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INTRODUCTION AND SUMMARY

During the last fifteen years a large number of papers have
been devoted to the study of closed set valued multifunctions.
The studies were motivated by both the theoretical and applica-
tional interests that such multifunctioﬁs have. From the appli-
cational point of view it is wofth noting that such multifunc-
tions arise in various problems of cgntrol theorys dynamic progra-
mming etcs The theoretical aspects of these studies belong
broperly to classical descriptive set theory, Classicsl descrip-
tive set theory asks questions about how sets'ére constructed
and about other definability properties of setse The results on
closed set valued multifunctions asserting the existence of
measurable selectors or:asserfiﬁé that ¢losed set valued multi-
functions can be expressed as images undet Carathéodory maps of
suitable spacej}whose déscriptiﬁe nétufe'is in some sense simple,

would fall in this category.

It is known that most of the pleasant descriptive proper-

. ties of closed set valued multifunctions fail to held for more
general multifunctions. - Indeed there are many examples and some
wili be given 1n this thesis_to show that Fc valued multi-
functions do not have these pleasant properties.s A certain number
of positive results are known about g-compact valued multifunctinns.

These go back to late 30's and early 40's and can be found in the
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work of Kunuguil, Novikovy Arsenin and Shchegolkovs Some further
positive reoults zbeut g-compact valued multifudctions are
iricluded iIn this thesis.

The case of Gy velued multifunctions is essentially an
unesplored territory and in this thesis we initiate a detailed

study of the struc ture of such mulbiﬂnnctionsp

The.main'pnobia@s that are. considered in this thesis are
(1) the existence of 8 measurahle selector for GE valued multl--
functionsy (i1) the éxistence of measurable cross sections for
partitions Inte Gy >ets, (1i1) the representation of G, valued
multifunctions as images under_ special Carathébdorf maps of
particularly slmple spaces, (iv) the Borel ?a?ametrization of E%-
valued multifunctions, (v) the representatlon of, Gy _valued
multifunctions as continuous imagea‘af.closed set valued multi-

functions.
.- Thé thesis is organised as follows e

In chapter 0 we f£ix some terminology and notation and state

some known results. These afefuséa throughont the thesiss

Chapter 1 is Hainly coﬁbarnéd with the problem-of pepresen-
tation of cmoseﬁ.valued muitifunoﬁions as Images under Carath-
dodory maps of simple.sches. Here we are able to give various,

refinements of a résdlt of ioffe [8]. . 0ne such theorem reads as

£allowe ¢
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Let T be & non-empty sets; £ a fleld of subsets of T
and X a Polish space. If F ¢ T = X is a closed valued,
ﬁ%-measurable multifunction then there is amap f ¢ T X2 2> X
such that for each t e Ty f(ts.) is a continuous map from I
onto F(t) and for each o e Ly f(.50) 1s j&0~measurable, where
P, denotes the countably additive family of subsets of T

o
generated by J. and I denotes the space of irrationals.

One of the interesting corollaries to this result is the

following .

Let T be a metric space and X a Polish space. If
FeT.> X is a closed valuedy & -multifunctions « > 0, then
there is amap f ¢ T XX > X such that for every t e T,
f{ty.) is a continuous function from X onto F(t) and for each

o €%y flesog) 1is of class & .

We also show that if F 1is compact valued then under
slightly stronger measurébility conditions we can replace Z
in the general result stated above by a compact metric space.
A similar representation for o-compact valued multifunctions
is also given.
Chapter 2 initiates the study of the existence of measur-

able selectors for multifunctions taking Ga values in a Polish

space. Our main result acserts that if T, X are Polish spaces:
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if 4 is a countably generated sub o-field of the Borel o-fie
Bp and if F I T - X is a multifunction such that F is

A-measurables; Gr(F) e A XBy and F(t) 4isa G, in X for

o}
each t & T then there is a A-measurable selector for F.
Here Gr(F) denotes the set {(f,x{'é TAY L= e F(t)}e ]
In chapter 3 we study partitions of Polish spaces into i
setse A partition of a Polish sﬁace_ X 1s called measurable |
the saturation of every open set is Borel in X Awé proveiﬂﬁy
a measurable partition of a Polish space into G6 sets admits?
Borel cross séction. This answers a question raised by Kallmam
and Mauldin [10]. This result seems to have an interesting
application in C*-algebras [10], [20]s Here we also study parl

tions of Polish spaces into g-compact sets.

