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Ahstract

In a J class classification problem with data of the foom: (pexed 8 = 1,000 where 1 £
11,0} and x, = (xia, ..., 00,0 linear discriminamt analvsis produces estimated class houndaries
which are lincar in xp,...,xu. In this papet, 2 method is developed which estimales the condilional
class probahilities in a function space which is higger than the linear funeton space. The decision rle
based on those estimated conditional class probabilities cen bave very nemlinear class boundarics, The
method projests the conditiony] class probabilitics onto 3 space spanned by cubic splines, and, hence, is
called classification using splines (CUS). This now method seems to achieve comparable and in some
casey lower misclassificstion ermror rates than cxisting methods like CARD or the back-propagalion
neural network classifier,

Keywords: Classification; Nonlinear class oundaries; Cubic splines; Cross-valigation; Neural pepwork;
CART

1. Introduction

The classification problem in statistics 1s known as the problem of pattern recog-
nition in the area of compuier science. In the lasl few vears, a method of pattern
recognition, broadly called the neural network method, has regained interest among
rescarchers, in both statistics and computer science. The method waz developed in
the process of modeling the human leamning procedures. This method uses a network
system, similar to some models of the human nervous systemn and, hence, was given
the name the neural network method, Different architzctures of the network have
been developed along with interesting training schemes for estimating the related
parameters (Lippmann, 1987; Tapedes and Farber, 1988, Barron and Barron, 1988;
ete. ). The most commonly used back-propagation classifier scems to achieve very
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low misclassificatton error rates in many problems. For the remainder of this paper,
the ncural network method will reler 1o the back-propagation classilice,

Very recently, rescarchers have attempted 1o clarify the mathematical logic behind
the success of the method, which iz mostly based on ad hoc principles. The simple
neural network method has undergone a number of modifications which are not vel
mathematically justificd. Justifying the success and [nding the limitations of Uos
method does not seem to be an casy task, To date thers is not much literature
along these lines. Efforts have been made to evaluate statistical aspects of the neural
network method in Bose (1992); Ripley {1994) and Cheng and Titterington [ 1994).

This paper presents a statistical method which has some similarities with the neural
network method, but can be justified theoretically #nd is compurationally more (2asi-
ble. Tt seems to achieve misclassification error rates comparable to those of the neural
network method and other statistical methods such as CART (Breiman et al., 1984),

The organization of this paper is as follows. In Section 2, the problem is described,
existing methods are discussed and the motivation for classilication using splines
{CUS) is presented. The theoretical formulations of CUS can be found in Section 3.
Section 4 deals with computational aspects of the problem and presents the details
of the CUS algorithm. The method is illustrated with the help of a few examples
and its performance is compared with other existing methods in Scetion 5. Finally,
Section £ provides a summary and additional remarks, The mathematical framework
behind the CUS algorithm has been given in the appendix.

2. The problem of classification

in the classification problem, measurements x,, { = 1,...,M, are laken on a single
mdividual (or object), and the individuals are to be classified into one of J classes on
the basis of these measurements. It s assumed that / is [inite, and the measurements
x; are random observations from these classes,

A training sample is available which has data in the form (& ve e 1 = 10N,
where y, is the class label of the mth sample, v, € {1,....J} X0 = (Xip, ... Xag ) 18
the vector of measurements taking values in an A-dimensional space #.

Bascd on the training sample we desire to [ind a decision function #{x,) : & -+
{1,...,f} for classifying the individuals. In other words, & will provide a partition,
say ¥, 45, %, of #, where ¥, corresponds to the fth class, 7= 1,...,./, and
measurements belonging to ', will be classified as coming from the jth class,

A misclassification occurs when a decision rule & assigns an individual (based
on its measurement vector) to class ¢ when it is actually coming from class j # i
Misclassification error rate { MER) defined as the propertion of individuals wrongly
classified, can be calculated by the formula

|
MER - ST H{dx,) # pab
Toa=1

A good classifier d tries to achieve the lowest possible MER in 4 given problem.
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2.1. The optimal Bayes rule
The optimum rule d{x) which minimizes WER is the following:
di{xy = jn. where j = argmax P X)), forj=1...0

and p(j|x) is the conditional class probability for the jth class given the mea-
surement vector x. In other words, an individual should be assigned to that class
which has the maximum probability, given the vector of measurements x. This rule
is knowt us the Baves rule (Andemson, 1984), In the case there is more than one
class with maximum posterior probability p(- | x), the individual may be assigned to
any of these classes,

