SOME INEQUALITIES FOR NORMS OF COMMUTATORS*
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Abstract. Let A, B be positive operators amd let f be any operator monctone function. We
obtain inequalities for ||| f( A —X f{B)]]] in terms of ||| f (|AX — X 2[}||| for every unitarily invariant
norm. The case X = [ was considered by T. Ando [Math. 2, 197 (1988), pp. 403-40H)], and some of
our results reduce to his results in this special case. Some related inequalities are obtained.
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1. Introduction. The aim of this paper is to present commutator versions of
some perturbation nequalities proved by Ando [1] and by Jocic and Kittaneh [4]. For
simplicity, we will state our results first for n »x n matrices and then point out the
small modifications needed to extend their walidity to operators on a Hilbert space.

Let A, B be positive (semidefinite) matrices, f any nonnegative operator mono-
tone function on [(),2¢), and ||| - ||| any unitarly invariant norm. Then we have the
following inequality due to Ando [1]:

(1) A —F( B = [llF(A—BDIII.
Here, | X| denotes ( X* X:Il"hz.

Our first theorem is the following extension of this result.

THEOREM 1. Let A, B be positive matrices. Let X be any matriz and let 5,(X),1 <
j = n be the decreasingly ordered singular values of X. Then for every nonnegative
operator monotone function [ and for every unitarily mvariant norm we have

2

1+ 2(X)
@ lsax-xpei< IO

mx—meH

After this we prove another inequality, which implies the following.

Tueorem 2. Let A B be positive matrices and let X be any contraction (i e,
[|X]| r= 51 X)) < 1), Then for every nonnegative operator monotone function [ and
for every unitariy invariant norm we have

5]
() NAAX —XABI =, lIf (IAX — XB] Il
For the special case of the operator norm || - || and the power functions f(f) =

t", 0 <7 <1 the inequality (3) has been proven by Pedersen [8].
Note that while the choice X = I reduces the mequality (2) to (1) the same & not

.

the case with (3). It is an interesting open question to decide whether the constant

* Received by the editors March 24, 1995: accepted for publication (in revised form) by R. A.
Horn March 26, 1906,
http:/ fwerw siam.org) journals /simax )/ 18-1 /29323 hitml
t Indian Statistical Institute, New Delhi 110016, India (rthhfiisid.ernet.in}. Part of this work was
done while the author was st The Fields Institute. This research was also supported by NSERC,
Canada.
! Department of Mathematics, University of Jordan, Amman, Jordan.

258



SOME INEQUALITIES FOR NORMS OF COMMUTATORS 259

5/4 occurring here could be replaced by 1. We show that for 2 x 2 matrices this can
indeed be done.

Section 2 of this paper contains the proofs of these results, several related in-
equalities, and some remarks. We then obtain extensions, in the same spirit, of the
following result from [4]: If A, B are Hermitian, then for every positive integer m

{4) |||{A _ B:I‘Errl+'|: | || E E‘Em |||A3frl+1 _ Bﬁm+1 ||| .

The extension we obtain is the following.
TueoreMm 3. Let A, B be Hermitian and let X be any matriz. Then for every
positive integer m and for every wnitarily invariant norm

[t 4 o)™

5 AX - XEB B +1 < Aﬂ'frl+lX _ _T{BQT"'FL }
® e SRS I
If X is a contraction we have

5 Pm+1
{ﬁ:l ||| |A:{ s Xﬁlﬁrrl+1 ||| E 2‘3"! (;1) |||Aﬁrrl+IX _;{B‘Em+1|||‘

2. Proofs and remarks. We will use standard facts about unitarily invariant
norms and singular valies (see, e.g., [3]) and about operator monotone functions [9].
Recall that if f is a nonnegative operator monotone function on [(), oc) then it has an
integral representation

=M
”) 0 =a+pe+ [N du
where e, 3 = 0 and g is a positive measure. We will repeatedly use the identity
(8) FIUAL) = U flAT,

valid for all unitary operators [V, Hermitian operators A, and functions f whose
domain contains the spectrum of A. (In the mfinite-dimensional case f{A) & defined
via the spectral theorem for all measurable funetions f. The representation (7) shows
that operator monotone functions are infinitely differentiable.)

