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We obtan some new resulls on normalized spacings of independent exponential
random varishles with possibly different scale parameters. It is shown that the
density functions of the individual normalized spacings in this case are mixtures of
exponential distributions and, as a result, they are logconves {and, hence, DFR).
G. Pledger and F. Proschan { Optimizing Methods in Statistics (1. 5 Rustagi, Ed.),
pp. 89-113, Academic Press, New York, 19710, have shown, with the help of a
countersample, that in a sample of size 3 the survival function of the last spacing
15 not Schur convex. We show that, however, this is true for the second spacing for
all saumple sizes. G. Pledger and F. Proschan (ibid.) also prove that the spacings are
stochastically larger when the scale parameters are unequal than when they are all
equal. We strengthen this result from stochastic ordering te likelhood rado
ordering. Some new results on dispersive ordering between the normalized spacings
have alse been obtained.

1. INTRODUCTION

In reliability theory and life testing, exponential distributions play an

important role. They have the property that they never get aged with time
and have constant failure rates. There has been a lot of work done in the
literature on the stochastic properties of various statistics based on random
samples from exponential distributions. However, not much attention has
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been given to the case when the underlying random variables are not
independent or not identically distributed. Some interesting results on order
statistics from independent random variables with proportional hazard
rates have been obtained by Sen [17], Pledger and Proschan [13],
Proschan and Sethuraman [16], Bapat and Kochar [4], and Boland,
Hollander, Joag-Dev and Kochar [8]. Obviously, the proportional hazard
family contains exponential distributions as a special case. Also see, Bapai
and Beg [ 3] for the distribution theory of order statistics from independent,
but nonidentically, distributed random variables,

Let X,,.. X, be independent random variables with possibly different
probability disiributions. We shall denote by X, the ith-order statistic of
XX, Let D, =(n—i+ 10X, — X ., denote the ith normalized
spacing, i =1, .., n, with X, =0. To simplify notation, we shall drop the
second suffix # in 0., when there is no ambiguity. [t is important to study
the stochastic properties of spacings under different models. It is well
known that if X,,.. X, 5 a random sample from an exponential
distribution, then D, ..., D, are independent and identically distributed as
exponential random wvariables. But if the random sample comes from a
decreaying failure rate (DFR) distribution, then the successive normalized
spacings are stochastically increasing (cf. Barlow and Proschan [5]).
Kochar and Kirmani [12] have strengthened this resuli from stochastic
ordering to hazard rate ordering.

If F1G) denotes the survival function of a random variable X[ Y), we say
that X is pgreater than ¥ according to hazard rate ordering (written as
X="Y) il F(x)/G(x) is nondecreasing in x. In the case of absolutely
continuous distributions, this is equivalent to the hazard (or failure) rate of
F being uniformly smaller than that of G. IT fig) is the density function of
FIG) and fix)/gix) is nondecreasing in x, then we say that X is greater
than Y according to likelhood ratio ordering and write as XY ="Y
Likelihood ratio ordering implies hazard rate ordering which in turn
implies stochastic ordering. See Shaked, Shanthikumar, and collaborators
[ 18] for detailed discussions on various types of stochastic orders, their
interpretations, and their properties.

In this paper we study the stochastic properties of spacings from
independent  exponential distributions  with  possibly  unequal scale
parameters. In Section 2, we obtain the joint, as well as the marginal,
distributions of the 0,5 It is shown that the one-dimensional marginals
are mixtures of exponential distributions and have DFR distributions.
Pledger and Proschan [13] proved that if the scale parameters of the
exponential distributions are not all equal then 0, is stochastically smaller
than 0, ,.i=1,..,n— 1 In Section 3, we explore whether this result can
be strengthened. Pledger and Proschan [15] alko raised the question
whether the survival function of £, is Schur convex in (4, ... 4,). They
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show with the help of a counterexample that for n= 3, the survival function
of the last normalized spacing D, ; is not Schur convex. What can we say
about the other spacings and for arbitrary #? These and related problems
are studied in Section 3. In particular, we prove in that section that the
survival function of D.., is Schur convex in (4,...4,) for any »n and
D,,="D,, for i=2, .. n Pledger and Proschan [15] also proved that
the spacings are smchasmally larger when the scale parameters are
unequal than when they are all equal. We strengthen this result from
stochastic ordering to likelihood ratio ordering. We also establish some
dispersive ordering results between spacings in that section. In the last
section we show that the vector (X,,...JX,.) is increasing in X,
according to the wpper orthant order.

