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Introduction

This thesis makes an attempt to consider and provide solutions to
some problems of what may be broadly desc¢ribed as specification and statis~
tical inference in single equation llnea.r regression models. It is divided
into three partse. The first part (1.e., Part I) deals with same- problems
connected with the Box—Cox transformation of varlables. The other two
parts (1.e., Parts II and III) are devoted to considerations of autocorre~
latod linear regression models where the error term oonsists of two compo-
nents. While the studies in Part II are concerned with large sample test~
ing and estlmatlon, those in Part III centre around a Monte Oarlo investi-

gation. of small-sample 'properti,es.‘

In fhe clagsical lmea.r regression modei one ‘.é.gvsuines-inwgg alia
that (i) the trielationship between the regressand (y) and the set of
regressors (x's i.e., Xy9 Xy eees xk) is lineér and (ii) the disturbances
are nonrautocorrelated. As regards assumption (1) s one might argue that
there is no reason why a linear relationship rather than some nonlinear
relationship should always provide the best fite In fact, quite often
one uées different nonlinear relationships eege, .semi-log, double=log,
log-inverse etce, in empirical wopk,_vThe choice of a specific functional
fom is genei’a.lly guided by the researcher's percept'ion about the nature
of the relationship derived from preliminary analysis of the sample data,
knowledge acquired from previous studies or indications given by the
underlying theory. However, such a priori and/ or to some extent arbitrary
choice about the functiona.i fom is noi; ‘always quite_ satisfactory since

there might exist other forms of rela.tionéhips which would fit a given
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data betters The Box=Cox transfcrmation attempté tc provide an unified and
satisfactory approach of tackling this problem. It suggests a systematic
procedure of choosing the*particula.r power transfox_métion of the original
-;ariables which would fit a given set of data best. However, it appears
thot even this approach of chooslng nonlinear rclationships between y
and the x's is not fully satisfactory since in the Box—Cox tr'mofomatlon
it is assumed tha’c there exists a value of the transformation p@rameter A
for which y( ) (the transformed valwe of y as per the Box—Cox transforma~
tlon) and the x s} x (A )'s (the Box~Cox transformed values of the x's)

satlsfy the following desirable cond_ltmns :

(\) |

(1) the I‘t..la'blOI’lShlp between y and x's‘ x( )'q is linear,

(11) the efrror mrlame ls the sanie across ﬂbservatlonSy
and (111) the distribution of the error is normal.
There have becn sbme attempts to rela.x.th/ese assuinﬁ%ions: sepa.ratelya' 3‘1\
our oplnlon, however, these ex’cens:.ons of the ch—Cox (transformatlon) "100.\-5‘
are not qulte satlsfactory and therve 13 gerious’ necd of further wo:ck in
this area. In Part I of this thes:Ls ‘we have tried to dea.l with such prob—
lem's'. In Chapter 1, we present a survey of the lrberature on the Box=Cox
transf ormation and in.the next three_Qhapter‘s we “tackle_ the problems of
heteroséééé,sficity ’ au’toclorrelatedness_::mda-nbhnoi'mdiify in the context
of reasonable:extensions of the "Bo;;-.Coxv_.model-. It has also been shown
in Chapter 4 that Wobin's limited da;)endent»miabi‘é model can be looked
nnon as a spoola.l case ‘of the Box~Cox model under the assumptlon of a

truncated distribution for the errors. Also, cur treatment of the Box=Cox

model with nonncrmality (more specii‘icelly,kj_ijbh truncated normality) anc
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heteroscedasticity provides a gencralization of Tobin ~model to a hete-
roscedastic situation.

We may now outline the work doﬁe in Part II of the thesis. So far
as the assump.tion of uncorrelated disturbances .in the. standard linear
regression model is concerned, it has been recognized for a long time that ‘
this is quite a restrictive assumption and that in many situations succe-
ssive disturbances é,re likely to be correlated, particularly in time series
datas The literature on how to detect the presence of aui;qcorrel‘at:i_.on and
how to estimate the. parameters of the model efficiently in case the dis~
turbances a.re found to be autocorrelated is {rolumincus and is still
growings However, in.all these studies the dismbancg
term is considered as having a single component which follows eege, first
order autoregressive process (AR(1)), when there is ’autocorrélaﬁtion. It
is, however, recognized that the disturbance or the error term in a
linear regression model compr:.ses a' mumber of components representing the
effects ol misspeclflcatlon, erru.s-ln-observata.on etCe,y. all or -some of
whlch may be autocorrelated. In fact, for a nisspecified model, it can
be easily shown that there are two -components in the disturbance ferm =
one due to misspecification and the other, the disturbance tem associated
with the true regression cquations Obviously,. aqfi;ocqrrelation 1n such
models can be due to autocorrelation in both the components or due to
autoco:cr-elat‘ion in one of them, while the other cqnpénent is present but
norr-autocorfeiated. It can be shown that m such situations sta.nda:r:d
methods of estimation (like Cochrane—Orcutt or Prals-W:Lnsten) no longer

these
remain appropriate as one or more of the preperties cliaimed f or[est:mators
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xii

a.re loste It, therefore, seaus desirable to have a fresh look_at the
autocorrelated lj.near regression model in the light of the above observa—
tionse This ie w’nat has been attempted in Part IT of our thesis. There-
we consider. an autocorrelated lineax regression model where the error
term has been decomposed into two components and examlne the problems of
‘esti_'mation of the pa.remeters and identification of situatiorﬁm terms
of whether an observed autocor:celation in the distmr‘oances results from
one or both of the components being autocorrelateds Af tez-'vp:éesenting a,
survey onithe ‘J.:elated literature in the first Chapter (J..e., Chapter 5)
of this Part, we pass on to consider and -pr.ovide large sample solutions
to be problems of statistical inference in the abovwmentioned model- for
two types of error processes.In Gmpter 6iwe assume each of the components
to follow AR(1), whlle in Chapter 7Ty each component is assumed to follow an
ARMA(1, 1) process.‘ If one of the two components has J.ts origin in mis=
spec:.f:.catlon of the regresslon equation, our procedures for identifica=
tion mignt enable us to decide w..ether or not J__n_a given situation mis—
specification is pnesent and,/ or whether or r,.f)t 1t is contributing to
autocorrelation. The methods of estimation natura.lly depend on the
results of the identificetion procedurese B
Finally, we come to the investigations reported in Part III. When
in an actual appl:.cat:.on the error term of a linear regress:.on model is
" found to be autocorrelated, one often assumes the errorg to follow an
AR(1) process end"then;uSes the standard :L_',eestimation procedures
(Cochrane=Orcutt ‘et.c.). Analytical results bearing on the small=sample

properties of these estimétors are he.rdly available but there have been
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x; 22

some Monte Carlo studies 9n the performance of these estimators in small
samples. However, no small=sample result seems to be available if one

is interested in the perfomance of the reestimation methods in situations
where misspecification is present and may contribute to the autocorrelae~
tion of the distqrbances. The available large sample results for such
situations indicate that these reestimation methods no longer yield even
consigstent est:’mafes of the regression coefficients excepting for a
special case. Also, the error term in such cases usually does not foiiorw
AR(1) Process even if each of the components is AR(‘!) or one component is
s0 while the other :_i.s randome Hence the use Qf standard reestimation
methods generally give inefficient estimates. in the presence of misspeci=
fication. We have carried out a Monte Carlo study to investigate howA |
these conver';tional reestimation methods perform in the presence of mig~
specifications In Part III of this thesis we have reported these results,
Such Monte Carlo studies are importan’p because, as a.iready mentioned, the
. reestimaicion methods are used in situations where autocorrelation is
observed without paying any attention to the possible sources of auto~ ..
correlation which have a bearing on the properties of the ‘reestimation
methodse The first chapter of this Part (i.e., Chapter 8) explains the
motivation for such a study and sumarizes the results of earlier Monte
Carlo studies on autocorrelated linear regression modelss In the next
Chapter (i.ee, Chapter 9) we work out somé large semple properties of
some staﬁ'dard methods of estimation in a misspecified regression model
with errors being autocorrelateds In this Chapter we also briefly des—

cribe the different reestimation methods like that of Cochrane=-Orcutt,
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Prais-Winsten, Durbin's two-step, Hildreth~Lu search procedure etce The
DTET BWO E?é.p*&iﬂ:s \2eeey Urapters 1V and 11) present the resulis of the
Monte Cérlo study ccrried out ty the author. Chap‘ter’1 O is confined %o
the description of the plan and scope of the eimeriment, and Chapte:& 11
sets out the actual results of the experiment thi‘ough statistical tables.
Detailed derivations of some of the mathematical results used in
some of the Chapters are appended to these Chapterse In the Appendix to
Chaivter 11 ".'é present a number of statistical tablesg givi_,ng“fuz:ther

details about the results of the Monte Carlo study.
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Abgtract

This thesis attempts to consider and provids solutions to what
mnay be broadly described as some problems of specification and statis—
tical inference in single equation linear regresssion models. It con—
sists of three paris, each having several clopters. The first part is
devoted to some problems connected with the use of the well=~known
Box=Cox (BC) transformation of variabies in single equation regression
models. In the other two parts we examine an autocorrelated linear
regressioﬁ model from a rather unconventional angle. Precisely, we
consider the problems which arize when the error term in an autocorre—
lated linear regression model is viewed as decomposed into two additive
‘Ccmponents, one of which may arise due to misspecification wh;le the
other may be the true disturbénce. The second part deals with the
analysis of such situations in large samples and the third part dis-
cusses the results of a Monte Carlo experiment comparing the perfor—
mances of differert estimators in small samplese.

There are four chapters in the first nart of which the first
7 Chapter is devoted to critically reviewing the literature on the Box=Cox
transformation. Box and Cox (1964) proposed a family of power trans—

formations of the dependent variable (y) in = regression model defined as

N |
N L}\—1 iEAAO
y = ‘ _
iny ifAN=0.

They assumed that there exists a A for which the>transformed dependent

()

variable ieeey ¥y will be a linear function of the regressors (or
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siﬂiila.rljf of the transformed regressors) and that the disturbance term in
the transformed linear regression will be homoscedastic and normal. They
also suggested maximum likelihood (ML) method of estimation for such
transformed linear regression models. Subsequently, a number of studies
have been made in order to examine the robustness. of the ML procedure
suggested by Box and Cox and/or generalizing the BC transformation by
incwpox;ating the problems of heteroscedasticity, autocorrelation and
nonnormality. There are also some studies on ‘the use of the BC +transformare
tion in simultaneous equations systems. and in applied econometri€ worke
Our review gives an account of these studies and notes their important
limii:ations,particularly those which are relevanf to our research. We
have also indicated the relationship between the BC transformation with
truncated normality of the disturbances and Tobin's limited dependent
variable mode_l .in this chapters, |

In Chapter 2,iwe consider the problem of heteroscedasticity in
the con'r,;xﬁ: ur the Box~Cox transformation. It hes been shown by
Zarembka (1974) that the ML method of estimstion suggested by Box and
Cox is not robust to heteroscedasticity. This led Zarembka (1974)_,
later Egy and Lahiri (1978) and Lahiri and Egy (1931) to try to incorpo-
rate heteroscedasticity in the BC model. For thie purpose Zarembka
assum.ed

(y;) =o° [E(yi)] B

where 02 is an unknown parame;cer and h is a known c0nstant. Lahiri
and Egy (1981), on the other hand, considered the structure for variances

AN

'sas
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V(y:?\)) = 02 m?

where mi's are exogenously given and h é,nd 02 are unknown parameters.
Methods of estimation have also been worked out by these authors for the
assumptions about variance stated above. Limitations of their assumptions
(and hence of the éxtensions of the Box~Cox model in this direction) have
been noted in the first as ‘well as in this Chapter. It may, in particu=
lar, beé noted that Zarembka asgsumed the heteroscedasticity paramefer to
be known 4nd that fbhe estimator suggested by him is only approximately
consistent but no*t':efficient. Lahiri and Egy (1981), on the other hand,
avoided the complications created by the transformation itself by d_u:ectly
as,sumlng a structure for the variance of y( ) rather than for that of Vi
We f_lrst note that the power transformations proposed by Box and
Cox would not, in general, lead to homoscedast:r.c:.ty of dJ.s'lmrbances. Thig

is obvious from the well=known approximation

v(yg’*)) ~ V(y,) [E(C'i)] -2

which shows that the heteroscedasticity in yg\) depends on the transfor—
mation parameter A and also on the heteroscedasticity in the original
values of the dependent miable. Bven if V(yi) is constant for all

N

i (= Ty 25 eeeey N)y ¥y would, in‘genera.l, be heteroscedastic. We

consider the following two structures for variance of y; ¢

(1) ¥(v,) 02-[E(yi)] B
02 ml? .

The first assumption is the same as that of Zarembka; however, we assume h

and (ii) V(y,)

to be unknown. The second assumption was made by Lahiri and Egy for V(yg\),)
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and not for V(yi). We suggest ML methods of estimation forlsuohﬁmodels.
For the purpose of obtaining the ML estimates :te have proposed two'metho&
The first method involving a scarch over N\ and h is not new.’“lt»has been |
used, for example,zby Lahiri and Egy for their model. The other;m@thod

" developed by us is simpler and can be used to obtain'the ML estimates by
gearching over A only. Ve have also - shown how llkellhOOd ratio, (LR) testsg
can be used to 1dent1fy different sltuatlons in terms of the transforma—
tion parameter and the parameter representing the heteroscedasticity in
the transformed llnear regression models Among other thlngs, such tests of
hypotheses help us in know1ng if for a given data, the generallzatlon of
the BC model suggested by us is better than the original BC model.‘Ne have
ralso illustrated the appllcatlon of our methods of estimation and testing
of hypotheses to two sets of emplrlcal data. For one of the examples we
found “that the log—llkellhood value for our generallzed BC model was much
higher than that for the original BC model. For the other example, how=—
ever, this was not so, and apparohtly the data represented a situation
almost satisfying the assumptions made by Bo: and Cox.

Chapter 3 is concerned with the generallzatlon of the BC model to
take account of autocorrelation in the dlsturbances. ‘This generalization,
however, differs from that of Savin and White (1978) who were the first
to incorporateiautocorrelation in the BC model. Saviﬁand.White did‘this
in a very straightforward manmer by assuming ah AR(15 process for the
disturbances (ei's) of the transformed linear regiessioh model without
taking into consideration the complicatlons créated by the transformation

itself. However, it can be séen from the approximate relation
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covlyg™ s y$V) ooy, v)) 18y By 1 T
1y J =19 25 eeey n
that the variance-covariance matrix of e, apart from being dependent on
that of yifs,depends also on As  Our approach is baéed on this relation,
and may be considered more reasonable and appropriate since it takes into
account, in particular, the transformation parameter in addition to the
variances and autocovariances of the original observations on the.depen-
dent variable in forming thebvariance-covariance matrix of the transforﬁca
dependent variable. Furthermoré, our approach can also accommodate
heteroscedasticity. In fact, we have introduced heterosce&astiéity nof
only for the transformed dependent.variable but also for the original
dependent variable by assuming that |
V(yl) = 02 [E(yi)]h', where o2 and h are unknown.’

It is shown that the Savin and White formulation comes out as a special
case of ocur model and hence our treatment could be considered more general
than that of Savin and White. |

For estimation of this modelywe have suggested the ML method and
have indicated how such estimates could be oﬁtained. We have also indi-
cated how LR tests can be used to identify different situations in terms -
of the transformation Parameter and the parameters of autocorrelation and
heteroscedasticity including the gituation considered by Savin and Whites
We have further shown that the ML estimate of the transformation,parametef
and hence of other parameters in the model will not be consistent if “the

disturbances in the model for the transformed dependent variable actually
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have a structure of variances and.autocovariances different from that
assumed by Savin and White.

v In Chapter 4, we have considered nonnormality along with heterosce=
dasticity of the transformed dependent varizble in the Box=Cox type of
set~upe. It is cbvious from the definition of the transformation that for
the transformation to be meaningful, y shouid be > 0O, This in turn
imposes obviouS‘restrictions on the range of values which can be assumed
byyo\) : y(x)> i{- if K)O,tbut’y(.)\)'<-l if A <O, It is only

A
when A = O that y(x) can have the range of a normal variable. Poirier

(19782) considered this problem and suggested méximum,likelihgod-method
of estimation assuning the distribution of ygx)'s (i =1y 2 eeeey 1) .
to'bevtruncatéd normal, the truncation point depending on the value of A
'(i.é;, whether it is positive or negative). He, however, retained +the
homoscedasticity assumption for the variance of the disturbance ferm. We
have already argued that apart from the possibility of heterbscedagticity

in yi's, the BC transformation itgelf leads, in general, to heteroscedag~

ticity in y§x)'s. We, fherefore, extend the Box~Cox procedure by treating
the distribution of ygk)‘s to be truncated normal with unequal variances
across observations,'lsgch’an extension is all the more important since

it has already been shown by Draper and Cox (1969) and vy Zarembka (1974)
that the Box=Cox method of estimation is not robust to non-symmetrid
distributions = which a truncated normal distribution obviously is =

and to heteroscedasticity. We have made two alternative assumptions about

the variance of the original observations (i.e., yi's) H
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i

(1) ¥(;) = o®n}

[ ]"

where 02 and h are unknown for both the assumptions and mi's are

and (i1) Vv(y,)

exogenotis and known,
It should be noted that when A=1, the BC model with‘a truncated
. distribution (say, in particular, normal) is nothing but ATobin's limited
dependent variable model excepting for unity being added to the constant
term and the (known) truncation point being the same for all the obsecrva-
tionse Hence by incorporating heteroscedasticity together with truncated
normality in the BC model, we have also extended the Tobin model in the
direction of incorporating heteroscedasticity in the disturbancess Since
Tobin model hag c;nnsiderable interest and applicability, we have firét
considered the extention of Tobin model (to be referred to as generalized
limited dependent variable model (GLDVM))and then proceeded to the BG
model with our generalizations (%o be referred ‘to as Box=Cox nonnormal
heteroscedastic model (BCNNHM)).
Our main results in this Chapter can be summarized as follows :
(i) Under the assumptién that_v(y'i) = 02 mli1 » the ML equation for
GLDWM has a str‘ong' ccnsistent roote We have also extended
Amemiya'é method of obtaining an initial consistent estimator
for the model so: that it can be used to obtaih‘an estimate
asymptotically equivalent to the ML estimate at the second

stage of the NewtorRaphson &terative method,
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(ii) Under the assumption that V(yi) = 02‘[f(yi{] h, we have
shown that the ML equation for GLDVM has a strong consistent
roote We have than suggested the use of the sténdard nomn=
linear methods of estimation to obtain the ML estimate of

the parameters for this case. '!,

(iii) Under the assumption that V(yi) = OZ[E(yi)] h, the ML equa=
tion for BCNNHM has been shown to have a strong consistent

roote Nonlinear methods of estimation have been suggested to

obtain the ML estimate of +the parameters fa this model.

In Part II of this thesis we deal. with some problems of stati5§ical’
inference in an autocorrelated linear regression model. it is recognized
in the econometric lite;ature that autocorrelation in a linear regression
quel is generally caused by misspecification (by whiéh we mean situations
wherc some of the relevant Tegressors have been left dﬁt) an@/of.biA |
. errors-in-observﬁtions. Yet the estimation of such a model is often done
by éssuming a simple autocorrelation structure for the combined error
term (representing the total effect of the different factors) like that
ﬁnplied by an autoregressive (AR), a movingyaVerage (MA) or an auto-
regressive moving average (ARMA) Processe Such tréatment taditly assumeé
‘that whate#e: be the source(s) of autocorrelation (i.e.; misspécification,
errors—-im—observations or both), no differential treatment for the struc=-
ture ofbthe error term is necessary and that the proce&uﬁes of statistical
inference remain the same. This, however, does not seem to bé'satisfac-

torye . It is desirable to examine whathér an cbserved autocorrelation in
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the digturbances is caused by misspecification or by errors-in~observations
or by both because, as we shall demonstrate, the appropriéte method of esti~
mation depends on the actval situation. It is desirable to have procedures
for identifying the actual situations and also to investigate how one
should go about estimating_the model in case both the components are pre—
sent in the model (and each may contribute to the observed autocorrelation)
since in such cases the standard reestimation methods like Cochrane=Orcutt
(CO)y Prais-Winsten (W) or Durbin's two-step (D2) may fail to give even
consistent estimates. Part II of our thesis is devoted to examining the
problems which arige when an autocorrelation in a sihgle equation regre=
- ssion model is viewed in this manner and to propose methods which can be
used to tackle these problems.

The first Chapter of Part II i.es, OShapter 5, makes a review of
the rélevant literature. There is a large volume of litérature on the
problem of autocorfelation. Tﬁere are also some studies on the effect of
misspecification in the standard linear regression model. While a detailed
account of the former is available in recent standard textbooks Celey
Judge et al. (1980), a survey of the latter area is made in Chaudhuri
(1979, Chapter 1)e Hence, what we have done in this Chapter is to touch
upon those studies and results which are not readily available in textbooks
and/or would help the reader appreciate the mofivation of our work.

So far ag misspecification is concerned, we have reviewed the
studies on the following aspects of the problem 2

(i) The effect of misspecification on the disturbances of the

misspecified regression equation.
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(11) The effect of mlssp 01flcatlon on the ordlnary least squares

(OLS) estimator and on the DurbimWatson (DW) statistic.
(111) The reSLdual variance crlterlon and Ramsey s (1969) test for
detecting ‘the presence of mlsspec1f1catlon.

(iv) The effect of misspecification on the standard roestimation
methods (also called two~step procedures) frequently used to
efficiently estimate the parameters of an autocorrelated
linear regression model where the error term follows an |

AR(1)‘process.

As regards the literature on autocorrelatioh, it is mainly con—-
cerned with the problem of testing for‘t@e preseﬁuaof‘autocorrélation-in
the disturbances irrespective of, whether it is caused by misspecification-
or errors-in—observatibns or both; and, in caée autocorrelation is detec=
ted, developing'methodsAof effigiently éstimating the parametefs of the
model. We have touched upon the following aspects of.the‘literature 3l>

(i) Tests for detecfing autocorrelation in-the disturbances., These
include general tests where the error term follows any process
under the alternative hypothesis, tests specifically meant for

- detecting the alternative given by an AR(1) proéegs_amd tests
" against non-AR(1) processes alternativess o g

(ii) Estimation of the autocorrelated lipear regxessibn models when -
the error process is aésgmed to follpw different processes vize
AR(1),VA3’("2)‘, AR(q) with q > 3, 1a(1), 1MA(p) with p > 2 and

ARMA(q, p) where g 2’1 and P2 Te
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Ir Chapters 6 and 7ywe have presented our work on the problems of
statistical inference when the error temm is regarded as composed of two
additive components = one due fo misgpecification and the other due to
cher factors li#e errors-in-observations == each of which may contribute

to the éutoéorrelation' in the disturbanCesl{ We consider the linear

regression model as

. + .
yt=x;B+8t ’ 't=1, 2y essey I
+ * N
and et = E:t.+ Z't

where xg is a (1 x k) row vector of the t-=th observation on k~regressors,

B is a (k x 1) column vector of the associated regression coefficients and

Vi is the “t=th observation on the dependent variable.

We shall flrst describe’ our work in Chapter 6. In order to analyse
the problem of autocorrelat;on in such a model, we agsume (apart from
maklng the standard assumptions) that both e, and Z, follow AR(1) processes
and these two terms are 1ndependcat of each other and also of the set of
regressorse As a general result, it is known that, in general, the sum of
‘twb'independent AR(1) processes is an ARMA(2, 1) process and not another

AR(1).procesé.g/ Thus it may seem that there is no need of a fresh

1/ In terms of a misspecified regression equation, where some regressors
are omitted for one reason or other, it can be shown that the error
component of the misspecified equation is the sum of two components,
one of which represents the error associated with the true regression

equation while the other can be ascribed to the effect of mlSSpeleJ‘
catione.

2/ We have in our thesis examined the situations under which the resulie
ing process would, in fact, be some AR(1) Processi

‘\/ 7
\t Cat rurrh Ef./z-w»wa
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investigation of the model presecnted hecre since staﬁdard methods of esti~
mation and testing of hypotheses fof regressioﬁ%models with ARMA error
processes can be awea L_e.b., Picrce (19712, 1971b)_7' We, however, argue
that it is tlll 1mportant to analyse this kind of models for a number of
reagons. For one thing, if it is possible to ascertain whether an auto-
~orrelation is wholly or partly due to miSSpecification,'theﬁ ene can try
to remove the misspecification fo the extent possible by.trying to include
some relevant regressors in the model. What is more important, if there
is misspecification in the model (which might give rise to autocorrelation
then it is likely that some standard assumpfions'will:be violated and this
will create‘seme preblems for phe estiﬁetion ofi£he model. In fact, in
cases where a component due to missﬁeeification is-péesent in the error
term, theny even if %his componeht isri&reetocerrelated, the standard
reestimation,methods, (1ike €O, PW, D2) would, in general, yield incon=
s;stent estimates of the regression coefficients. Thus it:is important
to know whether the error really consists of two components or not, and
whether the observed autocorrelation is due to one @ both the componentss
A straightforward use of methods appropriate for an ARMA(2, 1) error
process for the combined error term would fail to provide these insights
to the problem of autocorrelatlon because w1th such an assumptlon, the |
information regarding ‘the behav10ur of the 1nd1v1dual components is not
utilized at all. Also, the estimation for an ARMA(Z, 1) .error process

is qulte difficult; eur methods of estlmatlon and testlng belng based

on CLS residuals are computlonally 31mple.

iﬁt :

.. !
¥ L :
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To analyse the problems in detail, we have listed seven possible
cases where the 'two.components of the error term are\preé’ént or absent,
antocorrelated or mwrzutocorrelatod. V{e have develoi)ed a large sample
test that would help us identify cases where the disturbances are nomauto-
correlated or autocorrelated due to different reasoﬁs. By considerir;g
a linear transformation of the COLS residﬁals iecey T

NN

e, - Pe

. — 4+ . s 3,
4 =1 = 9 (say) there i is the t~th OLS residual . and

and def ining ,.
o = Cov (8 b0 Cipmg)

we have found that Os's can be used to discrimir;ate among thfee broad
groups of the seven possible cases.’ Thus, for example, if the autocorre—
lation in the disturbances is caused by both the componénts, then Cq ;é 0
for all s 21 In situations where the autocorrelatlon is due to one come
ponent only while the other is present but nonautocorrelateq, 0;1 ;4 ‘O and-
cS = 0 for all 5 > 2. :These groups of éases can, therefore, be i‘dentified

by (say) using Bartlett's (1946) well-known test [v:.de Box and Jenkins
(1976)_7 By using IW test we can further divide one of the three broad
groups into two sub-groups each cons:.stlng of two casese Thus,the tests
enable us to 1dent1fy the dlfferent cases characterlzed by different aomr=
binations of the parameters mvolved. Although three of these groups/ sub=

groups contaln two cases each,y no problan seems to exist for the estima=

tion of the model and for :Lnferences regarding the presence of
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misspecifications For those cascs where neither the OLS nor the standard
recestimation methods can be used, we have suggested the use of the estima-
ted generalized least squares (BGL8) method; the ésti@ated Vaiiance—
covariance matrix in these cases may be based,on_OLS'resiéuals only.
Under standéia assumptions [ vide Theil (1971)_7 these esfimators are |
congistent ana asymptotically efficiente. |

In Chapter 7, we have considgred the same ?roblem as in the pre-
vious chapter but‘under a more general assumption :egarding the error
process. Here we have;assumed that both the coﬁponents 8t’and Zt follow
ARMi(j, 1) proéess. As the sum of the two‘indéiendﬁnt ARMA(1, 1) processes
is an ARMA(p, q) procéss'where p<2 and.q;g2, a straightforward use of an
ARMA error process with exactly known order cannot be made for.the,ﬁurposé
of estimation of thls models This provides an additional argument (apwrt
from the ones glven in the prev1ous chapter) for undertaklng the present
analysisi' However, when we assume the ABMA(1, 1) error process for each
of'the components, the testing and estimation'procedufes developed in the
last Chapter are no longer applicablé. For cstimation of the model con—
sidered in this Chapter, we suggest the use of ML method of estimation
which under standard assumptions gives asymptotlcally efflclent estimatese
Since the normal equations turn out to be nonlinear, we have advocated the
use of NewtormRaphson iterative method for which it is known that the
second=stage estimator is asymptotically equivalent to the ML estimator
if the initial or first-stage estimator is a consisfeni;one (cfe Rothenberg
and Leénderg (1964) ). We hdve provided a consistent initial estimator

based on OLS residuals. We have also suggested LR tests for identifying

-
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different types of autocorrelateﬁ situations characterlzed by different
combinationg of values of the parameters.

It may, however, be noted that there ig o problem of identificatior
of the parametéﬁs involved in the variance—covarianoe matrix. To overcome
this, we have suggested repaéametrization of the model. After reparametri-
zztionythis identification problem does not pose any difficulty so far as
the -estimation of the iegression doefficients are concerned. But fhis
lack of identifiability poses somé problems in the testing of different
hypotheses represertlng different types of autocorrelated situations since
211 the relevant hypotheses formulated in terms of the orlglnal parameters
cannot be equlvalently stated in terms of the redefined parameters. Thus,
we can test hypotheses like ARMA(1;1)-MA(1) (i.e.9 where one of the com
ponents follows an ARMA(1, 1) process and the other an MA(1) procesé) etce,
against the alternative hypothesis ARMA(1, 1) = ARMA(1, 1). However, if
the ARMA(1, 1) = MA(1) hypothesis is rejected in favour of ARMA(1,1)=
ARMA(1, 1), we are unable tc test QHMA(19 1)-—.AR(1) against ARMA(1, 1) =
=R1A(1, 1) since the additional constraint iposed by fhe mll hypofhesis
(ipee, the autocorrelation situation represented by ARMA(1,1) = AR(1)) as
against the alternative hypothesis (i.e.,vAHVs'A(‘l » 1) = ARMA(1, 1)) cammot
be specified in t .ms of the redcfined parameters. To overcome this, we
=2y test hypotheses that can be treated as cases under ARMA(1,1)-'AR(1)
ooy AR(1) = AR(1), MA(1) = AR(1) etce, against ARMA(1, 1) = AR(1) (ox
suitable alternativeg If, however, all these aré‘rejécted in favour of
ABMA(1,1) - AB(1)% we are unable to conclude if the actual situation is

a1, 1) = ARA(1, 1) or ARMA(i, 1) = 48(1).
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In Part III we contimue onxr investigation of the autocorrelated
linear regression model. But here cur emphasis is on the small=sample
performance of some gtandard methods of estimation (frequently used under
the assumption that the error follows an AR(1) process) in_situations
where misspecification (which mey or may not contribute to autocorrelatlon

explicitly introduced
in the errors) ;s[}n the models In the conventional treatment of an auto~
correlated linear regression model, the error term is considered as a .
single component and standard reestimation methods (i.e., CO, PW, D2 and
Hildreth=Lu (Hi) search procedure) are used if autocorrelation in the
error term is found to be significant. No account is taken of the fact
that in‘e misspecificd regression model there will, in fact, be two com=
ponents of the error termeFor reasons stated in the previous Part, we
consider a model where the error term is decomposed into two independent
additive components = ©one representing the error in the true regression
equation and the other arising due to misspecificetion. -Any of the two
compenents, if autocorrelated, is assumed to follow AR(1) processe As
already noted, in such a case the composite .rror would not, in general,
follow én A3(1)_process and the standard reestimation methods like those
of CO, PW and D2 methods wculd give inconsistent and inefficient estimates.,
This suggests that one should Mot blindly apply these methods without
trying ‘td ascertain if there has been any misspecification and if SO,
Whetﬁer the misspecification has been one of.the, sources of au{oco:relation
in the errc. termes The above-mentioned results, however, refer to the
large=sample cases. Our interest in this part is in the small sample

properties of OLS and the standard reestimation methods vize., CO, PW, D2
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and HL. Since f}hese properties cannot be analytically obtained, we
carried out a Monte Carlo experiment t6 exam:ine jchese properties, confining
ourselves to stu.dylrg the comparative performance of the different methods.
It is hoped that the results would throw light on the price one has to pay
in terms of efficiency in case these methods are blindly used disregarding
possible misspecification of the true model. We have considered two speci-
fic situations ¢

(1) only one of the two components follows AR(1) while the other

is present but non-;autocor'related',
and  (ii) both the components follow AR(1) error processes.

The four Chapters in Part III are concerned with (i) the motivation
of this Monte Carlo experiment, (ii) é review of the connecfed' literahrre,
(iii) an examlnatJ.On of the unbMSedness and con31stency propertles of some
of the standard. estlmators, (1v) the plan ‘of the experiment and (v) the
results of the experlmen‘b.

Besides explalnlng the motivation of the Monte Carlo study, we mve
also surveyed in Chapter 8 the literature on Monte Carlo. studles relatlng
to autocorrelated llnear regression modelse It may be noted thut there hag
been practically no Monte Carlo study on linear regression models where the
error term follows processes other than AR(1). We havé also referred to
some other important Monte Caxrlo studies which are not directly related
to ours but whicﬁ helped in formilating and designing our study.

Since the 7pr0pertie‘s (even in largé‘ semples) of the estimatér'é .

given by the standard reestimation methods are not so well=known for
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situations marked by the presencc of misspecification (which may\ar may not
contribute to the observed autocorrelation), we present in Ch&pfer 9 somé
results on the unbiasedness and consistenéy of some of these esfimatois.
In this context we have also briefly described the standard reestimation
methods vize, CO, PW, D2 and HL., Thus, this Chapter should help in study=
ing the results of the Monte Carlo sfu@y vis=a=-vis the known properties of
the estimators. The properties’brought_out in Chapﬁgr 9 and those revealecd
in Chapter 11, taken.together, provide'a fairly complgfe pictu:e of the
relative perfg;mance of the different methods in presence of miéspécifica-
tion.

Some of the important results presénted in Chapter 9 are the
following ¢

(a) 0LS, in general, gives biased but consistent estimates of the
regression coefficients of the misspecified regreSSion.model..

(b) Generalized least squéres (GLS) and estimated generalized least
squares (EELS), in general, yield biased and incoﬁsistent estimates of the
regression coefficients of the misspecified models

This result may appear éﬁrprising. However, it may be noted that
this is a consequence of the definition of B+ (ieecey the vector of regre=-
ssion coefficients in the misspecified equation) used by Chaudhuri (1977,
1979)+ Chaudri asserted that ﬂ+ cannot, in general, be the sub=vector
corresponding to the set of included regressors of B (ieeey the vector
of regression coefficients iﬁ the true model) aﬁd she redefined B+ in
a particular way in order to ensgble the included regressors to capture as

much of the influence of the excluded regressors as possible. However,
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one can 2lso redefine B+ in a woy different from that of Chauduri and
possibly get the opposite result. It scams further research is needed in
deciding the proper definition of B+ e In any case, this docs not affoot
our present study since we need only to fix & numerical value of g+
without bothering about its proper definition}/

(c) In the special. c¢ase where the excluded regressors are linearily
related to the included ones, the GLS and the EGLS (in the latter case it
1s also required, apart from the standard conditions, fhat the variance-
covariance matruc is consiétently vestimated) consistéfitly. estimate the
regression coefficients of the misspecified regression eguation.

(d) since all the two-step methods mentioned earlier are either
GLS or EGLS, the propertiesAbfl‘ these estimators will be similar to those
stated above. |

(e) The ML method of estimation can be used only in the special
casge stéted in (c) above and in that case it is as good asymptotically as
the reestimation methods under standard conditions (vide Theil (1971)).

In Chapter 10ywe déscribe the scope and design of the Mbnte Caa,\x;jJtov
experiment carried out by use The model used for the purpose of »the =

experiment is

+ + Ct=
y_t= B X1_t+8_t ’ ‘.t-—’I, 29 seceey N
+
S_t— €t+zto

We have consiaered two different situations each having autocorrelation

. + .
in the € series $

}/ See, in this connection, the paper by Gupta and Maasoumi (1979).
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Situation I 8 both Z  and x“_“follow AR(1) processes, but
st‘ is random,

Situation ITI ¢ ©poth st and Z't follow AR(‘l) processes, but
x,. is random.

1t

In the second situation X, was taken to be random only to keep the volume

_of computations manageable and also because the autocorrclation coefficient

1

- of the x,~series was not found to have appreciable effects on the relative
perfomances of ‘tbe diffei:ent methods in Situation I.

We examinea the relative performancesof the OLS, GO, PW, D2 and HL
estimators. The set of independent parameters affecting the results,
were ideni‘ifiéd by examining the possible interdependence amolng some of
the pa.rgmeters involved in the model and then a number of vélues of these
_l/parameters vge:ée-chosen So as to enstre sufficient variation in their valucs
within permissible range. Four such parameters were identified and three
values were considered for each of theme There were thus a total of 81
parametric combinations. Random normal deviates were generated by.. approxi=~
mating the normal density by a discrete distribution using Hastings
epproximation. Several criteria were us;éd to assess the rgiative perfor=—
mances of the different methodse These are $ absolute deviatj;;nn of /B\"'
(6\+ is the estimate of 3+ by any of the five methods)\, bias, absoclute
bias and mean square crror of ’% *. We also examined the performances of.
confidence intervals set up by conventidnal procedurese Since in the cése
of stochastic regressors, the sampling variances given by conventional

formulae may underestimate, correctly estimate or overestimate the actual

sampling variance of the estimators, we also examined the usefulness of
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these formulae in estimating the true sampling\QariancejL/
The results of our experiment are presented and studied in Chapter 11.
Some of the important resﬁits may be summarized as follows 3
(a) For low values of autoéorelation in Zt’ OLS is as good as the
others; in’general,‘for Situation I. For Situation II, the results are

similar only when both the components St andAZt have very low values of

'

antocorrelation.

(b) In terms of absolute deviation, mse and ranking by these cri-
teria PW goﬁes out to be the best among the methods examined here for both
the situations. For Situation I, CO and D2 are ébout equally good and they
are- inferior only to PW. (The €O appears. to be siightly better than D2 in
come casese) HL comes next in the ranking, but-is Elearly infgrior to CO
.and D2, OIS is somewhat erratic, being nearly as good‘as-the others for
low values of the autocoxr?lation in Zt’ but égite bad (and v¢ry‘offen the
worét) for other cases. Aglfor7Situation:;I, CO, D2 and HL are very close
to one a:other, and all these édﬂe behind PW in the raﬁking although the
superiority of PW vig—a=vig fhese methods are somewhat reduced in this
situation compared to the previous éne., In respect of bias also, the
picture for both the situations is more or less the same.

| (c) Confidence intervals do not throw much light on the relative

verformances of the different mothods for both the situations. However,

for high values of the autocorrelation coefficients of Zt and(gd;in

4/ It may be mentioned that we used samples of size 15 onlys even this
meant an enormous volume of computations since there were 81 cases
for each of the two situations and 50 such samples were used for
computing the estimators for each of the 81 cases ie.e., combinations
of parameter values.
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in Situation I, the confidence intervals for all the methods fail o
include the true value of B+ in a much larger proportion of samples than
is specified by the confidence coefficient., For Situation II, this is

not so = all the methods seem to perform fairly well for this situation.

(d) For Situation I, the conventional sampling variance formulae
associated with the different mefhods seem to significan'bl& undereétimate
the true sampli.,ng variances of the estimatorse. The eictent of underestima—
tion, on the average, w;ranges between 17 and 20 per vcent for all ’Ehe
methods excepting for HL for which this downward bias seems to be ébou“t
25 per cent. For Situation Ii, the results are quite differeﬁt.. OLS now
overestimates by about 8 per cent on the average which, however, may not‘
be statistically sifgnificant. For all other methods ’che:c'.e> seems to be
some underestimation but the extent of underestimation is much smaller

(between 6 and 9 per cent) than for Situation I.
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«  Chapter 1

Review of the Literature

-

1«1 Introduction

In regression analysis one makes the assumption +that the expected
value of the dependent variable (y) is a linear funcfion of the independent
variables. But such an assumption may be untenable in many situations.

It could very well be that the underlying relation between the variables
is nonlinear but a function of y is linearly related to fhg independént
variabkes»orfo some functions of theme. One frequently uses different
specific nonlinear functional forms like the semilog, doublelog  quadra~
tic etc. But any g priori decision abdut the functional form is nqt very
satisfactory and yet the choice of the form is quite often not based on
any objective criterions TUsually a priori éhoiqes are dictated by conve-
nience, experience from previous researches and the perception of the
researcher regarding the data apart from the suggestions from theory.

But in many cases theory does not give any indication regarding the fung—
tional form to be chosen. There is, therefore, a general problem of
choosing the appropriate functional form for a given set of datae. This
has been very aptly stated by Kendall and Stuart (i968) in the following
lines §

""Although natural considerations of convenience or technique
may dictate that the observations be made on a variable y, -
it still has to be decided which function of y is to be used
for the purpose of the %Palysis'%‘1

1/ Kendall and Stuart (1968), p. 85.
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The objective of transforming the variables is precisely to deal
with such problems. Oee seeks'to deteimine the particular transforma=
tions of the variables which would ensure linearity of the relationship
and also satisfy certain other standard conditions. Use of transforme—
tion of variables in econometrics can thus be considered a very powerful
and convenient tool for handling the general problem of choosing the
functional form of a relationship on the basis of the given data,;ﬁarti-
cularly when no idea about the nature of the relationship can be had
from theory or from previous investigatioﬁs.

The arrangement of the Chapter is as follows. Early work on
transformation of veriables is briefly described in section 1.2. The
Box=Cox (BC) transformation of variables and the problem of heterosce=
dasticity in it are discussed in seotiens1.3 and 1.4 respectively.

The problem of nonnormality and the Box~Cox transformation is described
in section 1.5« The coﬁnection between the BC model and the limited
dependent variable model is indicated in section 1.6. Section 1.7
presents a brief summary of the extensions of the BC model. Some

concluding observations -are given in section 1.8.

102 thriy Work on Transformation of Variables

Tukey (1957) was perhaps the first person to make a systematic
study of the problem of transformation(of varfebles. According to him,
the purpose of transformation is to achieve the following three

de31rable properties s
(1) additivity of the effects,
(ii) constant variability of the error term,

(iii) symmetry and perhaps normality of the dlstrlbutlon
of the error terme
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He considered a family of transformations (x+d)x defined as
In(x+d) for A =0, If d = 0, the transformation reduces to x" for AAD
and lnx for A = O« IHec further cshowed that if A\ = md (m¢0) +the trans-
forﬁation approaches e~ ad d —> coe Tﬁkcy also discussed the proper—
ties of the transformation but assumed that the transforming parameter (K)
is either known or can be determined relatively easily.

Subsequently, Turner et et al. (1961) and Box and Tiawell (7962)
considered the problem of estunatlon of the transformatlon parameter but
they conflned themselves only to transformatlons of the independent
varlables in the regression model. They suggested an iterative least
séuares procedure for estimating A s in the transformation of 1ndepen~
dent variables to (xi + d.\i)'i where x, is the ith (i =1, 2, ..., k)
independént variable in the‘iegreSSion equation. For di =0 (i=ﬂ,2,...,k)
their method of estimating the Ki's may'bg,described in the foiiowing
steps ¢ |

(i) Choose initial values of A, 's, say, A (1 =19 2y eoey K)o

(ii) Regress the dependent variable on the regressors X; 1 and

AOl
Xl lmi (l = 1, 2, soey k)o

(iii)_Define the new estimate of cach A; as A1i =Ag; + bos /a

where an; and bOi are the estimates of regression coeffi-

in ' Oi
and x; lnxi respectively.

cients associated with Xg
(iv) Repeat the process with the new estimates of Ai's‘till
convergences

Box and Tidwell provided some examples to indicate that the iterative

process suggested.abovevconvérges rapidly. For the case of a single
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independent variablc the confidence intervals for the parameters of the

.model were alsgso found ocute

4¢3 The Box=Cox (BC) Transformation of Variables’

- A1l the above mentioned studies focussed attention on the trans—
formation of fhe independent variabless Transformation of the dependent
variable ii_qia regression model ié-peﬁxa;:s more interestingsparticularly
because it gives rise to some special px;obléms;v Box and Cox (1964) were
the first to systénatica.lly study the transformation of the dependent
variable. In their well=known paper they proposed a family of power
transformations of the dependent variable in a regressién n;odel S0 ag
to achieve the desirable properties vize, (1) lineaxity, (ii) nomosce-

dasticity, and (iii) normality of the error distribution, in the trans-
fomed, regression equation. They defined the transformation as

JA)

ALY, if A £O

1ny . if A =0.

AT

eee (1e3e1)

Obviously, the transformation is contimuous around A = 0. The Box=Cox

o/

regression model can then be written in matrix notation as

™)

=X8 +¢ ees (1342)
() (\) (N

where Y = ° = (y“l y eesy YV T/ is the (n X 1) vectdr of transformed

Y

observations on the dependent variable y defined in (1e341), X is a (rxk)

g/ Obviouslys independent variables.can also be transformed. But since
it doess not give rise to any additional complication and the maximum
likelihood technique {described later in this context) can be used
in a way identieal to that for the Box=-Cox transformation on the
dependent variable, we restrict the discussion to the transformation
of the dependent variable onlye.
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matrix of observations on the k independent variables including e, column
of unity for the c01lste;1:'1t€1’;;e1‘-nxé{ 8 is the (k x 1) vector of associated
regression cce"'-“.icievzt‘s aﬁd € = (s yoeed en)/ is a (n x 1) vector of
random dlsturoances whlch a:re dlstrlbut 2d imdependently and identically
w;th mean zero and constant variance 0?.

| For the estimation of the parameters of the model vizes, Ny B and
02, Box and Cox suggéested the use of the maximum likelihood (ML) method
of estimation. Unde::: the assumption of no’milal.itvy, the 'iog-iikelihood

function of the original observations (y{;" cers ¥y ) can be written as

L.= Conste - 12‘- Ing? = (YO‘) - X 3) (Y(".) ~XB8) +1nJ
. 2 o-
eee(103.3)
where ( )
- ;\-
J = det Tio o o
S ey |7l e

The lc>g-l:x.kc.llhood function in (1.3 3) can be max1m1zed directly
by using any of the standard nonlinear methols uf estlmatlon. However,
since‘\-such methods are computationally ccaplicated, they suggested
maximizing the log-likelihood function separately for each of several
values of ?\ covering a reasonable range and choos;\.ng that transforma=
tion (value of A) for which the maxirum 1dg=likelihood value is the
highests It can bc seen easily that this is equivalent to finding the
ordinary least squares (OLS) estimates fé‘(,x) (x” x)~ 1 X YO‘)
for gpecified values of A from .t-};e transformed model and then choosing

3/ As has been pointed out by Schlesselman (1971), it should be
noted that unless a constant term is included in the regression
cquation the estimation of the transformed model is not invariant
to changes in the unit of measurament of y.
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that value of A and the corresponding estimates of 8 and o? as the

required estimates; for which = %ln/éz (Y,
A Fomy -
where g °(\) = + L(’x“""" - ) (Y"‘) xe ]

is ma.xmunr-/ Box and Cox also 1nd10atea now one can obtaln the confi=
dence interval for A. |

Nows so far as the properties of the estim;a.tors obtained by the
ML method described abo_veu are concerned, ifc is clear that uwhicheve'r of
the two procedures ~ direct maximization of the log-likelihood functicn
or maximization by sea:r:chmg over A = is adopted, the estimate of A
and hence those of 8 and o 2 will, under standa.rd‘condit:;msé/ s be
the ML estimates and therefore consistént and .efficient. .‘ However, the
estimates of g's obtained by the search procedurr;: for different A's
are not comparable since these are conditional upon A's though the
estimated elasticities at the sample means ares Furthermo‘t‘e, as
Spitzer (1977b) pointed out,  one should b° carcful in using the standaxd
errors of the estimated coefficients which are conditional on A+ These
standard errors will underestimate the more relevant unconditiona.l ones.
The unconditional standard errors can be ‘ob.ta.ined By coﬁsideii%xg the
Cramer-Rao lower bounds They can also be obtained by using estimates
found by directly maximiZing ‘the l.LkelJ.hood functlon over all the

parameters by an appropriately chosen techm.que of maxlmlzlng nonl:.near

Q/ By a sulta.ble cho:.ce of the unit of measurement of yi's defined as
n-

1
y / (- j Y. )n, we can "xake _Z in y. = 0 and henceln,Jvanishes.
> 5/ For the standa:rd conditions and other rcﬂ.a+ ad dlscuss;Long, See, for
" ‘example, Wald (1949), Dhrymes {1970, Chapter 3) and Rao (1974,
Chapter 5Y.
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functionse The necessary infomatioﬁ‘matrix mey be directly evaluated
in the latter-mentibned procedure,

The above comments refer to the large sample properties of the
estimatorse. Not much is known -about ‘the small-‘sample Properties of
thése estimators. Spitze:r ~(1978) undertocik a Nonte' Carlo study to
investigate the small.sample propertles of the above.noted estz.mators »

of the Box~Cox model. He' cons:.dered the follow1ng modal
FA S S

ai, i 1 =152y eeey nn
where thé dependmt and the two independent variables were transf ormed
using the same transformatlon pa.ramete:r on all the variablese- The -
values of &'y, B and 7 were fixed at 940, =145 and 0.5 Tespectively, .
Five models correspondJ.ng to f:.ve dlfferent values: of N vm.., -1 _.5,':-1 0,
~0e155 140 and 145 wm:e est:..ma.ted 50 times for each of two sample sizos
V:LZ.”, n =3 and n = 60 . €i’s were assumed to follow independen{;
N(o, 02)'a;nd the value. of o was fixed at 0,426, 'I‘heif conclusions
can beISunﬁna.riz'ed as follows?

(i) In none of the five models biac of bthe estimators of parameters

~seened to be a .serious problem.No regularity in over- or
under-estn.matlon was observed in any of the models.

(ii) The sampling distributions of the éoefficient estimates
appeared to be approximately normal in:almost -all the
casess However, actual sampling distributions appeared
to have heavier +tail areas than. the t~distribution and
hence one should be eareful in using the t—stat:.s“tz.c
for hypothesis testing. -

(1ii) The performance of the models in forecasting was encom:ag-
inge The forecasts secmed to be unbiased with small
 variance and relative errors of forecast,
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(iv) The coefficient of variation of y)' scemed to have a rcla-
tionship with the preciéion of thie estimators of the para=
meters. ‘ -

(v) The estimated parameters appeared to be efficient on the

basis of the sample asymptotio standard deviabions. -

1¢4 The Problem of Hetercscedasticity in
- the Box=Cox Transformation

Most of the subsequent studies on thé Bbx-Coi transfomation
sought to examine more carefully if it is indeed possible to have a
vtra.nsfonnéthion which will achieve all the three desirable prbpei';cies
ViZe, line:?tri‘ty,‘..homosc‘eda,s-ticity and normalitye. In other words, tﬁe
question :Lg t Does the A.that linearizes the relationship also lead .
»1;0 nomal‘i-!:y: gnd homoscédasticity of’the—errors of the lineaxr i-egre-
s.siqr; model with transformed dependernt variable ? e

: Za.ranbka,_.('l_974) considered at léngth’ the’ problem of heteroscedas—

ticity in the context of the Zox=Cox transfomation.' He bbin‘tﬁd out
that;é/ "the transformation on the deper’ent variable ma.y‘ not iea,d
simul taneously both to additivity of the effect and to homoscedésticity"
He also examined to what extent the Box=Cox method of estimation is
sensitive to ﬁhe a.ssuml;éion abc;ut variance and proved-that the procedure
is not robust to (i.“e'. » is vitiated by the prescnce of ) heteroscedas~
ticity. |

The bias in estimating A by the Box-Cox method when errors are,
in fact, heteroscedastic | .has aiso been obtained by Zarcmbka in the

paper mentioned aboves It was shown that there is a tendency of the

é/ Zarembka (1974)9 Pe 87
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estimated /;\‘ | to approé,ch that transformation cf the dependent wvariable

which leads to stabilization of the error variance. In other wordé,

A and hence other paremeters of the transf ormed model are consistently

estimated by the Box~Cox procedure only when the transformation that

leads to linearity also leads to homoscedasticity J.n the error variance.
Zarembka then proposed 2 method of estimation of thé transformed

model under the assumption of heteroscedasticitys He assumed the

variance of vy to be given by

o) = o [Ee)] ™, sty o
where 02 is an unknown parameter and h is a known constant and deve-
loped hds method of estimation by using the likelihood equation of the
Box=Cox method and the information on the magnitude of bias in estimating
A by the Box=Cox procedure. His method essentially consists in evaluat—
ing the expression E( Ty ) for different valuesof A (L is as defined

(1 3e 3)) when, in fact, the y( )'s are heteroscedastlc and then taking
that value of A as the estimate of A where E( ) e,quals the slope of
the maximum likelihood function conditional upon A.

While Zarembka's paper represents a significant and interesting
attempt to tackle the problem of | heteroscedas;:icity in the context of the
Box=Cox transformation model, it still has a number of limitations.
Firstly, the method of estimation proposed by him presupposes the degree
of heteroscedasticity (h) to’be Known. S‘econdly, in developing the
method he uses a number of assumptions like eegey E Lln(y )]~ ln E(y )
E [ln(y ) J is reasonably symet:c:.c etcey, which may not be valid in many

situationse Thirdly, consistent estimates of the standard errors of'/B\
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. R A2
can not be obtained from the expression o ° (X'X) ' (where o “ is the
ML estimator of ¢ 2 from BC model) as long as e 1is heteroscedastic,
In fact, there is no convenient formula to calculate the standard errors
vof é}. Finally, and perhaps most importantly, Zarembka's method yields
only approximately consistent but not efficient estimates of the para-
meters. As Zarembka himself has rémarked, "an asymptotically efficient
procedure for estimating A and B under heteroscedastlclty needs to be
developed"Z/ .

Recently, gy and Lahiri (1978) consideréd the Box=Cox model under
conditions of heteroscedastiéit&. Assuming that the variénce of the
disturbances is of the form Gi (= V[yg\)] ) = a2 mif_ s Where mi'$ are
exogeneouély given and &, 02 a&e unknown parameters, they proposed
ML estimation of the parameters *?\,YSI, g and 02; They suggested a
search procedure over (h, S) for obtaining the ML estimates of these and
hence of the parameters R and . o2, They also suggested likelihood
ratio (IR) testsfor testing specific hypotheses regarding A and & .‘The
main criticism against such an assumption about V[yg\) :} is that apart
from agsuming mi's to be exogenously given, it also ignores thé compli-
catiorBcreated by the transf ormation.

They further claimed to have shown that joint estimation of A and 8
may not be possible when the model is formulated as s Ol = [E( .) ]
‘because in this case 2 A=transformation may stabilize the variance
completely leading to é near identification problem. We may péint out
that, even with the questionable approximation used by them, the validity
of this conclusipn is not beyond doubt (see also, footnote 2 of the

next chapter). :
,,_Z/Za.rembka (1974T9 Do 1020
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1¢5 The Problem of Nommormality and
the Fox=Cox Transformation

The assumption of nomal‘ity of the distribu;;ion of the error
term in the itransfomed model has also been cxamined by some researchers.
It is obvious that the Box=Cox trahsfomat;'.op does not, in general, pcr-
mit negative values of yi's and hence in treating the error distribution
to be normai one is implicitly assuming that the probabiiity of negative,
partimllarl}(rvlarigé:ne'gative, values is quite low so that the condition
of normelity is not seriously affectede In fact, Draper and Cox (1969)
examined fhe robustnes's‘ ‘of the Box=Cox procedure with regpect to non—

normality of the disturbances and showed that so long as the errors .
| (:L.e., sl' s) have reasonably symmetric distributions, the Box=Cox esti-
mation procedure is robust to nomnormality. Thus, the Box=Cox method
leads to approximately consistent estimate of A as long as g5 is
reasonably symmetric.

However, since the condition of normality does not, strictly
speaking, hold, it is desirable to examine if fhings cou}.d be improved
with more appropriate assumptions about. the: Adistribﬁtio.n of the error.

It is clear that for the transformation to be well defined, it must be
true that y > O which in turn implies that yM> -1, if A > 0, ana
y(x) { - {- s if A < Os Thus, for non=zero values of A, the range of
y()\) is a proper subset of the real line and hence, strictly‘ speaking,
the error term cammot follow a nommal distribution. Ii; is only when
A = 0 that the assumption of nonna.}.ity may be vaiid. in view of this,

recently Poirier (19783) considered a truncated normal distribution of
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the error term in the Box=Cox model, the point of truncation being appro-
priately defined accordin_g as N\ is positive or not. However, like Box and
Cox, he assumed homoscedastlclty oi’ the transfomed variable and used

standard nonlinear methods to obtain the ML estlmates of A,B and 02

1¢6 The Box=Cox Transformation and the
' Limited Dependent Variable Model

It is interesting to note ‘that for A =1, the Box~Cox model as
cons:Ldered by Po:.rler (1978a) reduces to the well=known llmlted depen-
dent variable (LDV) model developed by Tobin (1958) (except for one
being added to the constant tem)§{ ", Ali;'hcugh' Tobin"., model is an
important dbntributioh hairing useful economic applications [ see,

for mstance, the work of Jra,gg (1971) on demand models

8/ This reduced model is ,slightly different from Tobin's LDV model.
Whereas Tobin model “is ' ' .

= / i .
yi-— XiB +Si J—fR.H.S.)Qi

0 otherwigse
) (a.'s are known constants and xi/ is the ith row of X)

we have in the reduced model 0‘ =0 for all i, It may, however, be

noted that with a redeflm.tlon of Yis x{‘and By Tobin' s model can

easily be seen to.be equiva.lent to our reduced model.  The redefined
Tobin , model can be written as

Y?: ~ */B*

. . . D
i + ey if R. H. S 0

0 o otherwise

where y: =y, - al, xei(-/___ (Xi/’ _ai) and B*/ = (8, - 1)-_.
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for durszble goods], it did not receive sufficient attention from the
econometricians for quite some timee A num‘s‘er of years later Amemiya
(1973a) considered the model and proved a number oi J'.niportant results
for this model. He showed, for example, that for this model there exists
a gtrong consistent root of the normal equations and this ‘root is agymp~
totically normal. He also proved the inconsistency of the initial egti~
nator proposed by Tobin for use in Newton-Kaphson iterative procedure
for obtaining the ML estimates, suggested consistent initial estimators
of the _par’ameters and proved that the second-stage ‘estimator obtained

by . Newtor~Raphson method will have the same asymptotic distribution as
a consistent root of the normai equations if the first-stage estimator is
consistent. More recently, Oslen (1978) has shown that the likelihood
function for Tobin model has a unique maximum and hence whatever be the
initial estimator, not necessarily the one suggested by Amemiya (1973a),
if the iterative procedure converges, then the couverging values will be
the ML estimates corresponding to the globai maximum of the likélihood

function.

1.7 Other Extensions of the Box~Cox Transformation Model

. Attempts have rccently been made to extend the Box~Cox model in
new directionse. Savin and White (1978) extended the model by introducing
antocorrelation in the di's*burbance'tem of the transformed model. They
assumed the disturbances to follow a firste=order autoregressive procéss
(4R(1)) and suggested that ML estimators of A and the autocorrelation |

coefficient P 1and hence of B and 62 mey be obtained by a simultaneous
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search for the maximum value of the likelihood function over (A, PY. They

also indicated that LR tests may be used to test various hypotheses
regarding A and P. It may be noted,‘however, that their straightforward
extension amounts to 1gnor1ng the complications created by the transfor—-
matlon itself. Also, the assumption of AR(1) crror process, or for that
matter any other standard simple process, &yllbs that the error variance
is treated to be homoscedastic which, as will be seen in the next chapter
is not always true,

- The use of the Box~Cox transfommation in a simultaneous eqﬁations
system has also been made in the recent past. Tintner and Kadekodi (1971)
for example, considered a simultaneous equations systan where all varl—
ables in the system were transformeu by the same A-transformatlon. More
recently, Spitzer (1977&) incorporated the transformatlon in a simul-

. taneous money demand and supply equatlons systam.

