Optimal block designs for diallel crosses
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Abstract  Dey and Midha (Biometrika 8302484489, 1996) constructed optimal
block designs for complete diallel cross experiment using tnangular partially bal-
anced incomplete block designs with two associate classes. They listed optimal block
designs for the lines in the mange from 5 = v = 100 In this paper, we are also pro-
posing additional optimal block designs for complete diallel cross experiment using
two associate class partially balanced block designs for some additional values of v,
Our method yields designs for proper and non-proper settings for complete diallel
cross experiments. The proper and non proper designs are optimal in the sense of
Kempthorne (Genetics 41:451-459, 1956) and non-proper designs are universally
optimal in the sense of Kiefer (A survey of statistical design and linear models, North
Holland, Amsterdam, 1975). The list of practcally important designs is also given.

Keywords Partially balanced incomplete block design - Complete diallel cross -
Generil combining ability - Mating-environment design - Auxiliary design -
Efficiency

1 Introduction

A diallel cross consists of all possible crosses between a numbers of vardeties. Recip-
rocal crosses and the selfed parents may or may not be omitted. Diallel crosses as a
mating design is used to study the genetic propertics of inbred lines in plant breeding
CRPErTme nLs.
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Among the four types of diallels discussed by Griffing (1956), system IV is the
most commaonly used in plant breeding. Suppose there are v lines and let ws consider
acrossof the formi x jwithi = j=1,..., v. With all possible n, = v{v — 1)/2
crosses. This is sometimes referred to as the modified or half-diallel. We shall refer to
it as a complete diallel eross (CDC).

The commuon practice with diallel cross experiment i to evaluate the crosses in
completely randomized designs or mndomized complete block designs as environ-
ment designs, e.g. Kempthorne and Curnow ( 1961). Due to limitation of homogeneous
experimental units in a block to accommodate all the chosen crosses, the estimate of
genete parame lers would not be precise enough il s complete blockdesign was adopied
for large number of crosses. To overcome this problem, many researchers used bal-
anced incomplete block (BIB) designs, partally balanced incomplete block (PBIB)
designs with two associate classes ete. by treating the crosses as treatments. These
designs have interesting optimality properties when making inferences on a complets
set of orthonormalised reatment contrasts. However, in diallel cross experiments the
interest of the experimenter 1% in making compansons among general combining abil-
ity {gea) effects of lines and not crosses and therefore, using these designs as mating
designs may result into poor precision of the companson among lines. Further, the
analysis of a diallel cross expenment in incomplete block depends on the incidence of
lines rather than the incidence of the crosses as treatments with in a block. Itis there-
fore apparent that special technigues are required to obtain good designs for diallel
CIOSSES CXPErments.

Several authors such as Gupta and Kageyama (1994), Dey and Mudha (1996),
Mukergee (1997), Das et al. (1998), Parsad et al. (1999) and Sharma (2004) addressed
the problem of finding optimal designs by using pested incomplete block designs
(NBIB). triangular PBIB designs, nested balanced block (NBB) designs, GD PBIB
designs and circular designs, ete. Gupta and Kageyama (1994) and Sharma (2004)
reported optimal designs in which every cross 15 replicated once but their designs dif-
fer i their parametne valoes with proposed designs. Das et al. ( 1998) and Parsad et al.
(1999} eported opumal designs for single as well more replications. Dey and Midha
{1996) reported optimal and efficient designs in which the crosses are replicated in
the range 3 = r = [ These designs also differ in parametric values of our proposed
designs.

We, in this paper, derive additional imcomplete block designs for the same mat-
ing designs, using two associate class PBIB designs such that none of the L's 1s
zerm. We have also histed these designs for reasonable practically vsable values along
with designs reporied by these authors. The model considered involves only the
gea effects . The specific combining ability (sca) effects being excluded from the
model because the denved designs are not connected for cross effects. The paper
15 structured as: (1) the method of construction of designs 15 presented in Sect. 2,
(2) in Sect. 3 analysis and optimality of the designs 15 considered and we show that
the non-proper designs have strong optimality properies, (3) in Scet. 4, the effi-
ciency factor of both designs (proper and non-proper) as compared o mndomized
block designs 1s considered. For definition and properties of PBIB design, see Dey
(1986)
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2 Method of construction

The method is simply stated as: from tables of Clatworthy (1973), take for v lines
under evaluation and numbered randomly, a two associate PBIB design with param-
eters v = b, r =k, Ay, . my.no, pj-k (i, j.k = 1,2) having none of the A’s equal
to zero and also with the property that any pair of treatments does not occur mone
than once m any column of the design when we consider block size k as a blocks. We
call this design as an auxiliary design. This feature of the auxiliary design helps us o
construct a block design for CDC.