Lenmma 4. For every positive A, unitary U, and nonnegative operator monotone
function f on [0,00) we have

(9) HAAW = UFAI < JIIf (AU — UA])|]]-

Proof. Using the unitary invariance of ||| - |||, the relation (8), and the inequality
(1) we have
AT = UFA)] = [ILF(A) — T FAIL]
= [|If (4) — F{LFAU) |||
< lIF (1A =T AU ]|
= [lIf (AU -UA[])f||. 0O

Lenmma 5. Let XY, Z be any three matrices. Then

(10) NAAXYZDIE < [IF AN 1210 DA
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for any monotone increasing function f on [0, 20).
Proof. It is an easy consequence of the min—max principle that

s (XY Z) < [|X[| [|Z]] 5(Y) for all 5.

Henee,
si (f(IXY Z])) = f (s;(XY Z))
< FUIXI 121 55(Y))
=s; (FUIXI] 1211 1Y])) -
This & more than adequate to ensure (10). 0

The special case A = B, X = X*. We will first prove the inequality (2) in this
special case. Let

(11) U=(X—-i)( X+

be the Cayley transform of X; U & unitary and its spectrum does not contain the
point 1. We have

(12) X =i(l+( - ' =2(1-H" —i
g{}, we Can write

[f(A)X — X F(A)f
(13) = ||| F0A) (2i1 — )" —d) — (2i(1—U)7" =) fA)]|]
=2||[f)1 -0 = (1 -U) A
=2|||0 - (AU -UAA) 1 -7
<Z||(1- UII“llzlllf{AIIU = U (AN
<Z||(t- UII‘Illﬁlllf{IAU = UADII,

using Lemma 4. Now use (12) to obtain

1 X+illP 148X
(14) -z || 5 i g,
Also note that
(15 ||| f (AL =T AN = |||f |[|A|[l—21i{X+?l:|_1] - {1—2ﬁ{X+?E:|_1:]A|]|||

= |[If @[(X+i) A —-AX +) )|
= ||IF (2 |(X + & 4x — X)X +i)~)}||
< ||If @IEX +711P 14X — XAl)]||

using Lemma 5. Finally, note that

1

(16) nw+ﬂ*m=l+ﬁmy

The proof of (2) in the special case is completed by combining (13), (14}, (15), and
(16).
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Proof of Theorem 1. The general case follows from the special one by a much-used

trick. Let

_[4 o _[o X
C_[ﬂ B]‘Y_[X* n]'

Then ' is positive and Y is Hermitian. The singular valwes of ¥ are the same as
those of X (but each counted twice now). The special case of the theorem applied to
" in place of A and V¥ in place of X leads to the inequality (2). 0

Proof af Theoremn 2. Let § be any nonzero real number. Then the inequality (2)
with +X in place of X gives

an nrax-xsoi < IO 2 ax-xal)||

Let || X|| <1. Put + = 1/2 in (17) to get

5] kS
— = —J ‘
a9 sx-xii < 37y, 5 4x-xa1)]|
Since f is operator monotone, the inequality (3) follows from (18). 1]

Remark 1. With slipht modifications, the results above carry over to operators in
an infinite-dimensional Hilbert space. We need to replace s1(X) by || X]| in (14) and
in the subsequent discussion. In (16) we need to replace 5,(X) by inf)|g) =1 || X[,
and in the subsequent discussion we need to replace it by inf) -, |[Y ¢||, where

% D
y_[ﬂ Xx]_

Note that inf), _; || X9 is equal to zero if X is compact and i equal to || X!~
if X iz invertible.

Remark 2. In [6], Mathias showed that Ando’s inequality (1) is true if f is a
nonnegative matriz monotone function of order n on [0, 20). (This means that f
is assumed to be order preserving on positive semidefinite matrices of order n only,
while an operator monotone function is one which is matrix monotone of order n for
all n.) Our proof shows that the inequalities (2) and (3) in the special case 4 = B
and X = X* are true for all functions f that are matrix monotone of order n. The
proof for the peneral case works if f is matrix monotone of order 2n.

