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AN INDEX THEORY FOR
QUANTUM DYNAMICAL SEMIGROUPS

B. V. RAJARAMA BHAT

ApsTRACT. W. Arveson showed a way of associating continuous tensor prod-
uct systems of Hilbert spaces with endomorphism semigroups of type | factors.
We do the same for general quantum dynamical semigroups through a dilation
procedure. The product svstem so obtained is the index and its dimension is
a numerical invariant for the original semigroup.

1. INTRODUCTION

Powers [Pol] initiated an index theory for Ej-semigroups. By definition Ep-
semigroups are continuous (weak operator topology) semigroups of normal s-endo-
morphisms of the algebra of all bounded operators on a separable infinite dimen-
sional Hilbert space. The theory has seen considerable progress with contributions
of Powers and his co-authors ([Pol],[Pe2], [PR], [PP]), Arveson [Arl, Ar2, Ard,
Ard, Arb, Ar6, Ar7], Price [Pr], and others. It & the work of Arveson (especially
[Arl]) which concerns us most here. He is able to associate a product system with
every Ep-semigroup in a canonical manner. By a product system we mean a family
of Hilbert spaces {£,,t > 0}, satisfying

Eatt ZE,RE, 5,21

in an ‘associative’ way with some additional measurability conditions. Earlier such
gystems played a decisive role in the famous work of Araki and Woods [AW]. The
paradigm examples are got through symmetric Fock spaces (see [Gu|, [PaS]). How-
ever it is known that there are Ej-semigroups [Po2| which lead to more intricate
product systems. The index of an Ey-semigroup is defined to be the somorphism
class of the associated product system. This way the index becomes an invariant
for the semigroup. With some further investigation [Arl] it & possible to obtamn a
numerical invariant by defining a ‘dimension’ for the product system. Moreover it
is possible to classify Ey-semigroups more or less completely using product systems
[Art].

Here the scope of this index theory has been enhanced considerably to admit
more general semigroups. Fix a complex separable Hilbert space Hy (It could even
be finite dimensional.) Let T = {T;,t > 0} be a semigroup of unital, normal
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completely positive maps on B{Hp). With every such semiproup T we are able to
associate a family P = {B;} of Hilbert spaces satisfying

{1.1) F,‘+! = ‘P" :X]‘Ph o t =1

The separability of these Hilbert spaces can be ensured along with fulfillment of
other technical conditions to have a product system in the sense of Arveson under a
mild regularity assumption of path-continuity (see Definition 5.1, Proposition 5.2,
5.3) on the semigroup.

The constructions are based on weak Markov dilations ([Bh), [BP2]) of quantum
dynamical semigroups (semigroups of contractive completely positive maps on a
C*-algebra). This theory allows us to construct a family j = {j} of (non-unital)
s=-homomorphizms, j; : B{Hy) — B(H), for some Hilbert space H containing Hy.
We see that up to unitary isomorphisms the range of ji(I) (denoted by H,) ) splits
as Ho ® Py, with {P,} satisfying (1.1). Finally using the family {P;} we are able
to ‘dilate’ T' to a semigroup # of s-endomorphisms of B(H) (Theorem 4.7). This
semigroup is uniquely determined up to unitary isomorphisms. We define the index
of T by simply taking it as index of 8. It is seen to be anti-isomorphic to the product
gystem P obtained earlier. Here we emphasize that the index & important for us
not only because it gives an invariant for the semigroup but also it provides a
factorization of the dilation.

If T happens to be a semigroup of endomor phisms then its dilation is itself. That
is, we have H = Hy, and # = j = T Here the theory matches with Arveson's work,
except for the method of constructing product systems. A notable improvement
being that we obtain all the constituent Hilbert spaces of the product system as
subspaces of a single space, the dilation space. Moreover the orthogonal projections
onto these subspaces form a strongly continmous family. Whereas in [Arl] the
necessary Hilbert spaces are obtained by imposing a somewhat artificial inner-
product on some subspaces of B(H). (So in that setting there is no compatible
inner-product between vectors belonging to two different subspaces.)

The product system P describes a multiplicative structure of the dilation.
Roughly speaking there is ako an additive structure when we deal with peneral
quantum dynamical semigroups.  Actually, we obtain another family of Hilbert
spaces {A}}, now decomposing Hy) as Hy B N, and satisfying

(1.2) Nett 2N, @ (M @ F).

A detailed study of such systems is yet to be nundertaken.

The associated product systems become trivial (ie, P, = C ) and hence (1.2)
becomes completely additive when we deal with quantum dynamical semigroups
implemented by semigroups of contractions. At the other extreme only the product
structure is non-trivial (Le., A} = {0}) for semigroups of endomorphisms.

The paper has been ordered as follows. We begin with the definition of quantum
dynamical semigroups and pive a brief summary of the results we are going to need
from the dilation theory in Section 2. Discrete time quantum dynamical semigroups
are dealt with in Section 3. Here dilations have been constructed quite explicitly.
Naturally enough we obtain ‘discrete product systems’.

In subsequent sections we consider conservative (unital), normal, guantum dy-
namical semigroups in continuous time. The theory is in complete parallel with
the diserete time version. The basic constructions of spaces P, A with associated
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unitary maps are in Section 4. Main results being factorization of j, and the ex-
tstence and uniqueness of the endomorphism semigroup . (Theorems 4.5-48). In
a sense, we have a semigroup version of Stinespring’s theorem. As a simple cor-
rollary to the dilation theory it is seen that if 4 quantum dynamical semigroup on
B{Hy) is an endomorphism for some positive time point then it is a semigroup of
endomorphisms.

In Section 5 we begin with explaining the notion of path-continuity which puar-
antees the separability of the dilation space. This point onwards, path-continnity
s an added assumption on the semiproup. After briefly recalling the definition of
product systems we see that our construction does lead to such a family of Hilbert
spaces. This is inked up with Arveson’s construction of product systems and as-
sociated index theory in the final section. Some functorial properties of the index
such as imvariance under cocyele conjugacy can be seen. Units of a product system
are families of vectors with a special multiplicative property, and form the basis
for Arveson's study of product systems. Theorem 6.4 explicitly provides units, and
in particular shows that the numerical index is positive for semigroups with pure
invariant states.

2. MARKOV DILATIONS OF QUANTUM DYNAMICAL SEMIGROUPS

Quantum dynamical semigroups appear naturally in wariows physical contexts
{[Dal], [(Da2], [AL]). And one studies them either by looking at the structure of the
generators ([GKS|, [Li|, [Dad]) or by constructing suitable dilations ((EL], [HP]).
Ouantum dynamical semigroups are non-commutative versions of Markov semi-
groups and their dilations to bomomorphisms can be interpreted as construction
of non-commutative or quantum Markov processes. Accardi, Friegerio and Lewis
[AFL] formulated this idea in a precise mathematical format and obtained a re-
construction theorem. We will not be needing this general theory here. All owr
constructions will be based on the theory of weak Markov dilations of quantum
dynamical semigroups as in [Bh| and [BP2]. (See [Em|, [Sa] and [ViS] for some
earlier work.)

In the sequel T, will denote either the additive semigrounp £, of nonnegative
integers or By of nonnegative real mimbers.

