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Abstract

A method of construction of asymmetrical arthogonal arrays of strength two is described. The method exploits difference
ruaitices and @ special lype ol orthogonal amays. Seversl families of asymmetrival odhogonal armays an: obtained through
the method. An open problem relating to the construction of a class of asvmmetrical orthogonal amays 15 proposed and
comments ob partial solutions w the problem are made. A conjeeture on an upper bound o the nunber of constraints in
a class of arrays is also made.
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1. Intreduction and preliminaries

The practical utility of orthogonal armays in industrial research for quality improvement has given added
impetus to the study of these arrays, as exemplified by the recent works of Cheng (1989). Wang and Wu
(1991,1992), P.C. Wang (1990), Wu et al. {1992} and Hedayat et al. (1992}, The papers of Wang and Wu
(19911 and Hedayat et al. (1992) are the major ones, as these pive some very genetal methods of construction
of asymmetrical orthogonal arrays. In this communication, we first present a further method of construction of
asymmetrical orthogonal arrays of strength two, The method is essentially a modification of that of Wang and
Wu {1991). Application of the method to specific cases leads to several families of asymmetrical orthogomal
arrays, Some new arayvs are also obtained.

An open problem concerning the construction of a family of asymmetrical orthogonal arrays is posed and
commments are made on partial solutions to this problem. We also make a conjecture on an upper hound to
the number of constraints in a class of asymmetrical orthogonal arrays.

Asymmetrical orthogonal arrays were introduced by Rao (1373) as a peneralization of the conventional
{symmelrical) orthogonal arrays, also introduced by Rao {1947) Consider an & » r armay A with entries in
the ith column from a set X with cardinality & ( 2=2).i = 1,2....,» not all &"s being equal. The array 4 is
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said to be an {asymmctrical] orthogonal amey of strength two, if in any & x 2 submatrix of A, say, with
one column based on I, and the other on . every element from I, = Iy appears equally often as a row.
We shall denote an asymmetrical orthogonal armay of strength two by Lyf(s) % 52 % - % 8} Here ¥ stands
for the number of runs, v the number of constraints (or factors) and s, {7 = L,2,...,r) I5 the number of
levels of the ith factor. It in an & x v orthogonal array, there are r; factors {(f = 1,2,.... &) at s levels,
a4+ - 4omy = r, we denote the armay by Lu(s]" %% - ma) I 5 =52 = = 5y =5, the array
reduces to the convenrnonal {symmetrical) orthegonal array, denoted by Ly ("),

Wang and Wu {1991} constructed several families of asymmetrical orthoponal arrays wsing a technique
based on difference matrices. Since the method of construction suggested here also depends on the use of
difference matrices, we recall the defimition of a2 difference matrix.

Suppose ¢ is an additive Abelian group on g elements, {0,1,2,..., p — 1}. A ip = r matrix with entries
from & is called a difference matrix if among the dilferences modulo g of the comresponding elements of any
two columns, each element of G appears exactly A (imes,

A differenice matrix will be denoted by D{dp. 7; g} with the implicit understanding that g s the order of
the group & on which the difference marrix is based.

Note that a Hadamard matnix of erder » & eguivalent w a difference matrix Din,x;2). For a review on
difference matrices, see de Lauaey (1986).

Let A = {a;) and B — (5;) be two matrices of orders # x # and m x 5 respectively and let 4 und B have
eniries from a finite additive proup & of order p. The Kronccker sum of 4 and B, denoted by A+ 8, is defined
i be

A% B = (B" hziznizjur
where
B =(B+kJ)ymod p
is abtained by adding £ mod g the elements of £ and J is an m = s matrix of all cnes.
Finaliy. we need the following version of a result from Dev and Agrawal (1985).
Theorem A. Let there exist an orthogonal array 4. Ly(s*) and let it be possible 1o partition 4 as

Ap

/1'
A=

Ay

sueh that each A; v an orthogonal array with r = Nfu runs, & constrafuts, s symbaoly and strength unity.
Then it is possible to construct an orthogonal array, Ly-{t < 5%), where N* = Nm.t = mu and m=1 is an
leger.

2. A method of construction

To begin with, we describe a procedure of obtaining an asymmetrical crthogonal array from a symmetmical
one. Subsequently, this procedure ts gencralized. Let 4 be an orthogonal array Ly(s*), and suppose it is
possible to partition A as in Theorem A.

