ON CONVERGENCE OF POSTERIOR DISTRIBUTIONS

By Sueppastin Guosal,! Javanta K GHOSHE? axD Taras SAMANTA
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& goeneral (asymyplolic) theory ol estimalion was develeped ly Thrapb-
mor and Hasminakil under certain conditions on the normaotized Llikeli-
hond ratina. In an garlier wark, the present anthors studied the limiting
b havionr of Lhe posterior distributions under the peners] sstup of Thragi-
mov and Hag'minzkii. [k particalar, they sbiained a necessary onmditinn
for the convergence of a suilably centered (aand nermalized) posterior to a
ecomatant limit in terms of the limiting likelibood ratio process, In this
puper, it in shown that this conditinon is alao aufficient to fwply the
poslerior convergence, Some reluted resuils are slan presented.

1. Introduction, We consider the general setup of Ihragimov and
Has'minakii (1981) {(henceforth abbreviated as TH} that includes the regular
cases and also a wide variety of nonregular cases. A general (asymptotic)
theory of estimation was developed in [H, where the problem was reduced to
the study of the properlies of a suitahly normalized likelihood ratio. IH
obtained the asymptotic properties of estimales under certain conditions on
the normalized likelihood ratios (soe Section 2} In the recent paper of Ghosh,
Ghosal and Samanta (1994) (GGS hereafter), it was shown that under the
general setup of TH, tme can obtain useful information on the aaymptotic
behaviour of posterior distributions as well. In particular, GGS obtained a
necesgary condition for the convergence of a auitably centered {and normal-
ized} posterior distribution to a constant limit in terms of the limiting
tikelihood ratio process. The main purpose of this paper is to show that thig
conditinn is alzo sufficient to imply the posterior convergence, This reault is
potentially applicable to many situations involving stochastic proceases and
gumg nonregular cases. In particular, it implies an in-probability version of
the Bernatein—von Mises theorem in an extremely general form. Apart from
thiz, we show that the first two conditions of TH alwavs imply posterior
eonsigtency. A very gencral result on the asymptotic equivalence of the Bayes
estimates and the maximum lhkelihood estimate (MLE) in the regular cases
ig also proved under the present setup. While this rezult is quite weall known
In many particulsr cases or under conditions much stronger than ours, it
geema to he new in thiz general form. .

Reocived June 1094; Janwary 1995,

"Research supported by the National Board of Higher Mathematics, Department of Atomic
Energy, Bomhbay, India.

zﬁﬁﬁeurch partly suppnrted by NSF Grant DMS-93-07727.

AMS 1991 subfect classifirationg. Primary 60F15, B2F35,

Ry weords and phroses. Asymplolios, Bernatein—von Misea theovern, Bayee eslimates, sonver-
genee of pnaterior, likeliheod ratio process.

2145



21446 5, GHOSAL, J K GHOUSH AND T. SAMANTA

2. Convergence of posterior distributions. Let {(2™,4"), F; § = &}
be a sequence of statistical experiments generated by cbservations X" & #7,
where ® c &Y, d = 1, iz a Borel set with nonempty interior and F;' admits a
density p*(x*;#). For a fixed 6, in the interior of @, the {ikelihood ratic
process (LRP) is defined by

y M a8y + o eu)
=Bl g

where U, = ¢, '(® — #;) and ¢, is an appropriate normalizing factor.
The general theory of IH has been developed under the conditions stated
below.

§ u e LT

n?

CoNmTIONS (TH}.
{(IH1} For same M > 0, m; = 0 and a > 0,

B, 1223 (1)) — 22 (uy)IF = M(1 + B™)uy — w,*,

for all u,, u, € U, satisfying liw,|l = R and ||u,] < R.
{IH2) For all « = [T,

E, Z}*(u) = exp[—g,(llul}],

where {g,} is a sequence of real-valued functioms on [0,) satisfying the
following: {(a) for a fixed n = 1, g (¥}t as y 7= (b) for any N > 0,

jijnzy'“exp[—gﬂfy}] = 0.

fl -+

(IH3} The finite-dimensional distributions of {Z (u): u € B9} converge to
those of a stochastic process {Z(u): u = {91,

Below, all the probability statements will refer to the “true parameter” ff,,.