In chapter 4 we pursue problems (iii), (iv) and (v) as..
mentioned earlier. We take T,X %o be Polish spaces, Aa
countably generated sub o-field of the Borel o-field Bp and
F$T - X amultifunction such that F is A-measurable,
Gr(F) e 4 X By and F(t) 1s a Gg 1In X for-each t e Ts W%
show the following -

(a) There 1s amap f ¢ T X £ = X such that for each
t €Ty f(ty.) is a continuous, open map from I onto

F(t) and for each o0 & %, {(.,0) is A-measurable.
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(b) If X is uncountable and F(t) dense in itself for
each t e T then there is a A X QX ~measurable map
f e T XX = X such that for each t ¢ Ty f(ty.) is

a Borel isomorphism of X onto F(t).

(e) There is a A-measurable, closed valued multifunction

WeT > Z and a continuouss open aud onto map

B e T = X such that F(t) = B(W(t)) for each t ¢ T.

In chapter 5 we give a compiete characterization of G6

valued multifunctions as follows

Let Ty X be Polish speces, let A be a countably
generated sub o-field of B, and let F s T = X be a multi-

function. Then the following are equivalent .

(8) F is A-measurable; Gr(F) ¢ 4 XB

By and F(t) 1is =

G6 in X for each t e T.

(B) There is amap f : T > % - X such that for each
t e Ty f(ty.) 1s a continuous: closed map from 2

onto F(t) and for each ¢ & ¥ f(.30) is A-measurable.
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CHAPTER O

PREL IMTNARIES

In this chapter we shall introduce basic definitions and
gotation that will be used in this thesis. We shall also state

some known results. These will be used frequently, some without
cxplicit mention.

THE TERMINOLOGY NOT DEFINED IN THIS THESIS IS FROM
KURATOWSKT [11]. o |

The set of positive integers will be denoted by N. S will
denote the set of all finite sequences. of positive Integers,
including the empty sequences e. For each k > 0y we denote by
Sy the set of elements of S of length k. For s & 5y |s]
will denote the length of s and if 1 < |s| 1s a positive
integers s; will denote the i-th co—brdinate of s« If me i
sn will denote the catenation 6f s and n.- We put 2Z = NN -
Endpwed with the product of discrete t&pologies on Ny 2

becomes a homeomorph of irrationals. For o e Z and k e I,

g. will denote the k-th co-ordinate of o and olk :(ola---aﬂk)-

k

If k=0, olk=-es If 5 e 5,9 k > 0y Eg will denote the

set {U & 32 olk = s} .
D will denote the set of all finite sequences cf O's
and 1'sy 1ncluding the empty sequence ¢ . ¢ will denote the

set {0,1}N." Endowed with the product of discrete topologies
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on {O,l}, it becomes a homeomorph of the Cantor set. TFor k > %ﬁ
Dk will denote the set of elements of D of length k . For
d e Dy k205, 1¢e 0,1} and 5e C dj} i <ky [d]y a1, & and

5|k are similarly defined.

Let X and Y be non-empty setse If E (C X X Y and

x £ X5 EY will denote the set {y EY s (Xyy) € E} and will

be called the section of E at x. We use }TTX and TTY to 4

denote the projections from X X Y to X end from X X ¥ t@j

Y respectively. We say that a set B (: E uniformizes E 1f
sections of B are at most singletons and TTX(B) = TTX(E).