If the distributions p{x| ) of the measurements x for each class, and the proba-
bilities 7, [or selecting ¢lass /. are known, the posterior probabilities p(7!x) can be
calculated using the Bayes formula:

oL mplelsy L
P{'flx}_-zkﬁ,ﬁp(rk}’ AR N

Typically, however, =; and p{x |/}, j = 1....,J, are unknown, If one assumes some
specific distributions for the plx | f) and m,, the classification rule will be based on
these calculated posterior probabilities,

A detailed overview on traditional statistical approaches can be found in Duda
and Hart (1973) or Fulkunaga {1972). A recent discussion on these approaches is
also available in James (1985). A discussion on the approaches based on arificial
intelligence techniques and their relationship to other classification technigues can be
found in Chandrasekaran and Goel {1985,

2.2, Discriminant analysis

In the conventional method of discriminant analysis for solving classification prob-
lems, it is assumed that the measurement vectors x in cach class follow a multi-
variate normal distribution. The class probabilities =;, 7 — 1,.....J are estimated by
%, = m;n, n, being the number of observations from the class j in the training
sample and # = 3, n,. If it is further assumed that the covariance matrices of the
measurements it cach cluss, X, X5, .., Zr arc the same, it turns out that the regions
created by the Bayes rule are separated by boundarics which are lingar in xy,.. ., x.
This method of linear discriminant analysis will not be adequate when the rue class
boundaries are very nonlinear. For example, if two classes are separated by a circle,
lingar discriminant analysis will not produce good results,

When the conventional assumption that £, = X; = --- = E; is dropped, and
covarianee madrices [or the different classes are estimated individually, the Bayes
decision rule gives guadratic boundaries. This method of quadratic discriminant ana-
lysis is still not adequate tor approximating highly nonlinear class boundaries. For
instance, in Example | of Section §, quadratic discriminant analysis achieves a mis-
classification crror rate of 10.4% {an improvement compared to 13.6% error made
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by lingar discriminant analysis). However, CUS achieves an error rate close to the
optimal misclassification error rate of 6.67% in this simulated cxperiment.

2.3, Existing nonlinear methods for classification

The inadequacy of lincar or quadratic discriminant analysis for the purpose of
classification in many examples made it necessary to look for approaches with the
ability of approximating highly nonlinear class boundaries. One statistical technique,
classification and regression trees, (CART: Breiman et al., 1984), seems to work well
in many examples. The method produces a binary tree classifier which performs a
set of tests on each individual, and assigns them to different classes.

However, CART also has limitations. When the true class boundaries cannot be
approximated well by the umion of a fimte munber of hyper-rectangles, the misclassi-
fication error rate will be high. For example, if two classes are separated by a circle,
CART will not perform well.

Apart from the neural petwork method used in computer science, there exist many
other nonlinear methods, for instance, a nonlincar discriminant analysis method bascd
on ACE (alternating conditional expectations, Breiman and Friedman, 1985), pro-
posed by Breiman and Thaka (1984}, or Flexible Discriminant Analysis by Hastic
et al, {1994), which is based on nonparametric regression methods such as MARS
{multivariate adaptive regression splines, Friedman, 1991) or BRUTO (Hastie, 1989),

2.4, CUS: classification using splines

Instead of assuming specilic distributions for x and using them to caiculate the
conditional ¢lass probabilitics p{; x), one can try to estimate p{f|x). j=1....,./.
directly from the training sample and classify the sample cases according to the
Baves rule bascd on ihe estimaies. IT the estimates are close e the true conditional
class probabilities, misclassification error rate should be close to the optimal mis-
classilicalion crror rale,

We have developed a method of classification using splines (CUS). With this
method the true conditional class probabilities are projected into a class of smooth
functions spanned by spline Tunctions of the vector x. The method doeg not assume
any distribution for the measurcments in 4 class and can produce very nonlinear class
boundarics. The method is hased on nonlinear regression with cubic splines. Details
of this method are described in Sections 3 and 4.

3. A new mcthod for classification: CUS

3.1 Theoretical motivation of CUS

Consider random variables X and ¥, where X takes values in an Af-dimensional
space 4 and ¥ takes values in the set {1,...,/}. Assume the densities f{x|Y = j),
J=1...J, arc continuous,



8 Boge! Computarional Sragiericr & Dara Analuzis 22 (J086 ) 5015-525 4

Let L,(X) be the class of all functions ¢(X) such that E4*(X) < =c.
Define the functions yr. j=1.....J, us

1 N ¥ =
(1 otherwise.

lﬁ_f,ﬁ“}={

Let
g
L= Y E(F) - ¢(X}, where ¢(X) & Ly(X), j=1,....J

Then L is minimized by ¢T(X) = E{y(¥)| X}, j=1.....J.