Mext, let DALk, 5) be a differsnce mateix and define

8 =DMk s)+ 4, (2.1}



A Dey, COK, Midha! Staristics & Probabilicy Leiters 28 [1906) 271-217 213

Then, lollowing the lines of Wang and Wu {1991, one can show that

{a) A is an orthogonal array, Ly (50}, and

(b) the rows of B can be partitioned into Mu sets of rows {ey,i = 0,120 — 1L =012, ..M - 1}
such that each ¢;; is an orthoponal array with ¢ runs, &k, factors and strenpth unity.

The following result then follows trom Theorem A.

Theorem 1. Let qp = (7.4,...,i) where the symbol § appears v times tn a,. Then, the array C giten by

ct €00 T T Com1M—1
- BEE '
iy it g

is an erthogonal array. Ly (g =< ™), where g = Mu and €7 iy the transpose of C.

Observe that the kind of partitioning required to be satished by 4 for the method to work is alwayy
possible by sacoficing one factor in A (see e.g. Dey and Agrawal, 1985, p. 597, This observation enables one
to generalize the procedure of Theorem 1.

Suppose A is an orthogonal array, Ly(s)" =57 w2 5" ). Clearly, the cofumms of 4 can be partitioned as

A=Lyis w5l w0 nsM) = [Lals]) EL_.v(J‘E'P_l:. <ot L{s™ ).

Permuting the rows of 4 according w the levels of one of the factors at 5 levels (say) and deleting the
column corresponding to this factor, we get an orthogonal artay B with the partitioning

= [L,",-{b-l"" bl }EL&,{-’-‘I'; :I {oe L,.{.;.IH 1.

Also, the uns of B can be partitioned into 5, sets, #y, 8)...., 8, _|, each set containing A/s| runs, such that
for i—0,1,2.....5,— 1.

By o LA A A

where, for j = 2,3,...,1, A/

ri is an r x n; orthogunal amray of strenpth unity and s5; levels, while 4
rx (1 — 1) orthogonal amray of strength unity and s; levels. '
Suppose now there extst diffcrence matrices DM & 5:0.7 = 1,2,. ...+, Then, using the generalized Kronecker

sum, as in Wang and Wu (1991 ). one can show that

il

rl

i% an

0= [D{_-'vf, kg L.ﬂ-"r -1 ]. DM ks # L,\'{S;E ] co DML R s Y Larla }]

is an orthogonal array. Lys(sP ™' s #8500 w58y Also, the runs of D can be partitioned into Ms;

sets ol rows, such that, in each sct, any column representing a factor at a; levels (i — 1,2,...,¢) has sach of
the »; levels occurring equally often. Hence, urilizing D and Theorem A, we have

T

Theorem 2. The existence of an orthogonal array Lu(s]' w53 - %8 ) and difference matrices DM, ki 5,),

Ayl —13 ko k.u.]

i— L2, imply the existence of an orthogonal array Ly (Ms) = 5] e S R

Vor sy = 1, we pet the following resuit, due ta Jacroux (1993,

Corollary 1. The existence of an orthogonal array Ly(sy =l x5 -3 ) and difference matrices DIM. f£i350),

F=2.3,. ...t imply the exivtence of an orthogonal array Lype(Ms) x 55 % 00w 5™,
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Y. Examples of some arrays

Application of Theorems 1 and 2 can be made to arrive at several [amilies of asymmetrical orthogonal
arrays. We give some such examples.

(1) Suppose 5 = p¥ + = p*, where g is a prime and v and v are positive integers. Bose and Bush (1952}
constructed an orthogonal array Ly(s*') with & — As®. This array can be partitioned into is subarrays. each
containing s mng such that each subarray is an orthogonal arrav of strength unity. Hence from Theorem |,
we have an orthogonal array Lyw(Ms % 285, provided there gxists o difference matrix D(M, k; ).

(i) Addelman and Kempthorne (1961b) constructed an orthogonal areay Lo, (s™) where Ny = 25".m =
2" —1)is—13—1, 5 is a prime or a prime power and 7, & positive integer. This array can be partitioned
into 25 sets of runs, each set containing "' runs, such that, within each set, one factor has the same level
while for cvery other factor cach of the & levels occurs exactly #77° times. Omitting the [actor that has the
same level within a set, we get an orthogonal array Ly, (s~ ') with the desired property. Hence, from Theorem
i, we have an array Ly(2Ms x s 1%), provided a difference matrix D(M, k;s) exists, Here N = 2Ms".

