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Abstract—In the past, Cellular Automata based models and machines [1] have been proposed for
simulation of physical syastems without any analytical insight into the behaviour of the underlying
simulation machine. This paper makes a significant departure from this traditional approach. An
elegant mathematical model using simple matrix algebrs is reported in this paper for characterizing
the behaviour of two-dimensiona) nearest neighbourhood tinear cellular automate with wull and perc-
iodic houndary conditions. Based on this mathematical model, a VLSE architecture of a Cellular
Automata Machine (CAM) has been proposed, Interesting applicationa of CAM in the Felds of
image analyeis and fractal image generation are also reported.

Keywords-—Cellular automata, Slmulation machine, YLE] architecturs, Matrix algebra, Image
analysis, Fractal itnage peneration.

1. INTRODUCTION

As the semiconductor technology is moving towards the submicron era, the system designers
try to embed complex functions from software domain to hardware blocks on the silicon floar.
At the same time for keeping the design complexity within a feasible limit, the designers are
foreed to look for simple, regular, modular, cascadable, and reusable building blocks for imple-
menting various complex functions. The homogensous structure of cellular automata (CA) is a
right candidate to fulfill all the above objectives. Moreover, the demand for parallel processing
architectures has gained importance with the ever increasing need for faster computing. To this
end, we are motivated to use the two-dimensional cellular automata model to arrive at the easily
implementable parallel processing architecture in VLSI. This parallel architecture built around
the CA machine (CAM) suits ideally for a variety of applications.

*Auther to whom all correspondence should be addressed.
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The study of Celluiar Automata (CA) dates back to John von Neumann in the early 50%.
Von Neumana (2] framed CA as a cellular space capable of self-reproduction. Since then, many
researchers have taken interest in the study of CA for madeling the behaviour of complex systems.
Wolfram et af. [3] studied one-dimensional CA with the help of polynomial algebra. Pries et al. [4]
studied one-dimensional CA exhibiting group properties based on a similar kind of polynomial
alpebra. Later, Das et al. [5] extended the characterization of one-dimensional CA with the
help of matrix algebra. In recent years, many applications of one-dimensional CA have been
reported [6—3). On the other hand, two-dimensional CA is not yet a well-studied area. Packard
et al. [10] reported some empirical studies on two-dimensional Cellular antomata depending on
fve neighbourhood CA. Chowdhury et al. [11] extended the theory of 1-D CA built around matrix
algebra for characterizing 2-D CA. However, emphasis was laid on special class of additive 2-D CA,
known as Restricted Vertical Neighbourhood (RVN) CA. In this class of 2-D CA, the vertical
dependency of a site is restricted to either the sites on its top or bottom, but not both.

To the best of our kmowledge, the research reported in this paper is the first at-
tempt to develop an analytical tool to study all the nearest neighbourhood 2-D CA
linear transformations. It deals with the characterization of 2-D nine neighbourhood
linear CA. A general framework has been proposed for the study of the state tran-
sition behaviour of this class of 2-D CA. A few interesting results of some specific
CA transformations are reported using matrix algebra. A few applications of 2-D CA
are also reported.

A CA machine (CAM) bas been proposed around the parallel architeeture of 2-D CA. Such
a CAM can be economically built with the currently available VLSI technology., A wide variety of
applications can be developed around the parallel architecture of CAM, Such a CAM can serve as
a simulation engine to study a wide variety of hybrid CA configurations. Analysis of 2-D Images
can be undertaken in such a maching in order to identify their specific features. This simulation
engine can also be employed for generation of fractal images. Some of these applications are
briefly reported.

Section 2 introduces CA preliminaries. Section 3 highlights a few sample results on the charac-
terization of uniform 2-D CA transformations. Two simple applications of 2-Id CA are discussed
in Section 4. A VLSI architecture of Cellular Automata Machine {CAM) is reported in Section 5
along with a few applications in the field of image analysis and fractal image generation,

2. BASIC CONCEPTS

Prior to introducing the 2-D CA framework, & brief introduction on 1-D CA [5,6,12] is reported
belew. The one-dimensional (1-D) CA structure can be viewed as a discrete lattice of sites or
cells, where each cell can assume either the value @ or 1. The next state of a cell iz assumed to
depend on itself and on its two neighbours (for 3-neighbourhood dependency). The cells evolve in
discrete time steps according to some deterministic rule that depend only on local neighbourhood.
Mathematically, the next state transition of the " cell can be represented as a function of the
present states of the i, (i + 1)*", and (i — 1)*" cells:

gilt + 1) = f(qult), gep1(t) gia{t)) .

where *F' is known as the rule of a CA.
If the next state function of a cell is expressed in the form of a truth table, then the decimal
aquivalent of the output is conventionally called the rule number for the cell.