18 Conclusions

- We may conclude by reiterating that “hc Box=Cox transformation
has been very useful from the point of view of choice of functional form
of an ngonqmig relationship. A muber of applications of this has
already been méde in empirical studies. As specific examples, we may
refer to the studies made by Zarembka (1968) who used the transformation
in estimating a relationship among demand for money, current rate of
intereét»and current income; and to those of Mukerji. (1963), Dhrymes
and Kurz (1964), Ramsey and Zarembka (1971) etc.,‘inAestimating produc~

- tion functionse Other notable references are White (1972), Kau and
Lee (1976), Spitzer (1976), Chang (1977) ctce
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In course of our review we have hinted at some of the inadequacieé
of the availablc methodology in this aﬁea. We think that there exists
considerable scope for fuPther criticalbexaminations and cxtensions of
the model considered by Box and Cox and lator researcherse Such improve-
nents are desirable not énly from theoretical point of view but also on
considerations of applicability in various economctric problamse. We

attempt to do so in the next three chapters.
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Chapter 2

Heteroscedasticity and the Box—Cox Transformation

2.1 Introduction

It has been mentioned in the laéthhapter that Box and Cox -(1964)
lefined a family of power transformations of fhe dependent variable in a
2 regression model which helps in ensuring a linear relationship between
the transformed dependent variable on the one hand, and the set of
regressor (fixed) on the other; The apprdéch assumes homoscedasticity
znd noﬁmality of the transformed dependent variable, .- The transformations
censidered by them are |

YN - CEP - A it A £0

iny if A =

cee (2e1e1)

where y is the original dependent variable in a regression modell( The
central point of the Box=Cox transformation is that there exists a A for
which all the three desirable properties stauted above are simultanecusly
satisfied. The linezr regression model witk transformed dependent
variable (to be mentioned hencefdrth ég the transformed lincar regre=-

- 3sion model) can be described, in me*?ixfnotatian,as

Y()\) 2}{8 + € soe (20102)
/ .
where Y(x) = (ygk), 3;%)’ cony ygé) ) isa (n x 1) vector of observa~

tions on the transformed depeﬂdéﬁ% variable defined according to (2.1.1),

1/ The Bax=Cox transformation can also be extended to the independent
variables, However, since such transformations d0 not give rise
to any additional problems, we confine ourselves to the casé where
only the dependent variable is transformed.
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Y . . . 7
X is a (n x k) metriz of observations on k regressors, @ =_(81, eeey Bk}

is the (k x 1) vector of associated regression cocfficients and

e = ( g1 Epr sy en)/ is the (»n x 1) vector of disturbances in the
transformed linear regression model., The rank of X is assumed to be
k({n). Box énd Cox assumed that ei's (i =1, 2, ceey n) have indepen~
dent normal distributionswith zero mean and samc variance 02.

The Box=Cox method of estimation of A and hence of § and 02 of
the regression model described above is clearly based on the assumption
of homoscedasticity of the errors. However, as will bc explained in the
following section, the transformation would, in general, lead to. heteros— |
cedasticity in the depe{ldent variable and hence an estimation procedure
dependiﬂg on the assumption of homoscedéusticity is not always tenables
Actually, Zarembka (1974) has shown that the Box~Gox method of estima-
tion is not robust to heteroscedas'biéity and that cstimate of A is biascd
towards that power of the dependent variable which leads to 2 stabiliza=
tion of the error veriancee There is thus & neced for déveloping ootimam
tion procedures for a.model that would acccumodatc heteroscedasticity
of the deperdent variable resulting from the Bow=Cox transformation in
addition to the heteroscedasticity (if :Lny) in +he original dependent
veriables Such z model can then emable us %o ccporate out the influence
of nonlinearity in an estimate of A from *he influence of stabilizing
the error variance. The method of estimatiocn proposed by Zarcmbka (1974)

assumes that the variance of Vs 1is given by

V(yi).=02 [E(:fi)],.h s B> 0 | oo (24143)

1

where o is an unknown parameter, but h is known. His method is baszd
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on thc ML equation of the Box-Cox estimation method. There are several
problems with this method § First, the degrce of heteroscedasticity (h)
must be known; and second, as noted by Zarcmbka,himself,'wé can get only -
approximately consistent but not efficient estimators of the parameters;
Fgy and Lahiri (1978), on the other hand, suégestv a model where the

patiern of heteroscedasticity is gigen by

v [yy\)] (= V(ei)) = o° mg ' 0o (2.1,4).
where ﬁxi's are e:cogenously given and § and 02 are unknovn parametors.
They'suggest a search procedure over A and 8§ for obtaining ML estimates
of A and § and hence of B apd o 2. They also claim to have shown-
that Zarembka's a.sswni:tion‘men'tioned in (2.1.3) above = which leads

approximately to the relation
2 ° |
We) = Flae) [, Hy) o,

8 is, for this case, an unknown pa.rameter' involving A and h = leads
to stabilization of error variance and hence to an identification
problaﬁg( As will become clear from our analysis, this conclugion does
not seem to be valide The FgVQLahiri method can be applied only when
m,'s are given, Note ‘élSO that in their formulation V(yg\)) ;10es not
involve Ae  But that such straightforward assumption about V(yg\))
without taking into consideration the complicatiomscreated by the

transformation is not very satisfactory, has also been notcd by

Zarembka (1974). He points out that "the problem is complicated by

g/ It may be noted that in the published version of this paper (1981),
they have omitted this particular claim. -


http://www.cvisiontech.com

43

the fact- that the heteroscedast1c1ty in 8. Aepénds upon the heterosce-
- dasticity in y; as well as upon the unknown parameter A" (page 103).

In this Chapter we reconsider the problen of heteroscedasticity
in the contex£ of the Box-Cox transformatioh and-propose a modcl‘for
tackling heteroscedasticity in the tranoformod lmoar regression model.
ML method of es't.umtlon, which woruld yldd consistent and efficicnt
estlmates of the parameters, io suggested. A sinpler method of obtairn~
ing ML estimates by searching over only A is also described. Finally,
we indicate how likelihood ratio tests may be used for exaznining various
hypofhesés regarding the transfomation pa.rameter and ‘the parameter
1ndlcat1ng the degrce of hoteroscedastlc1ty.

The Chapter is arranged as follows ¢ While in .secﬁion 242 we
discuss the problem of hoteroscedastlclty in the context of the Box=Cox
transformation, the estlmatlon procedure for the model pronosed by us
.is described in section 2e3e¢ Section 2.4 ‘describes the procedure for
similtaceous testing of specifi.d values of the transformation and
heteroscedasticity paramecters characterizin- different situafions.
Section 2.5 presents some numerical-results obtained by appljing our
methods of estimation in our model and a mumber of other nested models
for two different sets of data. Some concluding obsefvations are made

in the last sectione
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242 The Problem of Hetei'oscedasticity
in the Box=Cox Model

Let us first discuss the problem of »1eteroscedast1cz.ty in the
Box=Cox model more carefully, Given the tr’xnsfomatlon in (2. 1)y we
casily find thatd \ | |

v [y](_}‘)J e V(yi) [E(y)] =2 eee (24241)
which shows that the transformation affects “the heteroscedastlcrby of
the yO\)' Bven if V(y.) is constant for all observatior'ns, the
transformed observa.tlons w:.ll, in general, have unequal varlances unless,
of course, A=1 | ieca, when there has been no transfonnatlon except one
being added to the intercept tecrm. |

To examine the situation where the original ob;eervetiens are
heteroacedéstic, we consider, f,or:".example, a s_pecii‘ic form of bheterosce-

dasticity of yi's, vize,

h o 1 ‘
V(y.) = 02 [E(y~)] y E(y-) > O, i=1, 29 sesgy N Vooo(2.2.2>
where h is unknowne Then from (2.2.1) » we have, under the assumption

e

stated in (2.2.2),

T # o] e

By expressing E(yl) in terms of E(y?\)) sy (24243) can be reduced to

4

3/ Ve make use of the well=known approximation

70 2w [—-@ Jy o

where £(y) is a function of a random variable Ve
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8
V(yg}\)) ~ 1 + AE{(Z,) J for N £ 0O

E(Z ees (242.4)
[ 7] for A =0

4
where & i2?\ 2+h7 for A #0 and (r-2) for A =0 and Z; = yg}‘) .

Thus, given that v; 's arc heteroscedastlc of the type considered,

;)

s will have approxmatcly constant varla.nce ucrosg obswv*’tlons
only when h (2—2?\) which, of cou.rse, lS a’ very speclal case. For .
other types- of heteroscedasticity of y.'s V(yo\))'s will obv1ously

be diff erent. We, therefore, conclude that, in eenera.l the transformed

*

dependent variable will have different variances across observations

irrespective of whether the original observations iees ,“yi's, were

y; = 1

4/' éo: Here Z = X "i.e._;i (1+?\Z)
Using Taylor e:;pans:.on around }'XZ ) upto the second term, we have
(-1 y
Vs ~[1 + AK(Z,) [1 + AK(z,) T (2, - Hz) .
Ta.k:.ng expectations on bo h sldes, we have -

Hy,) = ’_1 +m«xz.)]% .

Equation (2 2»,), therefore, becomes

{_ (k)-J 1 + K2, )](2?\-2+h)/7\ .
Ny

7.
1

A=0¢ HereZi vy =ln;y ’ then y; = e R

Taylor expansion around HZ, ) upto the second term ylelds
B(z,) Bz;,)
N 1 - . :
Yy e + (Zi E(Zi)) .
Taking expectations we, therefore, have
Kz,)
By, ~ e

and hence from (2+243), we find ~

A7 2T BT
L - L .J -
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nomosce’astic or not and thaf tie pattern of hete:oséédaSticity will,
 involve the transformation parameter A besides the parameter h indicat-
ing the degree of hetérosdedasticity, if any, in the original depen~

dent variables

' 243 Bgtimation of the Box=Cox Model

Under Heteroscedasticity

From the discussion of the previous section, it is now cleax
that oneV should consider, for the purpose of estimation, the Bq:c-Cox
model with heteroscedasficity of the transformed dependent vamiabl; as
given in (24241)s Sihce the methods 'avai'la,ble for estimating the
Box-Cox heteroscedastic (BCH) ﬁlodel (vize, Zarembka's method and
Fgy-Lahiri method) are limited in applicability for reasons stated in
the previous section, we propose here ML method of estimation of the
3CH model given by (24142) énd (2.241) and suggest two diffe:éent ways
of obtaining the ML estimates of the felevant parameters. In our
study we make two different assumptions about CARS
F [2y) |”

02 m?

i

(1) vy,

L}

and (ii) V.(yi)b
where 02 and h a:re'ﬁnlmown parameters and mi's are exogenously given.
Assumption (i) is the same as that made by .Zara:'nbka (19’74')_ but he
treated h to be known for his estimé,tion methods As can be scen from
(24144), Egy and Lahiri as"sumeid the for (i) for v(y"g‘)). It may be

pointed: out, ’however, that By considering a model given by (2e142) and’
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(24241) s we are ﬁnplicitly assmring that there exists a value of A
iece, a power transformation, which lvinela,rizes the rela’gionship and
ensures nomallty of the dlsturbcmces in the transformed model but in
general, leads to hetoroscedastlc:L_ty, the exact nature 04. which will
dcpend upon the mt}xr‘c of heteroscedasticity in the original yi's ‘and
on the transformation pa.ramefer s

Let us first consider assumption (i)e Then from section 242

‘we have from (242.4),
V.[y(ix)] (= o?. say) o~ \ o [1 + KE(Zi)] ° v NEO

\02 [eﬁzé)]é ;A =0

Under the assumptlon of normallty, the ln.kellhood function of

(y1, ceny yn) can be wrltten for )\,é 0 as 74

2

&
L=Qon’st.--13-lno - Z: In (1 +A )
onis 2 2 5 N
») 7
n (y - x} B)
..-—172-' hN + 1nJ coe (2‘301\
20" 1=1 (1 + An, )6 )
where :
ay(?\) n A é/
J=det |z==— |= T ¥
oy . ' Iy ?
i i=t .

W= E(Zi) and 1/1 is the (1 x k) vector of ith observation on

k Tegressors ileeey x;i is the ith row of X.

2/ "For the purpo e of the present analysis we considor the likelihood
equation only for A ;é 03 for A= O, the likelihood equation-can
similarly be written,

_6/ By choosing a suitable unit of measurcment for y."'s, z lny‘. can

be pade to be zero in which case 1n.J vanishes in (2.3.1) « Howcver,
Sehl eeselman (1971) bas pointed out, all the elements of the
:flrst column of X must then De assumed TO De WilTye
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Simultaneous estimation o all the pa.rgmeters of the model vize,
A, B, 5 and 0° by ML procecdure is evidently very comﬁlica‘ced because
of the DODlinearitics involveds One may, however, find ML estimates
cf the parameters by using a search procedu;‘é over N\ and §. :

This procedurg can .be -dés;:x;ibed in Jvtilé' f ollowing steps

(2) Fix a value for each of A and ‘5‘ .

(v) vse ordinai‘y least. squai'es (whlch obviously means that & is
taken to be zero) for‘tho fixed A ap_d."ést‘imate B as

A, 0 =@ A | oo (20342)

2nd hence /u\i:‘(?\, 0) = XJ{_‘/B\(N. 0) ,.i =15 2y eeey Mo

(c) Find cstimates of B and o2 in the second stage by

é\(x, 8) =@ %1 o, s~ x7 1 9) MO N (2:3.3)

A-
where V 1(7\, 8) is the inverse of the matrix

R 8y = aing (8 05y By O 8y eeeen B (A 80D
'x’?i(x, 8) = [1 + 7\{1‘1 n, o)] sy 1 =1, 2 eeey 1 eee (2:344)

and
M - B 8) )2

DK
i=t [1 Ay (O 0)]<S

/?:20\, 8) = i- .v.."'(2.3.5)

(d) Log-likelihood valuc at (7\, 5) g is then computed as

5 1 A -
L(A, 8) =Consts =3 3 1n _.[1 + A uy (%, 0) ]

, i=1
- "2' ln__O (?\s‘ 5) + (7\“1) z lnyi : X (20306)
A . ‘ i= ,

1/ It is clear from (2.3.6) that there is no a priori reason to conclude
that there may be more than one (A, §) for which L(A, 8) will have
approximately the samc value and hence an -identification problem as

claimed by Egy and Lahiri (1978). See also footnote 2
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(e) Calculate now ui's a8

/!}°(}\9 6)"-:){/./6\ (k95)9 1= ;i' 2, es ey Ile

(£). Def:.ne new v (7\ 5) (i = 19 25 sees n) with’;/x.\ (A, 0) in
(243e4) belng rcplacod by /\ ()\, 5) and repoat steps (o) to (e) till
the maximun of the log—ln.kd:.hood function for the glven (N, 8)
attained (in computmg new AZ (A, &) and LA, &), (N (7\, 0)'s are
now replaced by ui(?\, 8)'s in (2.3.5) and (2.3.6) e

Si_:ep;s (a) to (f) are repeated for different combinations of
plausible values of A andv 8¢ For.cach ;Jair of values (A, 6), we thus
obtain a maximum log—likelihood value.s The ML estimates /7} and/é\
are thOSe values of A and 6 for which the log-llkellhooa value is

naximum among the noximized log-ln.kellhood values over the dlfferent

(N, 5)‘8 and the corresponding estimates of 8 and 02, say /g‘a,nd /;},
are the ML estimates of B and o2 under standard conditions (see,
Dhrymeo (1970, Che 3) and Obecrhofer and Kmenta (1974) for relevant
conditions and results)e |

This scarch procedure is simple;bu_t.obviously. expensive and
time consuminge We, therefore, sxlggteét another method of obtaining
ML cstimates which is based upon scarching over A only.  This method
is an extension of that developed by Coondoo and Sarkar (1979) in the
context of the standard (iece, nontransformed) linear regression model
having error veriance gtructure of the type V(sr.) = [_E(y.}—j 5 where &
is an unknown pcmaneter a,nd E(y ) > O What we essentlally do is to
fix a value of A and 'bhen estlmate the paramecter § th.ch max:.mlzes

the log=likelihood function CuIlO.J.‘bJ.Olm..L on ol vawve i ,'-..
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‘ VA
Suppose for a given 7\, B (\) is some conclstont ‘estimate of 8

for the glvcn A -/ Then one can derive est mates of 02 and & condi=-

tionalon A a.nd A (A\) as follows ¢

eos (24347)

3L n Y- ~ =5
——— ==t = 5 el (A\) I (\)
d 02,;3:'@(7\) of  2d im 1 ‘ 1
and n no, 4 5 ,
oL N S I PR 0V I S B (S BTt R (S I P 03
1+ 39) 8 =8 (}\) 2 A=t i 202 i l 1 My

where ei(X) = yg\) - ’;/é‘ (7\)

am.@u>=[1+x@<§y i 0 == B .
Setting (2¢347) and (é.}.s) cqual to zeré;

n

2= 5 20 78 0
n . 1 1
. ‘]_-'-‘-’] V n
| a3 %mu'%mlnuu>
and Z‘. 1in s (7\) lzl = .,
i=1 2 ~ =8
z e.(?\) g (\)

i=1 .
L¢t us now normalize u (\) vy deflmng '

T = %uy”1%um

n ~ '
£ 1n ui(7\) = 0.

eee (24348)

cee (2.3.9)

ves (243410)

y For the purposc of computation,

A /- ‘
BN =@ 01 ¥N iy the obvious choices
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It is casy to sec that (243410) is satisficd coven after a change

in the units of the Tli(h)'s. Hence we have for the 'ﬁi(N)'s

n 2 e’ ()\) ~-5 (\) in :;;1 )
3 1n u1(7\) =1 - — « vee (243011)
=t TSI |

i=1

But since z ln u (A) =0, (2¢%¢11) reduces to

i=t
1§1e2(7\) T{ =5 (\; 1n ";:i'i A) (=s(850)), say) eee (2e3412)

Now, one can see that S( 8 (A)) has a unique root for § for a given A

because B ' e

lim s(a(x)) == o, lim s(6(A\)) = = /4
8> ,

5 —» wm

and
SO0 .3 20y F ) K< o
gs .o %i wgoo AR
i=]
for = 0 §< %
This root canA, thereforey, be obtained by using standard tectmiques

used for solving nonlinear equations, say, Newtor=Raphson iterative

procedure, as follows §

T
9/ By our change of units of measurement, some of the 'ﬁ'i's are
greater than 1 while others are less than 1. Thus

lim  s(8(A)) =lim 3 - f () E{’;@ (\) 1n ’Ei(x)
P e B < |
+lim 3 ot(N) ~"5(>\) In 7 o o .

Obviously, the 1st part goes to = o and the 2nd part to zcro as
Hence lim  S(6 (A)) == o Similarly 61513 S( 8(A\))=coe

S s
-’w

At OO
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n 2 -y

= (7\) =Ty my ~ () |
5 =5 | 4 ==L ~ ees (243413)
T ™1 n

-5
3 S0 % M) (e o)

whcre 6 and 51_ 1

re.spectlvely.' Once the converﬂing 8, for the glven N, say /\ 8N (A) is

are solutions of § at the rth and (r-1)th stages

zvzilable, estimate of 02, say s o (7\ 6 ()\)) may be obtaincd from
(2.3.9) - by replacing 5 by s (z.).

Now, the value of the log-likelihood functibn is conmputed as

. A |
LA, 3 () = Const = B 1052 (a, m) —-(M FEACR

+ (1) 2 1y, C ees (203414)
i o

oo o A
Then, one gets improved cstimates of B8, say,/B\ n,8 (),

defincd as

(7\ (?\)) - & v T oL5 o 1, T A (?\))YO\) eee(243415)
w‘nere/\\l (?\ 5 (M) is the inverse of the matrix )
V (7\v5 (7\))= diaé; (V1(7\,5 (7\))9 VQ(}\’SO\))s seeey 4’;(7\9/5\(7\)))9

where ’xr\i(x,'é‘(x) = [’;i (x):fm s i=1y 2y eeeyn
Defining now §,'s and e,’s as
oS am) = [1+nf8 0, am)]
and e, (A, 8 (7\)) [ M -x’/\ 5 (?\)] i

apother unique estimate of § is obtained from (2.‘3.13) and new _esti-

oo (2.3.416)

mate of 02 i.ee, 02 (A0 is obtained.from (2.3.9) with §;(N),s
. ' . . ] - /\ '
and ei(?\) wplacod,;hyr‘ﬁi» . < ), Qﬂk)and ei(7\, 5(N\)) respectively
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, from (2e3¢16)s The new valuc of L(X,/é\ (\)) is a.c‘cc:.:dingly calculated

from (2.3414) with ’;i.(?\) being replaced by w;(n A (\) and o2 and 5
by their new estimates. | |

With tl\lese new ';I'i(?\, ’4/5\(7\))'s, new /T> (7\,%\(7\)) is obtained and
hence new 'é\(?\, {5\(7\)) from (2+3+15) and then ncw estimate of § andiso
one The process 1s r.e';pea,ted till the meximum value of the log=likecli=
‘hood function for the given A is obtalned,a.nd ‘the corrpspondlng solu~
tion of § obtalned from (2.3 13) is taken as the bstma“te of 5 for
the given A,

In . order tq maximize over the en'{:i‘re parameter space, we only
nced to choose alternative values of 7\ over a _reasonable range and
obtain the unique /5\(?\)'5 and the 'cor;-c”esponding fnaxinﬁzm log=likelihood
values for the given A wvalues. The value of A, say/;\ ._, for which the
log-likelihood function is maximuﬁ amang all the maximuf log=likelihood
values for the given h‘s, is, in fax;t, the ML estimate of Ae At ?\ﬁ:/}\,
the correspondlng estlma‘bcs of 8,8 and 02 denoted by {5\,/8\ and /\2
accordingly obtalinéd‘from (2.3.13), (243415 and (2,3.9)-,i‘es'pectively-12{
arc, in fact, the‘ ML estimates. J As has becn poiﬁted out by Savin and ‘

White (1978) in the context of Box-Cox procedure with autocorrelation

that it does not appear to be feasible to analytically derive the

jQ/ This will be so because of ?\=/7\\, the iterctive process with
new 1. i(?x)‘s will converge at the maximum log=likelihood value and
the converging cstimates of B,0 and o? ie€ey /B\ y 0 and 52
will satisfy the normal equations under stendard conditionss See
Dhrvmes (19’70.2Ch. 3) and Oberhofer and Kmenta (1974) for condi=

tions and other details.
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variance-covariance matrix of the limiting distribution of the ML esti-
metes of all the parameters. HWever, an approximation to the estimated
ini‘onnafion matrix can be obtained mmerically from the seeond deriva- |
"~ tives. *

‘Now, if we consider the second eesumpfion about the varia.nce of

Y. i.e.,.V(yi) = 02 m? s we get

‘ 0\5 D [E(y‘)l 22 n? ifNAO
V[yi J 2'}(}'1 “ ‘mlg . =0

which adpec approx;unatlons similar to the onc done in case of first

il

assumption about V'(yi), reduces to ‘
- S -2 }
v'[yp‘)_’ﬁ g o2 [1 +)\E(Z.)"_’ B if AN£O
i i i
~ - i/ __ _ ' ) _
: | ng [E(i)]zh , if A =
o e oom ‘
‘ 7 ’ e (2 3 17)
The estlmatlon nethods presented above can be rcstated by ohang—
ing the reclevant equations in accordanm, with this new expressa.on g:l.von
for V[ (}\)] (2.3 17) Bven w:l.thout going into deta.lls, one can .
conclude that for thJ.s case also the ML estimates of A, h, B and 02

can be obtalned by either searchlng over N\ and h or by Sea:rchlng

over A only (see Appendix 2.1 for necessary steps).
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2¢4 Likelihood Ratio ‘LR! Tests

We now consider IR test of hypotheses concerning different va.lue‘s
of X and § 1—1-/ in cither of the modelse Such h;ypothesés could provide .
information regarding the appropriate fuillctional form of the model and
the degree of heteroscedasticity embodied in ite If L(Ho) ande(:H_l) are
the maxiﬁlum velues of the log—likelihooa function under the mull hypothe

sis (HO) and the alternative hypothesis (H,1), then for the large-semple

1
1(4) = -2 [L(HO) - L(g, )] cee (2.4.1)

ha8 . a limiting chi=square distribution with degrees of frecdom Py

LR test of B against H , the test statistic defined as

‘the mmber of additional restrictions imposed by H_.

Hypotheses of different types may be tested by this method,
Firstly, we may be interested J.n testing the hypothesis that the func-
tional form is linear under the condition that the disturbances are
homoscedastice Thé conditional nmull hypothesis is H) 3 A=1 and § =0
and the alternative is H, ¢ A £ 1 and 8 = O« The appropriate test

1
statistic is .

O)] o~ X2 under H
1 o

1(1) ==2 [L(Azi, 6 =0} - L(® (0), &
where()} (0) denotes the ML estimate of A given 8 = 0 iece, estimate

of A in the Box-Cox*models The li:ﬁitation of this te‘st, héwevem,_is’

that it assumes homoscedastic disturbances which is not usually true

j_]_/ We write down the different likelihood ratio tests for assump=-
tion (i) about variance of vi iecey in terms of A 2nd § « In

case of assumption (ii) about the variance of ¥i» 8 is to be
replaced by he. '
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for the transformed models Hince, we may be interested in testing a
more general hypothesis Ho e A=t against H 7\;4 1e The relevant tost
statistic then is

, 1(2) = =2 LL(?\—h 5 (1)) - (X )] ~ ><1 under H o
where - & (1) denotes ML ‘estimate of § given A=t.

In some cascs we may like tovt,esbt,:fo_r a specific value of A diffe=
rent from unity, say, A=0O. Obviov;xsly, depending upon whether 8 = 0 or
not, the test statistis would be similar to the aboves

We may as well 'b'c-”interest.ed;' 10 test fh‘e hypcfhesis H $8=0
given A=1 against H,".: 5; A0 given \ = 1‘-i.'e_., 'whethér the heterosce-
dasticity is due to hete'ro‘scedasticity"‘in yi's ;only. The test statistic
in this case becomes ‘ |

1(3) =2 L (7\—4, §=0) = I\ = /S‘ (1))] ~ x12 under H .

As before a more gena'al hypothesis will be H, 25 =0 against

H 3 5 £ 03 for this the test statistic is

1
1(4) = -2 L( (o), o)-L( ’\)] ~ X12unde:r:H.

Finally, we may wish to test the Joint hypothes:l.s H $§ A=1, 6 =0

against H )yé 1 a,nd/or 5 ,é O« The test statistic is obviously given by

1(5) = =2 [L()\ﬂ, 8§ = O) - L(/;\, %\ )-j ~ Xg under HO.

2¢> DMNumecrical Illustrations

In this section we report ‘the results obtained by using maximum

likelihood (ML) method.of estimation suggested here for the BCH model
for two differént scts of ‘dataes  The first one is taken from O'Hara

and McClalland (1964) and relates to radio-sales (y) and income (x) for

1

-
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49 states in the United State: for the year 1954. This was first
analysed by Butemiller and Bowers (1968) in terms of a linear regressio
model with heteroscedast;‘.c errorse The second example is based én the
data available from Fcigl and Zelen (1965) on survi;ral time (y) of
17 leukemis patients and their while blood cell-counté (%), They used
this data to estimate the lincar regression of y on lnX with exponential
cerrorse This set of data was also used by Cox and Snell (1968) and
Amemiya (1973b) for their studies.

‘We have used these two sets of data to cstimate the folJ.orwmg
regressn.on equations

e

=By 8%+ (i= 1,2,., 49), for the first example .

(XX} (20501

and

s M S

i (i=1 122e9 17), for the second example
soe (2.50

—B+BZA

under two alternative asgumptions about the varlances of the yi 's vize,
(i) V(yi) LE(y ).J and (ii) V(y ) =d xil, where in each case

h and 02 arc unknovne It then follows from (2. 2e1 ) t’hat the variance

. Q)

for yg\) correspording to these cases are (a) 012 = V(yj(_z\)) ~ o? [.E(yij 1
§ _Son o 5 _ : 2 J2r 2A=2 _h I

where 1 —{2?\ 2 + h}and (b) o~ © LE(yi)]. x;o In addition

to these two, we have made use of a third assumption which is the one
used by Egy and Lahiri (1978) VizZe, Ui2 = 02 xi o It should, however,
be noted that these assumptions do not make much of 2 difference in the

ultimate conclusions for single-reg;ressor models like ours since we

can easily see that o [E(yin ~ g*z 6 (where 0*2 is suitably

dofined) under the condition that the value of (1 + ?\B ) is much smeller

b

A
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compared to the value of KBzxilg‘/ which we have, in fact, found to hold
in our examplese In such cases, the difference in agsumption about the
variances will, however, _be reflected in the estimate of 02. This is

obvious from footnote 12« In our mumerical examples also, we¢ heve found

the estimate of o° o be different for the different assumptions about
the varié.nce. |

In Table 2.1, wé present- the maximum velucs of the log=likelihood
function for each of the dﬁferent assuméd valﬁés of “one or both of A
and S/h. More specifically, in addition to:the ‘maximum log~likelihood
values for BCH and the Box~Cox (BC) models, we also report the maximun
log—-likelihdod values for A=1 and O and/or 5/h= 0. For each of the two
examples we have used both the methods des crlbed in section 2.3 for
obtaining ML estimatcs 1ece, (1) 'search over X and é/h only and
(ii) search over A only. These/ two methods produced almost identical
results (though the sccond orig took‘ much less’ computajtion time) and
hence, for convenience, -xl,re. hz;,ve reported the results 'bfo:-r: the first
method onlys Results of the likelihood ratio (LR) tests for different
hypotheses conCerning A and /5 are given ianable 2¢2¢. We note from
Table 2.1 that for both the examples the mz}'x::Lmﬁ-m: values of the log=
likelihood function for the three different b;é:éxﬁnptims about the
variance are quite close %o one another for each ef the six models
(va.lues of N\ and 6/}) concider'ed. “The IR test statistic vdlues in

Table 2.2 arc, therefore, reported only for case (a) ilecey for the
assumption V l_yo\)_J 02 [E(y )]

12/ For (24541)y we have from section De2.

[E(y )] 2—' ]:1 + AE(yO\) ):]
[1 + AB + 7\6 x. J

~ 0*2 x5 (wnere 0*2 = 2(7\ (32)5 ) under

.the stated condition.
The same relatlon obv:.ously holds for (2.5.2) also.



http://www.cvisiontech.com

Table 2.1 $§ Maximum ;Log;-likelihood values (L) for different values o.I:/the transformation
parameter (7\) and degree of heteroscedasticity (6 or h).a

5 i .
Model* |Case (a)s V Eri}\j = 02 [E(yi) 1 - Case (v) ¢ V’[y](_}‘)] = gyzxg Case (c) 13 V[yg\)]
S 2 (\) J5 5 o 2 -
| . [1+7\E(yi ) | | | =0 [E(yi)] 2 Zx?
A 5 L A 8 L A Sn L
1) (2) N C)) (4 _5)_ (6) (1) (O C) (10)

. A ik 0% =159.524 | 1w Oo#  =159.524 e O3 =159.524
a B 136 © 1507 ~131.989 A 1501 =132.660 1% 14501 =132.060
¢ c 0.925 oy 10326 =129.686 04923 1.273 ~ =129.588 0.923  1.439 =1294596
By (0.923) (1.325) .( =129.732) [ (0.923) (1.277) (=129.609) (0.923) (1.438)  (~129.595)
;SSD 0.786 O ~146.375 04786 0%k =146,375 b/ v/ v/
3 E Ot o O ~187.682 | O%% O ~187,682 O Ot ~192.277

F | Owx 0.613  =184.316 Ot ~04923  =183.067 O ~0e428  =191,205
s A T O -.64.526 | Ox** - 64,526 1% O - 64,526
§ B A 10,582 - 64,188 | -0.281 = 64.054 1%% ~04281 = 64,054

C 0.124 ./ . 8 = 564210 - 04163 0,587 = 55.842 0,00 =04299 = 564363
% (0.124) e - (= 56.209) (0163)  (0.587) (- 55.841) (0.01) (-0.332) (- 56.366)

D 0,282 - O% - 574340 04299 0% = 57,347 b/ v/ b/
d6 | om Ot . = 59,642 Ot O%* = 59,642 [ O*x 0%t - 56,408
2 x Oset =14500 = 56,367 O 0e851 = 564368 Ok . =0,282 - 564367

Notes's * A ¢ Linear Homoscedastic, B ¢ Linear Heterescedastic, C § Box=Cox Heteroscodastioc {BCH),
D ¢ Box~Cox (BC), " B :Semi=log Homoscedastic, F $Sami~log HUeteroscedantic,
G % Double-log Homoscedastic and . ~H § Double-log Heteroscedastic.

% indicates that the value of the i)arameter in question is given a priori from the model assumed.,

2/As both the methods for obtaining ML estimates give identical results, we have reported theresults
©0f the first method only. "For the sake of illustration, however, the results obtained
by the second method are given in brackets for the BCH model only. ’
_1_)/ Entires corresponding to BC model for case (c) are omitted since for this case even for h=0,
the model does not reduce to that of BC. ’
2/ Sirce the ostimetn of 5 in 30T Todel for the Tavihimida da2s Juocast (@) 11 in o 1ange whize 7
is insensitive to changes in § ;we have kept the corresponding entry in the table blank.

0
\O
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Table 2.2 ¢ Results of likelihood ratio tests for
different mull hypotheses for case (a).
Stotism I = Fedio-Salcs Gata Leukemia data
tic o} 1 value of -conclusgiong® value of sonclu-
: LR=-test LE~test ' sions+
statistic statistic
1) (2) (3) (4) 5) (6) @
1(1) A=1,8=0 N0),6=0 260298 Deject I - 144372 reject i
A A \ |
1(2) A=1,6 (1)‘»5§, 5 4,606 accept i at 15.956 reject I
' 1% but re ©
ject at 5 %
A , . '
1(3) A=148 =0 A=145 (1) 55,070 reject HO 04,676 accept HO
o . A - .
1(4) /ﬁ(o),ﬁ =0 N, Q? 33.378  reject I 2,260 accept i,
' A ' ,
1(5) A=T, §=0 A, 4; 59.676 reject Ho*~' 164632 reject H
, , : N,V
1(6)  A=0, 8§ =0 A=0,5 (0) 64732 reject H 64550 "accept I
‘ C at 19
but reject
A at 5 %
' AN ’ . ’ e
1(7) A=0,8 =0 Ny 6 116.244 reject Ho 6.864 reject g
1(8) A;D;fg(O) /k, 4> 109.260 reject Hé 0.314 accept 56
1(9) A=0, § =0 f&(o),5=o 82.866 reject H_ 4.604 accept H
: ' o at1%
but reject

at 5 %

£t 5 7 level of significance X
At 1 7} level of sigmificance Xfy= 6e64 and

* Unless otherwise mentioned, 'reject/éccept HO

= 3;84 and 99

1 L
= 9.

o o

21,

>

' means that the null.

hypothesis Ho is rejected/éccepted in favour of/égainst the alterna=-

tive hypothesis

H at both 5 %

1

and 1 # levels of significances
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For the first example, “he likelihood method of estimation of BCh
model has yielded estimates of A and & as /k = 0,923 and €\= 14326 anc
" the maximum log-likelihood value is +129.686. The'corresponding value
for BC model is only =1464375« We find from 1(4) that BC model is
clearly rejected in favour of BCH'model.' This, therefore, indicates that
. one would have chosen a wrong model by straightforwardly using Box=Cox
" procedure. As the model actually turns out to be approxiniétely linear,
1(2) suggests that we may accept H ¢ A=, /‘5\(1) for the sake of
simplicity against Hﬁ H j«} é\ because when tested Ho is rejected at
5 per cent but not at 1 per cent level of significance. It is important
to note that the advan¢agebof using BCH modcl is that by rejecting the
inappropriate mull hypotheses against the unrestricted hypothesls, it
" helps us in choosing the proper model. This is shown by 1(5), 1(7) and
1(8). It ma& also be seen from 1(6), for example, how conditional hypo~
theses (where values of one parameter are a priori assumed to be known)
may lecad to wrong conclusion about the‘proppr models In thls case A is
a priori fixed at A=0 and we find that the imll hypothe31s (53 A=0 ,5=0)
is rejected in favour of the alternative (h ¢ N0, A (0)) at 5 per cent |
level of significance a.nd H is almost accbpted against H at 1 per cent
level of significance though the maximun values of the log-llkellhood
function are much less‘for both the hypotﬁeses as compared to the maximum
| value for the BCH modele Thus we find that choice of functional form
appearé to be crucial in discriminating amoné different models and also,

as in this examples, that estimation of A seems to be influenced by

heteroscedasticitye.
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\
In the second.-example of survival time of leukemia patients the
ML method of estimation gives/?\l = 04124 for the BCH model. Howevér, as
the value of A is very small and the values of LE(;,'?‘)) J's are not
very large which is clear from the data, it may be seen from our approxi=

_ /N
mation for E(yi) iece, E(yi) ~ ’-1 + KE(yy‘)) s that the variances

A
for all i. Hence we find that for the estimate of & in the range -1 to

Oi's become insensitive to § = {’M} because ['1 + ?\E(yg)\))-, ~1

=9 the maximum value of the log=likelihood function is aimost the same
being arocund -56.-1-5/ In such cases of small values of A, we suggest

that one should test for Ho gt A= 0,/5\ (0) against H1 3/7%, /6\ and if

the null hypothesis is accepted, one should proceed (for further studies)
with the model where A = 0, and for this case there is a separate expre-
ssion for approximating F.(yi) given in footnote 4e We find from Table 2.7
that maximum log=likelihood values for the case (7\=0, /5\ (O)) and for the
BCH model (i.e.>, /?},/5\) are quite close, being =56.367 and =56.210
respectively, and & has a unique estimate at é\= =14500 in the former
case. The fact that\/a\ and ‘henc'e /5\1 has = negative value indicates
that the variance of yg‘)?é decrease with increase in E(yi). We, how—
ever, note that for A = 0 and 'g\= =145, the estimate of h comes out

to be 0.5 which means that the original observations of the dependent
variable ises, yi's, have variance increasing with increases in E(yi)'

This clearly shows how transformation may affect the variance of the

l}/ This is obviously not going to happen for the other two agsumptions
about the variance i.es, for cases (b) and (¢) and this is clear
from Table 2.1. However, as it should be, the maximum log~likelihood
values for the three cases are almost same.
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transformed observations cpmpa:ed to that of the original observationse
This negative value of <;A also ﬁﬁﬁlies that heteroscedasticity‘is
relatively leésrimportant. This. is also corroborated by 1(4). How
conditional hypotheses may lead to acceptance of erng.mqgels is
revealed hefe.also by 1(3>, for;example, which indicates tﬁat.linear
homoséedaéfic model is accepted against linear hetcroscedastic model
though both have much less maximum log-likelihood values as compared
o the BCH model and béth’ are, as indicated by 1(5) 'and 1(2), rejected
in favour of the BCH models |

Thus we find that in a‘pracfical,situétion the doparture of the
AGStﬁmate of X obtainéd from a model with heteroécedasticity from that of
a model assuming homoscedasticity ‘and hence the consequences of choosing
an inappropriate model may depend upon tﬁe daté. Bg£ since the actual
' situation cannot be kﬁown a priori, it is, in general, advisable to

estimate A within the framewo¥ of the BCH model.

2.6 Conclusions

Box and Cox (1964) éﬁggegted a transformatiohaof_fhe;dependent
variable in a regression modecl in order to achieve ling@rié;, homogce=
" dasticity and normality of the tpansformed dependent variaﬁle and .
proposed a maximum likclihood method of egtimation of the parameters
of such a model. Zarembka (1974) howeverSShowed thaththe ML method
of egtimation Suggested by Box and Cox is not foﬁust to heteroscedas=
ticity and that the estimate of A will be biaéed towards the direction

Ol sbtuvriiziilyg bie Ellol valilliSte
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In this Chapter we have asserted that ti.c transformation that
leads to linearity does not necessarily l.2d to homoscedasticity also.
This is evident from the transformdtioh itsclf. We have argued that
since heteroscedasti?ity in the transform=¢ dercndent varieble is due
to both the transformation and the heteroscﬂdpsticiti in the>;riginal
values of the dependent variable, onc shouid estimate the parameters
in the framework of heteroscedasticity as given byuthe transformafion
and the heteroscedasticity in the original depeﬁdent variable. Ve
have advocated the ML method of estimation of such a model and have
also suggested an easier and computationally convenient method of
obtaining ML estimatés Ey searchihgvover only%the transformation paras
meters Werhave also indicated how likelihood ratio tests can be used
to compare the fits provided by different models coiresponding to
different combinaticns of the transformation parameter and the para=
meter indicating the deéréé of héferoscedasticit;. Our analysis also
shows incidentally that the assumpticn of variance of the type
02 [E(yl):] ° for the transformed dependent variabie does not lead to
any identification pfoblen as claimed by Fey and_Lahiri-(ﬁ978) (sce

footnote 2).
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Appendi.‘x 2e1

Methods of Estimation under +the Alternative

First method (i.e., searching over A and h)

\

Steps (a) and (b) romain unchunged with & being replaced
by he
In step CQ),

@.(7\, 8) changes to

L1+)\ (A o)_}(”‘z)/"

i= 1, 2, seey n
ana 20, 8) to
n (W-xf’é* (A, EN?

A2 1
(>\ h) = z — ) .
" s [1+?\ Nt )J( )/S wf

In step (a4), L(A, §) changes to

n
L(A, h) = Conste = h L Inm, - A1 5_; 1n (44\ ul()\, 0))
2 1= i A ey

- -2'-ln/;2 \, h) + (A—1) Z lny o
i=1

Other steps remain unchanged excepting that 8 is now to be

replaced by h.
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Seconc method (ieee, searchirg over A only)

In expression (2.3,7) to (243413), the folloving changes are
to be made @

8, 'E;‘S(?\) and 1n ﬁ'i(7\) will now have to be -

replaced by h, "ﬁ'i =( ?7\.-,2)/7\ m:h and 1nm,

respectivelye.

Normalization will now have to be done with respect to mi's.
AN ,
LN, 8 (A)) in (243414) will change to

\ AN n ‘ - n ‘o
L(n, fl} (A\)) = Const, = —hz-gﬁ g lnm; - -l\-xl % 1n ﬁ'i(?\)
- i=1 - i=1
n

. n -
- -2-111’}2 (7\,%‘ M) + (A1) 2 1ny.
. i=9 i
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Chapter 3

The Box=Cox Transformation and
Norr-spherical Disturbances

.3.1 Introduction .

in the last Chapter we discussed the problem of. heteroscedasti-
ity in the contaxt of the Box=Cox transformation and prop'osed‘a nodel
incorporating both the transformation and heteroscedasticity due to it
and ‘also possible heteroscedasticity in fhe original values of the
, depépgigpt variables We also suggesfed estimation of the parameters of
sﬁch méééls. The present Chapter is devoted to a s:mlla.r analysis for
non~spkerical dlstu:cbances, in partlcula:c, that for autocomelatlon
among disturbances in the context of the Box-Cox transfomatlon.
General:.zatlon of the Box=Cox mOuel to -take into account auto-
correlation of the disturbances was first attempted by Savin and Whlte
(1978). They adopted a straightforward md sonewhat convenién{: approach
of assuming the disturbances of the transformed model to follow some
. standard error process. More specifically, they assumed a first=
order autorcgressive (AR(1)) processl/ for the disturbances of the

transformed lincar regression model and used this generalized model to

1/ As mentioned by Savin and White, one can also assume higher order
AR or moving average processes for the disturbances. Furthermore,
as in Savin and White (1978), it is posgible to consider transfor-
mation of independent variables as welle We, however, confinc

ourselves to the transformation of the dependent variable only
since itransformations of indevendent wariahles do mnet zive rise +o
any recal problem and can be easily tackled in a similar fashione
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test for autocorrclation and fanctionzl form simultdneously.

In this Chaptgrﬂﬁe propése an alternative and more general approach
for incorporating autocorrelation of distuibances in the Box-Cox modcl.
It will be seen that our approach can, in fact, tackle the prbblems of
both heteroscedasticity and autocorrelatioﬁ (i.é., nonrsphericalnoss,
in genera;) in the Box-Cox model. Instead of assuminé some standard
error p}oeess‘for the dis%urbances in the transformed‘linea; rggreséion
equation, we suggest starting with an assuned autocorrelation function
for the origihal observations on the dependenéﬂvariable. In cdntrast‘

“to the simple gencralization by Savin anc White, our apfroach gives due
consideration to the complications created by the fact that the vari-
ances and'autbcowuxiances of the trahsfo;med dependent variable depend
on those of the original variable and also on the unkrown transforma—
tion parameters Savin and White's generalization comes out to be a
special case of ocur model.

In scction 3.2,we. describe the problem and our generalization.

A method of estimation of our generalized model is suggeséed in sec=
tion 3¢3. We also cxamine the consistency of the estimate of +the
transformation paramcter obtained fhrough the .Savin and White proce=
dure when actually the transfprmed dependent variable has alternmative
variance=covarioance struictures. This is presented in section 3ede
Like Savin and White, we also indicate in scction 3.5 how likelihood
ratio tests can be used to identify situations characterized by diffe-

rent combination of values of the trensformation parameter and parametcrs
relating to hecteroscedasticity and autocorrelation. The last section

gives some concluding observations.
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3¢2 The Bor=Cox Transformation and
the Problem of Autocorrclation -

"Let us recall the Box=Cox modal deseribed as

A / . )
y§ ) =XiB + ei . l‘=__1, 2, veey NI X (302.1)

)

where i

is the ith observation on thc transformed dependent variabl
and is defined as

A A S,
y_.(-L)= CARIR D2 AfNEO

eee (3.2.2)

and x;_ = (x;l'i, seey Jckl) is the ith row véc#ér of observations on k
fixed regrcssors, (3>= ((31 s seey Bk)/ is the vector of associated re=
gression coefficients and e is 'l.;hé’?:.di»s.turbanée in the ith trans-
formed obscervation on “the‘ dependent ,variabie" in fhe rregression model,
Given the sbove definition in (3.2.2), we can'now” expand y(i7\:-)
around /thc expected value of 75 using Tayler expansiorz and approxi-
mate it as follows ¢ ‘
"dy(.7\)

i o ) [N+ 6y = %) (i)

&7
Y1 yy = My,

= 'Eﬂ(yi)](}\) + (y; = Kyy) [E(yi{j M1

whence it follows that

orts{, ¥z ooty ) [t o] e Gz

i, J =1, sesey lle
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The above relation shows how ’shg—f aﬁtocovariances of the transformecd
observations iecey yy\)'s, are réia,ted to thoge of the yi's and to the
‘ transformation parameter Ne It is also clear that the autocovariance
structures of the transformed and the original observations are not
identical excepting for the case A =1 1i.e., when there has been no
transformation except one being added to the intercept term .

We may get further insight into the nature of autocovariances
of the transformed varisble by cxamining the rolationship in (3.2.3)
more closely. When either the values of [E(y ) E(y. )] 50 S
are very close to unity for all i and j,or when A is very close to
~unity or both, the variances and autocovariances of yg\)‘s will be
almost the same as those of the y;'se Obviously, the first case is
very u.nrea.llstlc and the second case (:L.e., 7\ = 1) represents the
sta.ndard (1.e. ’ norr—transfomed) autocorrelated linear regression
model. If, on the othex\hand., the underlying relation between the
- original dependent va.nab\le and the independent vafciébles is highly |
. nonlinear and/occ d i3 's are not very cloc: to unlty, the autocovariance
structuresfor yk )'s will be different from that of y 'se Finally,
if N < 1, | say equal to -1, in partlcular,wand dij's are greater than
unity, thén dz.t?'s‘ may, in fact, affect the aut‘écévariances of yy\)'s
quite significantly compared to thosc of y.' se Thus, we find that

M)

the autocovariances of y; s may be the same, differ only slightly
or differ appreciably from those of the yi's depending upon the

values of N\ and the dij's.g/

i

It way, howe"er, be noted that the correlation coefficients between
M)
i . ‘

for all i, = 1, sesey I \i A j).

and y are approximately the same as those between y s ana.yj.
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The difference between our approach and that of Savin and White
may now ‘be stated with roefcrence to the above relationships Whereas
Savin ‘and White generalized the Box:'-‘Coxxfox:mulat;on b;;r dj_reétly ‘assum
ing a simplé error process for thé diséu?bdhcééﬁ o'f“" tﬁe. ?t;cansfomed
;llnear regress:.on model, our proposal is to cons:.der J.nstead a struo- |
ture for V(y ) a,nd an cx,ltoco:r::eela’c:.on functlon for vy 's ‘and then use
the relatlonshlp in (3+243) t0 derive the variance~covaridnce matrix
in:I" (;\)'S Assuming that V(Yi)\= "5 [E(Yl)] eh ’ where F(yi) >0

and 0; and h are unknown parameters, we find from‘ (3.2.3), that
A A
OOV(y( ),y ( .)):'.c Corr(y »¥3) LE(y ) Ky, )] b

Let us furbhor asgsume that

l-J . ) =
COIT(Y:Yj)"p l " 'i,j=1,2,...,n(i}éj)

where | p* ]<1 is unknown.
Then we have,

A-1+h

cortyM, ¥V ) 2o J'[E(ywey >] ;'...<3.z;lu.

2
Y
i, § = 1, 2 ) e
’.i'his alternative 'aﬁprdachr:isﬁmore‘ gene:ral a.nd appropria“te as compared
to that of Savin and White for a number of reasons. First of all, it
may be noted that an J.mpllcutlon of the Sav:Ln and Whlte s assunption of
AR(1) process, or for that matter any othex standard e_rror process like

the higher order AR processes or moving average prdqesses, for the
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transiormed linear regregsion mocdel is 4that the disturbances become

homoscedastic after the transfomation, But, as we have shown in Chapter 2,

it is not, in <fenera:l, possible to have a transformation which would
ensure both linearity of the relatlon and homoscedastlclty of the d.w_s—
turbances. In other words,. a.pa.rt from possn.ble heteroscedasticity in
yi's, the transformation itself introduces, in general, heteroscedas-
ticity in the transformed modele This is obvious from ('3.2.3) when
i=j. Clearly, Savin and White' s generalization cannot -tackle such
situations and hence should be, from thls point of ;r'iew, considered as
sonfewhat restrictives Our generalization, on bhe ot}}er-hand, can easgily
a.ccommoda’cé such cases.. To be_m_oré precise, our generalization allows
for heteronscédasticity in the transformed linear regression model due
not only to the transf ormatiq_n but also to the heteroscedasticity in
the original observations iee., yi's.‘ This is obvious from our assump-
tion about V(‘yi). and (3e2¢4)s Hence our generalization can ‘be claimed
to be niore reasonable and aipproixéia’te.

Secondly, our forxm;lafion (approxirately) reduces to that of
Savin and White when (7\-,-1.+h) = 0o Thus,the case when »the ‘disturbé,nces
in .the tx:apsfomeri linear regression actually follow AR(1) ‘is nothing
but a special case of our generaliz ation. | ’

Thlrdly , In any practlcal s1tuatlon the observatlons relate to
yl‘s a.nd X 's and not to the transfemed value,s of the variablese.
Hence any guess about the naturce of the variances and autocovarlances
in the data must necessa_':\:clly refgr to‘_;_’chat based on the original vari=-

ables a.nd no a priori idea can be made about the variances and
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autocovariances o‘i‘/the errore in the transformed model on the basgis
of the given data.
Fourthly, it 1s clecar from (3.2.3) thet there is not much

Plausibility of assuming a simple structure for Cov (yg\) ’ yg}\') ) indepen—
dent of A even when Cov (yi, yj) has a simple structure.

Finally, our approach brings into focus the complications Crea=
ted by the transformatlon and its role in modlfy:n.gg the variances and

autocovarlances of the original dependent variable,

33 A Suggested Method of ML Estimation

. In this section wé descx_'ibé' a method of estin}ation of the
Béx;éox model as éeneralized above and given by (3.2.1) and (3.2.4).
It is clear that since, apart from nonlinearities, the variance-
covariance matrix of the disturbances involves E(yij etcs, estimation
of this model is quite difficulf. We nevertheless propose a ML method
vo'f estimation and ’indicate how ruch estimates can be ébtained.

Le_t 02V Cu,uO‘tO the va:uance-covar.uance matrix of € obtalned

<

from (3e2e4). ¥ Then
= ()
where

*l i-,j’- : 7\-1+h
= P E(yi) E(yj)] H ese (30301)

i, j = 1, ooy Ne

}/ Other standard -assumptions may be made about Corr (y 'Y ) and
also for V(y )e The method of estlmatlon, however, w1ll remain,
in prmc:Lple, the same,

-
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The log=likelihood function of ¥y ,"yz, coss ¥, can now be

written as

. | ) / -
L = an,st..--%ln o; - Jé-lnl V' + -Ujé——(Y(}\) -Xg) V 1(y(7\) -XB)
y

-+ ()\."1) Z 1n y XX (3.3.2)
i=

where

Y()\) = (y?\),,_ ..;, yr(f\) l)/,” X = (x1, xz; ‘.sey xn)/
and V is assumed to be norsingular. -

Considering the complicatiopé created by the ﬁoxiinearity ) We
suggest a search proéedure over X;‘p*'and‘ & (=?\-1+h) for obtaining the
ML estimates of the pa:came_ters involved. The proceduré may be

described in the following stepswy -

’ - L . +*
Step 1 ¢ "Fix a value for each of A\, P and 8.
Stép 2 ¢ Apply ordinary lea:st squares (which obviously means
V=I ) and obtain estimatcs of E[y(ixj 's from (3e241).
Step 3 ¢ Obtain estimates of E(yi)'s from the following

relationshipé/

1/A |
(y ) [ + AE(yO‘)J sy ifNZO
E ~
s if A =0

4/ Sce footnote 4 of Chapter 2 for derivation of the relationshipe
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Step 7 ¢
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Using the es*imates of E(yi)'s in Step 3, fom the

*
estimated variance-covariance matrix /V\O\, P, 8)
for the fixed N, P.*, 8)e

Find estimates of B and 05 as

Ao, 8) = @R, o5, 8 )0~ TP T0, oF, 8)y(M)

see (30303)

and
2oy et ) =L @-xB 0, 0N ) T TI0N", 8)
| (¥ = X8 O\, 7%, ).
Calculate the value of the log-likelihood function at

/B\()\, P*, §) and /ég (n, P%, 8 ) from (3.3.2) as

L(\,P", 8) = Conste - % 1n 4\5 (A, P°, 8)

N LT
+ (A1) Zlny,, T ess (340304)

i=1

Obtain new estimates of E(y(i?\))'s using _/(3\(7\, P%, 8)
in (3+%¢3) and repeat S teps (3) to (6) till the maxi=

mum value of the log-likclihood function for the

%*
- given (Ay P, &) 'is obtained.

' *
Now, in order to locate the ML estimates of Ay, P and § one

must carry out the above steps for all plausible combinations of values

of (A, P*, 5 ). For each combination of values one gets the maximum

value of the log=likelihood function and the maximum over all these
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Zaxima is indeed the maximum value of the 1og~1:x.ke11hood function of the
At .
nodel and the correspondlng values of 7\, :nd 5, say /7} P and /5\
/\ * A
and hence of B (\, ) and 0 6 'y 5 ) are under standard

condltlonsi/ the ML estimates.of the Parameters of the modol,

3e4 Consistency of Eetlmates by - Savinr-White
Procedure urder Alterna.tlve Formilations

It would be :Lnterestlng to examine if the ML estimates of the
Parameters obtained by SaVJ.n and Wh:.te s method for thelr gener;llzatlon
of the Box-Cox model -ranain consistent- 1f, in fact, the situation is as
da.scrlbed by our for'nulatlon. If it happens that the ML estimates in |
the Savin ang Whlte generalization areé consistent even under our- assump-
tions for the autocovariance structures, then it does not really matter,
from the point of view of consistency, in what way the Box-Cox model ig
€enexralized to take account of autocorrelation, In what follows, we
s21] show that. this doeg not, in general, happen,

To prove this, let us assume, as has been done by Savin and

Whkite (1978), that si's follow an AR(‘I) Process given by

Ei = pei_1 + ui, i= 1, 2, seey N . LX) (30401) »

wiere|P| <1 and ui's are independent with zero mean and same variance g°

'®CTOss observations. We can write the log=likelihood equation of

& For details, sce Dhrymes (1970, Gb. %), Ran (10  ap. SASIcid §


http://www.cvisiontech.com

77
- . , Y4
Yyr Yoo eeeer ¥y under the model as given by (3+2.1) and (3.4.1) a
n 2 .1 2 .' o
L = Conste = 2 1n 0° + + 1n (4=p%) = <8 4+ (A=1) T 1ny,
o2 . 2 2 v i

.;. (3.4.2)

where
noo. " ‘2
Qo = ‘2 (Zi - ui ) .
‘l= . -
* _ 2 _.W
Z1 = 1 p Z1, Z1 "y1
* . _ o2 _
RV ST My =x8
* (A) . -
Zi = Zi pZi_1, Zi =yi for i =29 3.9 eoey I
and ‘ ,
WY p, = pu ui=x£e £0r 'L =25 3y eeey Do

i i i=-1?

When ei's have variancesand autocoveriances ' difrerent from those given
by AR(1), the condition for consistent estimation of A by ML method of

estimationz/ is

X gi - =0, at least asymptotically,
(o] )\ = )\ .
[¢]

where )\O refers to scme arbitrary choice of the transformation pafcametel*c.

§/ Without any loss of generality, we carry out the analysis for A ;é 0
only because for A=0 similar derivation can easily be done.

j/ If A is consistently estimated, then other parameters are obviously
consistently estimated under standard conditions and therefore we
check for the consistent estimation of A only.
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N'T‘.‘W from (30402),

o GL . n
oL 1 n 3 W PP B
= === 3z (2, - U%) =+ I lny
67\0 02 - .l i 6?\0 i=1
where
% e :
07, a— 02
i _ 2 1 .
TN = \/1—“ P an fpr,- 1 = Te
o 0
4 GZi 621—1
Lax - p 6)\ ‘ fOr l = ?»,3’.., Ne
s,
E(%}I:'-) =E --(Lg—l(z u) '12-2 iz, - )
oA =\ o g i=2
IR ’ aZi aZi_1
=Py TP x| 151 Iny; )
Y ez, &z,
1=P" ¢ . 171 y i
= B |= = (2, = p,) m—— 2 (z u.)-—-—
02 1 17 ON 02 i=0 i’ 8N
w2 ‘n ( - ) az._1
- 3 (2, -mn,
02 j=p 1 1 i=1 [N
. n 0z, _
+p 3 (2 =)
0" i=P
n o7,
P i
T2 L (Ziag = Mimq) X J

+ %E[ 2 1n (1 + Az, )] C eee (3403)

i=t
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New, without any logs of generality, the units of measurement
n
for y; can be supposed tobe such that ¥ 1n y; = 0 and hence,
: i=t
r o _
El] 2 1n(1 + AZy) = 0.
i=1

However, as noted by Schlesselman (1971), in such a casc we have %o
agsume that X1i = 1 for all i = 1 2, eesey Ile
Following Zarembka (1 974), we also use the-approximatiorré-}/

N S |
- — =v(eY .
Bz = w) 7= T 9 Eay), o = v(ey) oo (34444)
Also using derivations shown in Appendix 3.1 we have,
n ( ) 6Zi n o ) :
(2, ,=k Je== =3 o ._4Ys Ellny, : 8
jup =1 i=17 9N jep (i=1)i i
n
+ % ‘b.(c(. .- P, 0? )u
jup 10 (1)1 ii
B...(3.405)
and similarly ;
n ( ' GZi_1 n ( | 11
Z (2, - 1)z ~ 5 %y Elny, )
o d i’ oA iop i(i=1) i=1
n
- 2
+ t., . (9., -0, 05 )
jep B i(i=1) i i=1

where , _ L
O(3m1)i = E(ei_1 e,) = Cov(ei_1, e;)" (since B(e,) =0 for all i)

E(pg )

o= 2
2A(1+n ny)

p; =hE

by = Be, e]) /Bl )
and -

5y tey L,/ el e

8/ The algebra is similar to the ome shown in Appendix 3.1 and hence
is omitteds _ ' :
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Then substituting (3.4. 4) and (3.745) in (3 4¢3)y we have,

L2 n '
L ~ -
B( g’}?) -L5£~ 12 E(1n y1) - -1—2— g o0 EQln y.)
o >\0=}\ o o i=2 L L
2 n
P 2
-~ % o _. Hlny. )
02 j=p ¥ 1 i=1

+-%§ z -0(1-1)1 Biny )+ o, -1) Eny, 1)_’

b (Qam1)s = P25 %5)

+ ti-‘l( oi(i-1) - 51025__1)] 00(30406)

£ 0, in generals
Thus we find that the ML estmators of the parameters of the model a.re,
in general, not conslstent if the varlance-covarlance matrix is dlfferent
from that generated by AR(‘]). OLbviously, for our krnd of a.ssumptlon cof

Zutocovariance structures for y( )'s, this concluslon remains valid.z/

3.5 Likelihood Ratio Tests
To test _different hypotheses concerning the parameters, we
saggest the use of likelihood ratio (IR) test. As noted in Chapter 2.