Definition 2.1. Let 4y be a unital C* algebra. A family of linear maps T = {T; :
t € Ty}, of Ay into itself is called a quantum dynamical semigroup if the following
are satisfied:

(i) T} is completely positive for every t € T, ;

(i) TTU X)) =T, (X)) forall X e A, 5teT, ;

(ii) Tp(X) = X for all X € Ay;

(v) T < T for all £ e T,

The semigroup is called conservative or unital if T,(1) =T for every ¢

As of now there & no continnity restriction on the semigroup in the variable £.
In discrete time (i.e., T4 = Z,) the dynamical semigroup comsists of {1, T,72,-- -}
for a single contractive completely positive map T @ 4y — Ay,

We motivate the dilation theory needed here through Sz, Nagy dilations of
contractions. Let B = {R(t), + € T4} be a contraction semigroup on a Hilbert
space Hg. Then {T;} defined by TW(X) = R{{)IXR(#)* & a quantum dynamical
semigroup on B(Hy). Now by [SzF] there exists a Hilbert space H containing Hy
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with a semigroup of Bometries V', such that
R(t) = PV(t)|ln,

where P is the projection of H onto Hy. Let F{#) be the projection onto the closed
linear span of {V(sju:0 < s <t,u € Hg}. Define j, : B(Hy) — B(H) by

(2.1) §X) = V(OPXPV(H)* for te T, and X € B(Hy).

Then j = {j;,t € T4}, is a family of representations of B(Hy) satisfying j,(I) <
Fit), and F(s)j (1) F(s) = §.(T (X)), for 5 < £ The idea & to construct rep-
resentations having similar properties with respect to a given quantum dynamical
SETIETCIP.

We will be dealing with only a special subelass of Markov dilations called sub-
ordinate weak Markov flows. For a more general definition of Markov flows see

((BP2), [BP3)).

Definition 2.2. Let 4y be a unital € alpebra of operators on a Hilbert space
Hp and let T = {T,,t € Ty} be a quantum dynamical semigroup on 4. A triple
(H,F,j) is called a subordinate weak Markov flow with ezpectation semigroup {T;}
if H is a Hilbert space containing Hy as a subspace, F = F(#) is a non-decreasing
family of orthogonal projections on H with F(0) having range Hy, and j = {j,} is
a family of s-homomorphisms from 4y into B{H) satisfying the following:

(i) jo(X) = XF(0) ;

(i) Fls)j (X )F(s) = (T X)) forall 0 < s < ¢ < 00, X € Ay

The fow is called minimal if {7, (X1) - Je (KaJu:t,.. €T, Xpol X
€ Ag, u € Hp and n=1,2,...} is total (linear combinations form a dense set) in
H.
Note that (ii) implies that j,(I) < F(I); for this reason we say the flow is
subordinate to F and this in particular means that j, leaves the range of F(f)
invariant for every £. If j,(1) = F(t) for all { then the flow is said to be conservative.
We will not be needing any probabilistic ideas in the sequel, but we would like to
point out that F iz to be thought of as a filtration and the map Z — F{#) ZF(f)
occurring in (i) as conditional expectation. So (i) is essentially the Markov property
of the flow.

Theorem 2.3. Given a guantum dynamical semigroup T' (as in Definition 2.2) up
to unitary isomorphisms there is a unigue minimal Markov flow (H, F, j) having T
as its expectation semugroup. Moreover § is conservative if and only if T' is.

Proof. See [BP2| for the original proof. [Bh| has somewhat more direct approach.
The central idea being the GNS construction as in the standard proof of Stine-
spring’s theorem. O

Throughout this article (K, F, j) guaranteed by Theorem 2.3 & the only flow
we consider and we simply calll it the minimal diation of T It is the Sz Napy
dilation when T is implemented by a semiproup of contractions on the Hilbert space
(as explained before) and it is essentially the Kolmogorov construction of Markov
processes when the algebra i abelian. Here we fix our notation and list some
properties of this dilation for future reference.

The Hilbert space Hy (where the algebra 4 is acting) may be called the initial
space and H the final space or the dilation space. The range of F(t) is ‘the Hilbert
space up to time £’ and is denoted by H,;). Note that My is the same as Hy. By
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convention M. is H. For any three time points a. b c in T with b > a,c and
X.Y, Z in Ay, we have a ‘reduction algorithm’ (Proposition 3.2 of [Bh):

Ja( XTp—a(Y))je(Z) fc<a<h,
Jal X)(Y)ie(Z) = § 7alX)je(Tp-o(Y)Z) fa<c<h,
Jal XTh—a(¥)2) ifoa=canda<bh

For any finite sequence v = (ry, ..., ) in Ty and ¥ = (¥}, ... . ¥,) in Ay (of length
n) write j{r,¥Y) = jlri,ra,... ;70 Y1, Y) = jr'l{Yl :Ij\.-ﬂ{}@_:l woe (Ye). If for
some index k in {2,... ,n— 1}, rx = rg_1,7k+1, then the algorithm can be applied
at the triple (rp_1. 75, 7e) to reduce the length of ¢, Y in j(r. Y). Repeated
application of the algorithm and (i) of Definition 2.2 to F{0)j(r, Y 1F(0) (recall
Fily = gold)) yvields e(r, ¥) € Ay such that F{O)j(r. YI1F(0) = e(r, ¥ F(0). Note
that e(r. ¥ is mniquely determined as {w. e{r, ¥ v) = {u, j{r. ¥} for all «, v € Hy.

The mapping e satisfies

(2.2) (i) e(z + 5, ¥) = To(e(z, X));
(2.3) (ii) F(s)i(r + 5, Y)F(s) = jsle(r, ¥)),

where r+ 5= (r{ + s ra+5,... .7 + 5).

If v has some monotonicity property then one can chase the alporithm to get an
explicit formula for e(r, ¥'). We find it useful to record a special case. Let D, Dy be
the sets defined by
(2.4)

P={{pY,u):veHyr=(r1y... ,;Fu)y,T1 >T2 > 27y 20in Ty,
¥i,...¥, € Ay, for some n = 1},

(2.5) D,J={{L£.,1L:|ED:EET1 g e S O]

Then it follows from the construction in [BP2| that {j{(r.Y)u : (r,Y,u) € D,l}
spans Hy) and
(2.6)
Ul Yu, 5o (X )i (r, Z)v)
=T (¥ . (¥

n—1 "

- ¥ T,

rt (YT (X) 2 ) En - - - B 1) B ).
for X € Ay, (r. Y. u), (r, Z, v) € Dy). Note that we have taken same time sequence ¢
along with both ¥ and 2. This is no restriction for the following reason. Consider
(r.Y,u) € . Then for any 5 = (8,...,5,) with sy > 8 > --- ,8, > 0in T,
we write s = v if {s1,..., 5} 2 {r1,... 7.} and in such a case define (s, Y, 1) by
putting

Y, = ;
-" I otherwise,

- { Y; if 8; = r; for some i;

e, we extend Y by imserting identity at the extra time points. Then it follows
from the reduction algorithm or otherwise that for conservative minimal fows,

(2.7) j(8, Y= §(r,¥ Ju.

The same equality holds for nonconservative flows too under the added restriction
51 =< rp. Finally, we note the following technical result.

Proposition 2.4. Suppose Ay is a von Newmann subalgebra of B{Hy) and T, is
normal for £ = 0. Then the homomorphisms j; are normal for every .



G B. V. RAJARAMA BHAT

Proaf. Suppose X, is a net of positive elements of 4y monotonically increasing to
X. Clearly j:(X,) B increasing. We need to show the comvergence of {£, §,( X, )£
to (£, 7 (X )E) for arbitrary £ in H. As §,( X)) = F{)#(X.)F(t), we can assume
£ € Hy). Further as the set {ie Y u:(r, Y, u) e D,J} is total in Hy, it is enough to
show the convergence of {j{r, ¥ u, 7 X, ) (5, Zv)) for arbitrary (.Y, u), (5, 2, v) €
D:]- In view of (2.7), we can assume r = 5. Now observe that,

(2.8)
s X, e ( Xa)i(s, 2)v) = (w0, T (Y - T — sy (YT (K ) Z1) - - - ZJv).