Let IT be the class of (possibly improper) prior densities on ©@ which are
continuons and positive at @, and have polynomial majorants. For example,
Jeffreys’ prior in the regular case is an element of IL Let & be the class of
eontinuous loss functions I: B4 — [0, =) satisfyving the conditions of Theorem
1.10.2 of TH. This class of less functions is sufficiently general to include all
loas of the form I{x)=1x]", p = 1. Below, we shall consider only priors
= [1 and loss functions { £.% Set

Z (u)w{ly ~ ¢.u)
fu Z(v)m{by + @u)dv’

£(u) =

which is the posterior density of the normalized parameter u = i, '(# — d;)
with respect to a prior w €I, and also set &u) = Z{u)/(fzZ(v) dv). Let
m(# & A|X") denote the posterior probability of a set A € @ given X"
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DEFINITION 1. We say that the posterior 18 strongly consistent if, for any
neighbourhood V of 6, lim, ,.70(8& V|X*) =0 as.
The posterior is called weakly consistent if =,(¢ & VIX") —_ 0.

In G35, it was shown that the posterior is asymptotically free of prior if
one has posterior conaiatency ((3GS, Theorem 2.1). We here observe that
posterior consistency always holds under conditions {(1H1) and (TH2).

Proecogiriox 1. Assume Conditions (IH1) and (IH2) and consider o prior
# € 1L Then the posterior is weakly consistent. If further L5 _ ¢ I' < = for
gome 5 > (), then the posterior is strongly consistent ( provided the almost sure
convergenne i meaningful).

Froor. Let V be a neighbourhood of 8, and let r > 0 be such that the
cpen ball of radiua » around 8, ia contained in V. Then by Lemma 1.5.2 of [H,
for any N > 0, there is a constant Cy, such that

Elmise VIX")] = E[[

Haellz e Al |

EFI-{ u’} du’J = C?.'r_NHQFRHN.
The result iz now immediate, O

DEFINITION 2. An R%valued statistic §, is called a proper centering if, for
all sets A in the Borel sigma-field 549 on R?, there exist numbers G{ A) such
that

(1) sup{|m{¢:'(6 — §,) s AIX") - Q(A): Ac2?) -, 0.

A statistic 8, is called a semiproper centering if, for each A .99,

(2) mle: (0 - 6,) € AIX") -, Q(A).

A statistic #, is called compatible (with the posterior) if (¢ '(8, —
By}, £, as a random element in B¢ x L{RY), converges in law.

BEEMARK 1. In view of Theorem 2.1 of GG, if any of the above statements
in Definition 2 holds for aome prior o« € T, then it holds for any other prior
in II.

The following result characterizea the existence of a posterior limit.

TheokeM 1. Assume Conditions (IH). If vither a proper centering or a
compatible semiproper centering 8, exists, then there exists a random variable
W such that (a) ¢ (8, — 8,) =, W and (b) for elmost oll u = B9, &u — W)
18 nonrandom.

Conversely, if (b) holds for some rondom varishle W, then any Bayes
estimate (for a loss | 2 and a prior = € 11} works as a compatible proper
centering.
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The necessity part was established in GGS (Theorems 2.4 and 2.5) We
here prove the sufficiency part. Let 8 he a Bayes estimate with reapect to a
loss [ =% and a prior « € I1. By Bemark 1, it is enough to consider the
posterior with respect to the same prior wr. Also, set (s) = [5idis -
wié (wddu and iz} = fp2i(s — u)E(u) du. By the assumptions made on the
losa funetion {, the random function (s) atlains its abselute minimum at a
unigque point 7.

We first estabhlish the following resull, which is also of independent inter-
esl.

Proposmon 2, Under Conditions (IH), any Bayes estimate is competible.

Pronor.  We shall show that

(3) [ (B, ~ B} £0)) »ulr, £0)).