Mthe test statistic is defined as

1(.) == 2 ‘[L(Ho) - L(Hh:’

E/ Similaxr a.lgebra can be cartied out for otner types of . standard error
processes for the disturbance of the +ranzformold lineam 2asmwossion
models However, the conclusions w:Lll obviously be the same.
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where L(Ho) and L(H1_) are maximm log-;ln".kelihood values under the mill
(E,) and alternative (1_.{1) hypothesess  1(.) ’;fbllows a X% distribution
asymptotically with deg:ceé of freedom r, the number of additional
restrictions imposed by Ho. From th_epoint pf view of the present
analysis, one would be interested‘mainly in éxamining the effect of
transformation on autocorrclation and heteroscedasticity and hence one
would like to test hypotheses involving A, P and 8. Like Savin and
Whife (1978), one oan formilate different conditional and uncondi=-
tional hypotheses. For unconditional nuli hypotheses, the alternative
A

N 3
isalwaysH137\=7\,p =fg,6=<_5

the alternatives are suitably defined. Without going into obvious

. For conditional hypotheses,

details, we list down the kind of unconditional hypotheses that might

be of intereste

2
Tests' o .}.I_O. I_{l X with defe
1(1) A =1 (iecey linear) A =/7\\
LA v * M\
1(2) P" = 0 (ieeey no autocorrelation) : P =/\p-x~ 4
1(3) & =0 (i.ee, homoscedastic and 5 =3
, e, ~ AR(1)). R
5 G e . 3% &
1(4) A =1, P"=0 (iece, linear and nd =R, P P2
autocorrelation) )
1(5) A=1, 6= 0 (iecs, lincar, homoscedas= A= /7}, § = A 2
" tic and . ~AR(1))
it
#* . % A A

1(6) P =0,8=0 (homoscedestic and P =P, 8= 5 2

no autocorrelation L

iscey Original

Box=Cox case)

A % Nx 3
14

1(7) A=1, P=0,8=0 (is.ce; linear, A =Ny P =
: - homoscedastic and -
no. autocorrelation)

In a similar manner, we can set up different conditional hypotheses

representing alternative situations.


http://www.cvisiontech.com

}

82

It is thus clear that onc can test for the functional form, and

Zcor different pattorns of autocorrelation and heteroscedasticity to draw
inferences about the true situation for a given set of data on the basis
1 the generglized model suggested herees In the present context, mention
r=y, in particular, be made about 1(3) which represents the Savin and
white formulation ie.eey the errors in the transformed linear regression
zodel follows an AR(1) process under the null hypothésis. This test will
zelp one decide if the Savin and Whité formulation is, in fact, true in

2 given situatione

346 Conclusions

. In this Chapter we have argued that the generalizafién of the )
Zox~Cox model suggested by Savin and White by'ihcorporating a standard.érror
rrocess for the disturbances in the transformed linear‘regréssion model is
not always proper and appropriate. Like the problcm.of heteroscedasti—
city in the Box=~Cox model, thc prdblem of autocorrelation alsé cannot be
straightforwardly tackled sinég it is affected by the transformation
parameter as welle We have proposed an alternative géneralization which
considers the structure~of the variance=covariance métrix of the distur-
bances in the transformed linear regression model as derived from the
assumed autocorrelation and variance structures of the oiiginal obser%a-
tions and the transformation parametere Savin and White generalization
turns out to be a special case o£ our models We have also indicatcd

- w

PibFoiipedssiom DGR bisb bitmizafors hsingsrwateimarked valustion copylofl CHISION-RE
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shown that the estimate of A and hence of other parameters obtained
through the Savin and White procedurc are nut,in general,consistent when
the disturbances in the transformed dependent variable have -a structure
of variances and autocoveriances different from that in AR(1). We have
also pointed out that standard likelihood ratio testé dan be used in
our model for testing hypotheses concerning A, p% and 8 lecey for
identifying situations having different functional fortds, and patterns
of autocorrelation and heteroscedasticity. As a specific case, one may
test‘ if the Savin and White formulation is realistic in a given
situation.

We may repeat that exactly similar conclusions will be obtained
if independent variables are also assumed to be transformed. However,
if the transformation paramcter(s) for independent variable(s) is (are)
different from that of the dependent variable, the algeb:éa is section
3e4 becomes more .cumbersqme though ‘bine conclusion rémains unchangeds

Also the estimation procedure becomes more lengthy and time=consuming.
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Appendix 31

Derivation of the Relationshipé.in (3.4.5)

By definition

Zi= 'LX'_ ‘ oo (A 3.1.1)

Thus,
. azi
yilnyy =2 v Mg .
dence

>

T = -1—2— [(m\zi) In(14AZ;) = N2, :’ (4 3.1.2)

then o o -
I n ( : . bZi :]
E 2 -4 . - Il._ o
jm 1 1 i=1 oA
’ - n 6Zi N
= = E{ I p, =
A j=p 1 1 GO\

n . . . R R : ‘ -—
1 . . -
= ;3-m 122 P {(1+Api+pi)ln(1+xui+pi) (Aui + pi){J

since from (3.2.1), AZi»= Aui + Kei = Kui+ P; *

- Letting

Py

%4 = T An)

E ~ -
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we have from above,

n ( |
= L ‘\2 P,y P; _1.75-)-{111(1 +q)+ln(1+7\u)}]

i=2
1 s S
-3 122 (i=1)i cee(A 3e143)
where  %(3-q)3 = Covl(&y_gs &) = KFing &),

Since for the transformation to be sensible, ¥;> 0 that is,
7, +;—\ >0 so that (B +5x L)/9; = (1 + A )/7\" ZER T [ar@mbka (1974),

' PDe 89—90__7 one can treat qi s to be small and hence we can expand

ln(1+qi) in power series. Keeping terms upto ng.’ we have from (& 3¢1.3)

( ez |
z Ziq = M ) == -
120 i=17 OA
2
q

) i=2
1 3 0
A 122 i=1)i
1 [n p. . DO n P p3 n '
=1 gl 2 Pim1 7i i=1Pi 1 s
LR P v Sl s+ 2 9 . In(1am)
A i=2 2 1+?\lli 10 6‘(.1:9\%)2 A 120 (1 1)1 i
2 3
n Ble,_, & ) n B (ei-1 ei)
SR cas v E SR
i=2 My i=2 601 + AW)

n
2 9 . . ln(1 + ?\u.)o
) (1 1)1 i

+

>
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Since ei's are assumed to be autocorrelated, we use the approxima=

tion

2
i
3
and E(Si__' €5, ) E(€4)

where P, and éi are- accordlngly defined.

Then the above expression becomes

i n oz,
, b - —
E"i =2(Zi-1 ui—q) R

= I TR |

n 5 E(e3) Py E(elll) 1 n ( ' )
=3 - A S o+ 2% %y 1n (14 AR
i=2 2 1*"”1 122 6-(1+7\ui)2 A =2 _(l 1)1 o

a' E(EB) ) n“— E(e) 3" R {Ke )}
ST Y 22 e<1+mi)?

MBS

: n pl{E(elz.)} n o ( A )
- g 7t RN L2 (aen) IRV R AR,
© jmp (1 AH)T =
oo (A 30104)

3ut since fo;:_"-}fio:f-;_nal di_stribution, third central moment and kurtosis are

ZEro, we have -£rom (A 3e144)

. 2
T 2
n 9z, n P, {E(e5)} n .
> A .1 1
=2 1 O}\_,  24ea(1 + am)? Ao (i-1)i B

n o P E(eD)

i=2 (1 +ny)°

n .
1-2-2 (l 1) ln(1+7\ui);u. (A 3.1.5)

>*|-»
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Now, since

AE(lny,) = E 1n (1 + Azi)"

=E ln(1+

i ' v
Ku-):, + 1n(1 + Mli),
L id
-

. : P ‘
~ 1 1
=E - E +1n (1 + An),
\1 o+ 7‘“15J 2(1 + 7‘“1)2 i

we have,
2
E(p?) L
)J:- 1n(1 + AKR) ==‘?1\' 2 + E(ln yi).
* 201+ a) ..
_ Therefore, we have from (4 3.1.5),-
T ST 7 o U2 2
Bl 2 = w ) |=~ & 2
i=2 : i=2 (1 + Nl)
n {E(p )3
+h T )i T
i=2 (1 + Ay )
f (ny,)
+ 2 9, . EQny,
oo (i=1)i i
2
E(pS
='12'7\2((--1) i Py (Pl)2
i=2 hL i “ :—‘,_ ) (1+7\ﬂi)
s ° Hiny,)
+ 5 soa)s In y.)e
. i=2 (l 1)1 .1

The other relationin (3e4¢5) can be derived in an exactly similar

fashione


http://www.cvisiontech.com

88

_ Chapter 4

Nonnormality, Hetcros C“O&S‘thl‘ty and

the Box—Cox Transf ormation

4.1 Introduction

We discussed at length the problems of heteroscedasticity and
a:.tocorrelatlon in the context of the Box~Cox transf ormation in the last
two Chapterse The present Chapter is devoted to studylng the Box—Cox
model with particular reference to the assumptlon of nom}al-lty of the
distribution of ‘the transformed dependent variable. ‘Althougﬁ most of
the studies on the Box=Cox transformation assumes normality of this

()

distribution, it is easy to see that, strictly speaking, y*'/ as de-

fined by the transfomation -

N 2 G=A . if NAO

Iny =, Cif A =0

cannot follow a normal distribution for A ;é Co It has been rightly
pointed out by Poirier (1978a)that for the transformation to be well-
defined, ¥y must be greater than zero and hence
- \ -
)y

y
()

s if ADO

and y v if A<O.

>J|_s >’|-.s

Clearly then y(}\) cannot, in general have values in the range =~ to .. |
and therefore it is not Justlfled to. assume y( N to follow a normal

distribution when AN A0, For = o, however, Iny can take values in
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the range =« to o« and hence the assumption of normality is justified in
this casee In view of this, Poirier (1978&)1186‘36. ML method of estimation
in the Box=Cox model by assuming truncated normality of the distribution
of yg\)'s. : -

However, Poir:}e:r, like Box and Cox, asslx.zmed. homoscedasticity of
the yg\)'s across obéery'at;ions in -‘est_im‘at_t_ingjxthe. _model. But, as we have
already stressed, this assumption also is not, in general, valid. Ve
want to emphasizev, therefore, that one omight to consider +the transformed
dependent variable in the Box=Cox ‘transfométion iﬁodel to follow a trun=
cated normal distribution with heteroscedasticity. The main purpose of
this Chapter is to considei and study such a xnodel, henceforth referred
t0 as the Box~Cox newnormal heteroscedastic mo‘del“'(BCNI\THM). ‘

We may point out in this connection fhat when 7\=1 s the ’:Box—Cox“' .
model as generalized by Poirier reduces to the well=kmown limited depen—
dent variable model developed by Tobin (1958) (excepf ing for the fact
that one gets added to the constént éex’m). Some years after the publica~
tion of Tobin's paper, Amemiya (19735.) reconsidered the model .and |
proved a mumber of results for this model. He proved that there exists
a stro..g consistent. roobl/ of the normal equations of Tobin's modél y}hich
io also asymptotically normale He also showed that the initial esti-
mators proposed by Tobin for the iterative procedure ___f or finding th(;

ML -egtimator are inconsistent and suggested a consistent initial

1/ Throughout this Chapter, by a 'root of the normal equations' we
shall mean that it is a solution of the normal equations corres—
ponding to a local maximum of the log=likelihood function.
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estimator of the'parametere.' It'le'further shown that the second~round
estimator obtained from the ﬁewton-Raphson method would, in fact, be
asymptotically equivalent to the ML- estlmator if the first round estimator
is consigtente More recently, Oslen (1978) has shown that there is a |
unique single maximum of the ML funetion of Tobin's model and hence,

whatever be’the initial estimator, if the iterative process convergess
then the converging value will'correspon& to the global maximum of the’

ML function and hence will be the ML estimator.

In generalizing the Box~Cox model by introducing heteroscedasticity
of the transformed dependenn vériable whose distribution is truncated
normal, Wo shall also be generalizing Tobin models However, sinee
Tobin model can be used without any direct reference to the question of
transformation and since a relativeiy simple method‘of obtainingconsis%nnt
initial estimates (under a specific assumption about heterbscedasticityj
for use in NewtonrRaphsdn method ean be developed even when heterog—
cedasticity is intorduced:in'this‘médel;‘ we nropose to consider Tobin's
limited dependent varia%le_model as generalized by incorporating heteros-
cedasticity seperately in view of its distinct interest. -This model wil}ﬂ

be referred to as the GLDVM (1.e.; generallzed limited dependent varr-_
able model). - -

The order of éresentation in' this Chapter. is as.follonS“‘ In
section 442 we describe the generallzatlon of the Box~Cox model in the
dlrectlon stated above and also state the assumptlons and earller

results to be used in our analysxs. In sectlon.4.3, we consider the

GLDWM and prove, following Amemiya's approach, that the normal equations
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of the GLDWM have a stong consistont roo: which faollows asymptotically
normal distribution. We prove this result for two different assumptions'
regarding the heteroscedasticity of the original observations. We then
extent Amemiya's method of obtaining a consistent initial estimator of
the parameters under one ofthe two speq:i.;fic assumptions about the
heterqscedas‘t_icvity of yi‘;. Section 44 giveé a proof of the existence _
of a strong consistent root of the normal equations for the BCNNHM. This
root also has an asymptotically normal distribution. We algo suggest the
use of standard techniqué of nonlinear estimation for obtaining £he‘ ML
egstimates. The Chapter ends with some concluding obsexrvations in‘section

4.5.

4.2 The Box-Cox Nopnormal Heteroscedastic Model (leNNHM\

4¢2+1 The Model

We define the Box=Cox generalized modelg/ » 3/ as

' ~’ ; Sy - L S 0
y§x0)= 5 g+ & if RHeSe > X, when A_> 0
or i‘-;T when 7\0 <
0 otherwise ’ o

eoe(4e241)

(i = 192...,. n)

g/ Here A is the value of A for the correct transformatione. The
subscript 'o' is added to other parameters for the same considerations

3/" Alternatively, one can use the same model but analySe only those
observations for which . .

y; = BO X; + & if ReHeSe > = 5 when 7"\o> Oor< - X wheq _7\O< 0.

o o
However, it can ecasily be seen that such a treatment would not change
any of zche) principal results presented heree

A

Since y, ® at A_ =0 can reasonably be assumed to follow normal distri-
bution, this cafe does not come under the perview of our studye.


http://www.cvisiontech.com

92

) A L ; :
where y, ° = (yio - 1)/7\0 1s tue transformed dependent variable g il
, . ' elanvahim,
X, = (x X2i’ oy xkl) is a (k x 1, columnn vector of

the ith observation on k (fixed)
regressors, '

§'O = (810, 520, ceeey Bko) is the (1 x k) row vector of associated

regress:s.on coefflclentsg :

and € 's are independent disturbances following normal dlstnlutlons

2
with zcr con and varla.nce Uoi'

We assunmc x1 =1 for all i =1, 2, seey n[f. Schlesselman (1971\ ]

i
For convenience, we. rewrite (4.2.1) as

= v i Ro . . Y .
Bo X3 * &5 if He S. > Owhen7\o>09r

<ie

i
or < 0 whenA <O
0 otherwise . * : - o KXY (4.2.2)

(.i:':,'ls 2y eeey n)

. an r
znd Bo = (810 + N P BZ), .ol.to, Bko )Q
~ As noted in Chapter 2, R A A

°§i [=Vy9\))"

will be of the form

- 2= 2
ooz = Vyy) E<yi)'_,' Lo e (442.3)

Lét us assume that -/
- h 4
W) = of [ ] 0, )5 0

where og and ho are unknown constantse. Then

4/ Other standard assumptionsabout V(yi) can also be made.
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» o = A, m24h
oOi ~ OO LE(yi)J . see (40204)
244) can be reduced further ~t:O“S/
S
g @ 02 o)

...7(4.2.5)

oi Hoi »
()
[ ]
' -2+h
- and 50= 7\0 .

Our problem then is to estimate 9 = (Bo, o

of

/ /D
. 50, 7\0) on the basis

the observations (y1, yz, ecsey yn).

”

N _ A /a
iees y; = [7\3757\)] :“

Using Taylor expansion arcunAd E(?J(.}\)), we have

- Vi~ [AE(?E}\)):,
L~(A) 27 J *W(MLI

“KA) géx)z E(?ﬁxg

“and hence ~

- o
E(yi) ~ [7\ E (ﬁk)):’ 7\
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44242 Assumptions
7
(i) The parameter space ¥ of & = (8, 02, 5, A)/ is compacte It
does not contain the region F £ 0 %but contains an open neighbourhood

of € .
o}

(ii) x; ig bounded and the empirical distribution function, say Hn’

defined as
Hh(x) = i/n
where J is the number of points Xy x29‘}.., X less than or equal %o x,
converges to a distribution function, say H.
1 5 / ﬁ
~(iii) 1im = 2 x; x] is positive definite,
: n i1 & ‘
n» i=]

(iv) A 20 for all i =1, 2, eees Mo

4.2.3 Previous Results

.We now set down some results and lemmas which will be used in
our study. Two of these lemmas zre originallr due to Jennrich (1969) amd.
have been used by Amemiya (1973%a). The proofs can be found in Jennrich

(1969) and Amemiya (1973%a).

Lemma 4.1 ¢ Let X be a Euclidean space and? a compact subset of
2 Buclidean space.s If g is a bounded andvcontinuous_function on X x V¥
and if {Hh} is a~seéuen¢e of distribution functions on X which converge

0 a distribution function H, then

I elx, 8) B (x) —> 1 &lx, ) dailx)

uniformly for all € in Y,
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Lemma 4.2 ¢ Let {T)i} s 1 =15 25 eeey n,y, be indepgand?nt randog
variables with mean ﬁi and first four momen%s uniformly bounded in i.
Let {gi} be a sequence of contimious functions on a compact set ¥ éuch

that

n .
1 \

oovnverges uniformly for @ ’ and 92 in ¥s Then

1 Iz; gi‘(e) (nl-ﬁi)

n o,
i
converges to O a. e. uniformly for all € in Y.
Lemma 4.3 ¢ Let Q‘n(w’ 8) be a measurable function on a measur—
able space _N. and for each W in H.a contimious function for € in a

compact set Yo Then there exists a measurable function Gn(w) such {w¥

PREAYRE o
Q‘n W, Gn(w)_f = eseug Qh(m, 8) for all W'in . -
If Q‘n(w’ 8) converges to 9(®) a.é. uniformly for all @ in ¥, and if

. A
Q(8) has a unique maximum at GOG ¥, then Gn converges to GO aeCe

Lemma 4.4 « Let fn(w, @ ) be a measurable function on a measur—
able space N. and for each @ in - a continuous function for € in a

compact set Yo If fn(w, G) converges to f(G) 2eCe unifoimly for all &

N A, 1
in ¥, and if Gn((.o) conver;es to QO aecey then fn W, Gn(w)J converges

to f(GO) deCe

Both Lemmas 443 and 4.4 hold if we change the expression "a. el

to "™with probability approaching 1'%
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We shall also need the f ‘::llowing expressions for differential
coefficients to diffcrentiate the log=likelihood function with respect
z ) -
to the pa.rameters.-o/
)
gp = &% (- 3

r  u.f, Sugf, .
of, L.. i, 4li -ﬁl_,xi

O
o]
!
I IR WO SHOETH

T = o2 2 3
8 G 29 2p, "
Fi_ ol
602' 202
on 2 2 .
O MG .
602' 205 02 i _ ‘
a8, 1 eee (4.2.6)
—-5—=--2-uifilnzi 0
- 2 2 g
of . H, = G,

i i i i

= f. InZ
85 20? i
i )}
ar : 5pifi ) -5u f:L "‘
= TN = f
2 2 2 2
Ofl _ 8f1 Y; p’i - ci ) éflui o P 9 )
-, = \ B \
oA 2\ 02 27 0?
i i

£/ It should be noted that oi here is that defined in (4.245) and

therefore depends on B+ More generally, all the symbols appearing
in Fi and fl have the same meaning as in the model fo:r.mulated here.
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where i
| 2 5% “15(“/"1)2
F P(B'x,5 ) = f -—J——e do

4¢3 The Generalized Limited Dependent .. . -
Variable Model (GLDVM)

We shall study in this section the limited dependent variable
“ model of Tobin as generalized here by incorporating heteroscedasticity

in the disturbances. It is evident from (4.2.2) that this GIDW is a

special casz of BCHII: with 7\0 =1 It is also clear from (4.2.3)
that for this case ogi = V(y;). Tollowing Kmcita (1971) we first

3 e
assume that 0(2)1 = 05 mi° where mi‘s are exogenc'isly given and

og -and 60 are unknown parameters. Our problem is to estimate

o =@, o2

o o! %o 80) from.;'}(y1 y Tpr eoey yn), The strong consig;tency g{‘

the ML estimator is proved in subsection 4+3.1 while the estimation

7/ Tobin (1958), in fact, considered in his model

, .
= ‘ i . . . >
¥ B x; + & if Re He S oci

o otherwise

where q's are known constants. But as Amemiya (1973a) has
noted such a model can easily be analysed with slight modifica=

tion of our .results where instead of yi we now have
* -*/ N gy Y a3 Q*/-_ fe A T
RIS ol RN SV DI L0

<= L o Y -
IO, “WeD 4 2Bl g Ve et )
i 2 + h S 1 L
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procedurc is outlined_in Sabsection 4e3+2e In Subsection 44343 we

demonstrate the strong consistency of the ML cstimator for a diff erent

&/

structure of the variance viz., that given by (4.2.5).

5

4341 Strong Consistency of ML Estimator When V(yi) = og m;

e}

Let s denote the set of observations for which v, = 0 iece,

s = {yi iy, = O}. Suppose further that s has n, elements. Then the

complementary set of s, say E, where s = {yi: yi> Ot! hasn - n,

elecmentses We shall, like Tobin (1958) write the log=likelihood

function asg/

L =Conste + 3 1n (1-Fi)-% 2_1?1_ C’i
. s ’ - -S-
. / 2
y. - 8'x,
-;' Z( l o :l‘ ) L . LN ) (4.3.1)
-2 i
2

With our {ass'umptio'h about oi' (4.3.1) can be written as

L:=Conste + Z1n (1 -L‘.),--;- Z1ln F - J Eln m,
s * s s
/ 2
e R (43.2)
s Z . xXxl 93.2
20° 3 15/2 |

8/ 1In this Chap'ber the symbols & and o, (as also & -and G) are being

)
used without any distinction for both the GLDWM and BCNNHM accorch.ng
to definitions J.n sections 4.3 and 4.2 respectively. :

9/ Obviously, for uLDVM A is positive and hence the log~likelihood
function has been written for (y1 s eees ¥ ) where

= i Ro ° o
y; = Bxi +,..ei if He He S0 > O

0 otherwise,
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Following Amemiya (1973a) and using the Assumptions and Lemmas
stated in the previous section and expressions for the first two raw
moments of the truncated normal distribution g-I.L can be shown from (4.3.2)

to converge a.e. uniformly for all € in ¥ to Q defined as

5

1 2T 1 2
Q = 1lim ;?L{J.nﬁ-I‘)} (1-r )-E(lno)FOi,

n>
-5 .
5 m,
- 7 (Qam)r ;= =5 {((8 -B) X) F i
20
2, (6~ 6 w0 . + B(r £ e
%i ‘B~ 8 Xitoi T %iVoi -Bo X5 01)}] Feeelde3.3)

Because of Assumptions (i) and (ii) and Lemma 4.1, the series of both the
first and second derivatives of all the terms of Q convei;ge uniformly and
we can, therefore, interchange t-he“ summation and derivative operation.

We thus have the following first-order differential coefficients of Q
with respect to ther parameters. To evaluate these derivatives we use
(44246) with Zi's being replaced Ly mi's and with -Zfe-l—- = fixi and

of, -1.f.x
i

_ 17171
oB 02
i
1=F m'é
n‘ -
%K _ 41 - e O e -
g8 = tim o I =gy f"l*o A B)"lou
iy 0O 1 1

oioi™i

+ 0% f .x, }-' .y.».(4.3.4)

o, o n =R, N
7] 1 .1 ol / -
_9.5=—-2 Llim n;:'v g'x,f, - F

1-Fi ol

2 S
o (e s)’x>2 IRELACRIDER M

+02 (F, = 85 101) ;J cee (443.5)
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n} 1=, . lnm
. 1 ol 1
$oeum L 2[1-F. 7 8%ty = 3 (nm) 7y
N 1 i
—6 ‘ ‘ . '
+ -——ln m, { ((B - B) X. )2 F o+ 20§i(80- B) xf s
20
+8° (F‘~ -5/ v f ) } - (4e346)
Yol Voi o *itoi e A «3e

Trom (4+304), (4+345) and (4.3.6) it easily follows that

at 00 to obtain the following rela.tions H

% (8,)

%

=O\

eve (4:307).

10

We now obtain the séco;ia;brdlaexf dérivatives—/ and evaluate them

2%a(0,) ’5 [ i o2
3ea = 1 = .
dges oo 1 9 Foi oi
1 o ;o
- 02 mi FOi Xi Xi ee e (4.3.8)
0
2 oy = R
o Q‘(Go) 1 . ) n 1 / 1 (Bo x1f01)
> > = lim -I; 3 | — BO Xifo - 1=F >
) 20 Ny 00 1 05 oi 200
/ 2
/x £ (Boxi) - ooi + F_:g_a:._
Bo¥itoi 202 o2 2
» oi o o)
2. b 2 -8% |
- 04 mi oOi (Foi BQXO foi)!’,. XX (4.3.9)
o S

For the exact form

of the derivatives, sec Appendix 4ed.
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BZQ(OO) g B T ’ ( 1n m ( , 2
— o g Lo IRCERID
652 n, oo 1 " 1 Foi 2 o"ivoi
1n m, (B X, ) - o ;
i / oi
+ (3 )BOJ.+ 22 fo1 180y
g 901 - ) g
20 -
S Q(GO) i Lin 1 Izl: ] ‘ln m, (3 )2
60266 202 1 oo n 1 1=F 2 o™i ol
/7 2 02 o
VAR Ulel I SV
Bo i : 2
2 Ooi
1 =5, i
- 0—2 { mi (ln mi) 0 (F .- O 4 Ol)} ...(4.3.11)
o ; ;
32Q,(O ) {3 X, X, ( - )
0 1 . 1 o 1 oi Ti Bo
5 = 5 lim -rI 5 —"'—'—'——1 -7 5 flel
9B do 207 N 1 ' .ol a_.
o : oi
- B
2 o 2 . v
-y 2oy o:.»i_, eee(443.12)
o
6‘2Q,(€ ) n Inm "
and -a—a—— = lim__ l b ; E B/ 2
gos e B g 1Py 2 Potitel Ti
/N2 2
. .(Boxi) B c’Oi
- 5 f . (ln m.) X.
oi i’ i
20 .
oi

Ol

1 -60
- (1nm,) o2, £, xi]. oo (403.13)
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Defining

and writing the standard normal density and distribution functions
evaluated a.t w as (15 ( o:. 01) andgf ( .-F ) respectively, we

‘have, after some algebra:.c mampulatlon, from (4.3 8) to (443, 13)

-—-——— =-lim 1 2 a,;X, x] L eee (443414)
asas S ~
(G ) n -
- lim 1 2 b._‘ . . eee (4.3.15)
a<o2) R
(e o) n S e
—T‘-- lim - 3; Zey -  eee (4.3.16)
05 Ny o 1 '
2
9°a(e.) n . .
. 1
= = lm — Zk, XX (4.3.17)
afas Ds 1t
ato, ST
— == um L 3a 5 | ver (4.3.18)
"3gdg nee g
2
a(e )
y- and aaaé = =« lin 31' Zeixi cee (4.3.19)

N, oo
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where
2
- . ‘ d
- -.—J-- - = Ce. co
i Sl Ay
od S
,1 wféf
, (lnmi)z (,3' . _.,2_@_-,2_ §
c, == W 0. 4w, $ - 7— )g
i 2 i7%i i%i 1= 18 eeo(4. 3, 20)
2
W, 5" -4
1 i*i
d; =———= (W, 6, +&. =7 )
20 2 E * 1=l 8
oio o g
T g, (vig e - Sk
oi 1
- o
Inm W, &,
= = (E * 2 = vigy -] a)) 4
4o i
o
Therefdre,
n n
2 T Bew
a%a(s)
=== 1m 1 n “n
1 R
n = n ) (
L o we(443421)
1+ 1

g._gi; - A, Sayo
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9%ale)

In order to show that /o is negative definite, we show that
0008 -

A is positive definite (p. de)s Nowsfor any k-component vector p and

scalars q and r,

PAP [/ where P’ = (p7y q» ) / can be reduced to

P4 = 1im L % 873, s | (4.3.22)
._ n i i i . L N ] L] L]
N ®© 1 S
where S/' = (p/x r)
i - P i, qQ
a d, e
and B, = i i i .
i~
dl bi kl
e k. c ‘
i i i

Now,in order to show A to-be pe de let us first study'Bie
Lemma 4,53 'B; is positive semidefinite (Assumption (ii) is
§ i '

sufficient to ensure this).

Proof ¢ Let

- RN L |
S N %
- 3 J’i H b L
bi = wi @i ) qujl - v"' wi e e (4.3.23) ‘
1-£.
1
— 2 v @i
.l o _l'- 3 * 1 -ﬁ
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et kg:.i g
ay == 5 » by == =g |
o, 4o :
oi % g
(1n mi)2 - E: ' 8
ci = - 4 — ;0 di = ™5 T eee (403.24)
20 .0 ’
oio §
i (Aam) T lnm, _ 8
20, 4o §

0ol [e]
Now, from (4e¢%e¢23)
—— ) :
R VAR AN

=¢i§:wi-@i/ (1 -8, )I -ﬂi .
ll/

: (:Lf wivi.s bounded which‘. is ensured by Assumption (ii)) ’

\ A

. i W
Sinoe Tp=d
we obviously have ai < 0 an&' hence 'ai > 0.

Again, since W @i - 2@1 < OE/, we have

E—WZQ(W-@i)+(w-¢‘-'-$)<O
A T B | T—E’l' A R | ’
and therefore from (443.24)sboth bi and c, are positive.

11/ See Feller (1972), pe 175 or Amemiya (1973a), pe 1007,

12/ Zdi = w;®; —~>0 as Wi )= oo and its derivative with respect
2

;9 is always positives

. : 2
to wi 1.e.,2@i @i +wi ,@i—q')i + W
Hence zﬁi -w;2; is positive and therefore, vw;@; = ?}di is

negative.
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Let us now look at the sccond~order principal minors §

i i 5
= %% =K _ 0 (from he%e24) o

a. b i1 i 402-04 i7i i
i i oi o
Similarly,
% % (in mi)2 _ -5
= a,c, = e5 = ( =, -d.“) > 0.
i i 2 i i i
e c 407,
i 7i ol

It Eéh also be seen using relations in (4.3c24), that

a d. e
i i i
a b, k. = 0
i i i
e k. c
i i i

Thus we have proved that B, 1is positive semidefinite.

Q. E. D.
e ‘ : aQQ(eO)‘
Lemma 4.6 ¢ Under Assumptions(ii) and (iii) —— is

negative definite. o
"Proof We can write from (4.3.22)
. : 1 n )
P'AP > inf (g£.) 1lim =+ £ s/ 8.
- TR . n i7i
-1 Ny ©0 1

W

where E. is the smallest characteristic root of Bi.

106

13/ See Amemiya (1973a), pb.1007-1008.

&/ Vide Rao (1974)}5. 624
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n
/
Low, by Assumption (iii), 1lim + & 5, 5,
1

i is positive unless

all the elements of p, q and r are zero. Bui since Bi is positive
semidefinite for all i = 1, 2, .:.; n, we have,

il:l-f (§i) =
1

Thus, P’A P > 0.

a—

Now, if we look at P“AP from (4.3,22)

n
P/AP = 1im 1 3s5'Bs.
- n 1 11

s ©© 1

Obviously P'AP ig zero when Si/BiSi =0 for all 1 =1, 2y eeey, ne 1If

at least 4one of the quadratic forms under the summation is positive,
/ . .
then P"AP is algo positive. Now,exceptlng for the obvious case when

S; =0 (which can not be true for a.ll i=1,2, essy n), sl B, S; =0

if and only if B. S = O Let us then examine the solution vector

-

si=(s1 ,82 ,s )suchthatBS = Oe

1t is clear from Appendix 4.2 that whatever be the second- and
third elements of the solution vector ie€e, S2i and S}i? the first ele~

ment of the solution vector ieeey S, . is always zero, This cannot be

1i
so for all i =1, 2, eesy n since‘S has the form Sf'= (p"?i, Qs T)e
Thus we find P AP > 0 for P‘£ 0 and hence the result. ’

Since —-EL- is contimious, Lemma‘4.6 implies there is a
closed set , )
-4 ',371},---39\2

such that —9'— is negative definite for all @ in B(8 ).
%% i .

B(e ) 63
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Tow, following Amemiya (7773a, PPe1008-1010), we can state the
following theorems ‘
Theorem 4.1 o Under Agsumptions® (1) +o (11i), -the normal equar

tions have a strongly consistent root, say 6\11' and

i 0% (e- -1 12/
VaE.-e) — N[O,(——'@), .

% 30’
' ) . 2 4o '
423.2 ML Estination When V(y,) = o° m,

It is obvious that the ML estimator of @ (i.e., a root of the
normal equations) is difficult to obtai;r because of the nonlinearities
in the normal equationge. There are a number of standard methods to
obtain the solution of such nonlineai- equations. ‘Hausman‘ and wise (1977),
for exa;np;Le',' -suggest, the use of 'gradient method' which involves calcu-
lation of only the first.derivatives of the ML function.-Poirier (1é7aa‘,
on the other hand, :ceéommends the 'uge of 'modified Suadratic ‘hill
clﬁmbingmethdd' vérigina..lly developed by :Goldfeld gnd_-Quandt (1972).
These methods guarantee converge_nce,‘ to a ‘locai maximum only and hence one
nas to try different initial values of the parameters to obtain the
global maximum. One can use any of these methods. We, however, suggest
+he use of Néwtorrﬁaphéon m'ethéydy which, although suffers fran the same
shortcom'ing vize, that there is no guarantee of the convergence of the
iterative pi:éce-dur“e to the root that corresponds to the global maximum

cf the likelihood function, has t'heA'édvantage that the second~round

13/ It seems that Oslen's (1978) result that the ML function of
Tobin's limited dependent variable model has'a unique maximum,
does not hold for GLDVM,
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estimator will have the same as;aptotic distribution as a consistent
root of the normal equations mﬁder general conditions provided the
initial estimatorof € is consistent (yvide Amemiya (19732)).

| In what follows we extend Amemiya'é method of obtaining the

congistent initial estimatarfor € to ocur case. " Noting that

E(y ) X + Ugl g,‘g‘l-‘.' . ies e (4.3.25)
| 2 Y- 2 /x f—o-i- + 02 ies | (4e%426)
and E(yi) = (BOXJ.) + Ooi Bo ) iFOl oi!? LESe see a3 .

We can write from (4.3.25) and (4.3.26)

’ 2 / 2 L=
E(yi) = Bx; E(yi) + 0 ;9 i€s .

Hence
2 . -
y?_ = Boxlyl .0tV ies eee (4e3477)
/ 2|
vhere v, = Box E(y - yi] [ E(yi)_!
Unlike Amemiya, we f£ind (4+3427) is not linear in all the para-
. )
meters because by assumption Oﬁi = cg mio . By a series expansion of
‘ §, B inmy ' 50
m, = e , we can, however, approximate m i by
2
52 (1n mi)
{1+501nmi+ E + oc se } o

Then we»have fromj—é/ '(4.3.»27) ,

16/ One can retain further terms in the series expansion but there is
then a problem & choosing proper estimates for 60. and - Ci. Since

we are interested only in consistent estimates of 8§ and 05; we
can chdose them from the estimates of 02, gg 5 ,05 2, ..2.2
obtained from (4e¢%¢29)e BEven if we stop at the term J_n 00 o? we

have a multiplicity of consistent estimates. Nevertheless  one

may not stop at the term in 02 62
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‘ 2
. (In m )
2 / 2 2 2 .2 i
Yi =8, X395 + 0+ 08 in m, + 0 5] >

»

+ secesee + Vi 9 ie Eb. eee (4.3.28)

Prom (4+5.28) and the definition: of v, it is clear that we have a
errors?in-v-ariables problem in estimating the paramcters in (4.3.28) by

regression methode Assuming that ( E xixj{ )_1 exists, let us define

s
AN / /=1 ] i
= ) ) z .
i E‘i ( Zaxxp )’ I xiyi_’
s .8 _
We then suggest (xi Vi 1y In Mig =5 " 5 esces ) as instrumental

variable'sr_b for estimating the regression equations (4.3;28) a.nd dfzfine
5»1 ». the first stage estimator of

s D 2 2 2~~~;.i RN
g =_(BO’ 009 Uo 50’ oo 609 cees )

as - - ~ v 2 . -
oé\ ‘/\ ‘.7 1, 1 (ln mi) )
o r xi Yi \Xiyi, 9 LIl mi’ 2' -9 eee
5 1
A o) g '
= = 1 .
@1 = 42\5 = nm,
1 o o v 2
In mi)
o 52 17 2
o o
i [ ] :
[ ] L]
\. 3 n &* L- : - _J

A ol
s | FiYi
yi eee 403029)

1n'm, ’ '

-1
1 2
L 1ln mi)
2.
L.

' -
adssuming that the matrix to be inverted is non~singular.

-1
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48 this estimator is similap to that of Amemiya suggested in the
context of LDV models, we can e2sily use Ameniya's Theorem 3 (19732, p.101 3)
to conclude that under assumptions (i) to (iii), /\; defined above is
weakly consistent provided the ‘matrix whose inverse ig requlred in (443429)
is nomsingular. It can easlly be argueo on the same lJ.nes as Amemiya's
that excepting for the case where there is no regressor thet varies w:Lth i,
the requlred inverse will, in general exist, Once a consigtent estimate of
§ i.e., @' is obtained, we can easily ‘cbtain a cons:Lstent initial egtim=

A\
mate ofe from @'

4e343 Strong Cons:Lstencv of ML Estlma.tOr When V(y ) = 02LE(y )]

Let us assume an alternative structure for 02 '~t_ief_ined in (4,2.5)

- -
2 2 o}
oi = % LE(yi) J =

where Hog = E(yi) > 0 for all i = 1y 2 seeey 1.

ioeo,

Q
|

For calculating first=order and second-order derivatives of the likeli~
hood function with respect to the _parameters we use derJ.vat:Lves 1n (4.2, 6)
with 2;'s replaced by 'se In order to show that the normal equations
under the present assumption for variance possess a strong consistent

- root, we write the appropriate log~likelihoog functlon which is similar to
(4+342) excepting that m, is now replaced by ui' Obviously f;z- and

g—? will be the same as in (4.3.5) and (4.3.6) respectively with m,

being replaced by ui. g%b will now beccme
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N n"1-P. 5%, F .
Y _ 1 L —--—fx (1-_) — 0L
aﬁ n . 1~F . 2p,i

B 2 S
20 u {2(6 - B) E_X:.‘ oi ¥3 * 20,5 x5 £53
-(6+1) /N2
+ S "y xi.'{((Bo -B) =1 ) Foi
20
2 /- 2 '
+ 2aoi((30 - 8) X, £+ aoi(Fo_l B, lfOl)}-J, eoe(4e3430)
%a(e,) CACH
Clearly —r-— =0 and hence % = 0 - 'in this case also.
: P ok 52 BN P
The expressions for »1 5 -and —9'—2 will be the same as in

(4.3.9), (4 3.10) and (4 Ze11) respectively with my being replaced by by e

The expressions for -—Q‘—- —--9'5 and g—ghé for this cage are given in
608"  3pdo 8 |
Appendix 4+3. BEvaluating these derivatives at GO and, as before, defin

ing Wy as
/x
v. = Bo *i _ Foi
i~ o = o
oi oi

and writing the standard nomal density and distribution functions

evaluated atw; by ¢, and ,in respectively, we have the following $

2 : 2 _
B Q.(eo) n o @.
—> = 1in 1 3.l (1-—-) (CX-N )
808"  na el 11;3: ni
. .
2 2 .
5. 2. 55 B. 5 @, .
O 1 o "1 o 1 /
- ( wl + ¢i + 2w2 - A, ) xixiuoo (4.3.31)
i
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2
a"Q('eo) - 4m
—————— g — "‘-—J.v.,m»— - S - o)

. 5 ] <
- g@i(‘] - -é-?-) - - L lJ X. eee (4.3032)

' ,azQ(Go) D inu ’ . 5 ¢ w,
. 1 o1 0 ii 2
d - = lim - =3 (1-= ( - w, ®.
an im A 5 ) —7'1 -7 W )

0806 n, 20, i~

. fo) i .
- Qi(‘, 2 Wi' xi “ Xy (4.3.33)
Proceeding as before we can show that .
Jom 1 0 =
PAP =1im == g 8§, B.S
n i"id
Il -5 ™ 1 .
2
o - 37 (@) ' /
- - / /
where A _d_'if_ - 7 < ’ P'= (py a5 ), Si ={p Xi9 Qs r).
—_— 0000
- ay _ di e
Bi = d/ b/‘ k./
‘ i i i
a e /o1
ei {i.- e Ci/
-/ o2
. a. ./ ) 2 ¢ : 5 ¢
/ i - 0 Si o i ,
g = T2 3y =U=3) (g -we) + (=44 ?
: s : 1 S R N
oi : cod
: L2 2
- 6o ¢i '60 gpi : : ,
e 2~ lw )
. - ‘ .,;.;2Wi -l (4-3034)'
S/ T
d, o 3 S w, 8 . 5%
/ i rk ) 2 ii 0,00 i
= 4t (=37 Cwigy == )+ &,(= 3 )+
oo, _ i i
.0 oi
/ _ In uoi -/
i~ 2a. i
o1l X
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-/ / _ / ‘ .
and bi’ Ci ahd ki are the samc as t,’i’ 5 and ki‘_ in (4. 3. 20) res-

pectively with my being replaced by oge As in the previous case, we

have the following lemma$

Lema 4,7 ¢ Under Assumptions (ii), (iii) ana (iv) i is posi=

tive definite,

Proof ¢ It is quite clear that ‘o pro‘ve the lemma it is enough

to show that

.

, d

a; )0 | and

a
> >0 .
d .
L

EAAN

T

From (443.34), we can write

62

8o. 2 @i o

3,
+ Wy (8,2 +fw,) .

Since we have already shown in t'e previous case that
7 o>ovy and (F -we) > o,
1l .

it is enough to show that (8 &, + f,.w,) is positive if 3". is to be
positive., If 5 20, ( <5 g, +¢ W ) is obviously -positive since by

assumption (iv) w; > 0. For 60< 0, it can be se»en-z/ that

(s o 8y + B W) > 0.

Hence it is proved that ai > 0, s0 that a; > O.

1/ 58, +ws #; —>0 as wl_, = oo, for a.ll finite values of 8, and
the derlvatlve of (5 @ + W, ;«5 3y with respect to w, -is (52! 6w, (1 =8 »)

Thus for & < 0, the de:c-lvatlve is positive. Hence 5.2 wiﬁf 1 ) 0
for all finite 5 < Oy ‘
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Now aJ{. d;:_ can be reduced after substituting the values
)/ ) . - N E - -A
a. b
i i

of ag, b:L and di/ from (443434) to

D .
i

. ] 4 2 i.
—ﬁzijg ( ﬁgwi P e) 4 1 > (Zﬁg - @f - wiéigi ) eee(443.35)
400 o . i g g

ol o oi

where D, =8, (-—fi_wz;- Wy ) > 0.‘
Thus for (4+3.35) to be positive it 1s sufficient to show that
(22 - 32 - wie. g.)> 0
which, in fact, is true, because
{2¢12- Qf- LA dsiﬁi_}-’ 0 as W, > -
and its derivative with respect 'bo w‘:l | i:e.,

2 2
{352!1 9, +wy 8+ vl 8, ’Z’i,_}

is obviously positive. Thus, for this assumption r ge(zrding Oii y WE
- _ o 37q(e )

have proved that A is positive definite. Hence ——?— is negative

09 96 oo

definite. Wo-cam, therefore, conclude that under Aésumptions (1) tom(iv),

Theorem 4.1 hodds for this assumption A;ceg‘a_rding c_;?i also.

. . : 5
4e3¢4 ML Estimation When.v(yi) - 0(2) [E(yi)]o

Estimation of the model under Tis assumption regarding the

variance structure however appears to be difficulte. I"t doe_s not segh
possible to extend Amemiya's method for obtaining the cohsiéi;ent initial
estimates of the parameters. We, therefore, cannot use Ne;rtorr-Raphson

method to take advantage of the result that the second stage estimator
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is asymptotically equivalent to the ML estimator in the sense of having
the same asymptotic distribution nsthe ML eétimator. For this case we
suggest the use of any standard method of nonlinear estimation like
Hausmen and Wise's 'gradient method' (1977) and Goldfeld and Quandt's (1972
'modified quadratic hill-climbing method'(or -  Newtor~Raphson method) to
N : :
obtain the ML estimates, Since only convergence to a local maximum can
be guaranteed, repeated applications starting from different -vinitial
values is necessary .to locate the global maximum and hence the ML esti-

mator of @,

) 4.4 ML Estimation of the Box=Cox Nonnormal

Heteroscedp.stlc Mcdel (BCNNEM )

— et . . oY A -

We now come back to the BONNHM def‘inec.i in (44242) anci (4.2.5).
We first show that a root of the noxrmal equai;ions for this model is
strongly consistente | | ‘

As for the GLDWM, we writé the log-likelinood function of

(y1, coey yn) as (assuming A > O)1§/

1 27

L=Conste + Z1n (1 =F,) == Z1ng -'6- % 1InZ
i’ 2 = : 2 = i
” 5(7\) B 2 n
-1 (S l) #0=1) Elny, e(4ed.1)
2 ’ R 1 i
Z. .
i

1_8/ Without any loss of generality, we write down.the likelihood function
and carry out further analysis for A > O only-since for A < 0, the
likelihood function will have only one change viz., instead of
Z (1-F. ), it will n0w have 2 F o Obviously, the derivatives etc.

w:Ll'L accordlngly change and slmllar analysis can be done with tb.ls
change in the likelihood function.
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As in the previous casey we can show that i—L converges uniformly

for all @ in ¥ to Q defined by

1 2T 1 2
a= ln 1 12 L{ln(1 -7 (1 - P;) = 5 (nd)ry,

Ny o0

) 1 =5 s\
=z (nz)F ;- -l Zi_ t((g, =8)x) 7,

oiv ol

e .
2051( Bo - B) = foi 02 (F - ngifoi)}:]

+ ()\ - 1) 2 ln y . . XX (4’.402)
i=1

Note that since we have assumedx ;= 1 for all i =1, 2, escey Ny W€ Can

, . 1
n
make £ 1n ¥; =0 by a change in the unit of measurement of ¥;» and drop
1= 3a(e)
the last term of (4¢442)s  In order to check whether — (1s)zero,
' (e
it is obvious that we have only to check addltlona.lly if TN = 0,
Recalling (4.2.6), we find . |
T slr o osr . !
89 _ 1 1 oi Mty OFoi i
oan 1=F, . 24, 27 .
I .y 1 1 1 1 -
6Z1(6+1) | ’ o2 | /.
+ 5 1((8, -8)x, ) Foy +29,(8 ~B)x. £
20
+ 02 (F . =n. )} - eee(4.4.3) -
ol Yoi Toi Toi /7| _ Tl
------ ST a(e)) ~ 2q(e)
It is easy to check that 7N = 0 and hence == =0,

. 08
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As for the second derivatives, expressions for

2 Y 2 '
37a(e ) 37a(e,) 3°a(8)
H 14 ?
3p3p” 3(02)2 . - 52
2%(e) CRYCH 2%(s)
5 5 —=  ad
L BEYFY _ 3035

are ag glven in (4¢3431), (443 9) (443410) 5, (4.3 32) (4 3433) and
respectively
(443.11) /with both 1n m, and 1n Mot . (whichever appears) replaced by

1n Zoi' We have only to derive the expressions for

2 2 2
.a_% ’ &e ’ —9'—8 _ and J——
o~ OASg Mmas 67\80
p_ .
'I‘hese derivatives are given in Append:uc 4¢4e Denoting W, o= 001 .
ol -
we evaluate these at G and s:unpllfy them to obtain
2
Q(G ) n _ .
==~ = - lim 131 U eee (4edad)
n %71 , :
A N o 1
© 9 Q(G ) : € : : ’
o) I S :
—m— == lim ;1' 5 mi Xi oo'o (49405)
N, o :
ale,) n |
2 == 1iRd l' P o8 xXx (4v406)
67\'602 n, oo n ] i
eq(e,) n |
and —_— == 1im l En, eee (40407)
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where
%000 — =
1, == = b., b. is as defined A
i 422 i i c
oi in (443.23)
6 W. o ) ) e
0 i == - -/ 2\
my= =4, 4 =& in (4.3.:34)_
oi
60001‘ wi in ZO - . 17 _
n, == b. .
i 47 i
ol i ces (4.4.8)
. % H . .
8 LW,
r = o oi i T
oi To 8
and @i and ¢i are normal dengiwIahd distribution functions evaluated at W .

Now denoting a;, by, o, k;s d, and e; as given below, we have from (4.3.15),

119

(4e3416) 5 (443417), (4e3.31), (4.3.32)‘;(4.3.33) and (4e444) to (4.447),

as before,

- n
S
PEY =1 Lz ®oE
. C s n 1 1 1 :
e %(a,)
, , 37a(e
where 7= (p7 g5 5 u), x def . "O
= " 300"
/ 2 i
8= (%5 qy 7,y u)
/ a, -d, e m,
1 1 bR bR
B. = A
1 a, b k. r
1 1 1 1
e. k. c n.
1 1 1 ‘ 1
m. b n 1,
1 1 1 h R

ser (40409

see (404010)
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a;= =3, Z =3 in (4u3.34)

i 02 i i i
oi
e 1 —-—— ,’ _-..'.;... . A . B .
b, = 4—--04 b, b, is as defined in (4.3.23)
o
in oi 2 -
c; =~ ( =% ) b,
in Zoi b
k= (~5%)
400
c T, T T
a; = an a4 , q = d; in (4.3.34)
L In Zoi
and e, = S dl
oi

_Since Fi has been shown to be < 0, we conclude from (4.4.8)

the li > Oe Also,all the elements in Ei being in terms of -é-i, 5';._, di

and other constants, one can easily check,as before, that all principal

minors of B’i are greater than or equal to zero. Then arguing in the

same manner as for GLBVM, ;.t is easily established that X ig positive
a°q(e
definite and hence = is negative definite and therefore a -

00068
theorem similar to Theorem 441 holds under Assumptions (:L) to (iv).

As for the estimation of the Parameters, one has to use standard
norlinear techniques of estimation like Hausman and wise's (1977)
gradient method etc., to obtain the estimates. It appears that under
standard conditions / yvide Cox and Hinkley (1974) /  the converg-

ing values would, in fact, bea@ root of the normal equationse In order


http://www.cvisiontech.com

121

to obtain the global maximum, one has to repeat this with different

initial values of the parameters.

4,5 Conclusions

In this Chapter we have extended the Box=Cox model by simul ta-
neously treating the distribution of the transformed‘dépendent‘variabie
as truncated normal and variances of the original dependent variable. varying
across observationse This is an improvement over Poirier's (1978a)
work in the sénse that we have considered heteroscedastiolly as well .
Although, Tobin's limited dependent variable model comes out as a
special case of such a generalized model, we have considered here the
generalization of - Tobin model separately because of its distinct

intereste.


http://www.cvisiontech.com

122

~ Appendix- 4e1

Second=Order Derivatives of @ in (443.3)°
We ¢valuatc the sécondrorder.deriVatives of Q with respect to

the parameters, From expressions (4;3.4)~£o (44346), we have,

R _ VA -

32 o1 By X 1=F L,
=l oo I iF 2 17 o2 i

8P n, e T4 RN (1=F.)

% __ 1m 13| 1" i %. £
> > = L& ] 0 2 ..l g Fi B i1
3(o%) - 2(¢%) .t

- 2 2 ;- . .
~ (5 () (Bxe)? (-5 )

2
' o /N2 2
(B'x,) = of 3 F .
1 =F . i’ i oi
+ 2 1 =F./ B Xi 20? 02 . c 2 2
20 L 1 2(d%)
- == ((B - B)AXJ)ZJF“; + 202;(8 -B) x.f .
3 o i oi ol o iToi

(0®)

+ Ogi (Foi - Béi Xi foi)} J - see (A 4.1.2)
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20
+azy (Fos = 86 xlfOl)} ] - RN CWRI)
W J M i (8'x.£ .)°
30266 N0 d 202 (1_Fi)2 2 i“oi
o /N2 2
1=F . (8'x,)° = o
1 oi ./ i i,
o — = x. { . —t . 1lnm
202 1 Fi P = 20? . .
A ,
w7 o in m,
. 5 p
e L e Poted o, e
. 0 :
O'oi (FOi - BO xlfOl) } ] ese (A 40104)
-6-39‘—5‘:: lim l :)‘31 1-.F01 5 12 /X £5 x
9830 n,e ot 1 J(1=F.)° 2 e
i
1= . (Bx.)z- 02 '
ol ¢ i }f. x
1=, a2 2 i“1
i 20 g
i
-5 .
e (g -a)x F . ox. +02 £ x| eo(2 441.5)
A B =B ) % Foi¥i T 01 toi XiT| M I

123

T 1--'5"0i 1n mi' p 1n me
=, (= =52 Exf; 5 Bxfy

Y 2
1-'Foi 1n m, ( B xi) o

m 6(ln

B xi 5 T filn mi
%

. . H / »
{ (( & 'B)_/xi)zfoi"z oii(so -8) x£0s
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a n 1=F 1nm
89 _ 4.1 oi : i./ .2
and 6866 = lim o ) : Bxiiﬁ‘i xl
N 0 1 2 2
, (1=r,)
: i
L . 2_ .2
_1=F : (Bx,)° = o £ (1n )
1=-F, 5 o2 i i/
i
mléln n, 2~

Evaluating the second-order derlvatlves at @ of Ve fJ.nd from

ERE N

(4 44141) to (A 4.1 6),

2 s
(e ) n x £, -6
2= 1 1 3| Bg = - —- 12 m, °F .| x,x
asa 8 Bo n 11 62, ol 1 i o i oi i“i
- - Ced 0
XX (A 4.1.7)
azQ(e) n - - . ( /x f )2
0 1 1 1n/o 1 Bo¥ito1
2 20° nopo P 1 g2 Odol AR 20
3(0 ) o nd ) o o)
/N2 2
- (Rlx) -
/o o 1 ol , . - Ol
*ogo*il 2T 7 A Ee T
2001. o : a9,
21;60 2 -
i oi : '
- - (FO. - BO 1 Ol) eee (A 40108)
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2
a°q(e ) n In
----__2.0':= 1im 31- >N i 11- F ( 2 l) (ngl o:.)2
9595 n o 1 oi
N2 2 o
+ Eiin&l ‘g, § ( Bo?ci) " %oi }f.1 |
' 2 Bo*i '202 oi TP Ty
: " TTol

20
o]

2 . . - '

9%g(e ) n ln m

o) 1 . 1 1 l 2
= lim = £ | - (Bxf D
60265 ‘20?} . 1 ’_ 1. o i ol

2 2
( p’x,)° -
7/ o i ol
+ Boi,{A 2 } foilnml “
2% -

_ 1. %oy -
rh Inm) og; (Foy =86 X3 Oi)J eee(4 4.1410)
o
- siN2 2
e,) 1 1 Bx;fo; %5 (Bg¥y)™ = 9oy
T2 2 22 lin o ¥ | - Fy =3 ¥ foi%i
g o o TNy00 o
> 6o 2. ]
- _"z"ml OOifOixiJ eee (A 4.1011)
. ag - :
o -
2 2 _
3°q(e) “n ln m, : (e )
of _ i 1 g i /.2 -z ¢ 011
and . 36 =lin & E 1=-F . 2 Bo%ifoi*1 { 35 (l"r
N 00 1 oi 20oi
m > ]
- 'i— (ln m.) T s f . x. e e (Aé .1.12)

1 o1 O1 1

- -—1-2-:-mi ° (1n mi')g"' "cgii(F" - Bo if )J ...(A 4e1 9)

i "i
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Appendix 4.2

Solution Vector of the System of Equations B,S,=0

B.,S, =0 “ -
i'i o
a, d, e.\ / S, .
. i i i 11
le€o .
4 by X / Soi | =0 .
N \ei k, 5 K Sﬁ

Thus we have the following three equations 3

2811 * 4§S,5 *. e85 =0 , eee (A 4f2'1)
4;8,; + D38y + kS5, =.o | oo (& 4.2.2)
and €S, +k;Sy; 4 08, =0 . | " ees (A 4.2.3)

Now, fram (A 44241), we have

~ (&.5,. + e.5;.)
S1i = = 2; =2 - ece (A 4.2.4)
i .

