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Abstract

Analogues of the likelihood ralio. Rao, and Wald tests are introduced in discrete paramelric models based on the
family of penalized Hellinger distances. It is shown that the tests based on a particular member of this family provide
attractive alternatives to the tests based on the ordinary Hellinger distance. These tests share the robustness of the
Hellinger distance teat, but are often closer to the likelithood-based tests at the model, especially in small samples, The
convergence of ordinary Hellinger distance testa to limiting 3° distributions are quite slow. The proposed tests are
improvements in this respect.
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1. Introduction

The likelihood ratio test (Neyman and Pearson, 1928; Wilks, 1938) is widely used lor testing of hypotheses.
The Rao (score) test and the Wald test, both asymptotically equivalent to the likelihood ratio test under the
null hypothesis, alse utilize the likelihood in their construction. The popularity of the likelihood-based
procedures is however tempered by their known lack of robustness to outliers. A major work by Beran {1977)
showed that one can simultaneously obtain asymptotic efficiency and robustness properties by using the
minimum Hellinger distance estimator (MHIDE). Robust tests of hypotheses based on the Hellinger distance
were mtroduced by Simpson (1989) and studied further by Lindsay (1994). These works have shown that
some density-based distances can generate robust alternatives to the likelihood ratio test.

Harris and Basu {1994) have considered a general family of distances called the penafized Helfinger
distance; this family contains the Hellinger distance and 1s a function of a parameter i which controls the
welght of the empty cells in the distance. Harris and Basu have shown that by adjusting this penalty it may be
possible to improve significantly upen the performance of the MHDE without compromising its rabustness
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properties. In this paper we consider tesis of hypotheses based on the penalized Hellinger distance, The tesis
considered by Simpson (198%) and Lindsay (1994) are analogues of the likelihood ratio test. Here we
introduce analogues of Rao tests and Wald tests also. We compare the tests generated by a particular
member of the penalized Hellinger distance family with those of the ordinary Helhnger distance and the
likelihood-based methods. This distance corresponds to b = 0.5; Harris and Basu argoed that the estimators
generated by this distance share the robustness properties of the MHDE, but have smaller mean square
errors than the latter in small samples. Here we discuss the asymptotic properties of the corresponding tests
and investigate their small sample behavior in a modest simulation study.

2. Tests of hypotheses based on the penalized Hellinger distance
Consider a parametric family with countable support and density ma(x}, ff € £2. Let d{x) be the proportion

of sample observations having the value x based on a sample of size n, The maximum likelihood estimator
{MLE}) of f minimizes the Kullback—Leitler divergence between d and sy, defined as

KLid, my) =% dixHog(d(x}mg{x)). 2.1

-

The MHDE of # mimmizes the distance

HDid, g =23 (dV2(x] — mp™(x)). (2.2}
The factor of 2 in {2 .2} makes the two distances asymptotically equivalent. Among others, Simpson (1987} and

Lindsay (1994} have studied the MHDE in discrate models.
Let 2 = 37, B, be the MLE of § and suppose that the hypothesis

Hy: fi=fiy (2.3)
is of interest, It is well known that
2n[KLd, i, } — KLid, g ] (2.49

which equals negative of twice log likelihood ratio, has an asymptotic y*( p) distribution under the null; see,
lor example, Serfling (1980, Section 4.41, The likelihood ratio tests have several optumahity properties, but are
not robust against outhers. Simpson (1989) proposed the Hellinger deviance test: in discrete models, the
Hellinger deviance test statistic can be obtained by replacing the Kullback-Leibler divergence by the
Hellinger distance in Eq. {2.4). The Hellinger deviance test! s asymptotically equivalent to the likelihood ratio
test at the null and local alternatives, and has attractive breakdown robustness properties {Simpson 1989;
Theorems 1 and 2). See He et al. {1990 for a nice general description of the concept of breakdown robustness
of tests,

Simpson, however, noted that the small sample performance of the Hellinger deviance test at some discrete
models such as the Poisson is somewhat unsatisfactory, in the sense that the test requires a very large sample
size Tor the chi-square approximation to be useful (Simpson 1989, Table 31 While it is difficult to give
a complete explanation of this relatively poar behavior, the results of Lindsay (1994) suggest that this may be
partialiy due to the large weight that the Hellinger distance puts on the infiers, values with less data than
expected under the model. Lindsay studied the robustness and distributional properties of a subckass of
minimuom distanee estimators including the MHDE throuogh a characterizing lunction which determines how
the procedure treats standardized residuals of the form d(x) = d(x}ma(x) — 1. d{xhe[— 1, =) Large positive
values of #(x) represent cutlying observations which are downweighted by the Hellinger distance. Negative
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values of 3(x) represent inliers. Lindsay noticed that while the MHDE is usually insensitive to the presence of
large outliers in the data, inliers appear to cause larger biases in the MHDE compared to the MLE (Lindsay
1994, Table 3).