Since E{ye(¥) [ X} p(j 1 X), the functions $7(X), j =1,...,J arc the condi-
tional class probabilities, and these determine the optimal classification rule. From a
training set. we can estimate the p(j| X}, j = 1,....J. by projecting the Ji(¥) onto
a suitable subspace of Ly{X). Then the decision rule can be based on the estimated
i | X)) rather than the pff X)), If the cstimates are close to the original functions
then the misclassification error rate of the decision rule thus obtained will be close
to the optimal misclassification error rate,

With finite data, the problem of minimizing L based on the sample reduces 10 a
regression of the indicator variables g, ..., W onto a subspace generated by some
functions of X|,..., Xy. The choice of subspace plavs an important role in obtaining
vood estimates of p{ 7| XD, j=1,...,J.

The approach of estimaiing the postenor class probabilities was considered by Vil-
lalobos and Wahba (1983 ). They proposed a method based on maximum penalized
log likelihood estimation using multivariale thin plale splines. The idea was attrac-
tive, however, they reported that the computation cost goes up rapidly for higher
dimensions, A simpler alternative is discussed in the following section.

3.2. The addizive suhspace

The addilive subspace % of L.{ X)) consists of ¢{ X)) which are of the form

HX) = PallXa),

=1

where F2(X,) < oo, for m - 1, .. M. The additive space 1s a very popular
choice in nonparametric regression problem (Stone, 1985; Stone and Koo, 1986:
Breiman, 1993; Hastic and Tibshirani, 1990%, mainly because the contribution of
each individual predictor variable can be explored separately. At the same time, it
avoids the problem known as the curse of dimensionality. This problem ariscs in
higher dimensions, As the dimension Af of x increases, the sample size required
to achieve the same degree of accuracy as in lower dimensions, incrcases at a
very high rate, The method proposed by Villalobos and Wahba (1983) faced this
problem.
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If we choose the additive space for projecting cach p(§| X)), the estimates p(j | X)
are of the form

M
PUIXY =3 imlEa), =1,

m=]

Note that we are interested in finding a good decision rule, not the p(;i| X) them-
zglves. Tf the estimated functions are close to p(y | X)), the decision rule should be
close to the optimal Bayes rule, There is an obvious drawhack in the additive model:
interactions between the predictor variables are noi allowed and, hence, the estima-
tion will not be satisfactory where p(j|X) is highly nonadditive. FEven then, the
decision rule might be close to the optimal decision rule if P{argmax p(/'X) #
argmax, p( 7| X)) is small,

It may be desirable that the estimated functions satisfy the basic rules of probability
functions. The additivity condition can easily be enforced by including an intercept
term in the regression, however, for computational ease, we do not enforce the
positivity condition. This does not pose any problem for correctly identifving the
maximum posterior probability as long as the estimated functions are close enough
to the actual probabilities.

3.3 Aspmprotic behaviowr of CUS

There are aother advantages of using the additive subspace. There are many known
results in the field of nonparametric additive regression, which uses the additive
subspace. The consistency and the rates of convergence of additive regression were
derived in Stone (19835). We can extend those resuits to prove that the misclassifica-
tion error rate of CUS converges in probability to the optimal misclassification error
rate under similar conditions as required in additive regression. Details and proofs
can be found in Bose (1992).

4. Compuatational aspect of CUS

The class of functions used in CUS is spanned by the cubic splines. This is one of
the most populat classes used in additive regression, The problem we have deseribed
in the previous sections reduces to a number of additive regressionz depending on
the number of classes, with the same basis functions. Cubic splines are picces of
cubic polynomials joined together at the knots, The funciions have continuous second
derivatives, so they are sufficiently smooth (for a detailed discussion on splines sec
de Boor, 1978). We also put the restriction that the functions are linear in the tails
to reduce the high variahility near the end points following the suggestion made by
Stone and Koo (1986) and Breiman (1993).

The guidehnes for related i3suca, such as the number of initial knots, knot place-
ments, etc., are given in Bremman (1993), We discuss these guidelings in more detgil
in the subsequent sections. The method is based on an idea suggested by Smith
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{1982). The method starts with many knots and then reaches a smaller dimensionality
by the backward deletion method. The dimensionality is selected by cross-validation,
After the estimates p(j| %) = Yoo dwl(xa). 7 = 1.....J, are oblained using the
selected model, each measurement vector, x, is classified into the group ;j which
maximizes M f|x.). This is also done on a test set {if available), which is not
used for the training process. The misclassilication error rates are calculated for the
training get {resubstitution error) and the test sei (fest set error ). These errors measure
the performance of the method. The resubstitulion error measures the goodness of
fit for the training data, whergas the test set error indicates how the method will

perform for classifying future data,
4.1. Kelection of basis and parameters

For data with univanate x,, n = 1,..., N, K knots t; < .- < fg are placed on
the o-aads in the range [min(x, )max(x, )], The space 508, t = (t,.. ..} of cubic
splines is defined as follows: dix) = % (t) iff

{i) on each (4. f ), P{x) is a cubic polynomial,

{iil} ¢{x) has continuous derivatives up to second order.