Substituting 844 from (4 4.2.4) into (& 442.2) and (A 44243)

we find, ,‘
-3 (a.k d.e, ) . o
. S i = 21 L i2 L s (A 402.5)
2 (a,b, = @¢ ) ‘ . '
,,_.l i i . .
Sg.(a.c, = ef) _
1 1 '
a.nd S . = 3 i . seo e (A 4.296)
21 (a.k, = e.q, )
1 1 1l 1
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From (A 4.%5) and (4 1.2.6), we have

)

N

ii a,b, = a;
i'i

aici ~ ei aiki - d.el i
G| EE T =0 ¢ e (4 4a2e7)

The expression in the bracket is nothing but a; lBi | where [Bi | denotes

the determinent of Bi'

Thus (A 4+2.7) becames

| B 0 . | ees (A 4.2.8)

S31 25 13 |
Excluding the trivial solution, we find from (4 1.2.8), s3i £0

since it has already been shown that a;> 0 and lBi | =0,

NOW, frOIn (A 4.2.4) and (A 4.2.5)’ We have

=5, =4, (a.k, - 4 e,)

+ e. }o see (A-¢/'0209)

But the expression in the curly bracket in (4 442.9) can easily

11 = O. Since this

solution holds for all i = 1,24e.s ,. n, we have for the system of equa~

be shown to be zero; thus even when SBi £0,s

tiong Bisi =0y 1 =1,29e0e, n} the nontrivial solution vector as

§; = (o, 8y sﬁ)

where = S, £0, "S3i A0  for all —i = 1,2;.*:.,n. :
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Appendix 4.3

-8
Second-Crder Derivatives of Q When V(yi) = og ’ E(yiz' °

2 n | 1-F . .
Q—Qﬁ-/zlm .1..2 -_._‘3.1-._2.1'?(1_.3.
9893° e 1 (1—Fi)
/ /
1y (1 - 2) - Bl g, . T
1=F, 2 2 2 21
o. 20, H
1 1
-5 -1
5§F . Su . /
oi _ i - 02
+ o2 22 U 28, 8 xF . +20 £ 3
M

= Lt () - M) S0 -2 g gy, 2

202 i oi 202 i

2 o/
. (Foi -8 x; f )}

2 /
+ 2001(-80 -8 ) X:i.foi + 001 i “oi’

+ ---52 nTo-
2cc 1

1 / 2 /
€= 2B 8)xF ;- 200 £ ) J XXy

128

oi

ceee (& 44341)
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2
§_Q__= 1im iB*iti (1-2)
'6[3302 n .o 202
4 2 2
- - FOl (1 - é)f 8 { 8 Xi) B ci 2
T-F, 2/t Mt T
i : 20
By / - duy {((B-B)x.)zi‘ .
..04 (B-B)xiF""Goifoi}-f--;;Z_ o P71/ Vol

oiv oi OlOl

2o§i(eo-6)/xif + 0o (F - 8x.T )}J 5 ._..(A.4.3.2)

.2 nf 1-F ' ln , 1=F . f
G 1 -3y ol _i
and '%aea —i—lﬁon? (1F)2f(1 5 ) 3 Rxf +1Fi 5
2 2
1=F . B - 0,
- =221~ 2) { = ~4 (In p)f, - ==

OB : P
* -0%-( - ln l-’:'L){(So -B) xiFoi + %i foi. },

R P L S TR {((so-e%c )27,
20 20

)y > , -
+ 20‘01(60 -B) Xifoi + O'oi (l’oi - BO Xifoi)}_) Xi R ooo(A 4.3.3)

Thus, from (A 4e3+1) to (A 4e%3.3), the second~order derivatives

evaluated at @ will be the followings
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2
9°(e ) n £,
f_’f-- = lim ‘:; | = 13;: (1 "'2‘)
g0 g n o 1 ol .
(12 - toior, Sotifer 8o for
2 2 2 2y
001 2o'oi ol
+”50Foi o oi _ F01 60(6. * ﬂlF - £.)
o2 s 2 52 oi oi toi
noi oi u'Oi
6o'foi
- x.x
Hoi *
2
_ 1 n 6o 2 Hoi oi o1 5 fOl
= lim z [(1 2 ) ( 2 1 =~ F ) = u
N 00 1 g . 1 o1
_ oi
F . 5§ F 6§ f
- il o ol o..01 X.X./ eee (A 403-4)
a? 2,2 g3 ol
oi Hoi
2 i 2
a Q(OO) -' g o1 u‘Ol( (o]
= lmo o 1=F 2 1 7 )
aBaC N0 1 oi 2 S . . :
: : )
6 5 64",:; ""’2'- 02 uf.o
= £y Mg (- 52) § 2oy o ok 42
oi Toi 2 2‘021 A oi “oi
oi o
5 u o
: - o - C - ,
) ;7( Foi = o oy )‘ i
uoi 0 .
— 2 2
oL n 5 b S T . B
S IR | 5 _ 2o 01 "oi o1 Ol
= "'—"202 Il]lm 'n (1 ) ) 1 - F . 2 }
-0 1 o1 9.4
o oi
5 60 1-‘oi
- (1 ==) = X
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2 .2 : ‘,
¢ Q‘('eo) = 1ip 1 r; o1 Mos (1 - =2 ( n uoi)._ Lol
9B s o 1 1 - Foi 2 2
)ty ¢ Lot B P
= £,0=59) Iy § = —3 -
Toi 2 oi . 202 | 2“01

o _ ;
~(np.)f . +1
oi oi 2uoi . i
12 r
IRV BTSN I ) ¢
- 5 5 F .
-f i(1 - 'é'g) - 0 ol x.
o i i

£,
oi'-.--.uqi _ _oi uoi}
1= Foi 02.

ol
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Appendix 4.4

Second~0Order Derivatives of Q in (444.2)

2

2 n 1=-F_. Su; £,

29 - a1y oo ”lel
S (- 7,) i

2 2 2 2
=P Sp?t n; = o, : ‘= F Su; £,
ol S e i } 5u f oi i~

— b,
i % e, o? RN 2z§ i

2 -5= 2
5(8 .
+ 2ot b - (6 1)?i - 2'{{(.6 -3 )J; )2r
222 ‘ 2&2 e Hi LA By T i’ "ol
i o . .

) . | | -
20", ( B, = B)/xifoi + (T, - W, f .)};} veo(A 4.4.1)

%oi oi oi “oi

1= F i ( ) fi 8ui 1=F . 5fi u
1 = 5 + ==
(1_ P )2 2Zi 1 Fi Zi

I
= 3 o
E.
Bl=

n
z
1

20° .20

£.) 1 -

."-.\ tT 2 - ’/ ‘ - ‘ i
+20; ( 8 - X5 foi + %i (P T i -‘”01:

ol1.

(5+1)

20

L ¢ -2(3 -B) xF . = 205,81} x]

oi“oi

eee (4 444.2)
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%q  _q 1% | T Mt '“ifi)
M3 noo %9 ’(1"Fi)2 % 20°
2 A 2 }
+ ! Foi 6ui ( L 1) _fi
TR B 2R
57 (8+1) » ,
i i /N2 _a Y
T ()2 BB XD F g + 20,;(8, =8 )V Xy
2 ' :
* q61'(Foi Yoi foi )} oy ees (4 4.4.3)
2 : n -1"1“ . Sy
0 U 1 oi i 71 1
and . =1lim = X . (=24 f,1n?2,)
OND'S 1 1 (1_Fi)2 2 i 2 i
> 2 2
1=F u 0, = -0, 1 =-F L
oi i, i 1 o i1
Sl il ;- 1n 2y + IF 57
. 20, i
1
-(&1) ~(5+1)
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SOME LAKGE SAMPLE RESULTS IN AUTOCORRELATED

MODELS WITH DECOMPOSED ERROR TERM
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Chapter 5
Review _of'_the' Liteifat;gxe REE e
5¢1 .Ixitroductiénh

One of the important assumptlc;ns of the clagsical linear regression
model is that the d:.sturbances “in the regress:;on equa.tlon are uncorrelated,
But qu:.te bi‘ten this assumption is unrea.list:.c, ieeey the disturbandes
happen to be correlated among themselves, In the economet;ic literature
this is referred to as the problem of autocorrelation. It is genera.lly
cons:.dered to be a problem for time-;erles—based mvesflgatlons but it -
can also ocour in éross-section date which are, for instance, baged on
some kind of natural oxdering,

- When the prolslem of autocmélatiox_;_ﬁ&riee#;‘ the classical model
hecomes inapplicable and so onié has to use some alternative framework to.
tackle the problem, Extensive studiea have been made in this areas in,
fact, the literature on autooorrelation hu by now: grown very large, a
detallqd account of which can be found in any standard textbcok. What
is bas:.ca.lly done J.n these studles is 4o propoae Ws for detect'!;ng
the presence of autocorrelation and. to d;velop methods for consz.sterrt
and efflcient estmatlon of the parameters of thes mcdel in case auto-

SN

correlatxon is found to be present. o |

..,gt"‘

A xeview of the litera;hzre on autocorrelat:.on is presen‘ced in
this Chapter in order to make :the dlsse::tat;pn self-contameda In domg"
so our obgeot:.ve J.s not to ma.ke a comprehensme survey of the exzstm.g

llterature in th:.s area. A more detailed account of 11: may be found
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in Judge et al. (1980). We shall here try to touch upon only those studica
and results that are not readily available in textbooks and that would also
help in apprecisating the mot:.vatlon of our work presented in the next two .

Chapters. This Chapter is arranged as. follows. Tn sectlon 5 2, the

problem of mlsepeclflca.tlon as a source of autocorrelatlon 13« dlscu"ssed.
Studies regarding testmg the presence o‘.E‘ autocorrelatlon and the methods
of eatmation u.nder dlfferent assumpt:.ons about the' er:ror process is des-
cribed in see'bipn 5.3. Sonie concludmg observations are given in

gection Sede

5.2 ' bubosorrelation apd Misspesification
We stert with t;1e e:‘cplafzation( often given for the existence of .

a,utocorrela.tion in the disturbances of a linear regresslon equatione It
is stated in the llterature that the sources of autogorrelation’are
cmission of va.nables a.nq/ or erfcrg-imobservations. Det s first dis<
cuss the consequences of the former: 'bemg a source of autocorrelation.

| Theil (1957) wes the first %o consider the problem of m.sspfcr‘
fieation in a linear regression model. He prlmarﬂy exammed the onse=.
quences of miaspecﬁicatwn “for the estmé,tes of the paxmterq
Although the temm ‘misspecificatinn’ yefarg to eny Rind of incorrat
specification of the model ,The:.l used 1 °(in fact, he used the trm
'gpecification error') to mean situations %here' (1) sbmé releva.nt
explanatory variables have been ‘excluded, (ii) somé:irrelevant. vajables
have been included, and (iii) the form of the’ relationshlp has ban
wrongly specified. ‘The reasons wsually given fox mmsgeelficatm; of

a model are §
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‘(i) ignorance of the analyst about the iole of tne particular
regressors (or some functions of the rggfessors) which
influence the regressand;

(ii) norr-availability of reliable data on the regressorss and

(iii) to avoid the problem of multicollinearity.
Now, if misspecification is to give rise to autocorrelation in fhe
disturbances, it‘should be true that some explanatory variables which
‘should have been included in the regression have been omittedland>that
these variables are themselvesEautocorrelatéd. There is, howcver, one
problem with this interpretation. As noted by Maddala (1977, Pe274)
"It is that we should also be saying that these autocorrelated omitted
variables, whatever they are, are independent of the explanatory vari-
ables included in the eq@ation or else we run into the problem that

the " residuals are correlated with the explanatorj variables. '

5e2.1 Misgpecification and OLS Estimation

Let us examine very briefly the consequences of misspecifigation
(by which we shall henoeforth.mean»situations where either some reievant
regressors or somé functionsof some of the included regressors have been
wrongly excluded) on the ordinary least squares(OLS) method of catinae’
tion of the parameters of the modele For this purpose, we consider the

following model

Y = XB+€ XY} (5.2.1)

where Y is a (n x 1) vector of observations on the dependent veriable,

Xisa(nx k) matrix of fixed obserVations on k rééiessors, B is a
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(k x 1) vector of associated re;ression coefficients and e is the (n x 1)
vector of disturbances with E(S) = 0 and V(s) = Ui In' We further assunc
that rank of X = ki< n)e For such a model, the least squafes estinator
of g defined as R = (X’X)m1 %Y 1is the best lincar unbicsed estimator
of B

Following Theil (1957) y we assume that instead of using X, one’

. PV ’ L+

takes some other nonstochastic matrix X which is of order (nx k)

with rank k+ (_<_k). The nisspecified model can then be written as
Y=XF+% k T e (5e242)
where ’g =X6 - X'\B’ + € . eoe (5.2.3)

and 'é' is the (k+ x 1) vector of régression coefficients associated‘

with the k| regressors in the misspecified equation. Cled:cly B(t) is

notyin geﬁeral, equal to zero. If, however, the colunns of X and ¥ are

lineariy related, then one may have K& ) = 0 for some choice of B e

Tow, the OLS estimator of 'B forthe model in (5.2.2)_is given

. ER

T =¥y ¥y Clee (5.200)
() e+ @07 e (fron(5.2.1)

and hence
A
CE(F) =78
where =i (?,"/Y)-1 ¥'x 3

is the (k7 x k) matrix of (estimated) regression coefficients in the

1/ X may be jdentical with X except that one or more columns of X
have been delcted in Xe It is also possible that X and X are of
the same order and are identical except for onc or two columnse

-

]
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auxillary regression equations of the’true regressors (i.e., colimns of X)
on the included ones (i.e., columns-of Y). There is thus a simple linear
relationship be#ween the expectati§n of the estimated coefficients in the
ﬁisspecified rggression equation used by the analyst’and the unknown vec—
tor B . In general , ﬁg\ is not an unbiased estimatég of 8 if some
relevant regressors have been omittede In the same manner one can
explicitly work out the bias when there is a miéspecification of tbe
vform.

Theil also showed that the usual reeidual variance ecstinator fron

the misspecified model in (5¢2.2) iece,

A2 it
U: = e/e /(n.- k+)
A

where ¥ =Y =X 73

N .
and B is as defined in (5.2.4)s overestimates the variance of the

digturbance term i.e.; of which is egual'in'both the true a2nd mis-
specifie’ models. This result i. considered to provide a basis for
selection of a model jeeey 2 specification with a smaller residual
variance should be preferred to some other specification. Clearly,
‘however, this criterion is not suitable in situationg where the speci-
fications Eeing compared are both incorrectes It has also been pointed .
out by Koerts and Abrahamse (1976) that an analyst may make a wrong
decision with a large probability by choosing a model with smaller
residuval variance if the samplc size is small. Kloek (1975), on the
other hand, showed that the probapility of adopting a wrong model on

the bagis of residual variance criterion converges to zero as the
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gsample size increasese This criteric;n has also been justified by
Schmidt (1974) who proved that even when the disturbances are generated
by a firsteorder autoregressive process _tile i'e‘s"idual variance crit_erioh
is valid asymptoticallye. | | _

Recently Chaudhuri (1}977, 1979) made further studies on the frob—
lcm of misspecificatione She was concei'ned with miéspecification 'béing
a source of autocorrelation in the dis‘t;urﬁanceé. She cdnsidered a
k=variable linear regression model as described in (54241) as the’ true-
model and defincd the misspecified model 'as the one where:m regressors
(without any losé of generaiity, these may be‘treate‘d as the last n
regressors) heve becen omittede Thus, the m1spec:.f1ed model considered
by her is given by (5. 2.2) with k7 = k=m.  She axgued that N 1.e.;
the (k X 1) vector of regress:.on coefficients associated, wlth the k
:/regressors 1ncluded in the misspecified model, should be redeflned 1n
order that the :anluded regressors may explain as much of the variation
iny as possible.g/

She first considers the case when X is nonstochastic. It is
casy to see then thet B (Y - X' B+)/(Y - x* 3"}  is minimized when
gt =Pg, P= & T xR e, we‘get; on the average, the
best fit when B+ is so chosen. We can then radxjite the misspecified
model as |

Y =xtPg+ et | cee (542.5)
where et =y~ X+PB

7+ € , 7z=( X - X7 P)B cee (542.6)0

el

2/ For a critique of Chaudhu.rl s approach, see Gupta and Maasoumi (1979) .
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It is oovious that E( e ) :;é 0, in general, and V(s+)= OS I~ though
2 Chl 8+/) # 3‘3 I+ Also note that e’ cannot, in general, follow a
AR(1) process even if g;'s are so.

Now the OLS estimator in (5.2.2) is given as

/oy :
%‘* =™ x) xty

+/ +/

/ -1
- B+ + (X+/X+) 5t Z

-1
e + (X+./X+ ) X

and therefore E (%T) = B+ since He) =0 and X+/Z = O The latter
is obvious from ti;xevdefinition of Z in (5.246)s Thus B+ is unbiagedly
estimateds But, as before, it can bé shown that
/
N L )> o
k'
where  et=Y = X" /B‘+
and hence the sampling vaeriance of estimated coefficients will in such
cases be overestimated.

Chaudhuri (1977, 1979) also examined the performance of the

'8 to follow AR(1)

Durbin=Watson (DW) test in this situation allowing €
processe - She showed in particul-r that
plim dz 2 (1 ad pO) ., XX (50207)
n-» ®© ’
where

d = value of the IW statistic

2 2
P = f_)g 0€+'ﬁzoo
o) 2 2
g + 0
€ o)
n
2 _ . 1 2
oo"lmn_z‘zeét
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4 0
1i - 5 4 VA
B = nlinoo Bgmp T s =y (1)
K 1 B 9
“1im o 2 ZOo +
N-» %0 t= !
T 4 is the t~th element of the vector (X = xt Poo ) B
, . H
P = lim P
[»e]
n_, o
and ,
P - is the first=order autocorrelation coefficient of &.'s.

£ ‘ . ‘ t
Iy is clear from (5.2.7) that piﬂn d  is likely to be less
N>
than 2 for FL > 0 unless T% is negative and sufficiently large
~umerically., But even if %; = 0, the value of plim d will come out
to be significantly less than 2 if ?% is positige’g;d 0:9%5 is such
that P is appreciably greater than zero. Thus W test may indicate
the presence of autocorrelation in the disturbances of the misspecified
equation though these disturbances aée in faet‘mutual;y uncorrelated.
When X is stochastic but independent of e her observations
with rezard to the performance'of OLS estimator 2nd of the W statistic
can be summarised as follows 3 :
(a) OLS would yicld biased but consistent estimate of 87,
(b) The usual formulae for estimating the sempling variances
of these OLS estimates of BV nay give underestﬁmatee9
overestimates or unbiasediesthﬁetes depending upon-the. . .
relative effects of (i) emiesion of regressors, Qii) the
antocorrelation amoné the dieturbances in the ?rue:model
(if any), and (iii) the autoce£relatiens of the included

regressors.
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(c) The disturbances in the misspecified model will, in general,
“have non—zerd means and will not,'in general, follow an ,AR(}E”M
processe But these disturbances will be autocorrclated and |
if the first—order autocorrelation cocfficient of the dis?
turbances of the true model (i.e., st's) and/or the auto-
correlation coefficient of the vector Z in the misspecified
model are‘p0sitive, then the usual IW statistic would, ih
large samples, come out:to be significantly less than 2

more often than the chosen level of significance.

5¢2¢2 Tests for Misspecification

Ramsey (1969, 1974) suggested_t?sts for different types of
misspecifications. We, however, briefly describe the most frequently
used test known as regression s§é¢ifibéti6n erfor test (RESE@? which
is relevant for the kind of misspecifications we are considefing.

He used Theil's (1965) best linear unbiased scalar (BLUS)
residuals defined as

g =A/y

where = B = ( Ty evevey, o )
- o [ ] s
" ettt Chekt

and A is al(n - k") x'n) matrix satisfying
¥t =0

) eee (5.248)
and A A = I
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~

Under the null hypothesis of no misspecification, ° is
unbiased and has a scalar variance-covariance matrix. Ramsey (1969)

obgerved that for misspecified models,

~ / 2
¢ TN (¢, o0 I _ Kt ,)"

where & is a ((n=- k+) x 1) nons*tdchastic vector whose precise
definition decpends upqe- the particular type of ,misépeeificationibeing

considered and oi is the common variance of 'Ef"'s" (t:2:1y 25 sees -
n-%k' ). Healso stated that under quite general conditions _.;A/g |
can be approximated by 3/ .

/

A.E :J;(xo+a1q1+ a2q2+ esesee

where the qj's (5 =1y 2 eeses ) are (n= k') dinensional vectors -

defined as

3/ If X' does not contain a column of unity, then

/ /.
AEz (IOA1+(X1 q1+a,2 q2+ 0‘000000

/
where i= (1, 1’ secey 1) .
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qJ A/Y (J+1) = 1, 2,< seece ) (5.2.9)

A A a4 Al = - Al = /
+ » + +
where Y (3+1) = ( y1(3+1’, y (3 1), coey yga 1)) .

2

He then considered the following regression equation4-/

'é':a +alq1+a2q2+.....+%qp+v ...(5210)~'
where v is a((xr-k ) x 1) vector of smdependent djzsturbance terms assumed
to be distributed nozmglly with zero mean and constant veriance. Clea.rly
the mull hypothesis of no misspecificafibn reduces to testing Qhetﬁéi-
all the ai's (a=0, 1, 2, ......)-.a.re zero. This can be done by usiﬁg
the standard P=statistic which under the rull I.prthesis follows central
F—dlstrlbutlon w1th (pd-‘%, n-k - p -1 ) degrees of f""eedom. Obviously
the test depends upon the Lxucial assumptlon tbat A § can be approxmaﬁ
ted by 1 's (=1, 2, .....), an assumptlon whlch may not always be
valid [see, Ramsey (1969), for details /.

-Ramsey and Gilbert Q1972) carried out Monte caxio studies on the -
power of RESET. Their main conclusion is that RESET is reasonsbly -
powerful against their respective alternativese. |

It may be mentioned that RESET has boen used by many researchers.
Anong them are Gilbert (1969), Ramsey and Zarembka (1971), Lee (1972),

and Loeb (1976). Lator Ramsey and Schmidt (1976) modified

ff/ The number of q_j's to be included in the regression equation °
“depends upon the par'bicﬁlar problems Ramsey, however, found that
in most cases it was suff;.c:.ent to use, q‘l » Os wnd q3
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the RESET test iarocedure using OLS residuals (ez's, t =1y 2y esey n)

instead of BLUS residuals. They suggested that & be regressed on MX 9
instead of A/Q where ‘
+ (gt A= o+
M= -y 37
A A Aol o
Q= (Y(Z), Y(B)y eccey Y(p+1)) A

and the usual F-statistic used to test the joint significance of the

and

regression coefficients of these regression equationse.

5¢3 S‘tu.dies on Regression Models with
" Autocorrelated Disturbances

We shall now ma.ke a very brief 'reviewé/ of \sxome of the ’s’cudies

- on the problems of testing and.estimation in a linear i'égress‘ion model
with autocorrelated disturbances. -'It should be noted that most of the
tests for autocorrelation treat the ,mﬁothesis"' of zero autocorrelation as
the mll hypethesis. If the mll kvl;éthésis is rejected, then the reesti=
mation me‘thods-g/ are proposed which incorporate specific assumptions about
the underlying error proceséo For a long time,:.‘ tixe AR(1) process was the
only process considered by econometricianse. This was_pa.rtly due to the.
fact that many of the data used for emp:i.;i‘ical work were anmal series for
which the AR(1) process seemed to be a reasonably good representation and
partly because ;l:he estimation of autocorrelated mo.dels‘with more complicae=
ted error processes appeared wto" be c;ﬁinberéome. With> the advent

of the modern computer, researchers are now increasingly

§/ Por a detailed survey of the literature on autocorrelatiorf; see
Judge et.al, (1980)s This portion of the survey draws much from
this booke '

_@/ The term ' reestimation methods' is used in this thesis to refer to
the usual two=step procedures asg well as Hildreth~Im .search procedure.
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using higher order AR as also olher processes like the Soving average (MA)
or mixed gutoregressive noving ayerage (AHMA) processes. However, quite
often the choice among these alternative error processes is not vew,
simple or straightforwerd. In some instances theory might give indica=
tionéZ/ﬁabout the néture of the error:process to be chosen but in many

cases there may not be any a priori reason to choose a particular process.

5341 Tegts for Autocorrelation

There has been a groWing literature on the tests: for autocorrela=
tioniaméng the disturbances in a singlg equation regression model. Héw-
ever, most of these tesfé, rarticularly the earlier oneg;,consider the -
nuil‘nypothééis of zero autocorrelation against the alternative of AR(1)
process*fof the errorse. 'ﬁelatiyely recéntly tests have been devgloped
fof‘error:proéesses other thén:AR(1) as the alternative + In what
follows we first describe some fésts designed specifically for teéting
for AR(1) process as the altérna%ive and then disguss some general tests
suitableffofitesting the alternatives representing any type of auto-
correlation.

(i) Tests against Aﬂfil‘aiternatives ¢ The most widely used test

for autocorrelation when the alternative in an AR(1) process in the well-
known Durbin-Watson (DW) test developed by Durbin and Watson (1950, 1951).

The test=statistic used is given by

?;/ As examples of how theory might help in deciding the process to be
used we may cite the study by Nicholls, Pagan and Terrell (1975),
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2
2 (e, =~ e )
t=p t =1
d = =
7 el
t=1 -
where ¢, is the OLS residuale. B

t

Since the sampling distribution of d depends upon the data matrix X, it
. is impossible to tabulate the significance points that are relevant for
all problems. They, however, showed that d will always lie betwecn two
other statistics d; and dU. Based on this, Durbin and Watson (1951)
calculafed the significance points dIvl and d.; and suggested rejection '
of the m;.ll k&pothesis of zero autocorrela,t_ionr if 4 <_ dL and acceptance
of it if d > &, The test is rcgarded as inconclusive if & <ac<an.
The a.lternativé hypothesis here is one of positive autocorrelation.
Subsequently, a number of studies have been made to consider this prob-
lem of inconclusivenessard propose ways of arriving at a conclusion if
the IW tost is inconclusives Those studies include the proposal of
fitting a Beta distribution @rbin and Vatson (1951), Henshaw (1966)_7,
using dt; in plaﬁe of d*, the appropriate significance point of 4
[Harman (1957), Hannan and Ter:cell (1968)_7, fj.ttin_g.of a Beta distri-
bution ba.sed: on approximate moments [T-‘heii and Nagar (1961) 7 etc,

Other suggestiéns includeV that made by Durbin and Watson (19771)
to use >a1;1 épproximation called the *a + de' approﬁcimation and also
a technique originally suggested by. Imhof (19’61) and subsequently used .
by'v Koerts and Abrahamse (1969) ‘to'ac'actly‘ ‘determine d"s Pandci-jian

(1968) and L'EBsperance, Chall and Taylor (1976) also cemsidered the
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problem and suggested techniques for determining d*. However, it can be
scen from the results of Durbin and Watson (1971) that the 'a + bd.U'
approximation is better than the other techniques in terms of computa~
tional convenience and accuracy. |

A mumber of attempts have been made to circumvent the problem
that the distribution of +the Dw statistic depends on the matrlx X and that
the OLS residuals are correlated even if the. errors are note Thell (1965,
1971, Che 5) suggested use of BLUS residuals for carrying out the
vorr-Neumann ratio test which is based on the statistic

tgé(et - o) /(1)
Q@ =2 .
fo-ern

Abrahamse and Koerts (1971) and Abrahamse and Louter (1971) developed
another type of residuals which can be used in testing for autoc’orrela-
tion of the type AR(1). Durbin (1970b) suggested o transformztion that
leads $o: yet anoithor type of residualse This transformation was sub=
sequently modificd by Sims (1_975) and also used by Dent aﬁd Cassing (1978)
in carrying out a Monte Carlo experiment. |

So far as ‘the power of the tests are concerned we may mention the
study by Tillman (1975) in which he obtained approximate bounds on the
power of the IW test. Other studies on the power of DW and the alterna—~
tive -tests include ‘bhose of Lbrahamse and Kocrts (1969) s Kovrts 2nd Lbrahamse
(1969), . Abrahamse and Louter (1971), Phllllps and Harvey (1974)

L'Esperance and Taylor (1975) and Dubbelman, Louter and Abrahamse (1978).
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The general conclusion of these studies is that the DW test is the best
provided one has an accurate method of dealing with the inconclusive
region.

The IW test has also been extended in other directions. Durbin
(1970a) suggested a modification of the test for dealing with situa-tvions
where the set of regressors incllide iagged dependent variablecs, Sarga.h
(1964) suggested a test for AR(2) process when the null hypothesis is
an AR(‘I) proc;ess. Mon‘c.e Carlo studies on these tests have also been = i
done [y_;_clg Maddala and Rao (1973), Kenkel (19749 1975, 1976), Park

(1975, 1976) and Spencer (1975)_7...

(ii) Some general tests $ There is one group of tests which is

based on the sample autocorrelation coefficients. These tests use the

fact that a given process like AR, MA or ARMA can be described in terms

of the nature of its autocoirelation functions

_ B °t St-s )

S 2
E(et )

9 s =1, 29 sesel

t

S+1,S+29 sessy lle

- It is well=known that for an AR process ps gradually dies out with
increase in the value of s and for a MA process it is zero after Py
& R

the order of the MA process.-/ One can estimate Ps by the sample

~ correlation coefficient

n
Z &y Cims
. X=st1
Tg = n
7 o2
t
=1

t

§/ For details on the behaviour of the 'élutocorrelation functions for
different processes, see Box and Jenkins (1976, Chapter 3).
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where e, is the OLS residualsand then come to a decision regarding the
nature of the error prodesS*by examining the values 5f-rél(s=1; 2y eeee)e
It should be pointed out, however, that this approach is based on the
implicita.ssump-t;ioni:hayt:;eJC converges to £, in distribution as n . o ,
There is an additional problem in small samples which ariseé because the
et's are éufocorrelateé eveﬁ if et's arc not. As has been shown by
‘Malinvaud (1980, Che 13), this may give rise to substantialﬁsmail-sample
.bias. .
We may also note that, .as carly as 1946, Bartlett (1946) obtéined

~an approxinate expression for #he sampling varianéehof rsv which can be
used to test if ps is significantly different from Zero beyona é;éér;
-tain s > m, where m ig the lag beyond which the population autocorreia—
tion coefficient vanishes.

The second group of general tesfs for autocorrelatlon is the well-
known likelihood ratio (IR) test. This test can be used to choose be-
tween two alternative AR or MA processes. Once this is done the ordér of
the process is then chosen by testing a sérius of‘nesfed.hypotheses;
Suppose, for cxample, that the error process has bééﬁ accepted to be AR.
Then starting with a éufficien*tly high order of the pvr'ocbes‘s, say, AR(4),

ioeo,

one‘can test the following sequence of null hypotheses against the

specified alternatives by the LR tests s
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Nall hypotheses Alternative hypotheses

71 } e 771. |

B 3P, =0 q .94,40

72. —— — 2. _‘
‘Io'ps’p4‘° H1,.F33£0, Py =0

B o =9, =p =0 B30, £0,0, =0 =0

o 2 3 4 1 2 * "3 4

4 oo _ _ R ‘ _ - _
H 1P =P, =0 =0, =0 Hfll.p“éo,pz_pB_p =0.

4 =
It is clear that if any of the mull hypotheses listed above is true then,
of course, the preceding mull hypotheses must be trwe; if, on the other
hand, any of these hypotheses is false then the succeeding ones must be
false. In view of this, one can continue testing the sequence of mill
hjrpotheses onec by one till one of these is rejected or thve final hypo=
thesis of no autocorrelation is accepted. (jbviously, this procedure
cannot be gencralized directly for an ARMA process. However, one can
first decide on m AR or MA process and then treating that to be ’the null
hypothesis cariy out additional IR tests assuming the altcrnative to be
an ARMA process 2(

| " In the third group we describe some. other tests which do not have
a ‘coxm‘non basis like those in the first two groups and which are used for

10 '
alternatives other than AR(1) errors.-.-/ The test suggested by Durbin (1969)

9_/ Detailed discussion of this approach and examples may be found in
Fisher (1970), Anderson (1971, pp. 34-36), Komward (1975) and Mizon (1977).

19./ The only exception, among the tests suggested here, is the one
suggested by Godfrey (1978a) which can be used against an AR(1)
process also,
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is based upon the cumilative perlodogram of least cquares -:.cesimals.
Geaxy (1970) proposed a nonparametric test Whid'h’consists in counting_
the number of sign changes in the residuals and bfhen"testiﬁné the signi=-
ficance of the proportion by using the Binomial distribution. This |
test, however, is valid only asymptotically because the residuéls ere
not independent even if the errors are uncorrelated, Wallis (1972)
gencralized the Durbin=Watson test and used it f or". quarterly. data under
the aséumption that
| st = Qet 4t vy

where vt is cons:.dered to be spherical. Recently Godfre{y (19’78a)
sugges*bed the use of the lagrangian-multiplier t’échnique to test the
hypothesis of no autocorrelation against AR or MA process of any order.
Later he (1978b) cxtended it for testing ARMA (p, q) agalnst ARMA(pﬂ:', q)
or ARMA (P, q) a.galnst ARMA (p, q + T)s These tests arc va.lid asympto-
tically even if the X matrix contains Yagged values GE' the deéehdeﬁt
variable and, being based on OLS residmals, also casy to cizoinpute.‘There
is, however, onc shortcoming of these tests. In festing the hyl;othesis
of no autocorrelation against an AR process or a 'IVL'A':p:r'ocessv, they cannot
d_lstlngulsh be'bween these two types of . processes’ though they- mlght help
ascertain the order of the process because the test statigtics used
are the same for‘thg»igwo types of processes of same ordér, ,

Studies have also been made by Blattberg (1973) and Smith (1976)
to compute the power of these various tésts along with IW when the alter—
native is some norr-A.R(1) processe It has been féund in gencral that the

IW test performs quite satisfactorily,particularly when the alternative
is AR(2) or MA(1).
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54342 Estimatioﬁ

It is well-;lmown that an application qi“ OLS in an autocorreléted
linear regression model gives inefficient théugh unbiased estimates of
the regressionpoefficiérits. Therefore, the special methods of estima=-
tion 'develop‘e‘d.for egtimation in such a m_odel séek :to find efficient
estimates of thé puq@eters. The g-en}era_.l‘i‘zed least squares (GLS) method
gives the BLUE(eéfhnateé)of the regreésiqn coefficients provided, of
course, the variance-covariance matric V of the .disturbances ‘is known
‘upto - a fa.gtqr of proportionality. It is, however, not: usually known and
hence the Gis.cén seldom be used in practice (see, however, below).

The methods of estimation developed_in'thié-bonfext can be grouped
into the following three categories. | >

(a) GLS estimation using V, an estimator for V, henceforth

referred to as the estimated GIS (ECIS) method of estimation.

(b) Nenlinear least squares (NLS) estimations

(g) Max immm likelihood— (ML) estimation.
We give here a bricf account of these methods of estimation for each of

several different assumptions made about the error processe

(i) Estimation with AR(1) process ¢ Suppose the errors follow an
AR(1) process given by

g =Pe, . +v § =1, 2, eeeyn vee (50341)

t 1t

where 'pe'<1

E(vt) =0 for all t, -
0 it tA t
2 /

o, if ¢t = t .

“and C‘ovv(vt, vy ) =
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For this casc the variance=covariance matrix V‘de;:vends on P only and
‘I;ence one needs an estimate of P for obtaining the HGLS cstimates. All
the methods proposed in this context ‘obtain the EE—LS estimates in two
steps and hence are often referred to as twbestep Pproccdures. Vhile
in both Cochrenc=Orcutt (1949) and Prais-Winsten (1954)  methods P
is estimated, using the OLS residuals c,, oF

n .
e e
A st Tt o ,
p = t;2 ' A X R J (50302)
2 .
z e
=1

, Pl
in Durbin's (1960) procedure P is taken to be the estimate of the
regress:.on coefflclent associated with Y in the ;ollowmg reg¥essior

7

cquation - SRR ' -
= oy, .+ (x/ =0’ )8 v,
Ty 1:—1 £ e’ %

t
P by both the above methods are oconsistent.

where x{ is the t-th row of X. It can be shown that the estimates of

In the second. s-bageto.fu ' “Prais-Winsten method the original

* * * * 3
model is transformed to Y =X @ +.e , where X = P1X, Y = I{1 Y,

= P1 ¢ and the (n x n) transformation matrix B, is such that

Aeq
=(1 - /9\2) Vv _1.> Estimate of B8 dis then obtained by applying OIS

*

to the transformed models The transformation matrix V'P‘]vus_ed in

Cochrane=Orcutt and Durbin's procedures is the same as P1 with the

first row being deletede It is thus of order ((r=1) x n) and the mumber

of observatlons ai‘ tex transformatlon reduces By one. Although this

reduction may not have dny effect on the estlmate.:. asymptotlce.lly, it
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may result in somc loss in efficicney in small-samplesy particularly if

there is a trend in the cxplanatory variablus and/or there is strong
'11 7 .

multlcolllnearltyJ Also, strlctly speak:n_ng, Cochranc=Orcutt or

Durbin's ecstimators cammot be regarded as IGLS estimatorse.

The NLS ostmates of B, P and 02 arc obtalned by m1n3.m1znlg

*
ei'ther(52+ Z vi)where —'(\/1"" )8
T g \
n
gr by Vio
t=2

‘The second alternative has been uscd, among others, by Cochrane and
Orcutt (1949) , Hildrcth and Iu (1960) and Kmenta (1971)s It may be
pointed out that all these omthors have loosely mentioned these NLS
estimatcs as ML cstimates. It is easy to sce that to obtain the

ML estimator of B, P and ci one has to maximize

s n
—-r—l-ln(e\* + I v2)’+lln(1-92)
2 1t T2

which has an additional tcrm Jé-ln (1 - 92) as compared to what one

would minimize to get the NLS estimates.. This additional term is

.

- 1likely to affect the estimates unless the sample is large and P is not
too close to one. : . - |
Now so far as the ac‘cua_l methods of computation for obtaining

the NLS or ML es‘cinates are concerned one has to use either.a.n o

1_/ For details, sec Kad:.ya.la (1968), Poirier (1978b1,Chlpman (1979),
Doran (1979), Maeshiro (1979), Spitzer (1979) and Park and
Mitchell (1980).
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iterative or a search Procedurc which is qulto well=known. Of the
1terat1v\, procedures, particular mention may be made of the method suggesteca
by Cochrane anc Orcutt (1949) for obtaining the NLS estimates by minimize
ing 22 vi. Thls iterative process has been shéwn by S2rgan (1964) +o
conv.er;e at least to a local minimum, FAOI.‘ NLS estimation, Hildreth and
Iu (1960) hasesuggested a search précedure. According to this procedure
one has to find the residual sum of squares (RSS) for cach of a mmoper

of selected va.lues of P over the admissible range of =1 to +1 and the
-value of P fo:c which the RSS is minimm is ch0sen as the est;l.mate of P,
and the estimated 8 correspondlng to th:Ls P as the estimate of B .
Recently specific algoritim fozj obtaining ML estimates have been
suggested by Hildreth and Dent (1974)\arid by Beach and MacKinnon

(1978a).

(ii) Bstimation with AR(2) process & Let the error process be
described as '

ey =Pyepy + P, ét_2 * Ve, t =1, 2, ey n ou(5.3.3)

where v, satlsiles conditions stated in (5.3.1)

and 91 + p < 1, . 92 - p1 <1 and -1,<p2 <1 (conditiqns for
’ o stationarity).

“As in the AR(1) ‘Process, P, and P, are ﬁsua]_.ly unknown and can

be estimated as

6 =8 (-8 (-8%)

R < | b Gosa)
AN RANIEAY IR
and B, =(8,-9,°)/(4 %) §

n
3 e, e

A t s

where  § = -t-"%ﬂ (s =1, 2)

z ef
b=p
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: ’ N N
and et‘s are OIS residuals. Alternatively, P,l and 92 can also be

obtained by fitting the following equation by OLS
A L

—p1e17"1 2‘b-2 ‘b ;‘. At‘_"': 39 dg. eeeey N

Then using a (n x n) transformation matrix P, one can, as in the

2
~
previous case, obtain EGLS estimator for B as (x” PB/P X) /\2//\2 Y
o\
where P2 is the estimate of P2“ from either of the above procedures.

One can also use NLS and ML methods of estimation. As in the

AR(1) case, one minimizes e P2/ P2e for NLS and on2 maximizes

-Zing e/p/Pye} +51n [(1 + )2 1(1=0,)% = 0F }:)

. i - }/.*- / ‘ " -
for ML estimatione Sometimes one minimizes € P2 T’zewhere P2

(n-2x n) transformation matrix obtained by deleting the firsf two

is a

rows of P2° It is easily seen from the above that NLS and ML esti-
mators need not be identical because of the additional term in the log=
1ikelihood functione For both NLS and ML estimators, one has, however,
to use standard iterative techniques to obtain estimates of the para=
meters. Beach and\I‘.’Ié,‘cKinnon (1978b) provided an algoritim for obtaining
ML estimates by incOrporatihg the stafionarity conditions which the
other standard iterative methods do not. It is, thex;efore, expected
that this estiinator would do better in small samples provided the model
spceification is correcte One can as well usefa; search ' technique
similar to the one suggested by Hildreth and Im (1960) in the context
of AR(1) error process, this will, however, be computationally more

expensive nowe
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(iii) Estimation with AR(q), q 23 processes ¢ For AR processes

of order 3 or more, it is very difficult to obtain the transformation
matrix. For these processes, therefore, NLS_and ML estimators are gene-
rally useds Foxr such processes, a general cxpression for V'".1 has been
given by Wise (1955). Fuller (1976, pe 423) has defined the reguired
transformation matrix which is very complicated??agan (1974) has indi=
cated in details how the Gauss;Newton algqrithm can be used to minimize
3 2
t=q+1
on the other hand,has given a summary of the various modifications of

where q is the order of the processs Pagan and Byron (1978),

NLS and ML estimators, Finally, mention may be made of the study by

Thomas and Wallis (1971), who assum2d the following type of error

, :
process

o (5.3.5)

+V_t 0

for quarterly data. It is possible to estimate P by replacing et's by
OLS residuals. NLS and ML estimators can also be appropriately obtained

for this particular specification.

(iv) Estimation with MA(1) process ¢ TFor this case the error

process is given by
et -'-"-V_t + a1 V'b"‘1 ’ (t = 19 2, esey n) eee (503.6)
where v, satisfies, as before, the standard conditions in (5¢341).
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Let us also write

2
v(e) = ol V, =3 W

2 2 2
where ol =a_ (1 + o ) and VW, =

2
! (1 + o] ) V1°

For known al, GLS cstimator of f can be obtained by minimiiing

(v X B) . 1 (Y =X 8)s It is also possible to derive a transforma=
tion matrix,-say P3’ such that P P3 J-1; hOWﬁvei;rfhe structure of
P3 is complicateds Pesaran (1973) suggested a structure of P3 which
is compllcated and involves the characterlstlc vectors of W’——/ Slnce

1
o is usually unknown, it may be estﬁnated from OIS residuals as

1=(1-4 p )2 .
) (5e347)

AR
o =

AN e D e |
wherep1 s . defined in (5.3.2). However, this estimator is not very

satisfactory since(%"' is real only when lé\ I( 0e5. Furthemmore, the.

invertibility condition requires that | '( 1 and hence
a
hp = <O.5
orfe | A
1
where 91 is the first—order autocorrclation coefficient. Although it

is easy to estimate o in this manner, it is usually inefficient rela=-
tive to NLS estimator because it ignores the information contained in

other samplc auntocorrelationse. -

12/ Very recently, Balestra (1980) has also given an exact form
of P3'
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Durbin (1959) suggested approximating MA(1) with a large but
finite brder AR process such as

E“t = QT eJo_1 + 92 8t—2 + eeee +‘pm ‘st-_-m + vt .

Estimates of pi's and hehce of o can be ;‘b-t‘ainedr by repla.ping € t's by
et's and using OLS to estimate the equa.ti‘on aboves x'hemiya (1973¢),
McClave (1973), Fuller (1976) and Mentz. (1977) ‘worked further in this
direction and showed that in an approxmate sense, this es‘c:.ma'tor of - a
is consistent and asymptotlcally efflclent.‘ Walker (1961), Harman (1969),
McClave (1974), Nelson (1974), Nlcholls, Pagan and Terrell (1975) are
among others who suggested other estlmators. ”

As for' NLS and ML estimators for models with MA('I) €rTor process,
one minimizes e/ W;1 £ fpr NLS estimator a.nci maximizes

1=«

g o ley - 1
. 21n(sw1 8)‘ 2ln{ A

. 1 o

for ML estimator. Obviously, NLS estima.‘tes are iikely to be -different
Vfrom ML estimates because qf the additional term in the latter. How-=
ever, for large n and small 'ali the effect of_ thev additional term in
ML function is negligible, Both the ML and NLS estimates may be,
obtained by us:.ng éither the standan.:'cliA itera;cive methgdg or the method
suggested by Pesaran (1973). o -

(v) Estimation with MA(p), p > 2 processes i Let ¢,'s follow

a MA(p) process given as

S_t = Vt + j§-1 aj v't"j 9 (t = 19 2, seey n) see (5.3.8) .

where v, 's satisfy the conditions as in (5.3.1) and aj's are such
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that invertibility conditions [see Box and Jenkins (1976, De 67)_7 hold.
Following Phillips (1966) and Pagan and Nicholls (1976) we can conclude

‘:—

that minimizing (v VAEVV ),
where v =( g1 eeees v)

and v =(VO?V1, ...’V(P"‘I) )
with respect to
, Y
B, a= ((11, azs esey flp ) "and v

is equivalent to minimizing e W21e with respect to B and o where

2., _ 2 | S
&) =o Wy =Wy

P 2
1+ % O‘i)Vz'

aqd - W
: i

2

Thl‘S sum of squa.res, as before, can be m:.mmmed by using standard
nonlinear iterative technlques. Phllllps (1966), Trivedi (1970) and
Héndry and 'I‘rlvedl (1972) | 'sugges{;‘ed 'minimization of 'v/v' with respect to
By ¢ and V. TUnder the assumpfion of normality., of vt"s, this is cqui=-
valent to ML estimation conditional upon :r.' The. ML estimates of B and «

n (V v + v v ) with rcspect to B, «

can be found by minimizing l >
and ve In a.ddltlon to standard itcrative methods, Pagq.a and Nlcholls
(1976), Osbornv(.’l‘:97 6) and Dent and Min.('1978) suggested different
algorithms goc Mﬂw.m B,

Asymptotically, there is no basis of rchoOsing between ML estimator
on the one hand, and the diffcrent NLS cstimators vhich differ in their
treatment of presample values -w-r, on the et11ei'. Under certain conditions,

Pierve (1971a) showed that these estimators will be consistent,
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asymptot 1ca.lly normally dlstrlbnued and Wlll bave 2 covariance matrix tha+
can be estmated by uslng the 1nverse oi the matrix of second derivatives
of the log=likelihood function (o:c the .approximatiorms being used in NLS or
ML algorlthms) Computatlonally, cstimators that set v = 0 ave easier
though they ignore some information and hence in terms of the mean square
érror criterion, they may be relatlvely poor in small samples, The ML
estimator ig llkely to be preferred to NLS but computationally it is more

difficult since it requlres evaluation of , W '

(vi) ‘Estimation with ARMA pI‘OCGSSLS : Let &, follow an ARMA

t
(q, P) process given by
, q . : P C '
" i§1 Py i T Vg ¥ J-)-:1 aJ - (t=1, 2, “‘.’ n) "'€5°3°9)

where vt's satisfy conditions in (543 1) The standard statlona:rlty and
J.nvertlblllty conditions are assumed to hold. Since obtaining the trans-
formation matrix cven for AHVLA(1, 1) Process is difficult;lg it is
better, as for the higher order MA Drocesses; to piwimize a simple sum
of squares instead of efw;e (where V(e) = o V3 = o W3 and W3

is accordingly defined in terms of ¢, P = (» ;2 92, ceny p ) and V <)
Following Pagan and Nicholls (1976), it can be shown that minimizing

v/v + w..['\_-1 W with respect to [3, Py o and w is equivalent to

minimizing e/W;1 € with respect to By o and P, where v, v are

13/ For AIﬂVIA(1, 1) case, however, Tlao and Ali (1971) has given a
matrix § su/ch that @' § = w3 and thus in this case onc can simply

minimize e/Q Qe to obtain the ‘estimates,
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defined as before and 5/ ( v , =Ny, z'= (egs Eoqr oves

L /
B(ww )= 02_1'\. and w and v are uncorrclated, The exact structure of

®1mg )2

.ﬁ-— depends on the orde:r: of the process. ‘ The express:.on for...fl. for

ARA(T, 1) process has been given by Newbold (1974).

ML estmutes under the assumptlon of normality a.ré obtalned by
minimizing ' W , (v v+ w_(\- W ) with respect to B, P , @ and w.
The asymptotic properties of the ML and NLS estimates are equivalent '

' and are given by Pierce (1971a, 1‘9'71'b). In terms of small sample pro-
perties, ML estimates are likeiy"%"‘fo be preferred but cmnputatidnally
they. are more difficﬁlt than both NLS which does not require camputation
of ’ 3 l and conditional NLS wh:Lch does not requlre compu'l:a‘tlon of l '
and -,,{1:1 We w

5e4 Conclusions

The fore_goiné ‘discussion ¢learly indicates that while significant
amount of work has been‘ done oh misspecification and autocorrelatién
separately, not much serious attempt seems to have been made to treat
misspecification (and aufocorr'elation due to it, if any) and autocorre=-
lation due to reasons other than misspecification s:hmzltanéously
within a single model. Since it is recognized in the literature that
there can be different sources.of autocorrelation, we want to argue that
a pcoper understanding of ﬁhe nature of the prbblem of autocorrelation

should be based on a detailed study of the model where the factors
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responsible for causing autccorrelation are represented separately
rather than through a combined error terme Ve propose to adopt such
an approach and reconsiderthe problems of testing and estimation of

an autocorrelated linear regression model in the next two Chapters,
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Chapter 6

Estimation and Testing in an Autocorrelated Linear
Regression Model with Decomposed Error Terms
The Case of Two AR(1) Components

6.1 Introduction

In the standard econometric literature-estimation of a linear
regfeséionveQuation with autocorrelated errors is done.fy-éssuming some
antocorrelation structure for the errors like that implied by an auto=
regressive (AR) dr a moving average (MA) process. This kind of approach
is not easy to justify if the error term in a linear regression equation
is-viewed as representing the effects of omission of variébles, errors-
in~observations etce, for, strictly speaking, the autocorrelation in the
error term can be due to either misspecification of the equation or
errors-in-observations or both, One might, therefore, be interested in
examining if it is possible to detect whether an observed autocorrela~
tion is due to one or both of thesefactors and how one éhpuld go about
eétimating the model in case both the factors of the error term are
found to contribute to the autocorrelation.

The objective of the present Chapter is to make such a decomposi-
tion of the autocorrelated error term in a linear regression model in
order to examine the nature of the problems arising out of it and pro—
pose methods which can be used to tackle those problems. More speci-
fically, we consider an autocorrelated linear regression equation mbdel
in which the exrror term is written as the sum of two compoments, one or

both of which may be autocorrelated and then examine the problemsof
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estimation and hypothesis testing in such a mosel. It will be seen that
development of a simple and convenient method of estimation would require
a knowledge about the nature of the error term since one needs the
variance~covariance matrix of“the errer term in cstimating the parameters
of the model., Our approach is to getvthe proper variance-covariance |
matrix after ascertaining whether both the components of the error term
are present or not and also, autocorrelaped or not, if present.

It may be mentioned that a siﬁuation like theeone described above
may actually arise if there is misepecification in the form of omigsion
of variables. It can then be easil& shown that the error term in the
migspecified model will have two additive_componentstTEee,ffor example,
Remsey (1969), Chaudlmri (1”77, 1979) etchj7-—"onc is the disturbance
term in the true regression and the other is due to misspecification ==
and the autocorrelation in the error term of the misspecified equation
~would then be due to autocorrelation in either or both of the individual
componentse |

We shall first point out that if the error term is broken up
‘into its constituent elements in the manner described above, then it
will not, in general, follow the same process which may be assumed to
be generating the individual coméehents. If, for example, the indiei-
dual components are generated By AR(1) processes, then the sum'of these
two components will not be of the same‘typel/; it is in fact known that

the sum of two indepeﬁdent.AR(1) processes is an ARMA(2, 1) process
[vide Granger and Morris (1976), Rose (1977)_7. Hence. the common

.4/ The same conclusion will be valid even if one of the two compo=
nents is not autocorrelated.
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practice of assuming an AR(1) prccess for the combined error term, with-
out paying amny attention to its possible compone nts, in an autocorrelated
linear regression equation becomes unsatisfactory. In fact, some of the
standard estimation methods like those of Gochrane~-Orcutt and Prais-
Winsten which are applicable only if the error fol'.L:()ws an AR(1) process
might then be inefficient.

One might argue that since the combined errox term follows an
ARMA(2, 1) process when the individual components are generated by AR(1)
processes, it is poss sible to estimate the pa:cameters of the model by
using methods available for estimating a model with ABMA(Z?, 1) erxor
process [s'ee, for example, Pierce (19’(1b)_7. Hence, in principle, one
could possibly say that the problem of estimation of such a model has
been solvede.

In our opinion, however, +here a.re.still valid reasons for under-
taking the present type of studye. It would be convenient to present our
arguments- by considering one of the error components as due to misspeci=
fication. Then the idea behind the decomposition of the error term and
the assumption of a separate error proce.ss for cach of the components
is precisely %o see if we can ascertain whether an autocorrelation is
due partly or wholly to misspecificatione Such an information is .
helpful for various reasonse Firstly, one can then try to remove +he
misspecification by, possibly, including other regressors in the modele.
Secondly, as has been noted by Judge et ale (1980) , if _autocorrelation
in the error rcsults from misspecification of the _‘da_ta‘ matrix, it is

likely that other assumptions of the model, namcly, that expectation
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‘of the error is zero, that the error is independent ‘of the regreSsors
and that the errors arevhomoscedastic - owill , be violeted. It is
because of thesc reasons that Judge et al. (1980, Pe171) have dbserved
"Because of thls assoclatlon between the mlsspc01flcatlon of X and auto-
correlated errors, we should exerc1se cautlon when autocorrelatlor is
diagnoseds It may mean that the errors can be reasonably represented
by some stochastic process, and experience suggests it is quite often
the case, but 1t could also mean that X matrlx should be resp601f10d.
The crucial questlon, and it requlres further research, is the effectl
of 1ncorrectly treatlng a mlssp001f1ed equatlon as one with autocorre-
lated errors®, Maddala (1977, ». 291), on the other hand, p01nted out
that when serial correlation in the res1duals is due to cmltted vari-
ables that are thamselves autocorrelated, the question of whether or
not the usual procedureé'of‘ ;efficieht' estumatlon often sugges ted in
textbooks are better than ordinary least squares is a point that nuOdS
more careful investigation', Our study is expectcd to throw llght on th
_Questions raised by the above-quoted authors though we havc not explr-
citly examined the departures from standardAassumptlons llstec by
Judge ct_al, (scc above). |

It will be seen that though we start with a model wﬁose‘error
term is decomposed into tw0 components with the pos31b111t1es of both
being gencrated by AR(1) process, we are able to identify the dlfferent
autocorrelated situations. We suggest u31ng our test to first ascertain

what exactly a given situation is and then estimating the model according
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to:the situatibn. }Tﬁié approéch'helﬁs us know exactly when the standard
rcestimation methods 6: the OLS are.efficient and thus clearly indicates
the limitation and applicability of these methods. We think that this
also answers the question raised by Maddala (1977) (sece abovc) A
stralghtforward use of an ARMA(2, 1) process for the comblned errorxr
term would fail to provide the insight imto the problem of autocorrela—
tione | o |
" Qur tést procedure as well as the estimation methodidevelopéd to
tackle the situdtion where standard methods are not gppliéabié are based
on OLS residuals and hence are computationally simple. We may note fhatv
the use of OLS recsiduals has been préferred to other types of more dom-
plicated residuals in a number of cases. it is well=known that Theil’é
BLUS residuals do not suffer from the limitation of OLS residuals. But.
yet econometricians usually prefer using IW test based on OIS residuals
rather than von-Neumann test based upon BLUS re31duals because cf the
computational 31mp11c1ty of the former. We may also refer to a study
detecting

by Godfrey (1978a) who developed a test foqﬁautocorrelatlon of dlffb
rent processes,based on OLS re31duals. His test is asymptotlcally
equlvalent to the LR test, and has the advantage of belng based on
OLS reslduals. M

Tt is well~known that for an ARMA(2, 1) process the structure of
the variance—covariﬁnce matrix V Qould be complicated compared to the
one obtained hére_with assumption of two independent AR(1) components
and estimation ofamodel with an ARMA (2, 1) process is not quite éimple,

since it involves, among other things, the computation of the detemminant


http://www.cvisiontech.com

174

of the variance~covariance matrix V in the ML method of estimation. As
contrasted to thls, our proposed method of estxmatlon even for cascs.

where standard recstimation methods are inapplicable, is computatlonally

much simpler. ‘

We may finally note that a straightforward use of an ARMA (2, 1)
Process or some such compllcated PrOCuSa to deal with the problem of
autocorrelation totally obscures the situation. For an ARMA(2, 1)
assumption, we have no way of know1ng if it was, in fact, sum of two:

" . independent AR(1) components. JThat sueh information is ﬁecessary, has
alresdy been noted in the Previous paragraphs, In any case there is no
a_priori basis for using a process llke ARMA( 2, 1) |

In what follows we first try to develop a test-procedure which
would help in 1dent1fy1ng different situations characterized by ‘diffe=-
rent comblnatlons of the parameters 1nvolved in the varlance-covarlance

'matr;x of the error terme. It will be secen that the test suggested here
cannot exhaustively distinguish all possible cases, There are a number
of situations whlch are 1no1st1ngu1shable by our tcst. Fortunately,
however, this fallure does not pose any. problem S0 far as efficient
estimation is concerned.

In section 642 we present the model. While in gection 6.3 the
nature of the exxor process is discussed, the nature of autocorrelatlon
of the error temm is characterized in section 6e4. section 6.5 deals
with the deveiopment of a large sample test for identifying the sources
of autocorrelation. The estimation method isvdescribod in gection 6.6

and the concluding dbservations are presented in gsection 6.7.


http://www.cvisiontech.com

175

6.2 The Modcl

We congider a k-'vvariable 1incar regression equaption which is

written in matrix notation as
Y =X8+ ¢ Cees (60241)

whére X is (nx k) data matrix on k regressorss B = (61, (32, cosy Bk)/ is
the vector 6f 'asso‘.éiated regressién coeff;.i.c'iéht_s",f Y 'ié' the (n x 1) vector
of observations on the regressand and e+. is the (n x 1) veetor of dis-
turban'cés.g/ “ | | |

We make j;he follo-wing aas—r-umption:;/ H

(l) St = ve't + Zt’ for all t= 1, 29 eeeey I . eee (6.2.2)

g/ One of the rcgressors in the above equation may be taken to be unity
for all t incorporating thereby an intercept in the equatione

2/ “If the regression equation in (6.2.1) is considered as a iﬁisspecified
equation, then we show below that the assumption in (6.242) is indeecd
truee -

Let us write, following Chaudhuri (1977, 1979), the true nodel as
Y = X § + & '

where ¥ is (n x %) data matrixz on % (> k) regressors, % is the (K x 1
vector of agsociated regression coefficients and € is the (nx1
vector of disturbances in the true regression equatione: From (6.2.1)
we have ‘

¥

et =Y =38

L}

e + (X g - X8 ) (using the true regiessiori equation
\ ' given above)».

Thus

+
e =€ +2

whereZ:(x'é’-XB), -

i.€ey the component in e+ which is due to misspecifications Following
Chaudmri's argument that B should be redefined in order to allow

contd eeee ./

-
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(ii) X is stochastic but distributed independently of both
i/ ;
€ and 2 ) see (6.2.3)

/
e = (¢, €9 eeeey en)

. P
and 2 = (Z1, Z2’ L Zn )

(iii) e is independent of 7 - S eee (64244)

(iv) €y =p€st_1 +ut L E , » ' cee (6.2.5)

wheze |0 | <1 end u;'s are independently distributed with

2€ro mean and constant variance ou.