For cxample, using the amay 2,.(37) and the difference matrix £206,6;3) Masuyama (1957) gives an or-
thogonal array L,ge(36 x 3°%), Replacing the 36-level factor by the runs of Lig(3'" = 2'') (see e.g. Dey, 1985,
p. 64), we get an ammay Lige(3* = 2'1), which was also constructed by J.C. Wang {1989).

(iil) Cheng (1989) constructed an orthogonal array L, (4°~' « 2%=39) where n (=4) and ¢ (=nr) are
Hadamard numbers (a positive integer # is said to be a Hadamard number if a Hadamurd matriz of order
exists). Since the difference matrices D{4,4;4) and X4, 4;2) exist, we have from Theorem 2 an orthozonal
array Lagel 16 x Jdr--B o adnf |I71 E}_

In particular, for { = 2 and 7 = 12, we have the array Log(16 = 2°"), Replacing the [6-level factor by the
runs of 2 1A-run orthogonal amay, several other arrays can be obtained.

(iv) Cheng {1989} obtained an orthogonal array Lo (m = 4" ! x 200 D=1y where ¢, 7 =4 are Hadumard
numbers, /2 15 also a Hadamard number and # = min(n,¢). LUtilizing this array and the dilference matrices
N(4,4:4) and D(4.4;2), we get an orthogonal artay Ly (dn x 4301y 280D 1200 =10y 4 50 4 being as defined
ahove.

(v) An orthogonal array Lo, (¢ x4 x 2%, where + — #/2 and # is a Hadamard number, was constructed by
Agrawal and Dey ( 1982). Since the difference matrices IN4,4;4) and W4, 4;2) exist, we have an orthogonal
array Lgy(4f % 4% » 25— For 1 = 12, we have a new array Log{24 x 4* » 2%), Replacing the 24-level
factor by the tuns of Lxg(4 = 2200, Loa(12 = 2129, 22006 = 4 x 2V}, we get the arrays Loa{d® = 2%%), Lag(12 %
44 % 29%), Lol x 47 x 2% respectively. Also, replacing the 12-level factor in fg6(12 x 4% x 2%°) by the runs
of 123 = 2*) and L;2(6 = 2%) (Wang and Wu, 1991), we get respectively the armays Les(4* x 3 x 2%} und
Loq(6 % 4% 3 2°%). Apain, using D{12,12:4) and D(12,12;2) in place of D{4.4;4) and 1(4,4:2) respectively,
one obtains the array fog.6r = 417 21712y where & is a Hadamard number. In particular, for n = 4, we
get a wew array, Log(24 x 4 x 2*%), Replacing the 24-level factor by the runs of Ly(4 x 2°7) Lag(6 % 4 x
2y Laal3 4 x 2 and 24012 = 2'7), we get the arrays Lag(4! x 299), Loa (477 30 3 3¢ 2% ) £l 6 50 4H 5 2%
and Log{ 12 x 4% 5 2%,

(vi) P.C. Wang (199 constructed a family of amrays, L (=4 2% 1) where n = 4,1 # ¢ are Hadamard
numbers such that »/2 is also a Hadamard number. Combining this array with the difference matrices (4,4, 4)
and D(4.4:2), we get a family of arrays, Ly, (4 = 4% 230 4y

4. An open problem and a conjecture
In this section, we mention an open problem refated to the construction of asymmeirical orthogonal arrays

and comment on partial solutions to the problem, Recall that a symmetrical orthogonal array of strength two.
L;.(s%) with & — aff, is called f-resolvable if it is the juxtaposition of s different arrays, each with f5 runs,
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& constraints, 5 levels and strenpth writy, A l-resolvable amay is called completely resolvable. We then have
the following result.

Lemma 1. The orthogonal array, Lyt = 5%), where n = ms, exists if and only if’ the last & columns form
an m-reselvable orthogonal array, Lo, (s*).