Tt is casy to see that .#(r) i3 a (K + 4)-dimensional space.

The two sets of functions most commonly used as bases for the class of cubie
splines are the power basis and the B-spline basis. The power basis for univarale
splines consists of functions 1, x, x*, x', (x - &), £ = 1,....K. The B-spline basis
consists of functions Bi(x) which are linear combinations of the functions in the
power basis such that B x) has support [f,6_4], £ = 1,...,K (except near the end
knots). We use the power basis in the CUS algorithm since addition or deletion of
knots is computationally more convenient with this basis. To make the extrapolated
spline fit outside the range [min(x,}max{x,)] linsar, Breiman (1993) suggested to
take & = xy, Where (o, ...,x00) are ordered, put an additional knot (#:.;) at x., and
impose the conditions

d(x\ )= {x,~)=0 for the left tail, (1)

@ (xy)=¢ (xy+)=0 for the right tail. (2)

The restricted space () is K + 1 dimensional. A convenient power basis for this
space ¢an be constructed by using the functions 1, x, (x — Y. k= 1,... (K + 1}
Conditions (1) are automatically satisfied while conditions (2) are imposed during
eslimation,

For CUS with multivariate x, we start with K41 knots placed on each x-coordinate
where A + | is reasonably large. Then, we use the power basis for the additive
subspace, which is the collection of the functions 1, xw. (xp —tm X, & = 1, (K+1)%
m—=1,..., M, and imposc conditions (2). The (Y ) are then regressed on the span
of this basis. The entire procedure can be implemented using modified Gaussian
sweep algonithm, which and some other details are provided in the appendix,

There are two important questions that need to be answered:

o How many knots are to be used !
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» Where should the knots be placed ?

We address these questions helow,

We potnt out that there are many choices available for knot positions, basis func-
tions, etc. Our approach is heavily influenced by Breiman (1993} which showed after
an extensive simulation study that the method described below performed as well
as the other alternaiives that were considercd. With his recommended choices, CUS
achieved very reasonable misclassification errors. However, it would be interesting to
see if the performance of CUS could be improved by using dilferent basis functions
or a different knot placement strategy.

4.2, Number and placement of initial knots

One has to be careful working with g large number of knots since (A'X) may
become singular. This problem can be tackled by carefully placing the knots, The
koot placement algorithm we describe below has never encountered this problem in
the numerous experiments we have performed.

Usually, the knois are placed on order statistics. Breiman reports that equispaced
knots in the range of the X-variable works equally weil, if not better, under most
circumsilances, However, this strategy performs poorly when the distribution of the
X -variable has large gaps between some successive peints. After runping several
simulation experiments, Breiman {1993) suggested an alternative method which we
use for our purpose. This knot plucement algorithm takes into account a result in-
volving é—lh power of the underlying densities by Agrawal and Studden {1980). The
range from min {x..)} to max {(x,,) is divided into L equal bins B,,...,8; where
L = int(55'7). Let ¢; be the number of data points in the B, bin. Then the bins
are combined to produce & intervals Ji, ..., Fp such thal A, is nearly constant for
k=1,....K, where

1,9
_'n'!r_k = cro.

LIRS

N, can be made nearly constant by minimizing Var(N;), using a dynamic program-
ming algorithm. The (K + 1) end points of the inlervals are chosen as the knots. If
there arc only a few clusters of {xn.} such that not enough bins will have ¢; = 0,
the algotithm reduces the number of knots. This scems to work well for estimation
purposes {for & detailed discussion see Breiman, 1993).

Now comes the issue of deletion of knots. Two important questions are:
» Which knots should be deleted?
= When to stop deleting knots?

These questions are discussed in the next section.

4.3, The backward deletion procedure

The X matrix is modilied for the repressions where the columns are formed by the
functions in the power basis. Therefore, each knot corresponds to a column of the
modificd X matrix in the regression. The knot which leads to the smallest increment
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in the misclassification error seems to be an obvious choice for deletion. However,
the misclassification error criterion is too discrete in nature and, hence, is not an
attractive choice, Instead, we concentrate our attention on the estimation procedure
zince it ig directly related to the performance of CUS in terms of classification. The
deletion criterion used is the same as in additive regression. The knot whose deletion
lcads to the smallest increment in the residual sum of squares is deleted. In thas case,
there are J regressions involvimg o, / = 1,...,J/, and the residual sum of squares
we consider i# the sum of the residual sum of sguares rom all J regressions.