Empty cells, in particular, constitute part of the inlier problem of the Hellinger distance. Note that one can
write the Kullback—Leibler divergence in the form

KL(d,mg) = ¥ [d(x)log (d(x}impix]} + imyix) — dix}]. {2.3)

When written in the above form, the summand itself is nonnegative. Comparing (2.2} with (2.5) one can see
that the contribution of a cell with d(x) = 0 to the distance is 2Zmy(x) in (2.2), but equals just half of that in
(2.5). For any given value of /1, one can modify the Hellinger distance in {2.2) by considering the distance
2 Y @R - ma T mlx), 2.6)
dix] < O fx=1N
which puts the same weight on the empty cells as (2.5). A generalization of this was considersd by Harris and
Basu {1994}, who defined the penalized Hellinger distance (PHD) family as

PHD,{d, #z) = 2[ Yodx-mpt e+ h ¥ mﬁ{x}], (2.7)
dixh# 0 dizi=0
where hi = 1 generates the ordinary Hellinger distance, and A = 0.5 generates the distance in (2.6},

Note that if there are empty cells, the distance in (2.6) is strictly closer to the Kullback—Leibler divergence
than the ordinary Hellinger distance for all values of f, suggesting the possibility that compared to the
MHDE the minimizer of {2.6) may be closer to the MLE. Compared to the score function (the derivative of
the distance with respect to 8) of the ordinary Hellinger distance, the score function of PHD, 5 is also strictly
closer to that of the Kullback—Leibler divergence for all values of . Harris and Basu have studied the effect of
maodifying the weight of the empty ceils in parameter estimation; their results show that often the estimator
obtained by mimimizing {2.6) can have substantially smaller mean square ercors than the ordinary MHDE in
small samples, Note that since the difference between the ordinary Hellinger distance and the other members
of the penalized Hellinger distance family is only in the empty cells, the outlier resistance properties of the
MHDE are shared by all the minimum penalized Hellinger distance estimators.

Next we introduce the three classes of tests corresponding to the likelihood ratio test, the Rao test and the
Wald test based on the penalized Hellinger distance. The theoretical results are based on the works of
Simpson (1989) and Lindsay (1994).

The deviance test statistic for (2.3) based on the penalized Hellinger distance is

2n[PHD,{d, mp,} — PHDy(d, mg,, )], (2.8)

where fipy minimizes (2.7). When k = 1, this is the ordinary Hellinger deviance test statistic (Simpson, 1986,
and has the same asymptotic y* distribution as the likelihood ratio test statistic in (2.4) under the null. Since
the other members of the penalized Hellinger deviance tests differ from the Hellinger deviance test onty at the
empty cells, they too have the same asvmptotic distribution as the likelihood ratio test at the null
Specifically, when h = 0.5, our expectation is that compared to the MHDE, the minimum penalized Hellinger
distance estimator will be closet to the maximum likelihood estimator, and the corresponding distance witl
be strictly closer to the Kullback—Leibler divergence compared to the ordinary Hellinger distance; therefore,
that the penalty may cause the test statistic to be closer to the likelihood ratio test on the average, leading to
more accurate type I errors.

Let a,z = d/@8[KL{d, m)]. The Rao test for the hypothesis (2.3), given by the statistic na s 15, a.,, has
the same limiting y* distribution as the likelihood ratio test under the null, whete I is the Fisher information
about f in my(x) (Serfling, 1380, Section 4.4.2). To distinguish it from similar tests based on the penalized



7 A Bawu er al. | Staristics & Proboebility Lesters 27 (1#86) 367-373

Hellinger distance, we will refer to this test as the likefthood-Rao test. Evaluation of the statistic nags, £} @y,
does not require the explicit calculation of the MLE. Let b,; = &/¢f[PHDyid, my)]. When h = 1, n2%h ; has
ap asymptotic N0, ) distribution under the null (Simpson, 1989). From Serfling (1980, Lemma A,
Section 4.4.2) it follows that nbj, I5 'a,s, has the same limiting distribution as the likelihood-Rao test
statistic, and we refer to this test as the Hellinger—Ruao test. The penalized Hellinger—Rao tesis corresponding
to other values of k also have the same asymptotic distribution since they differ from the Hellinger—Rao tesi
only at the empty cells. Note also that compared to the Hellinger—Rao statistic, the penalized Hellinger—Rao
statistic for b = 0.5 is strictly closer to the likelihood-Rao statistic, indicating that its type I errors could be
closer to the likelihood-Rao statistic,