Footnote‘ 3 contd.

the included regressors to capture as much of the unexplained

variation in Yy @as possible, it can:then easily be shown that
plim (1x2) -0
n - n .
(For details, see Chaudmuri (1977, 1979, Chapters 2 and 3)
and Section 9.2 of this. .disser_ij.a‘cion. There is, however, a slight
change in notation ¢ X, By X and 8 here arc X, 8, X' and gt '
respectively there), o
It can be shown. that application of OLS in (6.2.1») would
vield consistent estimates of the Tegression coefficients of the
misspecified equation but the estimatog variance=covariance matrix
of these estimates would not be consistent, Also, as Chaudhuri
(1979) has shown, the IW statistic may come out to be signifi-

cantly less than 2 more often than the predetermined first kind
of errors This result is“valid for our model also. There ig

thus a risk in applying_ W test for detecting autocorrelation
in the error term in this situation,

il/ The assﬁmption that X and Z are independent i$ needed only in
the estimation procedurc suggested and not in the tests proposed.

We shall discuss the nature and relevance of thig assumption in
the concluding section,
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(+) z, = o, By * vy ces (64246)
4‘ where ‘pZ ’( 1 and vt's are indep:ndently distributed with
zero mecan and constant variance 05.
(vi) For an observed Xyrank of X = it < n. coe (64247)

(vii) prim (L x'x) = ¢

Ne»

xgo @ Positive definite matrix eo (642.8)

‘Tt is obvious from (6¢2¢5) and (6.2.6) thet

02
)=02 = u
€ .

V(et >
1= P )
. € i for all £t = 1424000y 1
. o . 03 : § . - ... (6"."2.9)
V(Z ) =0 = e '
t Z 2 7 |
1 - PZ

6e3 ‘Naturc of the Error Process

It has seen mentioned earlicr that the combinedférrér term will
not, in general, follow the same process as that géherafing'thé indivi-
dual components;‘ We may now illustrate fhis for an AR(1)‘§r00ess. While
the general result on this is well=known the following arguments may
shed some light on the issues.

Let usvassume that BI'S are given by : . .

E:: = pe:;__l + W,tv Xy (603.1) |

where lpl <1 and wt's,ére independently distributed with zero mean and

. 2
constant variance o .


http://www.cvisiontech.com

178

Then since e: = et + Zt’ we have from'(6.3.1),9

€, + 2 .-.-D(et__1 +Zt_1) + o,

or,

£ - =07 - ' '
,t pe.b_1 - pz.b_1 Z-t + w.t . LN ) (6.3.2)
Let us now consider the first-order autocovariance of wtvgiven as

o

- - D€ - € - o
cov (igs wyog) = Cov (P8, = P8, 42,8 =pe, LI

2

S 2 .2 .2 2 2
=0, = Po” =pP% 0% 4 0% % 4 p o

£
=0 - on2 2. 2
pc§ opza§+ppzoz

2 2 2
or (P =P = P +.ppe‘)

2 2 2
+oz(pz-p-ppz+ppz)

of (1 - PR ) (:>e -P) + o§(1—ppz)(pz- P) .
| eee (623.3)
Clearly, this is not, in genéraJ: s equal to zero, as required for agsump~
tion (6.3’.,1) to be trues The covariance will be. e/qual to zero only when
(1) P=p =P, or (ii) ‘either'og =0 or 38-; 0.
We thus find that even if both e,-t" and ZJG seiaarately follow AR(1),

e+ would not, in general, follow the same ;p;r.o'::essv2 As noted earlier

ef would in fact, follow an ARMA(2, 1) process.

5/ Both 032 and 0§ cannot be equal to zero because that would mean

1 05)
)= 0.

there is no digturbance term in the model. If one of them (say, o

is equal to zero, then obviously P= PS and hence Covlw £ Vimy
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«‘;l

6ol Characterization of the Nature of Autocorrelation

We may now present a method of investigating the nature of the
disturbance te 4 under fairly mild assumptions. " In order to describe
the method conveniently we may first enumerate the possible situations

as shown in the following table.

Table 6.1¢ Different models for the error term

P =0 P AO
€ €
2 W* %
oz =0 Casc 3 Case 5
o§> 0 Case 1 ¢ pz;éo' Cage 2 3 P, =0
. Cagse 4 ¢ P, =0 | Case 6 3 P, £0 and P, £ P,
Case 7 8 Py £ 0 and P =P,
= P (say)

% For cases 3 and 5, o§ = 0 which implies Z, = O for all t. Therefore

t
PZ is 1(_101: defined for these two casese

It is possible to further characterize the different possibili=
ties in terms of the parameters pe: s P.Z, Gi and og. For this purpose
we consider the OLS residuals et where '

T A -
et =Y~ x'8 and %\ is the OLS estimator .of B

_/ In order to ensurc that the composrce error term has at least.one
random component, autocorrelated or not, we assume, without any

loss of generality, that crg > O
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Now,
/o /e s _ ,
@: (X' %) T x'y =g+ (X'X) Tx s‘f = g8+ (x;’x) 1 X/(s+ z)
and hence

plin =g+ plin (1 X077 fouim (Lx%) + plin ( L7y
NNy o n_, co Il 400 n_, o _

=8 by assumptions (6.2.3) and (6.2.8) o coe (644e1)
Therefore, 'e+ converges in distribution to (e+ Z) as n. o .

Let us now define

3 ot ot
A t=p t “t=1
0 = .
1 n 2
+
E e
t=2

; + . . . . :
Since e converges in distribution to (€ + Z),

22 ve) (B ve )

A
plim Py =plin -2 .
n, oo s 2 ~
2Byt epy)
Hence,
1 2 1 2
plim oy Z ey € 1 + plim a z Zt €41
n_, o 2 Ila 00 2
1 0 n
+ plim = 32 e, +plim = X2, 7
2\ n,eo %2 TV o on ot
plim p‘ = .
no jplim:'-r;e:2 +plimlr>;Z2 +2plim1 r>ljs Z
-1 n =1 b1 11
1 00 2 n 00 2 n 2

eese  (644.2) -
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Assuming that u

t t
fourth order momentﬂl,/ we have
n
1 2 _ 2
plim n 2 8t—1 =9
N s 2
n .
.1 2
plim =— h e . =P O
new B2 & “¢=1 e €
n
. 1 2 2
- = O
plim oy z Zt-1 7
n._, o« 2
n
1 5 o2
plim - EZtZt_1.-PZ 7
noy 2
Therefore (6¢4¢2) reduces to-
A = pe 082 + pzog
plim P, (=P,, say) =
1 1 2 2
n. o Oe + _OZ_

Let us next define
N e
t t-2

+ +
€ Cgmq

>
(VN VRN €} Fla)

181

's in (64245) and v, 's in (54246) have finite

ees (6ede3)

Again by similar algebraic manipulations and making the same

assumptions, we get

n
1 _ 22
plim n Z % B2 T pe €
R 3
and
n
1 22
plim o~ 22,2, , =P %.
., o 3

7/ Vide ¢ Goldberger (1963), ppe 149=153.
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and hence ’
Pllm /6\ ( 29 say) = 2 P . see (6.4.4)
Ny © . p 08 + pZ o, T

The values of plim G; for the differept cases listed earlier

n»oo
may now be presented in the following table.

Table 6.2 8 Va¢ues of plim '92 (=P ) for the
, n oo -

different cases of Table 6.

P =0 P )éo
€ , . . €
o% =0 Cage 3* e 0 Case 53 P
- i €
02 > o] Case 1 ¢ P Case 2 ¢+ P
Z ¢ Z se ¢ Tew .
* , »32 02+p§ °§
Case 4 80 Case 6 ¢ ’2 >

Case 7 ¢ P where P = P, =P 4O
: e

1o

*  Strictly speaking, for cases 3 and 4, 52 = and hence undefined.

In these two cases, what is really meant by

is that plim cov (e t_2) = O,

N, o

c O

he entries in the table

6.5 A Large Sample Test for Detecting

the Sources of Autocorféléfion

Let us define the random vaxiable
AT

_ +- . _—
et = et 92 eb_1 ’.. e (6.501)

As set out in Table'6.2, ’6; takes différéﬁt valueé iﬁ large

samples fér-different cases.
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cé'= Cov (8, , etv__;) for all s>0.
Then
°s ;.C°V~ (e3s g ) "‘/p\z CQV (ech’ 94’;-5-1) * 6\22 Cov (e} e3ch-s-1
- é;s Cov (eb__', c‘b-s ) eeee  (6.5.2).
Now in large sg:nples \ '
* Cov (et, e ) ~ Cov (Zt’ Z ) + Cov ( 'b-s)
pZ 022 + pS : cees (64543)
Therefore from (6.5.2) Vg have§/
PZ °§ + p o_S '5 ps'” UZ - P, p:'”f + Eg p; 022
PEARFLT S e (o
Ir; order to exa;xﬁine ’t.he autocovariance structures of 8,'s, we -

t

calculate cs's for s> 0 for each of the seven cages and presefit

the

values in the following table where the seven cases are arranged under

three groups. The algebra is straightforward for all. the cases
(1) and (6) and hence is omitted. A
For case (1), since Ps = 0 and '52 =P

2
c, =-»3Zos £0

and cs=0forall SZ. 2e

excepting

_/ Henceforth, without any loss of genera.u.ty, we will take Cq
plm cs. .

~
0

to be
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We, therefore, conclude that for case (1), all but the first~ordecr

antocovariance of Gt’s are 2zerosg.
_ For case :(6), we find from (6.5.4), that
cg = . (ps B, ps” +p p: 5, ps‘“)

s+1 3 s—1
az(p pzpz +pzpz P ).

= °e2M + ogN‘, say.

2
>O,aZ

2

As of >0 for this case, o will be equal to ze:r;'o‘ if either of
(1) oM = - UZN and (i) M = 0=N (then, obv1ously (:L) is satlsf:.ed) B
happens. It is easy to see by the method of contradlctlon that neither
(a) nor (b) can happen for case (6) Hence we may conclude that for

case (6), - c #0 for all s>1.

Table 6.3 $§ Autocovariance gtmctu‘res of
: e + for the different cases

2

Group Case Values of De » Py Py Autocovariance structure
l1- p:O,pZ,éO,CTz}O ) ( '
i 4 e 2 g 01' }é'ffo": csv'_- O ¥ 32.2
2 pe,éo,pz=o,cz>o
g 2 _, '
: R ~ 2y
4 pe-O,pz/-O,UZ O,% v
II > . CS =0 "¥: S->_1
5 A A0, o, =0 )
co oo to, R0 |
7 pe_pz..p,éo, z;>o .

III 6 04p fp, to, €>0 c £ 0 ¥ s>1
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It is now clear from the above table that we may dlstlngulsh among;
three broad groups of cases on the b131s of the Ilrst two autocovarlanccw
of Qt Se However, the dlscrlmlnatlon among these groups of cases on the
basis of zero/mnon=zero values of thb autocovarlances of Gt’s can eugiva=

lently be done by us1ng autocorrelatlon coofflclents of Gt Henco the

The basic reason for doing this is thet we can then apply Bartletf's
well-known test Zgée Box and Jenking (1976), PDPe34=36 and Malinvand
(1980) pp. 442-444_7.

Bartlett's test is concerned with examining whether the populatlon
autocorrelation coefficients, R 's (x =1, 2, eeees) Of the 8,'s (say)
(t = =1, 2, seee) arc effectively zero beyond a certain lage The test
rests on the assumptlon4that the Ot's follow a stationary normal/process,
and uses the following approximate express1on for the variance of the

estimated autocorrelatlon coefficients r (k¥ = 19 2y eees) of a stationary

naormal procegs-$ - - -

:'A( Ly

Vz)a L. ® 2, o -
V(rk) R (R Jﬂ_k J__k 4RkRJRJ_k‘+ 2RZRk ) eee (6 5 5\

J:’:..OO
where N is the mumber of observatlons in the time seriéé;L'Under the
assumption that R 's are zero for Ik | >q where g is’ some positive
integer, (6.5.5) reduces to Bartlett's large—lag standard error formuls :
q | |
V(r ) N -' (1 + 2 2 R )’ k > q_ ‘@ } eee (605.6)
. J=1 )
Now for completely random 8,'s (6.5.6) becomes
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Then letting

we first check whether r is significantly different from zero. If so,

.1
we conclude that R1 is nor~zero and next examine whether R1 A0 but

in (6.5.6) by r, and calculate

Rk =0 for k > 2 To do this we replacc R1 4

. /1 NN
or2,+\ g (0+2r ), k1

and check whether r, is significantly different from zero. If so, we
contimie further. IEach r, is compared with 1.96 times its standard

error given by o _ .
Tk

It is clear that all assumptions of the Bartlett's testg/ are
satisfied if we assume our Gt's t0 be normal (thisvﬁill antomatically
mean assumption of normality for ez's) and hence it can be used to
discriminate among our three broad groups bf'casés. This, however, would
not solvc our problem completely. To achieve complete identification we
have to further distinguish among the different cases falling under the
game group. Lt does noﬁ seem possible to diStingﬁish between the two
cases in group I which are observationally equivelent. But for group II,
we can divide the foui cases into two subgroups each consisting of two
indistinguishable casess While in cases (5) and (7) s:'s follow a
first-order autoregressive processes, in cases (3) and (4), s: is a

random seriese In fact, we test the null hypothesis

2/ As St's and Zt's are stationary processes and e:-» g, + Zt in

distribution as n -»oco, e:'s (and hence Gt!s) would be stationary

- -
ipressory OCRnweep
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Hy 3

. 2
either pe = 0, o 7 = 0
or ps = 0, pZ = 0,

against the alterrative

H, 8

geitherf)s £ 0, g
boor

by using the conventional DurbimWatson and other “tests.

pe =P, = PAO

187

We may now restate the final groﬁping of the seven exhaustive

cases according $o their identifiability on the basis of the tests proposed

here. The broad descriptions of the situationgsare also given here.

Group I

Group II ¢
(mbgroup 1)

Cooup IT ¢
(subgroup 2)

Group III ¢

It may be noted that

tion -does not really affect

(,i) v ps‘

(ii) p;

0 £

2
=O’, P, £ 0, o, > 0 and

A0, £, =0, 05>0

= O‘, g

[\
|
o
d

O,"

o]
fl
o
[
Q
v
o

£ 0, 62 = 0 and
> ' , .

= 2y
=pZ_p;éo, o> 0

A £ P, £O, 0,50

% AR(1 )}+Random

Random

WP WK YK,

% AR(1) -

8 AR(1) + AR(1),

the failure to achieve further diserimina~

the conclusion regarding the nature of auto-

correlation of the error term. This may be seen by looking at the inter—

pretations of the cases belonging to the four groups/subgroups stated

above. Thus, if an observed situation is found to fall in Group I, the

couciagion wourd be that whiie Loln the componeues aic preseiiv, wue
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autocorrelation is due to only cne of the two ccmponents._ The situation
represented by Group III, on the other'hand, implies that the autocorrela=
tion is due to béth the components being autocorrelated. Cases coming
under subngup 1 of Group II indicate that there is no autocorrelation in
\the error terme The first case in the second subgroup of Group II would
mean that the efrpr term is autocorrelated and that is due to one compo-
nent only, the other being absent.lg/ Clearly,'éhé-éutocorrelated linear

regression model commonly considered in the literature really deals with

situations described in subgroup 2 of Group II.

6.6 Estimation

We have seen in the last section that it is.not possible to know
exactly which particular cése out of the seven possible cases, a given
set of data represents. E(Thé>only exception is cage (6) under Group III.)
The most that could be done by using our tests is to classify a given
situation into one of the four broad groups/subgroups. However, although
it is not possiﬁle,to distinguish between tiie cases in the first three
groups/éubgroups, one can still consistently and.effiéiently estimate
the regression coefficients for each of the’seven cases, if the broad
group/subgroup to which a particular case belongs could be identified.

We now describe the method of estimation to be applied for the

different situations. For this purpose, it would be convenient to first

1_0/ In the other case of this subgroup, both the components are present
but still the error can follow AR(1) processe. But here %: = QZ=Q£ 0,
and this is unlikely to happen in observed situations.
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. - . e N +
obtain the structure of the varisnce~covariance matrix of e for the most
general case where

-

‘2

0250 and 0 AP # o, £ O
. €
Since
+
et = at + Zt
we have
cov (€7, €_ ) PP 0%+ 0, O for 5. = Oy Tyeess 11
t? tes £ Z % DO !
and t = 19 2, ..-,_n.
Hence “ o A g ’
2 2 o 2 45 2 1,2 , o1 A
: e'|' UZ peos, + p 77 - S ewe pxel- 0€ + pZ OZ
+ 2 2 , 22 =2 2
v(e™) = po +pzz o ¥ 9y coo Plg-oe-t-pz a;
ool 2+ pxi-1 2 pn-z 2" + pn"202- cee og' + og |
ot "z % e % ' oz B
: “ 2 ) .:oooo
2 Pe + 9%
= 08 :
2
1 + 00 XY
2 2 2 |
Oe + PZ ?O
where 0 = /0 . : XX (60601)

Clearly, dependlng upon the. pa.rtlculq.r va.lues of the para:heters;'involved,

this matrix will assume diff erent forms for the dlfferent cases.
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Let us first consider subgroup 1 of Group II which comprises .
cases (3) .and (4). It may be seen that the variance=covariance matrix

for this group is

V(s+)~ - o+2 I

n
where
2 - ci for case (?)
2 . .
oi + 0, for case (4).

It is obvious that in either case the best linear unbiased (and
: consistent) estimator of the regression coefficients B for such a model
is given by /B\ » the OLS c_astimator, where .
4? = (x 0" 1.

The asymptotic variance-covariance matrix of {3\ is

A -1 42 »=1
av('B) =n ' o Zox |
é,nd this can be consistently estimated by replacing 0+2 by
n
Y e'_'t'2
A+v2 1 .
° T n=k

and taking ( i—x’x)ﬂ as estimate of 3;.;(.

/'\ .
It may be noted that o*2 yin estimate 052 in case (3) and

(of + Ué) in case (4) consistently. It is therefore a consistent
estimator of the disturbance vaeriance in each case. Thuas, eveh if dis-

crimination between casges (3) and (4) is not possible, application of

OLS will yield best estimators irrespective of the actual situation.
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Now, for all the other ca- ‘esywe can apply 8eneralised 1 eagt squar
(GLS) teking o2y (where % and V are different for the different cases
and V is assumed to be positive definite) as the form of the variance-
covariance matrix of the disturbances, It is well=known that the appllca-
tion of GLS will yield consistent and asymptotically efficient estimate
of B and a consistent estimate of the asymptotic variance—covariancé
matrix of this GLS estimator (- § ) which is given by -

acv( §) = n ! 1im (—x v 7 -t
n 500
where o2 can be consistently estimated by
? . L (y-x 7))y (x=x%).
. ne=k
The trouble, hOWever, is that V is unknown and hence. a straightforward
appllcatlon of GLS is not possible, ‘

The Problem can be alternatively tackled by using a result given
in Theil (1971 » Pe399)e The resultJ—/ is that glven a cons:Lstent estlma-
tor /V\ of Vy the regression coefflclents, 02 a.nd the asys var ( BD -
where @’ is GLS estimator using '§>- can, ;nder certaln céndltlons be
congistently and efflclautly estimated by GLS with V replaced by ﬂ? e The
problem then reduces to finding a con31stent estimate of V for each of
the possible cases. ”

If the test procedure suggested earlier indicates that a given

situation falls under Group I, then the variance~covariance matrix of

11/ The details of the result and’ the conditions are ‘given in
Appendix 6.1, It will be seen that these conditions are satlsfled
in the present casde,
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the disturbances et is given by

1 , 2.
/ (1 + 02) P, Py
W& = o S
N
Py (1 + 02) P,
O‘
=1 2 3
S
2
= Oz VH
Or, .
o p?
e €
(1+ Gg ) A
pn-2 pn-3
e £

-

192

~
1
%
o for
dz?' case
(1)
A
(1+ 3
0
fer
case
(2)

where 02 = Og / 05, as before, and V, is defined as above according to

0 1

the specific cases.

. A
. o) RE
V = VASAN PAN
1 92/ 7, Py .
/p\n-2 /p\n-3

2 2 L NN ]



http://www.cvisiontech.com

193

It has already been seen that

P, for case (1)

plin P = 2

) 2
ns o o Pe for case (2)

~and ‘

s X - ;3 /(1 + — for case (1)

plim B < 2
1 O

‘ ° /(1 + og ) for'case (2)

Cleé.rl&, /V? is' a consistent estlmator of ‘-.V1 irrespective of whether
we have case (1) or case (2).

It may be noted that 1f a particular situation con_'esponds to
either of cases (5) and (7) in subgroup 2 of Group .‘:_II,the;n the combined
error temm actually follows AR(1) with autocorrelation coefficient
Ps or P asg the case may be. “For' fhis, the well=known consistent esti-
ma“bdr cf V is givgn by

/i~ Ao

p1 p1 00
1 & LN N ]
/N 1
V2v =
AR :
p1 [ N N ] o0 w
since
plin p _(p for case (5)
b 4 Lp . for case (7) .
Here v 'b ‘
2 ) a for case (5)
2

0% + of for case (7).
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We may finally consider Group III which consis‘ts: of or}ly one case
vize, case (6). We have already presented the variance~covariance matrix
of et for this case in (6e6e1)e Now to get 2 consistent estimator of
this variance=variance matrix,we first define

n

1 + + . .
. =TT Z e, e .9 1= O, 1, 2, 3.
i i =it t =i .

Then assuming that for both u, and Vi fourth order moments are finite
[vide Goldberger (1963), pp,149—153_7 and ﬁsir;g the fact proved earlier -

that e: converges in distribution to € t F Z 4 @8 D oo, it is easy to

see that
plim S'.=p102+p102’ EE i=0,15 2y 3
- 1 € ¢ Z Z e .
Il OO »

¥

We may then obtain consistent estimators of Py '»’-)Z', Og (= ;/05 )

by solving the following equations &

S =.02+ 02
. €

0 Z
2 . 2
S1 =zpe Oe +pZ GZ
2 2 22 i
S2 =peoe+pZUZ
3 2 3 2
S3 -p€0€+PZUZ
and get
5. -5 s
5\= 2 e 1
7 S -6\5
1 £ O
Ny 5o
0 (8 - auhD Dy
2 ‘Dl~.! 2‘ e


http://www.cvisiontech.com

195

where /P\e ' is a solution of the quadratic equation

2 (.2 . BN _
P (S1 Sy S5) * P; (833O ,3182) + (85 8381) =0

(see Appendix 7.1 for relevant algebra),.

In case the quadratic equation yields two real roots each lying
between =1 and +1, we shall cho_osp that solution as the estimate of Pe
for which the reéidﬁél sum of squares is minimum. Bven thouéﬁ this
general method of obta.lmng consistent estimate§ of the parameters Ps K PZ
and © g could, in principle, be applied in 11 the cases, one may not
use this method for the other cases because once the relevant group is
identified, the methods for obtaining consistent estimates of t};e rele= -

vant parameters for these cases are fairly easy and efficient, at least

asymptotically .J_%/

6¢7 Conclusions

We have pointed out in this Chapter /that, while estimating an
autocorre]:ated linear regressiénéequation, the present practice of using
a particularly simple structure for the variance=-covariance matrix of the
error term (derived on the basis of some a.ésumed process without paying
any attention to the components of the error term) may be unsatisfactory
in many cases. We have been able to develop here a more reasonable and

satisfactory way of dealing with the probleme. -

12/ Since we thus obtain consistent estimates of the parameters and
gince we have already assumed error to be normal for. the application
of Bartlett's test, it may seem that efficient estimates could as
well be obtained by maximum likelihood method of estimation.
Actually this has been done in the context of a more general error
process of which the AR(1) is a particular case in the next Chapter.

-
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We have decomposed the error term into two components, each follow=
ing AR(1), and have suggested a large sample test to identify different
s1tuat10ns characterlzed by different comblnatlons of the parameters., It
may be Prointed out that 1f the model described here is considered as a
misspecified model then in the casge of Group I, subgroup 2 of Group II
and Group III we are able to say deflnltely on the basis of our test, if
there has been any mlsspeclficatlon. In case (6) ieeey in Group III
we can further conclude if there hag been autocorrelatlon due to mlsspecl-
fication. In such tases one can therefore take remedlal measures to remove

misspecification by, say, including more relevant regressors (if possible),

complications created by misspecification.

We have also provided consistent ang efficient methods of egtimaw=
tion for those cases whor0 existing methods fail to do so. Our treatment also
brings out clearly the fituations where OLS is the correct method of esti-
mation and situations where the standard.SEestimatlon methods remain
valid.

» It would be worthwhile to point out here the exact role and signi-
ficance of th- apparently restrictive assumption that X and Z are inde=
pendently distributed, It is clear that this assumption is needed only
to consistently estimate the regression coefficients and the asymptotic
variance~covariance matrix of these estimatorss So far as the test
Procedure suggested here is concerned, it ig enough to assume that

plim ( %-X/Z) = O This is a much weaker assumption and, as we have
I 00 ’
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already stated in footnote 3 of this Chapter, . it gets satisfied for a
misspecified model, Furthermore, if one trics to ustlmate the model by
directly assuming an error process fotr el — an ARMA(2, 1) process in
our case == then he would necessarily have to aswune the independence
of X and e+. whibh, given our decomposltlon of g+, would also unply
indepeﬁdence of X and Z. Hence stanaard methods of estlmatlon avallable
for estimatlnO models with ARMA processes are equally vitiated by the

restrictlveness of this assumption,
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Appendix 6. 1

‘Theil's Theoren on Consistent and Effiéient Bstimation
by GLS with Estimated Variance=Covariance Matrix

The following theorem due to Theil has been used in sectlon 6ebe

Theil examined the conditions of the thecorem in ’che context of other

problems. We carry out a similar examination for our pi'oh_lem.

Theoren - [s-ee, Theil (i;71, pe 399)_/

In the usual setup for genéraliz'e:i. least squares (GLS) for a given

A\ A
X, suppose that V is conSJ.stently estma+ed by V i.eey plim V = V,

Suppose also that there exists a square matrix P such thatnt-;xemeléments
of Pet are J.ndependently and identically distrlbuted (th.l.s automatlcally
means V ™ - P P' and such a P will always exist because, by assumptlon,
7 is a positive definite matrix) and lim lx vy = Q, |Q |> O« Then,

neo
if the following conditions

<) Ae
(v 1-v1)x..o

= B

(i) plim

1 500

(ii) plim L x/(F 1< et 2 o
Il 500 n

are all satisfied, the estimator B defined as
: A - - / (-
B:(x/v To™ 41y

is asymptotically equivalent to 'B defined as

~ ':",— - /-
8=(XV1X)1XV1Y (whereVisknown)

in the sense that \/-( 73' - g) converges in probablllty 10 zero as n,, o .
Zcth estimators § and @ are asymptotically normally distributed w:Lth mean

vector g and covariance matrix (02 /n)Q o If, in addition,


http://www.cvisiontech.com

199

. AL -
(131) plim L (VT oy et oo

n_, [~)
: "
is also true, then /}2 and {;\ 2 defined as

5L @) v (x-x7%)

and

-
ks

g ogny - 5
=;~E(Y—J{B) A (Y“XB)
are both consistent estimators of e ( L .

A i
/(”\ 2

In what follows we check how far the condi*ti_ons (i), (ii) and (iii)
are satisfied for c;u._f.case. Additional 'assdmpfioné, if ‘required, are also
stated. | | » | ;

To check (1), we conpider the typical, say the (h, n )-th element

of the matrix X’ ( V -1 . v 1)X ‘which may be written as Xh (v T —1)Xh
where xh = (X-m, xhz’ ecedy Xy )e

A ,
Now as plim V =V, we have obviously,

Il 0
N N A I I R
plim n Kh v Xh/ = lim a Xh v th

Il a0 N 4o

which exists by the assumption that

1im lxv1

n 0o

X=Qy|Q]>0.

Thus condition (i) is checked.
To check condition (11), let us take the typlcal (hﬂth) element of

1)8+

\/'Xh(

which can be written as ‘ .


http://www.cvisiontech.com

200

‘fi_";cm (- 11)5,;' + eeee + ( 4 1n . 1n)€;'l} + eovee
ceees + th{«’\ L nj)e:;' 4+ eeee + ( cm- vnn)s: }:l
where V—1 =((vl‘])), and %-1 = (( /\}ij)).
Thus the h~th element can be written as

( e 1) - vlJ)s+

g x, I .
\/£i=1xhl- 5= J

) + . . +
Now, variance df e and different autocovariances of ei's aro

A
finite., As plim V =7V

n o
. Aij ij . .
pllm (V -V )=O ¥ l,a=1, 2, eseey I
Il 5 ©O ’
and
plin ($3«) (LR -y C0 % 5,35k, =1,2,00, 1o
n -
Assuming '
n 2
lim = B % )
N i= xhl

.eﬁcists, we easily find that the hr~th element considered above converges

to zero in probability,

As for condition (iii), because

/\
plim V=V
Il 400
we have
A - /-
plim + e"/v Tet =plim Let vl et
n n
n ., n >
+/ =1
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-1 J.'/
Now V = PP ’
+/ =1 + w/ %

_v}here e =Pe .
As v(eT) = KUZV, we have obviously,

v( e*) = V(Pe+) = o PVP = o°T (% v oop

Now

i=
1 2 o o F . ) .
= =no (% €;'s are independent with
same variance 02 ) -
= 02‘ T . o *’ : eee (A 601.1)
and. o
n n L,
Lz 1l T yee*2yy 1 1 - 2 \
V( oy ] Ei ) = n(n i V( 3 )) = oy ey nU) = n vee (A 6.102,
where B

‘ w0 2 .
v = V(E-).(Q) = E(E"2 - 02) T E(5:4 - 04 )_o o
So vy is finite if X s§4) is finite.

Thus with the additional assumption that the fourth order
moments of E?Z's are finite,
4 B .5*2': L L
lim v(; b ai—) =0 (from A 6e1.2) cee (A 64143)

» -
[0 e
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Hence

it S w/ ‘ . ,*/. N
plim (;- e+/V 1 e+) = plim (;11‘5 e ) = E(% e ¢ ) (because of

Teo ket o A 64143)

o° (vide 4 6e101) Llmeia M%W
Thus for condition (iii) to bevsatisfied, we need an additional
assumption that fourth order moments of si's and hence of & 'g

L

are finite.
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Chapter 7

Estimation and Testing in an Autocorrelated
Linear Regression Model with Decomposed Error
Term § The Case of Two ARMA(1, 1) Components,

T7e1 Introduction

In the last Chaptér we considered the problems of statistical infe-
rence for an eutocorrelated liﬁear-:egreésion'model.where “he error term
is decamposéd infoltwovadditive componentse Suéh a decomposition may be
justified on the ground that the error term represents the effects of a
number of factorsg all or some of which may be present in a particular
situation aﬁd the autocorrelation in the composite error term may be due
to autocorrelation in one or more of these compénents. It haé been noted
that the process which the composite error term would follow depends on
the processes generating the different components and even if one assumes
the same type of process for the individual comﬁonents, the composite
error term would in general follow a different process.

We have argued in the lasgt Chapter why oﬁe should have some way of
knowing if the combined error term really consists of more than one coampo=
nent and whether these components are random or»autocorrelafed. One should
also have some methods for estimating the parameters of these component
processes. Such tests and methods of estimation have been proposed in
the last Chapter assuming that the sample size is large. The main test
is based on the observed autocorrelation of different orders of a paiti—

cular transformation of the OLS residualse. As for estimation,
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OLS is applicable only in the simplest case, The éstimation methods for
cther cases consist essentially in obtaining consistent estimates of the
variance=covariance matrix of the composite error term and in applying GLS
method utilizing these estimates. The tests and the 'estimation methods are,
however, limited by the fact that both the components have been assumied to
follow AR(1) processese

In the presen} Chapter we consider the same problem but now we con=
sider more general p.ocess:for the componénts of the‘ erroxr f;m. More |
specifically, we would now assume each of the error o‘om'pone‘nts ‘to follow |
mixed autoregress:.ve mov1ng average (ARMA(1 ’ 1)) of whlch AR(1 ) is |
obv1ously a gpecial cases We may here réfer to a result due to Granger
and Morris (1976) = see also Rose (1977) ww which proves that the sum
of two J.ndependent ARMA(1, 1) process is an r-RMA(r, s) process where r <2
and s £ 2 However,-the order of the resu.lting process being not uniquely
specified one cannot directly use methods available for estimating a model
with ARMA error process /see, for example, Pierce (1971b)_/+ This then
rrovides a justification for adopting the approach suggested here in
addition to the arguments given in the last Chapter.

It appears that the approach tried in the last Chapter are no
icnger applicable under the assumption of ARMA(1 s 1) process for each of
trs components. He_nce we. p;roi)ose to use the maximum likelihood (ML)
zmethod of estmatlon and the llkellhood ratio (LR) test to dq,scri.mma.te
acong diff erent s1tuatlons. It may be mentioned that the standard linear
Tregression model w:Lth errors following an ARMA(1 »1) process is obviously

2 special case of our model. Discussions on the problems of testing and
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estimation of guch modelscan be Tound. in Pierce (1971a,-1971b)9 Tiao and
411 {1971}, Pagan (1973), Codfro (197.8”0),‘Judgz;e et al. (1980, Ch.5), etc.
The format of this Chapter is as follows ¢ In sections 7;2, 73
and 7.4 we describe the model, the nature of the errbr process and the
estimation method respeétively, while the asymptotic Propertieg of'fhe
estimators are described in section 7.5; In éectiqh Te6 we»sugéest a
Consistcnttinitial esﬁimatbr of the parametefé. Likelihgbd ratio tests
discriminating‘among'different situatioﬁs aré desc?;bedbin.section TeTe

The conclusions are given in section 7«84

7.2 The Model

We consider, ag before, a k—regressorA;inear regression model

written, in matrix form, ag

et are (k x 1) énd (n x 1)'veotors of associated Tregression coefficients
and disturbances Tespectively. One of the Tegressors takes the value 1

for all the observations incorporating:thereby an intercept term in the

We make the following assumptions - (c§, C6.2.é)~(6,2.4), (6.2.7)

and (6.2,8) )3

| (1) e: has two additive components, ey and 7, 3

e = e+ 7 9 Tt = 19 2, 0000y N » see (7.2.2)
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(ii) X is stochastic and cistributed-independently of both
> and Z o » ‘ XXX (70203)
" 'where |

)/_; -

e = (81, 82, eseey Sn

an‘d( Z 3 (Z1, Z2, oooov,‘ Zn)\

(iii) e is independent of Z . ’ | Ceeee (74244)
(iv) plim ( %x”x ) =%, » a positive ceee (7.2.5)
nw ‘v P ’r

definite watrix.

(v) For an observed Xy rank of X = k(< n). veee (7.246)
(vi) Both g, and Zt follow ARMA(1, 1) processes given by
& =P ey = u =P u_ ceee (Te2.7)

and Z, - P, Z

£7 ' S T Vg T Py Vg reer (7.2.8)

where u t's‘_and!,vt'ﬁ_ are independently distributed with zero mean

and variance 05 ard 03 respectively. The stationarity and
. invertibility conditions are assumed Eto hold [ vide Box and

Jezﬂ{ﬁls (1976), Pe 76_7 i.'é.,
- < Per Py Py P, < 1 e

o vOther ‘assumptions, nceded fox""prov(iﬁg pa.rtlcula:c r.esﬁ}ts. |

will be mentioned in apprbi)riz—a:{lg? places.s ™ -
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T¢3 Nature of the Error Procegs

It is fairly well=known that, given our assumption about the pro-
Cesses. generating E:_t aﬁd Zt’ it is not, in general , true that "3: will
£ ollow: ARMA(1 ’ 1)1( We shall show below theb, barring highly improbabl e
coincidences of .parameter values, the’ comblned error term will be ARMA(1
when it is J.naecomposable in the sense that 5: ‘has only One component
which follows A.RMA(1 ’ 1) Statistical inference of such cases have been
considered by authors like Pierce (1971&, 1971b). Obviously the assump=
tion that _the arror DProcess follows ARMA(‘! y 1) may not be a safe one in
many cases and one should examine whether the error is decom;pOsable or
not. | | |

To prove our assertlon, we assume that eI's follow an A.RIVIA(1 1)
Process, viz,,

+ . pet

[4 -

£ Py =w, =P LA eee (74341)

t w

where w’c's are distributed independently with zero mean and same

variance 05 and = 1 ¢ p, pw < 1. Ve obviously have

V(S: ) = 05 + 022 for all t = 1y 29 eeey NNe eee (7.3.2)

The autocovariances of different lags of E:'s are given by [ vide

Box and Jenkins (1976), p. 767

_/ The relevant theorem may be quoted here from Granger and Morris (1976)

g, ~ ARMA (p1 » q, ) and Z, ~ ARMA (p2, q,) and they are independent,

then et =& L~ ARMA(m, 1)  where n _<_p1 + P, and n < max
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2
+ S=1 4 4+ -
Cov ( tg et—s ) =P UE 08 9 'JZ_'] o0 e (703.3)
where
S (1=-pp)(P=0)
G 2
1+ Dw 2PPW
and
+2 + |
08 =V(€'t) fora.ll't=1, 2, seseegy Il o

Now, in order that e:'s actually follow ARMA(1, 1), the different
autocovariances should conform to the pattern given in (7-.-3 3). If, however,
we write the autocovariances of at's in terms of th0se of e:‘b s and Zt

we have, using the assumptlons of the model the follcw1nb relations

Cov (7, e} 4 ) = Cov (40 erg) + Cov (zt, zt_s) 51

Leew Cov (Sf, & ) =7 v, & + 87y 02, 531 ... (7.3.0)

where : T
U = (1- pe_ R (pe - pu‘);
L 4 4pf-0p p |
) u € u
o | T s
- -0 )
(1-9,2) (%, =0 ) 1
UZ = 2 ) -
1+ P, =20, P,

Fraz the above expressions it is clear that (7.3.3) and (7+3.4) are not
ecual, in general., A necessary and sufficient condltlon for these two to -

lecqualforalls>11s'

Pp=P,(=R) and R = 5 (=0)

Aaich is very unlikely to bo true in any practical situstion. We shall
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overlook this possibility-in the rest of this sections The other suffi-

cient condition where the expressions (7e3.3) and (7.3. 4) are equal is

62 =0 (or ce..O)g/

°z

ie.cey either of st's and Zt'é have zero values for all the obser«fations.
In other words, this refers to the case where the error temrm e: consists
of one component only.  Similar observations séem ‘to be true for ARMA
Processes of higb.er order. |

Now, the error process 1s not AEVLA(‘I y 1) if both the components
are AR(1) or MA(1) or if one is AR(1) and the other MA(?) or if one.is
MA(1) and the other ! ramdom., The only possible case where the error
term follows ARMA(1, 1) is 8 one: component follows AR(1) while the other
is random and in this cage the A.RMA process must obey some restrictionse
Thus, once we admit the possibility that the error term can be the sum of
SWO components, the assumption that the composite error follows ARMA(4 s 1)

appears to be highly restrioctive; if onc of the components follows

ARMA(1, 1), the other must then be a:bsent.}/
7.4 Bstimation
We suggest maximum likelihood method of estimation of the modecl

described in section J.2. It may be seen from the assumptions stated . -

2/ Obviously, both ,03 and 022 cannot be zereo.

3/ In the context of misspecific model, this is inpoésible unless
we assume there is no misspecification in the model.
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in that section that

et =0
wn o 2 2 2 - 2
o + 9 v O tUzO, cee pn_ +p‘ 2\)
V(s+)(£V,say)= Uso§+uzq§ o: + oé ces ers+p§'3vzgz

(A NER NN NN N NN S8 s s sssd0 00808 0sp ss e llo.el-'!lll..-..,

/

A2 2 2 9 n—3 3 2 2 /
% veoewz ozp A +Pn. UZ R /

For the purpose of estimation we make the following additional assumptions?

Assﬁmption 1 ¢ For 4 given X, Y is distributed normally with mean X3
cznd variance~covariance matrix V. | :

Assumption 2 ¢ The matrix V = V()

Lipere & = (8,48, oesy 96) ( z’ o, DZ; P 'pv)’,
8c /L , the set of adnissible values of 6_7

Is positive definite. Aiso,-the.elemenfs of V are twice differentiable
functions of the parametcrs in 6. | ’ L

The logrllkellhood equatlon of yt sy for a glven X, 1s glven by
L = constant---iz-ln v | --2-(Y-X B) v (Y—XB)‘.‘" e (7 4.1)

Let T be the vector of all the parameters given by 7 = (B” G/)/.

Then our problem is to estimate ‘the parameter vector 7l on the basis of a
, , 4
single (n x 1) vector of sample observations Y  + We can use any of

5{ I+ may be noted, and will also be seen in section 7e6, that there
is an identification problem which makes the information matrix
singular Zrﬁjgg_ Rothenberg.(1971li7. ‘However, as has been shown
in section 7.6, one can reparametrizc the model and then follow
the nracedure asngeested in +thig and +br nawt an +1“**. Tris s

what we have, in fact, done.
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from (7.441). The first method for obtainin. tho ¢stimates can bo
described ag f ollows, | v | |
For a givéﬁ '65 \'e‘IL, 6\ (GO) ’ the'avM'If estivmatorvéfs fpr the Ag';'.ven Go’
is obtained ag ) |
o

) /f?\(eo) = (V1 x) Xy - eee (Tu402)

- Where V. =v(e ).'
; . ° - 0%
Then the nmaximum value of _th__e log—likelihood',; function for a given

X, excepting the constant term, at GO, is given byij-/
AN 1 1 Y -1 AN
L (Go), ==31ln 'VO’ -3 (v-x 8 (eo)) v (v-x 8 (eo)).

The ML estimate of 8, say 6\, is obtaineqd by searching .over the range of
admissible values of the pa.rametersé/ in € and then choosing that value

of € as the estimate for which the value of 2 (8.) is the ,iéigest. Under
very general assump‘cion'%,/‘ /B\ML = (/3\( 6\ ) and /G\ would be the ML estimates

of B and @ Trespectively,

3/ For convenience, henceforth we shall not always write 'for a given X!
in relevant contexts.

é/ Of the six barameters in @, each of By PZ, pu and Dv lies between
=1 and +1, Theref ore searching over admissible values of these parame~
ters  is not much of a problem, However, since 02 and 022 lie betv}een
0 and o, ye search over °:2 and - o§2 (Which lie E‘t:ue'tv/.reen 0 and 1)

instead of over of and 022 ’ respectively, taking

Ze Y-

*2, 0 %2
and%=' UZ/(T" % ) 7
‘Z_/ See, for exampl.e, Dhrymag {,*970, Sérmarkea) e
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The second procedure of obtaining the ML éstimate is due to
Magnus (1978). It consists of the following steps ¢
(a) For a given :kralge @, of @ e, calculate .
o A '
€ = I-X8 (eo) :
where é} (8.) is obtained from (7.4,2).

(b) Solve for the six parameters in € from six nonlinear
equations obtained from _
tr(%-lv) A =e+/(§.fl)e: ;h=l1,2,.;, 6e
h  e=% L & o .
(¢) From the solution -;f € obtained from (b), the steps (a) and (b)
+are repeated with new V's until convergence.
Magmus (1978) pointed out that under very general conditions, this proce=
dure converges to the unique ML estimate in view of the results proved
earlier by Oberhofer and Kmenta (1974).

The first'met'}:lod'is very labori;rus as it i:c‘i\;'élves searching over
different combinations of va.l_xjes of the sik parameters. The approach of
Magmus, on the other hand, .;i.s iterative in nature. Convérgence, though
guaranteed under fairly general conditions, may take time if the initial
velue is not well chosen. A secohd difficulty with the method suggested
by Magnus is that the equafions in @ are highly nonlinear.

In order to avoid thesé problems, a simple approach for obtaining
ML estimates would be to use the scoring method of estimation Eide |
Rzo (1974), pp.366-367_7. According to this method the estlmates are

obtalned from repeated adjustments of ‘the form
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N AN e &L, > =1
N, =0 =(z=) |, jo4 )]
1= ~Gn n=7'7\= anan’ n_n

e
where T) a.nd‘@ are :Lnltlal a:od adjusted estimatecs. of 7 respectively,
This method has the advantage that if '7,7\ is a consistent estimate of T),
then {7\1 will have the same asymptotlc properties ags ML estmate [ vz.de
Rothenborg and Leenders (‘1964)9 See also Ameruya (1973b, p. 933)_7

Though thlS method would require a con~1 tont 1n1t1a1 estJ.mate and
involve the inversion of the 1nformatlon matrlx, we sugéest :Lts use in
View of the stated property and canputational SlmpllClty.y In section
Te6y we discuss the procedure for obtalm.ng aoonolotont initial esti-
mate for N, Before doing so, it would be convenient to keep in mind the

asymptotic properties of the ML estmator whlch are stated in the next

sectlon.

Te5- gmptotlc Propertics of the ML Estimator

In this section we study the asymptotlc propertles of the ML egti-
mator in the context of our problem. In order to obtain the asymptotlo
propertles of ML estlmator 4)\ of ﬂ obtalned from a s1ngle veetor of
observations ony whose varlance-covarlanoe matrix V increases in size.
with n, we have to make ‘some addltlonal assumptlons. Though the assnmp-
tions and the theorem are given in Magrms (1978) we state them here for

the sako of oonvem.ence and completeness.

§/ Thotigh we would not be gaining anything _agynptotically if we contiiae
the iteration beyond the second stage, in small samples we may continue
doing so until convergence is attained to get efficient estlma.tes.
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Lsgumption 3 ¢ Bvery elcaent of l X‘/V.1 X converges as n-» o  to

a finite function of €, uniformly for € in =1y compact sete

Assumption 4 ¢ Bvery diagonal element of —" ( 3V ) V( )X
n h
converges as n., o to zero, uniformly for € in any compact set

(h = 1' 2, seey 6)-

Asb gumption 5 $ 1 tr(( oV )V ( )V ) converges as n- o  to

Assumption 6 o t;(

a f:Lnite funotion of © unlformly for. Y in any compact; set (h H =1 92500036)0
( il “h )V) converges a8 n ., o to zero
unlfomly for & in any compact se‘c (h, h/- 1, 2, cesey 6)e

Assumption 7 ¢ Let Vi denote the (n x 1) i=th column vector of V |

and ¥ be the (n® x 1) column vector V’1 _+ The six vectors
. T
gg— (h =1, 2, eeey 6) are lineaxly independeﬁt.

h BN 4 .
Now dlfferentiatlne (7 4e1) with respect to the pa.rameters,we have

g% = (Y - xp) v X g |
%h - tr(V - €+ €+/ ) g-h—. s h =1y 25 eeey 6 8
2 o )
9°L 51 8
—m=- XV " X
3pp '
e ay~ ! o
mh - (Y - XB) &-h—-x 3 h= 1, 29 eeey 6 §non(7n5.1)
2 =1 |
2 o%v
9L _1- hh 8 '
8%/ =2 I " °n °n) 00 o6} 3
’ H
=1
- l tr( av %_V); ’h =1 2,..0,6 g

where V = ((v,,/)) end v1e ((vhh,)) .
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Thus for a given X, using (7 2.1‘3 and the fact that E(sh h') =V, ./, We

have from (74541)

)2
g( &% )-- xvx

epop”
2
E("agag ) =0 5 h=1,2 eesesb
and
L 2 o e | :-1, ol TS -
'E,(g,?—%;h‘-g- tr(gz v gg/v); hy h =1, 2, «uss6.
h h h K

Therefore, for a giver; X, the information matrix of the log~ |

likelihood function defined as

i}
m = -5 ag:fwf ) B
is given by i
s ; .
- I(M) =
where D ((dhh/ ), 4,/ = tx( z;’W“q‘v 9V 1v ) +
%8y %y A

and D in posrtlve definite under (7.2 6)&‘~ ’a'.n@}ssumptionm and 2 and 7.

Theorem ¢ TUnder (7.2.6) and Assumptions 1-7, ML estimator 4)\ of N

is weakly consistent, asymptotically normally distributed and asymptotica.lly
efficient in the maximum probability sense of Weiss and Wolfowrbz (1967)

Further /n ( 77 M) has the asymptotic distributian N[ 0 l:un n(I(T))) 1

n..oo

2/ For proof, see Magnu’s (51978) . Theorem 8, I;'p. 295~296¢ .-


http://www.cvisiontech.com

216

T+.6 A Consistent Estimator of M

It has been 'iaointed out ezrlier that in order to successfully apply
the scoring method for obtaining ML estimatec, we need a consistent initial
estimate of M. It is weil—knom_ [see, for example, Johnston (1972),
Theil (1971 )_7 - that B can be consistently estimated by applying OIS to
the model. The problem, however, arises with obtaining a consistent
estimate for @..

A . | |
Let ¢ =Y = X'8 be the OLS residual where %8 is the OLS estimator

of B ]
Now,
et = Y- x/s\
= x(g-/(s\) +et (from 7.2.1)
- x(B -/B\ ) + e+ 2 (from 7.2.2).

AN . o
Since plim g =3, as already stated, e+ converges in distribution to
N o '
( €+ Z) as N -» coe

Let us now define Si to be the i=th autocovariance of ez's ilecey
S, =—1" e e, _. 3 i=0,1, 2, 3, 4. coe (7-601}

As e: - gt Zt (asn, w) is distribution, we have from the above rela—

tions using (7.2.4) s

. .. 4 ©b S T
Pplim 8, =plim == £ e, g,_. +plim —— 3 2.2 .,
N o o i N e i $=d+1 t "1 e oo T foit] t 17-1:

It is known that under very general conditions i.e., when the

dependence between distant values of 'g;;ménd also ont's are not too

strong so that
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- = L (8 =o%y o
lim gss =0, lim ng 0, lim  ( ) = O, ) =0,
S, o S50 g-> 00
4 2
lim (8, =) =0, Lim (@ -2, ) =0,
fagerece] S 00

lim (wz.ﬁ- 2 ) =0,

5 00

and when the fourth order moments of ¢ t's and 2 t‘s exist [ vide

Goldberger (1963), PP°142"149.7}

[x;here €eg = E(St et-i-'s) ’ gZ.s = E(Zt Z-t.!.';.}) ’
| 2 oot 2
‘Ss's = E(et et_m) ’ 8Z‘;3 - E(Zt Zt+s) ’.
W = =
es = T% S Crg Strger ) 20 5 24P rsBesaat) T

. ] n
plim == 5 e g .
n., oo i t=i+1 t t=i

n

. 1
and plim == 3% 2 _2_.,
N e T4 $=it] t i

, ) 10
are consistent estimates of the corresponding population momen“ts-/ .

Hence from {7.6.1), we have

plim S = 0 + 0,
N oo o € Z | . g
and . ) éooq (70602)
o je- 2 jon 2. .
plim Si = D: 1Us Ue + pzl 1 UZ GZ y 1= 1,2,3,4.
N, o ,.

19/ For the result to be true, et's and Zt's have to be stationary

processes which they are assumed to be in our model,
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it can be seen from the aigebraic solutions given in Appendix 7.1

that the above equations would yisld consis'ont estimates of &

— 2 ~ ~
L"_Vhere § = ( 07y pe » Fgo Ue ’ UZ) J
in terms of So’ S1 ’ S2, S3 and S4 where

2 ~
02=(oe+0§)9 ug;u o

and not of the six individual pa:cameters in . It is obvious that
addition of one more equation, say,

g2

4
P pA

2 4
. v °e + DZA_UZ

plim SS = e

Ny G0
would mot be of any, further help with regard to obtaining .‘estimates of
all the six parameters in €. For the purpose of estimation, we can,
however, reparametrizc the model in terms of the parameters for w;ilich
consistent initial estimates are available.-u/ It can be seen that

V can be specified completely in terms of the five parameters in & @

n=2 ~ . =2 ~

2 ~ ~
) eeeo 1
U, + U, Pe v, + QZ vy,
V: . + . e0o e le- + prl—
311"2 ~ Qn-2 ~ 311"3 ~ n=3 ~ 2
e Ve +Z Vz e Ve T pz Vg oo °

Thus we have an identification problem in the model if we are interested

in all the six individual parameters in 9. It, however, does not posé any

ﬂ/ In fact, Assumption 7 rules out such cases, as, for example, one where
2 2
= (o
Va( . + Oy ) I.
In other words, if Assumption 7 is to be true for all V's for the

different cases under ARMA - ARMA set up, such reparameterization ig
necessarye
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problem so far ag estimation of 13 _is concerned, It will be seen in the
next section that this iden{:ifi_cation Proble: poses some difficulties with
regard to testing certain hypotheses of interest. So far as the estima=
tion of this model is concerned, the parameters that we would be interegtey

in estimating are contained in the vector

=8y’

It is obvious that the assumptions and results similar to that of sectlons
7Te4 and 7.5 stated in terms of @ and 7 remain valld also for § and 7.
As we have a.lready mentloned we use the scorlng method to obtaln

ML estlmates of Mo It may be noted that for successful application of the
seoring method, we require derivatives of the type. g%f-— (h = 1525¢0055)s
> A

But since V has a compllcated structure, it is dlfflcult to get algebraic fo

of Vm1 and hence expressions for g,g (h = 1y 2, ceey 5) cannot be

. h
directly obtained. We may, however, use the relatlonship

=1 . - -
v =~y 1 OV v 1 [See, T. Sawa (1978), P. 171_7

to overcome this problem, Clearly l’”ejcpressions for g@’Y_ (h = 1,2,...,5)

h
are easily available,

Te7 Likelihood Ratio Tests for Discriminating
“the Different Situations

In the prev1ous sectlon we descrl‘bed the Pbrocedure for obtaining

the consistent initinl estlmates for g and & so that vy using the
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the individual estimates of the'six parameters in 8. If we are interested
only in the ML estimate of § , nomavailability of consistent estimate of
® would pose no problem since V could in any case be consistently obtained
by using a consistent estimate of g. Eowefer, in addition to being inte-
rested in ML estimate of B, we are also interested in ML estimate of @
because we would then be able to test different hypotheses in order to know
how exactly a given autocorrelation situation has arisen. Thus, for
example, we may be interested in knowing if an observed autocorrelation

is due to both the components following MA(1) error processe Such

o/
hypotheses may be of interest to us for various reasonsald

Now in doing this, we first need to check if the different hypo-
theses specified in terms of the original parameters in € can as well be
stated in terms of the parameters in 8. One can easily see that relevant
hypotheses formulated in terms of the parameters in € cannot all be
equivalently stated in terms of those in §. For instance, to test whether
the erfor process is really MA(1) - MA(1), the relevant hypotheses is

HO . pe =pz =0

in terms of the parameters in €, and this hypothesis remains the same

12/ One may be interested in knowing the exact nature of the autocorrela=
tion of the error process because this helps in specifying the model
more correctly. Such knowledge can be helpful in other ways also. If,
for example, the exact nature .of autocorrelation is knowr:, some stan—
dard- tests or methods of estimation can be readily used for further
studiese The algebraic solutionSof the Comgi¥ent initial estimates
will become simpler. Forecasts etce, can be made more efficiently if
the variance-covariance matrix of thc error is known more precisely.
From the point of view of misspecification, acceptance of hypotheses

£ the type which specify that autocorrelation is due to one component
only may lead to the conclusion that the model might not have been
misspecifieds If the tests reveal the presence of both the components,
one might try to remove the erxor of misspecification from the model
by possibly inclvding some more relevant regressorse
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in terms of those in §. But the corresponding hypothesis for the
4R(1) = MA(1) case
B 3 P =0 (ise., Vg =P ) and P, =0
in terms of original parameters cannot obviously be equivalently stated
in terms of the redefined parameters in 8. We, however, argue below

that this difficulty can be tackled to gome ‘extent.

Since ML estimate of N is available, we suggest likelihood
. : 13
ratio (LR) tests for cxamining different hypotheses-“{ The likelihood

ratio test statistic defined as

()=~ 2 [Ux7) - u(y,)7
follows a limitiﬁé chi~square distribution with p degrees of féeedqm
‘where L(HN) ana I':(HA)'are the maximum values of the log-likelihood.
function under the null (EN) and alternative (HA) hypotheses énd pis
the number of additional independent restfictions on the parameters
imposed oy the mull hypothesis. |

We can now set up different hypothescs regarding the parameters
% ’ Dz, 8; and;ﬁé'which would correspond to diffgrent patterns of auto~
correlation of the disturbances and test them against suitable alterna~

tives. Consider first testing the hypothesis 6f zero autocorrelation

13/ One can, in prihéiple,-use Wald's test and 1égrangiaxb@ultiplier
(1) test for testing different relevant hypotheses. However, all
the three tests viz., LR-test, Wald's test and IM~test are asympto=-
tically equivalent (see Moran (1970) for details). Also, joint con~
fidence region for all the parameters or for any subset of parame-
ters can be obtained from the estimated variance-covariance matrix
of the ML estimator and then used to decide upon acceptance or
rejection of different hypotheses.

*
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of the disturbances le€Coy

o] ~ ~
IIO H pe =pZ —Us = Uy =0
. . e g 14/ ,
against H1 which puts no restriction on €.~% The relevant test

statistic is
1R(1) == 2 [1(x)) - 1(g, )_7~ X{ under 5,

If Hl is accepted we conclude that therc is no ‘autocorrelation in the .
disturbances., However, it will not be possible to conclude whether one
or both of the components are present (thcugh nor-autocorrelated) in the
model. Such information is, however, of not ﬁuch interest from the point
of view of knowing the nature of autocorrelatlon. In both the cases,
CLS is obv1ously the best estimator for the parameterse.

Depending on prior information one may be interegted in testing
whether any of the following two situations represents the actual nature
of autocorrelation.s

(u) one of the error compcnents follows: ARMA(1, 1) whlle the
" other follows MA(1), and

(b) one of the error components follows ARMA(1, 1) while the
other follows AR(1) ’

In terms of the parameters in & , the hypothesis corresponding to

situaticn (a) is

_lﬁ/ In terms of the original parametérs in G,ﬁHl will be ¢~

P:p =p =P =Oo
€ Z u v

15/ Without any loss of generality we assumc that e.'s follow ARMA(1, 1)
while Zt's follow MA(1) (or AR(1)).
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The IR test statistic for testing Hg against H1 is ziven by

IR(2) == 2 [7(s?) - K(5,) 7 ~ xf under B2,
It is to be noted that the hypothesis correspunding to situation (b) cannot
be formulated ilj terms of the parameters in & because (b) refers to the
case where

f-’v =0 i€, VUZ =P, (see equatiOn(7.3.5)).
But after repa.ramet:piz_ation what is availablek to:us is sz (=UZ 022 ) but
not v, _Simila.riy cases like AR(1) = AR(1) or MA(1) = AR(1) cannot be
formulated in terms of § and hence cannot be tested against H,,'. We shall
come baék to this point a lfi.ttle later.

bne may also be interested in testing the case where both the com-

6
ponents follow MA(1) error process.L/' Denoting this mull hypothesis by

30 = =
H:P =0, 9, =0,

we have the relevant test statistic ag
’ . 3 2
IR(3) =~ ?[L(Ho) - L(H1 ). ~ X, under Hz.

18/ 1t should be noted that so far as the estimation of the parameters ig

concerned, we cannot uniquely estimate Ut and 'l\)JZ separately for the

MA(1) = MA(1) case though their sum ¥ ( = 5’8 + %JZ ) can be uniquely

estimateds. Hence the ML estimates of thé¢ parameters of the original
model are not uniquely determined in this case. It is, however,
clear from the principle of LR test that this does not create any
Problem is using the LR test for identification of this case repre=
sented by the hypothesis Hz. It may be further noted in this con=

text that Hz and_ Hz are nat identical though the structure of the
variance~covariance matrix is observationally the same for the two
caseses This is because Ho imposes an additional restriction i.e.,

'D’Z = 0 which enables one to determine the parameters uniquely for

the case given by Ho'
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Finally, it might be of interest to test if the autocorrelation in
the disturbances is due to one component only (say, st's, without any loss
of generality) aad +tha: st's follow ARMA(1)OI MA(1) process (note that

st's following AR(1) cannot be tested because of the identification prob-

lem)ll/. The hypotheses corresponding to the above situations are

Bt 0, =0, . =0 (yhen e,'s follow ARMA(1))

o} Z Z
and v
H5 e P, =0 0, =0 P =0 (wher €,'s follow MA(1))
o . 7 b 9 - A 9 e et -t . . .

