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Abstract

D-optinel designs are identified in clesses of connected block desiens with fiked block size
when fhe number of expeimental units is one or two More (han the minimes] number egeired for
the design 1o be connected, An application of one ol these results 15 mude to wdentily D-uplimal
designs in a class of minimally connccted row—column designs. Graph-theorctic methods are
emploved to atrive at the optimality results.
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1. Introdoction

Suppose it 15 desired to investigate the effect of o =2) treatments using a block
design o, having 5 blocks each of size &(22). For a given block desipn & with
parameters oAk, let Ny — (k) be the ¢ x b incidence matrix, where my; is the
number of times the fth trcatment appears in the jth block of &, i = 1,2,...,1, j =
1,2,...,b Under the standard homaosecdastic ixed effects model, the coelficient matrix
of the reduced normal equations for cstimating linear functions of treatment effects,
using o, is

Co=Re — & 1NN, {113

where
b

R, = diag(ratar,....re) 804 £y = nay.
=1
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It i well known Lhat all treatment contrasts are estimable using & if and only il &
i ermnecteed, or, equivalently, if and oaly if Rank(Cs) =¢ 1. A necessary condition
for a block design o to be connected s that

Pk ab4+ v —1 = my fzayl (1.2}

In the recent past, several papers have appeared in the literature which deal with the
optimality of Alock designs when the number af experimental units s smull, typically sy
or (#g+ 1) (Mukerjee et al. 1986, Kraflt, 1990; Mukegee and Sinha, 1990; Bapat and
Dey, 1991 Mandal et al., 1991; Birkes and Dodge, 1991 ). For § = 8, 1,2, Tol S50 b &Y,
respectively, denote the class of all connected biock designs with # treatments. & Blocks
and constant block size &, satisfying

BE=hru+i-l, (1.3}

Also, lot %% A n) denote the class of all connmected block deusigns with © lrestments,
& blocks and » expedimental units {Block sizes being arbitrary), Mukerjee ot al, { 1986)
and Krafit (1990) ipdependently proved that all designs in %[, 8,5 ) are equivalent
according to the D-optimality criterion for the joint cstimation of treatment and block
contrasts {For a description of the varions optimality criteria, see, e.p. Shah and Sinha.
198%). Muokerjee and Sinha (1920} and Birkes and Dodge (1991) obtained optimal
designs in S*(u,b,mg | 1), the former with respect to the D-criterion and the latier
with respeet o A- and a modified E-criterion. Both these papers relate to the problun
ol jointl estimaton of feeattnent and block contrasts. For the problem of inferring on
treatment contrasts slone, A-, - and D-optimality of designs in Zgiv, 5.4) has been
studied by Bapat and Dey {19915 and Mundal el al. (1991}

The purpose of this communication is to present sdditional optimality resules for de-
sipms in S (e, b k) and e A ) The optimality critedon chosen 15 the D-optimaliy
critetion. We wse a praph-theoretic formulation of the Decriterion o derve results on
black designs, following cssentislly Gallke (19827 These results are given in Scctions
2 anid 3.

In the context of connccted row—column designs wilh minimal or near minimal nom-
bor of experimental units, optimality results arc hitherto largely unknown. Chatterjec
and Mukerjee {1993} have recently obtained results on D-optimalicy of minimally con-
nected three-factor designs in which one of the factors has just two levels. In Section
4, we identify D-optimal designs in the class of minimalfy conneeted rowr column de-
sipms with two rows, using the resulls of Section 2. Throuphout the paper, we consider
the problem of inlerring on reatment conteasts alone,

2. D-optimal block designs in %4 {v, b, &}

Suppose %{v, A, &) 1% the class of all connceted block designs with & treatments, b
blocks and (constant) block size & 22, and ol & = #{p, b k). Lot the cigenvalues of
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Cobe 0= dgy < Ay Ddszs - Shgp—1. A design ¢ € 1, b.4) is D-optimal over
v b, &) if and only if

v—1 r—1
Az, = max | 44, 21
1] ¢+ = Max ]_1 i (2.1)
where, for § = 1,2, ... .6 — 1, {44, } are the positive eigenvalues of Cy.

1 i% known that for an arbitrary comnected block design, o, Cy has all its colactors
equal and positive, and,

v ]
[[As = vaiCa) (2.2}

1=1

where Col(Cy) is the common cofactor of Cy.

A block design & with ¢ reatments, » blocks and block size & can be described by
a bipartite multigraph A, with freatment labels 1,2,. ... ¢ and block labels £, fs, ., B
as its verices. A palr of vertices (4, i) is jolned by ay, parallel edges. A block design
4 is connected if and only if the corresponding multigraph /f; is commected in the
graph-theoretic sense. It has been shown by Gaftke (1982) that for such a connecled
hlock design o,

r—1
[Tou: = (rik" et Ha) (2.3)
el

where, o Hy) is the number of xpannieg frees in fhe bipartite graph H,.