It should also be noted that at cach step we consider the same koot as a candidate
for deletion n each regression, and look al the increment o the overall residual sum
of aquares, since we wanl to project all the p(f | x) onto the same class of functions,
At each step, we consider each of the knots one by one as possible candidates for
deletion. calculate the increment in overall residual sum of squares, then delete the
one for which the increment is the smallest.

Dunng the deletion procedute, 4 linecar basts function (x, ) may be deleted. How-
gver, to maintain the linearity of the left-hand tail, the linear term should not be
considered as a candidate for deletion until all knots corresponding to {that vatiable
has been deleted. The end knot ¢, 4+ {4t X, i the beginning} maintaing the lingar-
ity at the right-hand tail. Therefore, one also has to be careful about deleting &, 4.5
at cach stage. I twms out that if £,y is deleted, the linearity at the tails can be
guaranteed by putting constraints on the coelficients of the remaining basis functions,
The deletion procedure is desenibed in more detail in the appendix where we present
the algorithm.

The next guestion is when to stop. W use cross-validation lo seleel the dimen-
stonality. However, to reduce computation, the knot placement in the cross-validation
is not changed. In v-fold cross-validation, we divide the data at random into v groups
of approximately equal @1ze. We then set aside the groups one at a time as test data,
use the rest of the data for training, delete the knols one @ a time, and note the
misclassification error rate using the test data for each dimensionality. We pool the
misclassification error rates trom different test sets fo get an overall misclassification
errow tate for each dimensionality, The dimensionality with the least misclassification
ermor rate is selected. After the dimensionality is selected, we work with the cotmn-
plete data and continue backwurd deletion until we reach the chosen dimensionality,
Then we caleulate B(7|x) and define the decision mile for classification according
to them.

It should be noted that starting with different numbers of initial knots, we might
get different results, Since the knots will be placed at different locations, the cross-
validated misclassitication error rates for different dimensionalities and consequently,
the selccted dimensionality and variables in the final model can be differcnt. Henee, it
will be interesting to see how the results may vary tor a given problem by applying
CUS several times with dillevent numbers of initial knots. The number of initial
knots which produces the least training set misclassification error rate {or least cross-
validated ermor rate which is also available) can be used to select the final model,
However, in the examples reported in the pext section the test set errors were not
oo sensitive on number of initial knots used. The range of the lest sel crrors for
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different numbers of initial knots in cach of the example was less than 1%, More
details are available in Bose (19921,

4.4 Drerating CUSN

The eastimates 7{/(x31 < j < .J, oblained by CUS are the projections of the
functions p{ j | x) into the subspace generated by additive splines. An interesting idea,
originally suggested by Breiman, was to consider the additive subspace generated by
(say) the first S - T of these estimated functions (because of the additivity resiriction
only J — 1 of them are independent). This new subspace will trivially contain the
estimated functions. Thercfore, the projections of p{j|x) into the new subspace are
expected to be at least as close as the p(7 | x). The other attractive feature of this new
subspace is that it will indirectly have some interactions between original predictor
variables. This is the result of considering nonlinear smooth functions {additive cubic
splines in CUS) of the estimated functions p(j x) | < j < .J, which are of the
form Ef___: Qlxa), j = 1,...,.J. Details of the motivation, computational aspects
and similarity of this approach with the neural network method can be found in
Bose {1992).

This approach computationally means replacing the original predictor variables
by the estimated functions, and applying CUS on the revised daraser. Tt has been
illustrated in Bose (1992) that if we decide to iterate until the estimated functions
cease to change, we end up overfitting the training set. However, in most cases, a
second iteration of CUS, yielded equivalent or lower test-set misclassification error
raic. This prompted vs W consider two tteralions of CUS in our illustrations in the
next section,

5. Experimental results

In this section, we usc a few simple examples to illustrate the performance of
CUS. For assessing the accuracy of CUS in these examples, we also report the
results obtained by discoiminanl analyses, CART, and the neural network method.
An extensive simulation experiment can be found in Bose (1992). We have selected
three examples from that experiment. These examples collectively present a summary
aof the findings of the larger experiment. The first two examples are simulated, where
we have used a training set of 3(0) cases and a test set of 3000 cases. Such a
large test set was wsed to obtain reliable estimates of the prediction errors for each
dataset. For these examples, we can theoretically calculate the true probabilities that
Wi are trying to estimate. Using these theoretical probabilities the optimal rule or the
optimal misclassification error rates can be denived for both training and test sets. A
low optimal misclagsification error rate means the classes are well separated whereas
high optimal misclassification error rate indicates a lot of overlap among the classes.
For the simulaled datascts, thiz error is reported for training and test sets as part
of the results. We also report the mean absolute crrors for estimating the posterior
class probabilities p(f|x). j = 1,...,.7, for CUS and the neural network method.
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The neural network method provides estimates of these probabilities at the output
nodes.