Taking a cue from [Dal] we note that for A, B, C € Ay,

1 3

A*CB = = (—i) (A+i"B)*C(A+i"B).
r=(l
On applying this formula repeatedly, we have

TV Toaa (Vi Tos (Xa) Z1) -+ Z)

= Z {_ﬂizzm*'k]j"ﬁ"{}p* (s W2

{1 . 1

ﬂ —5 {Xu :I Li;lr'] B :I.H;'m'"j

¥ .. iy =l

where Wi, = Vo + (1) 2.1 < & < n. Now use normality of T, for all £, on the
right hand side expression to conclude the convergence of (2.8). O

3. I DISCRETE TIME

Here we work with the discrete semigroup formed by integer powers of a single
completely positive map on the alpebra of all bounded operators on a Hilbert space.
We build the dilation and show how it factorizes. Though the constructions here
are quite elementary, they are quite instructive and show us as to why one should
expect product spaces in continmous time.

Let Hy be a complex separable Hilbert space with the inner-product {..) anti-
linear in the first variable. Let 4y be the algebra B(Hy). Suppose that T - 4y — Ay
i a unital normal completely positive map.

For u, v in Hy, let |u){v| be the rank one operator on Hy defined by

vl = {v,whe,  for all w e Hy.

Note that |3{.| is linear in first variable and antilinear in the second. For any
bounded operator X on Hy

ludv] = [Xudv], and |ud{o]X = |jud{X 0.

Also note that if w, — w, and v, — v in Hy then |u,){v,| converges in norm to
faed {wr].

Now we define two positive definite kernels ([Pa]) and via the GNS theory obtain
two Hilbert spaces, which will act as building blocks for the dilation space. Let I,
£ be the Cartesian products I = Hy = Hyp x Hy and £ = Hy = Hy. Define
K:KxK—-CandL:LxL — T by

K((a1, b1, 1), (a2, b2, e2)) = {1, (T'{lar) (b [ |az)be|) — T{lar}{ba]) T (laz){ba|))ea),

anl
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L{{a1,b1), (az,b2)) = {b1, T(|a1} {az|)ba)
for a;. by, e, a9, ba, 0 in Hy.

Proposition 3.1. Let K and L be as above. Then K, L are positive definite bernels
on K, L respectively.

Proof. Consider z; € C, (g, b, ey) € K for 1 < ¢ < n, for some n. On taking
Xi = |aip{b|, we have

(3.1
Z Zizi K (o, b i), (0, by,65)) = Z Zzplen (TUX/ X)) —TXG)"T(X;) )ey)

which can be rewritten as
2n
> abany{di, T(Y;'Y;)dy),
ijd=1
where wy = wipy = zd; = o dipn = T X, Y= Xy Yo =1forl <i<n
Now the non-negativity of (3.1) follows from complete positivity of T
For a fixed unit vector a in Hy , denote the operator |a){a;| by Z;. Then

> gizL{(ai b, (ag, b)) = fuzglbi Tllashlasbh = 2z (b, T(Z Z;)by)
Once again the complete positivity of T' gives the required result. O

Proposition 3.2, There exists Hilbert spaces N and P owith maps A« K — N,
and & 1 £ — P, satisfying
(1) {Mag by ), Ao, ba, o))

= {e1 (T(laa (b [" |az){bal) — T(lar) (1])"T (|ag){ba|)) 2},

{8lay, by, 8laa, ba)) = (b, T{|ayi{as] ba).

(i) The sets ME) and 8 £) are total (lEnear combinations form a dense set) in
N and P respectively.

(iii) The Hilbert spaces N and P are separable,

Proof. Existence of Hilbert spaces satisfying (i) and (ii) follows from GNS theory
and positive definiteness of K and L. Separability of A and P is immediate from
separability of Hy and easily derivable estimates,

[Aa, b, 0)l* < 2llal P[5Il and [|6(a,B)|* < |lalf*||b])?
for a. b, cin Hg. O

Dimensions of A" and P are important numerical invariants for the semiproup
{T™}. In fact, the dimension of P can be thought of as the numerical index of the
semigroup in diserete time. Clearly, A is zero if and only if T is an endomorphism.
S0 in a sense, dimension of A" measures the deviation of T from an endomorphism.
It might be mentioned that every normal completely positive map on B(Hy) can
be represented in the form 3 L, X LY for some bounded operators L, and dim(P)
i just the minimum mmber of L;’s needed to represent T' in this form.
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Now we recast Stinespring’s theorem [St] in a form more suitable for us.

Theorem 3.3. There exists a unitary map V i Ho & N — Ho @ P such that
(3.2 VA XN ®DNV]g, = T(X)

for X € B{Hq), and the closed lnear span of {{(X @ I'Vu:u € Ho, X € B(Hy)} is
Ho® P.

Proof. Fix an orthonormal basis {eg, e, ...} of Hy. We first define V on Hy ©
Ho & N by setting

(3.3) Vo= e.®é(en )

"

for x € Hy. For any finite subset E of {eg.e1,...}
{Z En & 8 En, ), Z Em @ Eem. )} = Z{"S{Evhmj\'ﬁ{frhyj}

nel mel nel

= {z,T( Z len}en )y

nel

By normality of T it is clear that V' iz well-defined (ie., the series in (3.3)
comverpes] and is an isometry on Hy. Also note that for X € B{Hy),

(Vz,(X @ Vi) = (3 en® blen, ), Y Xem & 8(em,)) = lim (z, T(PX R)y),

e e

where Py is the projection onto the spanof {eg, £1,... , & }. Once again by normality

of T
(3.4) Ve ( XaDVy = {=T{X)y.
Now extend V' to Hy &N by taking

Vizd Moy o)) =Vz+ (X @NVe, — VI X))y
where Xy = o) {Iy|, a1, b1, 010 € Ho. An elementary computation wing (3.4) yields

Ve+(XiaVe -V X)e Vy+ (X @ DN Ve — VI Xs)ea)

= {z,y) + {e1, (T( X7 X3) — T(X])T(X3) )ee).
Recalling the definition of A it is clear that V' extends as an isometric operator to
whole of Hy & N Note that

VI-T( X er @ Mag b)) =X 20V

= la){blen @ blen, 1)

"

=a1® ) _(bi,en)blen, e1)

=a; 5{1’1 ...vl'l‘]:|.

Hence V maps Ho®N onto Ho@P and {(X1&@0 Ve : Xy = a1, 0,00 € He}
& total in Hy & P. O

Remark 3.4, If Hy i finite dimensional then so are A" and P. Then Theorem 3.3
implies dim{A) = dim(Hy){dim? — 1). No such formula holds in the nfinite di-
mensional case.
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We shall realize the minimal dilation of the semigroup {T™,n = 0} on the Hilbert
space

H=HaNaWNaP)aWNaP)a
Let F(n) denote the orthogonal projection of H onto H,,) where Hy = Ho, H;) =
Hp & N, and
Hy=Ho N BN BP) @ 8NP )= Ho g8 (WP
for n = 2, thought of as subspaces of H in the natural way. Observe that on taking

No=NasWNaP) e --aNePe" )

we have Hy) = Hy BN, and Nye 2N @ (N, @ P™).