Thus, we mfer that a design 4* is fO-optimal over &{n £,%) T and only if ir max-
imizes of Ay} over 5. or equivalently, if and only if, 4* is such that H- has the
maximal number of spanning trees. We use the above formulation to obtain D-optimal
block design in 20, {o, &, &) and (e, bk

Recall that tor any arbitrary = 27 (v, 5,4,

bk =B 41 (2.4)

It was shown by Bapat and Dey (1991} that fiw any o C (e b, &) M, is a troce
itself and henee has preciscly one spanning trec. The bipartite praph associzted with
any design in £ (r. b, &) has precisely one more cdge than the number of edges in the
bipartite praph of a design in Zy{e, b, #). The consequence of adding one more adge
to a tree (recall that the bipartite graph of a design in {0, 5,%) is a tree) is that now
we have precisely one cycle, provided the extra edge is not a muldple edge. D, if
there is a multiple edge, the number of spanming trees is exactly two. Mote that the
bipartite graph will have a multiple edge if and only if the design is nenbinary. Since
the length of a cycle iz at least three and the number of spanning trees 15 precisely the
length of the cycle, it follows that a non binary block design cannot be D-optimal n
Sl by We can therefore resmict the scarch for a Deoptirnal desipn in & bk}
o the class of binary designs, giving rise to praphs with exactly one cycle.
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Since the graph is hipartite, the length of the cyele cannot exceed 2 min(d, v) = 25,
by virtue of (2.4). Hence, we have

Lemina 1, For ary & € S(5 0 k),
clH 1= 2h. {2.5)

in view of Lemma 1, if there 15 3 % € 500, 5,50 such that efH,. ) = 24, then -
is D-optirnal in 2 {o. b, &) Suppose d” is a design given below with rows as blocks:

1 2 k-1 &
& k41 k-2 -1

2k — 1 2% T 3-2
d* = ; . :

th—l}{k—l}—-—l {b—i‘.}{fc-—lj—l-l ..-_{b— I}.{k—lj (h—]}{k.—lj+l
h—1Uk— D+ 1{p—1Xk—11+2 . Bk—1) !
(2.6)

We claim that &* given by {2.6) is Deoptimal in &\ (25}, Clearly, d* £ {5 8,k).
The graph ;- has precisely one cycle, given by

{,]-.EIj1(Blfk}:fk~Bl}s(-H?.s2k — l}s(il"k - I:BZ:?-}::(BB—;'EC — ?’}‘."--!
((h =23k — 13+ LBu h{Bp—1. (B — 1)k - 171+ 1),
((h - Ik — 13+ L Be) (B, L)

The length of this cycle is clearly 26 and hence
elHy-) =25

Ohserve that a bipartite graph with a unique cycle of length 2% and with no multiple
edges is isomorphic to the graph of the design &*. Hence the design J* is wmiguely
D-optimal in 22 (e, &%) (upto isomorphism). Summarizing, we therefore have

Theorem 1. The design d° i (2.6) is wriguely Deoptimal in %) (v, 5,5 for alf k22,

3. D-optimad block designs In 23, &, &)

For an arbirary block design o £ 94,5, &),
be=h-+cv— 1L (3l

To begin with, we assurnc that & =3. Let My be the bipartile praph associated with a
block design o © {0, 5,4). Then the number of edges in &, Is twoe more than that
in a praph of a design in iz, &), This leads to the following four posibilities:
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s has either
{1} no cyeles {oniy multiple edges); or

(i} one cycle and a maultiple edge; or

(iii) two vertex-disjoint cycles; or

{iv) three cycles.

The number of spatning trees in cach of the above possibilities ate as under:

(1) at most lour;

(i1 at most 46 — 1);

(i1} at most Abz, where &) and by arg the eyele lengths of the two cyveles,
By + by =28,

{iv} xy + ¥z 4 zx, where the lengths of the three cycles arc x+ ¥,y +z and z + x,
s+ ysbhytrslh sty d p+zr=3b+ 2 and x4+ p, ¥+ 7,0+ x are all cven
integers. The last inequality in (iv) gbove iz established by counting the vertices in A
that are block labels of J.

It is not difficult to see that for #:223, the maximum nomber of spanning trees arises
in case (iv) only. Therefore, in order to obtain a D-oplimal design in {0, 5,4, one
has to first solve the following problem:-

maximise 8§ =xy+ L=z

subject lo 4+ yE2h, yp4r=s2b, z4xgh,
r+v+z=2b+2, x4y p+z 4z
being all even miepers.

(3.2

We attack this problem by considering scveral cases,

Cewe (a): {25+ 2)/3 ix an inteper,

Clearly in this case, x = ¥ = 2 = (26 + 2)¢3 is the solutiom for the problem (3.2,
and with these valves of x, v.z, the maximum number of spanming trees is 4(6 + 1 ¥/3.

The next question iz Does there exist a design satisfying the above valves of x, y
and =7 We answer this question in the affirmative later in this section,

Case (bl (26 + 233 —=n + i; # being an integer.