The parameters for each method play an important role in this type of experiment.
A thorough discussion is available in Bose (1992). The performance of CART did
not seem to be heavily dependent on any particular parameter. For CUS, the only
important parameter is the number of initial knots. The performance of the neural
network method s heavily dependent on the number of hidden nodes. Therefore,
we have experimenied wilth differcnot number of initial koots for CUS and different
number of hidden nodes for the neural network method. The best results achieved
by different methods are reported in this paper; the detailed results are available in
Bose (1992).

For comparing the epu times used by different methods, we may only restrict our
attention to the iraiming time. After the training phase, classification of future cases is
almost instantaneous for these methods. With the development of faster computers,
high ¢pu time may ool be regarded as a disadvanlage for a method, nevertheless
if comparable accuracy can be achieved by another method using significantly less
cpu time, the second method will be more attractive in terms of application. The
training time that has been reported for each method below are epu times on an IBM
R5-6000.

Dataset 1. This is a two-dimensional problem with two classes. We have used
mixiure of 3 different bivariate notmal distobutions for each ¢lass distribution. The
plot for this dataset is shown in Fig, 1. The details are as follows:

1 a
plx|D) =133 Mg L), p(x|2Y=1/3> N Zo).

=2
I8 ={0,0), fy, = (~2,-3), =2,

Hy = (3, —4), pe = (1,-3), e = (4, =3),

1 0 - 1 —05
E‘;[u I]’ 2. = [I 40 B= [—&5 1 ]*

T

. TE W 1 —05 1 0.5
z““[u 05]‘ £5=[ 05 1 ]’ Eﬁ{[ﬂj 1]'

The results in Table 1 shows the inadequacy of discriminant analysis for achieving
ncarly optimal misclassification ¢rtor rale in the test sct. The quadmtic discriminant
analvsis works better than the linear version, but the other methods achieve nearly
optimal error rates. The ncural network method has a slight edge, but the other
methods achieve comparable results with considerably less training time.

The second iteration of CUS, reduces the etror in estimating p(f| x) consider-
ably; in [act, its cslimation error is lower than the neural network method. How-
ever, that did not result in lower misclassification error rate which contimms our
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Fig. 1. The classes are ropresented by the ¢omesponding numbers.
‘Table 1
Misclassification error rates for dataset 1
Method Parameter Misclassification error rate (%) Training Error in
or i time estimating
type Training set T'cat zet pljlx)
Optimal 58 6.7
Discriminant Linear 16,8 13.60 18
analysis Cuadratic 11.8 100444 LA
CART 6.2 7.37 981
Mewural Number of
network nodes = 21} 4.2 0,97 234,96 40917
Cus Number of
knats = |2 6.8 T37 7.33 1492
CUS (second Number of
iteration ) knots = 12 b6 T4 13,50 (5]
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Fig. 2. The classes arc represented by the corresponding numbers,

view that low misclassification error rates might be achievable in some problems
even if the simple additive model cannot adeqoately approximate the true posicrior
probabilities,

Dataset 2. This is an example with three classes in six dimensions, The distribution
for the measurement vector in the first class is multivariate normal. For the other two
classes, X, ],X;X;._;,. .., X, follow mullivariate normal distribution, and X: = mp{X_ﬁ:}.
The first two dimensions for each class has been shown in Fig. 2. The details are
as tollows:

plx 1) = N{,{y],zl), H=A 1,23, .5, .25, 25},
P{I 2} &= G(ﬂ!: 2’11:'! My = “:
plx|3) =Gl 2 g, =(-2,0,1,1,.5,.25).

X, = I, the six-dimensgional identity matrix,
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Table 2

Misclassifcation ermor tates foe datusel 2

Methxd Parameter Misclassification emror rate (%) Training Ermor in
or Sinagn R A £ fime cslimating
type Training sct Teat sct pli|xy

Optimal 220 2313

Dizcriminant Linear a7z 4027 .21

analysis Cuadratic 234 26.57 .29

CART 260 33R3 IR.BE

Wewral Mumbear ol

network nodes = 3 250 2907 138,54 L1578

CuUs MNumber of
knots = 5 250 25.07 14.97 0.1501

CUS (secand Mumber of

itetation ) knots = 3 246 2020 2026 N.124%

Ey = 05041 < 4,j < 6, where Zy; is the (7, /)th element of X;, X5 =
ey {(05) 1, 1 <4 j <6, where

1ifi=,
cy=4 —lifi#Fjandi=20rj 2
{) otherwise.

(7 is such that X, log X5, X, X, X and X have joint multivariate normal distribu-
tion.