sy

2. THE INSTRIBUTIONS OF NORMALIZED SPACINGS

In this section we obtain the joint, as well as the marginal, distributions
of the normalized spacings from exponential distributions with possibly
unequal scale parameters and we study some of their aging properties,

Tueorem 2.1, Led Xy, .. X, be ndependent random variables with X,
having the exponential distribution with survival function Fit)=expl —4,¢),
=0, fori=1, .., n Then

ia) Dy has exponential distribution with scale pavameter 30 4/ and
D, is independent of (D, .. D,);

(b)  the joint pdf of (D, .. D) 2

Fil

iEn, j=1l..k 1l€k<n—1

(ﬁ}])zn 1 ﬁ }' ,,.4:[1"! (difie=— b+ 10 E ey .c-::,.] (2.1}

f=1 J—I[Z“—J“‘[r”_lu_l H—E;'!'].

ford, z0,1=1, . k; where v is a permutation of (1,2, .., n) and i{i) =4,

(c) foriel2, ..n}. the distribution of D, is a mixture of independent
exponential random variables with pd [

— A(S))

ZP[S, i+1

expl —(s—A(SNd/(n—i+1}}. d =0
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where the ¥ ¢ is over all subsets S<{1,..n} of size (i—1), s=3]_, 4,
A(S)=%, 54, and

3114

r e S

o]l e 1
[ {z Arle )+ s — A(S)}

R (2.3)
fm]l bfmi :'

the ¥, is being taken over all pevoutations v=(ry . .ory ) of the elements
keS8 j=1..,i—L

FProof. As in Kochar and Kirmani [ 12], the joint density of the order
Statistics Xy, o Xy 18

Z(nij)mp{_zi[rllxll f’bl‘ Gﬂxlglngxu'{x’v

g

where r=(r,, ... r,) 15 a permutation of (1, .., n).
The linear transformations,

D=in—i+ X, —X ..) i=1l..n X, =0,

yield the joint pd.f of (D, .. D,) as

i O Alrdin =i+ 1)
cikis T,
5 r i=1
i : | i
- J=] Ry {5/ a (o= 1 100 55 . A
T 1 35 i Lo
L r =2
£ ?7( A 1
(&t J= 1 (o —1+ I]]z FEL AN -
=4 — [ [—4'
{n J ﬁ[n—li‘zn i’

where r is a permutation of (1,2, .. n) and A{{)=4,. This shows that
(i) D, isindependentof (D,. ... D, ) and it has exponential distribution
with parameter s/n.
(ii) the p.df’s of each of (D... D,) and (D,, .. D,) is a mixture of
products of exponential densities,
The joint pdf of (D, ... D L2<i,€n, j=1,..k 1 £k £n—1, can be
obtained by integrating out d, ie {i,, ... ip} from

¥ ___Z ]_I & {a =1+ I:':'E-.--r.-f':"

r f=2

and is

N 1 & Z,r-:.u‘[!:i (e Mot = 8+ 1DV ED, A oy
(n )ZHJ-NZ;_])[:”IIIH e ] =i (2.5)

J o]
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which is again a mixture of products of exponential densities. In particular,
the p.d.f of D, alone is

(T 4) (Sh dr))) e~ bitn=te W3-

2.6)
ZHJ—I[EI—]“"[II” n—i+1 [
which can be written as
A(8))
ZP[S 1 ————exp{ —(s— A(S)) d;(n—i+ 1)}, (2.7)
+

where the ¥ is over all subsets S< {1, .. n} of size (i—1), s=37_, 4;,
A(S)=3%, 54, and