Weighbourhood state: 111 110 101 o a1l 00 0oL DN
INext state: a I f i 1 0 1 L rile-4c
Mext state: 0 L 1 1 1 n ] i} rude-120
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Figure 1. A 2-D CA structure. Mote: A box represents a CA cell with a D Aip-flop
anek next state logie.

The top row gives all the 8 possible states of the 3 neighbouring cells at the time instant 't°,
while the second and third rows give the corresponding states of the ¢ cell at time instant (£+1)
for two illustrative CA rules. A few definitions are next introduced.

DEFINITION 1. If the same rule is applied to all the cells in a CA, then the CA is called a uniform
or regular CA,

DeFisiTion 2. If different rules are applied io different cells in & CA, then the CA is called a
hybrid CA.

DEeEFINITION 3. Ifin & CA, the neighbourhood dependence is on EX-OR or EX-NOR only, then
the CA is called an additive CA. Specifically, & linear CA employs XOR rides anly.

DEFINITION 4. A Periodic Boundary CA Js the one in which the extreme cells are adjacent to
pach other,

DEFINITION 5. A Null Boundary CA is the one in which the extreme cells are connected to logic
(-state.

DemNITION 6. A CA whose transformation is invertible is called a group CA; otherwise it is a
rongroup CA, For a group CA, the dimension of kernel is ) {that iz, the trapsformation is a fuil
rank one); for a nongroup CA, the dimension of the kernel is nonzero.

2.1. Mathematical Model for Study of 2-D CA State Transition Behaviour

In a two-dimensional nearest neighbourhood linear CA, the next state of a particular cell of
the 2-D CA is affected by the current state of itself and 8 cells in its nearest neighbourhood
{Figure 1}. Different dependencies are taken into account by means of various CA rules. For the
sake of simplicity, in this section we take into consideration only the linear rules, i.e., the rules
which can be realized by EX-OR operation only, XINOR. rules will be dealt with in Section 5. A
specific rale convention evolved by us is noted below.

4 125 256

32 1 2

15 & 4

The central box represents the current cell (that is, the cell being considered) and all other boxes
represent the eight nearest neighbours of that cell. The number within each box represents the
ruile number associated with that particular neighbour of the current cell. That is, if the central
cell has pot dependency only on itself—it ls referred to as Rule 1, if it depends only on its top
neighbour, it is Rule 128, and &0 on. In case the cell has dependency on two or more neighbouring
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cells, the rule number will be arithimetic sum of the numbers of the relevant cells. For example,
the 2-D CA rule 171N {128 + 32 + 8 + 2 + 1} refers to the five neighbourhood dependency of
the (central) cell (top, left, bottom, right, and self) wnder null boundary condition, whereas
171 P refers to the same neighbourhood dependency under periodic boundary condition.

This 2-D CA behaviour can be analyzed with the help of an elegant mathematical model,
where we use two fundamental matrices to obtain row and column dependencies of the cells,
Let the two-dlmensional binary information matrix be dencted as X, that represents the current
state of a 2-D CA configured with a specific rule. The next state of any cell will be ohtained
by EX-OR operation of the states of its relevant neighbours associated with the rule. The
global transformation associated with different rules can be made effective with the following two
fundeamental matrices referred to as Ty and Th in the rest of the paper.

a1 ¢ g 00
0 0 1|=T1 and 1 & 0] ="
g 0o o1 0

The following lemma specifies the value of the next state of & 2-D CA referred to as Xy given
that its eurrent state ig X,. The CA is assumed to be configured with a primary rule only—that
is, the dependence is only on one of the nine neighbours.