By the arguments used in the proofl of Theorem 1.10.2 of TH, it suffices to
ghow that, for all M > (),

(4) (- 1MY, £,0)) = (1M}, £CD)

as random elements in Cf - M, M| x LYRY); here ¢ (/M) and & (| M} stand
for the restrictions of (-} and (), respectively, on [-M, M]?, and
Cl—M, M| denotes the space of continuous functions on [ - M, M]% with the
uniform metric. From Theorem 1.10.2 of IH and Theorem 2.3 of GGS, respec-
tively, we know thal {i,C|M)} and L£ ()} are tight; hence it suffices to verify
the convergence of finite-dimensional distributions. Let 5,,...,5,, = B® and
Al AL % We have to show that

5) (Blsad s &l L G TA))
= ({8 (s, ), ECAL, L, ECAD

here £,{A)and &(A) stand for [, £ (u) de and |, £(u) du, rospectively. Ry the
arguments used in the proof of Theerem [10.2 of TH, (5) follows from
Theorem A.1 of the Appendix. [

Proor oF THEOREM 1. By the given condition, £(u) = g{u + W), where g
is a fixed probability density. Let ¢ be the unigue minimizer of the function
lpells = w)glu) du. Then r = W + ¢ and henee, without lnss of generality, we
can assume that W = r. The posterior density of v = ¢, (8 - 8.) ig given by
mile. X") = {lv + 7)., where 1, = ¢ 1§, — #,). By Proposition 2 and Lemma
A1 of the Appendix, in the space L'Y(E™), we have

(B} (mi(ul X" v e R7) =, (g{v) v e B9
The result is pow immediate since g(-) i3 a nonrandom element. O
Theorem 1 has a wide range of applicability sinee no particular structure

{like i.l.d. or regularity} is assumed. The theorem ia valid irrespective of the
form of the limit; it may be nonnormal as in Examples 2 and 4.
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ExaMriE 1. If the families of distributions satisly the LAN condition,
then the pesterior converges and the limil is a normal probability, Examples
of such regular cases include the independent homogeneosus case, indepen-
dent nonhomogenecus case, nonlinear regreassion model, (raussian white
noise, the caze with almost smooth densities (zce TH} and planar Gibbsian
poinl processes [Mase (19921].

ExsMpPLE 2. Consider iid. observations with a common density fi-;#)
poaseasing » jumps at points a,(#)...., a {#) and satisfving the conditions of
IH (Chapter V., page 24¥). Tot pA8) and g/(2) denote, respectively, the
right-hand and left-hand limits of the density at x=a{#} i=1,..., r
Assume that either

(g{#)=Dand a;(#) >0) or (p(#)=0andai(d) <0}

-
{ ! ¥i=1.....r
(8) (g () =0and «{0) <0) or (p(0)="0and&;(#) =0}

¥Yi=1 r.

e LA O

Then the family is locally asvmptotically exponmential in the sense of IH
(Chapler V, page 276} and hence condition (b) of Theorem 1 holds, If case (7)
holds, the limiting posterior distribution has density of ¢ Jexplc(t Xx + 6(i))]
supported on x < —A(A), where o(#} = TI_ (pl#) — g(80a(8}) > Gand b(A)
is the unique minimizer of A{s} = [!_{(s — wle(#exp[c(¥)u] du. If case (8)
haolds, the limit can similarly be irlvnttﬁvd Important examples of this kind
inelude tocation shift of an exponential density, {70, ) and so forth.

ExamrLE 3. Conaider a multiparameter family of denaities which ia non-
regular with respect to a real parameter # and “smooth” with respect to the
other parameters, say, ¢ {e.g, ¢ may be a scale parameter). Ghosal and
SBamanta (1994) verified Conditiona (IH) for such a family and showed that
the limiting LKEP factorizes inte two independent processes. If ¢ iz the
parameler of interesl, proceeding as in Theorem 1 and using the results of
(Ghoazl and Samanta (1994), one can see that the marginal posterior of © is
asymptotically normal,

Exanmrir 4. For the mulliparameter family conzidered in Example 3, the
joint posterior of ¢ and & converges if the nonregularity is of the type
mentioned in Example 2. The limil o this case is the product of the limit
ohtained in Example 2 and a normal probahility.

It is interesting to noie that m all the abhove examples, there exizt
finite-dimensional asymptotically sufficient statistica of dimension the same
as that of the parameter.
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We now examine whether the Bayes estimate in Theorem 1 can be
replaced by the MLE. Let condition (IH1) be replaced by the following:

(IH1Y There exist numbers m = a > d and M, m, = 0 such that
E[ZY™(u)) = ZV™(u )™ < My(1 + B™ M, — w1,
for all u,, u, € U, satisfying [, [l Ju,ll < R.
THECREM 2. Assume conditions (IH1Y, (TH2} and (TH3). Let Z () and Z(-)

have continuous sample paths and 2(-) attain its maximum af o unigue point
it. Then, as n — =,

(B) {‘F.I;I[:F;n - HD}! [Pn;l-l(art-_ Hﬁ}} _}d’{ﬂ’!‘r}!

where 6, stunds for the MLE, ﬂ,z for the Bayes estimate and T is as defined
earlier.

Proor.  For any function f on R%, let f{; M) denote the restriction of f{-)
on {—M, M 1% By arguments used in the proofs of Theorems L10.1 and 1.10.2
of IH, it is enough to show that, as random clements in O] —M, MJ® x
C[ _Ms Mlde_

{10} (Zal s M), (3 M) =, (205 M), (-3 M)).

Since tightness has already been verified, it rernains to prove the convergence
of finite-dimensional distributions. However, thig follows from an obwviona
modification of the arguments given in [H {page 108) and Theorem A1 of the
Appendix. O

Theorem 2 has a useful consequence in the LAN, LAMN and LAQ situa-
tions {see Jeganathan (1982), Le Cam (1986) and Le Cam and Yang (1980) for

definitions).

CoROLLARY 1.  Assume the conditions of Theorem 2 and suppose further
that the limiting L.EP is of the form

(11} Z{u) = expfwr'd — (1/2)u'Su],

where A is o random vector and 3 iz an almost surely positive definite
random matrix. Then

(12) (B, =)=, 0,

that is, the MLE and the Boyes estimates are asympiotically equivalent.
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ProOF. By Theorem 2, ¢ 1(8, ~ 8,) -, (r — ) IF(11) is satisfied, Ander-
son’s lemma implies that 7= & = Z7'A, and hence (12) holds. O

We now consider the special situation where both the hypotheses of
Theorem 2 and the LAN condition are satisfied. In this case, X iz a nonran-
dom matrix and A is distributed as N,(0, %). Then condition (b} of Theorem 1
holds, and hence we can have a limit of the posterior with the Bayes estimate
as a proper centering. By Corollary 1, one can now replace the Bayes estimate
by the MLE. Moreover, the limit of the poaterior iz N,(0,%"!). The same
conclugion can be reached by a more direct route. By arguments similar to
those in Theorem 2, one can show that the MLE iz compatible and then one
can obtain the result following the proof of Theorem 1. Thus we obtain an
in-probability version of the well-known Bernstein—von Mises theorem in a
much more general setting,

APPENDIX

LemMa Al For fe LMRY) and x € RY, define f, by £.(y)=fly —x)
Then the mapping (x, f) v~ £, from B2 x LR} inte LNR®), iz continuous
in x and is an izometry in f, and so s jointly continuous.

For a proof, see Rudin [(1974), Theorem 9.5, page 183].

THEORFM A.Y.  Let £(t), n = 1, and £(t) be measurable random functions
defined on a compact set F ¢ BY, and let wit) be o measurable function on F.
Assume that the following conditions are safisfied:

(a) sup, . ECplw(ed | £6¢0 dt) < =
(b} there exist H, o = 0 such thed sup, .| E|£0¢) - &) < Hilt — 5|
(c) finite-dimensional disiributions of £ (1) converge to those of ().

Thern, for anvf,,...,t, € B,
Ed s balLy), [0 ()E(E) dt] o | €082 e £t [ () £(2) dt ).
; F ! Fd !
The proof iz a minor modification of that of Theorem T.A.22 of TH.
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