The Likelihood-W ald test for the hypothesis (2.3) 1s given by the statistic n{ f4; — B0 £, fa — Fo) having
an asympiotic y2{ p} disiribution under the null. As in the derivation of the penalized Hellinger deviance tesis
and the penalized Hellinger-Rao tests, it follows from Simpson (1989) and Lindsay (1994) that the
distributions of the penalized Hellinger-Wald test statistics #(flpy ~ Ba)" Lo, (frg — fo) have the same
asymptotic x*{p) hmat under the null as that of the corresponding hikelihood-based version, The resulis of
Harris and Basu indicate that compared to the MHDE the minimum distance estimator for i = 0.5 can be
closer to the MLE on the average, we hope that this will lead to more accurate type  errors for this penalized
Hellinger—Wald test.

By inverting the three types of test statistics considered above, one can alse determine robust confidence
intervals for the unknown f. Given the data and any of the above test statistics, the 11 — %)% confidence
interval for # is the set of values of § for which the test statistic fails to reject the oull hypothesis{2.3}at level a.
Also, the testing procedures described in this section extend straightforwardly to the case where the null
hypothesis is composite, using the techniques of Serfling (1980, Section 4.4.4). The penalized Hellinger tests
again have the same asymptotic distribution as the likehihood-based ones.

The difference between the Hellinger distance and the other members of the penalized Hellinger family
asymptotically vanish at the model, and so the procedures resulting from other penalized Hellinger distances
inherit the asymptotic properties of the Hellinger distance based procedures; thus the asymptotic distribution
of the penalized Hellinger distance estimators, and the breakdown robustness properties of the correspond-
ing test statistics are identical to those of the Hellinger distance procedures. We emphasize that the
differences between the penalized Hellinger distance tests and the ordinary Hellinger distance tests will be
significant only in small samples. While we expect that the test statistics resulting from PHD, 5 will perform
better than the tests based on the Hellinger disiance in small samples, the difference s expected to be minimal
for larpe -

3. Simulation results

Data were generated from the (1 — gl Poisson(2) + cPoissoni15) mixture, & = 0.0.1, Qur rargel parameter
is the mean of the larger Poisson(2) component, and the second component is considered ta be a contarmina-
tion. Asswming a Poisson( ) model for the data, we are interested in testing Hy: f = 2. We expect that
compared to the likelihood-based tests, the tests generated by the ordinary (h = 13 and penalized (h = 0.5)
Hellinger distances will be less sensitive to the presence of the Poisson(15) component and provide more
stable levels. For each of deviance type, Rao type and Wald type wests, we considered three sample sizes,
n = 20,50 and 100, and three nominal levels, (.1, 0.05 and 0.01. (For brevity we only present the resulis
corresponding to nominal level 0,05, but the findings are similar} The ohserved level of the tests wene
computed as the proportion of test statistics exceeding the y*{1) critical value. All the results in this section
are based on 3000 replications. Given a probability estimate f, its estimated standard deviation may be
computed as [f{1 — p) 3000]1"* {assuming binomial rejection frequencies) which can be no greater than
[0.5 x 0,5/5000]** = 0.007.
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Table 1
Comparison of observed levels of three ests at nominal level D03

Contaminating proponion

Lm0 e=101
Sample sizz Sample size &
Testing Tast
procedurg statistic el a0 100 il S0 140
Devianee Likelibood {053 0,050 ITIEH] 0,724 (.94 (FRLTE]
HT» 0147 .84 0077 0122 {1092 007G
FHD D {051 0054 0.033 LI 0065
Raa Likelihoiod 0051 0.049 0052 0.745 0.942 [0.99s
HD n112 0092 %3 0108 Q088 (ALK ]
PHD 0,030 (43 0.047 0.024 (k42 0,04
Wald Likelihood 0031 QY o5 0,742 (1942 045
HD no7e 0068 (067 010 HITIEE 0,090
PHI 0057 (56 0055 0042 (L0E2 0,084

The observed levels of the tests are presented in Table 1. It is clearly seen that the penalized Hellinger
deviance test is very close ta the likelihood ratio test when there is no contamination, and is much better than
the Hellinger deviance test in terms of the closeness of the observed levels to the nominal levels. The Hellinger
deviance test, the Hellinger—-Rao test, and the Hellinger-Wald test are all very anti-conservative, The
penalized Hellinger—Rao test is slightly conservative, but its levels tend to the nominal levels faster than the
Hellinger-Rao test. The performance of the penalized Hellinger-Wald test alse appears to be guite
reasonable, Under contamination, the tests based on the Hellinger distance and the penalized Hellinger
distance hold their Jevels quite well, unlike their likelihood based counterparts.