LEMMA 1. The next state transtiion of all the Prinary Rules {1.2, 4, 8, 16, 32, 64, 128, 256) can
be represented as

Rule I == [X.11] = [X]

Rule 2 = [X;a1] = [X4] (T3]
Rule 4 == [X,41] = [T1]{Xy) [T3)
Rule 8 = [Xy1) = [T1) [X4]
Rule 16 == [X, ] = (1] {X: [T1]
Rule 32 == [X,11] = [X] (T3]
Rule 64 =% [X, 4] = [T3] [X,] [T3]
Rule 128 = [Xey| = [To] [X4]
Rule 256 = [X,41] = [T2] [Xe] [T2] -

ProoF. Let

ru a1z ﬂla:[
[Xi] = |an exn ax {where @11, @12 . - . 933 takes values 0 or 1)
Iz Baa 33
be the state of CA at time ¢
{i} Postmultiplying X, by 7%, we get the state of CA at time (¢ + 1) &s
a1z 13 ﬂ]

[Kisa] = [ﬂzz ag 0
g3z dga 0

which is the same as Rule 2 applied to X,.
(i) Premultiplying X, by T, we pet the state of CA at time (¢ + 1) as

an @iz O3
[Xigt)= |31 @z oa3 |,
0 0 0

which is the same as Rule 8 applied to X,.
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{iii} Premultiplying X+ by T1 and postmultiplying the result by T3, we get state of CA at

time {t + 1) as
azz agz 0
[Xeq1] = |32 was 0.
0 4 0
which is the same as Rule 4 applied to X,.
Similarly, others can be proved, 1

Rules {other than primary)} having dependence on more than one cell are referred to as Sec-
ondary Rules.

LEMMA 2. The next state transition of a CA configured with a secondary ritle can be represented
as modulo 2 sum of the matrices of the concerned primary riles.

Proor, For example,
(i) Rule 3 = Rule 1 + Rule 2, the next state transition can be represented as

(K] = [X] + X [Ta],

and
(it} Rule 170 = Rule 2 + Rule 8 + Rule 32 4 Rule 128, the next state transition for Bule 170

can be represented as
[Xeqr] = 1Xe] [Ta] + [T [Xe] + [X:] [T] + [T} [Xq]
= [X} [Ty + Ta] + [T1 + Taf [

= [Xi] 18] + 5] [¥%e]
where {5] = [T} + T3).
Let
010
[Xe=[1 0 1
D11
{1} Therefore,
[0 1 0 [0 1 0 a0 0
K= [1 0 11+ |1 0 1]{1 0 ﬂ}
01 1] Jo11]lo1 a0
(11 0] [1 00
=11 1|+|0 1 O
10 1 _110]
(1 1 0]
=11 1]},
10 1]
(it}
o1 o]fo 1 0 010 01 0
[X;+1]={1 o 1 [1 0 l]+[1 0 l] [l 0 ljl
o1 1]lo 10 o1 0] |01 1
1 0 17 1 01 O 0 0
=[nnu+[nnl}=[uul] a
1 1 1] 1 01 01 0
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3. CHARACTERIZATION OF 2-D CELLULAR AUTOMATA

For the convenience of analyais, we will convert each of the rules (both Primary and Secondary)
lnte a transformation dencted by T We want to look at the transformation T such that T opet-
ating on the current CA state X (the binary information matrix of dimension m x n) generates
the next state [Xjmxn. The convention followed is as noted below:

X Ay
Xz X3
T[X}mgﬂ = [T]mﬂxnm. : = .

]
Kon mnxl Xm

et l

where Xy, Xz,..., X are the rows of X and X, X4,..., X}, are the rows of the next state X',
In the next lemma, we try to formulate the above T for a given Rule B applied uniformly over
all the 2213 CA cells.

LeEMMA 3. The equivalent one-dimensional map matrix for any Rule R can be represanted as

D o o0 ¢ - 0 0 07

L oo . 0 00

o L o ... 0 0 0
Tr=1|. . ey @ =

o 0 o 0o --- L DU

FCIEB R R PSSR 1 S o ) PR

where D, L, and U are one of the following matrices of the arder of n x n:

(0], []. [T, [To] . [T + 0], [F + 1] [S], and [T+ 5].