Since the class boundarics are nearly elliptical in thig problem, Table 2 confirms
that the gquadratic discriminant analysis can ocotperform the other methods in this
example. Due to this simple structure, the second iteration of CUS does not achieve
lower misclassification error raie even though its estimation error is still low com-
pared to the neural network method and the first iteration of CUS. The misclassifi-
cation error rates are not very clese to the optimal rates, but the methods perform
equally well cxcept CART hag a slightly higher error rate.

Dataset 3. Vowel recognition duta) This has been previously analyzed by Lee
{(1989). Prof. Richard Lippmeann has kindly provided the dalaset. In her Master's
thesis, Lee tested several contemporary methods including the neural network method
and CART on this dataset.

This dataset consists of 10 classes of 2-dimensional measurement vectors. This
was created by Pelorson and Barney (1952) by a spectographic analysis of vowels
in words formed by *h"™, followed by a vowel and then followed by a *d”. There
werc 67 people who spoke the words and the first two formant frequencies of 10
vowels were split into two sets, resulting in a training set consisting of 338 cases
and a test sel consisting of 333 cases. These formants are the two lowest resonant
frequencies of a speaker’s vocal tract, The scatter-plot of the dataset is given in
Fig. 3.
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Fig. 3. Vowel Data; The Classes are represented by dillerent numbers.

Lee { 1989) reported crror rates of 21% for both the training and the test sefts when
she used the neural network method with 50 hidden nodes. The result we achieved
with the neural network method is even better and uses fewer nodes. This example
highlights all the interesting points that we have discussed in this paper. Table 3
shows that quadratic discriminant analysis definitely improves the performance of
the linear version. The neural network method can achicve even lower misclassi-
fication error rates, however, the training time is long. CART and CUS are quick
altematives which can achicve lower misclassification error rates if we compare them
to the rates achieved by linear discriminant analysis. However, for examples with
complicated boundarics like this the second iteration of CUS can ynprove the error
rates. Tt performs cqually well with considerably less traiping time if we compare
its performance with the neural network method.

From thesc resuits and other simulation cxperiments reported in Bose (1992), it
appears that it might be possiblc to achieve the power of the neural network method,
at least for some problems, with much simpler mathematical models that are currently
being used in Statistics.
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Tahkle 3
Misclussilication error tales for datasct 3
Method Parameter Misclassification error rate (%) Training
ar lype = o —_— e lme
Training sct Tost act
[hscriminant. Linear 255 2900 02l
analysis Quadraic 213 19,82 24
CART 17,75 .72 384
Meural Number of
nctwork nWles = 20 1627 15,62 48397
Ccus Number of
knots = R 26492 23.72 5449
CIIS {second  Mumber of
ileration) ks = 6 16,86 15,92 5733

3.1, Estimated class bouwndaries for CUS

The boundary estimated by CUS in Example 1 is shown in Fig. 4. The classifiers
do not provide the boundanies themselves. The decision rule is based on the posterior
class probabilities, which can be derived after training. Caleulating the boundaries
from the decizion rule will require solving very nonlinear systems of equations. Tn-
stead, we have used the “interp™ and “contour” functions of the statistical package
“8” for the purpose of interpolation and plotting the boundaries, respectively. Hence,
the houndaries in the plot are further approximations to the estimated class bound-
aries. At least we get an idea from the plot of how the estimated boundaries might
look. We have only included the beundarcs for CUS and did not compare estimated
boundaries for different methods. Fig, 1 does suggest an optimal boundary similar to
the estimated boundary in Fig, 4.

6. Discussion

Motivated by the success of the penral network method in many discrimination
problems, we have developed a useful statistical technique CUS, which has a simple
and interpretable structurg but is capable of achieving competitive misclassification
error rates in some examples that we have presented. CUS has another attractiveness
that it requires very little training time particularly when compared against the neural
network method. The computational gain is actually much more than it appears in
Section 5 since CUS also performs modsl sclection as a part of the training process,
Finding the best architecture for the neural network method requires repeating the
slow traiming scheme severul times for diffcrent network models.

From our experience, we believe that CUS has the potential to become a very
useful statistical tool in situations when the traditional discriminant analysis methods
are not adequate (for example, when the class boundaries are not linear or quadratic).
CART has been used as an alternative in such situations in the last decade. CUS
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X2

1

Fig. 4. The estimated boundaries for Dataset 1.

seems 1o be competitive with CART in the gxamples we have tried, and does not
require considerably more training time, When the real class boundaries are very
complex (possibly involve high order of interactions), CLIS or CART can not achieve
misclassification error rates comparable to the neural network method. A second
iteration of CUS (as described in Scetion 4.4) seems 1o be helpful in such situations.
Faor simpler problems when the boundaries are close to additive, the second iteration
does not scem to improve the misclassification error rates. However, the clicetivencss
of CUS should be evaluated through additional simulations {and perhaps involving
other exisling classification methods) in a future study.