Now we obtain a family of unitary operators V, : H,) — Ho® PE" by induction.
Take Vi : Ho @ AN — Hog @ P to be the operator V' of Theorem 3.3, Let Iy, I,
be identity operators on A and PE" respectively. Now if V,_; maps Hpqq) to

Hy @ PE"Y then (Vioy @ (Iy ® Luo1)) maps M,y & (N @ P ") to (M @
PET @ (N e Pe™ ). But

How P ) o W PP ) = (oo N) @ P
in a natural way. Using this identification. define V), : H“'l i Hu—:] & (N ®
mr”_”:‘ — Ho @ P® by
Va=(V&ILi1)(Vao1 ® Iy @ In-1))

for n = 2. Clearly V), is a unitary operator as it is a composition of two unitary
operators.

Theorem 3.5. Let H,F = {F(n)} be as above. Define representations j = {j. }
of B{Ha) in B(H) by jo(X) = XF(0),
(3.5) Jn(X) = VX ® 1, )V, F(n) for n 2 1,
and X € B{Hy). Then (H, F, j) is a minimal Markov dilation of semigroup {T" ., n =
0}.
Proaf. First we verify the Markov property. We have
Fin—1)./X)1Fin—1)
= F(n— D[V, & (I ® T )(V* & Tne1)(X ® 1)
X (V& Tne)[Vii—1 & (I ® Tn)|P(n — 1)
=Fln-1V"_  (V*& L)X & L)V &L _1)V,_1F(n-1).

mn—1

—11

Note that the range of Vi, F(n—1) is Hp® paint - (Hoa AN @ 'Pg'["_”~ and
from Theorem 3.3

{LI* & -‘rﬂ—I :l{;{ i L::I{V & I‘fl—]:ll -1) = T{;{:I & I‘r:—l-

H“E'pﬂr"
Hence Fin — 1), X1 Fin—1) = Fln -0V ((T(X) & L 1)Ve1Fln-1

n—1

) =
Fn—1{T(X)). Now to prove minimality, it is enough to show that {j,(X)¢ : £ €
Hp—1) = range of F(n —1), X € B(Hg)} spans Hy for every n > 1. We have

Je(X)Fn—1) =V (X @ L)V & Li_1)Vaor Fn —1).
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As V1, V7 are unitary operators and the closed linear span of {(X @ IVu:ue
‘Hﬂ, J{ = E{Hﬂ:l} i ‘H{j @ap-.

gpan {V (X @ L)V @ Lo 1)Vao1€ 1 £ € Hua), X € B(Ho)}
=span (VX @ L)V @ Lo_1)p:n e Ho @ P2 X € B(Ha)}
=gpan {Viv:yEHo® P}
=HTIJ- |

Now notice that V' maps Hy @P%" to H,- By making the obvious identification
of Hi- @ P2 with H*J'_l" extend V,* to a unitary operator from H ® P2 It is easily
verified that & = {#,} defined by

8.2 = WolZ @1, W] Z e B(H),

5 a semigroup of endomorphisms of B{H), satisfying
On( XF(0)) = ju(X),
for X € B{Hy). Olserve that § has the property 8,03 ( X)) = Jian( X ).

4. BASIC CONSTRUCTIONS

In this section we are considering continmous time (e, T, = B, ) conservative
quantum dynamical semigroups on a type I factor Ay = B(Hy), for a complex
separable Hilbert space Hy. Fix one such semiproup T, Throughout we assume
that the maps Ty, ¢ = 0, are normal. Let (H, F,j) be the minimal dilation of the
semigroup T provided by Theorem 2.3,

We shall construct two families of subspaces of H, {N;,1 = 0} and {P.. ¢t = 0},
satisfying

(1) Pegr 2P 2P

(i) Mape =N & (N @ P

(iii) Hy =Ho BN, =2 Ho @ P,
in & canonical way. Moreover just as in the discrete time, unitary operators V{#) :
Ho &Ny — Ho @ Py, implementing the somorphism in (i), will factorize the fow.
That is, we see that

(4.1) Gl X) =V (X @ DVHF(), for X € Ag.t =0

holds where I, is the identity operator on 7. Of course, in the final analysis {P}
will pive us a product system in the sense of Arveson.

Now as the alpebra under consideration is B{Hy), and the maps T} are assumed
to be normal, action of the flow on rank one operators has full information about
the flow. In more precise terms we have the following proposition.

Proposition 4.1. The set {j(r. Y )u:(r. Y. u) € Dy, with ¥;'s of the form |z {y|
for some x;, 3 € Hol is total in Hy-

Proof. Any finite rank operator & a finite linear combination of operators of the
form |z;}43;|. Now normality of j; and a simple induetion arpument show that we

can approximate all vectors of the form jir, ¥)u with ¥; = 0. Clearly that is good
enough. O
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Here is an elementary but key observation. For arbitrary =, s, 11, 42 € Hp and
£,7 €H,

(el {21, dellynd (2l m) = (€, Gellzd{aallya M welin) = (21, y0)(& Gellz2) {yal ).
As a consequence for an arbitrary unit vector a in Hy,
(4.2) Gellz m2)E Jellnilaelm = (e g lellaiiz2 )€, Gella) el )m.

Proposition 4.2, For a unit vectora € Hy, let Pyla) denote the range of §,(|a){al ).
Then

(1) Pla) = Range j(|a)iz]) for any z £ 0 in Hy.

(i) ff b is another unit vector in Hy then Pyla) = Plb).

Proof. Observe
jella}{al)je(ladz]) = jella){z]),
Jellap{zl)g(|z}al) = (2, zpi(|a}{al)-

So the range of ji(|la){z|) is contained in, and contains Pla). Now define 2 :
Fila) — Fu(b) by putting

Zje(la}al)€ = je(|b){a] ) for £ € H.
Then (4.2) shows that Z is an isometry and from (i) Z is onto. Hence 2 defines a
unitary somorphism between 7 (a) and 75 (5). O

Now choose and fix a unit vector a in Hyg. This vector a is fixed once and for

all. Define P, by
(4.3) Py =Pi(a) = Range of ji(|a){al).

Note that P, is a Hilbert space. that &, up to unitary somorphisms does not depend
upon the choice of a. Now we obtain a family of unitary operators W, : H, 2%, —
Hate) by setting

(4.4) We oz, Y)u @ je(lapz)§) = jlx + £, X) ge(he} (2] )€
for (r,Y,u) € Dy, x € Ho, £ € Hy). Here by v+ we mean (ri +f, 72 +£, ... .7 +1).

Theorem 4.3. For st = 0, W, defined as above extends to a unitary operator
from Hy & Py onto M, 1y).

Proof. Consider (v, Y, u),(r,Z,v) € Dy, z,y € Hy), and £, 57 € Hy). From (2.2) and

(2.3) we have
iz + & ¥ )5 (])E, 5 + £, Z) 3 (o) l)m)
= {Ge(ledz )6, i {(rn, ta—ry ooy 11T ) H
(Yoo o Y9 20, Za el ()

= {Ge(lu)(z)E, Jelelrn, - - 1, T1s o) (Y oo Y2, 20y Z0)) el | )
= {rf.,jr{l;?:}{'u.lﬁ{{f‘.,h._ s aT1aTLy - "Tflj\{Yf:\"' -Yhzh-- - ,E-,,:l:ll'l?}{y”ﬂ}
= {1 €Ty s TLTL e T)y (Y g oo s Y1, 20y 000 2 )Ju) A8 Gell ) )

= (il Y, 3z, Z)v)-Gella) (2])€, Gel|a) (wl)n).