Proor. For getting the first columnn of the above matrix, we utilize

100 .- 0
ao0oa0 ... 0
40 0 0 a
000 ]

TLETE

Now applying Rule B to each cell starting from frst row, we get the first column of T, Then,
shifting 1 towards the right just once, and applying the same rule again, we get the second
eolumn, and so0 on. |

ExampLe 1. Let us consider the dimension of the 2-D CA to be 3 x 3. In order to obtain the
T matrix corresponding to Rule 2 applied over all the cells, we follow the following steps,

To obtain the i*™™ column of matrix T' corresponding to Rule 2, we take a 3 x 3 binary matrix
with all zeroes excepting the position (i/3, imod 3}, which contains 1.

For example, to obtain the 0" column of T, we use the following binary matrix:

1 00
o 00 .
0 0 03,3
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Mow, considering this matrix as a state of the 2-D CA, we apply Rule 2 {right dependency) to
obtain the first {0} column of T, (matrix T for Rule 2}.

J

1 00 0 0000
001000000
0 0000 0D00
0600010000
Tpe= |0 0 0 0 0 1 0 0 0
0000 0000a0
0O o4 000010
000000001
00000000 0],
_{TI}SXE { 0
= 0 ETI}:;::.? 0 E i
0 0 (T1)axad axa

For the subsequent results, proofs are omitted due to shortage of space.
LEMta 4. Rank of fundamental matrices (17 )pxn and (F2)pun s n—1.

LEMMA 5. All primary rules other than Rule 1 are nongroup CA.

Next, we are going to highlight some of the most interesting results for some specific linear
transformations viz. 170 (null boundary condition), Le, 170N 170 (periodic boundary condition),
i.e, 170P; and 1TIN, ete. For analysing Rule 170N, we first converted it into a uniformiy
partitioned one-dimensional map matrix. Wext, applying matrix algebraic formulations, we can
prove the following results.

LevMa 6. If A is any matrix of the form

I 0 0 00 o
5 I 0 0 0 O
I s I o0 00 of,
I
then % 2
i { N 0
5 I 0 0
i I48° s E i
AT = g I+ 82 s 0
L Pm—2(5) Pm-3(5) Pm-4a(8) -+ pol&)=1]

LEMMA 7. Finding the dimension of the kernel for Ty Is equivalent to fnding the dimension of
the kernel of the matrix pm(5n), where pn(A) is the characteristic polynomial of the matrix 5.

As a consequence of these results, we can prove the following theorem which was Grst arrived
at by Sutner {13 in connection with o-game. The same result was derived by Barua and Ramkr-
ishnan [14] who viewed this 170N rule as superposition of 1-D vertical and horlzontal dependency
transformations. However, using the above simple matrix algebraic formulations, we can easily
deduce the following results.

THECREM 1. The dimension of the kernel of Ty lsged (m+1,n+ 11 -1,
Similar to Theorem 1, we have an interesting result for Rule 170P.
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TueoreM 2. The dimension of the kernel of T17op is 2gcd(m, n) when m or n or both are even
and 2ged(m, n) — 1, when both m and n are odd.

Next, we present another result for Rule 171 which will be used in encryption methodology
dizcussed in this paper.

TuroreM 3. A sufficient condition for invertibility of Tim v is that m = 2%t — 1 and n = 273 — 1,
far some v, and xq,

The above results relate to the algebraic properties of the corresponding transformations—that
is, for a given m and #, the pumber of predecessors for any reachable state in the state transition
dingram (8TD) can easily be calenlated. To complete the characterization, we need to consider
the minimal polynomial for the corresponding transformation.

ExaMPLE 2. We consider a 2 x 3 2-D CA configured as 170N, The corresponding matrices are

010100
101010
(100):}0100111 :(Sa.ra)
000/, [100010 I $1/6
010101
001010

Bt

On diagonalization [15], the factor pelynomials are (x* + 1) and {z* + 1}. Using Elspas’s
Theorem [16], we find that the cyclic structure is [4(1),6{2),12(4)]. So, the state transition
dizgram corresponding to this 2-D CA contains 4 cycles of length 1, 6 cycles of length 2, and
12 eveles of length 4. ]

A large volume of interesting results of 2-D CA {with both XOR and XNOR rules) behavicur
have been developed that are not reported in this paper since the major motivations of this paper
are

1. todevelop the mathematical foundation of the analytical model to study 2-DCA behaviour,
to develop a few applications of 2-D CA, and
3. to build a CAM {CA Machine] based on this mathematical madel that can be used to
solve problems in diverse felds.

Items {2) and (3) of the above list will be dealt with in the next two sections.