The cdrresponding LR~test statistics are

4

under H

LR(4) = - 2[L(H4) - L(g,) _7~ X

2
2 o
CIR(5) = - 2[L(H5) - L(8) 7~ x; under B .

O}
Now, acceptence of Hﬁ or‘Ho will enable us to infer that the obéerved
autocorrelation in the model is due to ope component only while the other
cqnponent is either pr;sent (but is non~autocorrelated) or absent. Strictly
speaking, this latter case reférs to standard linear modey with ARMA(1,1)
autocorrelation Process in the disturbanceé. No@, from ﬁhe point of view
of the nature .of autocorrelation the presence (though nor~autocorrelated)
or absence of the other component makes no difference. Thﬁs we can con=
clude that the observed autocorrelatlon is due to autocorrelation in one

component only if H4 or H is accepted.

5 ~
17/ For bothHﬁand B, U, =0,

From (7.3.5), ?% = - Pv Og,/ (1 + 93 ) ( Z"F% = 0 for these cases).
Tms U, =0 ==> either P =0 or a2 = 0,
Z v Z

If o§ = 0, then Pv = 0 automatically,
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instead of testlng a specific hyeothcs1s that corresponds to a

partlcular type of avtocorrelatlon in the @ sturbances, we may be inte=
rested in a series of nested hypotheses so as to arrive at the correct
form of the autocorrelation process generating fhe disturbance%?lehls can
be regarded as a posslble strategy to determine the exact nature of auto-

correlations To do this, we can test one or both of the follow1ng

sequences of null hypotheses

T2 | < 2,
B 3 P, =0 B ¢ P, =0
H$ P =p =0 4:D-U=o
/A o) Z Z

. = =7 = : =7 = =
Ho' pZ_pe: =V; =0 ,Hg pZ % ps 0
H . 0,20 =3 =5 =0 Yt p =% 2p Y =0
.A'Ioc Z=8—UZ"U€= HO. Z—UZ=8-S=

' against théd sequences of alternatives

2 2,
BY 3 P, £O | R

. g - 40 - ~
B % P, =0, pe,éo B iR, =0, Uz,éo

5 . . 5/;
i P =2 =0, Uy, £ 0 H ¢ 9, =9, =0, p,éq

1( ~ . 1'. - - ~ )
H1 O v, ,u A0 Hy : pz-uz-pe_o,' Us,éo.

A1l the appropriate LR=test statistics will follow X2 with 1 degree of
freedom under the corresponding null hypotheses. If any of the mull
hypothesis is true, the preceding ones must be trues if’ahy one iS'false{
the succeeding ones must be false. Thas we contlnue testlng the sequence

of mull hypotheses until one 1s rejected or the flnal null hypothes1s of

e

18/ See, in this context, a discussion by M 1von.\1977) on the sequence
of testing such nested hypotheses.

-
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no autocorrelation is accepted rnd accordingly infer about the nature of
autocorrelation of the disturbances.

Now_we ¢ome back to case (b) where we wanted to test if the auto~
correlation in the disturbances was gencrated by an error process where
one of the components follows ARMA(1, 1) while the other follows AR(1)
There we found that speclflcatlon of this hypothesis in terms of the rede-
flned parameters was not posslble and therefore such hypotheses like the
one represented by (b) or, say, both the error processes following AR(1)
etcey, cannot be tested against sultable alternatlves directly, Conceding
that due to an 1dent1110atlon problem it is not pOSS1ble for us to esti~-
mate 1nd1v1dually all the six parameters in © and hence certain hypotheses
1dent1fy1ng certaln aut0correlatlon situations which could otherw1se be i
formulated in terms of the parameters in €, could not be tested against
sultable alternatlves, we suggest 1n order to overcome this problem that
we treat ARMA(1, 1) - AR(1) situation as the unrestricted~Hypothesis and
test different hypotheses describing different autocorrelation situations
against thls alternatlve.

Now, under the assumption of disturbances'following ARMA(1,1)= AR(1)

error process, the Parameters involved in the model’ are given by the vector
/. ’ '
-8, FY

4 /
where 3 =\ 0 Z’ p ’ p s P ) 1

8’
However, as we can specify V in terms ofz) - instead of p and since a

consistent initial estimator of P has to be obtained vla 1) for our -

1Y For this set-up we now onwards assume .that e,'s follow ARMA(1, 1)
and Z,'s follow AR(1). ~
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method (see Appendix 7.1), we obtain ML estimate of

- @ 7Y

g

ﬂ
% /
g (0 9 sts e ? pz) .

where

It will be seen lster on that different hypotheses characterizing diffe-

rent autocorrelation situations in this framework can all be specified in

~J
~J

terms of the parameters in . Obviously assumptions and results similar

~J
~J

& and 7}' instead of € and N respectlvely. For this sl'bua.‘tlon D =0

to those in-'sections 742y Te3, Ted, Ts5 and 7. 6 are now valid in terms of

lees V Z = pZ' The estimation method isy as before, the ML method. The
consistent initial estimates of the parameters for this case are given in
ippendix 7.1, It should be noted that under such an assumption of the
error process, it is posslble for us to separa'tely estimate all the five
parameters involved in @' As before we may be be :Lnterested in testing
different specific hypotheses characterizing different types 6f auto~
cox’fel.ation ‘against the aiternative given by ARMA(1,1) = AR(1) distur—
bancese Without going into details we write down different hypotheses

" that might intereést us from the point of view of the nmature of autom

¢orrelation,
6 . '
H ¢ Pu =0 i.ce, both € and Zt follow AR(1) process.
s P =0 i.es, e follows MA(1) while 2, follows 4R(1).

' HS . pﬁ =0, Pe =0 ('or, pZ = 0) iece, oOne of the conponents
follows AR(1) while the other is non-
autocerrelated. ' ‘
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9 . 2
H 3P =0,p =0 (or, P, = 0), o

one of the componmts follows AR(1) while the

other is absente.

=0 (OI', 0Z2 =O) i.e.,

0 .
Hl H ﬁ; =0, PZ =0 ¢ £y follows MA(1) while Zt is non-
autocorre}ated.
H': p =0, p,=0, 0220 1 & follows MA(1) and 2. is
o * g TYr Fg =Y Yo = R t

absent.
(In all the hypotheses in this setwup, the restriction P, =0 will imply

v, = % in terms of the parameters in &, )

Any of these hypotheses can be tested against the alternative H$ where

no restriction is imposéd on the paramecters and the following will be the

appropriate IR test statistics @

R(6) =~ 2 {L(Hg) - L(H;[)J_A-’ X.]ztunder Hg (
IR(7) == é[i-(HZ) - L(H;[)Jé_' X12 under HZ,
IP(8) = = 2 [L(HS) - L(Hi‘[)]~ ‘xg‘under Hi
WR(9) == 2 [UE) = U7 ~ 52 urter &
IR(10) = -2 /1(H%)- L(H,;[)J ~ XS under H:,O
2

—wn /o] - I . 11
LR(11) ==2 Z n(m") L(E)_/ ~ % under B .
Asvbefore, one can as well think of testing a series of nested
hypothesges to’aspertain the correct nature of autocorrelation of the

disturbances. The following threé‘éets of néstedvhypotheses can be

specified.
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6 . U = "o =0
H P =0 30'%—0‘ o' %
,,8 YBQ P - 1100 = =
no e pu = pe =0 HO H pe = pu =0 LO . pE = pZ =0

~
(ory, P =P,=0) 9 . _ gl _ 11 2
u Z Ho H pe —pu 0 =0 Hg H p8=pz= o, =0
° ® € o *TeTyu T%TNy o e 2772 Ta”

» " _ 2
br,%ﬁ%uﬁﬂ)
B2 0 =p =%, =0
ue e 2

These can be tested against the alternatives

6y 74 ®H i1p £o
HY SR A0 H1.pe,éo 1R A
: o/, 1% p =0, o £o
H1.pu.—.o,%,éo H1.pe=o,pu,£o 4y $R=0, 7
(or, P =0, piO) y
9. 2 Me o _ o 2
B LR =00, 05;40 H'$ P =p,=0, d £O
, |

(or, pu=pZ=O ’ 02,40)

12, o o _ 2 ~
H1 . pu-—pe —Oei), pzﬁ .

(ory P =P =d=0, P_40)

All the appropriate LR-test statistics would follow X12 under
corresponding null hypotheses. It should be noted that here we are able
to identify all possible types of autocorrelatiorSwithin the set=up of

our model including those cases where there is only one component in the
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disturb:nces. In terms of miss: ecification, this means we are now able
to distinguish (by LR~tests) between situations like (i) the autocorrela-
tion in the disturbances is due to both misspecification and erroi‘s-in-
observations and (ii) thé autocorrelation in the disturbances is due to
autocorrelation in one componen't; (anyone of nisspecification and errorg—in-
observation) only while the other is absent and so on. It should also be
noted that situations like the one where one of'the components follows
MA(1) while the other is present b;lt non~autocorrelated and where one

of the components follwsMA(ﬂ while the other is absent == which could
not be tested in the ARMA(1, 1) - ARMA('J; 1) set up == can now be dis=
criminateds Though maximum likelihood values under the two situations
will remain the same, thé degree(s) of freedom, as stated ea.rliei', will
now changee

To sum u:p, if we start with a model where the two=component

disturbance term follows a process of the type ARMA(1, 1) - arvMA(1, 1),
we can test different hypotheses of interest like ARMA(1,1)=- MA(1),
-MA(1) - MA(1) and so on. If, however, the hypothesis of ARMA(1,1)= MA(1)
is rejected in favour of ARMA(1,1) = ARMA(1 s1), we é.re unable to test
ARMA( 1 s1) = AR(1) against ARMA(1 ,1) - ARMA(1 s1)e To overcome this we
test hypotheses that can be treated as cases under ARMA(1,1) - AR(1)
eeges AR(1) = AR(1), MA(1) - AR(1) etce, against ARMA(1,1) = AR(1) or
suitable alternatives. If, however, all these are rejected in favour of
ARMA(1, 1) = AR(1), we cannot concfmde if the actual situation is

ARMA(1, 1) = ARMA(1,1) or ARMA(1,1) = 4R(41). Before concluding we note
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that to test thesc hypotheses we will require maximum likelihood values
under the relevant hypotheses. In Appendix 7.1 we' give consistent initial

estimators for all the cases.

~ T+8 Conclusions

In this Chapter we have considered.i the proi:lem ef_vzestimation and
testing in an autocorrelated linear regression model with the error term
decomposed mto two components each follow:mg an ABMA(1 , 1) process. We
have suggested the maxn.mum llkellhood mei‘hod f or estimation of such a
model. Under the standard assumptlons the ML method of estlmatlon
obv:Lously prov:Ldes cons:.stent and efflclent estlmates of both the regre=
ssion coefflclents and of the varlance-covarlance matrix of these esti=-
mates. Likelihood ratio tests have also been suggested for identifying

the_ exact nature of the autocorrelation structure of .the error term.
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Appendix 7.1

Algebraic Solutions of the Parameters Under Different

Assumptions Regarding the Error Components

To start with we present the reclevant equations obtainable from
(7.6.2), under different assumptions about the error components and get

the algebraic solutions for the parameters.

ARMA(1,1) = ARMA(1,1)

SO = 02 | oo (A 701.1)

S_] = ‘Us + UZ ) T T eee (A 7.102)

S2 = pe Ue + PZ Uz _ eee (A 70103)

2 ~ 02 o~ _
83 = pe UE‘. + pz UZ I B | cee (A. 70104)
Y B RS SV -
84 = pe US + pZ UZ (] eee (A 7.1.5)
. 2 . . . A2 '

Solution of o is obviously given by © = SO . eee (4 Te1e6)
From (A4 Te1.2)

Ue = S1 - UZ .« coe (A 70107)

Substituting § fror (4 7:1.7) in (& 7.1.3), (4 7.1.4) and (& 7.1.5),
' £

we have
~os L _ - .
U (7 = 8 ) =8,-p s eoe(8 741.8)
~ (03 _ 03y _a - ad e, e
vz (Pz=P7) =8, =P s, ‘..l.(A 7+1410)
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Tow, replacing the expression of U (P

and (4 7.1, 10,, we have

2
S, =P S
P, + P =D & 1
A € > = ﬁg S1
and
3
: - P{8s
2 2 4~ e
Oy + P+ pp =
Z e 2 ¢ 82 p; S1
From (A 7.1.11))
- 023
p=—-3—_L,_?__p
Z S, =P 'S €
2 e 1
_ S =P 82 ]
Sp =P 5y 1L

233

= P ) from (4 7.1.8) in (i 7e109)
."(A 7.1.11)

.

e (A‘7.1o12)

Teo (A 7.1.13)

Putting the value of Py from (4 7.1413) into (4 Te1412), we find

2 5 g
-0 s -p
( 7 2) 4 p2 + 9 ( .ji___ﬁ___. = ______J;_;L .
S, =P, =P s, = PS5,

After alpebraic Simplifizétion w. have the solutior for Py s&Y<§‘, as

i

a root of the following quadratic equation

2(s = 5155) + £ (5,5, - 5 55,) + (s = 5,8,) =0e wes (4 701.14)

Solutions of Py UZ and 1")'8 are obtained from (L 7e1e13)y (4 74148) and

(A 7.107) as

S S\ S
6\ =— e "2
2 "5 -8
, 2 e 1
A\
6’\ -82-98 S1
Z /p\_/p\
Z 3
2N >
ve =S1- Uy o
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In case we have two real soluticns of R from (L 741414) and both of

them lie between =1 and/ﬁ (-1¢ P ¢ 1
choose the root for which (using corresponding values of ?)'8

the value of the likelihood funetion is greater.

ARMA(1, 1) = iR(1)

-2
SO=0€+°§

2 2
;= Usoe+pz 9

w
il

2 Z
S5 = P2y ot + 0] o2
S4 = leusoez + Pg 022‘ . {
From (4 T.1416),
erf = S_' - PZ ch2 .

from stationary condition)swe

’ UZ and pZ)

eee (A 7.1.15)

eee (A 7.1.16)

eoe (4 741.17) -

eee (4 741.18)

XXy (-A 701019)

eee (A 741.20)

Substituting v of from (7.1.20) in (4 Te1e17) s (L4 Te1418) and (A;7.1.19),

we have

2
pz oz(pz-ps)=s -pP 8

2 e ™1
2,2 2 2 .
P, e (pZ ps ) -33 ps s1

and

2 (3_ 3y o _ .3
Py oq Py =97 ) =s8,=0]s, .

eoe (4 7e1.27)

eos (A 741.22)

Ceee (A 741.23)


http://www.cvisiontech.com

235

Replacing the expression of P, cé (pZ - P ) from (& 7e1¢21) in (& 7.1.22)
v e n .

and (A T.1623), we find

S, =0%s d
P, = £ ] - P
27 §,-r s R
S5 =05, L 1
= . . i - o‘oo i 701.24)
32 pe S1

Substituting P, from (4 7.1.24) in (4 Te1e23), we have.

2 (2 : 2
o (s2 - s133) + pa(s4s1 - s332) + (s3 - 3432) =0 . e (& 741.25)

2

Solution of pe’ say 432 is obtained from (A 7¢1425) and those of PZ, O

Oi and v, are obtained from (4 Te1e24), (4 Tel1e21), (A;7.1.15) and

(£ 741.20) as

a LA : .
"6\ - S} - %: §2 v
Z /\ S N e -
82 il s1 :
N\
32? _ S2- %: S1
A NN
Py (B =%
> s - A2 .
and ' A Ao
AN S; = pz/gz
v = .
. A2
€

48 in the earlier case, in the case of more than onc real solution of P
€
lying within the Tange =1 and +1, we choose that root corresponding to

which the likelihood value is greater,
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ARMA(1, 1) = MA(31)
5, = 9° | oo (4 741.26)
.s1 = ‘Te“’Z | eee (4 7e1.27)
5, = P, Ua | (1L7.1.é8)
55 = pi 5. cee (4 7.1.29)

~J

The estimates of ps » Uy %‘Z and 02 are obtained from the above rela=

v

tions ag
AN

p
€

v =
£
AN A
UZ = - UE
and
AT I So*
MA(9) = MA(4)

Solutions of 02 and ¢ (= Ge: + GZ ) are given as

/\2 ~
(o 0 and v =S1 .

is stated in footnote 16y4even though solutions of 'Us and %‘Z are not

=S

obtainable separately, the maximum value of the likelihood function in

~ AN AN
terms of the parameters 02 and vy is obviously obtained from o 2 and Ve
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So = 05 + o | ees (4 741.30)
.S1 = %o§+pz,,oz2 _ eee (4 Tel1e31)
5, = P2 o o2 + 92 o? | cee (4 741.32)
S5= 8 of +P) o2 C e (4 741.33)

From (A T+1.30), |
082=So-0z2. cee (4 7.1.34)

Substituting the value of 082 in (4 7.1.31), (& Te1432) and (4 Te1+33),

we find
5, =P8, + o§ (P, =0 ) e (4 741.35)
sz=p S, +o (p ) : ces (4 7.1436)
8
S, =pJ g +o(p-93)- (417137)
3 = e O Z Z e ®ee

After suostituting the value of 0 (p - P ) from (A 7.1, 35) in
(a Te1e36) and (4 7.1. 37) and then simplifying, we have as in the first
two cases the solutions of P e @8 the rcots of the f:ollowing quadratic
equation ¢

pf(s-ss)+p(ss _s1sz)+‘(s2-ss)_o.

The solutions of Z’ °Z and 05 are given as

AN
Z - 7
81 pe SO
AN
/\02 _ S5, = % 5§
AN VAN
pz - pa
and/\oz = S - /C\’Z ]
€ 0 Z
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MA(1) = No autocorrelation (or zbsent)

The solutions of,,o2 and '178 are given as
52 . S,
and A
Y = 5 -
> 1

MA(1) = absent

The solutions of 05 and v, are given from SO = oi and S1 = Ueci as
Az 5 ‘ _ ' ) ’
9. =54
and
- A2
,% = S‘l / Ge .

LR(1) = No autocorrelation

The solutions of Pe ’ 05 and 0% are obtained from the following

equations
Sp= %+
31= ps ci
5, = pif
as /"Z"-'Sz/sw /382=s1//p? andé\rf:So‘/"éz’

aR(1) = absent

The solutions of 0: and pe are given as

A2
= S
Ue O
N A2
p = S / T
€ 1 e
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PART III

A MONTE CARLO STUDY ON SOME ESTIMATORS IN AUTOCORRELATED

MODELS WITH MISSPECIFICATION
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Chapter 8

Background of the Study and Survey of Literature
/

8e1 Introduction

The interesf in ‘this part of the thesis centres on small-sample
properties of various estimators (generally used in the context of auto-
correlated linear regression models with AR(1) error process) in amto-
correlated linear regression models where the problem of misspecification
is present. It has been noted in Chapter 5 that until récentiy most of
the reestimation methods (also called two=step procedures) esges Cochrane~
Orcutt (CO), Prais=Winsten (PW), Durbin's two-step(D2)and Hildreth and
Lu's (HL) search procedures, assume the error term to follow the AR(ﬂ
processe It is known that under standard conditions [s-ee Theil (1971),
Che 8, pp.405~407, Magms (1978)_7 all these conventional esd;;jgz{aféxjs
possess the same asymptotic 'distribution‘. More rec‘ently, reseairc’idérs have
@Jgéested the use of ML method o. estimation for such autocorrelated linear
regression modelse. In.fact, Hildreth and Dent (1974) and Béach and
¥acKinnon (19?83.) have developed algoritims for obtaining ML estimates of
zutocorrelated linear regression models with AR(1) error p:rdcess.
Asymptotically_,'mlr estimator is equivalent to the conventional estimators
if the firsb—orderﬁautocorrelatiop coefficient of the error process is
rct too large. It is a;l.s5 known that in autocoﬁdated linear regréssion
mcdels, OIS is not, m general, efficient. Since asymptoticall;y: all these
lethods,excéﬁting,,,ﬁhe OLS, are eqaivalmfr, a choice among these alterna».--

give estimators must be based on their small=-sample properties. However,
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the small--sample Properties are Cifficult to invest’gate analytically, ana
SO one has tq use lonte Carlo studies for this burnoses Some smallesampl o
studies have been conducted on this probleme These are discusséd in the
following section. It appears that these studies zre not adequate; for
they fail to give any clear=cut indication regarding the choice among the
alternative,estimétorst

It may also be noted in this context that all such small=-gample
studies on . autocorrelateq linear regression mgdel with AR(1) error
Process, take no note of the POssibility that the working model may have
been misspecifiedl/ and that there may be a component, apart from the ope
which ig the-disturbance'term of the true Tregression model, in the error
term which is due to misspecification and which might or might. not coﬁtri-
bute to autocorrela?ion. We have argued in Chapter 6 why such decomposi-
tion gf the error term provides valuable insight into the nature of auto-
Qo;relafion and helps in ascertaining if the available methodshqf estiﬁaF
tion are appropriate‘in a particular situation and if'not,-in evolving
suitéble alternative nethods, We aléo quotel there fromlMaddala-(1977,
Pe 291) to arguc why.there should be further rescarches in order to
ascertain how different standard 'efficient' methods viz,, €Oy BW, D2 ang
HL perform in relation to OLS in - Presence of misspecification which
might or might not give rise to autocorrclations One such study. in the
contéxt of large samples hag been done by Chaudhuri (1977, 1979, |

Chapters 2 and 3) some of whose results have been mentioned in-Chapter 5.

1/ As in Part IT of this dissertation, we mean by the term 'misspecifi=-
cation' situations where either some relevant regressors have been
left out or some functions of some of the included regressors have -
been omitted. '
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She provaed that excepting for thc case where the excluded regressors bear
strictly lJ.near relationship to the included ones; the conventional two=
step estﬁﬁa’cors would yield inconsistent estimates of the properly defined
parameters of the misspecificd models However, NO Monte Carlo study on
the small—sa;mple' perf ormanée of conventional e2etimators in autocorrelated
models with misspecification has so fa:p been undertakens

Our objective in this part of the dissertation is precisely to
report the results of such a Monte Carlo study conducted by us.. In other
words, the question we investigate is ¢ How do the conventional estimators
(which obviously disregard misspecification) perform in small samples in
the presénce of misspecification giving rise té possible ‘autocorrelation
in the errors ? Since our primary interest was to oxamine the performance
of the conventional two-step methods and the CLS, we left out the ML
method of estimation from the purview of our study.-g/ Furthermore, though
the methods of estimation suggested by us in Chapters 6 and 7 are :celevan“t
for the type of models being considered here, we could not aotually examine
the small-sample properties of our methods because the qute Carlo cxpe=
riment was completed before these methods were developed.

In the remaining sections of this Chapter, we make a brief survey
of the earlier small—sample studles on awtocorrelated linear regress:.rsn
zodels most of which assume AR(1) error process. rhis, it is hoped, will
nhighlight the distinctive features of our present worke The next Chapter

(i.e., Chapter 9) is devoted to an examination of the unbiasedness and

g/ Actually, one explanation of why the ML method of estimation has not
been considered is that it has come to be used for such models only
relatively recently,
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consistercy of the estimators obi.ined by some standard meteods of estim:tion
in presencc of nisspecifiction, These rec:lts (some of which were
obtalned by previous rcsearchers) are presented for the sake of complete=
ness and convenlence in appraising the small=sample results, In Chapters

10 and 11 We present the results of our Monte Carlo studys Chapter 10
deéeribes the design'of the experiment and Chapter 11 gives the numerical

results._

8e2 Monte Carlo Studies on Autocorrelated
Lincar Regression Modelg

Most of the studies on the performance of different methods of
: estlmatlon in small sampleshave been done on the assumption that the
disturbances follow an' "AR(1) process. Particular ‘mention may. be made of
the studies by Hildreth and In (1969), Rao and Griliches (1969), Hildretn
and Dent (1974), Beach and MacKinnon (1978a) and Spitzer (1979),

Rao and Griliches (1969) werc the first to undertake a Monte Carlo
study,oﬁ'this problem. They considered = one~regressor model where the
error was assumed to be generated by an AR(1) brocesse Their model wag

yt =,B:xt + st H t =1, 2, eeeey 1N

xt=77x

it
k®)
m
+
o

and e, =1 T Uy

where | N | <1, | P l( 1 and cach of u,'s and vi's are uncorrelated and
distributed with zero mean ang *ame~var1anc» qf ‘and 03 respectivelys -

also x and € are assumed to be independents They considered five
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aifferent methods vizs, Ordinary Least Squares {OLS), Prais-Winsten (PW),
Cochrane=Orcutt (CO), ﬁurbin’s two=step (D2knd a nonlinearz/ method. The
relative efficiency of these methods were aéééssed-by means>of mean
square error (mse) criterion. They fixed the value qf 8 at 1.0>and'
cbtained the estimates corresponding to the values of P and ﬁ at intervals
of 0e1 and 0.2 respectively in the rénge -1<Py, T <13 05 apd 03 were
adjusted so as to make the square of the true correlation coefficient
between x and y to be'equal to 0.9, For any given P and N,y 50 samples

each of size 20 were drawn from independent x and € series. Their main

conclusions were the following $

(i) Né method is better than the others over the entire range of

parameter values.

(ii) For samples of size 20, there is a gain in efficighcy in ‘the
two=step procedures relative to OLS if | P| > 0O.3. For values of
| PIK Oe3, there may be a little loss in efficiency in using the‘two-step-
procedures. | |

(11i) The estimate of P in Durbin's wO-stép method is prcbably better
than the other éétimates and a mixed +two-stage estimator where f}
obtained by Durbin's procedure is used to estimate the regression coeffi-
cient Yy the Prais‘Winsten method should be preferred.

(iv) The nonlincar method does not appear to do better than the

others,

i/ In the nonllnear method, leasb -squaresg is applled to the follow1ng
equation .

A

with the imposition of the nonlinear constraint BP =
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The later Monte Carlo studies on the linear autééérrelated regressicr.
model with A.R(1) error process have concentrated mainly on the performance
of ML estimatorq'/ 4 ‘which is, strictly speaking, different from the conven—
tional two~step estimatérs (see Judge 9_1',_&-(1_980) and the next Chapterb
for details). .No major Monte Carlo study appears to have been carried out
to co@pare in detail the smallwsample performance of all the conventional
two—-step ‘eétimators and the ML estimator. However, Beach and MacKinnon
(19782) have considered a model somewhat siﬁﬂar to that of Rao and
Grﬂichés and have compared‘the ML estim»at'or vig=a~vis the CO est:‘.matof

in small sampless They examined the followihg model ¢
y't = O+ th + S_b

Peimg Uy

€
%t~ n(0, 0.00%6)

's are independent.

where [P | <1 and u,

= exp (0.04t) + v,

Xy t

vy~ N(0, 0.00009) -

and v,'s are independent.
[T
They fixed the true velues of both o and B8 at 1.0. Each experi-
ment was replicated 200 timeg and two different sample sizes, 20 and 50,

were considereds Three different values of P == 0.6, 0.8 and 0,99 =

4/  The ML method has recently been suggested by Hildreth and Dent (1974)
and Beach and MacKinmon (1 978a) for estimation of such models. They
have also. suggested algorithms for obtaining the ML estimates. Beach
and MacKinnon have in their algoritilm incorporated the stationary
condition. : L
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were usede The ML and CO procedures were compared in respect of bias and
root mean square error (m‘se);

. Their main conclusions can be surmarized as follows $

(i) Judging by the mse criterion, fhe superioi‘ity of ML:'estimatOI'
over CO. isl often dramatic for o3 for @ the superiority is always sube-
tantial.

(J_'.i)‘ By the criterionof number of replications for which the ML
estimates were closer to the true values than that of €O, ML estimators
of ¢ and B8 always did better tha.n Go and the difference was usually Slg"
nificant. | |

(1ii) The .1V£L estimation pfocedure was found to be computationally
guite efficient. More specifically, it was forund to be ccxnputatlonally
no more expens:.ve than the CO procedure.

They also considered nontrended x-va.lues v‘rhere‘dxt's were assumed
to be independent and having dlstrlbutlon N(O O. 0625) Sample size 20
was considered for this casee 'I’he values of P consulered remained same.
As for the estimate of 8 v:Lrtua.llv no dlff ercace wasobserved between the

pv

XL and co estlmators, However, ML estlmator was found to be better
TOr e A | -

Spitzer (1979) compared the ML estimator and the CO 1terat1ve
estlmator-/ (the latter 1gnores the first observ-atlon and the Tacoblan

term of the ML equation) in small semplese. He also observed the eaperio-

rity of ML method, over theCO iterative procedure;

j_/ For the CO iterative estimator, estimates of the regression coeffi~
cients obtained at the second step is used to estimate the errorse
These are used to obtain another estimate of the autocorrelation
coefficient and then of the regression coefficients and so on till
convergence is attained. Sargan (1964) proved that this iterative
procdedure will converge at least to a local minima.
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Since the estimate of P af”ects that of B8, come work has been done
to study the small-sample properties of the estimat® of P obtained by diffc-
rent methodse IiMaddala (1977, P+280), for example, has reported some empi=-
rical results where the D2 Procedure has been found to yield estlmate of P
substantially differerit from those obtained by the ML method, Ekperiments
by Hildreth and Im (1969) ang Beach and MacKinnon (19782), on the other
hand, indicate substantial small=sample bias in the ML estimate of Pe
Hildreth and Dent (1974) suggested adjustment %o the ML estimator that.
reduces the bias but increases the sampling variance. The adgusted ML
estimator of P hag generally been found to be the best when P > 0.4. But
for values of P < 0.4y the Theil and Nagar (1961) estimator é/ p* seems
to be the best. However, whether or not this leads to 1mproved estimates
of the Tegression coefficients needs further investigation. c v _

There is no significant small=sample study where the disturbances
are assumed to follow autoregressive-p;ocessof order greater than one,
Though the estimators given by the standard methods broposed for such
models are'asypptotically equivalent, there i, little evidence to suggest
the superlorlty of any particular method over the others in small samples,
Mevertheless, the ML method of estimation suggested by Beach and MacKinnon
(1978b), fqr models with AR(2) error process being based on all the obser—
vations and having incorporated the stationarify conditionsymay do better

than the other methods.

_/ Theil and uagar (1961) estlmator of P is deflned as

n2(1=3/2) + k2

2 - 2

where  d is the value of the T statistic ,
n is the number of observations , . -
and k is the number of Tregressors in the regression equation,

=
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There have also been very Jfew small=samplc situdies with MA processca
for the disturbances. Excepting for the stul; by Hendry and Trivedi (1972},
the other available studies eege, Nelson (1974), Dent and Min (1978) were
carried out in the context of pure time series models and hence the results
are not direcctly relevant for the autocorrelated linear regression models,
However, here again the ML method of estimation that uses all the observa~
tions may 40 better than the other mcthods provided one is willing to

undertake the additional computations.l/

8¢3 Conclu.ions

We may reiterate that the smallesample studies done sé far in the
context of autocorrelated linear regression modelswith AR(1) €rror process
disregard the possibie preséncg of a misépecification\camponent in the
disturbances which might or might not contribute to autocorrelation.

There appears to have been no work to study the effect of misspecifica~
tion (and therefore of consequent ‘autocoprelation ) on the conven—
tional reestimation methods in anaﬁtocérrelated line;f reéression.model
in the context of small samples. We shall Present the results of such a
study in Chapters10 and 11. In Chapter 9 we present some results,

nainly based on large samples, bearing on this problem which should be

useful for comparative purposese

1/ Some notable references of Monte Garlo studies done in the past on
different econometric problems are s Wagner (1958), Basmann (1960),
Nagar (1960), Quandt (1965), Summers (1965), Cragg (1967), Kmenta and
Gilbert (1970), Schmidt (1971), Byron (1972), Ramsey and Cilbert (1972),
Smith and Hall (1972), Yancy et ad. 1972), Spitzer (1978) etc.
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Chapter 9

Unblasedness and Consistency of “~me Estimators
in on fusocorrelated Lineaxr Regression Model in
the Context of Misppecification

91 Introduction

We have stated in the last Chapter that the main purpose in this
Part of the dissertation is to investigate the smal l. sample berformance
of different conventional reestimation methods used in estimating the
barameters of an autocorrelated linear regres31on model in 31tuatlons
complicated by the Presence of mlsspeclflcatlon which might give rige to
autocorrelatlon. In this Chapter we examine, for convenience of compari-
son; the unbiasedness and consistency propertles of these estimators when
the model has been misspecified. Some of the conventlonal reestlmatlon
methods used for the linear ncdd where the error follows AR(1) are also
briefly described for the sake of Jonvenience since ::e shall compare the
small=sample performance of these methods in +he case of our misspecified
model. Chaudmri (19/7, 1979) examlned these properties for some of these
estimatorse We shall first summarize some of her findings that - are relevant
in the context of our present study and then examine 2 few other methods
not explicitly analysed by her.

While in section 9¢2 we deseribe the model which has been mis=
specified and whosge Properties we are going to study, in section 9¢3 we
examine unbiasednegs and consistency broperties of some estimators,

Conclusions are given in section 9e4s
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Followmg Chaudhuri, we speciiy the true model as one with k'
regressors and write this in matr:x notation as
Y =XB4e eee (94241)
where Y = (y1, Yy ....;, ¥, ) is a (nx1) vector of observa=

- tions on the dependent variable,
X is a (n:xk) matrix of observations on k stochastic regressory

given by
R LT
x - x22 XX
.0‘-).. eoo
x IS

7/
8 = (81 . 5p o-no&_)
and . ,
/s
€ =(€1,82, .Qo.,gn)
are (kx1) and (nx1) vectors of the regression coefficients and disturbances
respectively, One of the regressors may be uni-ty for all ¥ incorporating
thereby an interoept term in the regression equatlon. We make standard

assumptions about et s and X ¢

St's are stationmary with E(et) =0 for all t =1, 2, ...., n.
V(et) = 02 V_ where V isa pomtzve deflm.te matrix.
X 1is assumed to be independent of ev.

plim ( l X X) = a positive definite matrix.
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Let us now suppose that m regressors have been omitted from the
true model, Let us, without any loss of gercrality, assume that the last
m regressors have been left outs As in Chapter 5, we ‘"define the mig=
specified model as

Y nX+B+ + G+ : sese (9.202)

where X' is the submatrix formed by‘ the first k-m (= k", say)
columns of X,

/
T e (B;;',' B;p --».B;) is the (x¥ x 1) vector of associated

regression coefficients,

and €% is the (n x 1) vector of disturbances associated with the
‘ misspecified model.

It should be noted that \B‘f -is not the sub-vector containing the first k"
clements of B,  Since estimating and testing the significance of indivi-
dval regression coefficients of the misspeci}ied equation seem to be of
’ practical importance, we argue, following Chaudhuri, that the regression
coefficients associated with the J.mluded regressors should be redefined
allowing them to capture as much of the partlal mfluence of the omltted
regressors on Y as possible, or in other words, to anable.the regression
function E
' Y = x* B+
to approxmate as closely as poasrule the systematic ccmponent of Y
leesy XBe | | -
Minimizing
m(r - x g% (r-xtst )

with respect to B, we can find the relation between g¥ and 8 as
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gt=pp e (9.2.3)
where 1/ '
-1
Pe {E(x"/x*)z 2(xtx) . cee  (942.4)
Now, :
¢ =Y -x'g" (fran (9.2.2))
= ¢ +(X “X'P)B  (using (942.1) and (9.2.3)).
Thixe
€+ = e <+ A see (90205)
where 2/ |
Z = (X = xP)ge e (9:246)

We now make a further assumption that
plim ( IJ;X+/X+ )= 3 which exists and is nom=singular.
n xtxt

1/ It can easily Be seen that minimization of
B(Y » B (v - x*8* )3
is equivalent to minimizing
+ oy + at 2
E{(x8 - X"6") (xB~x"8%) + nvd
where v is the t=~th diagonal element of Vifo.r all t=1,25000y ne
Differentiating the above expression with respect to 8% and then equat—-
ing the partial derivatives to %ero, we easily get
B* = rs. | |
This solution of ,6+ corresponds to the plane of best fit, on the average;
in finite samples: R : :
y,Since P can be written as
P=(I ,pm) oremt e
where P,, = [E(X" X))} ' B(x™' %), and

- s
X is the submatrix formed by the last m ¢olumns of X,

we can write
BY= T+pr_ B
21
7 ol 'z/
where g8'= ( B v
and hence Z can as well be written as

4d = (X=X -P21)Bo
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9¢3  Examination on the Properties of Unbiasedness
and Consistency of Some Estimators

Having described 'the model in the previous section, we now study the

properties of unbiasedness and consistency of some conventional
estimators (e.g., OLS, GLS, etc. )} in the context of our model, Before
doing so, we may note that, in gencral ,

Hz) fo
and hence, in general ,

E(e*) 4 o.
However, if the excluded regressorsg bear‘ a strictly linear relationship

with the included ones, then from (94246) it easily follows that

E(Z) =0
80 that
E(e+) =0,
We have also quite generallyz/
plim %x‘*"/z) = Oo eee (9.341)
N, .

Let us now proceed to examine the aforesaid broperties of some of
the usual estimators {including the OIS and the GLS estimators) in the

context of the misspecified model deseribed ip (9+2.2) to (9.2.6).

3/ Vide Chaudmri (1979, PPe159=161) for é,proof. However, the result
can easily be verified from (942.6) and the fact that

1 v/vy
plim (Hxx)gzxx
n o
which implies that
1 ./
lim E(HX x) = Sy

n o
[ vide ‘Goldberger (1963, pp. 118=119) 7.
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Let BOLS denote the OLS est:.mator of (3 . Clea.rly,

ons = (&M ) X+{
+ + , P

/ot / :
=p* + (x+/x+) X“s £ 52 (using 9-2-5)() .
. ...'.‘.......‘ 90902)

Theref ore. in genexal,

) Bz (X £o. |
Now fram (9.3.2),
p:f %OLS =g + plin (-,’;X"/X‘”)-1 slin (;}x’_'/e )

+ plim ( %x“/x"' ) plim { _gl-x"/z) eee (94343).
b ¢ =) N.g00 7 S

.S

Since fram (9.3.1),
+/
plim ( nx Z) =

Il 4

and since we have assumed X and ¢ to be independent (so that X' and & are

i

independent) and’¢ has mean zero so that

Bia ( 1x“"s)

we have” frem (9., 3),

We thus find that if the disturbances in the true 'i.'egréésipn are auto=

correlated, then the OLS estimator of the regression coefficicnts in
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If is obvious from

, (9.3.3) that even if we assume Zt's to be autéédrrelated, this result

holds,

II. ngeralized Least Squares (GLS) Method .

Let °2V denote the varlance-covarlame mat;r::.x of et ‘where V is

assumed to be positive definite and known.f}/

Sa}' @GIS' is then given as

" ~1 -’
Bazg = (™1 1 iy

The GLS . estunator of B ’

=B% 4 (x*/y1 x*)- x"/ Te sV g ) x"’ 2 (using

(92.2) and (9.2.5))
Thus, in general _,
E(@GLS) £
8ince,
Kz IX) 0 necessarily.
Now' £rom (942.6) and (9.2.3),
Z=XB-Xx'Pg =Xg-zx'g*

and hence we have from (9.9.4 |,

- R -
’\*' g = (xF 1x‘*) X*Vﬁsi(’.‘ v x) x’*

cee (9e344

/ XB

‘ ses (9.5.5‘/\

4/ If X is nor~stochastic,
V= V' ‘and o2 = Uf .

an®

These equalities do not hold if X is stocha.stlc, as assumed here,
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Ve will assume that

+/

pllﬂl ( 1 X X ) =C (eXiStS\l ese (90306) ’
n oo '

. - -1 o+ . L.
lim E( -x v vV X ) =D (exists and positive
1 00 definite) eee (9.3.1)
plim ( JHX-'-/ v 1xt ) =E (exists and nonsingular)...(9.3.8)
n

Now noting that

E(n +/ "1s)_o

and /
1im  V( -:-l-x*.f v

I _y00

e) =0 . (from (9.3.7))

it follows from Chebychev's inequality that
/

pim (Ix* v ) =0 . o eee (9329)
n_»‘co : . '
Thus from (9 3 5), _
plim BGLS = plim ( %—x* ) =1 Slim ( %x”v”k)g (using
.n*m B L (9.3.9))"
- E'cg

£ Py 8 s 1in general,

r . -1 /T
where P =1lim P = 1lim L{ B(x" ”x*) 5 E(x*’.x)J .
© L 400 n _po

Thmg it is seen that an application of GLS irf a misspecified
model with known variance-covariance matrix of the disturbances will

usually yield both biased and inconsistent estimates of the regreséion v
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coefficients of the misspecified model.~5/ Even if Ve =1, the above

result still remains true except that now D has to be defined as

D= lin K %x‘“/ vy xhy,
N 00 »
1, however, the regressions of the excluded regressors on the inecluded
ones are strictly linear then

Kz [x*) =0 and hence %2) = 0.

Obviously we then have,

A
Mg ) =6

5/ We may, however, define the coefficient vector B” in a differvent manner,
by minimizing .
B =28 v (v - gt ety
instead of minimizing
(Y - "% ) (v - x* g% .
We then get
B = Pﬁ -1
where B = ¢ B(x*v71 x*); Bx*v1 ).

 With this definition of 8%, and hence of Z(=(x - x* B 3B ), it can be
shown in a faghion similar +to that used in Proving the-result in

(9+5.1) that ny

plim (:—lx v1z) 0.

I —se0 _
GLS would then yield consistent estimate of B+ thus defined.
However, -since in our Monte Carlo study we do not need the explicit
definition of P (or P) ang 8% and since the point as to what should
be the exact definition of B+‘ needs further Tesearch, we contime '
defining Bf as we have done so far following Chaudhuri o
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We also get

lim V( -;Il--}(""/v-‘I et ) =0 (under the assumption in (9.3,8).

n -»x

and hence by Chebychev's inequality,

plim ( ;jl-x’flv'1 et ) =o.
7 _y00
Then we easily find from (9.3.4) that
+

. +
I 400
So under the assumption that

Bz &) =0

GLS will give both unbiased and consistent estima’:ces{of B"a

III. Estimated Generalized Least Squares (EGLS). Method

The above results are derived under the assumption fhat V is known
a_priori. Typically, however, V will not be known beforehand and hence
the GLS estimate specified above can not.be obtaineds '

Let us now examine the properties of the estimator of the regre-
ssion coefficients when we work with an esi;imated V, say /V\ e Under the
assumption that <l'\ is~a-consisterit estimator ¢. V, we have

plim ( ;11-}(*//\7\"1 x) = plim ( gl-x’*-/v'1 x) =C (exists by
T S o (9¢3461)1 eee (9.310)

n _
Now since lim B( + % xﬁ ) 'exists by our assumption that
nowo  Bg=p - |

. /. . .
plim ( %X X) = 2}(}(’ a Pe de matrix,
Ny
where Xt is the t=th element of the lrth row of X‘/, it can be shown that
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A -
plim (-1—-x*/(‘v TovyYhe)=o ees (943.11)
Il 00 n. ’

[ vide Chaudnuri (1979, pp. 321=323)_7.

" We further note that

B( -=x"v1 ) =0
n

and

1im V(2= v ey =.-c€2 De.
n 00 n

Then by Chebyohev's inequality

plin ( 21x771e) =0
noo :

and therefore from (9.3.1%)

| A
plim (%x*-/v

1 €)Y =0 ') ees (943.12).
Il 400 : i

Now, the EGLS estimator for BY which is defined as

2 N
Ry Ty

can easily be reduced to (as in the case of cLs)
A /A= -1 Ao A g ] Ao
tee = @I YT YY) o v kgl
XX (9.3.13)
Thus using the assumptions (9.3+6) =(9.3. 8) and the resultsin (9.5.10) and
(945412}, it now‘»fol‘lbws from (9e3+1%) that

AS" -1 )
plim B prg = B CB‘;é P B :Ln“g:c‘anera.l.

n__oo‘

It is thus seen that even if we have a consistent estimator of V, B+

N

is not, in general, consistently estimated by the EGLS methcd.


http://www.cvisiontech.com

261

Let us now consider the special case where E(Z|X') =0. In

addition to assumptions (9. 3.6) , (9.5.7)_ ead (9.3.8) s we assume that

1lim
) g TN ]

Z

13 ¢ :—;x+/v'1 V,V 1 X7 ) =F (positive definite) ees(943.14)

where V, = v(2z) = E(ZZ/S (excepting the constant of multiplicity)s.

Since

AL ' i Nq, )
P USRI A T

N ;7 Na
I O S I Tx* )

we h&!.ve, by 'using (9.306) 9 (90308) and (9.3.10\}

Again,

because

and

Ay -
plim (;};x‘“/v T 2) = plim (%x+/v1z).
N ’ . Il-y20

plim ( %x‘“/ v1iz)=o0
Il 400 ‘ :

it/ vz) =0

lim  V( i—x‘“/ v1z) =0 (using (9.3.34)).

N _ye0

Therefore, we have from (9.3.?5), by using (9.3.16) .

Now ,

FAS
B

plim ( fl-x+/<r\'1 Z) =0

n oo

DA =1 A=
tas =& VT Ry T YTy
- -1 A
=g” +(x+/<r\ LS T S AL

vee (9.3.15)

eee (9.3.16)

eee (943.17)

A= "1 A«
e xR g
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Na ’
Using (9.3417) and plim ( 1-k v e) =0 (iee., (93.12),  we thus
n 0 :
have '

N+ +
PLID G gors =B
I 5%
Thus if we have o consistent estimator for V ang if Xz }X M = Oy then

A
HGLS utilizing V in place of Vv cons1°tently estunates B .

IVe The Two#itep,vReestunation Methods

In all the two=step methods and in the search procedure suggested
by Hildreth and In (1960), the disturbance is assumed to follow AR(1)
Process which means that the variance~covariance matrix V, excepting the

constant of multiplicity, hag the following structure_

1 P P2 . ol

p- 1 p escoe pn-z

e0 e e e0e o oe e ® o0 oo o006

pzl.-1 le_z prl-B LI I 1

where P is the firstmorder @tocorrelation coefficient of the AR(1)

" Processé However, as we have already pointed out (quoting Chaudhurl)

in Chapter 5, 1f there is any m1sspec1f1catlon, then irrespective of
whether the true disturbances. .are autocorrelated or not, the disturbanees
of the migspecified equation will not, in general follow an AR(1) process.
Of course, one does not knoy beforehand whether the model has been mige
spedlfled or not, and therefore one usually reestimates the regression
coefficients 6 by using standard reestimation methods under the
assumption that the disturbances of +he m1sspec1f1ed equation follow an

AR(1) Processe For the sake of completeness, we give beloy a description
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of different two=step and search methods in the context of a misspeci=~
fied regression equation where the error term is assumed to fcllow an
AR(1) process.

(a) Cochrane and Orcutt (CO) method $ The fLrst step ot this

method suggested.by Cochrane and Orcutt \1949) is to estlmate P from

2 "
/p\ 3 t=2 ' oo (9.3'18)
; . n . U A
IR I et2
t=1

where . et‘ =Y't " ]’[_b B OLS and Xt (x1_t, X2t, eesey }{:Ht), t = 1,2,...,1’1-

In the second step OLS is applied on the new variables defined as

x* =x P x 8
it it l(-b“]) for i= 19 2, scsey k+ and
25 - - t=2, 39 .c.!,n
lecey, é;gb, the estimator qf_ B+ 'by CO method, is obtained as -
/\ #/ w1 s x o
= xy Xy eee (9.3.19)
CO : v
where
.% ‘
X22 cde o
* *
X = (X N X'
x23
.I‘l ‘ ..... B o
* . oo
erl esee
and
* ‘ * * : %/
T Uy vy e )
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It is obvious from our discussion on the estimated GLS method (and it has

been explicitly shown by Chaudhuri (1979)) that except for the special
A

case where KZ | X*) =0, 8 ;O will not, in general, consistently

estimate @

(b) Durbin's tv:o-stcp (DJ pracoss $ Durbin (1960) suggested

taking the OLS estimate of the regression coefficient of y gmq 1D the

following regression egquation
v, = oy, +8F (x,, = fx ) 48 (x5, = Pxore iy )
% =1 " "1 "Mt 1(+=1) P2 Vot 2(4=1)

+ eccee +8 +( k 'b -pxk‘*-(t-“l)) wt (t =/2, 3' coey n)

+ .
where W, =¢, = Pe and w,'s are uncorrelated with zero mean and

t t-1 ot >
variance Ow ’

. v A 1. /\ :
as the estimate of P. Let '6\ denote this cstimates Then the Durbin's

estimator of B+, say((i\;z, is given by (9.3.19) with /13\ replaced

AT
by /P\. As in the case of the CO estimator, B will also not, in

b2
general, consistently cstimate B » excepting for 'the special case
where K2 |X+ ) = 0. Furthermoresas Chaudhuri (1977, 1979) has shown

P will not, in gemeral, consistently estimate P.

(c) Prais and Winsten (PW) method ¢ Since both CO and D2 methods
ignore the first observation, neither of these methods would, strictly
speaking, provide estimators which are identical with .those obtained by
the EGLS procedure with V replaced by 4f\. The matrix of the transforma=

tion used by these two methods is, in fact, a (r=1) x n matrix given by
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1 0 esee 0
-p \ 1 *eee O

0 0 XX -

Prais and Vinsten (1954) [vide Kadiynla (1968)_7 surgestod thoe following

transformation matrix of order n x n given by

0 0 eoe 0 0
1 0 s O 0
-p 1 ) O O

O O eoe -p 1

Tt is well~known {hat the use of this' transformation matrix will make the
two-stép methods exactly eqﬁivalenf to the EGLS procedure.s Now in the PW
method P is first és;cimé,ted by /rﬁ\*using (9&:18) and then the regpéésiqn
coefficiénts aréestima'ted vas ‘ . |

[ w1 e/ e
LA S T S

/\ + | ' | :
where o
/ A2 :
11 N 1T Eyy e
W3k L% e

X - X22 XX
X2r1 s e

Y*)Hi' - ~7D % . * -

(\ 1 =P y1’ , y2 N ';"f” yi’l )

and x, .'s (i = 1,2,..,k+; j = 2,3,e,0) and yi's (i = 2,3,..,‘ n)_
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are defined as in the CO methods ' For this method alsos Chaudhuri (1977,1979)'
showed that excepting for the special case where

Bz |X) =

A+
B BW

methods (a) - (c) can, in pyinciple, beiterated in small samples,

does not, in general, eonsistently estimate ﬁ+. ‘All the above

(d) Hildreth and Im (HL) search procedure @ Hildreth and Iu suggested

(1960) a search procedure which ‘can be used to estlmate B o According to
this method, one selects a number of values of P overt&B interval =1 and
+ 1 and for each value of P, gt is estimated by (9.3.19) and the corres—
-7 ponding residual sum of squares ig oelculated. The required estimate of P
'and hence of 6+‘are those corresponding to which the residual sum of
squares is the smallest. Naturally, in order to economise both time and
money, we first search over a wider intervals of P and then over smaller
intervals around the proper value of P, As this is‘GLS method with P

known, it follows from our discussion that excepting for the cage with

5z |x%) = o, /g\gL

be consistent.“

rthe estimater of B+ obtained by this method will not

Ve Maximum Likelihood (ML) Method

The estimators_obtained by thevabove‘methods (a) to (@) are often
referred to as ML estimators under the assumptlon of normallty gfée, CeLe g
Cochrane and Orcutt (1949), Hildreth and Iu (1960), and Kmenta (1971)_7.
However, since CO, D2 and HL estimators are based upon the joint density
of n=1 observations and not on all the n observatlcns, these methods can

be vonsidered as equlvalent to the ML procedure conditional upon the
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first observations PW method is based on all the n observationss yet it
is not, strictly speaking,‘equivalent to the ML methods This is because,
under the assumption of normality,the log-likelihood function based upon
n observations and with the assumption that )
E(S+ | x* ) =0

is‘for a given X+, é/

L==21n 024dan (1-0°%) - ~L(¢™ - x**a‘”)(y**- X g8

2'0W

were o2 = 02(1 = o?) - (9f3.‘2__1): |
It may be seen from (9¢3.21) that PW method is not fully equivalent to: the
ML method of estimation because the latter contains an additional term.
%-ln(1 - 92). In large samples, aowever, it is expected that this addi-
tional term will be dominated by the other terms if P is
not too close to 1. Since %-ln(1 - 02) is independent of n, we thus find
that as&mptotically the PW method of estimation is equivalent to the ML
nethod in the special cases. It is also clear that the first observation
will not asymptotically have much weightage and hence we can qonc]“de that

other reestimation methods like CO, D2 and EI, are also asymptotically

equivalent to the ML method of estimation in the special case.Z/

§/ This, in fact, corresponds to the special case where
Bz X7 ) = 0.
In the general case
Bz |xY) £0

and the ML estimates can not obviously be obtained.

1/ Hildreth and Dent (1974) and Beach and MacKinnnn (1978a) have provided
algorithmsfor obtaining ML estimates of the parameters.
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9¢4 Conclusions

In this Chapter we have examined the unbiasedness and consistency
Properties of the OLS, the GLS, the IGLS estimators in the cortext of a
misppecified regression model, We have é.lso briefly described”the diffe~-
rent conventional reestimation methods (also called two~step procedures)
that are often used to ‘efficiently - estimate the prarameters of an auto-
correlated linea.r regression mordel where the crror term fol.lowsia.n AR(1)
Process; the results ‘regarding thé éonsiSfency pibperty of these estimators
(which clea:cly are not the most efficient estimatorsbecause of J.mg:coper
assumptlon of the error process) in the presente of misspecification are
a.lso stated. However, we do not know how these reestmatlon methods
perform in the presence of m:LsspeCJ.f:Lcat:Lon in small samples.s We intend
to study the performance of these methods along with the OLS in such
casess The results of such a Monte Carlo study are given in the next

two chapters,
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Chapter 10

Plan of the Monte Carloc Experiment

10.1 Introduction

In the last Chapter we discussed unbiagedness and consi~tency of
the OLS, GLS and EGLS methods of estimation of regression doefficients in
an autocorrelated linear regression model in the presence of misspecifica~
tion. We also outlined the differentistandard reestimation methods iz.,
Cochrane=Orcutt (CO), Prais—Winsfcnv(PW), Durbin's two-step (Dé)-and 
Hildreth~Iu (HL), uséd for efficient estimation of these pa;r'am'e“bers\
when the error term follows AR(1) process.l/’ Further, we quoted
Chaudburi's (1977, 1979) results regarding the consistency of the esti-
mators given by these methoas in the presence of misspecificatién.

In the present dhaptér,&e shall describe the model and the design
of "the Monte Carlo experiment conducted by us in order to study the small=samnle
performance of different conventional reestimation methods in the pre-
sence of misspecificatign which may or may not contribute to the auto-
correlation of the disturbance term of the misspecified equation.g/ In

this study we have considered two types of situations with regafd 1o the

1/ It has already been stated in Chapters 5 and 6 that the error term
of the misspecified equation does not, in general , follow AR(1) pro=-
cess even if each component does s0. S0, in the presence of mis=
specification,- these methods do not remain most efficient any longer.

2/ Our study intends to examine the consequences of using the ‘conven—

' tional reestimation methods which ignore the Ppossibility of mig=
specification when, in fact, there is misspecificationin small
samples.
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autocorreclation in the disturbances. As stated in previous Chapters, the
disturbance term in a misspecified model has two components == one due to
misspecification and the other, the disturbance term associated with the

true regression equation. We consider two situationsz(1)Wh0re one of them

follows AR(1) process while the other component is present but nomauto-
correlated, and (2) where both the components follow AR(1) process.

In section 10.2 we Preserrt the model and the assumptions. The
design of the experiment inolnding the choice of parameter values are
described in section 10¢3. While the method of generation of data ie
deg™ribed in section 1044, the criteria used for assessrng the comparltlve
performance of the methods are stated in section 10.5. Conclus1ons are

given in section 10,6,

1042  The Model

For the purpose of the present study, we consider a two=regressor
linear regression equationé/

y_t = 61 x']'t -+ 82 x2t + s_t 3 % =71, 2, ey 000(100201)

as the true relationship. It is assumed that both x1 and x2 are uncorre~
lated with g+ The misspecified equation, on the other hand, is taken to
be the one where the second regressor X, has been- omltted. Then following
Chaudhurl and the approach adupted in Chapter 9 of thls dlssertatlon we

f/ enable x, to
redeflne the regressron coefficien assocrated with Xy 80 as toé?apture as

3/ All the Tegressors are considered to be measured from their respec=-
tive means and hence we do not explicitly include .a constant terme

5/' Al though.we have followed Chaudmri in Presenting the model, the
results of our experiment are independent of whether is redeflned
or note Hence, Gupta and Massoumi's (1979) comment about the
redefinition is not relevant here.
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much of the effect of x, on y as possibles The misspecified model then

2
can be written, following section 9.2 Jef. equations(9.2.3) to (9.2.6) and

footnote 2 of Cha.pter 27, as

+ o
yt = B X"t " et (XX (1002.2)
where
8 =By *+ Py By ess (10.243)
el e, + 2 (10.2.4).
t t t . oo.o oLle
Zt = 62 Wt (X X (10.205)
Wt = x2t - P21 X1t cee (10.2.6)
: ; (x/ =1 5,/
P21 e { ?l:;"(x‘l :g')} E(x1 x2) eee  (10.2.7)

/ -
SR TLR S PURLITE P
/

and xp = (X0 Xppr wews Xy ).

It is now assumed that € and W (hence ¢ and Z ) and also X, and W are

uncorrelated,'z/ Furthermore €y Wt (and hence 2 1;) and also X,y 2XC com-
sidered to have been generated by kR(‘!) processes given by
wtj & W, + uyy |6 | <1 44 (10,‘2‘68)
g, % E€ g vV 1 1< BRI (10:2:9)
and Xy = MXpem + 8y S AU S B (10.2.10)
where ut's, vt's and Gt's are gerially uncorrelated and distributed with
zexro mean and variances 03’ 03 and °§ respectively.