Let (XsA) and (Y}g) be measurable spaces. We denote

‘by é > B the product of the o-fields A and B . If £ 1s §
a function from X 1nto Y, the o-fleld {f“l(B) T B e g} on x}
will be denoted by £ -(B)s Let Z be a subset of X . Then

the o-field fA 0 21 A e A} of subsets of Z will be denoted b

AlZ and will be referred to as the trace of A on Z . A non-

empty set A e A 1s called a A - atom if no proper non-empty

subset of A is in A . The measurable space (XyA) is sald to
be atomic 1f X 1is the udion of A - atoms. We say that the

o-field 4 1is countably generated 1f there exist subsets An y

4> 1, of X such that A4 1s the smallest o-fleld of subsets

of X containing An, n > le iﬁ thls casey we say that
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A is generated by Jfiy cn> 1%- It 1s well known that =

countably genercicl u-field is atomic. If (XyA)s (Y9B) are
measurable spaces and f 1is a one-one map from X onto Y

such that = f"l(B) then £ 1s called a Borel isomorph-

ism and (Xs4) and (Y,B) are s»id ta be isomorphic. If the

underlylng g-fields are understnod, we 51mply say that X and

Y are isomorphic.

_ For a metric space X, ngi‘"wiil denote the Borel o-fleld
of X, that is, BXA is the dkfield on X generated by all
open'sets in X A second countable, completely metrlzable

topolog1ca1 space is called a Polish space. Metric spacesy unless

.otbe1w1se stateds will be equlpped with their Borel o-fields-

J LR An’ n > 1, is a sequence of subsets of X, then by

the chara:teristic function of thé‘éeqpence {An cn2 1} 1s
weant the function f X = [0,1] defined by

f(x) = Z 2 IA (x)y x € X, where IA denotes the indicater

n=1 3% “qn E © fa |
function of An’ Let (X, é) be a measurable space and let A

be generated by {An e n 2 1y. If £ 1is the characteristic
function of “{An n2 l} then f 1is a Borel isomorphism of

X and f(X), In particular, it follows that if Xxqy X, belong
to different A-atoms then f(xl) F f(xz)a These facts are well

known and will be used without explicit mention. A& measurable
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space (XsA) 1s said to be standard Borel

if there is a f retiop g on X onto a Borel subset Z of

[051] such that A = g71(B,)-

s

ILet X and Y be topological spaces and A . X . We
say that 4 is a retract of X if there is a continuous func-
tion £ 2 X -» A such that f(x) = x for each x € A« The my

f 1s called a retraction of X onto A. A function g « X =

is called open {(resps. closed) if for every open (resp. closed)

set W in X, g(W) is open (resp. closed) in g(X). Our
definition of open aud closed maps is slightly different from
the ones in general usage. ~But for our purposes it is convenie
to adopt the definitions given above. Say that a map [ from

X onte Y 1s perfect if f 1s continuouss closed and the st

fml({y}) is compact-for each y e Y.

Let T and X be ﬁon—empty sets. A multifunction
F: T ->X 1is a function whose domsin is T and whose values
are non-empty subsets of X. A function f ¢ T = X is called
a selector for F if f(t) e F(t) for each t e To The set
{(t,x) g Tuikedes X e F(t)} is denoted by Gr(F) and is called

the graph of F. 1If E (:X, we denote the set

a

{t e T « F(t) ﬂ-E #£ ¢} by F“I(E).


http://www.cvisiontech.com

a

If A is a family of subsets of T and if X is a met..C

spacey we say that F 1is A-measurable (strongly A-measuranple)

if for every open (closed) set V 1in X (V) e & In
particulary a function f ¢ T = X 1is A-measurable if

f”l(v) e A for every open set V in X, Multifunctions  A-
messurable {strongly é—measurable) in our senss are called weakly
A-measurable (é—measurable) in the literature. Howevery for

the purpose of this thesis, it will be convenient to adopt the
terminology introduced above. If the family A 1is closed under

countable unions then strongly A-measurable multifunctions are

necessarily A-measurable.

If T is a metric space and A ‘the family of Borel sets
of additive class « (multiplicative class =)y where o 1z a
countable ordinals then g-measurable (strongly gwmeasurable)

multifunctions are called o -multifunctions (d+~multifunctions).

In literature, O -multifunctions (0+—mu1tifuncti0ns) are also

called lower semiw-continuous (upper semi-continuous).

Now we state a very important selection theorem due to

Kuratowski and Ryll-Nardzewski [13].

Theorem 0«1 TLet T Dbe a non-empty set, ﬁL a field of subsets
of T and X a Polish épace- Suppose F ¢ T - X is a

o~

130—measurable multifunction such that F(t) is closed in X for
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each t ¢ Ty where F., 1s the smallest family countaining ¥,

and closed under countable unionss Then F admits a

ﬁtgmmeasurable gselector.