L

4. A FEW APPLICATIONS OF 2-D CA

4.1. VLEI Testing

Test technology has failed to match the growth of cireuit complexity and size. The only viable
aption available to the design community is to employ DFT ({Design For Testability} techniques.
Notable among the DET techniques is the full scan design. However, with the growth of circuit
size, serial scan in and scan out of larger volume of test and response data have become a
major bottleneck along with the larger test circuit overhead. Partial scan technigues attempt to
reduce this overhead. In both cases, avtomatic test pattern generators are used-—as a result test
generation, and test application time becomes significant. Built-In-Self-Test {BIST) structures
provide an on-chip test generation and test evaluation methodology with an aim to reduce the
drawback of DFT techniques discussed previously. In this section, we project 22D CA as a
BIST structure for VLSI circuits.

4.1.1. Psendo-exhaustive testing

For a complex circuit with a large number of inputs, psendo-exhaustive testing has been found
te be suitable where each of the outputs depend only on a subset of the inputs—this results
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in a test size much less compared to the exhaustive test size 27 for an n-input circuit under
test (CUTY. Given any group 1-D CA, Das and Chaudhuri [6] present an algorithm for finding
out the bit positions where the pseudo-exhaustive patterns are generated. The same result holds
for the 2-0 CA case also. Moreover, dus to the incorporation of nine neighbourhood, we have
wide variety of 2-D CA characteristic matrices and its factor polynomials—this gives us much
wider flexibility to employ 2-D CA for psendo-exhaustive test pattern generation.

ExaMPLE 3. Let us consider a 2 x 4 22D CA where each cell is configured with Rule 34 or
Rule 35. For the cells on the row boundaries (except the cell (1,1) and {24} {i.e, call (2,1))—its
left dependence comes from the output of cell (1,4}—something like a mesh. The corresponding
T matrix is

'l 1 00 0 0 D 07
10100000
D101 0000
T_UDl[IlﬂrJﬂ
oo 41010
000011 10
00 ¢ 00111
L6 0D 00O O 1 1l

The characteristic polymomial is f{z) = {1 + z){1 = x* + 2*)(1 + 2 + =*). The factors of the
characteristic polynomial are

v fiizl ={1+x),

o falz}=(1+2 +2%),

o falz) =(1+z+z%).
A primitive factor of the characteristic polynomial is fo{z) = (1 4 22 + £%). Per the slgorithm
presented in [f], the pseudo-exhaustive bit positions are cells (1,1, (1,2), and (1, 3). |

4.1.2. Generation of psendo-random test patterns

1-D CA has been projected as a pseudo-random pattern generator in a large number of publica-
tions. As noted in [11], the 2-D CA structure is expecterd to generate much better pseudo-random
patterns so far as randomness 1s concerned—this is because of the varieties of neighbourhood
which are not available in case of three neighbourhood 1-D CA. In [12], & variety of tests for
randomness, viz. Equidistribution Test, Correlation, ete., has been considered [17]. It has been
established that 2-D CA {5 a much better PRPG with superior randomness qualities than 1.D CA
or LFSR. The 2-D CA described in [11] is RVN-CA (Reduced Vertical Neighbourhood CA} which
is a subset of the general 2-I0 CA we have considersd in this paper. Hence, It is natural that
we achieve improvement in randomness of the patterns by using the general 2-D CA structure.
Such 2-D CA structures can he effectively emiployed as multiple paralle]l pseudo-random pattern
generator which provide much better randomuness of patterns than RVN-CA, 1-D CA, or LFSR,

However, some circuits exist which are inherently random pattern reglstant and thus require
large number of psendo-random patterns for achieving high fault coverape. So, use of weighted-
random patterns has been proposed [18]. The next section briefly highlichts an elegant scheme
for generation of weighted random patterns.