5/ The uncorrelatedness between € and W, however, follows from the

absence of correlation between € and either X, OF X
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We shall consider the following two types of situations g
Situation I § The autocorrelaticn in the dishﬁbmcés s: of the
| misspecified model ig due to‘ either misspecifigation
(Zt) or other reagons (et) though both *he compo-
nents are présen‘t».-é/
Situation II § 'The autocorrelation in e: is due to autogorrela~-

J/
tion in botn ét and th‘

1043 Degign of the Experiment
After having descfibed the model in (10, 2.4) to ($0:2:10) we now
discuss the different agpects of the experlment including the generation
of data, choice of parametexr values ett,

10+ 344 Sixueture of the Vars. e=Covariance Matrix

We may mention %hat in estimating a regression model one usually

tests for autecorrelation anong the disturbances unless there are a priori
Teasons %o believe that there is no such autocorrelations If the null
hypothesis of zero autooorrélatioﬁ is found to be tenable one applies OLS
to obtain besf linear unbiased estimates of the parameters: If, however,
there a.s indication of signifioant aufbocomelatmn, than the comtion Prac=

t:.ce. at 1eas?t until rébentlyj has been to assume that the distarbaﬁbes

‘ Q/ Obvlously, the autocor'r-elatlon coefficient for the other process is
then zeto,

1/ For the sake of computational convenience, N in (10+2410) was put
equal %o zero for Situation ITe Mhis relaxation was done partly
because none of the methods of estimation was found to be parti-
eularly sensitive %o. 7 for Situation I,
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(i.e., e:'é in our model) follow an AR(1) praées's lecey '\ 

=Pt tm R eev (10.3.1)
’where 19‘ ,< 1 a.nd-mt‘s are Serialiy unc;:gi'rélated and distributed with
Zero mean a.nd :constant varla.nce omz, and then to use one or the other
reestimation method to obtain efflclent estimates of the ;pa.rame+ers. An
aprlication of these methods require the use of the va.rlame-covarlance
matrix of the dlsturbances. Undex the assumed error process in (10.3.1),

the va.riance-covarlance matrix is given by

0 1 pO va oo
: g : o)
VO = 2 2 1 @) eoe 000(100302)
1=9 »
° cee
pn-a pn-3 see
(o) o . ;

However, as we have élready noted in scction 6.3 of this dissertation,

e: def.inevd as ey + 7, ca;nnot, in géﬁeral ‘ follow an AR(1) process, even
if both et and Z, are generated by AR(1) processes or if one of them
follows an AR(1) process while the other is, prcse,nt but norr-autocorrelatcd.
It is ecasy to see that, when W s (hence Z ') and et's Mtxﬂi‘} (10 2.8)
and (10.2.9) respectively, the first order autocorrelatlon coeff:.c:.ent

of e: ~= denoted by P for the. sake of smpl:.c:.ty — 1is given by

.: LR goz + 6o§ ) - - :
Do - ; 2 - W . eoe. (1003.03)
. 8 7 .

The variance-covarxance matr:.x glven in (10 3 2) w:Lth P def:.ned

(10,3, 3) is therefore, under the ‘assumed condltlozs,not the proper matrix.

-
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The proper variance-covariance matrix (V) is, in fact, given by

e gn-2 c_f + 51’,!-2 g .
| eee(1043.4)

oo esressvecnssy

‘.olo

The effect of working with a wrong va.rlance-covamam:e matrix is expected to

be reflected ‘in theefficiency of the estlmates glvcn by the methods,

10e342 Choice of Parameter Values

We are interested in this study to compare the perlormance of five
-different methods of estimation viz., ordinary least squares (OLS) yCoc'vrone=
Orcutt (CO), Prais-Wingten (pv) Durbin's two=step (P2) and Hildreth
and Iu (HL) search px;déédure.g/ Q

In order to explain the choice of the vali;és: of the parametcrs
involved, it would be Q_onvenient to first present the expressions for the
different estimatorsg. It should be noted that excepting for the OLg, all
the other methods are e:l.thecr: GLS or HGLS or approxlmatc. HGLS method of .

A+

estimation, So detoting by BOLS and /B\GLS the OLS and the GLS esti~

mators of 3 respectively, we have
n -1 n '
A + = ( 2 xZ

}
/

Sos =1 2 xy) i tYe e (10305)
-1 /1 .
/B\;LS = (x] V3 x) x vy | e (1043.6)

/
where 'i_Y.é((.‘Hv Vo1 eeey ¥y ) e

8/ As already mentioned in section 842, we do not consider for the purpose
of this study eithex. the .Ml method or the methods developed by us in
Chapters 6 and 7.
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and - . 12
’ o+
( AR L IR )
+ T 1
V(/é OLS) =23 2

(t21 * )

L — -
which, ac shown in - Appendix 10.1, can be approximated for a given

large sample as

A1 2 1+m% 2 2 14108 |
V(QOLS n 2 oé 1 - 'ng + 62 o~w 1 - 7 5 - oo (10-307)
3 X '

t=1 1t

AlSO’
WBas) = G T x) ™ v v /T )T e (103.0)
GLS XV o * x1 serTvede
which cannot be easily approximated by simple expressions.even for a large
sample because of difficulty in evaluating the expression
(+ v1 =1
(x' Vo v V0 X, )e
In obtaining estimates of the regression coefficients by these

methods one also needs an estimatorof P o The estimator of po used in

some of phese methods is based on  OLS residuals and is given by

.
t Stm1
AN t=2 ©
(o] g 9*2
teg O
where .
+ Y AL
® =¥ ="BoLg *44°

Again, as shown in Appendix 10.1, we have
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02
A 2 2 [5(11-'1) -—(%;-&)-4-7)—%:%] +[<5 (1) - Z(nmsé) +n tﬂg—:
GOV 2 W = s _ e
% Taot+®] , [a- Les
ggaé 1= T 1T =18

esee (10349)
and hence /s'% is a biased estimator of po’ the magnitude of bias being

dependent ont n and the following parameters: 7, &, &, 2/ [32 W‘

Let us now discusé the actual choise of values of the parameters
involved in-the model being considered here. We may mention, first of all,
that in our study we considered samples of size n=15 only.?-;/ 'Alsd, the
values of Bé and BY were fixed at 2.0 and 3.0 respectively. It may
next be noted that of the 16 parameters, vizesP s B By g%, of, og,
aﬁ, oy o2 . o , ol os, My & o8 and P ‘some are not independent.

1
. of o5 o 2
It is easy to see that given the values/5, 971 9% » M £y 9. and 62 ’
1

- one ocan find values of ¢ ‘Z? = 32, oé ’ Po (which is dependent on

8, £y Cand 02), o =2 (149, d,?wf;l (1=1); 62 = 0% (1 = £9
2 3 2, 1Y
d0m3(1—p)(0 *OZ)../

S

__/ Semple sizb of as low as 15 lead to enormous volume of computations
and rehults to be a.na.lysed and hehde samples of any bigger size were
not considereds

10’ It may be seen that we do not explicitly require values of Py, and B,
But, as can be seen from the relation in (10.2.3), it follows that
B, + 2, = 3 and hente there is a restriction on the values that
these parameters ¢an assime: In fact, »P21 will have a fixed
value for a given population though it need not be explicitly
mentioned for our studys '


http://www.cvisiontech.com

2717

To identify further the set of independent parameters whose values

have to be fijced at different levels, we examine the -expressions for

AN A ~ \
" V09 V, E( po)’ V(B SLS )‘“ndv(/B\gLS ) ]

o
e}

since the estimators (excepting the OLS) involve VO and and their
true sampling variancesinvolve V also. It may be noticed from (_10.3.7)-

(104349) that the expressions for

A\ A+ SRV VIR
B('P)y V(B o) amd V(B g )
involve *hree ratics of variances vizZe,
2, 2 2 2, . 2,.2 2
%A./OK,’”BZGW/U% and qs/B-20W
rather than absolute values of » . "
s, 1/

2 2.2 . 2 . 1 , |
%? By oy and oxl‘( = n IEI 1t ) o
2

So we decided to fix 0° at 1.0 throughout our study. With these chosen

x,1 v

values of some of the parameters, we now find that for the two Aiff erent

types of autocorrelated situations proposed to be considered here, the

11/ Ve have already noted that even in large samples it is quite cumber -
some to approximate the expression for 'tf(@gLS). We may, however,

see from Appendix 0.1 that

2 2 2 2\
0 L d
(x/V-1 )1 (9 T By w ) (1 po"
1 o ™1 n ' 2
5 X‘?t (1 + p =N PO)
=1
which involves the ratios of variances vize, : ¥
2 42 2 2 4,9
o /oxl and 82 oW /Ox.1
2 1 %2
where of ~ = I x5, )
( x‘l - n £=1 1t ’

apart from n, M and p;), Looking at (x,i/ V:l v V:I X, ) which imﬁolves
Vo and V (which in turn involve po,s,g,og an Bg 0‘5 ), W?"%C*?«n comie

to the stated conclusion. i
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set of parameters whose values should be allowed to vary over their

possible‘ranges are the following

2 2
Situation I ¢ & or &, T, o O
and : '
Situation II ¢ & , ¢, 03, 05 .

It ie knoyn»from the stationarity coﬁditions that each of fhe varameters
8 & and N lies in the interval =1 to +1 since negative autocorrelation
is unlikely to occur. We choose three ﬁelues for each of these parameters
iecey 042y 046 and 0.9 in this interval. Problem, however, arises in -
fixing the values :i\\ Ui and 0‘\2, since, by definition, these parameters
can take any nomnegative values. ‘Therefore, instead of ohoosing values
of these variances di:ectly,nwe decideé to base this choice on the reia-
tionships, preseﬁted in Appendix 10.2, between these variances and the
total, muitiple and partial correlation coefficients relevant for the
model . This way of obtaining values of 03 and q;_'has,an additional
advantage in that the effeot of misspecification on the pioperties of the
dif ferent estimators can then Be studied by alteinatingevalues of the
correlation coefflclents (eegey very high R;.v1 é"andléw ;;x1means that
here has been serious misspecification)s In fact, effect of mlsspeclflca-
tion on fhe estimatore'ﬂave been studied in this way. "

Now the different correlation coefficients which need to be consi-
dered for this purpose are the (squared) mltiple correlatlon coefficient
(R )» the simple (squared) correlation cmﬁflclent between y and x, (r )y
the (squared) partial correlation coefficient between y and X, when X, is

held fixed (r 72 1) and the (squared) correlatlon coeff1c1ent uetween

e and X, (r12) It is known, however, that the three.correlatlons-
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Rz, r2 and r2 are comnected by the relationship

y2.1
2 R
y201 1 - r2

and hence it is enough to choose any two of the threes We decided to fix

values for R2

and r2 which automatically deteminés the values for r52 1

Also, since we need only two relations to determine values of’ 0,5 and "3,
we decided to ignore r122. We, therefore, obtain the values of 0\5 and

0: vy using the following two relations derived in Appendix 1uve2S

R = 1 ‘ ‘ ;o_p (1003910)
1+ ‘
2
+ g 2 2 2
B B, oy
2.t T2
[o] g
£ e
and
2 1 '
roF 2 2 2 e e (102301)
62 0W 'oe ‘ "
T+ 55— + =3
3"' e ‘ B+ O_2'
_ X4 X .
Then by substituting the values of 8% =3.0, 8, = 2.0 and & =1.0,
. Fo . 1
we easily find that |
052 = 9( 1 - R2)/r2 | ‘ . X (10.3.12)
and |
) ,
05 == 9( P_z - rz)/4r ) eee (1003013)

We ccnsidered three different values of R2 and for each of these wvalueg
bof :“'.2, three values of r2 were. takyen.’ The nine pai:rs of values are as

E‘Llows $

ﬂ/ See, however, the next paragraph of this section.
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val;a.es, of values of r2
3‘32
044 ‘ O\..1 0e25 0.35 -
0.7 Ol 0.35  0.65
0495 0.1 Oe65 0.90

The values of 03_ and 05

mentioned in (10,3, 12) and (10. 3.13).

were worked out by using the relatlonshlps

We way finally note that we have not explicitly considered® varia.—

tlons in r122 This ig ¥ *cause in our fo.mmlat:.on we have
Xoy = Py L IEAA (t = 1,' 2y eeey 15)(cf. (1042.6))

and the regress:.on coefficient associated with the included regressor x1
in the misspecified equatlon has been redefined S0 as to enable i+ to
capture as much influence of X, ony as possible, Therefore, r1 2 is
not of much importance in fixing the values of the barameters. One can
see, however, that our formlation hdoels allow f‘or @iation in 12 alsoc.

12
It is shown in Appendix 10.2 that

2 o 1
12 o2 *
| 1+___1g .
)
Fo1 %,
b |

Then, since 02.- 140 and as noted in footnote 9, P 21 has a fixed value
*1
(though not expllc:z.tly mentioned), a change in the va.lue of Uw effected’

through variatiens in R and r2 implies cha.nge. in -the value of r122 also.
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1044 Generation of Data

It is clear from the formulation of the model and the discussions
so far that we need to generate only‘three scries of data = +those for
Xy» € and W, Data for y can then be gemerated from (10.2.2), (1042.4)

and (10+245)4 This was done in the following menner §

(a) The first observation 0;1)&l ieea, xﬁ _';e;s generated from &
normal population with zem.q_' mean and unit variance. This wasg
done by drawing one obserygtéon from» a N(O.‘I) populaﬁion.u-‘/

(b) The othexr observations on x, were obtaiﬂed by using (10.2.10)-
At cach stage a N(0, 1) value was drawm and then multiplied
by 09(=+§/;3" 7). This i)romzct wag fhen added to N 'vtimes |
the previous value of x1. ‘ |

{¢) The values of W, and ¢, (£ =1, 2, seee, 15) were generated
in a mammer exactly similar to those of x, 4 8 using {10.2.8)
and (40.2.9) respec tively.

(a) ¥,'s were then obtained by using (10.2.2}, (10.‘2‘:4) and
(10:2:5) and the geries of values on x,» ¢ and W already
generateds | '

It may, however, be noted that J.n cage of Sitﬁé;tion I, one of S't

and wt (in act; it vas asdumied to be ) is nom-autocorrelated and then

its values were obtained by drawing the required mumber of random nhormal

13/ The observations from a N(0; 1) population were generated with a
Borroughs 6700 cumputer system at the Regional Computer Centu.e,
Jadavpur University, Calcutta, Indjas A-Bescription of the method
of generation of the tape is given in Appendix 10+3. About 2,00,000
random normal deviates were generated, stored in a magnetic tape and
then used as and when required. All the required computations were
done with this camputer system. . =~ . o
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deviates and multiplying these values by the corresponding standard devia-
tione In Situation II, =0 ang hence xﬁ'.s are independent N(O, 1)

variates and thus obtained directly from the tape mentioned earlier,

10.5 Citeria Used For Asgessgi the Comparative
Perfomance of the Me: thdS

qu the purpose of examining the performance of the different methods
of estimation, 50 samples, each of size 15, were generated for each get of
rarameter values 'considered ’and the computations made for the different
- methods of estimation vize, OLS, CO, PW, D2 and HL, We describe below
the different computations made with emphasis on criteria useda in
appraismg the five methods of estimation ¢

(a) For each of the 50 samples, we computed the following §
(1) Estimate of the Tegression coefflcz.ent 8% by each of
the five methods-/ denoted B p (i= 1,2,...., 53
J=1y 2y vees, 50),

(id) Sampling variances of the estimators /B\IJ'

s for each
of the five methods using the conventional fommlg.e
 for - sampling variance.
(i) Standard errors of ’é\*a's (=1, 2, eveee, 53
J =15 2y eensy 50), iiee, the square roots of
sampling variances in (ii).

(b) These 50 values obtained in each of a(i)= a(iii) for the five

14/ In case of HL, we restricted P, to =0.99 £ P, < 0.99.
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" methods wcre then used to compute the following summary
statistics s '
i) Estimate of bias defined as 3%- E (/\+ - g ),
1 =15 2y eeceey 5 o=

(11) Estimate of mean square error \nse) deflned as

1 (/\+ B )2

. A Z i=1, 2, socey 5.
5 .5
0 .
J
(iti) Estimate ¢ variance defincd ag -t ( -7B<’.' )‘2
oA 9
L 49 5=1 ij i

iv= 1, 2, ee0vey 5’
0

+" .
where B = 51- Z €>ij (i =1, 2, eeey 5)e
5=1 Cu
(c) Absolute deviation of each é}:a from B+ i.e.,

+ + . - .
Aij =|€ij-6 (l=1, 2, ooogDandJ=1, 2, 000,50)

was calculated. These SC values for each of the methods were

then used to rank the 5 methods gecording to thé size of the
deviation. The methcd with the le st absolute deviation was
given rank 1, the next smallest onc rank 2y and so one Thus
we found how many times (out of 50 samples), a particular
method stood first, second and so one These were used to
calculate the average rank of each mcthod ( » Boy eeee, RS)

deflned as 5
b lspik

Ri=k=1T3 i=1, 2, eseey 5,
where Py is thé number of samples where the =gk method
occupied the k=th rank. These average ranks were used solely

for desériptive purposese For tests of significarce we
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relied mainly on pairwise comparisons of the methods. See (d)
below,

(d) Using the A.ij's (i=1, 2, ooy 5% 3 =15 2, eesy 50) calculated
in {¢), we found out, how many times (out of 50 samples), any
particular method gave estimates closer to B+ than any other
method. These.éounts for different pairs of methods were then
used to carry out (non-paxametric)‘signviestv to infer about
the compérativé performancé of the methods.

(e) For each of the 50 samples, the 95 per cont cénfidence interval
for the regression coefficient B+ were calculated fir each of
the five different methods. The mmber of times (out of 50
samples), the actual value of g* i.e., 3.0 fell outside the

) confidence intervals were then counted.
(f) For each method the average of 50 sampling variances'computéd
| by the usual formulae = gee a(ii) above =~ vyasg compared with
the estimate of variance (considered as the true sampling
vaiiance) obtained in b(iii) to find if the sampling variance
formula for Lhe mothod overestimates, underestimates or

correctly estimates the true éampling variancééui(

1046 Conclusions

In this Chapter we have set out in details the different aspects
of the Monte Carlo experiment conducted by us. The results of the

analysis are beihg reported in the next Chapter.

15/ Gupta and MZasoumi (1979, P+379), however, observed that 'the OLS formula
for the estimated veriance matrix of the regression coefficients is more
likely to underestimate the appropriate criterion of estimator reliag=
bility which is the Mean Square Errors Matrix®,
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Appendix 10.1

/\
Derivation of Ex’press:Lons of VCB”LS) (x V x )_'1

and E( p ) for a Given Sample

Here we derive the expressions throwing light on the influence of

d.lfferent parameters on V(B OLS)’ V( GLS) and B( /E):)) .

(1) Derlva‘blon of the relatlon in (10,%,7)

Proof ' ' 3
x n +) ( n n 2
I x .e S x,, e, + I x ) .
4= 1F 't 4= 1E 4= 1P Zy _
Thus :
(Zxpt) =3 F ox, e ) + )
E. = x,,6e; =E( 2= + Zx Z
teq 1EE =1 *1¢ %t 4y 1% ’c
n n
z ) .

t=1 t=1
Now, carrying out algebraic manipulations similar to thosé.inRao and

Griliches (1969, PDe2°9=270) and noting that cach of |§[, |M | and

| €| are less than 1, we have, for fairly large samples

n 2
g (1t TE
B2 ey = o] (] -ng)z

t=1
and
n 2(1+n6)§ 2

2
: 2
M = x,2) ~ B0 e
b 187 2 W =Moo M
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and
£'nce ¢ and 2 are uncorrc ated ZE(S) = E(Z) =0, we hgve
n

n . :
E(E‘xLe)(gx ) =0
gt 17 g1 1% ‘t

Thus from (10.3.5), V( IS) can, in large samples, be approximated as

S 1 2 1+ N 2 2 1+10s8
V(B s ) =% ) ["e T-n *82% 1= 775:’
oy

t=1

(ii) Approximate expression for (X’l/ V2_£x1 )-JI

e
¥ %y = —5{xy, 0 %\
.o 11
m \
-po x12 ‘
LN 0.’/
0 X

Now, carrying out algebraic manipulations similar to those in Rao and

Griliches (1969, p. 254), we can approximate x{ V;1 x, for large samples as

1
n 2
E X,
< v 2 _ = ",
}{Vo o= (1+po 27');30) 2
°n
Thus
2 2 2 2
L e rfa) (-e)
X X ~
1 o} 1 n v
5 x12t (1 + 0%~ 2np)
t=1
since
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(iii) Derivation of the expression for B /F'J\) in (104349)
We know
v ?; ot
Z ey ey
4’\ = t—2n
° 3 e+2
. t
. t=1
+ A+

where et =¥y~ B8 OLS x‘H: .

The first term in the Taylor expansion of X /{)\(‘)) gives terms up to the
order of (1/p ) = [ vide Rao and Griliches (1969), p.256 7 —

n
E(Z e+e+ )
£ Cmq
BP\) 2 =2

o n
K = etz)
+=1
Now, n
S X,V
. ; 1t vVt
e'; = B+ Xyt e: - { t:‘ 3 ) X, (from (10.2.2)).
oy 1
Thus
o .
. t,i 1t % | |
et = & = Xy - (from (10.2.2))
Z Xy

and therefores
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a + B + n + n +
B, B ,(:2’%%-1 s 1t 5 soo 1T St 3 X948
s %1 = oI el - n - n =
b .x2 b x2
=1t t=171%
L
I X, X o— n :
, =2 1871 Z, "1y €T )*. eos (410,41,1)

B s
(ti1x“’)

Since e and Z are uncorrelated ang Be) = B(2)=0, we have frem (4 10.141)

n n
Z x ., e L x,, e
n n , o 1t Ster 2 g &y
HE AN =B 2 e, - 22 =
t=2 t=2 . : n 2
| T
t=1
n n n n ]
o MR %6 Rt (B (O xpy e )P
L =2 — t=1 L = - =1 :
2 s (z )" |
t= - = N
n n
Z x .,z T x,, Z
n o Tt e 1t “t
+E | £ 2.7, = 22 =
t b= n
t=2 2
T X
toq 1%
n n
L X e x, .2
g 1174 &y 1t
n
I x
teq 1%
n ‘ n 2 7
e ney (3 ox,2)
t=2 t=9
= eee (4 10.1.2) -
2 2
t=1
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- Ve simplify (4 10.1.2) ir a mamner similar to Rao and Griliches
(1969, ppe 270=272) and find that the two expressions within the curly

brackets in (4 1047.2) are approximately equal +o

[s6rn) - ELEE L o (41001.3)

-

and

02 o2 Lum)- GED B¢ J v (2 10.1.0)

respectively.

Thus we have from (A 10.1.2) = (a 10e1e4),

n
HE o e 2 [ - AT g
\ , .

. g2 2"5(‘ 1 - 17+5)+n::»n5J‘

B2 W né né

« (410, 1. 3)

Now it can easily be seen from the previous results that

E( E e+2) N O' l_ 1—-§-‘| +B§ 2 Ln" '11'%%’%—‘ XX (A 100106>
t‘ﬂ ’ .
2 >. '

Thus from (A 10.1.5) and (4 10414 6) we find

A Mnl—%’f-J r 62 @ [slort) - 225) o208 ]

since i t-1 t ) = (

E(po): 2 - =N 5 " 1=11
+ ﬂg 2 1+
[ * 82 W[n"1_“‘-na]
2 -
% _ 2(nat) nj+ﬂg _2(ms) o 1406
B 2 3 [5( T = Tk J [ 1) = o+ s 776}
W

-2 _
Ve [ + T [ 1+ N5 j
2 2 1 -ﬂg_J 1="s

Bo % ‘
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Appendix 10.2

Derivation of Expressions for Different
Correlation Coefficients

We knowl/ true

2 Vie)
B=1-3 y) °

Since
v(y) = v( 8" X, + B W)
2
+ 2 2 2 2
=8 0x1 + B2 OW + % !

- we have

eese (& 16.2.1)

l/' In this Appendix the symbols ¥y €, x1 etc., Genote the variables
and not vectors of observations on them,
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NW’

2 = { ('}ov(x1 ’ y)}2 / V(x1 )V(Y)

2
+ 4
‘ x (g Ox +82° +0€)
1
1 .
= ' XX
8202 o2 .
2 W & ‘
T =7t 3
+ 2 + 2
BY oy Bt o
1 ’ 1

2N

(A 10.2.2)

Now substituting values of B"’, o: and 62 ises, 8" = 3404 G:2c = 1.0

1
and B, = 20 in(A 10v 2. 1) and (4 1042.2) » we find

2
and o mee (A 10.2.3)
2 2 ' '
40W + Oe -9 =0
vhere
Pw= J‘é‘ -1
R
and :
q = "15‘ - 1 (]
r

Solving the two squations in (A 10.2.3), we find
2 9 (1 = R2)
BS e ———

'y 2
and ‘
2 2
a2 - ESR - 7 )
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Lastly

2 {Gov (x4 x )32
12 V(x,) ¥(x,)

r
Now

Oov (xy5 %, ) =Cov (ks W + x; B,))  (since Xop T Xy4Fpy =Wy

from (10. 2.6))
2

=Py °x1

and.

" Thus
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£ppendix 10.3

Generation of Random Normal Deviates

. There are several 'niefhods available fox} generating random normal |
deviates ZTéee, for example, Wold (1954), Hastings_gg_gi.(;955), Box and
Muller (1958) (vide Bard (1974, pps 316-317)) and Tochexr (1963) 7.

We used the following method for generating 2,00,000 random normal
deviates used in our st{;dy.

Random three-digited mumbers in the range 001 to 999 we:,.;e,‘read
using library functlon available in the computer system, These numbers
were treated as fractions (cumu.la.t:.ve probabilities) by prefmng a
decimal point before thems These cumuilative probabilities'g;é‘r':é conver—
ted into random normal deviates using Hastings's approximation. Hastings
et al. (1955) suggested the followirg épproiu‘.mation for computing

normits i.ee, normal deviates corresponding to assigr\ed tail proba-

bilitieSo
Function ]
co - 1‘1'2
1= d— 1 e 2 @,
, \‘/zrx(l)'
Range o

0< 1 < 0.5
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Ai:»proximation}
g = f1n (43 )
1

) ; a <+ a:
X*(l) =g = ] 2 3

g+a2g?

where ao = 20515517
3,1 = 0.802853

8, = 0.010328

2
b, = 1.432788

b2' = 04189269

b‘3 = 0,001308 4
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Chapter 11 -

Results of the Monte Carlo Experiment

11+1 Introduction

We shall now present the results of our Monte Carlo exper:.ment .and
tr& to assess the relative pexrformance of the five methods of estimation
vlz., OLS, 00y PW, D2 and HL. We have al¥eady stated that we are r‘onsi- .
dering two types of autocorrelated situations ¢ the autocorrelatlon is

due to onedthe components of 5y and Zt' the other bemg random, and

(ii) the autooorrelat:.on is due to both ¢, and Z,. In either case, each

t t°
error component, where -i'b is a.utocorrela.ted, is assumea to follow AR(1)
error process. We have also noted in the prev:.ous Chapter ‘that in the
former case We ha.ve assumed ‘that the x.'-ser:.es ie algo generated by ‘an
AR(1) pu:ocees, but 1n the latter case, we bavea;ssumeg_that x1 ie a
randgh series, | :

-wé have -~a11~eaay~éxp1-ainedoﬁr choice“a'f“ﬁafémeter values. We com=
sider as mar;y as 81’ parametric combmat:.ons (3 values for each of R2, r2,
8 and N or ¢) for both the s:Ltuat:Lons consxdered. For ea.ch of the 81.,com-
bmatlons of parameter values we have drawn 50 samples each of size 15.
The va.rla.tlon in parameter values across the 81 cases is expected to
throw llght on the effect of the 1nd1v1dual parameters on’ the relat:.ve ,‘ |

performance of the estzma.tors bemg cons:.dered. As ment:.oned J.n the i

previous Chaptex, the a.na.lys:.s of the results will be done in tenns of-
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(i) absolute deviation (ii) bias (iii) sempling variance and (iv) mean
v;: § = . . '1 1
square error (mse) of the estimated values /B.\+. -4 We have also cal=

Qﬁlated the 55 per cent confidence intervals for g7 in order,to’examine

the interval estimates. It should also be mentioned at the owtset that we
-did look at the results obtaiped from individual samples seﬁa;z;atel# for |
each parametric combination. Wlek,,how’ever,‘ present here only the summary
statistics and discuss the broad cdnclusi_orvxs_ in terms of those since the
individual samples do not‘ seéln to give mucﬁ .addj-.tj‘.ona.i statistical infor-
mafion beyond what is contained in tﬁe mmma.ry statisticse The results

of our experiment for the two sifua,tions are discussed separ. tely in
sections 1142 and 11.3. In the last section we present the 'c-oncluding

observations of our study. : ' -

t

112 Situation I ¢ 2, Follows AR(Y), but g is Random

11+2+1 Comparison of Absolute Deviationsg -

Let us first examine the performance of the aiff erentn'method;;."‘ in
terms of the absolute deviations I/B\+ - 8% e Since for each parametric

combination we have 50 samples, there will ‘be 50 'absolute deviations for

1/ While ranking the five methods by absolute bias and mse criteria, we
left out those cases (iscs, parametric combinations) where the range
of the 5 absolute bias/mse figures for the five methods was at mos
0.01. This was done for both the situations. :

2/ In case of ties (i.e., agreement upto the second place of decimal)

all the tied cases were given the lower rank in ranking the five
methods by absolute bias and mse criteria in both the situations.

Thus, for example sthe rank (pdsition) of the 5 absolute bias
figures could be like ¢ T, 1, 3,74, 5. '
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each of the five methods. “Hence a paii‘wise cdnpai'ison of the different
methods can be done by flndlng out ‘the mmber of sarvples, out of 50, where
the absolute deviation of each method is less than- t"xat for each other
nethod. The results of such COmpar:Lsons for each of the ten palrs of
methods are presented in Teble 11.1. I't is clear from thls table that PW me=
thor 'is: undoubtedly better t‘ia.n the other methocs. It ha.s come out to be
superior to OLS, CO, D2 and H in- 48, 52, 55 and 59 cases respoctlvely.
Next to PW are CO and D2 methods which are qurbe close to each other. Both
CO and D2 beat the OIS, PW and HL in almost equa.l rumber of cases. As
between CO and D2, GO beats D2 36 tlmes and is beaten by 1t in 39 cases.
It seems from this table that HI. is the worst and the OIS is somewhat
better than the HL.

Table 11e1 & MNamber of cases out of 81 where each method
. beats* each other method. in ab%olute deviations
lé\"' - gt | in 50 samples 3. Situation I== both Z,

aric’i }‘C‘:H: follow AR('I), but St is random.

methed b‘eating ~ method beaten
: , 0LS o P Do HL
(1) , 2 (3) (4) (5 (&)
Ordinary Least Squares (OLS) - / 30 24 32 38
Cochrane=Orcutt (CO) T - 23 36 57
Prais-Wingten (B) 48 52 - 55 59
Durbin's two=step (D2) - 40 39 | 22 - 57
Hildreth-Lu (m) ’ 35 19 16 18 -

* A method is consn_dered as beating another method if the absolute
deviation | (3 - 5 | for the method is less than that for the
other at least 26 times in the 50 samples.
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The results in Table 11 1 are based on simple counting. The sign |
test was used to examine whether the absolute dev1atlons for any method
tended to be smaller than thoge for any other method in the SO samples }
for any particular Parametric c0mb1natlen. Results of such pairw1se
comparlsons are presented in Table 11. 2. Thu Sy for example, the flgure
in the first row and the second column of thls table 1ndlcates that ig
5 out of the 81 ocases, the absolute devzatlons for the OLS method are .
exceeded by those for the CO s1gn1flcantly at the 5 per cent level. The
same table shows that €O beats OLgS 1n the same sense in 11 out of 81
casess The TW method is found %o be superior at the 5 per cent level of”
significancea, While, on the one hand, it beats the OIS, CO, D2 and HL
in 16, 7, 9 and 14 cases respeetlvely, it is, on the other'Hand, beaten
by these methods in only 2; 1, 3 and 3 cases respactlvely at the 5 per
cent level of significanoe. At the same level of 31gnif1cance, CO seems
to occupy the sesond best pos1tlon.’ It has beaten the OLSy D2 and HL in
11y 4 and 15 oages respectively and has been beated by these methods in
5 1 and 0 oases only. Following CO»areuthe OLS and-bé;ffThough the-OLS
and D2 seem to be quite cloge te-eaegiether, the OIS i§“911ghtly better
than D2 It is clear from the table that HL ig ‘the worst among
the five methods, Furthermore, it can be seem frog this table that
similar conclusiong hold for the relative positions of the methods at

the 1 per cent level of significance also,.
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3

Table 11.2 ¢ Number of cases out of 81 where each method
beats* each other method significantly by
sign test based on absolute deviations
,€+ - B+ | 'in 50 samples ¢ Situation T - both
Z, and X, 4 kfollow AR(1), but’ e, is random.

nethod. beaten

method beating

| OLS G0 W D3 HE
(1) o 2 B (4) 5) (6
: (a) at 5 per cent level of s:.gmi‘lcance
Ordihary Least Squares (OLS) - 5 2 7 7
Cochrane-Oroutt (00) S 11 S T 4 15
Prais-Winsten (PV) T T - 9 11
Durbin's twomgtep (1)2) B 3 - §

Hildreth-r.u (HL) : . . 7 o 3 0 -

'\/

(b) a.t ng- cent level of significance

Ordinary Ledst. Squams (OLS) T - o 2 34
Cochrane~Orcutt (CO) 6 el 0 1 .7
Prais-Winsten (PW) B e m 5 . 3 ¢
Durbin's two-step (D2) 6 0 R 1
Hildreth-Iu (HL) 4° o E o -

P

* A method is ¢onsidered as beating another. methed at 5 per cent a.nd
1 per cent levels of significance 3 £ the . absolute deviation- ,B B |
for the method-is less than that for the other in at least- 32 and
34 times in the 50 samples I:espectlvely. ’
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A comparison of the diff erent me

‘the averages over 50 samples of ranks o

300

thods was also dome in termscf

f the five estimators by size of

absolute deviations, The number of times out of the 81v cases, a parti-

cular method \obtained the first'positio_‘n (i.e., showed the lowest ,avgra;gé

rank among the methods), the second position

Table 17 03§

etc., are presented in " -

BTN

Table 11,3 g Frequency distribution of relative positions#
) | of different methodg in the 81 cageg according'
to averagesover 50 samples of ranks based on
. absolute deviationg l%"' - B+[ b

both Z, and x

Situation I -
ét ig random.

. 44 Tollow AR(1), but
Position LS T By I A
D S M ) SN ) B ) N €
first 16 10 36 15 6
second 14 25' 22 16 7
thira 15 26 8 20 13
fourth 9 16 6 25 19
£ifth oz 4 9 5 36
total Y 81 81 81 8

* In case of ties (i.e., more than one method having exactly
 the same average rank),the 1ower rank was given to all the

tied methods.
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It can be seen that out o~ the 81 cases, the PW method secured the
first position 36 timese All the other methods were far behind so far as
occupyiné the first position is concerned. €O appears fo be the second
best method, followed closely by D2 although in terms of fhe frequency of

the first position, D2 has a slight edge over CO.

114242 Comparigon of Biasg

Let us now consider the bias in the estimation of B + for the
different methods. We calculate the bias as the average of (é?+ - 89
values over the 50 samples for each method and for each Parametric combi=
nation. The figurés for the bias thus obtained are presented in Appendix
Table A11.1s Here we discuss only the relative Performance of the methods
in respect of the absolute value of the bias by considering the number of
parametric combinations in which the magnitude of absolute bias for a
particular ﬁethod is the lowest (1st position), second lowest (2nd posi=
tion) etc.” These figures are given in Table 11e4s It may be pointed out
that in 2 out of the 81 cases the difference in absolute bias among the
five methods turned out to be negligibleZ/ and hence these cases were left
out of cons1deratlon. From this table it appears that OLS iy the begt
so far as occupying the first p031t10n is concerned. It has stood first
as often as 32 timesg. However, from Appendix Table A 11¢1 we may find
that the dlfference in the flgures of absolute bias of OLS vis-a~vis
other methods are not always very wide and that OLS has a tendency to

be the best among the five methods or being somewhat close to the best

3/ As stated in footnote 1, in these cases the range ‘of the 5 bias
figures was at most 0.01 (vide Appendix Table A 11.1),
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method when 8§ is low (e.g., 8§ = 042)e Thus the conclusion on the.basis
of absolute bias may not be very clear. If we take first and second
positions together, PW seems to Be slightly better than the other two=setp
methods. In respect of occupylng the last p031tlon, W seems to be much
better than OLS. On the whole the performan“e of OLS seems to be somewhat
erratice Alsoy . PW does not come out to be distinctly superier;tq the
other two=step methods; in fact, PW, €O and D2 seem ‘£b be:broadly similar
though CO seeme»to be somewhat worse since it tends to occupy the third
position in e large proportion of cases. The performence of HL: also seans
to be quite.comparable to the other two=step methods. It hag occupied
first, third and firtk positions 21, 19 and 22 times respectlvely. We may
therefore say that the ranking of the methods by absolute bias %s somewhat
unclear. OIS (and to scme extent HL also) cannot be easily placed in
relation to CO, PW and D2; they occupy the extreme ranks (1 and 5) more
often than any of these methods.

Table 1144 ¢ Frequency distribution of relative positions*
of different methods 1n the 81 cases** according
to abs~lute bias of B ¢ Situation I = both
z, and %, follow AR(1), but e, is random.

position oS oo methegw 5
2 HL
(1 (2) (3) (4) (5) (6)
first .32 ' 1 13 18 2
second 8 16 ) 28 19 8
third 6 28 17 17 19
fourth 13 17 ' 12 20 9
fifth 20 7 9 . 5 22
total | 79 o T 79 19 719

*  See footnote 2. :
*¥*  As stated in footnote 1rwe left out 2 cases (out of 81) where

the difference in absolute biag figures for any two methodsg
was at most 0,01, :
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1142.3 Oomparison of Actual and Estimated"(A{ré_rage)

Samﬂ:;gg Var:.a.nces

One might be J_nterested J.n lookmg a. the suztab:.llty of the com~

" ventional samplmg va.rlance estlmator V (6 ) for the five methods,

the presence of misspeoif;cat:.on of the type congidered here, the usual

- estimator of the sampllng varla.nce may overestma,ue, underestimate op
correctly estimate the true Ba.mpllng variance of 5 - when the regreasors
_are stochagtic [ haudlmri (1979) _7 To see this, we oaloulated the esti-
mates of the sampling vamaaces of each of -the five- estimators by using
‘the respective fonnula for each of the 50 sanples, We also estunated the
true Bampllng variance of each estunator on the bas;s of ‘the 50 v-alues
A for the 50 samples (see 'b(:.:.i) of Chapter 10). This latter: egtim
mate considered as 'l:he "actual sampllng varianee " of- "!B"r was ‘Gbtained

and compa:ced with the average of the 50 estimates of saxﬁpling va.r:.a.nce

81 pé.iémetric combinatiOhs andfor each estima-.tor’." These figures are
given in Appendix Table A 112, It ig possible to 'il’ind out, on the -
basis of these figures, the mm'be:r: of cases J.n whmh, the actual samplmg
variance - of any of the estimators is overestmated/ unda:estmated/
correetly eatinw.tedy by the co:rresponding cunvent:.onal samplmg yariance

the . :
estmator forépa.rtmular method, Such summary results are Presented in

4/ Since our 'a.ctua.l sampl:mg variance" is also estimated on ‘the bas:.s
of the 50 values of B ‘for the 50 samples, the terms: "ovemes*l:ma‘bloq/
undetreatmatlon"‘ are, strictly speaking, not valid. -However, we are
using thege terms here in a somewhat loose sense. ' ' S
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Table 11+5 This table also gives some idea about the magnitude of over-
estimatior/u.nderestmatlon. In the last ocolumn of the table wo have pre-
sented an average (over the 8‘} cases) of the percen‘ba,ge d.:.fferenee between
the conventlona.l estmate of sampl:mg varlance and the actual sampllng
va.rJ.ance. It is. clear from thls table that for a.ll the me’chods und:erestl-
matlon is- slgniflcantly more frequent tha.n overestmatlon. The *counts in
columns (2) a.nd (3) suggest that OLS is the best though only modera.tely
superior to 00, Pw » a.nd D2y and HI- is somewhat behlnd all others. _ 'I'he
percentages in column (4) indicate that the- conventional formla under=.
estimates the true samplmg variarice by 17 to. 20 per cent (approx.) for all
the methods excepting for HL where the downward bias is about 25 per cent.
In this latter respect again the OLS seems to be the best, though CO, Pw
and D2 are very close to ite It should be ‘noted that the averaging over,

81 _parametric combn.natlons blurs the" plcture to gome extente

. Table 1145 t MNumber of cases out of 81" where the actual
sampling variance is overest:.mated/underestlmated »
by the conventional formula and the average mag=
nitude of overestJ.matn.on,/underestlmatmn, for each -

method of estimation** s Situation I- both 2 2y and -
follow A.R(1), but £, is randome -

'H:
‘ mmb sr of % the ac tunl .. average p_er;:entage
method Ea'xg va:rla;nce ‘is s of .. o
' overr under=. . over {+) cobimation/

estimated estimated estinotic
(T)E* 8 . _ s ‘ - = ?stm icn
Ordinary Leest Squares(0LS) 22 56 = 17405
Cochrane=Orcutt (CO) 13 5 T = 18,76
Prais~Winsten(BW) 12 .68 = 49,56 .
Durbin's two-step (D2) 12 6T . =1940
Hildreth & LW (HL) T 1 = 2505

i

* Ties (i'e., ‘agreement upto the second place of’ “dscimal of the two™
variance figures — vide Appendix Table A 11. 2) are left oute

*% For each parametric cogbination the actual sampling variance hds been
estimated from the 50 8% values for the 50 samplesy This has been
compared with the average of the 50 sampling variances t#scd on '

Lmnu.n..‘..ua.. G o ‘4'{ 1
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11244 Performance of Confidence "ihtervals

In order to examine how well B + is estimated by means of confidence
intervals cohstructed by conventionai methods, we calculated the 95 per cent
confidence interval for B+ for the 50 semples far each of the 81 cases and
for each of the five methods. The rnumber of times these intervals failed
to include the true value of B+ was then counted, These nmumbers have been
présented in Table 11.6. It may be séeia that these counts do not, in general,
indicé,te any marked difference on the performance of the confidence intervals
for the different methods, nor do they show any systematic éffect of the
variation in the individual parameter values. We may, however, note that
for high values of 7 and 5; particularly the latter, the intervals miss
the trﬁe ,.f,ﬁ"' much rﬁore frequently than in the other cases. Thus, for
example, when N = 0495 and § = 0.95, the mumber of times the calculated
intervals fail to includé the true value of B+ isy in general, higher
(and much higher than the expected number) for all the methods irrespec=
tive of the values of R? and r2. This, however, does not help us much
in assessing the relative performance of the mcthods which, in fact, is

our main concern. It is a.lso‘not a very surprising observation. It only

tells us that the higher the_degree of autocorrelatien in. the 'x,]'-eeries
and in the autocorrelated component of the error term, the more Pronounced

#ill be the consequences for the interval estimates of B+.


http://www.cvisiontech.com

Table 1146 §
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Number of samples where the true parameter.

value 6 is not covercd by the 95 per cent
confidence interval, for eaci. parametric:

~combination and method of estimation 3

Situation I = both Z, and x . follow AR(1),

t 1t
but St is random.
srle walues of correlation and auto- number of samples -where
noe _correlation coeffidients - B+ is not covered
RZ. x’ n 5 OLS 60 PW D2 m

(1) 2) ) \4) ) {6) \7) 8) _ {9) {30)
1 0440 0.10 0s20  0.20 2 2 ‘3 2 3
2 0,60 4 4 4 4 s
3 - - 0.95 4 w3 2 3 3
4 0,60 0,20 2 1 T2 1
5 0,60 2 4 4 4 4
6 | 0,95 4 6 5. 5 .5
7 0495 0420 2 6 4 7 6
8 0.60 8 10 8 11 10
3. 0495 9 12 12" 12 19
10 0440 1 0.25 0420 0;20 1 5 5 5 >
11 0,60 1 5 5 6 6
12 0.95 2 4 4 4 5
13 0.60  0.20 2 3 3 . 4 4
14 0460 1 0 0 0 3
15 0495 3 4 7 5 8
16 0.95 0.20 1 3 2 3 4
17 0460 6 7 6 7 7
18 0.95 5 8 9 6 8

contdesse o/"'
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Table 1146 (contd.)

9 AN B € o ) B N 6 W © N ) W €10

19 0440 0435 0.2 0.20 3 6 -6 7 8
20 ' : 0.60 2 4 4 5 5
21 ~ | 0.95 - 1 2 2 2 2
22 0.60 0.20 2 3 5 3 3
23 | 060 -7 9 9 8 9
24 | 0,95 5 7 6 8 10
25 o 0,95 0.20 3 T 7 7 7
26 0460 A4 4 4 4 4
27 ' 0.95 7 10 1. 10 10
28 0,70  0.10 0.20  0.20 1 5 5 6 6
29 0,60 4 5 5 5 5
30 | 0495 4 3 4 4 5
31 | 0.60 0420 5 7 7 77
32 " 0460 6 3 3 3 3
33 0.95 10 4 5 4 5
34 0.95 0.2 4 3 4 5 5
35 0460 9 8 6 8 9
36 0,95 - 24 13- 14 12 12
37 0.70 0.3 0620 0,20 0 2 2 2 2
38 0.60 3 2 3 2 3
39 | 0.95 1 4 5 .6 6
40 0.60 0.20 6 7 7 7 7
41 0. 60 2 4 5 5 5
42 | 0,95 8 6 8 10
43 : 0495 0,20 2 6 .6 7
44 | 0460 12 9 8 8
45 V 0495 16 11 13 13 11

contdeees o/-
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Table 1106 (contde)

O e @ & ®_ O O (10
46 0.70 Q.65 0,20  0.20 1 2 1 "'“‘é 5
4 | o 4 3 6 3 3
48 - o 0,95 2 2 2 32
49 0.60 0.20 2 2 1 4 5
50. 0.60 4 6 7 7 7
51 | 0.95 1 3 2 3 4
52 095 Oin 2 5 4 5 6
53 0.60 4 4 4 4 4
54 095 13 12 12 11 12
55  0.95 0.0 0,20 0.2 5 6 6 6 6
56 | 0.60 5 5 6 5 T
57 0.95 4 6 6 6 6
58 ' 0.60 0.20 . 3 3 4 4 5
59 o 060 - 5 4 4 L4
60 - 095 10 2 21
61 0,95 0.20 - T 6 7 8 6
62 R | 0.60 14 - 8 6 8 9

63 L0495 o8 12 1T 14 13

contd..../%
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Table 1146 (contd,)

—_—

B S € NS € MM ¢ H € B (0 N ) B ¢ ) R €

64 0495 0465 0.20 0.2 2 1 2 1 2
65 - 0460 1 3 3 3 3
66 0.95 & 6 7 g s
€7 0.60 0.20 4 5 5 5 5
68 _ 0.60 4 4 3 4 4
69 0,95 . 13 . 4 5 30 2
70 0.95 0.2 8 4 4 4 4
71 . 0u60 13 9 7 9 12
72 0.95 25 15 16 15 15
73095 0,90 0,20  0.20 3 4 4 4 4
74 0.60 4 4 4 4 4
75 0,95 5. 7 1 7 4
76 0.60 0.20 6 5 4 6 6
(A 0.€0 ‘5 7 9 8 7
78 0.95 5 2 4 3 3
79 0.95  0.2¢ 0 1 0 1 1
80 0.60 21 16 18 15 17

81 0.95 17 12 13 12 13
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We may mention that the pcrformance of the confidence 1ntervals
depends on the bias of the point estimator and the bias of the sampling
variance estlmutq?:i_Thc results presentegwso far,could lead-onewte~expeet
some of the methoas like B¥ to be superior. to others like HL, These expec—
tations do not'appear to be fulfilled., We may also mention that in order
to.. see 1f the bias of the different estimators were significant so that
confidence intervals could be valid, we computed the ratio of absolute
bias to the square root of actual sampling variance defined in subw

-
section 114243, Following Cochran (1977), we considered the effect of
bias on the accuracy of the estimate as negligible if the biag was less

than one tenth of the standard deviation of the estimate, For all the

methods we found that in many cases the biags was not negligible,

11245 Comparison of Mean Square Error

Finally, we shall analyse the mean square errors (mse) of the
estimates of g% by the different methods, Considering the importance
of ‘mse as a criterion for Judging the'éfficiency of an estimator, we have
presented in Table 1147 the mse of 1§+ obfained by the five methods for

each of the 81 parametric combinationg,
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Table 11.7 ¢ Mean square error of é?ﬁ estimated by different
- methods for the 81 parametric combinations 3
Situation I —’both Z, and x,, follow AR(1),

but St is random.

values values of correlati§5:§gpffigients

commer B2 = 040 _B% =070 R® = 0,95

lation . rP=10 222,25 222,35 122010 £2=a35 2265 122010 x2mu 5 22m 190

cocffi- ’ : o . -

clents . . : »

n . - . o

W2 B @ B (& " G 6B 0o )

(2) Ordinary Least Squares (o1s) “ ‘

0,20 0.20 5.32 2,32 147, 5.62 1440 12.42. 6.95 0.27° 3.07

0,60  6.48 2,40 1464 4.90 1.49 0,39 9436 0.39 0,06
0495 5.86  2.29 1422 6414 0.74  0.28  4.53  0.42° 0,08 -

0060 0420 610 2,56 130 8,57 1.79 035 9.24 057 0.09
0,60 7468 1.67 2,16 10.35 1.92 0s42 12,16 0.72 0.12
0,95 10492 2,88 1,50 13.48 3,29 0.37 14:80 0,66 0.17

2095 0420 14409 5.36 361 12.23 238 0.6 26,04 0.96 0.6
0,60 25,26 5480 3,27 23.54 6i82 1410 32,22 1.96 0.48
0095 23482 7.42  4a04 83435 .57 1.44 4,52 3:01 1.08

(v) Cochréﬁe—orqutt (¢o) v _ )

2020 0020 5.61 2043 1461 7415 - 1.61 39.01 T.51 0.27  0.07
0,60 "6.65 2,62 1274 611 141 0,36 6.43  0.32  0.06
0495 '5.29 2,52 1.24 426 1,13 0.36 1233 0,17 0,07

Ze6g 0420 Ta15 2477 1418 11,19 2,18 045 T7.89 0.59 0.1
0660 7400 2,25 2,18 8449 1.90 0,45 8,71 0.5 0.1
0495  9¢11  3.05° 1482 690 2,22 0,35 2.78 0.22 0,09

$e35 0420 19409 7.75 4,04 13.55 3,54 1419 24,52 0.93 0.18

0,60 28,21 6,73 3,46 22,29 5.47 1415 30441 2,00 0,37
0e95 27e31  Tedd 4407 43e13 6446 1488 28491 1415 1417

contdecscos o/"
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(OGN, ) & O o 1) |
: (¢) Prais-Winsten (Pw) ' o
0020 0.20 5.83 2,40 1.70 6.38 Tedd 15428 6,52 . 0.29 0.07.
0460 6435 2,24 1.59 2¢04 1437 0437 5.83  0.29 0,05
0.95 5.14 2,40 1.2 4.2 1003 0033 1525 0,18 0.06
0460 0:20 . 6,48 2,62 1.33 10,11 1485 0u0 7.7 0.60  0.11
0:60° 64507 1476 2,38 8.37 1,75 0.2 7.6 0.50 0,11
0.5 8.57  3.05 1.56  6.50 205 0435 2,94 0.24  0.09
009 0.20 14.00 . 6,92 4.04 12.80 2,65 080 25:97 0.87 0,14
0.6 22.86  5.55 3,29 18.07  5.89 1,03 25.95 1.62  0.33 |
00 2249 Te2 3.97 4269 6,13 1.3 31464 1,08 1,01
; (4) Durbin's two-step (D2)
0:20 0:20 5.96 2,63 1.60 7.43 1.66 39.64 765 0.28 0,08
0s60 7419 " 2071 * 1.76.. 6.33 1e34 037 634 0032 0,06
025 5412 256 1.26 444 1,21 0040 .35 0.1 0,07
06 0020 a0 275 4017 11,35 2029 G e 0.65 0.13
0460 7.2l 2024 ".2.27 .60 209 0,46 "8.62 0,49 0,12
0495 8440 ‘3,29 " 2,19 (660 2017 04380 70,94 0,19 .0.09
0.95 0.20 20,01 8,16 - 3.88 13.71 4418 1,20 26,33 094 0.19
0:60 29.40  6.33 - 374 22.81 4493 " 1.16 30.45 - 206, 0436
2090 2106 Ta15 4429 33428 6,40 1488 17.14 - 1.15 . 110
, (e) Hildrethln (mm) |
0:20 0:20 6467 2,80 1,79 7.65 1.4 57485  7.92 0430 * 0.08
0:60 8499 2,74 1477 6.65. 1.34 0,3 6:35  0.32 0,06
095 527 2466 1426 4455 1.24 0,10 1.35° 0,13 0.07
0160 0.29 7448 2,82 1.20 11.85 2,42 0,54 10,43 0,68 0,14
0:60 730 2,40 2,28 9.30 239 0,46 6.69 0.53 o0.1s
0:95 829 3.43 2057 6.62 2,21 0.46 0.92 0.8 0.09
0095 0:20 2243 23.06 4,07 2054 5.29 1,40 25.53 1.0 0419
060 31,18 7.08  4.18 36,735 4472 .20 36029 3.45 0,79
09 21448 851 4412 2915 6.69  1.98 16.67 1.36  1.10
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A mumber of observations regafding the sensitivity of the mse with
respect to variation in the parameter values oan-be made on the basis of
this table. One can see, first of all, that for given values if R2, r2
and &, the mses increase with increase in the value of N for all the
five methodse No such conclusion can be drawn with respect to variation
in the values of & when other parameters are kept fixeds In other words,
wheréas increase in the degree of autocorrelation in the x1-series
adversely affects the mse, the same cannot be said about the effect-of the
degree of autocorrelation in the error term due to misspecifications,

So far as the effects of the correlation coefficients are concerned,
it is noticed that the mse's decrease sharply when the value of r2 only
is increased keéping other parameters fixed. This isy of course, to be
expecteds It only tells us that as the correlation between y and X, |
increases the efficiency of the estimator 4;\+ also increases. In fact,
a higher value of r2 (whep R2 is held fixed) can also be taken to imply
that the eiffect of misspecification is dﬁniniéhed,and in such situations
we find that mse values also decrease. Thus ve can conclude the lower
the effect of misspecification, the lower is the mse.

We may alsé note that in most of the cases where § = 0.2, the mse
alues for OLS are smaller than those for the other methods. This is,
of course, quite understandablé. Leaving aside parametric combinations
where the diffefence between mse's of any two of thé methods did not exceed
3.01 at the most_(jigg footnote 1), we studied the relative positions
(ranks) according to mse of different methods in the remaining 78 cases

in order to get an overall picture of the comparative performance of the
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five methods. The summary results are presented ir Table 11.8. From this
table we observe that PW has occupied the first position 34 times, the
sccond position 28 times and éo one - Thus the superiority of PW over all
the other methods is once again establisheds HL secms to come last among
the five methods 8 it secured the last position in the ranking as many as
43 times. Against this,OLS stood first 30 times, but it stood last 26
timese - Thus, even though OLS follows PW in terms of the frequéncy of
occupying the first position (in fact, most of these cases are where.

8 = 0e2), when we consider the‘frequencies df the other positions, we find
that the performance of OLS is quite variable. Looking at the second posi=
tion, we find that the performances of CO and D2 are about the same, but
CO stood third 40 times whereas the corresponding figure for D2 is only 15.
Thus here also we can conclude that PW is the best followed by GO and D2.
HL is the worst. The relative . position of OLS fluctuates widely ¢ it
occupies ranks 1 and 5 with high frequency. Thus, it appears that, as
compared to -the other methods, OLS is more sensifivc to the values of the

paramcter &,

Table 11.8 ¢ Frequency distribution of relative positions* of
: ' different methods in the 81 cases** accordlng to

the mean square error of ﬁ» ¢ Situation I = both
Z, and x,, follow AR(1), but s is random.

Tt 1t t
- . method ) ;

position OLS co Bl D2 HL

1) (2)_ (3) \4) (5) (6)
first 30 6 34 7 8
second | 13 18 - 28 19 4
third 3 40 7 15 9
fourth 6 13 7 34 14
fifth 26 1 2 _3 4%
total 78 78 78 78 78

* See footnote 2.
¥% As stated in footnote 1,we left out 3 cases (out of 81) where the
difference in mse values for any two methods was at most 0.01.
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+
"AR(1) Process

11¢3 Situation II § Both €, and thollow’

We shall now congider the secondvsituation iecey where autocorrela=
tion in the error term (e ) of the mlsspeclflod moder is due to both mig=—
speclflcatlon (z ) and other reasons (e, ) As stated earlier, we have
agsumed both the error components. to follow AR(1) Process. Also, we now
give up the assumption (made in Situation I) that the xa-serles follows
an AR(1) Processs this is done since the effect of N (the autocorrelatlon
r*oeff:l.o:::l.e*n; of the xa—eerles) was-not found to be quite 1mportant so far as
the relative performance of the different methods is concerned in Sltuatlon
I, We assume that xﬁ is a random process and thls reduces the bulk of the

computatlons. The presentation of the results in this section follows the

saume arrangement as made in the preceding section.

11e¢301 Comparison of Absolute Deviations

As inFSituation I, we first carry out our analysis with the criterion

of abgolute deviation. The results are Presented in Tables 11e¢9 = 114711
Table 11.9 gives the actual rumber of cases (cut of 81) where each method

is found to be superior to each other method on the basis of absolute
deviations in the 50 samples. It is obvious from this table that OLS ig

far inferior to all other methods. OLS beats GOy PW, D2 and HL in 14, 10

16 and 15 cases (out of 81 cases) respectivelys it is, on the other hand,
beaten by these methods in 65, 68, 63 and 61 cases respectively. The
superiority of PWTemong all the five methods is also cleare. It beats thesge
methods more freqdently than is beaten by fhem. As regards CO and D2,

there is very little difference. Thus, D2 beats CO 38 times whereas it is


http://www.cvisiontech.com

316

beaten by €O 31 times. The rela::tj.‘ve Performance of HL in this situation
is much :bettex" corﬁpa.fed to Situation T though it ig still bellind CO and D2,
Whereas HL hag been beaten by €O and D2 42 ang 41 timeé Trespectively, it
has beaten therﬁ as often as 34 ang 33 times, respc;ctively. Thé difference
beween HL, on the one ‘hand, and D2 ang co, -on the other ,wag much greater

in Situation I tha.n in the Present situatioh. :

Table 11,9 ¢ Number of cases out of 81 where each method
beats#* each ot_l;ler method in absolute devia=
tions | B - 3 | in 50 camplog 3 Situation IT =

both ¢ and 2, follow AR(1), but % is random.

‘method beating _ 'meth?d beaten

01S CO W D2 THL

€] 2 (31 4 o) (&)
Ordinary Least Squares (oLs) - 14 10 16 15
Cochrane=Orcutt (G0) s - 28 31 42
Prais~Winsten (BW) 68 38 - 40 16
Durbin's two=step (D2) | . 38 g - #
Hildreth-Iu (HL) | . 61 | 34 24 33 -

* A method is considered ag beating another method if the absolute

deviation 1@4' - Bf"l for the method ig less than that  for tne
other at leagt 26 times in the 50 samples,
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We observe from Table 11.10 that PW is still the best although the
margin of its superiority over the other methods has slightly fallen as

compared to Situation I, On careful examination, it appears tm;t HL, D2
and CO are about vequally good in Sj.tuation IT while OLS has the worst
performances The relative performance of OLS is much worse than in the
previous situations In Situation II, it has significantly beaten Co, BW,
D2 and HL only 2, O, O and 2 times (at the 5 per cent level of significance)
whereas it hag been beaten by these methods as often as 3%, 41, 38 and 37

times respectively (at the same level of significance),

Table 11,10 § Number of cases out of 81 where each method
beats* each other method significantly by sign
test based on absolute deviations ']/é'* - B+ | in

50 samples ¢ Situation I both et and Zt‘

follow AR(1), but x,, is random.
method beating 0is G Omethodpzeaieg D2 i
(1) (2) (3) (4) (5) (6)

- (a) at 5 per cent level of significance
Ordinary Least Squares (0IS) _ - 2 0 0 2
Cochrane=Oreutt (CO) 39 - 1 1 2
Prais-Winsten (¥W) 41 6 - 4 7
Durbin's two=step (D2) 38 4 | 2 - 5
Hildreth=In (HL) ' 37 2 0 4 -

" (b) at 1 per cent level of significance
Ordinary Least Squares (OLS) - 1 0 0 0
Cochrane=Orcutt (CO) 39 - 0 0 1
Prais=Winsten (PW) 35 2 - 0 1
Durbin's two-step (D2) 30 0 0 - 0
iildrethelu (HL) 0 0 0 1 -

#* A method is considered as beating another method at the 5 pexr cent and
1 per cent levels of significance, if the absolute deviation |B" - B"')
for the method is less than that for the other in at least 32 and 34
times in the 50 samples respectively,
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The positions of different methods remain almost the same by the

criterion of i‘i‘ém d;i.stribution based on average ranks given in

Table 11411s The superiority of PW is again clear; it is followed by

D2, GO and HL which are fairly close among themselves. The OLS occupies

the last position as :Ln the preceding tabless HL is far superior to OLS.

