A

general case”, Nav. Res. Log. Quart., voi.23, PpP.481-486.

M.R. and Johnson, D.S. (1975) "Gomplexifj resulis for milti-

processor schgduling under resource constraints", STaAM J. comput.,

vol.4, pp. 397-411.

M.R., Johmson, D.S. and Sethi, R. (1976) : "The complexity of
flow-shop and job-shop scheduling', Math. Opns. Res., vol.1,
pp. 117-129, ' ‘

M.R. and Johnson, D.3. (1979) : Computers and intractibility

a guide to the theory of NP-completeness, Freeman.

http://www.cvisiontech.com

= 20 =

Giglio, R.J. and Wagner, H.k. (1964) : "Approximate solutions to the

three-machine scheduling problem", Opns. Kes., vol.12, pp.305-324.

Gonzalez, T. and Sahni, S. (1978) : "Flow-shop and job-shop schedules :

Complexity ard approximation', Opns. Res., vol.26, ppn. 36-52.

Grabowski, J. and Syslo, M.H. {1975) : "New solvable eases of m-machine
and n-element sequencing problem", Zastosowania Matematyki,

Aplicationes mthematicae, vol.14, pp. 599-606.

Gupta, J.N.D. (1975) : "Analysls of a combinatorial approqch t0 flow-shOp

scheduling problems", Opnl. Res. Quart., vol.26, pp. 431-440.

Gupta, J.N.D. (1975a) : "Optiml schedules for special structure

flow-shops", Nav. Res. Log. Quart., vol.22, pp. 255-269,

Gupta, J.N.D. (1976) : "A review of flow-shop scheduling reseanrch",

U.S. Postal service, Washington, DC, 20260.

Horowitz, E and Sahni, S. (1978) ; "Combinatorial problems : Reducibility

and approximetion", Opns. Res., vol.26, pp. 718-759,

Hutchinson, G.K. and Szwarc, W. (1977) : "Johnson's approximate method
for the 3 x n job shop problem", Nav. Res. Iog. Quart., vol.24,
pp. 153- 157.

Igmll, E. and Schrage, L. (1965) : ‘'"Application of the branch-and-bound
technique to some flow-shop schedul ing problems", Opns. Res.,

vol.13, pp. 400-412.

http://www.cvisiontech.com

- 202 -

Johnsor, S.M. (1954) ¢ "Optimal two and three-stage production schiedules

with setup times included", Nav. Res. Log. Quart., vol.1, pn.61-68.

Karp, R. (1972) : "Redueibility among combinatorial problems", Complexity

of computer computations, pp.85-104, Miller, R.E. and Thatcher,

J.W, (eds.), Pienum Press, N.Y.

Karp, R. (1975) : "On the computational complexity of combinatorial

problems'", Networks, vol.5, pp. 45-68.

Kernighdn, B.W. and Plauger, P.J. (1974) : The elements of programming

style, McGraw- Hill, N.Y.

XKmth, D.E. (1973) : The art of computer programming, vol. 3, Addison-

Wesley; Reading, Mass.

Lageweg, B.J., Lenstra, J.K. and Rimmooy Kan, A.H.G. (1978) + ™A general
bounding scheme for the permutation f£1ow-shop problem", Opns. Res.,

v0l.26, pp. 53-67.

Lakshmanan, R., Iakshminarayan, S., Papineau, R.L. and Rochette; R.({1978):
"Optimnl single machine scheduling with earliness and tardiness

penalties", Universite du Quebec a Trois- Rivieres.

Lawler, E.L. (1973) : "Optimnl sequencitng of = single machine subject

1o precedence constraints", Management Scie.y, v0l.19, pp.5d4-546.

Lenstra, J.K., Rimmooy Kan, A.H.G. and Van Emde Bas, P.(eds.).(1978) G
Interfaces between compuicr science and operations research,

Mathematisch Cenirum, Amsterdam.

http://www.cvisiontech.com

= 203 -

Lenstra, J.K., Rinnooy Xan, A.H.G. and Brucker, P. (1977) : "Complexity
of machine scheduling problems'’, Aun. Discrete Math. vol. 1,

Ppe 343 - 362.

ILenstra, J.K. (1977a) : Sequencing by enumerative methods, Mathematical

Centre Tract 69, Mathematiseh Centrum, Amsterdam.

Tommicki, Z.A. (1965) ¢ "A branch-and-bound algorithm for the exact
solution of the three-mnchine scheduling problem", Opnl. Res. Quairt.

VOl. 16’ ppo 89_ 1000

McMahon, G.B. and Burton, P.G. (1967) : "Flow-shop scheduling with the

branch-and-bound method", Opns. Res., vol.15, pp. 473~ 481,

McNaughton, R. (1959) : "Scheduling with deadlines and loss functions",

- Menngement Sci., vol.6, pp. 1= 12.

Miller, R.E. and Thatcher, J.W. (eas.) (1972) : . Complexity of computer

computations, Plenum FPress, N.Y.