Now in auxiliary design, take all possible distine t pair of combinations of treatments
in each block, starting from the first reatment of the block. These give kik — 1),/2
pairs per block. Thus we get resulting design in which Bk(k — 1)/2 pairs amanged in
b blocks, each containing k{k — 1)/2 pairs. Now in resulting block design identfy
these pairs of reatments as crosses by treating treatments of the onginal design as
lines. Now we consider in resulting design, the number of plots (= k{k — 1),/2) as
blocks and number of blocks (& = v) as the block siee of each &(k — 1)/2 blocks.
We call this arrangement as mating design and denote it as d. Smee L's are unequal,
it leads to unequal repettion of the crosses in design d. The total number of crosses
in mating design &, 15 bk — 1)/2 and out of these vn; /2 crosses are appeanng in
nihi 2 blocks (i = 1.2). Since replhications of crosses are unequal, it makes mating
design unbalanced for CDC expenment. To make the design balanced for CDC exper-
iment, we will have to make the replications of the crosses equal because in balanced
designs each elementary contrast among gea effects 15 estmated with equal precision
under the assumptions of homogeneous error variance across all blocks. To do this, if
A = Ao wedelete l._, [ry{h — Aa)] blocks, (or1f A2 = L then .I—, [raida — & 00]) from
kik — 1)/2 blocks in design d. B

Insome auxiliary designs, for veven lines, if (&) — Az) (or (A2 — X)) 1sodd, thenn
{or r2) 15 also odd, then the expression of number of blocks w be deleted, will not be
a positive integer but it will be equal to some positive mteger H).5. Soin this case we
will have to delete blocks equal o some value of positive integer and (0.5 fraction of
one of the block which contains repeated crosses 1.e. number of crosses o be deleted
are equal to v (value of the integer & v/2). The process of deletion of blocks will
be done with the help of association schemes of auxiliary designs (i.c PBIB designs).
Now we may classify our auxiliary designs into two classes (1) where [ (k) —A2)]
and [rz{i2 — k)] are both positive even integers and (2) where [n (k) — A2)] and
[raldz — A1) ] are both odd positive integers. We denote both these auxiliary designs
s ﬂl” | and ﬂlll].

Thus the process of deletion of blocks of repeated crosses will yield two types
of mating—environment designs (proper and non-proper) for CDC experiments with
PURMELers.

() vy =viv—=1)2. 5 =da{v—=1)ifdy = dpiordp{v—1)ifha = Ay ) rp =42
(ori). kp=un

) m=uvlv—1)2. b =da(v—1)ifd| = daforig{v—1)ifda = L ). rp =42
(or A1), ke = (v, 0 /2)
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Plan {auxi liary design o) Treatment First associate Second associate
i I 2 4 1 25 3,4

B 2 3 5 2 L3 43

B 3 4 1 3 2 4 1,5

B 4 5 2 4 35 1,2

s 5 I L 5 L4 2.3
Dhesign o Design oy (mating-envimonment design)

] Ha Hy o5 Ha

1x2 1 s 4 T4 1x2 x4

2x3 25 Ixs 2x3 2x5

Ixd Ixd 4x1 Ixd Iwl

4x5 422 Su2 4x5 4x2

Sx1 Sx3 I3 Sx1 5x3

Plan {ausiliary design 4, ) Treatment First associate Second associnte
H | 2 4 | 4 2.3, 56
8, 2 3 5 2 5 1,3, 4,6
By 3 4 [i] 3 L] 1,2, 4,5
Hy 4 3 | 4 | 23508
B 5 & 2 5 2 1,3, 4,6
By i I 3 f k. L2 46
Dresign o Dresign &z {mating—environment design)

L i iy L Ha 5]

=2 I x4 x4 1x2 I x4 x4

2xd 25 Ix5 2x3 2x5 3x5

LR Ix6 4xhb x4 Ixa 4x6

4x35 4x 1 3xl 4x3 Ixl

Sxé dul 62 Sxhb 62

[ 6l 1x3 6ol 123

We denote both designs as o) and dz. The method of construction is illustrated
below by two examples.