-3 12

r FE

i=1 'C | |

I3 E ,:.[:-[kjn+.v—A[S:)-,J : (2.8)
f=1 Mf=i :'

the 3, is being taken over all permutations r=(rg . ... re,_ ) of the elements
keS8 j=1,..i—1 In going from (2.6) to (2.7) (with (2.8)) we used the
fact that

=il fw=i] |
z(n ,-){ 1 ( ¥ ,:_[r[sjn)J 4, (29)
r ‘el {1 J=1i

where ¥, s taken over all permutations (r(k), ..k, ;1)) of the
elements k;eS'={1,..n} -8, j=1,..n—i+1. The kft-hand side of
(2.9} is the sum of probabilities of the mixing distribution used in the p.df.
of B, ,.,. the last normalized spacing for the set of the exponential ran-
dom variables {X&I’,RIE S=l..n—i+1}. |

Part {a) of the above theorem has also been proved in Gross, Hunt, and
Odeh [9] using the complicated theory of permanents. Our proof is much
simpler and straightforward. There also is a connection of this to successive
sampling from a finite population as follows, The probability P(S5) in (2.3)
is the probability of obtaining § in successive sampling of size (i — 1) from
the finite population {1,.. n}. where successive draws are made with
replacement and at each draw a unit & is chosen with probability
Pe=Ag 14+ +4,), sampling being continued until (i — 1) distinct units
are chosen and any multiplicities are discarded. The terms on the lefi-hand
side of (29), then, are merely the probabilities of ordered samples
t=(r{k}, .. ik, ;1)) in a successive sample of size (n—i+1) from the
finite population §'. The probabilities P(5) in (23) have the integral
representation (see Andreatta and Kaufman [1])

P[.S'h=[a‘—.-1[3”| 7(]'[[1—:_— “n exp{ —(s—A(8)) x} dx.  (2.10)

=)
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Mote also that
P 8)= Plmax X, < min X ). (2.11)

es -
For more information on suecessive sampling see, for example, Hajek [ 107].
Barlow and Proschan [ 3] have shown that if Xy, ., X, is a random

sample from a DFR distribution, then the spacings also have DFR
distributions. [t is shown in the next theorem that a similar result holds in

the case of independent exponential distributions with unequal scale
parameters.

Tueorem 220 fee D, D, be the normalized spacings based on n
independent exponentiol diswibutions. Then D has a log-comvex density for
i=1, .. 1

FProof. The result follows from the fact that mixtures of log-convex
densities are log-convex (cf. Marshall and Olkin [ 13, p. 452]) and {rom
part (¢} of Theorem 2.1. |

Since probability distributions with log-convex densities have decreasing
failure rates we have the following result

Cororrary 2.1, Let D, . D be the normalized spacings based on n
independent exponenticl distributions. Then D, has a DFR disiribution for
=1, .. h

3. SToCHASTHC BELATIONS BETWEEN MNORMALIZED SPACINGS

First, we give the definitions of majorization of vectors and Schur
convexity of functions on #". Let |x,,€£x,,€..- £x,,| denote the
increasing arrangement of the components of the vector X = (x|, x5, ... X,,).
The wvector y is said to majorize the vector X [(written as x="y) il
ZioiymsZio Xxps f=la,n—1land 37_, yiy =20 Xy

DeFrraTion 3.1 A real-valued function ¢ defined on a set .o = #" said
to be Schur convex (Schur concave) on o IfXx="y=¢(x)= (=)d(y)

Pledger and Proschan [15] proved the following resuli.

Tueorem 3.1 Led X, .. X, be  independent  exponenticl  random
varighles with possibly wunequal seale parameters. Then

93, MRS ., S I, (3.1)

where =% denotes stochastic dominanee,
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Let F, (£) = expl — A ) and F¥(¢)=exp(—it), for 1=1, .., n, where i=
(1/m) 20, 4. Let (DF, .. D}) be the normalized spacings associated with
(F¥, .. F¥). As discussed earlier, DF, . D} are independent and
identically distributed each having an exponential distribution with the
common scale parameter 4, It follows from Theorem 2.1(a) and (3.1) that

D¥="p,, D} < D, for i=2,..n (3.2)

MNote that the mean £ of (4,,..,4,) 5 used [or the comparison. This means
that the spacings are comparatively stochastically larger when the scale
parameters are unequal than when they are all equal. Pledger and
Proschan [15] raised the question whether such a comparison is possible
using a vector A*, where L =™ L* That is, whether the survival function of
D, is Schur convex in {4, .., 4,). They show with the help of an example
that for n=3, the survival function of D, ; is not Schur convex. Does
Lz="L* imply a weaker ordering between D, and D¥,. namely,
E D, ;] =E D} ,]? The next example shows that even this does not hold.

Exampre 3.1, Let A={0.01,0.1,04)and &* =({0.01, 0.25, 0.25), we lind
that £E] D;.;]=495.84 < 498 80 = E] D¥ ] even though L =" L%

i) for

e H

However, the survival function of D, ., is Schur convex in (4.
any n as proved in the next theorem.

Tueorem 3.2, For any n, the survival function of D, is Schur convex in

(A1, d,)

FProof. The survival function of D, ., at x is

[1ﬂﬁ£/fhp$ Ti[:r—}.,h?>

i o= A

I
i
—1§

=lex|:1[—n [n—lnz,-exp$ i (3.3)

S

o

Since each term A, exp]{i,x/(n—1)} in the above sum is convex in 4, it
follows that the f-:ur'uwal Furu:tmn of D, is Schur convex in (4, .., 4,) for

=n

each x (see Marshall and Olkin [13, p. 64]) |

It is interesting to see whether Theorem 3.2 can be strengthened from
stochastic ordering to hazard rate ordering. The next example shows that
even for n=3, the hazard rate of D, , is not Schur concave.

Examrre 32, Let A =(40, 10,1} and A*=(40. 5.5, 55). The hazard
rate of £, ; at x =02 is 11388, whereas that of D%, at the same value of



76 KOCHAR AND KORWAR

xis 11,298, even though & =" L* This proves that the hazard rate of D, ,
is not Schur concave.

However, for n=2, the hazard rate of D.., 8 Schur concave in (4,. 4:).

Tueorem 3.3 The hazard rate of D, . v Schur concave in (4, 4).
Proof. From (2.2), the hazard rate rix) of D, , is

Alx Aax

[ Aade + A Aae
rxl=— - —
_.1'.,:{" i Al X

'I'v+}:|£" TE

Ay Aa(€ 4 7%
L+ et
.r:;:[j.| _.r:;: ' C’EJN

1 AIE.‘.L\. +A:MJ.\

On differentiating r{x), we get

dr (x) At Ayt i B S
il e Alx 1 A1x T T3 AlLx b Aaxy2 [E T4 i€ '
di, A EiLe (A e+ A4 8™
Ajetrx : : :
- 1 Finy PR 1 1 1 PRy
=[} elX ] ghix)2 [Aa(e™™ +e™%) — 4 (4 — 4y) xe™7]
t ta

and by using a result similar to (3.4), obtained by interchanging 4, and 4.,
we get

dr [T' A Ifkl.v A AlX X 1 ] ] A1
T A L G T RS Adderel) SEE)

Hence

drix) drix\y . |
(48

di | dis
[“:‘| _“:'1. AlX Aaxyf 12 pdax 12 A x
= o3 (T e de 2 — A e 7]
(A7 + 4,877)

20, A Ay — L) bR+ %]

=

Hence rix), the hazard rate of D.., is Schur concave in (4, 22) by
Theorem A4, page 57, of Marshall and Olkin [13]. ]
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This result is related to a result of Boland, ElNeweihi, and Proschan
[ 7] which says that the hazard rate of a parallel system of two independent
exponential random variables with parameters 4, and 4, is Schur concave
in (4,. 4,). The life of the parallel system can be expressed as 1 D, ., + D, ...
Now the distribution of D)., which is exponential with parameter
(4, +4,)/2, 15 IFR. Since D, , is independent of D, ... the above result of
Boland, El-MNeweihi, and Proschan [7] also follows from Theorem 3.3 and
Lemma 1B.35, page 16, of Shaked, Shanthikumar, and collaborators [18].

In the case of dependent random variables, studying the stochastic
ordering between the marginal distributions may not be very useful in
revealing monotone tendencies between dependent variables because the
dependence information is being ignored. Realizing this, Shanthikumar and
Yao [19] introduced some new stochastic orders for comparing the
components of a random vector. We focus our discussion on the extension
of the idea of likelihood ratio ordering. For two independent random
variables X, and X, it is known that X, " X, il and only il

ETf X, Xo)]= E[ X, X))] Wi €% (3.3)

r*

where
Gl xa, xS Px, x0) Y, < x,) (3.6)

Motivated by the above characterization of likelihood ratio ordering,
Shanthikumar and Yao [19] extended this concept to the bivariate case as
follows,

DeFmviTion 3.2, For a bivariate random variable (X, A5) &) 1s sad to
be smaller than X, according to joint likelihood ratio ordering
(X, <" X,5)if and only if (3.5) holds.

It can be seen that
X, X, - fe,

where fi ., ) denotes the joint density of (X, X,)

A bivariate function ¢ %, is called arrangement increasing (o/1). In their
seminal work on order relations between the components of a bivariate
random vector, Yanagimoto and Sibuya [20] also considered this ordering,
although they did not relate it to the notion of likelihood ratio ordering,

As pointed out by Shanthikumar and Yao [19] joint likelihood
ratio ordering between two dependent random  variables may not
imply likelihood ratio ordering between their marginal distributions, but
it does imply stochastic ordering between them (that is, X, ="/ X, =
X1="X1). Obviously., in case of independent random wvariables,
Y= eX sy,
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Shanthikumar and Yao [19] also extend the concept of joint likelihood
ratio ordering to compare the components of an s-dimensional random
vector. Let x=(x, ... x,) and y={y, .., ¥,) be two vectors. We say that
X is better arranged than yix =" y) if x can be obtained from y through sue-
cessive pairwise interchanges of its components, with each interchange
resulting in an increasing order of the two interchanged components, e.g.,
(4, 1,5, 3)=" (4,35 1)=" (45 3, 1). A function g: #" — # that preserves
the ordering =" is called an arrangement increasing function denoted by
genf il x =" y=pg(x)zgly) (cf [13, p 160] for the definition of an
arrangement increasing function on #"),

Derivimion 3.3, Let f{x,. ... x,) denote the joint density of X. Then

X XN e f(xy v ) e AT (3.7)

Hollander, Proschan, and Sethuraman [11] call such a function a
decreaying in transposition | DT) function. They also discuss many proper-
ties of such functions and give an extensive list of multivariate densities
which are DT {or arrangement increasing),

Kochar and Kirmani [12] proved the following result on spacings from
independent random variables with log-convex densities.

Tueorem 3.4, Led X, Xo, X, Pe independent random variables with
log-convex densities. Then

D|:“%IF:I"' ..\_{\_Ir:jﬂ [38,

Theorem 3.1, originally proved by Pledger and Proschan [ 15], trivially
follows from this since joint likelihood ratio ordering implies stochastic
ordering between the marginal distributions. However, as discussed abowve,
in general, (3.8) may not imply likelihood ratio ordering between the
successive normalized spacings. Because of the independence between D,
and (D,, .. D,) in the exponential case, we have the following result on
likelihood ratio ordering between D, and D, for 1 <i<n.

TheorREM 3.5, Let Flx)=expl—4i,x) and F*x)=expl—ix). for
i=1, ..n where A=y Let (DY, D¥) be the normalized spacings
associated with (F¥, . F*) Then for i=1, .. n

DT D, (39)
Or, equivalently,

Jor i=2,..n (3.10)
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Proof. As seen in Theorem 2.1, D¥ =" D, and D, is independent of
(D, ... D,) The required result follows from Theorem 3.4 and the fact that
for independent random wvariables joint likelihood ratio ordering is the
same as ordinary likelihood ratio ordering. ||

This result strengthens Theorem 3.1 of Pledger and Proschan [15] from
stochastic ordering to likelihood ratio ordering.

Another natural question to ask is whether {3.1) can be strengthened to
establish hazard rate or likelihood ratio ordering between consecutive
normalized spacings. Theorem 3.5 establishes likelihood ratio ordering only
between the first normalized spacing and the others. We make the bllowing
conjecture.

ConrecTure.  Let X\, X, be  independent  exponential  random
variables. Then

D=0 i=1,..n—1 (3.11)

We give below the proof of this conjecture for n= 3. First we prove the
following lemmas.

Lemma 31, Let PIS) be as defined in ]".hn-'m em 21, Suppose that 8, and
S, are two subsets of {1, .. n} of size i (1 £ i< n—1) and that they .’u:w all
but one element in common. Denote the uncommon element in 8, by o, and
that in 8, by a.. Then

Aas) PUS )= da,) PIS,) if Aa,) = Aa,).

Proof. Let e¢...c;; be the common elements and &' =s-—
)3 : Ale —Aay) —Alaz) Let r be a permutation of the elements of the set
(€10, y.ay ) and let k (1 =k <{) be the position of @, in r. Replace «,
in r by g and denote this permutation of the elements of 5. by r'. Then

1 i i 1
):[H:iP[S|!I=Z<IIJ[H|II}[H1:Inz[cJ:I <|E I1 ( " Z}.[;-I;-.L}.[u:i)?y
d

r J=1 J=f+1 d=i
1

[ ( ‘ 1
® - (r)+Alay) |»
‘:|'J._| ks e r!]‘ .-‘H ).1

i i R 1

EZ':II}[HH.-‘I:H-\. n ey E I1 (1,-'—:-2 }_[;-I,-i-}.[ﬂ,!);,

j=1 Lfm 41 N J=i

& i ] 1
x{]‘[ (:r'-!— > M) +Aay) )

hie ] i=1

=J:.|:l'.f|’.lu[|5r:,. I
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Lemma 3.2 (Cebydev's inequality, Theorem 1, page 36 of Mitrinovié
[14]) Let ay€a.= . =a, and b =h.= ... =h  be two increasing
sequences of real mambers, Then

n i .:;Jb,};(i u,)(i bj).

1= i = J =]

With the help of the above lemmas, we prove the next theorem.

THEOREM 3.6. D.. =" D,;.
FProof. By Theorem 2.1{ii}, the ratio of the survival function of D, at
x to that of D, ; at xis

I PS)expl —x(s—AIS)}

§ =]

T Gu) expl — (B a—dg) B s

where the A’s are ordered from the smallest o the largest and where
Si={4, A iy — {4}, i=1,2.3 Now g(x) is increasing in x if its
derivative gx) =0 for all x 20, and glx)= 01l

r

[x)
numerator of ¥

P

3
= % A.exp 7( —;[:r—i,-l:':'r

PR | 8

x{ Y expl —xis—A(S)))) P[S,r{”_z"“'—[x—A[S,n} (3.12)

Jem

is =10, as the denominator ol g'ix) is positive. Now by the delinition of §,
and the ordering of the 4%, it follows from Lemma 3.1, or otherwise that

the P(S,)'s are decreasing in /. Hence,
a,=P(8)) exp| —x{s— A(S)}, 1=1,2.3

are decreasing in i We next consider the values of (s — 4,2 — (s — A(S)))
for each i". They are respectively given by the rows of

b le=Ma8 Ge—d) TPy,
[.-:.3—.-:4'.."2 [“:‘3+“:‘|_1‘:'3’.";2 [“:‘|_‘:‘3'."I2

[J:..:_J:..l [."2 [J:..l —_.u:.,: il.'l.z [}:.l +J:..: _2.1:._',.’::2
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The terms within the square brackets in (3.12) are respectively the inner
products of the rows of the above matrix with (a,, 4., a,). Since the s are
decreasing, the three inner products are respectively greater than or equal to

WA +4,=20)2 ay. (A +4,=24,)2} ay, {(4, + 4, —24,)2} a,.

Holi:ﬁ lhﬂ.l b| = [.r:;: +"':‘_'-I_ 24:;| III."IL, b: =[.|-:.-,| +.|-:;| _24:.: il."z, ]r?_-,l =[.|-:.| 'r-‘.n;.:_
213),2 are decreasing in {. So are the ¢,’s, where

=i P85 exp <|' ——[*. +4,)

: f ]
€= A EXp <|' ——[ﬂ —4) ¢
. A

.Jr
f

fagain by Lemma 3.1). Finally, by Lemma 3.2 and (3.12),

' 3 3 3 f
numerator of £ ['“; Y be> ( 3 b,)(z f])."3 =0,
& |

i=1 ol - g ]

since ¥)_ | b, =0. This proves the required result. |
As mentioned in Kochar and Kirmanmi [127, in case X,,.. X, is a
random sample from a distribution with log-convex density, then
D m D i=1...n—1. (3.13)

It will be interesting to know whether (3.13) holds in the case of
independent exponential random variables with unequal scale parameters.

Divpersive Ordering  between Normalized  Spacings. Now we  study
dispersive (or variability) ordering between normalized spacings. Let X and
Y be two random variables with distribution functions # and G, respec-
tively. We say that distribution  is less dispersed than FlG=9=r F) i

G o =G i =F o)—F Yu) for O=u=spv<l.

This means that the difference between any two quantiles of & is smaller
than the difference between the corresponding quantiles of # One of the
consequences of G="" I i that var(¥Y)=<var(X). For other properties
of dispersive ordering, see Chapter 2 of Shaked, Shanthikumar, and
collaborators [ 18]

Bagai and Kochar [2] proved that if G=" F and if either F or (7 is
DFR than G=“"T F. Since likelihood ratio ordering implies hazard rate
ordering, the proof of the next theorem follows from the above result,
Theorem 33, and the DFR properties of spacings as established in
Corollary 2.1,
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Turorem 3.7, Let Fix)=expl—4i,x) anmd F¥x)=expl—ix) for
i=1, ..n where A=sn Let (DY, D}y be the normalized spacings
associted with (FF, .. F¥). Then

(a)
e 1 P Jor i=2, ..n,

(b} forn=2,

(A A )Em (X, A% = D, (4, L) =5F D, (1F, 15).

4. DEPENDENCE BETWEEN (ORDER STATISTICS

Boland, Hollander, Joag-Dev, and Kochar [ 8] have studied in detail the
different kinds of dependence that hold between order statistics from inde-
pendent, but nonidentical, distributions. In particular, it follows from their
Theorem 2.2 that X, is stochastically increasing in X, for any i= 1. In

the next theorem, we strengthen this result. First, we give the definition of
upper orthant ordering,

DeFiviTion 4.1, Let X=(X,,..X,) be an r-dimensional random
vector with joint survival function Fx,,..x,) and let Y be another
n-dimensional random vector with joint survival function Gix,, ..., x,). If

Flx ,cox,)s0(x), . \x,) for all x (4.1}

then we say that X is smaller than Y in the upper orthant order.

For properties and implications of this ordering, see Section 4.G of
Shaked, Shanthikumar, and collaborators [18]. In the next theorem, we
prove that (X,.,. .. X,.,) s increasing in X ., in the sense of upper orthant
order.

Tueorem 4.1 Led X\, .. X, be idependent random variables with X,
having the exponential distribution with survival F ()= exp(—4,0), ¢ 20, for
i=1, .,n Then (X, ... X, ) is increasing in X\, in the sense of upper
orthant order.

MM

FProof. 1t bollows from Theorem 2.1{1) that under the above assump-
tions X, is independent of (X2, — X100 o0 X — X2 ) Now

PlX .2 X ez | Xia=x]

=P[X::“—X|:“;T 'xlv"'vX.u:.u X|“}T“—T||X|“—T|]
=P[X::JI_ X|:JI = B R XJI:JI_ Xl:u ;Iu - TI]

which is obviously nondecreasing in x,. This proves the required result. |

The above result can be easily extended from exponential distributions to
the case of distributions with proportional hazards, [t may be noted that
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the present proof is much simpler and more general than the one originally
given by Boland, Hollander, Joag-Dev, and Kochar [8, Theorem 227,

We are grateful to the referees for their helpful comments and sugges-
tions which have greatly improved the presentation of the paper.
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