Thus Wy, is isometric. Proposition 4.1 implies that domain and range of W, , are
total in H,) ®@P,, H, ) respectively. O
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As P, is asubspace {:-f'H,‘J we can restrict W, , to P, @P, tohave U, , : P.aP, —
Hate), satisfying

(4.5)
Us.elisllaplal)i(z, Y)u® jul|a)(#])€) = Jsrelladial)ile + & X)) (2] )

for (r.Y,u) € D,), z € Ho, and £ € H,). Clearly the range of U, is Py So we
have unitary operators U, , : P, @ Py — Papy. Moreover for sy, ss, 83 > (), as maps
from H, ) @ Pay ® Pay t0 Hay toat5a

(4.6) Waysstos(Tes] © Ussiey) = Woagtas oy (Way 0 B L)

as is clear from (4.4) and (4.5). (Here for any s, I, I, denote identity operator
on H,, P,, respectively.) On restricting this equality to P,, @ P,, @ Ps,, we have
the associativity of the tensor product structure on {F,}. That is, as maps from
Poy @Pay & Pay t0 P tsatng

H-ﬂ U#J &2 +#a {‘rn'u & Um,ﬁ.q:l = U#J +&2.53 {Uru::ﬁﬂ & I#.q:l
for s;. 52,85 = (L

Remark 4.4. The definition of W, ¢ (see (4.4)) can be extended to the case s = x
by considering (r, ¥, «) in the whole of D. This yields unitary operators W, -

H& Py —H, (recall H, = H) satisfying
(4.8) Walf@n) = Wl @)

for £ € ‘H_.‘J.,f} € Pi. In other words, the operator W, is the restriction of W, to
Ha @ Pr. Now (4.6) takes the form

(4.9 H"x:,‘g_k,‘j{ij B Uy ng) = Wae sy (Wae s, ® I}
as maps from H @ P, @ Py, to M, for sz,85 = ()

Theorem 4.5. Fort >0, let V(t) : Hy — Ho®@ Py be the unitary map Wg,. Then
Jor all X in B{Hy)

(4.10) (X)) = V{£)"(X @ I )V(H)F(t).
Define 8, : B{H) — B{H) by
{4.11) 8(Z) =W lZa L)W ,, Z e B{H).

Then @ is the wnigue semigroup of normal $-endomorphisins of B{H) satisfying
{4.12) H(XF{0) = n(X), X € B{Hy).
Proof. On taking V(t) = W§,, from (4.4) (with s = 0) we have
Vit)je(ludz)€ = v @ jillap{z])€
for u,z € Hg, £ € Hy- Now if v,y € Ho, 57 € Hy), use (4.2) to obtain
V(#)ge(lud{=) & (X @1 )jellei{yl)n = (v @ glla)z])E, Xv & jilla) {yl)n}
= {u, Xvp{je(la} (z])€, je(la} (| )m}

= (el |z )8, de(| Xv{yl )
= (el |z )&, 3o (X )gellvd {uln).
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This proves the first claim as vectors of the form j,(|u){z|)£ are total in H,). To
prove the second part, note that 8, is an endomorphism due to unitarity of W .
Now on using (4.9),
8:(6,(2)) = Waes(Woer ® L)(Z® I, ® L)W, & L)WE
- H'Jr:c.r:+!{IxJ & Ur‘:!:l{z ®@l,® If]{‘rl] & T::fﬂ.i;:ﬁ:ﬁ+!
=8.14(Z)
Finally (4.12) is clear as a restriction of Wa., to Ho ® Py & Wy, which is same
as V(#)*. The uniqueness is proved by showing that (4.12) completely determines
f. Clearly {4.12) implies #(j:( X)) = j.que (X)) for X € B{Hy). Now for (¢, ¥, u),
(s, Z,v) €D,
B (13 (x, X)u) (s, Z,v)[) = 0 (j(z, ¥)lu){v]j(s, £)°)
=jlc+ £ Y)0(juiv))i(s+ ¢ Z)°
=jlz+ & Y)5e(|upiv])ils +1, 2)".
Now as the collection {j(r,¥)u;(r. ¥, u) € D} is total and # is assumed to be
normal, the required result follows. O

Obszerve that on identifying X € B{Hy) with X F(() in B{H), (4.12) takes the
elegant form §(X) = (X)), s0 & can be thought of as a dilation of T, and as an
extension of j to a larger alpebra. We do not do this identification here to avoid
some confusion (e.g. & (1) would be ambiguous). However as Hy is already thought
of as a subspace of H, for v, v € Hy,

(4.13) Jelupiv]) = &el|u){v]).
Now it is not very difficult to see from (4.4) that
(4.14) Us o 0:(la}a)y @ B(laial)n) = O.pilla){al)0¢ (|7} al)n

for v, n € H.

Remark 4.6. Note that # & a quantum dynamical semigroup in its own right. How-
ever as it & a semigroup of endomorphisms its dilation is itself. Moreover, (4.13),
(4.14) show that its associated family of Hilbert spaces 'P,':a] and unitary maps U,E_E,]
are the same as Py and U, respectively. .

Perhaps it is worthwhile to restate the existence and uniqueness of “dilation’ 8
of T without referring to intermediate j.

Theorem 4.7. Let T be a conservative guantwm dymamical semigroup of normal
maps on B{Hy). Then there exists a pawr (M, 8), where H is a Hilbert space con-
taining Hy and & is a semigroup of normal s-endomorphisms of B{H), such that i
P denotes the orthogonal projection of H onto Hy then

(1) &(P) is a family of projections increasing to identity with 8y(P) = P;

(i) P8, (XP)P =Ty (X)P for X € B(Hy),t = 0.

(ii1) The set {8, (YiP)0,(YaP)---8, (Yo Plu: (r,Y,u) € D} is total in B(H).

If (M. @) is another such pair then there exists a unitary map 7 - H — H' such
that Un = u for u € Hy, and 8 2) = UNLT=ZUN0*, for Z € B{H").

Proaf. This is clear from Theorem 4.5 and the uniqueness of the minimal dilation
(H. F, i) up to unitary isomorphisms. O
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It may be noted that (i1), (i) of Theorem 4.7 imply that {#,(P)} is a family
of projections increasing to identity with 8,(P) = P. More interestingly there & a
converse statement to this theorem.

Theorem 4.8, Let H be a Hibert spoce and let 8 be a semigroup of -endomor-
phisms of H. Suppose P is an orthogonal projection of B to some subspace Hy such
that P < &(P) for all . Then T = {T}} defined by

TWX)= PO(XF)P|w,, X € B(Hy),
is a conservative quantum dynamical semigroup on B{H,).

Proaf. Clearly Ty(I) = I, and T} is completely positive for all £. Now for s, ¢ = 0
TYTL(X)) = P4,(PO.(X P)P)Pls, = PO,(P)8, (X PYO(P) Plag, = Ty 1e(X). O

This means that we have completely classified (unital, normal) quantum dy-
namical semigroups on type L, factors in terms of isomorphism classes of triples
(H.8, P), where H is a Hilbert space, # is a semigroup of normal s-endomorphisms
of B{H), and P iz a projection of ‘H to some subspace Hy of dimension n, such
that (i), (iii) of Theorem 4.7 are satisfied. This is clearly a semigroup version of
Stinespring’s theorem.

Now let us look at the example we started with in Section 2. Suppose T iz
implemented by a strongly continuous semigroup R of contractions. (Actually, co-
isometries as we assume T to be conservative.) Now from [Bh| one knows that the
minimal dilation of T can be obtained from Sz, Nagy's minimal dilation of B to a
strongly continuous semigroup 7 of unitaries. (Exactly as in (2.1) with V' replaced
by U, Minimal isometric dilations of semigroups of co-isometries are automatically
unitaries.] With this knowledge it is not hard to see that § of T is the semigroup
of automorphisms

8.2) = U,ZU;

for f = 0,2 € B{'H). Observe that in this case P, is the one dimensional space
spanned by Uha (a being the unit vector with which we define 7).

Conversly, suppose for some semigroup T, dimPy = 1. Then (4.11) implies that
@ is a semigroup of automorphisms of B{H). Clearly, it can be extended to the
negative half-line by setting #_, = 6, ", to have a one parameter group of automor-
phisms. It is wellknown [Va] that strong continuity of # forees it to be implemented
by a strongly-continmons semigroup of unitaries. Now one can easily deduce that
the original semiproup T is also implemented (by a strongly continnous semigroup
of contractions).

Now we go back to our program of constructing Hilbert spaces {A}} as described
in the beginming of this section. Actually, the construction is almost a triviality

now. As H,), Hy are the ranges of F(t) and F(0) with F(f) = F(0). Take
{4.15) N = Range of (F{t) — F(0)).
It & immediate that Hy = Hy & N

Theorem 4.9. There exists unitary operators 2, mapping N, @ (N, @ P, onto
MNepr for s, =00
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Proof. Observe that We . : Hy ® P, — H,, ) maps the subspace Ho @ P, onto H,.
S0 clearly it maps A} @ P, onto the range of (F{t + 5) — F(s)). Now take Z,, as
I Wes. O

In this theorem we have not bothered to describe the canonicity of associated
unitary maps. Observe that A, 8 (Ww @ P ) 3N O Paaga ) EN, B (N ®
P ) BN, @ P, @ Py, ). Now the component Hilbert spaces here can be combined
together using unitary operators 2, of the theorem to obtain N 444, in two
ways. A routine verification shows that the associated diagram commutes.

It maybe noted that the dilation space H can be decomposed in a simpleminded
way as Hy © N with N = Hi. However in general H does not admit a natural
multiplicative decompositon as Hy ® P through some Bomorphism, though as we
have seen Hy = Hy @ Py for 0 < ¢ < oo, There is no natural candidate for Po..

As remarked earlier Ay = {0} for semigroups of endomorphisms. Here i another
observation about endomorphisms which could be of some independent interest.

Theorem 4.10. If T, is an endomorphism of B{Ho) for some ty = 0, then T is a
semigroup of endomorphisms.

Proaf. Clearly it is enough to show the endomorphism property of T, for 0 < s < ;.
Fix 5, and take ' =#y—s, P = F()), ¢ = I— P With this notation, for X € B{Hy),
we have
(it (X) P)*(Qe, (X)P) = Pjy ( X* X) P — (P, (X*)P)( Pjp,(X) P)
= Jjo(Te(X " X)) — jo(T2a (X7) )do(Tea (X))

Hence Qj, (X)P = Pj, (X)Q = 0. As F(+') commutes with P,Q, pre and post-
multiplication by it gives Qi (T X)NP = Pj (T, (XN = 0. Now for XY
B(Hq)

JolTer (Te(X ) Te(Y))) = Pia(To(X)To(Y))P = Pjo (To(X))(P + Q)i (Te(Y) )P

= Pj(T(X))P.Pju(To(Y))P = jo( T2, (X)Ty, (Y)) = jol T (T (XY))).
That is, T, (Ty(X )T, (Y) =T (X Y)) = 0, implying, T}, (T, (X)T,(YV) =T, (XY)) = 0.

But then T}, is injective as any representation of the von Neumann algebra B(Hy)
s the trivial representation with some multiplicity. O

It may be noted that the theorem above is applicable to discrete time as well,
where it means that if T is an endomorphism then so iz T. The contimons time
version iz not immediate from this as there is no continmity assumption on the
SETIETO.

5. REALIZATION OF PRODUCT SYSTEMS

In this section we study the family of Hilbert spaces {P,, t = (1} in greater detail.
To do the analysis of product spaces as in [Arl, Ar2, Ar3d, Ard, Ar5| one needs
associated Hilbert spaces to be separable. This means some regularity assumption
on the semigroup. We assume that the semigroup T' is such that each T, ¢ = 0,
is normal and for the associated dilation (H, F, j,), the map ¢+ — j,( X)) & strongly
continuous for fived X € B(Hy ). Here and elsewhere in this article by strong con-
tinmity we mean continmity in strong operator topology. It is convenient to have a
definition here.
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Definition 5.1. A quantum dynamical semigroup {T}} is said to be path-continuous
if the map + — j,(X) is strongly contimous for X € B{Hy).

First verifying for operators of the form |j{r, ¥ )ui{j{v, £)v] as in the proof of
the uniqueness of 8, it is not difficult to see that path-continuity implies that the
map § — §(2) is also strongly contimmous for all Z € B{H). We have called this
regularity condition path-continuity as the fow j is thought of as a Markov process
for the semigroup T.

Proposition 5.2. 4 conservative guantum dynamical semigroup T is path-contin-
wous iff the function

(5.1) b T (Fs sy (BT o (T i) X, (B N B Z)

is continuous int, as t varies in the interval (52, 1) for fized 5y > 53 > --- > 5, = 0

and X.¥y,.... ¥V, Z1,... . 2, in B(Hg) forn = 2.

Proof. Assume continnity of functions described above. Firstly, as the j's are
homomorphisms, once we show weak continmity for all X strong continuity & im-
mediate. Now arpuing as in the proof of normality (Proposition 2.4) it is suf-
ficient to show continuity of functions of the form {§{r, Y, (X )j(r, Z)v), for
(r. Y u)(r, £, v) € D. (Note that we cannot restrict ourselves to T as ¢ is wary-
mg.) Suppose f waries in a small interval [a,b] C [}, 20). As the semigroup i
conservative we can insert arbitrarily large extra time points in ¢ and identity op-
erators at corresponding places n ¥, 2 and have ry 2 > - >, 2 b=t =
Q2T > o = Ty = 0, for some k. Now by a repeated application of reduction
alporithm we have

FlX) iy oo ren) s (20,000 Ze)) = 3e(X )ir (W )Gy (Z)
= Jl XLt (W) )irigs (Zi41)
for some W € B{Hy). (W does not depend upon £) In a similar way,
Jllrs o smera ) (Yoo Yo ) 50 ( XD o W))de 1 (Zea)
=.j|’-v-:;+|{Y:Hjjr{n-k—:{vjxﬂ-k—:“’Vﬂj\-m|{zk+1:|
= Frp ¥ 1 T vy (D=t (V) X (W) ) B 1)

for some V' £ B{Hy). Now it should be clear that {j(r, ¥, (X )j(r, Z)vd =
{u, Jlr, ¥ (X9, Z)0) is of the form (5.1) on suitable renaming of indices.
The converse part should be clear as strong continuity implies weak contimuity,

and (5.1) is equal to {75, Y, 7, (X )i(s, Zvd. O

The following proposition lists some important examples of semigroups having
this continuity property.

Proposition 5.3. In each of the following cases semigroup T is path-continuous.

(1) T is a semigroup of endomorphisms and {u, T,{ X)) s continuouns in ¢ for
fized w, v € Hy and X € B{Hy).

(i) i, [T X)) — TLX)|| =0 for every X in B{Hy).

(i) For fived X, T{X) converges strongly to T,(X) as § converges to s, and
Jor fized £, Ty X)) converges strongly to TW(X,) as X, converges strongly to X, in
B(Hy).

(iv) THX) = RIOX R for a strongly continwons semigroup of controctions
R(t) on the Hilbert space.
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Proof. In case (i), olserve that endomorphism property of T' implies,
1} —&3 {Tm —t {Yl jJ{Tﬂ —t {zl :ljl ! Thu —&2 {Yl :lT! {X:le —&32 {EI :l

Now (4.1) reduces to {z, T,(X)y) for some vectors z,y in Hy. For second case one
has to simply wse joint continuity of multiplication of operators in norm. (iii) is
clear once we notice that here the map ¢+ — T{YI1XT(Z) is continmows due to
contractivity of T. And (iv) is as follows from (iil) as R{#)* is also a strongly
continuous semigroup (see [Dad]). O

Here after we are considering a conservative quantum dynamical semigroup T
on B{Hp), such that each T} is normal and T is path-continnous. Let (K, F, j) be
the assoicated minimal Markov flow.,

Proposition 5.4. The Hilbert space H is separahle.

Proaf. Fix a complete orthonormal basis E of Hy. Consider the comntable set T =
{3, =zjire, ¥i)hw}, where the z,'s are complex mumbers with rational coordinates,
1's are tuples of positive rational mimbers, Y, 's are tuples of operators of the form
|3 (| with z;,3; € E, and also u; € E for all i. Now use strong continuity of the
flow to approximate arbitrary time points through rational time points and then
use Proposition 4.1 to approximate every vector in H,. Now recall that due to

minimality of the flow, | JHy) = H. ]

The technical preparations are over and we move on to explaining the notion of
product systems. The paradigm examples of continuous tensor products of Hilbert
spaces are obtained through Fock spaces. Let K be a complex separable Hilbert
space. Take

He = (L ([0,4].K))

for t = 0. That is, H, is the Boson Fock space over the L? space of K valued
functions on [0,f]. Now it is clear that right-shift on B gives nise to canonical
isomorphisms satisfying

He @ He = Hag

for 5.1 = 0. Generalising this, continuwous tensor product system of Hilbert spaces
has been defined by Arveson [Arl] as a measurable family {&.f > 0} of complex
separable Hilbert spaces satisfying £, @ £, 2 £, in an associative way.

In precise terms we demand unitary operators U, 1 £, ® & — £,y for 5.1 = (),
with associative property:

["T-‘FJ,.WQ+#3{I & LT-“?:#R:I = r-’Tru+ﬁﬂ:sa{Urr1:sﬂ & ”1
for sy, 82,83 > 0. And here the measurability means the following:
E={{t,z):t € (0,x),z € &}

i a standard Borel space, {t} x & is a measurable subset of £ and the maps

(i) (z,4) 2 & x & — (2,43 3 C,

(i) ((s,2), (t,9)) D EXxE— (s + 1, Usplz,y)) 2 €
are measurable. Further one assumes that there exists a Borel isomorphism ¢ :
E — (0, t) x M for some fixed Hilbert space M, such that ¢ restricted to fibre £
B a unitary map onto {f} x M.

The last condition is equivalent to assuming that there exists a set {(e1(f), ea(t),
... )it = 0}, where for fixed ¢, {e1(t),e2(f),. ..} s an orthonormal basis for &, and
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for ficed n, ¥ — e,(f) is &4 measurable map. The binary operation defined in (ii)
is called a multiplication on £, The notion of isomorphisms of product systems is
the obvious one ([Arl]). An anti-isomorphism is just like an Bomorphism except
that it reverses the order of multiplication. If £ is a product system its opposite
product system £F is anti-isomorphic to £ and is obtained through the reversed
multiplication:

{{311::'1 {f1y:|:| T {S +1, Uf-#{y1 $:|:|.

Obszerve that in a product system £, either dim(&;) = 1 or dim(&;) = ¥y, In
the first case we say that the product system is trivial, and it turns out that up to
womorphisms there is only one trivial product system, the obvious one.

Now let us look at the family of Hilbert spaces {P;} comstructed in Section 4.
We claim that

P= {{f'-‘f:' tte (o), e P:]‘ (0, 00) % H,

considered as asubset of (0, 0o) x M, is a product system with multiplication defined
by

((s,€), (£.7)) = (s+ £, U, (E@ )

for (5.£),(t,n) € P. Firstly we need to show that P is a Borel subset of (0, oc) x H.
('H is a Hilbert space, so has its Borel g-algebra coming from its natural topology )
Thiz and the measurability of multiplication follows from the pext proposition.

Proposition 5.5. (i) P s a closed subset of ([, 00) = H.
(i) The mapping ((s,£),(8,9)) — (s + £ U, (£ @) is jointly continwous on P.

Proaf. Suppose (5,,.£,) € P and comverges to (s, £) in (), o) x H. Then

j#,,{lﬂ}{ﬂlj‘frl == ‘fr: for all n

and by strong continnity of j, j.{laia|) = £. This proves the first part. To prove
(ii) consider a pair of sequences (5,, £, ), (fa, e ) converging to (s, £), (£,7) n P. We
have

s, .t @ ) — Usel§ @ n)l| S ||Us, 1, (G ®7pn) — Vs, (§ @7
+ ||DTN:!"{‘£1-! = 1?7::' 5, r—‘r‘\‘!{‘f i 1?:'”'
Now note that U, (£0 @) = W, 0. (£n @) = Wae r, (£n @) from Remark 4.4,
In a similar way, Us ¢ (£n @70 ) = Waer (£ @), This helps to write the first term

as Wy, (1€ — £) ® 1), which clearly converges to zero. As for the second term,
uwse strong continuity of § on vectors of the form jir, ¥ )u and then extend. O

Proposition 5.6. There erists a Borel map ¢ 0P — (0, 00) = K, for some Hilbert
space K such that ¢|(y) . is a unitary map for every f.

Proof. Note that either dimP; = ¥y or dimP; = 1 for # = 0. The first case can be
taken care of using Lemma 10.8.7 of [Di] (exactly as done by Arveson [Arl]). If
dim? = 1, then we know that there exists a strongly continmons semigroup [7 of
unitaries (see remarks after Theorem 4.7) such that

0. 2) = LZU?.

Now as Py is the one dimensional space spanned by Uha, it & clear that (¢, Ua) —
(f.1) defines a Borel mapping of P to (), 0o) x C. O
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Theorem 5.7. Consider a unitary path-continwows quantum dynamioal semigroup.
Then the space P associated with i is a continuwows tensor product system of Hilbert
SPHIOE S,

Progf. This claim & a summary of (4.7) and Propositions 5.4 5.6. O

G. ON INDEX

The notion of index for Eg-semiproups was introduced by Powers. Powers and
Robinzon described as to when we can say two semigroups have the same index. A
clear-cut definition of index was given by Arveson with

index(a) = [£],

that is, index is the isomorphism class of the product system £ associated with
the semigroup as in [Arl]. Now given a quantum dynamical semigroup (path-
continuous, conservative] T on B{Hy), it & natural to define its index by

index(T') = index(#)

where # is the associated semigroup of endomorphisms (see Theorem 4.7). We are
not interpreting this notion of index here. The interested reader may see [Ar]],
where it is compared with Fredholm index of isometries or co-isometries. It has
ako been pointed out that the analopy does not go very far. The reason could be
that isometries or semigroups of Bometries are more connected with the ‘additive
structure’ A, and have very little to do with the product systems (see comments
after Theorem 4.8). In any case, it should be pretty clear, even by looking at
discrete time case, that the index is an important mvariant for the semigroup.