Example I For illustmtion, we consider design C12 (Clatworthy 1973) with param-
etes v =b=5%r=k=3n =n =274 =1ad l; = 2 The plan and
association scheme of the design 1s given below:
Since Az = 2, the crosses (1 x 30,01 = 40, (2 x 4), (2 x 5) and (3 = 5) appeared
in both blocks 2 and 3 of design 4. So we will delete one of the blocks to obtain M-E
design d.
Example 2 For second type of design, we consider design R 42 (Clatworthy 1973)
with parametes v =6, r=3,k=3.b=6m=3n =2, =2andd; = 1.
Since A = 2, the crosses (1 x4), (2 x 5), and (3 = 6) appeared repeatedly in block
2 of design d. S0 we will delete these crosses from block 2 to keep the replication
same for all crosses. Thus we obtain ds.
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3 Analysis and optimality

For convenience in further discussion, we will denote both designs o) and d as d* The
data obtained from the design &%, we take the following model:

Y=pulpg+A1g+ Az +e (3.1)

where Y is the r x 1 observatonal vector, pois the general mean, 1, denotes an n-
component vector of 1's, g =gy, ..., gu) and B = (fy, ..., fp) are the vector of v
gea effects and b(= b = b2) block effects respectively. Ay and A are the come-
sponding design matrices of of n % vand n = b, respectively; that s (s, i )th element
of Ay is 1if the cross in the sth experimental unit has one parent @ and s 0 otherwise.
Similady (s, uith element of Az is 1 if the cross in the sth experimental unit comes
from uth block and 0 otherwise. e is a random vector of ermor components and takes
care of specific combining ability as well as unassignable variation and distobuted
with mean 0 and constant variance a2,

Forl =i = j = v, let gg+;; 15 the number of times cross (i x j) occurs in d*. Let
sy+;i be the number of imes the ith line occurs in design 4%,

Following Guptaand Kageyama (1994, it can be shown that the information matrix
for g under 4* is

Cy+ = Gg» — v 'Ngs Ny (32)

where &rl A =Gy = (Zaij ), Bavii = 84+ and ﬁi Ar =Ny =(ngi)isthev x b
matrix of parental lines versus blocks, ng+;; 15 the number of times line { occurs in
block .

Under the model, the reduced normal equations for gea, using design &%, are

Crg=0Q (3.3)

where () = T— p! M+B. Here T 15 the vector of hine total and B s the vector of block
totals. Following Dey and Midha ( 1996) we now have the following results which will
help in obtaining C g -matnx for both types designs i.e. d*.

Lemma 3.1 For the design d*, the following are true.

]
(i) Z:i,‘;:lﬂfn +nra)=A{v—1) ifhz =M

w=I

=hxin| +nz) =dx{v—1) ifd = Az

i
Z njp =2v

=l
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b
(1) Znﬁ:?lﬂm +na) =20 1{v—1) ifda = Ay
=l
= 2ha{n +na) =av—1) ifk) = A2
b
(111) ZH” Ry =2h(ny4+n2) =20 (v —1) ifdr =X

=l

= 2)"1{"1 +!‘i2}| = 2}.1{1‘ = ].::l f:f.l"i.| = J"LI

The proafs of all identities are easy are omitted.

From Lemma (3.1}, it follows that, for the design d*, Cy+ 1s given by
O i (IL. _ ! 1L.1’L.) (34)

where 8 = A {v —2) or Aa{v — 23, 1, 15 the wentity matrix of order v and 1, 15 the v
component vector of all 175,
From (3.4) it is easy o see that generalized inverse of Cye is.