4.1.3. Generation of weighted random test patterns

In this section, we propose a scheme for generating weighted-mendom patterns using 2-10 CA,
Given the neighbourhood dependencies of the cells and the boundary conditions, we can construct
the T-matrix, thereby generating the entire state transition behaviour of the 2-Dr CA. Given a
cycle C belonging to the state transition diagram of the 2-D CA, let n be the total number of
states in C (that is the cycle length is equal to n)—for any particular bit i, the probability of 1
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is 2% — 1, where % is the number of bits of the CA, then we can obtain the probability of 1 at
any bit to be equal to 0.5 by loading the CA with any nonzerc seed. On the other hand, if O is
of nonmaximal length, then the probability of 1 will be different from 0.5. Thus, corresponding
to each cycle C' in the state transition diagram of any grovp m x n 2-D CA, we can define the
following tuple ¥ = {cycle length, probability of 1 in bit position {1, 1),..., probability of 1 in bit
position {m,n), seed). Thus, if we load the CA with the seed and lock at any bit pesition (i, 73,
we can distinetly tell the probability of getting 1 in that position—this is possible hecause of
the matrix algebraic characterization of 2-D CA. We can generate a program for the 2-D CA
by specifying the rules, the initial seed, and the number of eycles for which the 2.D CA has to
be evolved. On runming the 2-I} CA with such a program, wide varietles of probability of 1 at
different bit positions can be generated., The basic architecture is shown in Figure 2.

1 P -
n IDCA ————
0 Controls for
the 2DCA

Controls

Canpat {with & specified weight)
Figure 2. Architecture for weighted random pattern generation.

4.2. Cryptographic Application

Two-dimensional binary text or image information is a natural state of 22D CA, For an invert-
ible CA, the state transition diagram conasists only of eycles, and hence, any state lies on a cycle.
Let ¢ be a configuration on a cycle of length L. If the CA is evolved for x (0 < z < L) steps
starting with initial state ¢, then a new state  is reached. Given the state d, it is possible to get
back to ¢ by loading the CA with initial state d and evolving for {£ — z) steps. Thus, d can be
considered to be the cipher text. The evolution for = steps, the enciphering algorithm, and the
evolution for the next (L — ) steps is used in the deciphering algorithm.

Based on this idea, we now describe an endiphering scheme for two-dimensional information.
A 2-D uniform m x n CA using only Rule 170N is invertible if and only if {m 4 1} and {n + 1)
are coprime. For the case of CA with Rule 171, a sufficient condition for invertibility is that
m=2%—1andn = 3* -1, for sorae x; and x7. Given an M »x N 2-D state, we form a partition
of M and N, of the form M =m; +ma+ -+ mp, and N =n; +ng + -+ + 1y, such that for
each pair (my, n;}, (1 £ <), (1 £ j < ry), we have either

{a} god{m;+ 1,7y + 1) = 1 (Theorem 1}, or

(b} m; =27 ~1 and n; = 277 — 1 (Theorem 3},
for some z; and xp. This will divide the M x N into blocks of m; x n; grids. We will separately
apply Rule 170N or 171N on these my % n; blocks depending on whether condition (a) or (b} is
satisfied. The conditions ensure that each individual transformation is invertible.
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Such a CA structure is set up at both the sender and the receiver end. To encipher a given
information, we load the M x N 2-D state into the structure described above. For each my % n;
infermation block (e;;), we evolve for «,; steps with Rule 170N or 171N to get dy; which is also
a tm; x n, block. Let l;; be the length of the eycle on which ¢;; lies. Then along with dj;, we also
send ;; — £;; to the receiver. The partition of M and N, {5, 7 are kept secret to the adversary.

4.2.1. Complexity and versatility

For any cryptosystem, the invulnerability i equivalent to showing that breaking the cipher
text is computationally infeasible. Thus, a cigher is seewre under the inttactibility assumption of
the problem. However, popular eryptosystems like DES are not altogether secure in this sense.
In fact, extensive study of DES has shown some potential weaknesses [19] though up till now it
has not been eryptoanalysed.

We first calotlate the size of the key apace. Tt is determined by the following factors.

1. For each m; and n;, we have the information matrix of size m; x n;. The possible number
of one-dimensional map matrices of dimension (myny x min;) is glmins}®  The number
of bits required to represent the possible number of one-dimensional map matrices is
{mgn ) = &y (say).

2. The basic difficulty presented to the adversary is to guess the partition of M and N, The
pumber of partitions of a positive integer K, Py is the coefficient of ¥ in the expansion
of (ltz+x?423+ Y1+ 4+t 4254 Wi+ o422+ (42 42+
)= (1) 1= 2" (1 -2 (L -t = 10 - )1 - 2L -
z%)--- (1—=%) - -}, Thus an upper bound on the number of possible divisions of the M x N
prid 13 Fas Py, which is certainly a laree number. Suppose &y number of bits are required
to fix the partition matrix. Now, for each partition matrix, since the cycle length will
be varying, we have to keep proviston of m,n; bits (to take care of the maximum length
cycle). Thus, the length of the key for each partition matrix is ki +4; — 45 + 1} bits—the
extra one bit is required to indicate whether Rule 1708 or Rule 171N has heen applied.