It turns out that index(T) = [P*], P* being the opposite product system of
P. To see this we outline Arveson'’s construction of product systems based on
Ey-semigroups. Let ‘H be a complex separable Hilbert space and let o be an Ey-
semigroup on B(H). Take

B, = {¥ € B(H) : ;{X)Y = Y X},

that &, V' intertwines between oy and identity representation of B(H). For ¥, Z in
E,. the commutation relation in the definition of E, implies that ¥*Z commutes
with every X € B(H). Hence Y*Z is a scalar. Define {¥. 2} by putting ¥*2 =
{Y, Z). Then it can be shown that E, becomes a separable Hilbert space with this
mnerproduct. The tensor product structure on the family {E;} is just operator
multiplication. Observe that if Y € E,. 72 € E,, then Y7 isin E, ;. Now it iz a
routine matter to check that U, , : E, ® B, — E.4y, defined by

UelY @ 2)=YZ
is & unitary operator and
E={{t,Y):te(0,2:),Y € E;}

considered as a measurable subset of (), 0o) x B{H) {with strong topology on B{H))
5 a product system.

We shall call £ the canonical product system associated with the Ey-semigroup
a. From the penetrating study of Arveson [Arf] one knows that every product
system arises this way.

Theorem 6.1. The canonical product system £ associated with the Ep-semigroup
& [ of Theorem 4.7) is anti-isomorphic to the product system P.
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Proof. First observe that if £ € & then Za € P, as
Gillad{al)Zn = Zla)aln = Za.
Now consider the map 1 : £ — P, defined by
(s, Z) = (s, Za).

It is easy to see that ¢ is an isometry on each fibre & . Further for £ € P,, consider
the bounded operator Z; on 'H defined by

Zgy = 0,(Iv){al)é, v EMH.
For W £ B(H) and ~ € H, we have
O,(W)Zgry = 8.(W)Bs( 7)) = B(|Wria|)§ = Z¢Wr.

That is, Z¢ € £,. Further Zea = 8.(|a)ial)f = £, and hence 4@ is surjective. It is

obvious that ¢ is a Borel map. Now consider £ € P,,n € P, with associated Z,
Zy. Clearly

Usel§ ®@n) = Use(04(la) (al)§ @ 8¢(la}{al)n)
= Ospellajial) (€} {al)n

— 04(10.(Ja} (a))€) al)n
= Zypdza.

Note that the order of £, 5 gets reversed. And hence ¢ is an antiisomorphism. O

There is nothing deep in getting an ant-isomorphism and not an somorphism
here. One can incorporate a somewhat unnatural twist in the definition of W, ,, U,
to obtain an isomorphism above. Such a definition would also have the undesirable
effect of shifting the initial space Hy into the second component in the factorization
of j.

The index enjoys some natural functorial properties. A semigroup S acting on
B{ Ky is said to be conjugate to T if there exists a wnitary map V : Hy — Ky such
that

S(X) = VI(VEXV)V*, for X € Ko, t > 0.

It is obvious that if T 5 are conjugate then they have the same index. Now sup-
pose T\ R are quantum dynamical semigroups both acting on B{H;). We say that
T. R are exterior equivalent if there exists a strongly continuons family of unitary
operators {L} } on B{Hy) satisfying

(6.1) T,(X) = UrRy(X)Uh,

for X € B{Hy), ¢t = 0. Following the footsteps of Arveson we have the notion of
cocycle conjugacy (In [Arl] this was called outer conjugacy.)

Definition 6.2. Let T (resp. 5) be a quantum dynamical semigroup acting on
B{Hy) (resp. B{Ky)). Then T and 8§ are said to be cocyele conjugate  if there
exists a third semigroup R acting on B{Hy) conjugate to § and exterior equivalent
to T.

Theorem 6.3. If two guantum dynamical semigroups are cocyele conjugate then
they have the same index.
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Proaf. Clearly it is enough to show that exterior equivalent semigroups have the
same index. So let T, B be semigronps acting on B{Hy), with a family of unitary op-
erators {{/; }, satisfying (6.1). We obtain an isomorphism between product systems
Pr and Pgr. Let (H,F. i), (H F'. i) be minimal dilations of T, R respectively.
Note that for (.Y, u), (r, Z,v) € D (take X = I in (2.6))

U{£1 i:l“"u J-{E- Z 'l.-'}
= {“"" T"'H{}{f:‘j-:"u—J—'f'u{ o T Yﬁ“j—:-j—'f‘ﬂ{}f].*zl:lzﬁ Tt z.-:—l:lzh ]1?::'

nw—1"

={u, U R (¥, ---¥5 U;*j —ra By (Y7 21—y Za - - Z ) ).

This shows that the map L : H — H’ defined by
LJ-{E-. K:‘“ = jj{i'i { ,1 ] [JTr'] —i'g Y21 e g Ur

is an isometry. Now as Y was arbitrary in (v, Y. ), the range of L is total and
hence L is a unitary operator. Observe that L maps range of j,(|a){a|) to the
range of ji{|a){a|). Now it is not hard to see that the mapping (¢, £) — (¢, Lf) & an
omorphism between product systems Pr and Pr. O

Yo Uy u

‘n—1""n

It may be noted that for Ey-semiproups the converse of Theorem 6.3 is also true.
That &, if two Ep-semigroups have same index then they are cocycle conjugate.
But clearly this no longer holds in the general sitnation as that would mean that
every quantum dynamical semigroup is cocycle conjugate to some Ey-semigroup.

Obszerve that it & meaningful to talk of tensor products of product systems (see
[Arl], pp. 29). Suppose T, § are quantum dynamical semigroups on B(Hg), B(Ky)
with respective minimal dilations (H, F, 7). (K, G, k). It is not difficult to see that
(Heak FaGjak) defned by (FaG)f)l=Fl)aG(), (iaki=ji@k, isa
minimal dilation of the semigroup T'® §. We also see that fpg9 = 87 @ 5. Now
it follows that

index({T ®@ 5) = index(fr) @ (05) = [P; & PL.

The problem of determining the index for different quantum dynamical semi-
groups remains open. Looking at the welkdeveloped theory of Evans-Hudson fHows
{([Me], [Pa]) one feels that perhaps the index of nice (say of bounded generator)
quantum dynamical semigroups are exponential (Fock) product systems and can
be obtained through the theory of quantum stochastic differential equations. This
we have been able to verify only for some very special examples [BF|.

Recall that by a unit of a product system P one means a non-zero measurable
cross section £ € (), 00) — 1wy € Ty, such that

s+t =0 lu, ®uw), s¢>=0

The numerical index for the semigroup is the dimension of a Hilbert space con-
structed out of units (see [Arl]) of the associated product system. So units play a
very crucial role in understanding product systems. The following theorem provides
some units through completely elementary means in some special cases. As before
we are considering a path-continuons dynamical semigroup T' acting on B{Hy), with
associated product system P defined using a unit vector a € Hy.

Theorem 6.4. Ifb is a wnit vector in Hy satisfying
Ty(|by{b)b = e b, t=>0,
for some g = 0, then the cross-section v defined by wy, = (|a){b )b is a wnit of P.
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Proaf. Clearly u, € Py, and the mapping # — w, is continuous (and hence measur-
able). Now

Usplts @ wp) = Us oo (|a){blb) @ je(|a}(b])b)
= da+e(|a} {bl)7e (b (b] )b,
and on wsing (4.14) we obtain

e () (e ([b)(BOBIF = (b, Tl |b)(bIT,(|b) {al|a) (b])[b) {b] )b)
= (b, T (b (bl) )b, To([b) {b] )b

— palstt)
Similar computations of other terms involved yields ||U, o(1, @) —u, 40| = 0. O

The special case of g = 0 in Theorem 6.4 might be worth noting, where we are
demanding a pure invariant state for T. Semigroups with such states appear in
warious contexts. See [Dad| for a study of their generators.
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