Appendix., The CUS algorithm

(riven the preceding discussions, this method might seem 10 be commutationally
expensive, particularly since the dimensionality of the basis is selected by cross-
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validation. However, the algorithm developed is remarkably fast. Most of the com-
putations arc Gaussian gweeps and the time it takes o estimate the pif|x), j =
1,.....J0 and to classify a large number of cases coming from several classes, number

of measurements M being very high, is of the magnitude of a couple of minutes of
CPU time in an IBM RS/6000.

A. 1. Muathematical framework beftind the algorithm

We reproduce the framework given by Breiman {1993). The restricted spline func-
tions for any of the x-variable is of the form

K1l

hlx) = Z Bilx — X, + 24w
=1

Let xizyy be max,x,. The condition that h(x) has to be linear to the right of x.,
(which requires the second and third derivatives to vanish beyond x.,) imposes the
constraints:

E+1

Kt
Z ]r.;k =1 and Z ﬁj(.x = l'k:' =1 for X E Kin)-
k=1 k=1

The knot #,.; at x;y, is an artificial knot to cancel out an x* term to the right of
Xgaey. I particular, for x = x we get the following constraints

K
ﬁxﬂ T 'Zﬁk
1

and
X
> (a8 = 0. (A.1)
1

If the knot #,; is deleted, the condition of linearity to the right of ¢4 can he imposed
by adding ancther constraint

> h=0 (A2)

During the deletion process, if the linearity of the fitted functions has to be maintained
beyond the rightmost undeleted knots, we need to solve the least-square problems
under one or two linear constraints, These constraints have to be satisfied for each
of the x-variables.

Breiman (1993) desceribed in detail how 1o solve lcast-squares problem with such
constraints by using the Gaussian sweep operator. The algorithm he described has
been modified for our purpose.

Let T denote the matrix where the (&, m)th element of T indicates the position of
the Ath knot on the mth x-variable; £ =1,... . K. m=1,.... 0.
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We form the F matrix, where forn=1,....N,

F":'k”-m =1 = {xﬂ"-ﬂ' = nm}{-\ k= ]-'\u“"uﬂr; = 1+--.sJ1r'f!
Fﬂ.m FME = Loia, m=1l,..., ."L'f._
Fu:.,!,ﬂ{'-.w-ﬂ_ = ]..

We form the symmetric 58 matrix of order D x D, where D= MK + M + |, and

58; =Y FuFep 6j=1....D
bl
This malnx will be augmented by A7 rows and columns For the (A1) constrainls,
another M rows and columns for the (A 2) constraints and another J columns for J
classes.
The new rows and columns will have all zero elements except for m=1,.,., M
and k= 1I,.... K.

)
yus
'Slsk-r{m—l}.l'{,.l'.i‘-rm = MAX X - I s

S8 tm— 11k, Dt = 1

and fipally for j=1,....J, and k= 1,....0,
N
S5 poam—; = Z Foutib ),
w=]

where yil 1, ) 1s the indicator function corresponding to the jth class. The 8§ matrix is
kept symmetric by assigning the same values as above to the corresponding clements.
Therefore, the 85 matrix looks like
§ZUY
"0
0
F'0

55 .

o N

= o
[ e R e

where § is a £ 1) submatrix, Z comesponds Lo the constrainis (A1), {7 corresponds
to the constraints (A.2) and ¥ corresponds to the J classes.

It turns out that by sweeping the diagonal elements of §§ malrix up (o the {D +
M. D+ M) element, we get the repression coefhcients of the J regressions under
consiraints {A.1) in the last 4 columns,

During deletion, if a variable is deleted, an inverse sweep of the corresponding
diagonal element will produce the regression cocfiicients of the new model at the
last J columns of the S5 matrix. Similarly, if an end knot is deleted, we sweep the
cotresponding diagonal clement between (DO4+M - LD+HM 1) and (D4 2M, D4 2M)
to impose constraints (A.2).

An inverse sweep on the diagonal clement ME —m, m = 1,... .M, which corre-
sponds to the deletion of the linear term x,, is allowed only if all the knots on x,,
have been alveady delcted. At any stage, the increment in overall RSS, which will
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be caused by deletion of a variable, can be computed without an actual sweep by
the fonmula ;

J
L ;
— D755 paawaSSen
=1

where & corresponds to the index associated with the variable.

Therefore, the sweep is performed only when a variable is actually deleted. A
variahle can be selected for deletion by minimizing the above formula over k.

The proofs can be tound in Breiman {1993 ).
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