5. ARCHITECTURE OF 2-D CA BASED CAM

In Section 2, we have proposed a local neiphbourhood 2-D CA where the next state of each cell
depends on the current state of its neighbours viz. 4 orthogonal neighbours, 4 diagonal neighbours
and itself. In order to design the most general structure, we shoold be able to configure a eell
with & rule out of the 512 available rules. Moreover, to provide wider fexibility provisions should
be kept to incorporate XNORs also—however, the 2-D CA transformation thus obtained will be
an affine one.

Each 2-D CA cell is connected through nine switches to its nine nearest nelghbours, In order
to apply a particular rule, we have to apply 1 or 0 te the corresponding switches thereby closing
or opening them. Thus, a nine bit word is required to control the nine switches corresponding to
a single 2-0 CA eell. In addition to nine, another bit is required to configure the cell in XOR or
XNOR mode. Hence, we have a separate control plane where entry (4, 7} stores a 18 bit control
word corresponding to the particular rule employed to configure the cell (1, j) of the 2-D CA. The
CAM architecture is shown in Figure 3. In effect, by providing a generalized 2-I CA structure,
we have incorporated programmability. Hence, we pan introduce the concept of a rule program
which is a tuple containing the rules to be applied to the cells, the initial seed, and the number
of cyeles the 2-D CA has to be iterated.

The motivation for the parallel architecture of the CAM is derived from following considera-
tions. The reader may recali that computation related to any mxn 2-D CA requires manipulation
of mn » mn binary matrix which (s computationally intensive, if not infeasible, when m and n
cross 1{—such a situation arises in a variety of applications, Thersfore, we reguire an all-purpose
frordiuware simulation engine which is provided by our architecture,
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Figura 3. Architecturs of the CAM.

It may be noted that such a machine can achieve a high simulation performance with an
appreciably low hardware overhead compared to the universal synthesizer proposed by Toffoli [1].

6.1. Architectural Details of the CAM

This section provides the architectural details of a CAM corresponding to an m x n 22D CA.
As shown in Figure 3, there are three major blocks.

* An m x n matrix of CA cells—the details of a representative cell is shown in Figure 3.

o The Control Memory is required to configure the 2-ID CA cells, Since any nearest
neighbourhood 2-D CA eell has dependencies on 9 of {t8 nearest neigbbours, a typical
control word should contain at least 9 bits—inoreover, another bit is required to configure
the cell in XOR or XNOR mode. Thus, for each cell, we require a 10 bit control word.
Hence, the size of the control memory is {m x n x 10).

s A Seed Memory is also kept to store b initial seeds of the 2-D CA, For that purpose,
the size of the Seed Memory will be (m x n x b).

If we restrict ourselves to uniform 2-D CA, then the size of the control plane reduces drastically
to only 3+ {m x n) bits. The term (5 » n) is kept to take care of the XOR/XNOR for each
cell. Thus, a drastic cost reduction is possible with a uniform 2-D CA based CAM architecture.
However, we will be losing the programmability which is one of the essential requirements for
carrying out exhaustive simuolations with the CAM. So, we can adopt a bybrid approach where
each of the m rows will be eonfigured with the same rule. This reduces the size of the control
memory to ¥t ¥ 9+ (% 1) while preserving the proprammability to some extent. Next, we
report a few applications of CAM.

5.2. Application of CAM in Image Analysis

» Zooming of orthogonal structvres can be performed by applying the following steps.

1. Apply Rule 170N for any square or rectangular strocture lying inside the screen, The four
corner pixels will become 0.
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2. These four corners have to be tagged by Rule 2 or Rule 32,
3. Next, by (repeated) application of hybrid rules {generally 2 and 32}, we fill up the inner
cells with 0's. '
4. Then we apply Rule 170N followed by tapging of the corners with Rules 2 and 32,
5. The above procedure will continue to zoomn to any extent until the screen boundary s
reached.
For the purpose of illustration, we consider the following example.