The entries in Tables 1 can also provide an idea of the accuracy of the confidence intervals obtained by
inverting the tests. The numbers in these tables represent eliminated type | errors, the difference of these
nutnhers from | give estimates of the actual coverage probahility of the corresponding confidence intervals,
In these examples, the penalized Hellinger tests provide more accurate confidence intervals than the
Hellinger tests. Both groups produce more robust confidence intervals than the likelihood based procedures.

While the results presented here at the Poissond2) distribution, similar improvernents were noticed at
Poissonis) and Poisson(10) distributions, not presented here for brevity. For example, generating data from
a Poissoni10) distribution. the three observed levels (nominal levels 10%, 5%. 1%) at sample size 100 for the
hypothesis Hy: § = 10 osing the Hellinger deviance test were 0.136, 0.076 and (L021. The corresponding
values lor the likelihood ratio test were 0,107, 0.051, 0.010; for the penalized Hellinger deviance test they were
0097, G048, 0011,

In order to study a different model, we generated data from the Geometric({).5) distribution, Using the
Geometric ¢} model, the observed levels for the test Hy: g = 0.5 were plotted as a function of the sample size
in Fig. 1, at nominal level 10%. For each value of # (at intervals of 10) between 10 and 2500 we plotted the
proportion of observed rejections of the null hypothesis out of the 5000 samples, The Hellinger deviance test
is far worse than the penalized version at converging to the true level.

Generating data from the mixture (1 — &) Poisson(2) + ePoisson{15), ¢ = 0.0.1, we also tested the hypo-
thesis Hy: # = 3 assuming the Poisson( f) model to study and compare the behavior of the test statistics in
terms of their attained power at this hypothesis. Again the observed power is computed as the proportion of
test statistics exceeding the y*(1) critical valoe. The results are presented in Table 2. The power of the
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Fig. 1. Observed levels for the peometric examples.

Tahle 2
Comparison of observed powers of three tests at nominal keve] D035

Contaminating propartion

[HE=R1 X1 &=kl
Sample size & Sample size
Testing Test
proceduore statistic i 50 1K1 0 51 1CH}
Deviance Likelihood 0380 {1993 1.000 0435 1.451 (495
HD [FRS N {993 1.0040 0874 0.903 1000
FHD 0,798 4.994 1,006 n728 0983 1000
Rac Likelihood 0.766 0993 1004 0,405 (445 0,504
HD 03 (993 1.0 347 0.958 0a9g
PHD (1 1893 LGk 0343 0.961 n.99%
Wald Likelihood 0764 B2 LA} 0,422 0445 0,504
HD (.880 .oy 1000 0.854 (1993 1.000)
FHD 0205 {994 1,006 00 0.957 1060

penalized Hellinger distance tests were found to be much closer to the likelihood-based 1ests under the model
compared 1o the power of the Hellinger distance tests. Under contamination there is a significant loss in
power for the likelibood-based procedures; the robust tests did better at maintaining their powers. Wote that
the observed powers of the ordinary Hellinger distance tests are much higher than the other two types of
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tests, since the y?(1} critical values represent quite inaccurate approximation lor the true critical values of
three tests in small samples.

5. Discussion

Parametric testing of hypothesis using likelihood methods fare poorly in the presence of outliers and onder
maodel misspecitication. Simpson {1989) and Lindsay (1994) have shown that tests based on robust distances
like the Hellinger distance may do much better in such situations, fn small samples, however, these tests may
behave guite differently than the likelihood based tests when the assumed models are troe, suggesting their
show convergence to the limiting chi-square distribution. In this paper we have provided alternative tests
based on a moedification of the Hellinger distance; these tests often do much better than those generated by
the ordinary Hellinger distance in small samples. In addition, these tests share the robustness of the ordinary
Hellinger distance tests, Thus, it seems that the penalized Hellinger tests can be good alternatives to the tests
of hypothesis based on likelihood methods and the ordimary Hellinger distance.
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