The next lemma is proved by Kuratowski and Ryli-Nardzewski
to establish their selection theorem. We shall also find it

useful in the sequel.

Lemma Q.2 Let T, 3& and X be as in Theorem Oe«le Suppose
f» n2 1y are P, ,-measurable functions from T dinto X If
f.‘rl converges uniformly to a function £e T = X, then f is

"&G—mé asurables

An interesting corollary to this selection theorem is tha

following -

-

corollary 0.3 TLet T and X be Polish spaces. If B s L S

is a closed valued, d'—multifunction,.where « > 0 4 theo F

admits a selector of class e
The proofs of these results are omltted.

Let X be a non-empty sete By & partition § of X
is meant a family of non-emptyy disjoint subsets of X whose
union is Xe If g 1s a partition of X; R(Q) will denote
the equlvalence relatlon on X which induces Q that 1is,

R(Q) = U{E XE < E ¢ @} A subset B of X 1s called a
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cross section for a partition § of X 1if B meets each

=

clement of Q@ 1in exsctly one point. If A (C X then the snt

*x .
TfEe Qi AQEF#4¢} is denoted by A8, is simply by A*

f there is no ambiguity)and is called the Q-saturation of A

Asst A (C X 1is said to be g-invariant if A = A%,

Let X be a metric spaces Q' a,partition of X and

[h=

a family of subsets of X. We say that @ 1is A-measurable

if V¥ e A for every open set V in X If A 1s the family

of Borel sets of additive class o« and if Q 1s A-measurable

then @ 1is called an o« -partition. If A = gx, the Borel

o-field of Xy and @ 1is A-measurable then we simply say that

=

Q is measurable. We denote by A(Q) the o-field of Q -invariant

Borel subsets of Xs which will be called the o-field induced oy

—

Q. If A 1is an atomic o-field on X and 8§ 1is the set of

=

atoms of 4, we say Q is the partitien of X induced by A.

We:now state some more. results which are used frequently

in this thesis.

Lemma 0.4 ‘Let (TyA) and (X:B) be measurable spaces and let
' - - t

4 be atomic. If G e A XB then G 1=G° whenever t,

cend  t, belong to the same A-atom.
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vroof + Let x e X As G e & XBs the set {t g I
(t;x) ¢ G} e e As  tq t2 belong to the same é;atom, we g?
(ey2%) € G <=> (t5)%) € G It follows that X e G Loeos x ¢ o

i3 % €& ¥ was arbitrary, this completes the proof.
The next result is due to Blackwell [2].

Jemma 0.5 Let T be a Polish space and A-a countably genera

If AeB

Bp is a union of A - atoms, thel

aguph o-field cf gTe

A e Ao

proof 5 Let £ 3 T - [051] be the characteristic function of

a countable generator of A. Then f(a) and f(T - A) are :
disjoint analytic sets in [0y1]. Let B be a Borel subset of
[0,1] such that £(8) (_ B and f(T - A) 0B =4 [11, pp 485
We now have A = f—l(B) and f"l(B) e A

The following result is an easy consequence of the above
result of Blackwell and a result of Arsenin and Kunugui [1]

which states that if T and X are Polish spaces and if

t

G e B such that G is o-compact for each t & T then:x

=T XX
TT.(C) is a Borel set in T. An interesting proof of this haf

been given recently by Saint-Raymond [24].

Lepma 0.6 Let T and X be Polish spaces and 4 a countaf}
generated sub o-field of QTQ If G e é > B and Gt is '

g-compact for each t ¢ Ty then TTT(G) £ A
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Proof + By the result of Arsenin and Kunugui mentioned abova,
TTT(G) ig Borel in T. By Lemma 0.4, TTT(G) is a unieon of