We take x+ y+ 2 — 28+ 2 in this casc, as it can be shown that the maximum of
S=xyr+yr+ex when x+ y+z < 20+ 2 is strictly smaller than the maxinum of §
when x + p+ =20+ 2, In view of the other conditions on x, p,z in {3.2), we must
have cach of x. ¥ and z an even integer.

Since 2b+2 = In+ 1.x must be an odd integer, say # = 2m— |. A solution to (3.2)
is then £ = 2m + 2 = 1,z = 2m, and with these values of x, ¥ and I, the maximum
munber of spanning trees is 45(6 + 23/3. There indeed is a design for which these
values of 1, ¥,z are attained. We discuss this design Ieter o this section.

Cove (c): 2+ 2)3=n+ %._, n an infeger.

In this case, since 25 + 2 = 3n + 2, n must be an even integer, say ¢ = 2m. A
solution to (3.2 in this case is given by x = Z2m = ), z = Zm + 2. The maximum
number of spanning trocs is then 4(A + 2613,
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We now describe a design piving rise to the maximum nuraber of spanning trees
in each of the three cases considered above. Since we have already determined the
values of v, v and = giving rise to the maximum number of apanning frees in the three
cases (a), {b) and (c), we simply show how these values of 1, p and z can actally
be achieved. Lot 7% be g desipn constructed as lollows: Suppose the blocks of o+
wre 8, Hy, . Hy and treatment labels 1.2, r Intlially, we pul in 8 the reaiments
o +202.(2x +2}2 und in block & 45, the treatments 2/2,2/2 + 1Lz +x)2 4+ 1.
Far i — 2.3, =4+ x}2 i£{z+2)2, in &, wc put the treatments £ — 1, 7. Finally,
for f =(z+x}2 - 1.....4, I By we put treatments §, 7 + | The remaining treatments
are arbitrarily allocated fo alf these blocks so as to make each a binary block of size £
It can be verified that in the graph of the design J**, there are three cycles of lengths
x+ ¥ ¥4z, z+ x Note that in all the three cases, » = x. It can be scen thal any
graph with precisely three eyeles of lenpths x + 3, ¢+ 2, z +x 1% isomorphic 1o the
graph of the design ™. We thus have

Thearem 2. The design &*7 consiructed above Is uniguely (upfe isomorphism) -
aptimal i Ba(u, bR, for all 23 k=3

For £ = 2, the design with the [ollowing blocks can be verified 10 be D-optimal in
S, 2 k)

el 2 03 k=1 &
k=1 k k+1 . w0

Fur & — 2, clearly the abeve construction procedure does not work, However, pro-
geeding on lings similar to the casc £33, one can shew that the design with the
following block comtents is D-oplimat in Sy, £,2)

(28 (2.3%43,4% . oz +x02. iz + iz + W2+ 10
{+xk2+ L,z 4+x72 -2z +xk2+2(z4+x)2+30.. .00t

where {i} x = v = 2 = 203 if 26/3 is an integer, () x — vy =an+lz=n-—1,
if2h=3n- 1, (iyyx=p=nr=nr+2,if 2b =2n+ 2 Note tha for k = 2,
x4 ¥+ 2z =20 and that we must have £z=3.

4. D-optimal row—column designs with minimal namber of units

Suppose @ treabments arc to be tosted via a row column design dpe with & rows
and & columns. A necessary condition for a row—colunm design dp 10 be connected
is that

bkzb4+o+dh-2 (4.1}
We consider designs with £ = 2, For this special case, {4.1) reduces to
b= (4.2)
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Theretore, a necessary condition for a row coluno design with £ = 2 rows to be
minimally connected is that

- (4.3}

Let (e bk} be the class of all connected row-<olumn designs with » treatments,
fr columns and & rows. The coefficient matrix of the reduced normal equations for
treatment effccts, using a design dre & #e,b,E) s

Ciiye = Ko — NINE- D LLUN Y 8 (44}

where Ny {rospectively Nz) 1s the trearment vs column {respectively row} incidence
mattix of dpe, Ry, 15 the diagonal matiix of teeatment replications in the design dne
and Ji 15 a & x & marrit of all ones. We can rewrite (4.4} as

Cae = Cr' 67N — Joik NS (4.5)
where
Ci* — Ry, — NN (4.6)

is the € -matrix of a2 block desipn obtained by treabnp the colurnns of g as blocks,
Mo, trom (4.5, it is clear that Edw_. =}, where for a pair of nontegative definite
mairices 4 and &, 42 8 indicates thal 4 — # is nonnegative definite. [t follows that

Col Cae 15 Col €7 ) 5 max Co(C). (4.7)
Consider a row—column design o € F(r, 1, 2) given by

I 2 3 - 1 @ _

RC = . 4.8

“rc (2 4 owe v 1) )

W is easy to verify that for the design (4.8), one bas equality in the first inequality in
{4.7} and by Theorem 1, in the second one. Hence we have

Theorem 3. The design df,. v (4.8) iv D-optimad in EICER
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