=071, (3.5)

It is obvious from (3.5) that ¢* is 8 vadance balanced and therefore all elementary
contrasts among gea effects are estimaled under the assumption of homogeneous ermor
variance across all blocks with a variance 202 /6. Hence design d* is connected and
has rank equal to v — 1. Since design d |5, has blocks of unequal block sizes, there fore
the ermor vanance of dyay will not be the same as of design dpp,. Let .':r|1 and .':r:2 be
the error variances of designs iy and dy7y, respectively. Now we can interpret that

all elementary contrasts among gea effects in designs 1y and &2 are estimated with
2 2

i varianees E&‘_— and :—f;i, respectively. f’urﬂ'u:r the adjusted sum of squares due 1o
gea effects is simply 8 71Q'Q = 6~ 1(Q7+.. . +03). where i = 1,2...v. Q; is the

adjusted total of the ith ling; that is 5 is the ith component of the vector €, defined
in (3.3). We thus have the following result.

Theorem 3.1 The design d* (i.e d| and da) is variance—balanced for general com-
bining ability effects.

Now we take the optimality aspects. The optimality eriterion 1% the minimization of
average vanance of the best linear unbiased estimators of all elementary comparisons
between gea effects.

Let D (v, b, k. ... k) denote the class of all connected block designs &% with v
lines, & blocks such that jth block is of size k. Similarly Dy (v. b, r) denote the class
of all connected block designs ¢ with v lines, b blocks and n experimental units. Here
the block sizes are arbitrary but for a given design d*Dyiv, b, n), the block sizes are
equal.

Now using the following theorem (Parsad et al. 1999, page 41).
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Theorem 3.2 Letd® & D{v, bk, . kp)[Dylv, b, n)| be a block design for diallel
crosses and suppose that 4% satisfies
(i) Trace (Ca) =235 kj — 30_) -12k;(2x; + 1) — vx;(x; + 1)] if and only
fnpij=x;orx;+1foralli =1, J vy j =10, b, where x; 18 a positive
mteger. And for ng+;; = Qor L, this reduces to [Trace ( Cy+ ) = 2{n —B)], where
nand b are total number of expenmental units and number of blocks in diallel
cross design [Dylv, B, n)|, respectively.
(i) Cg+ 15 completely symmetric.

Then d* is universally optimal over Div, bk, .. kp)[Doiv. bon )]

Forany memberof D{v, bk, .. k) [Dodv, B, n) |owehave Trce (Cge ) = Az(v—
I —=2)ild = dzord{v— 1D {v—2)if Az = &) and for any member Dy (v, £, 1) 1o
be universally optimal, the Trace (Cg+ ) must be equal to 2in — £), where 2in — £) =
halv — 1}3 if A = Az (ordgv— l}l2 if Az = A1) The equality of Trace (Cy- ) follows
for any memberof D (v, b, Ky, ..., kp) but forany member of [Dg(v, &, )], the Trace
(Cy 0 15 less than 2in — B).

Henee we have the following theorem.

Theorem 3.3 The designs da obiained from diz, a two associate PBIB designs, where
none of the Ls is zero, are unive rsally optimal over INv, bk, ... kp).

4 Elficiency factor

Now we will show that the designs & and g2, are optimal in the sense of Kempthorne
(1956). If instead of the designs &,y and dy2,, one adopts a randomized complete block
design with r{r2) blocks, each block having all the v(v — 1),/2 crosses , the C matrix
of the randomized block design ie. Cg-matrix can easily shown w be, see Dey and
Midha ( 1996).

Cgr = rifv =201, — v~ '1,1",) wherei =1 or2 (4.1}
Henee the variance of the best linear unbiased estimator of any elementary contrast
among gea effects in the case of randomized block experiment is 202/ (v—2), where
o is the per observation variance. Thus the efficiency factors e and ea, respectively
of the design d;y and dy2, relative to randomized complete block designs under the
assumption of equal intrablock varianees is given by
e =8/nv-N=rp—-2/rlv-2=1 (4.2)
and

ex=r{v—2)/rz{v -2) =1 (4.3)