A - atoms. Hence, by Lemma 0«35, TTT(G) € 4 e

Let (T»4) be a measurable space and let X and ¥ be two

metric spaces. By a Caratheddory map we shall mean a function

£¢ T X —>Y such that for each t ¢ Ty f{tss) is a continurus
map from X 1nto Y and for each X ¢ Xy the map [(.,x) defined
on T is A - messursble. If 3 T X X =X is a Carathéodory
map then the multifunction F i T —> Y defined by F(t) =f(ts2;
t ¢ Ty is said to be induced by f. Now we state some importens
properties of the multifunction F induced by the carathéndery

map £+ T XX > Y

Clearlys for any x ¢ Xy f{syx) 1z a 4 - measurable
selector for F. Furthery assume that X 1is geparable and let
{xn T n> 1} be a countable dense set in Xe Then
{£(trx,) :n2 1} is dense in F(t) for each t ¢ Te It follows
that there exist A- messurable selectors £ tT—>Y for FE
such that for each t & T» {fn(t) P n2> 1) is dense F(t). Also

for any open set W in Y
=] i = ~1
F7 (W) = U (f(.,xn} (W))e.
n=1
Thusy F 1s é—measurable.

An extensive bibliography of selection theorems 1s to be

found in Wagner [31].
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CHAPTER 1

REPRESENTATTONS OF CLOSED VALUED

MULTIFUNCTIONS

1 Ttntroduction The motivation for the results proved in tnis

chapter comes from the following theorem of Ioffe *

Theorem l.1.1 TLet X be a Polish space and (TyA) a measurable
space. Let F ¢ T — X be a closed valued, strongly A-measur-
able multifunction. Then there is a Polish space Y and a

carathdodory map f « T XY -> X which induces F.

Thiénresult has been announced without proof in’[S]. We
give various refinements of this resulte In section 2 we prove
the above result for measurablé?'F in the same framework as the
one in which the selectlon theorem of Kura+owski and Ryll-
Nardzewsgi (Theorem 0.1) is proved. A non-separable version of
this result is also given. In section 3 we prove similar
- results for‘compact valueé multifunctions. We show that in this
case under slightly stronger measurability conditions Y c¢an be
taken to be compacte. In section 4, using a recent result of
Saint—Raymond5 we then deduce a similar representation theorem
far o-compact valued multifunctions. In section 5 we prove
some more such représentation‘ﬁheorems for closed valued multi-

functionse.

“

e
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2+ Ugpresentation theorems for closed valued multifunctions~I W

first state and prove a result of Maitra and Rao [18]. i

Lemma l.2.1 Let T be 2 non-empty set, i, a field of subsets of
T and let X be a Polish spaces If F L T = X is a Cf.oc—measui
ables closed valued multifuncticn then there exist i,a-measurable-

selectors fi e T X for Fy 1> 1, such that for each t ¢}

{£1(t) 1121} 'is demse in F{t).

Proof « ILet VoV be a countable base for X. By Theorenm

2,0-!
0.1y we get a ﬁg" measurable selector h e T —> X for F. Ais

I | el - measurable L7 e = gl e
£, »  the set T, =E (V) pe
n > l. Suppose Tnm’ m > 1y, 1is a sequence of sets in ﬁ such
o0
that T mgl T Let F 1T >V be defined by

Fop(®) =F(®) AV, teT ,andlet £ =L aT = Lchy.
Then X, =~ 1s a field on T_.» F,, 1s closed valued and

(g'f' ) - measurable. Sos since Vn is a Polish spaces by

el

Theorem 0.1, there is a (£ _ ) - measurable selector

hnm.Tnm—éVn(_X for F, e We define B ¢ T = X Dy

(t)

i

ﬂCAL l?‘étT;TUT Enm h-nm'(t) if teT

ZFEBiSB | = h(t) If Gl =L W

i3 J 2
*\\_;1: o g A Ml
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As Tnm s}i gy s does T - Tnm’ Further hnm 1S‘G£nm)0 - mMeasurT-
able and h is ;ﬁ% - measurable. Therefore,gnm is jioﬂmeasuyqble.
Wowy if t € T and F(t) 0 Vn + ¢ then ¢t ¢ Tnm for some = > 1
HenQE:“anm(t) e F(t) n Ve Thu+s" the sequence of functions

g s n>»ly m> 1, has the desired properties.

The proof given above 1s a slight modification of the

arguments of Maitra and Rao.