Proof. The “if” part is trivial. To see the “only il™ part, permute the rows of L,{1 x 5%}, so that the first »
runs correspond w the first level, the next v tuas to the second level,.. ., the last 1 runs correspond o the
ith level of the first factor. It then follows from the definiion of an orthogonal array that the last & columns
of Lt » &%) must form an m-resolvable amay, Ly (s5). O

We now state a probdem that has not yet been solved completely.
Problem. (hiven n.t s, find an orthogonat array of strength twe, L7 x s*), with the maximum value of k.

From Lemma |, it follows that the above stated problem is equivalent to: Given m, ¢, 5, find an m-resplvable
array, L, {s*), where m = n/s, with the maximum wvalue of £
A trivial upper bound for & is

ketn—1)i{s— 1) (4.1}

We call an orthogonal amay sarurated if the upper bound in (4.1) iz attained.

The problem stated above has not been solved completely, Fyen n the special case s = 2, vnly partial
solutions are available,

[n the remainder of this scction, we specialize to the case 5 = 2. We first have the following result, which
generalizes some of the results of Suen (19897

Theorem 3, Suppose n.t are Hadamard numbers. Then the areay L, (8 = 20011 exists.,

Proof, Let H, H, denote Hadamard matrices of orders o, ¢ respectively. Write H, as

H. — 1, B
Then.,
D=[4:H 2 B)

is the required arcay, where 4 — (1.2, 1) & 1,, 1, is an n-component column vector of all ones and &
denotes the Kronecker product of matrices, 7

From (4.1}, it follows that & = t{#r — 1} is the maximum number of two-level factors that can be accom-
modated in L7 = 2%} if n,t are fixed, ic., the arrays of Theorem 3 are saturated. For particular choices of

i, 1, we get the following corollaries to Theorem 3, due 1o Suen (1989,

Corollary 2. {f Hy; exists then we can construct o completely resolouble array Lo;(2%} and hence the array
Lai(2i % 2%,

Corollary 3. If 1, exists, thew we can construct a 2-resolvable array Lyf2') and hence the areay La(ix27).
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It is of interest to find such arrays when at least one of #,7 is not a Hadamard number (e, ¢ is odd and
# is a Hadamard mumber). In this context the following results, due 1o Suen (19849), are known,

Theorem B. [f A = 1 is odd, a complerely resolvable arrav Ly;(2%) exists, and hence the array Ly;(24 % 2%)

can be constructed, Also, k=2 Is the maximum nuember of 2-level columns that can be accomprodated in
Lqi(24 x 2%).

Theorem C. If n = du + 2, then a 2-resolvable arvay L,(22) exists, und hence one can construct the
array Lanln = 229128

When n > 1 is edd, no general result is known for constructing a 2-resolvable array, Linl2% ). However, in
specific cases, some arrays are known to exist, These are listed below:

{a) £,2(2"). Here £ = 4 is the maximum oumber of 2-Tevel factors, as shown by Wang and Wu (1992),
using an exhaustive computer search.

(b) £2p(2%), and & = B is the maximum number of 2-level factors {Wang and Wu, 1992),

{e) Las(2%).

(d) Lss(2"7).

The above arrays were first constructed by Suen (1989, The arrays listed above therefore give rise o the
following asynumetrical arrays:

Lir(3 % 2%, Laol5 % 2%), Loa(7 % 2'9), Lse(9 x 23,

With 12 and 20 runs. we cannot get arrays with more 2-level factors than 4 and 8 respectively. It is not
known whether arrays with 28 and 36 runs can accommodate more 2-level factors than 12 and 13 respectively.
Combining the amays Ly(2%), 4 > 1 odd and £,;(2°7%), 4 = 4u | 2 with a difference matrix D(,1,2), where
¢ is a Hadamard number, we pet, from Theorem 2, asymmetrical arrays:

(1) Laaf2A8 % 25, A = 1) odd;

(i) Lgsg(th 3 2RHF2Y 3= dy + 32,

Similarly, combining the 2-resolvable array La.(2) with D(,8:2), 5, ¢ being Hadamard numbers. we get
an array Ly (ni % 2}, This array is clearly saturated.

Finally, based on the above discussions and the numencal results of Wang and Wu {1992} regarding the
attainable upper bounds to k in arrays L, {f= 2"}, we are prompted to make the following conjecture {suggested
by Rahul Mukerjec);

Conjectare 4. Consider the array Lads x 2°), where 523 iy an odd iwieger and A is an integer. Then
k4 —25— 2,
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