Moore, -J.M. (1968) : "An n job, one machine sequencing algorithm for
minimizing the number of late jobs', Management Sci., vol. 15,

pp. 102 - 109.

Nabeshima, I. (1961) : "The order of n items processed on m machines",

Jv Opns. Res. Soc. Japan, vol.3, pp. 170=-175 and vol.4, pp. 1-8.

Nabeshima, I.(1977) : ‘'Notes on the analytical results in flow-ghop
scheduling problem”, Parts 1 and 2, Reports of the University of

El ectro-Communications, vol.27, pp.245-252 and 253-257.

http://www.cvisiontech.com

- 204 -

Page, E.S. (1961) : "An approach %0 scheduling jobs on machines", J.Roy.

Stat. Soc., series B, vol.23, pp. 484 - 492.

Palmer, D.S. (1965) : "Sequencing jobs through a mlti-stage process in
the minimw total time - A quick metHod of obtaining a near optimum",

Opnl. Res. Quart., vol.16, pp. 101 - 107.

Romamirthy, X.G. and Prasad, V.E. (1978) : "Some classes of flow-shop
problems", Discussion paper no.7821, Indian Statistical Institute,

Delhi Campus, India.

Rinnooy Kan, A.H.G. (1976) ¢ Machine scheduling problems : Classification,

complexity and computations, Nijhoff, The Hague, Netherlands.

Sidney, J.B. (1977) "Optimal single-machine scheduling with earliness
and tardiness penalties, Opns. Res., vol.25, pp. 62-69.

Smith, W.BE. (1956) : "Warious optimizers for single-stage production",
Nav. Res. Log. Quart., vol.3, pp. 59-66.

Szwarc, W. (19%68) : "On some sequencing problems", Nav. Res. Log. Quart.,

vol.15, pp. 127-155.

Szwarc, W. (1971) : "Elimination methods in the m x n sequencing problem",

Nav. Hes. Log. Quart., vol. 18, pp. 295-305.

Szwarc, W. (1974) : "Mathemntical aspects of the 3 x 1 job-shop sequencing

problem", Nav. Res. Log. Quart., vol.21, pp. 145-153.

http://www.cvisiontech.com

- 205 -

Szwarc, W. (1974a) : "A note on mathematical aspects of the 3 x n job-shop

sequencing problem", Nav. Res. Log. Quart., vol.21, pp. 725-726.

Szware, W. (1977) "Optimnl two-machine ordering in the 3xn flow-shop

problem", Opus. Res., vol.25, pp. TO=77.

Szwarc, W. (1977a) : '"Special cases of the flow-shop problem", Nav. Hes.

logo Quwt., V01-245 pp- 483—4920

Sgware, W. (1978) 3 "Permutation flow-shop theory revisited", Nav. Res.

log. Quart., vol.25, pp. 557-570.

Szwarc, W. (1979) ¢ "The critical path approach in the flow-shop problem',

Opsearch, vol.16, pp. 96-102.

Ullman, J.D. (1975) : "NP-complete scheduling problems", J. Comput. Syst.

SCi-) VOl. 10, ppl 384_393.

Ullman, J.D. (1976) : "Complexity of sequencing problem", Computer and
job-ghop scheduling theory, pp. 139-164, Coffman, JR., E.G. (ed.),

John Wiley & Sons, N.Y.

Wagner, H.M. and Story, A.E. (1963) : "Computatiomnl experience with
integer programming", Industrial scheduling, pp. 207-212, Muth, J.

and Thompson, G.L. (eds.), Prentice-Hall, Englewood Cliffs, N.J.

-~
L] ’.ﬂ'}

.
2 .
LI T
’ H ’ﬂw?“o-.-..hu.'.-

http://www.cvisiontech.com

	front.pdf
	acnowledge.pdf
	cont-1.pdf
	cont-2.pdf
	i.pdf
	ii.pdf
	iii.pdf
	iv.pdf
	v.pdf
	vi.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf
	32.pdf
	33.pdf
	34.pdf
	35.pdf
	36.pdf
	37.pdf
	38.pdf
	39.pdf
	40.pdf
	41.pdf
	42.pdf
	43.pdf
	44.pdf
	45.pdf
	46.pdf
	47.pdf
	48.pdf
	49.pdf
	50.pdf
	51.pdf
	52.pdf
	53.pdf
	54.pdf
	55.pdf
	56.pdf
	57.pdf
	58.pdf
	59.pdf
	60.pdf
	61.pdf
	62.pdf
	63.pdf
	64.pdf
	65.pdf
	66.pdf
	67.pdf
	68.pdf
	69.pdf
	70.pdf
	71.pdf
	72.pdf
	73.pdf
	74.pdf
	75.pdf
	76.pdf
	77.pdf
	78.pdf
	79.pdf
	80.pdf
	81.pdf
	82.pdf
	83.pdf
	84.pdf
	85.pdf
	86.pdf
	87.pdf
	88.pdf
	89.pdf
	90.pdf
	91.pdf
	92.pdf
	93.pdf
	94.pdf
	95.pdf
	96.pdf
	97.pdf
	98.pdf
	99.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf

