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Absprger: Using conditional expeciations, we presenl cesubts (hat lead o lhe characterization of
several distribudions. Hoth absoluiely continuous random variables and discrele random variables
are considered. In the case of absolutely continwous random variables, the results lead to the
characterization of a [amily of distributions while in Lthe case of disereee randony variables, the
distribition is slmast wpiquely detcrmined wnder the stated conditions.
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1 Intreduction

Characterizations of distributions nsing conditional expectations have been
studied by several authors. Let X,, X.. ..., X bc a randem sample of a
random variable X with a continzous distribution function F which is strictly
increasing over (a.b) —wo <a<b= o, the support of F, and X, =<
Xing 2 X, lhe coresponding order statistics.  Ferguson  (1967)
characterized distributions vsing the condition (X, |X..,., = %} =ax — [i,
while Beg and Kirmani (1974) used the condition F(X X, ~ x)=ax - fl to
characterize distributions. Here o and ff are some constants. Related results can
be found n Gilambos and Kotz (1978), Azlarov and Volodin (1986), Beg and
Balasubramanian {1990) and Balasubramaman and Beg {1992). Let g be a
nonconstant confinuows function over (g, & with finile gla+) and finile
expectation, £[g(X)]. By a suitable choice of g, Berg and Balasurbramanian
(1990} were able to characterize all distributions for which the explicit form of
the distribution [unction is known, continuous and strictly increasing in its
suppart {a, b), through the property,

_ )+ glat)
) 2

1
E{;._—lrummm = x} Vx e (a, by

Balasubramanian and Beg (1992) subsequently characierived distibutions by
conditioning on a pair of order statistics. In the last two papers the
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characlerizations were through the arithmetic means of the lunction at the end
points.

In this communication, we present certain results based on conditional expec-
tations that lead to characterizations of several distributions. We use harmonic
and geometric means of the unctions at the end points to arnive at our resulls.
Specificully, we prove the lollowing main results:

ity If X 15 a random variable with cumulative distribution fupction [cdf} Fix)
and density function f{x}, which is continuous in the support of the density,
then

E[giX)|x = X <y] = 290 (¥)

= Lt o Wx. FLxey
glx] + g(y}

continuous derivative and o and b are constants.
(it If X and g are as in (1) above, then

EfgiX)x < X < y]= Talogyy . ¥xpx<y
if and only if

2

=
¥ = e
{1ii) If X is a discrete random varable taking nonnegative Integral values over
the interval [a, ©] and g be a positive lunction with gli) = gli + 1) e [u, ],
then

Efg(X)la < X < b] = —S@g(®) Yu, b, a < b

ala) + gib) *

and only if PriX =il=p,=x+fiforu<i<e gfi)=c/p; ¥ie[u,r]
and ¢ is some constant,
iiv) with X and g as in (i) above,

ElglX)a =X =b]={alag®)) ., Vaba=h

1

it and only if Pr{X =it=p,= ar"?! and gti} = cipl, where ¥ = gy, P

ie[u, t], the support ol X
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The above resulis lead to characterizations of several continwous and discrete
distributions. The proofs of the above stated resolis are given in Scction 2. 1n
Section 3, we give some characterizations.

2 Proofs of the Results

Theorem 12 Lel X be a random variable with cd £ Fix}and density function fix)
and let fix) be continuous in the support of the density. Then

2gix)at )

E[glX)|v < ¥ = y] = ool
LgtX)x = ¥] 30 F a0

Yo, yx =y, (2.1)

' h
if and only if gi{x) = \u'lll (m), where g(-)is a positive function with contin-

wous derivative and a and b are constants.

Proof - (bserve that iF g{ -} is a positive function with continuous derivative then

- vogiehfity de
ElgiXjx = X = y] = airhfie)

 F(y) — Fix) (22)

Suppose (2.1) holds. Then equating (2.1} and (2.2), we have

= (F) — ey 28590
£g{r}f{r}aﬂ = {F(y) f'[x]}g{x} +g(y)

Differentiating both sides w.r.t. ¥, we have

E I 2gix)y(y) }
gy ﬁy[,f{;j fo}}-mﬂery]I
_ 2[F(y) = Flx)}

i)
{1+ gatn??

Ligtx) + Ly

which yiclds
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fiw 2{glx)a’in

=% it B (2.3}
Fiy)  Fixy gy {g0y)* — {g(x}}*]

Mote that the Lhs. of {2.3} s the partial derivative w.r.t. y of In[F{y) — £'{x)] and
the r.hs, that of In[1 — {g{x)/g{ )P ]. Consequently,

= Fix) (1 (ylﬂ

k being an arbitrary constant. This gives

b
gy = \/(F{y} i—a) {2.4)

where a, b arc constants such that B/IF(y 4 a) =0
Conversely, suppose (2.4} holds. Then

s omfwd 1 2 TR N
'E F(y)— Fix)  F(y) — F(x) i \[(mﬁ)f () dt

_ Zalxgly) n
gix) + gy

Suppose X,, X, ..., X, 15 g sample from the random variabie X, defined in
Theorem 1 and let &, =< X, <= X ., be the order statistics. Then, it is
known that the conditional distribution of X, ... X .00 Xy, Even
X .=x X, =1vir<s)isthe same as the distributionof ¥, , , ;. Y2, ;. 1.---
Yooh 1. o where ¥, is the ith order statistic based on a sample of size
{s — r — 1) from the truncated distribution [ X |x = X = y} Using this result, we
have the lollowing corollary to Theorem 1.

Corollary 1-Let X and g{-) be as in Theorem 1 Then

51
E[ Y ¢X s —r— DX, X,

i=rti

il and only il g(x) = \/(H%)
x}+a

On similar lings, one can prove the following results,

]_ 29X, .a)gi X )
g X} + g(X, )
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Theorem 2: Let X and gi-) be as in Theorem 1, Then

ELgiX)|x = X = 3] — /Tg0xaiy)] (2.5}

oand only

h2
x) = \ 26
4(x) (Fix) —ay” 28
where ¢ and b are constants.
Coroltary 2: Tet X and g(-) be as in Thearem 1. Then
oAl \ 1
H( Y g 7 DKo Xo ) 7 AKX ) 27
i—p+1 7

if and only if (2.6) holds.

Remark: The result in Corollary T characterizes several distributions, This result
cun he wsed Lo test the hypothesis thal Lhe sample s from a known population.
For example, if I'y(x) = b/{g{x}!* a, then the hypothesis that the ohservations
are from the disiribution Fuix) can be tested by considering the difference

a—1 b =
L . . "-gl:kr:.u}g[.'xs::u}
I'= 1% X Va—r—=10-— :
i—Ti‘. Eﬂ'{ “":I.{HI ' : ﬂ':X:n] i F}{'Tx:rij

Under the hypothesis, (1) = 0. Hence large values of | T| lead to the rejcction
of the hypolhesis. As this tost is based on 4 characlerization property, it is likely
to have large power. This inferential aspect will be dealt in & separate paper,
Coruilary 2 cun also be used sirmilarly. This inferential aspect makes the charac-
terizations very useful. u

Now suppose that X is 4 discrete random variable taking nonnegative integral
vitlucs in the interval [ ¢], ¢ < oo Suppose g - ) is a posilive function such that
gli) = gii + 1) Vie [, v]. Then, we have

Thearem 3: With X and -} as ahove,

ElgiXHa = X = b] = il ; Va,ha=<h | {2.8)
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il and only if PrX —fj=p, =a+ fi and g(i) = — e/p; ¥i e [, ], whore ¢ is
FQIme Constant.

Eroof: To begin with, letusix a =i, b = 1§ + 1 Tor seme I £ [, #]. Then,

glilp: + gli + 1lpy,

F[gX)i= X =i+ 1]=
B + Piny

_ 2alidgli + 1}
gUil + gli + 1)

from {28} .
This implics that gif)p; = gli + Dy, . provided gid) # gif + 1}
= gii) = cip; . (2.9}

Apam. leta =i, b =i+ 2, for some { € [w v} Then

ﬂ{i}l‘_ﬁ" il d + Dhpooy + gli 4+ 2hp 04
Pit Fin + Pz

_ 29lg(i +2)
gliy +ali + 2}

FlgiX)li=X =it 2]=

fromi(2.8) .

From {2.9), we gol, therelore

Pi+ Fisz

AT
5 (2108

Piry =

which implies that p’s arc in arithmetic progression, say p; — % + fii Vi e [u 6],
H is now easy o venfy that for g(i) given by (2.4 and p/'s satisfying (2.10).

Zget)gib)

On simikar lines, one can prove the foltowing:

Thenrem 4: Suppose X is a discrete random variable taking nonnegative integral
values in the interval [& ¢], ¢ < oo and g(-} is a positive functiom such thal
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gy £ gii + 1% e {u, v]. Then
Elg(X)le < X =b] = /lglagth)} . Yo, ha<h

it andd only it Po(X =i} = p, = 2¢'"" and gix) = /p? ¥i € [, v], where x and ¢
are constants and r = p,/p,, .

3 Characterization of Distributions

We pive two examples to illustrate how the resulls of the previouws seclion help
in characierization of distibutions.

I IMstnbubions with el of the lom
Fixp= Ax*+ B {3.1)

are churacterized by any one of the {ollowing two conditions-

.. 1 -1 ] =
T R
o B N TS P R

} (Feapie ki N S e |

Mate that the family of distributions given by (3.1) meludes power Eunclion
distribntions, Pareto distribation and Rectangular distribution,
2 Distribuwtions with cdf. of the farm

Fixh=Ae™ + B (3.2)

are churacterized by any one of the following conditions:-

1 w-l - Zem_ﬂj, Xz
[_H} F‘ i R T Z EI:u;.ulz|‘H:r:|r-v dh‘::r:rr} 7F &y W
1(5‘ —r— 1) PR SR .

1 i % . B
e E f:ﬁlx ..l'xr.nr Xs:.'l = Umxr..-hrm" s
{:" il 1:' t=r+1

{b) E{

The lamily of distribution given by (3.2) inciudes exponential and the Weibull
distribution,
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The ahove characterizations are for absolutely continuous distribution. But
the discrete case is totally different. For discrete random variables our results do
not characterize a family of distributions. Under the siated conditions, ¢ and £
are almost umigue.

Acknowledgements: The anthors wish to thank the referees for thelr construclive comments on a
PrEviaus versicen,
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