Whereas HL has occupied the first, second and last positions, 12, 24 and

14 times respectively, the corresponding counis for OIS are Ty T and 57,

Table 11411 8 Frequency distribution of relative positions*

of different methods in the 81 cages according
to averagesover 50 samples of ranks based on

absolute deviations ]/B\ * e (—3+ | 8 Situation II=

both e, and Z, follow AR(1), but x,, is random.
position OLS GO meg;od D2 HL
1) (2) (3) (4) (5) (6)
first 7 17 31 17 12
gecond 7 15 20 19 24
third 5 31 10 19 13
fourth 5 18 17 20 18
£iftn 57 0 5 6w
total

81 & 8 8 8

# In case of ties (i.’é&, more than one method having exactly
the same average rank), the lower rank was given to all
the tied methodse.
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11e3e2 Comparison of Bias

The relative performance of the different vestimatorsr/B\"' in res-
Pect of absclute bias can be stqdied frgm Tabl:e j1.12. As before, this is
a sunﬁnary table and the details (i.e., bias of diffcrent estimators of gt
for each of the 81 cases) are given in Appendix Table A 11.3. Tt may be
noted that like the previous situation, there were six parametric combina-
tions for which the d.ifferenceés-in bias-.across-the five methods were almost
Vnegl_iéible.é/ These 6 c:-a.s.es wereleftcut in preparing the table. Most of
thase cases had high values of R and r° cege, R® = 0,95 and 2 = 0.90.
In several other cases, the absolute biases for scme of these methods
(were mall and) coincidgd uptd the second place of déciﬁal. In such cases
of ties, all the tied cases were given the lower rank (vide footnote 2),
As in Situation I, the picture (as emerges from this tab;l..eA) regarding the
rel_a,tiw}e performance of the five nethods by this criterion does not seem
to be quite clear, Among the conventional - reestimation (i.e., GO,
PW, D2 and HL) methods, it appears that PV is somewhat better than the
otherss CO, D2 and HL are quite glosé among themse_lveé though so far as
the frequency of occupying the first position is cox}cerned, HL beats CO
and D2; Whereas HL has occupied the first A_pqsﬁft;[on 23 times, the corres=
ponding figuresfor CO and D2 are 15 and 16 reépe’c‘:tively. OLS can not
easily be placed in relation- to these methods s’iﬁce it occupies the
extreme ranks (1 and 5) more often than amy’ of these methods  Unlike

other methods, the distribution of OLS from this table appears to be

5/ As noted in f ootnote 1, in each of these cascs the range of the
5 absolute bias figures was at most 0.01 {vide Appendix Table A 11.3).
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U-shaped and thus OLS seems to be somewhat morc sensitive to the parameter
values than the others. On thé”whole, there is ‘no s.}‘la_rp'%fariation bamong tae
r_eestimatioﬁ methods in respect of the absolute bJ.as éf -the estimator and
the OIS is somewhét fluc;tuating.

Table 1112 $ Frequency distribution of relative pos::.tlons*
- - of d::.fferent methods J.n t’qo 81 cases**accordmg

to absolute bias of B 2 Situation II= both
e, and 2, follow AR(1), but x,, s random.

position - T .co : me;$°d T Hi |
€D) (21 [€) N )] (&
first 27 15 4 16 23
‘second 8 16 20 20 13
thizd 3 8 10 15
fourth 6 10 13 a5 oz
fifth i‘ o3 6 . 8 . a7 12
total T B C R I

# See footnote 2;

#  Ag stated in footnote 1 swe left out % cases (out of 81)
' where the difference in absolute bias figures for amy two
-methods was at most'0.01.

11+3+3 Comparison of Actual and Estimated jﬂverage)
Sampling Va.rlances

The performance of the five different}methqrd_‘s 1n this respect is
summarized in Table 11.13. The picture here is considerably different

from that found for the pr wiom.s s.ﬂ:uatn.on. ZLs, in Situation I‘,~the§;t1fg_o '

variances are exactly equa.l (a.g;‘eemg.nt upto :bhe’ secoﬁd place of decimal)
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only in a small mzmbe; of cases, though the mumbers are slightly higher
in the present situation for the 'bwo-s"tep méthods. However, all othei'
findings are appreciably different. - f‘dr >OIS, the conventional formula
seems to be overestimating the actual variancé, by about 8 per cent, but
this may not be statistically signiificént. For all §thar methods, the
conventional formulae underestimate thé acmal va.r_iazme in a significant
wayy but the exfent of undei'e,stimation is much lower now compared to
Situation I, being around 6 to 9 per cente It may be recalled that in
Situation I, we found significant tendency to underestimate, for all the
five methods, and the extent of underestimation was about 17 to 20 per cent
for the four methods other than HL and about 25 per cent for HL, |
Table 11.13 § Number of cases out of 81*;:here the actual
. sampling variance is overestimated/under—
estimated by the conventional formula and
the average magnitude of overestimation/un—

derestimation, for each method of estimation*g
Situation II == both €, and Z, follow AR(1),

, t t
but x1 + is random.
thod mumber of times the averagé percentage of
metho actual sampling over (+) estimation/
variance is under (-) estimation
over- undexr=
: __estimated egtimated
(1) ' (2) (3) (4)
Ordinary Least Squares (OLS) 43 34 4+ 8405
Cochrane=Orcutt (CO) 28 49 - 8442
Prais=Winsten (PW) 25 48 - = 5473
Durbin's two-step (D2) 22 49 = 8419
Hildreth=Lu (HL) ) 20 51 - 8492

* Ties (iecs, agreement upto the second place of decimal of the two
variance figures = (vide Appendix Table A 1144) are left oute

#* TFor each parametric combination the actual sampling variance has been
estimated from the 50 @+ values for the 50 samples, This has been-
compared with the average of the 50 sampling variances based on
conventional formulae:
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1134 Pexrformance of Confidence'Intervals

As 1n the previous 81tuatlon. the nu.ber 0r samples (out of 50)
where the 95 per cent confldence 1nterval falled to- 1nclude the true valye
of B is presented in Table 11.14 for each of the methods and for each
of the 81 parametrlc comblnatlons. Our first observatlon on thls tabler
is that the performance of the different methods is much more satlsfactory
. here than in the earlier sltuatlon. There are very few cases where the
intervals fall to cover the true value in much.more than 5 per cent of
the samples, Unllke the previous 31tuatlon, even for cases with high
values of..§ and g, the performance of the. oonventlonal confidence inter—
val is qplte good.. AS‘ln the prev1ous sltuatlon, no method,appears to
be apprec:Lably better than the others by 'thls crlterlon. OIS, whlch has

L been found to be relatlvely poor compared to the other methods in respect

/\+

of absolute deviations |8 ] does not seem to be appreciably diffe=
rent so far as robustness of confidence 1ntervals is concerned; As in the

prev1ous situation, we found that for all the. method39 the bias Was

not negllglble in many cases.
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Table 11414 & Number of sarples where the true parameter value

ha is not covered by the 95 per cent confidence
interval, for each parametric combination and:

each method of estimation 8 Situation II = both
% and 2, follow AR(1), but x4 is random.

%
srl, values of correlation and auto= T number of samples where
No. correlation coefficients ._..-_...--,B‘!. is not covered

R® r® 5 £ OLs ¢0 P D2 g
) (2) (3) (4) 5) OENOEROEN O,
1 0,40 0,10 0.20  0.20 3 3 2 3 4
2 0.60 2 5 5 5 5
3 0.95 2 5 5 5 6
4 0.60 0.20 2 3 4 3 3
5 0,60 2 3 3 3 3
6 0.95 4 1 2 2 2
7 0.95  0.20 0 3 3 3 3
8 0.60 4 4 3 5 5
9 0495 4 5 5 6 &6
040 0.5 0.0 020 4 5 4 ¢ s
L - S R 3 4 3
12 | 0.95" 4 7 4 6 6
13 | 0.60 0.20 4 6 7 6 6
14 i. 0.60 2 4 4 5 5
5 0.95 2 4 3 3 4
15 0.95 0.20 4 4 s 5 5
17 - 0.60 1 5 .56 71
18 095 5 0 17 3 2

con'tdooo...o/"
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(&Y

) (8) -

€D I ) MR €) NSV €) NI )] @) (10)
19 0440  0.35 0,20 0,20 4 4 4 4 3
20 ' 0,60 = 2 3.3 3 3
21 . - 0495 -2 3 - 2" 3 3
22 0,60 0.20 2 2 2 1 1
23 0.60 4 4 35 5
24 ! 0,95 "1 1 2 11
25 0,95 0.20 4 5 5 5 5
26 0.60 4 3 2 4 3
o7 0495 2 2 2 2 2
o8 0,70 0.10 0,20 0420 1 2 2 2 3
29 0.60 2 1 3 1 3
30 0.95 2 3 p) 3 3
29 0.60 0,20 - 3 4 4 3 3
- 32 0,60 3 6 7 7 6
33 095 2 2 2 2 2
34 0.95  0.20 3 5 5 4 4
35 0.60 1 2 3 4 4
36 0.95 1 3 2. 4 3
37 0.70 0.35 0.20  0.20 5 5 5 - 5 4
38 " 0.60 o 3 3 303
39 S 095 . -3 3 2 3 3
40 0,60  0.20 7 6 5 7 8
41 .. 0a60 8 5 5 7 6
42 0.95 2 3 3 3 3
43 0495 0420 1 4 4 4 4
44 0.60 0 3 2 3 3
45 0495 2 2 2 2 1

contCeeee 03./
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[€))

QNG @)

’(5)
46 0.70  0.65 0.2 0.20 0 1 1 1 1
47 | 0.60 2 2 2 2 2
48 0495 1 4 4 5 5
49 0,60 0,20 0 1 1 3 3
50 00 3 4 4 4
51 B 0.95 5 1 2 1 1
52 .. 0.95 G 3 2 3 2 2
53 0460 5 1 1 1
54 0495 3 o 1 1 o
55° 0,95 0.0 0,20 020 2 4 5 6 7
56 | 0.60 3 2 3 2 2
57 095 1 4 4 4 s
58 0,60 0,20 3 5 4 5 5
59 00 3 3 2 2 3
€0 0.95 2 2 2 2 2
é1 0,95 ~.0.20 6 3 2 3003
62 0.60 3 2 2 2 2
63 0495 3 3 © 4 5

con'td. ee o o/
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095

6D I &) RSSO € NN ¢ B 0 R 2 I I ) B GO
64 0.95 ':"0.65“ L ‘0.20 0.20 2 2 3 3 3
65 0e60 -7 4 3 2 3 3
,6‘6 | 0495 3 2 3 2 2
67 0,60  0.20 2 2 2 3
68 0.60° 2 K 3 .3 “3?
69 0495 1 2 2 2 2
70 0,95 - 0,20 2 4 2 4 g
71 © 0,60 5 4 3 5 s
72 0.95 3 2 2 1 1
73 0,95  0.90 0,20 0.20 4 3 5 4 3
14 060 13 4 5
75 095 5 6 4 7T 7
76 0.60 0.20 2 5 4 3 4
77 0460 5 8 7 8 g
78 C.95 1 2 1 3 03
79 0.95 0.20 6 8 8 7 8
80 0.66 1 5 -5 5 5
81 1 3 1 3 3
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11435 Comparisons of Mean Square FError

A oomparative analysis of the performance of different methods in
terms of mse of B aga:.n brings out clearly the supermmty of the PW
methodse This is geen from Teble 11’.16 which gl.ves the frequency distribu—
tion of the relative positioms (ranks) of the different methods according

D+

to mse of B for 78 parametric combinations.é/ The mse values for each
of the five-éstimato:rs and for each of the 8% baranetric ocambinations are
given in Table 11415,

The gensitivity of the mse values with respect to the parameters can
be observed from Table 11.15. One can seey first of all, that other para=
meters renaining unchanged, msge mostly decreases with increase in the

and searxrch
value of either § or ¢ for the two-step[methods. It may also be
observed that i-'or given R? » higher values of r2 (6 2nd ¢ remaining
constant) result in lower mée's. This really means that the smaller the
effect of misapecii‘ication, the lower are the mse values i.esy as the
effect of misspecification decreases, the mse also decreages. OIS seems
to be the worst among the methods particula.rly when the values of either
§or & or both & and ¢ are large. In fact, mse values for OLS are of ten
very high compered to other methods. Sometimes it is as high as

two/three times that of the others.

& The three other cases were left out because in each of these cases
| the range of 5 mse figures was at mogt 0s01y and thus for these cases
the mse values could be considered to be virtually the same for the
different methods (yide footnote 1)..
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Table 11415 ¢ Mean @quare @ror of /B\+ estimatcd by different

methods for the 81 parametric combinations ¢
Situation II ~ both €_ard Z, follow AR(1),

t t
but :vc1 % is random,
vglues of ' values of correlation ccefficients
autocorre~ R2 = 0. 40 . R2 = C.’[O s 2 = 0. 95

lation
coefficients T =u101° =25 r -—035 r°=.1C r —--35 T =o6b r -—.10 T =.65 T -—.90

)

DI 2 IR €5 N € N 6 N (3 I N ) I ) €19 M € b

(a) Crdinary Least Squares (OLS)

0020 0420 4467  2.76 1426 5,72 1449 0,30 4492 0,30 0406
0460 6444~ 2,34 1448 4478 0,95 0,29 6. 0,30  0.05
0695 5456 2063 1421 5.31 1417  0s21  5.15 0.36 013

0460 0420 5338 257 0496 6440 1459 0427  5.51 0.29 0,07
0060 5819  2.16  1.87 8443 2,26 0.35 5.89 0.29 0,08
0495 10425 1487 1414 7410 1429 0.30  6.71 0.19  0.05

0e95 0020 587 3435 1439 691 1406 0.37 656 0431 0,07
0460 549t 1499 1410 5.36 1,05 0439 6,70 0.34 0.06
0695 750 2446 1426 4476 1489 0,47 4.62 0.30 0,07

(b) Cochxane=Orcutt (CO)

0020 0420 5,72 2480 118 Tu12 1457 0.33  6.09 0.31 0,06
060 5486 1432  0.89 4,98 0.81 0413 6.38 0432 005
0s95  2.12 0389  0i18 4449 0,74 0,06 5.96 0.35 0,07
0s60 0420 5499 248 1,06 5.57 1438 0.28 3,75 0.24 0407
0s6C 3402 1461 0s87 4479 1,24 0.20 4461 0419 0,07
0095 1489 0435 0412 * 2,31 0,47 0406 2,89 0,13 0,02
0635 0020 4e21 2649 1447 3468  1.02  Ca2d  Co784 0,07 0405
0060 2011 0494 0466 1484 0425 0,15 0,63 0,07 0,02
0495 0,56 0i14 0,07 0.42 0.4 0,05 0.48 0.02 0.01

contd, .Ao (Y o/
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) O G ) (8 1) 8) Q) (10) (1)
(¢) Prais=Winsten (=)
0,20 0.20 5.38 2,65 1.23 6,39 1¢45 033 5449 0.3%3 0,05
080 5.28  1.54  0.87 4436 0472 0,13 6,48 0.29  0.04
095 1.98 0,89 0,19 4.00 0.74 0,06 5.57 Ce34 0,06
0,60 0,20 6,08 2,27 0.9 5.02 1.29 0.27 3,52 0.23 0,07 -
0060 2,90 1426 0496 4,63 1.26 0,16 4.24 0.20  0.07
035 2,01 0431 0,10  2.21 0,36 0,06 2.99 0.13 0,02
0s95 0.20 4,26 2,40 1434 3061 0.80 0,26 0.87 0.06 0,04
0:60 1485 0,87 0,53 1.69 0,20 0.21 0.6 0.08 0,03
095 056 0415 0,08 0,38 0.16. 0,03 0.48 0.03 0,01
() Durbin's two-step (D2) |
0020 0,20 5.85 2.82 1417  7.27. 1432 0.3 6,25 0.31 0,06
060 585 1428 0.91 5.15 0,90 0.12 0.45 0.32 0,05
095 2,03 0483 0418 4,52 0,75 0,06 6.04 0.35 0.05
0060 0.20 6,04 2,57 1,07 5,58 144C  Go30  3.66 0e23 0,07
0060 2480  1.70 0479 4459 1,18 0419 4.59 06.20 0.064
0695 1453 0437 0411 2.04 0e35 0,06 2,96 0.13 0.02
0:95 0420 4421 2.46 1453 3,27 1.02 0.24 0.69 0.07 0.05
0.60 1489 0.92 .75 1.87 0.2/ 0.14 0,58 0.07 0.02
035 0.59  0.13 0,07 0.38 0,08 0,01 0.42 0,02 0,01
(e) Hildreth=Lu (HL) -
0020 " 0620 5497 2484 1417 7467 1.26 0e34 6468 0433 0,06
080 5695 1,26 0488 . 5.37 0487 0.1 6449 0.33 0,05
0035 2410 0479 0,18  4.59 074 . 0.06 6.48 0.35 0,05
0060 0420 6423 2487 1410 5.1 . 1.40  0.53 = 3.54 ‘0,23 0.07
0060, 2,65 1481 0.72 4467 1421 0118 4u62 0.20 0,05
0,95 1.55 0.36 0.1 2,06 0,36 0.06 2.91 0.13  0.02
035 0620 4427 252 1,61 3,05 1,05 0.23 0.68 0.07 0.05
0080 1467 091 0467 1.87 0428 0,13 0.59 0,07 0,02
0.95 0,59  0.12 0,07 0,08 0.01 0,43 0,02 0,0

0.38


http://www.cvisiontech.com

330

From Table 11416, we observe that BW has occupied the flfst posi=
tion the highest Tumber (37) of times followcd by HL (31 times), D2 (24
tlmes), ca (16 times) and 0Ls (9 times) It may be noted that in case of
tles ie€ey agreement upto the second decimal plaoe, we followed the rule
given in fodotnote 2 in ranking the methods, OLS is ﬂlearly the worst of.
,the ﬂethods as 1t occupies the 5th position 64 tines out of 78, Thus,
from thls table, we observe that Pw is still somewhat better than the
other methods (although 1ts superiority over other methods is somewhat
reduced in thls situation compared to the prevlous one) and OLS is the
worst among the methods. There is not mach tolchoose between CO, D2 and
HL, although closer scrutiny shows that GO is slightly interior to bath
D2 and HL. “TFhe worst performance of OIS may be understood from the result
for Situation I where as § risecs, OLS, in general, falls in the ranking
among the fivégmethéds. In the cése coneidered.for Sitiation II, the
autooorrelation of the 5: series'is generally somewhat high as both the
components st and Zt are autocorrelated exec ptlng 1“or those cases
where. both 6 and & are low e.g., 6 = 0,2 and 0.2.
- Table 11.16 ¢ Frequency dlstrlbutlon of rclative positions#*
of different methods in the 1 cases®* according

to the mean square crror of ‘B *: Situation IT = both
st and Z follow AR(1), but x 1t is randam,

‘s : method
Position OLs oo by Do HL,

Gy @ Gy T Y (e
first 9 16 B AR Y| -3
second 4 20 - 10 24 - 15
third: 1 21 14 15 8
fourth 0 15 17 15 12
fifth 64 0 0 0 12
total 78 .

78 78 78 78

*  See footnote 2.

¥ As stated in footnote 1,we left out 3 cases (out of 81) where
the difference in mse values for any, two methods was at most
0001. -
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1144 Conclusions

In this concluding section we discuss the main results of our
Monte Carlo experiment designed to investigete the small=sample properties
of some commonly used estimators in a lineax regression model with auto=
correlated errorss The crror term has been considcred as consisting of two
-components == one due to misspecification an¢ the other due to factors
other than misspocification = and the autocorrelation is assumed to be
caused by. one or both the componentse It has been seen in Chapter 9 of
our dissertation that in this kind of a situation all the conventional
reestiﬁlation methods are, in general ,;-inconsistent; the OIS estimator on
the other hand is, in general,consistent. Bes1des, there are questions of
efficiency and valid estimation of sampling €ITOrse The spec:Lal s1tua‘t:|,on
where these methods give consistent though inefficient estlmates 1ncludes
the cases _being considered here.

We carried out the present ‘experiment to mvestigate how dJ:.fferent
conventional .ree.sfima;tion methods and the CLS perform in small samples
when the errbi: term is 'aecomposed as stated above meaning thereby that
the model has been miéspecified which might or might not give rise to0
autocorrelations Siﬁbe the standard treatment of the pi-obiem of auto=-
correlation among disturbances does not cqnsider decomposed error terms,
it would be instructive to examihe the properties of these estimator's,
particularly in the small samples for which analytical results cannot
be obtained. o

It mlght have been noticed that ’che emphas:l.s and focus of attention
of this study has been on the relative perfoma.nce of some conventlona.l

methods of estimation viz., the OLS,. €O, W, D2 and HL. In the standard
1/ See, in this context, footnote 2 of Chapter 5 and footnote 5 of Cha.pter 9.
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autocorrelated lineaxr regression nodel scme of these methods are recommen—
ded from the point of view of efficiency. In the models considered by us,
however, all these methods have been shown to Be not fully efficient \
(vide Chapter 10)s The grounds for using any of the' conventional methods,
therefore, become rather shaky. However, thcy are iikely to be used in
practice because the officient methods (sce next paragfaph) are somewhat
difficult and their small-sample performance is yet to be investigated.
In any case, the choice among these methods 'and the GLS,for our kind of
models,has to be made on the basis of their small=sample performancecs
This J.s what we have 'briéd to examine in the Monte Carlo study.

It may also be pointed out that we have not considered for the pur—
" pose of this expermeni either the standard ML method of estimation (with
AR(1) error process) or the methods of estimation developed by us in
Part II of this dissertation. This is because the present experiment was
completed before the ML method came to be frequently used in such situa—
tionsg/ and before the work reported in Part II of- thivs fheéis was taken
upe Admittedly, it would have been better if the small.sample properties
of these methods were also studied. However, it appcars fha.t the standard
ML method of estimation (with AR(1) error process) will not be fully
efficient in small samples since it suffers from the same deficiency as

does not, in general,

the reestimation methods i_.e.,‘ the error e:

follow AR('l) process under the assumed conditionse

§/ The ML method of estimation, though a standard method of estimation
in statistics, has come to be used for estimation of autocorrelated
linear regression models relatively recentlye.
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¥z may now sumnarﬁe the rajor findings of cur Monte Carlo

experiment.

| (1) For low values of § (eegey 6= 0.2) OLS appears to be as
good as the other methodss in fact, sometimes it seems to be better than
:“the others. This is quite understandable. However, this observation is.
ffue only for Situation I, For Situation IT this observation is somewhat
true only‘vrfheri both & and ¢ (i.e., the autocorrelation coefficient of g
series) are low (eege, 6=0.2 and t = Ge2)s TFor other values of & and
£, the autocorrelation in the e: series is generai]fy som.ewhat.vhigh even
if one of § and £ has low value. ' |

(ii) For the other combinations of ?é;rainetric cases, judging by

abéolute deviation.of es“timatés 43\4' for B+-, biag, absolute bias and
ﬁxsé, we find that for Situation I PW is superior to the remaining
methods. Next to PW are CO and D2 in that drder. The difference between
CO and D2 aré, however, smalls HL is better than OLS but much worse than
even CO and D2. As for Situation II, the supcriority of PW is retained
though its superiority is now slightly less compared tov_tha?h; in Situation I.
&t‘he intéresting featurc here is that HL is aliiost as good as'CO and D2,
gometimes even slightly better than CO. The performance of OLS is the
;orst and this is more pronounced ir this situation. It may, however, be
noted that this ‘sébservation is very clear with respect to absolute deviam
tion and mses The ranking is not so clear with respect to bias and
absolute bias though it appears to be somewhat similai.

(iid) Confidence interval estimates do not throw much light:on the

relative performance of the methods in both the situations. However, for
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Situation II, the proportion of cases in which the interval estimates

leave out the f:ue value of 8% is not much higher than‘the stated probabi-
lity value (a\ This is unlike Situation I where for high values of § and
Ty the proportlon of such cases ‘is much hlghor than q « .

(1v) For both the s1tuatlons, the mse_values’decrease with decrease
in the degreevof'misspggificatiop (as given by the éifference of R2 and r2
with a fixed R9). |

(v) For all the methods,-the incidencc of underestimation of the
actual sampling variance of 4}+ by the conventional formulae for sampling
variance associated with these mefhods is. qui%e -large for Situation I.

of underestimation is
While for all the methods exceptlng for HL. the axtenﬁé about 17-20 per cent,
for HL it is about 25 per cent. OLS seems to be somewhat better in this

respéct. However, for Situation II, the.extent of underestimation is about

half of that for Situation I for the two-step methods. For CLS, there is

now overestimation by abéut 8 per cente.

Arart fiom the deficiency in performance in respedﬁ of confidence
intervals, the Prais-Winsten (PW) method seens to be a fairly satisfactory
procedure for both the situationss though the standard ML methodr(with
AR(1) exror process) or the procedures developed in Part IT of this thesis
are expected to be more efficient. - CO and D2 may be regarded as the
second best methods in both the situationse. The HL is inferior in
Situation I but quite comparable to these methods in Situation II. OLS is
the worst among all the methods for both the situations-—xnare‘particuiarly
in Situation II; hbweve:;for smallvelues of &in Situation I, OLS seems to

be as good as the others, in general.


http://www.cvisiontech.com

Table A 1141 8

l335 |

Appendix 11 -

Bias in the estimation of 8% by the different
methods for the 81 parametric combinations g
Situation I= both Zy and x,, follow AR(1),

but € & is random.

v;a,lués of ;values of correlation coefficients
P S S
coeffim r?§.10 r2=.25 r‘o‘;=,,.’35‘r2,=.10 r2=.55 r2=. 65 r2=.10 r2=. 65 r2=.90
n 8 : . -
€D MR ) M ) NN ) B () I ) [ €) N CTO I CT))
N | (2) Ordirary Least Somires (OLS)
0120 0.20 0,07  -0.08-=0.18 =0.17 0.08~ 0,38  0.03 0,40 0,07
0460 =0,10  =0.15 04107 =0.38 0.08'-C.04 0,16 =0.03 0,04
= 0495 =012 . =0.20- 0,04 -0.16"‘0.11'“'0;03’ 0.18 | 0413 .o.oé
0460 0420 0,07 =0.19. 0. 0,02 0,017 0,19  0.05 =004 =0,03
0e60 0427 0.12 =0.08 .03 0.04 0.01 . .0.0¢ 0,05  0.05
D 0495 20.84 0,50 0,02 0.16=0s15 0,06 =0.44 0.06 0.08
0s95 0020 0,02 =0.13 =0.23 =0.78 .04 =0.10 =~0.32 0.01 -0.01
T 0060 =0.07 . 014 =0,42 =0.95 .82 =0.06 0u64  0u21 =0,10
0495 =0.06.  0.32 0,09 ~=1.47 0417 =0.C5 0,56 =~0.31 =0.15
, ’ (b) &ochr’arie-orcu_’g:_ (€0) -
0:20 0.20° 0,07 0,06 =0.2f =0.24 0411 =0.39  0.10  0.16 —=0.08
0060 0,02 =0,07  0u31 =0.62 023 =0,02  0.02 =0.05 . 0.01
10495 - =2402 0,20 2404 *0.20 0.16 0.05 =0422 . 0.09 .0.01
0060 0020 | 0110 =0,22' 0421 =0416=0.05 ~ 017 0,22 .=0.10 =004
0S80 1 0.27 014 =0u03 0427 005 -0.,08 . 0.2 0.04  0.02
0495 " =061 0u41 =002  0.11 =0.46 0610  =0.08 =0.04 0,02
0495 0420 0,02 =0.09 =040 =0,91+0400. =0.05 =0.68 =0.08 =0,02
0s60" 0485 0,06 =0.40 =1.06' 0:66 =0416, ® 0445  0.25 =0.03
0s95 = =0.17  0.58 =0.03 =0.60 =C.08 =0.12  0.50 ~0.10 =0.23

— g
-«

ccontdeee --/-
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W O T O G159 Gl & ) oy oy
' () -Prais—WinStgg (PW) o - :
0020, 0420 011 =0.01 =~0.20 =0s12° 0.12 0,36 -0.03 0.13 =0.07
0 0:600 =0412 =0,07 0,11 =0.62 0,39 -0.02 0,08 =0,03 0,01
-50Q95‘ -0,08 =0.25 0403 =0,22 0,15 0.02 =0,23 =0,08 0.03
Ce60 0,20 0,09 =0.25 018 =0e11 0,00 * 0.19 6.1 ~0,09 . =0,04
0.60  0.21 0,11 -0,02 0,38 ~0.05 =0.02 0,15 0,05 0,05
095 =072 045 =0.05 G141 005 =013 =0,04 0.0
0.95 0.20  0.06 =0.08 =0.27 =0.91 =0.01 =006 =0s45 =0.02 " =00
060 031 0.16 =0.38 ~0.85 0,82 =0.07 0:54 0,21 =0.05
2222 001 0.42 0,07 =0.43 =014 =0.05 0u77 _ =0a12 =0.20
T () Durbin's two=step (D2) : |
0020 0.20 0,13 0.03 =0.24 =0,25 o0.10 =0.21 0,08 . 0,16 =0.08
L 060 . 0,06 =007 0.11 =0.6p - 27 =0.02  0.00 =0.06 0,00
;,i 095 0.03 . =0,17- 0.02 =0415 0,16 Ce06 =0.23 . 0,08 . :0,00
060 0.20 | 0.1 =0.22- 0.a1 0,00 =0.05 0.5 0.25 =0.12 =0.03
0.60 | 0429 . 0,13 -=0,01 0.31" 0,00 =0,09 0426 0,03 0,02
0:95 =057 0.39 =0.13 0,19 =0.14 0e09 =0.08 =0,06 0,01
P09 0e20 =0.02 "L 0,03 -0u4C =0.94" 0,03 ~0.05 0.6 ~0.07 =0,03
| 0.60  0.95 . 0.12 =0.36 =0.56 056 =0.16  0.27  0.96 0401
0,95 =0.11 . 0.50 =0.07 =041 ~0.06 =0,11 0,38 =0.06 (422
\ ' ~ (e) Hildreth=Iu (HL) ‘ : | _
0:20 0,20 0,17 * 0,05 =0,24 .=0.23 70410 "=0424 0,04 0.17 =0.08
~ 0.60 0411 =0.05- 0e11 .=0,70 - 0.3 "=0.01 =0.05 ~0,05 0.00
0e95  =0.08 =0.20 0,03 =Cu17.. 0u18  0.07 <0.23 0,04 =0,02
0.60 0,20 0,10 =0.19  0.23, ~0u30 =005 0418 0,36 =0.14 =0.05
o080 025 04 -0.01  0u30 -0;03 =0.09 0,32 0,00 0,02
0495 =0.43  0.41 =-0,18 0025 =012 10,08 =0.13 =0.05 . 0.0C
0e95 0.20 =0.0n “0.48 =0.45 T1e25. 0010 0004 =0.76 =0.08 =0.01
0080 .05 0,05 =0.33 -0417 .0u38 “0.21  0.37  0.29 . 0.1
0.95 =014 0.58 =0.04 =0.07 0.0¢ =042 0,79 . 0412 =0y21
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tion ¢ Situation I =~bYoth Z, ang X,, follow
_ % 1%
AR(1), but €, is random., o
r1, Vvalues of correlation OLS Cco PW D H,
STLe and ~autocorrelation actual egti= actual esti= actual estic actual "esti= aotusl esti=
0. efficients  véri= mated vari= ntted vari= pateg vari= moted vari= inteq
2 D o - ance vqri-, ‘ance vari=- ance Vari=— .a.n(_:e '-'Vgri- ance VO ie N
- RT o n 8 ' ance ance ancoe anee ke
,(ave- (ave= ( avem (r..vo- 2ve=
_rage) rage) rage) rage) . rage) _
QO Gy ) OGN HOMNONCH) (1) G2 (33 (14) (15 —.
T 0440 0,10 0,20 0,20 5.4 613 5.2 6.18 2¢94 5465 6.06 6,13 .78 6,04
2 0:60 661 675 679 6,63 646 5¢99 7433 652 9,16 6434
3 ; 0.95 5.97 5.58 5”-40 4482 5,23 4.5% 5022 477 5,%7 4478
4 0.60 0a20 6421 6,54 728 590 6,60 5,70 7.33 5485  7.62. 5.84
5 0080 7476 6,50 7.07  6.47 6459 6.10 7.1 6.40  7.40 6449
6 0:9510:42. 6,20 8,91 638 6.2 5,86 S:24 6M 82T 6ds
7 0:95 0420 14.38 15.98 19.48 16.8¢ 14428 16415 20441 16,79 22.89" 17416
8 060 25,77 19.48 28,05 26405 23,22 22,49 29412 ..26.38 30,70 26,68
9 0495284907 12,44 | 27.84° /16, 28 22,65 14,43 27.60 16,53 28402 16,77
contdee.,./=
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Table A 1142 (contd.)

(D)

15

() (@ (3 @ G (6 O & O (10 (11) (3)_(4) (15)
10 0.0 0.25 0.20 0,20 236 2,02 2.48 2.03 2,44 1hé§, 2.68 2,01 2.6 2,00
11 0u60 2,45 1.0 2.67 1.76 .28 1265 2,76 1,76 2,79 1.75
12 095 230 2.8 2.53 1.9 238 1,79 258 .87 2.68  1.85
13 0.60  0.20 257 2.2 2,78 2.7 . 2,61 2,08 2,76 218 2.84 2.18
14 0u60 1,69 211 2,27 2021 178 2uos 227 2.2, 2.43 yé.;o
0.95 2,69  2.36 294 256 291 2,30 3.21};;2.57_.,3,33 2,58

16 ;'0.95';_.0.20 5.45° 842 7.90 810 T.06 805 832 854 2530 918
4T | - De0; ;,;:;».‘990_;_4.‘51' '“‘—“'6.86' 473 5.64 - 425.133 6,45 4.8 Te22 4,67
18 95 AT s 7z 5.82 7.19 5.1 .04 5.75 8.3 5.98

cqzil}t?d....i._/:-v'
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Teble A 11.2 (contd.)

contdecees /"

W_ @ G W 6 (6 O _ (& 9 (1) (1) (33) (14)__ (15)
190 0440 0.35 0,20 0,20 1446 1428 1,59 1,19 169  1.12 15T 1419 177 1.18
20 0:60 1066 1425 1276 1418 1461 112 1,78 1.7 179 1,17
21 | 0:95 1024 1432 1026  1.19° 126 142 1028 1,19 129 1419
22 00 120 128 1923 1416 123 1233 114 145 1.21 1.7 1,21
23 0.:60 2,20 1.61 2,22 1.74 2.43 155 2,31 1,75 2,33 1472
24 0.95 {;53 1463 1486  1.58 1,59 150 2.2 1,59 2,59 1.58
5 0:95 0,20 3.63 320 3.96 356 4,05 3.47 3.0 3.5 395 3.5
26 0.60 3.6 352 3.57 401 3ot 355 3469 411 416 4417
27 0495 4;%1” 2061 4415 2.89 2.52 4437 2,93 4.00

(3911
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Table A 11.2 (contd, )

6 (M (@ (9 (10)

1

34

- 36

43,37

33495

(@ G) @ (5 (1) (12) (%) (14)  (15)
28 0.70 0410 0.0 020 5.1 5.6 T.24 5.5 6,49 5.4q 752 5.52 7,75 5,47
29 060 486 5.3 5.85 432 475 3,99 6.0 424 6,25 4.1
30 035 6.24 5,71 4.30. 3,16 4e25 3,02 4,51 3,06 4461 3,00
0,60  0.20 8.75 6e41 1139 6.87 10.30 6,07 11.54 6.78 12,00 6,87

32 0.0 10,56 T.72 8,59 7u45 6.5 712 8,68 7.48  9.40 7.4
33 095 13,73 6.74 7.05 5.09 . ¢ 4048 6,70 4,92 6,69  4.87
0,95 0.0 11,86 11.22 15,97 1461 12022 12,48 13,09 15.09 20,38 15,50

35 0:60 23414 11,57 2,61 17.52 17.70 1520 22,95 18,92 37,45 19040

0,95 82,86 1143 43,64 17.08 15.15

16.99 29,74 17.58

Contd.- (X .-. /-'
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Table A 1142 (contd.)

(@ G @ G M B (9 (o 1) (12)  (13) . (14) (1)
37 Ce70 0035 0020 0020 1442 1445 1463 1ed1 1446 1435 1.68 1440 167 1.4
38 0060 151 1426 1239 1,05 1435 1,01  1.29 1,04 1.27 1402
39 095 074 1420 1413 0.79  1.07  0uT4 121 0.7  1.24 097
40 0460 0,20 1483 1,18 2,23  1.22 1291 1415 2,34 . 1.25. 247 1422
4 0460 1296 1440° 1493' 145 1278 1434 2413 1441 - 2084 1440
42 0.95° 3433 . 1.53 2424 1,30  2.06° 1424 2419 1.27° 2004 1.26
43 0e95- 0020~ 2443 3u61 3,61 4,28 2.68° 3,63 4426 4,47 5.39° 4e43
44 060 = €427  2.5% 5.14-! 3045715033 3,08 4JT1 - 3,56 ¢ 4467 3,65
45 0695« Te5C 2440 6459  3.82° 6.24 3.05 653 3,707 6432 3,95

Contdo.o. ../-
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Table A 11.2 (contd.)

OEONONION

0096

(1) 6) (1) (8. 19) (o) (1) G2) 3 Ga)_ (15)
46 0.70 0,65 0.20 0,20 12.52 21409 39466 43.18 15.47 17.79 40.61 41.40 56.97 43.68
47 0,60 039 0,34 0.37 0,31 0.3 0.29 0.3 0.31 0,38 0.3
48 o.)95' o_.é9 0.36 0.36 0,53 0.34 0.31 0,40 - 032 0u42 0,32
49 0,60 0.20 0.32 0,33 0.45 035 0.3 0.32 0445 0,35 0.52 0,36
50 0,60 0u43 Q.34 045 0.36  0.43 0.31  0.46 0,36 0.46 0,36
51 0.95 0.57 0.36 0.35 0.37 0.36 0.32 6;38 0.37  0.46 0,37
52 0.95 0.20 9.53° 0.83 1.21 0.89 0,81 Q,77" 1426 0.89 1245 0,90
53 ’o;éo 1412 {.}7 1215 1,45 1,05 1.32 1415 '1.44 1.20 1.48
54 0,95 1447 190 4437 1.1 1.03 1,90 1.39 1.42

N.Contd.o.oooo /"
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Table A 11.2 (contd.)

(@ -3 W G (6 (1) (&) (9 (100 (1) (12 (13)  (14) (15)

55 0.95 0410 0,20 0,20 7.09 5.78 Te66 5444 6,65 5,11 7.80 5.40 8.00 5.4

56 0:60 9:52 575 656 423 5.4 4.04 67 412 65 4.8
57 | - 0.95 4459 4486 1.30  0.93 1.23 0.93 1e31  0.87 1432 0.85
56 0.60 0.20 9,42 7.18 8,00 8,07 812 7.25 .o 18,09 10,51 7.98
59 ; 0.60 12,41 7,03 8.84 6,34 7.95 - 5.87 8473 6.26. 877 6.28
60 0:95 1491 6:23  2.84 1.72 2.99- 1477 095  1.55 0.92 1452
61 0:95 0020 26447 14.74 2055 19.93 26,29 16,65 26449 20.42 25.46 26;27
62 0:60 32,46 17.58 30.82 24.33 24414 -22.54 30.99 25.05 36,69 24,87

63 0:95 75.72 13.94 29.25 8,50 31468 ~8.23 17.35 7.56 16,62 6.16

contdesss/
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Table A 1142 (con“td.)

(2) | 3) (49

- 66

72

(1) ) (6 1) (& () (10 (1) (2. (3 (D (15
64 0,95 0.65 0.20 0.20 0.27 0.33 0.25 0.3 0.28 030 0,26 0.31 0.7 0.3
65 0.0 0.39 0.39 032 0.28 0.29 0.27 032 0.28 0.33 0.28

0s95 0e41 0430 0416 0411 - 0.18 0411 0414 0.11 0.13 0,10
67 0,60 0,20 0,58 0.46 0459 0.53 0461 6.46 0.63 0.53 0.67 O.Sév
68 0,60 0,73 0.43  0.54  0.43 0,51 0.41 0,50 0.43 0.54 0.42
69 n 095" 0.61  0.32 023 0.17 0,25 0.16 0.9 0.16 0.8 0.16
70 0:95 0620 0,98 095 0.94 1.20 0,89 1.07 0.5 1.20 1,04 1.23
1 060 1496 0487 1497  1.17  1.61 0;99‘ 2,03 1418 3444 1,37

0495 297 © 0,57 1416 0.52 1,09 0.47 1.7 052 1.5 0.c0
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Table A 11+2 (contd.)

M @ & @G ® 0 (6.6 G0 (0 G2 G5 (T
7% 0.95 0;9& 0420 0,20 0,07 0.07 0.07 -'0.07  0.06 9;06 0.07  0.07 : 0.07 0.06
74 ' | 0,60 0,06 0.07. 0.06 0.06 0.05 0.06 0.07 0.06  0.06 0,06
75 . 0495 0,07 0406 0,07 0,05 0,06 0.05 0.07 0.05  0.07 10405
76 0,60 0,20 0409 0.09 0.2 0.0 0.1  0.03 0.13. 0.10 0,14  0.10
77 | 0,60 "0.12 = 0.08 0.11  0.08 .0.11 0,07 0.12 0.08. 0.12 o;oQ
78 0,95.;_9.17 © 008 0;09 %éo.qj 0,09 0,06 0,09 é@iﬁig' 0.09 6,06
79 6,95 0,20 0.7 0.30 09 | 0,29 014 0.2 019 o.2§3:'b.2oi 0.28
80 ‘ ,ko.so(v.§ﬁ4@ 014 . 0,37 0419 10‘34 0.16  bum7 0.2§~,'o.86’ 024
81 0.95 1.08 0.2 T4 0.2 0,99 022 1.09 0,25 1,09 0,26
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346

Teble A 11.3 ¢ Bias in the estimation of 8 ¥ by the different
methods for the 81 parametric combinations ¢
Situation IT = both € and Z, follow AR(1),

b . : t t
ut X, 18 randcme

values of i values of correlation coefficients

aut<?corre— '32=o.4o R2==()-.7O : L R2=0.90
lation > 2 ) 2 2 - 2 L. 2 2 2
coeffim h ol =.1O r =.25 r =.35 r ‘.-'..10 r 8035 r =.65 r '-’-.10 T = 65 r =O9o
cients : ~ ’ "

g .

5 o - » 1 _
(1 _(2) (3 4) (5) (8 (M (6 (3 (oY (1)

(a) Ordinary Least Squzres (OLS)

0620 0420  0u18 =0,05 =0.08 =0.12 0.37 =0.05. 0.19 0.1 =0,06
0060  0.38 .=0.22 =0.12 =0.17 0.01 =0.07 =0.07 =0.07 0.01
0495 0,17 =0.48 0,05 0.37° 0i01 * 0.08:' =0.30 =0.05 0.08
0460 0420 20,05 =0.15 0.24 =0.40 =0.28 0402 & =0s12 =0,02  0.01
0,60 =0.12 =0.18 =0.48 0.28, 0,09 0.13 0.08 0,02 0.0
0.95 =0.24 0.7 =0.17 0.14 =0.11 =0.03 0.1 0.03 0.02
0495 0420 0,68 0,34 0,00 =0.05 0,09 0.08 =0s11 =0.07 =0.03
0,60  0.94 =0.09 0.43 0s11 0.22 =0.02  0.00 0.07 =005
0,95 0,57 0,00 0,31 0,12 =0.29 0,08  0.13 =0.01 0.0

(v) Cochranc=Orcutt (CO)

0020 0,20 [ 0.22 0,04 =040 0.04 0,40 =0.03  0.35 0.16 =0.07
0s60 : 0.23 =0.11 =0.09 =0.26 ~0.02 =0.11  0.17 =0.09 =0.04
0495 =0426 =005 0.06 :0.41 =0.02 0.01 =0.42 =0.02 0.03
0660 0420 =0.26 =C.22 0429 =0.48 =0e11 =0,01 =0,08 =0,04 0.01
0460 =0.14 =0.20,-0.28 0,17 =0,05 0409, 0,11 0.02 0,00
0695 '=0s21 0414 0,00 0.13 =0.13 =0.04 0.23 0.06 0,03
0495 0420 Q.61  0.42 0,02 =0u41 0,23 0.06 =0.04 =0,09 0,03
0060 0445 =0.05° 0.09 =0s25 0,02 =0.01 0,03 0,06 0.00
0,95 =0,05 ~ 0.02 =0.02 =0.15 =0,06 0.02 0.14 0,01 0,01

con‘td.‘j ese o/.
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Table Ae11.3 (contd.)

347

O (3) (4) (5) (6) (7). 18 (9) (10) 1N
(¢) Prais-Winsten (PW)

0120 0420 0u13 - =Gu01 =0.04 =0.05 0.37 =0.03 ' 0.3 0413 =006
0460 0.25  =0.08 =0.15 =0,22 0,02 =0,09 0,05 =0.06 =0.03

0195 <0420 =0.05 * 0.06 0,36 =0.02 :0.01 =0.45 =0.04 0.C5

0,60 0420 =0.18 =0.15 0424 —0.33ﬁ_e0.117 0,00 0,01 =0.05 0,00
0,60  =0¢15 =0.15 =0.31  0.18'-=0.03 0,12 = 0.18 0.02 0.0f

095  =0417" 0415 0,00 0,13 =0.10 =0,04 0,20  0.05 0.02
0.95 10,20 0,58  0.43 0.01 =0.41 . 0.21 0,07  =0.07 =0.07 = 0401
0s€0  0.42  =0.05 0,12 =0.25 =0,01 =~0,05 0,03 0.07 =0.0f
_0.95 =0.07 0,02 =0.02 =0.12 =0.06 0,01 0.18 0,01 0.01
' - (a) Durbin's twomstep (D2) . ) g

0,20 0,20 0.17 0,05 =0.09 0,04 0.39 =0.05  0.36 0417 =007
0060 0422 =014 =0410 =0,28 =005 =0.12  0.19 =0.10 =0,04

0,95 =0.32. =0.04 0,06 0.40 =0.02 .00 ~0443 =0.02 . 0.04
0,60 020 =0.27 =0.2} 0.28 =0.49 =0.10 =0.02 =0.01 =0.04 0.0f
0460  =0.12 =0.17 =0.25 0,15 =0.07 0.10 0,09 0.02 0.01

0s95 ~'=0.12° 0.6 0.02 0.11 =0s12 =0.03 0,23 0,07 0,03

0s95 0420 0462 , 0,40  0.01 =0.39 0,23 0,05 =0.04 ~0.09 0.0z
Oebl 0,38 =005 0,10 =0.32 0,00 -=0.01 0,02 0.06 0.C0
.95 =0.06 0,03 =0.62 =0.11 =0.04 0.00 0,16 0.01 0.0

' | ’ (e) Hildreth=In (HB)

0.20 0,20 0.23  0.04 =0.09 0,06 0,38 =0.03 0,42 0417 =0.07
0460 0423 =014 =0,10 =0.34 ~0,04 =041 0,18 =0.10 0,04

0.95  =0.37  =0.04 0.06 0.39 =0.03 0.00 =0.41 =0.02 Q.04

060 0.20 =0i28 * =0.23. 0425 =0.46 =0,09 =0.05 =0.11 =-0.03 0.00
0e60  =0.09 =015 =0.22 - 0.12 =0.07 0.10  0.41 0.01 0.0f

0.95 =0.11 0417 0,03 0,07 =0.15 =0,03  £.22 0.06 0.03

0:95 0420 0,56 0440 =0,02 =0.45 0,25 0,05 =0,04 =0.10 0.04
0.60 0,32 =0.06 0.09 =0.34 0,00 ~0.01 0,03 0.05 0,00
0s95  =0s04 0402 =0.02 =0411 =0.05 =0.01 0,16 0.00 0401
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Table A 11.4 ¢ Actual sampling variance of /B\+ estimated from the 50 :/B\+
values for the 50 samples and the average of 50 sampling varis=
ances based on conventional - formula for each parametric combi=

nation and method of estimation @

follow AR(1), bat X,

" is random,

Situation II = both €, and ,zt

- srl, values of correlation OLg _CO0 _ PW__ D2 __ HL
no. and autocorrelation actual esti= actual estim actual esti- actual esti= " actual esti=
coefficients vari=- mated vari= mateq vari- mated vari- matéq veri= mated
T ance  vari= ance vari- anceo vari= ance  vari= ance vari=
R2 T o) 3 ance ance " ance ance -ance
(ave= {ave (ave= (ave= (ave=
A | , rage) rage) :  rage) rage) . rage)
LD € I € I ) I ) (&) 0 T8 {10) GIY (39) S G €7 B G )
T 00 0.0 0.20 0,20 4474 6,05 5.79 5.5 5.7 5.3 5:94 " 5.5  6.04- 5,45
2 0.60 6ud2 6u16  5.93 2T 552 518 5.2 61 602 365
5 C 095 5064 44760 2,09 2.08 1498 2014 1097 2019 2.00 2412
4 0.60 0.20 5,48 6.28 6405 5,06 6,17 4.87. 6.09 5,03 6,28 4496
5 0.0 5.8 g2 307 3.56 293 3,49 2,84  3.47 2,70 3037
6 0,95 10441 8.45 1289 1edh 2,02 1.7 q.55 126 157 1,20
7 0% 0:20 582 '5.56 391" .64 3.9 341 -3.90 30537 4,03 3.4
8 00 5419 6.05 1,95 1,91 1.77  1.94 178 1081 1060, 1476
9 0'95 7. 33 7‘3‘5 : 0056 0048[ 0057 0-51 0060 0.35 : 0.60 O¢36

Sl e e/~

e
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‘Table A 11.4 (contd.)

(1 (2 (4 ) (6 (1) (8 () (10 (1) (1) (13 (14) __(15)
10 0440 0425 0420 0420 2,81 2,06 2.85 1,94 2.70 179 élas, 1493 2489  1.92
11 0460 2,35 1488 1.35 1410 1.57 104 1429 1.06 1.27  1.06
12 095 2,65 1,89 0490 059 0,91 0.58 0.84 0.56 0,80 0.53
13 0460 0,20 2,60 2,17 2,48  1.86 2.29 1075 257  1.85  2.67 1.83
14 060 2017 245 1460 1.21° 1.26 1426 1471 116  1.80 1413
15 0495 1488 2,16 0434 . 0.35 -0.30'  0438 0435 * 0.33 '*0.34 0432
16 0.95 0420 . 3.30 2435 | 2,36 1464 2426 1,60 .2.34  1.61 ‘2.41 1459
17 0,60 .2.02 1,97 0,95 0.86 0,89 40.82 0.94 0484 0,92 0,81
18 0.95 2,51 ' 2.6 014 0T 015 0119 0.4 0.1 0.2

.

contdioo';o. /- '
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Table A 11.4 (contd.)

()@ G @ G (6 (1 (B (9 (10 (11)  (12)  (13) (14)  (45)
19 0440 0435 0420 0420 1,28 1.08 1419 0.94 1026 0,94 1418 © 093  1.19  0.93
20 0060 1449 1424 0,90 0472 0,86 0.68 0,91 0,70 | 0489 0469
21 0.95 1424 1419 0418 0,20 0.9 0,20 0.8 0.5 0.1 0.18
22 0.60 0.20 0,93 1.29 11.00 1024 0,95 1413 1,01 1.22  1.06 .00
23 .60 1.67 1240 0.81 0.1 0488 071 0,75 0,69 0,69 0.67
24 0:95 1413 1415 042 0414 0.1 05 0.1 Oui2 ' 0wt 0412
25 0s95 0,20 142 1.36 150 1414 1436 1.08 1,56 143 1460 1413
26 0,60 Fu11 1414 0§é7 0.59 0452 0,59 0476 056 Uub8 0055
27 0,95  1.18 1470 6;07 0,08 0.08 0,10 0,07 0;07 0,07 0.07

contdeseees
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Table & 11.4 (contd)

L 32

0ud1

6D I ) 0 €) B ) I O I (O B O R ) V) GO TGN G213y G4 (15)
28 0.7C 0410 0.20 0,20 5482 6.52. 7.26 6,06 652 5.57 Te42  5.93  7.82 5,97
29 | 0.0 4485 5.2 '5.01 4476 4.40. 4.39 5.17 4473 5.37 467
30" 0,95 5.28 6,00 4e41 4425 3,95 3,98 4,44 416 4e53 4413
31 0,60 0,20 6,57 5,39 5.45 4e06 | 5.02 . 3.69 " 5.45 3.9 5.61  3.9¢

0460 8.52 " 5,61 4.86 i3.11?.,4a7o 2490 4,66 2,95  4.75  2.90
33 095 . 7e23 6,29 2,35 '2.24 (2024 22414 2,07 2,11 2,10  2.08
34 * 5.95 0.20  7.05 . 5.52 :3.58 | 2467  3.51 2,63 3,18 2.50 2.89 2,46
35 0.60 5.46 "6.05' {.81 '1.33 1e66 1430 1,80 1620 1,79 1,20
36 0.95 4.84 8.76 044 038 0.6 Gy 0.38 0,37  0.39

"vCQn'tdooooooo /"
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Table A 11.4 (contd.)

(2 ) ) G (& (M (& 9 (0 (1) (2 (13) (15)
37 0.70 0.35 0,20 0u20  1.38 1438 1423 1429 134 1.21 149 1.28 114 1.28
33 0.60 0,97 1+32 0,82 0.95. 073 0932 0492 0.94 0488  0.9%
39 0495 1420 1231 0.76 0.71  0.75 0.67 0.76 0.70 - 0.75 0.69
40 0,60 0,20  1.55 1.28° 1.30 0.88  1.31  C.84 1.41  0.67 ’1.42» 10.86
41 0,60 2.30 141 1.26 0480 '1.éé 0.'}9 1,20 0478  1.23 0475
42 0495  1.30  1.27 0,46  0.50 0.36 0.51 0.3 0.46  0.35 0.45
43 0,95 0420 1,07 1.54 0.98 0.78 0,77 0,76 0.98 0.76 1,01 0.76
44 0060 1,02 ' 1.61 0,26 0.35 0.20 0434 027 0.32 0,29 0.32
45 0495 1484 1.24 0414 1 0.16 A 0.06 0,00 0,09

0.1

0012

Ce08

contd......; /-
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Table A 1144 (contd.)

W @ G _@W 6 ) @O (g (10) (1) (12) (13) () (15
46 C.T0 0.65 0.20 0,20 0.31 0,35 0,33 0.51 0.34 0.30  0.35 0.3 0u34 0430
47 0460 0,29  0.35 0.12 0418 0412 0418 0u11  0s17  0.10 0417
48 0.95 0.21 0432 0,06 0.07 0.06 0.06 0.06 0.06 0.06 0.06
49 - 0460 0420 0,28  0.32 o.z9i 0430 | 0427. 0427 031" 0.29  0.33 0,29
5¢ 0.60 0.34 0.34 0.20 0.9  0s7 0.1 0.19° 0418  0.18 0,17
59 0495 0430 0.27 0.06 0.05 _0.06 - 0,05 0.06° 0,05 0.06 0.05
52 095 0.20 0.3 0 0.5 0.31 026 -0.29  0.24 .31 0.24 0.3
53 0.60 . 0.90 * 0,37  0.15 0,19 0.21 -0.18 0utd 0418 0413  0.17
54 0695 048 * 0.39 0,03 9:03 10.03 0,03 0,01 0,02 0.01  0.02

contieeces o/"‘
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Table A 114 (contds)

G @ G @ B (6 (1) (8 () oy (11)  (12)  (13) Ub (15)

55 _0.95 0¢10 020 0420 4498 5.45 6,09 479 5448 4448 624 4LoT1 6464 4467

56 | 0.60  6.04 5489  6.40 5430 6461 5.04 6,54 5,30 659 5423
57 0.95 5416  6.67 5.89 54T 5448 5.24 5.98 5442 6.45  5.35
58 .60 0,20 5.60 638 3.03 320 3.60 2.99  3.72 3.00 3.6 3.08
59 | 060 6,00  6.32  4.69  3e46 430 3435 460 3,38 4470 3.35
60 0.95  6.83 6426 2.09 3435  3.01  3.286 297 324 291 3.15
61 0.95 0.20 6.68 637 0475 0467 0,88 0.71 0.0 0.56  0.69 057
62 0.60  6eB4 6438  0.64  0.55 06T 0.58  0.59 0447 0.60  0.46
63 0.95 469 6.40 0.47 0.48  0.46 0.56 0,40 0.30 0.41 0439

Oon‘td. XX .,-;;'. /-
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Table 4 11+4 (contd,)

(1) (@ (3 W () (e (1) (@)  (9)  (10) G G2) (13 (12) _(157
64 095 0465 0.20 0.20 0.29 0,33 0,29 0.30 0e32 0429 0.29 0.30 0,30 0.29
65 _0.60 0430 0,39 032 0.34 0,29 0.32 0.31 0.34 0.33 0,34
66 0s95 0436 0.37 0.35 0.30 0e35 0427 0436 0.29 0.36 0.9
67 0-60 0:20 0,30 0.44 0.24 0,27 0,23 0.25 0,25 0.26 o0.04 o,06
68 0¢60 0430, 0441 0.20 0.21 0.20 0.21 0.20 0.21 0,20 0,20
69 0:95 0419 037 0413 016 0,43 0.5 0,13 o.15 0.13  0.15
70 095 0,20  0.31  0.44 0,07 0.08 0.06, 0.08 0,06 0.07 0.06 0,07
71  0.60 0.3 0,33 . 0.07 0.05 0.07 0.05 0.06 0.05 0.06° 0,05
72 095 0.30 0.38 .6.03 0.02 0,03 0.02  0.02  0.02 0.02 0.02"

contd, ee s /“

999


http://www.cvisiontech.com

Table A 11.4 (contds)

1 @ G @ 6y & (@ (& (9 (0 (1) «(12) (13) (14) _(15)
73 0,95 0,90 0,20 0;20 0.06 0,07 0,05 0.06 0.05 0.05 0.05 0.05 0.05 0,05
74 0.60 0.05 0,08 0,05 .0.06 0.04 0.05 0.05 0.05 0.05 0.05
75 0.95 0.12 0.08 0,07 0.04 0,06 0,04 0,05 0.04 0.05 ,0.044
76 0.60 0,20 0.07 0.07 0,07 0.05 0.07 0.05 0.07 - 0.05 0,07 0.05
17 0.60 0,09 0,07 0.07 0.04 0.07 0,04 0,06 0.04 0.06 0.04
78 0,95 0.05 0,08 0,02 0,02 0,02 o;oz 0.02 0.02 0,02 0,02
79 0,95 0.20 0407 0.07 0,05 0.04 0.04 ©.04 0.65 0.04 0.05 0.04
80 0.60 0.06 0.09 0,02 C.02 0.03 0,02 0.02 04,02 0,02 0;02
81 0.95 0.07 0.07 0,01 0.C1 0.01 C.01 0.01 0,00  0.01 0.00"
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