where 8 = ri{v — 2) (orra{v — 2)) for design dyy (ordin ).
We are also giving the list of practicable useful designs for 5 < v < 30in Table 1.
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Table 1
51 na. Ref. mo.  MNo.of Mo of Mo, af Mo of Total mo. of Diesign names
of the lines blocks  crosses  replication  experimental  reported by
design 1o he to he of the units different
deleted  deleted  crosses i) authors
| 52 6 | k 2 30 F2, Parsad et al.
{1999 and Das
et al. (1998,
Th.4.1)
2 519 B | 4 4 B2 N
523 9 3 9 3 108 F2, Parsad et al.
[N
4 85X 12 4 12 2 132 N
513 14 2 2 182 N
fi 542 21 5 21 1 210 Ser. 1, Gupta and
Kageyama {1994)
and Sharma
(2004
" 544 26 25 13 I 25 Ser. 2, Gupta and
Kageyama {1994)
and Sharma
(2004
552 1 5 i1 270 N
560 14 o T 4 3604 N
10 568 20 L] an 2 80 M
11 572 24 E] 13 2 50 N
12 S0 21 6 21 3 i F2, Parsad et al.
{1900
13 5493 30 7 30 2 £70 N
14 544 12 | 6 B 528 N
15 5104 15 1) 0 5 525 F2, Parsad et al.
{1900
16* 5105 18 25 9 5 Th5 F2, Parsad et al.
{1900
17 5111 22 3 11 4 Q24 F2, Parsad et al.
{100
I8 5115 30 3 il 2 870 N
19 SR9 9 3 27 3 108 F2, Parsad et al.
{1900
| SR68 12 4 48 2 132 N
e R42 fi 0.5 1 1 15 Ser.2, Gupta and
Kageyama {1994)
and Sharma
(2004
A R 6 | 6 2 30 F2, Parsad et al.
{ 1000y
3 R4 9 2 9 1 16 F1, Parsad et al.
{1999 and F5,

[ras et al. { 1998)
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Table 1 contimued

S no. Ref. mo.  No.of  Nooof Mo, af Mo of Total o, of Diesign names
of the lines blocks  crosses  replication  experimental  reported by
design 1o he to he of the units different
deleted  deleted  crosses i) authors
242 R109 12 0.5 f 1 hify Ser. 2, Gllpmund
Kageyama {1994)
and Sharma
(2004
25 R133 3 12 X 56 N
X K134 3 24 2 56 N
x R137 9 2 9 2 72 F4, Das et al.
{1998
28 R139 11 | 5 2 90 F2, Parsad et al.
{195
0 R145 12 4.5 54 | fify Ser 2, 'GII]'.ILI.I.J.I.nd
Kageynma {1994)
and Sharma
{2004
n R166 10 6 .|| 2 ai E2, Parsad et al.
{1999
31 Rl68 15 ] 0 1 105 F1, Gupta and
Kageyama (1994)
and Sharma
{2004
12 RI70 27 2 27 | 51 F1, Parsad et al.
{1999 and F5,
[Dras et al. { 1998)
n* RIT1 28 1.5 42 1 7R Ser. 2, Gupta and
Kageyama {1994)
and Sharma
(2004
= RI72 9 | 9 5 150 F2, Parsad et al.
{195
35 RI73 12 1) 0 5 330 F2, Parsad et al.
{19560
iy R174 12 4.5 54 3 198 F2, Parsad et al.
(195
n RI175 12 L] a0 2 132 F2, Parsad et al.
{195
£ RI76 12 45 54 3 198 N
ko R177 14 1.5 7 3 273 N
40° RITE 18 12.5 45 1 153 Ser. 2, Gupta and
Kageyama {1994)
and Sharma
(2004
41 R1T749 20 2 41 2 80 N
42 R180 20 2 10 2 380 N
432 R1EH 12 0.5 6 3 330 F2 Parsad et al.