ExAMPLE 4. Let us consider a 9x12 2-D CA based CAM with the initial confipuration as shown
in Figure 4,

* * ¥ O ¥ -
* & B X * -

Flgure 4.

After running Rule 170N, the resultant configuration s shown in Figure 5.

* O W 4
* % * ¥ ¥

Figure 5.

Next, we apply Rules 2, 32 to tag the corners followed by an application of hybrid rules so that
the contents of the inner cells become 1's. Now we apply Rule 1T0N followed by Rules 2 and 32
at the corners when we obtain the zoomed image (Figure 6.

# & B % ¥ W
¥ % ¥ % x %

= 0+ % ¥ % £ ¥ #
£ % ¥ ¥ * % k%

# * ® ¥ * ¥ ¥ * ¥
# * ¥ F F X F ® =
#+ % OB K ¥ B H ¥
# # ® F X ¥ ¥ ® #

Figure 6.

« Boundary of any orthogonal structure can be obtained with Rule 170N independent of the
thickness of the vertical and horizontal columns in the original configuration.
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¢ Thinning is an important procedure in image analysis. The following example demonstrates
that vertical/horizontal columns can be thinned using different wniform rules.
ExXAMPLE 5. Let us consider the initial confizuration of a 8 x § 2-D CA containing all 1's
{Figura 7).

X Ok % ¥ %
¥ % % ¥ %
Y
* * * * *
* * * * *
* & x & *
¥ £ k% %
¥ % * ¥ %
Figure 7.

After applying Rule 33N uniformly, we obtain all 1's in the first column and all 0°s in the rest
{Figure 8).

#+ * & ¥ & £ = =

Figute 8.

Next, successively applying Rule 32, we can obtain the required thinned image (e, 1'sin a
particular column and 0’s elsewhers} {Figure 9). ]

= ® E * * B & =

Figure 9.

5.3. Generation of Fractal Image

Fractals are hecoming increasingly popular in the fields like image compression [20], texture
analysis, ete. Extensive research work has been carried out to characterize fractals of different
dimensions using fterated Funetion Systemns (IFS) [21]. We are trying to generate the fractal pat-
terns by emploving a programmable CAM. It has been found that using & special type of 2-D CA,
single attracter transformation, any prespecified fractal pattern can be generated starting from
any initial configuration {garbage) after runming the 2-I3 CA for a specified number of cycles.
Hence, we can project CAM as a simulation engine for generating and studying fractal images
as illustrated in the following example. We are carrying on investigation to characterize the
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2-D CA analogue of different IF3 transformations so that the self-similarity property is appro-
priately reflected by the 2-D CA CAM program.

ExAMPLE 8. Let us consider a 32 % 32 2-D CA CAM with a uniform rule of 1T0P. Since this is a
single attractor transformation, we can easily generate any standard fractal patterns from any
garbage information by applying XNOR s in selected positions and then runming the 2.0 CA

for 4 or more nmnher of cycles. We are presenting two such fractal patterns (Figure 10). ]
* *
*kk * *
E * *
s K Mk * k ¥ %
* " " * *
deteak MOE M ¥ * L
E L L L W * *
ik el Mk R Ok N % M % o Kk ok
* * * * *
- TP 4k * & o
ok ok ok EE Ok % ¥ ¥ % ¥ *
%k K Kk £ KE KE K % % ko * % % *
L L * L3 * * * * *
ek kiEk T EHN REH w % * % ¥k
L I * & E I E & W E L * e L L3 L3 E S

HE AR EE kR kR ko #F EE R kR RE K ¥ % K % k ¥ R % ¥ ¥ f # § ¥ %

Flgure 10,

6. CONCLUSION

In this paper, we have developed an analytical tool based on matrix algebra to characterize all
the nearest neighbourhood 2-D CA transformations and highlighted its application in the fields
of VL3I testing and cryptology. Next, we have proposed an architecture of a programmable CAM
which sults VLSI implementation. Applications of this CAM-based simulation engine for image
analysis and fractal pattern generation have also been reported. Further, efforts are being made
to simulate various physical/physiological procedures with the help of this simulation engine—
specifically, we are investigating to derive a one-to-one correspondence between a CAM program
and the actual physical procedure that transforms a set of healthy human cells (tissue) into a sat
of cancerous cells, This may open up new avenues in cancer research.
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