Remark 3. The special case in which f{#) =, 0 <+ < 1, and the norm is the
operator norm has been studied before. In [7] it was shown that for every positive A
and for every X

(19] JA"X - XA £ Q=) |IX)F" JAX - X A", 0<r <1

It was mentioned in that paper that Haaperup showed that the factor (1 — )"t
oceurring in { 19) could be replaced by (sinem)/7r(l — r). This, and some extensions,
were also proven in [2]. Pedersen [8], wsing arguments like the ones we have used,
showed that the factor (1 — )"~ ! can be replaced by 5/4. He remarks that for the
special case r = 1/2 this can be reduced further to 2/ /7. In some special situations
our inequality (2) can give better results. For example, this & so when || X|| = 1 and

8n(X) > .T6.
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Remark 4. For 2 x 2 matrices, the factor 5/4 occurring in the inequality (3) can
be replaced by 1. To see this, let

A=[GI ] :|-. X=[$'|_I 312:|-
0 s Tay T

Then
1(£(@1) — F(6a)) 2l 0
WAL= =[ 0 |{f{aa—f{mnm|]
and
fl{ar — ag) z21]) 0
“'M_‘“”=[ 0 £ (o= i) i) ]

So, it is enough to show that if [z < 1, then

(20) I(F (ar) = F(a))a] < £((ar —az)z)).
It follows from the representation (7) that cf(#) < f(et) for 0 < ¢ < 1. So, if 2 = ee?,
we have
[(flai) — flaz)) 2| = "—'|{f{ﬂ1:| = f{ﬂﬂjjﬂja|
< ef (|(a —ﬂ-g:lf.'m“
< f{l(a1 —az) z{).

Our next proposition shows that if we replace the operator norm with the Hilbert—
Schmidt norm, then the first factor on the right-hand side of the inequality (19) can
be replaced by 1.

Prorosimion 6. Let A, B be positive and let X be any matriz. Then for 0 <r <
L.

(21) lAX — XB"|l, < [IX]l;”"1AX — X B

Il

Proof. As in Theorem 1, the general case follows from the special case 4 = B.

Azsume, without loss of generality, that A is diagonal with diaponal entries Ay, .o A,
Then

147X = XAT|I3 = 37| (¥ = 29) s
b

<3 = A7 [yl
i

2 2 21—
= 2 D= X ey P g
i

E (Z =4y |m,.j|e) " (Z lsz)

= ||AX — XAl IX13 .

We have wed Holder's inequality to arrive at our last inequality. 0
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The inequality (21) & valid for operators on Hilbert space. Let X be any Hilbert—
Schmidt operator and A any positive operator. By a theorem of Weyl and von Neu-
mann (5, p. 525] A can be expressed as a diagonal operator plus a Hilbert—Schmidt
operator with arbitrarily small Hilbert—Schmidt norm. So, the same proof gives the
inequality (21) in this case as well

Following the same arguments as Ando (1] we can derive the following general-
ization of Theorem 2 in that paper.

TueoreM 7. Let g be an increasing function on [0,00) such that g(0) = 0,

liny .. g{t) = oo, and the wmverse function of g is operator monotone. Then for all
A B =0 and for all X,

QE I,
e m‘ ‘5’ (1+-f${x:| )

2
Once again, first replacing X by +X and then making the special choice + = 1/2,
we get from this
4+ 5 (X)
E!

(22) = [llg(A)X — Xg(B|[|.

(23) = lllg(A)X — Xg(B)||| .

+
o oy 1% - 231

Since g is monotonically increasing, we obtain from this the following theorem.
TueoreMm 8. Let A B =0 and let X be any operator with || X]| < 1. Then for
every function g satisfying the conditions of Theorem T we have

(24) H‘g (: |AX—XB|)

In particular, for every v = 1 we have

= [llg(A)X — Xg(B||| .

(25) Il |AX — X BI||| = (4) [I4"X — XB"|||.

We remark that should it be possible to replace the factor 5/4 by 1 in inequality
{3), then the same could be done in (24) and (25).

The proof of Theorem 3 is analoppus to that of Theorem 1. We leave the details
to the reader.

Acknowledgments. We are thankful to Ken Davidson for bringing (8] to our
attention.
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