{1994
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Table 1 contimued

Slno. Refmo.  No.oof  Nooof Mo, af Mo of Total no. of Diesign names
of the lines blocks  crosses  replication  experimental  reported by
design 1o he to he of the units different
deleted  deleted  crosses ir) authors
44 RIET 14 15 42 p 210 N
45 RIEE 21 15 a3 | 210 Ser. 1, Gupta and
Kageyama {(1994)
and Sharma
{200
46 R189 24 3 il 2 552 N
47 R193 12 3 (B L] 396 N
48 Ri94 15 b 30 4 420 F2, Parsad et al.
(1999)
4 RI95 16 21 50 2 240 F2, Parsad et al.
{140
30 R196 5] 2 9 4 al2 N
51 R196 18 2 9 alz N
2 RI19H 24 4.5 = 1 xre Ser. 2, Gupta and
Kageynma (1994)
and Sharma
{2004
53 R0 28 9 B 2 T56 F2, Parsad et al.
(1999
2] R4 14 6 42 6 B2 ] F2, Parsad et al.
(1999)
55 R205 14 L] 4 6 56 F2, Parsad et al.
(1999)
56 R206 1% 2% 81 2 756 F2, Parsad et al.
(1999
57 R7 27 32 108 1 351 F1, Parsad et al.
{1999 and F5,
Dhas et al. (1998)
582 T33 10 L5 15 1 45 Ser. 2, Gupta and
Kageyama {1994)
and Sharma
{2004
59 T58 10 3 45 2 a0 F2, Parsad et al.
(1999)
60 Tl 10 L5 15 E 135 N
6l Tal 13 ] il | 105 Ser. 1, Gupta and
Kageyama {1994)
and Sharma
{2004
i) T71 1 3 15 4 [B.14] N
it} TH4 15 8 it} 4 420 F2, Parsad et al.
(1999)
] o4 21 15 105 E 30 F2, Parsad et al.

(1994
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Table 1 contimued

51 na. Ref. mo.  MNo.of Mo of Mo, af Mo of Total mo. of Diesign names
of the lines blocks  crosses  replication  experimental  reported by
design 1o he to he of the units different

deleted  deleted  crosses i) authors
ikl TS5 21 5 105 4 B0 M
L] L5268 g 2 18 1 16 Fi, Parsad et al.
{1999 and F5,
Das et al. { 1998

a7 L5449 9 2 18 2 T2 F4, Das et al.
{1998

6f L572 9 2 18 2 72 F4, Das et al.
{1998

o LSE3 16 6 48 2 240 F2, Parsad et al.
{1900

T L5949 16 L] ™7 3 360 F2, Parsad et al.
{1900

71 L5100 16 [i] 48 3 a0 F2, Parsad et al.
{1900

T2 LS101 25 4 1040 2 L] M

T3 L5116 16 ] 48 4 450 M

T4 LS117 25 12 10 2 Gl M

T5 Ci2 = I 5 1 10 F1, Parsad et al.

{19949 and F5,
[ras et al. { 1998)
Th Cc2 13 3 10 2 156 N
7 x4 13 3 10 3 214 N
T8 25 29 7 23 1 46 Fl, Parsad et al.
{1999 and F4,
[Dhas et al. { 1998)

T4 26 17 4 68 3 408 F2, Parsad et al.
{1900

R0 c 29 7 203 1 6 F1, Parsad et al.
{19997 and F5,
Das et al. {1998

1 C28 17 4 8 4 544 N

7 [, 13 3 10 T 468 F2, Parsad et al.
[N

1 M4 16 6 48 4 480 N

e M3E 26 1.5 195 3 qars F2, Parsad et al.
(1999

RS Mia 27 iz 216 1 asi F1, Parsad et al.
{ 19997 and F5,

[ras et al. { 1998)

N new, Yer series, F family
*Universally optimal designs
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5 Conclusion

Optimal block designs with proper and non-proper settings have been proposed for
CDC system IV using some PBIB designs. The non-proper setting designs found to
be universally optimal in the sense of Kiefer (1975) and proper and non-proper setting
designs are optimal in the sense of Kempthome (1956). These designs retain full effi-
ciency for the estimation of the contrast of mterest. We investigated 85 PBIB designs
(Clatworthy 1973). Out of which 20 and 29 PBIB designs gave block designs for CDC
experiment in which each cross is replicated once and twice, respectively and in rest
of the designs cach cross is replicated more than twice. These designs are in the range
of 5= v < 3, exceptforv =11, 17, 19, 22, and 23.
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