Lemma 1.2.2 Let T,ja, X and F Dbe as in Lemma leZ2.1.
Suppose f ¢ T - X 1is a.‘iio.- measurable selector for F

and € 1is a positive real number. If the multifunction

G e T > X is defined by G(t) = Ss(f(t)) O F(t)s t e Ty
where Ss(f(t)) = {x e X o d(xy, £(t)) < e}, d being a complete

metric on Xy them G 1is JEO —~ measurable.

Proof + By Lemma le2¢1, let fiﬂ: B S Ty sl bE (fo -

measurable functions such that E(t) = {fi(t)_: i1} for

each t e T« Let W be an open set in X and t & T. Then

3(8) oW ¢ <= (Fn> 1) (£.(t) eW and &(f (£),£(£)) R &)

Tharefore

. o0
[EeT 3 G() 0 WY = Ultf;'ll(w‘) nfteT AL (£)s£(8)) < e}l
Y=

it is easily seen that for each n > 1y the function
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t -» (fn(t)a f(t)), and hence also the function t = a(r,_ (e},
£(t))s are <;20 - measurable. Further; functions f » n>1,

are Jio'" measurable. Therefore, G is f - measurable..

Theorem 1-2.3 Let T3 £y X and F be as in Lemma l.2.1.
Then there is a function f « T X £ -> X such that for each
t e Ty f(tye) 1s a continuocus function from Z onto F(t)

and for each o e &5 f(.30) is{iic - measurable.

Proof * We give X a complete metric d such that diameter
5(X) of X 1s less than 1. We now prove that there exists a
system {gs : s € 5% of‘<j30 2 measurable selectors for F

such that for every s e'S and t e T,

{gsn(t) :\n 21}y = F(t)bn 82-181(g8ft))'

To see th 't such a system exi: ts we proceed by induction on s
We deflne B to be an arbitrary JB - measurable.selector fo
F.' That Suéh a selector exists follows from Theorem O.l. Suppe
for some k > 0, g, ¢ T -> X have been defined for all g € f

i < ky satiefying above counditions. Fix a s ¢ Sk' Let

F ¢ T > X be defined by F_(t) = F(t) 05 (g (t)) t e T
2

“By Lemma 1.2.2s Fy %1s ;B - measarable. By Lemma l.2.1y let

gsn T T > X n> 1 be{iz - measurable selectors for ¥ sucl

that for every t e T Fs(t) = {gsn(t) . > 1}q. Since s €|
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was arbitrary, this completes the definition of Byr S ¢ Sk+n

Now we have
(a) d(gs(t), gsn(t)) < EFISL} s €8Sy, teT and n> 1

and (b) for each t e T and x e F(t) » there is a o ¢ &

such tha?w rl&m gg[k(t) =1 %5

We define £ $'T X3 - X by

f(?sc) = lim gc[k(t)" t e Ty q g To

That fhe above limit exi-sts“ follows from (a) and the fact that

d "iS' complete. Now let ¢t ¢ T.V- From (a) and by the definitien
of f it follows that wheunever o, ot € £ and o] (k+2)=c'|(k+2),
Yd(‘ff'(‘t_qcr);,' f(ts0')) 52“1‘. Therefore‘ f(tye) is continucus. Fron
(b) snd the fact t-hat F(t) is closed, We'get' that the range of
£(ty.) is precisely F(t). Finally it follows from (a) that for
every o € g, gg,k conve.rgas uniformly to f(.,0) as k —>oco.

Hence by Lemma 0.2, f(.y0) is ﬁc - measurable.

Corollary 1.2.4 Let T be a métrié‘space and X a Polish space

let F: T ~>X be a closed valuedsy o("'.l-ej_mult'ifunction, o > O
Then there is a functicn f,:‘ T X¥ -» X such that for every
t & Ty £(tse) 1s a continuous function from I onto F(t) and

for each 0o ¢ & £(ss0) 1is of class o s
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Proof i The result follows immediately from Thenrem 1.2.3,by te
> to be the family of all Borel sets of smbiguous class «

in Tu : '

We now extend Theorem l.2.3 for non~sepsrable Xe. In the
y2at of this sections o B will denote ordinal numbers and

A an infinite cardinal number. Cardinal numbers are identified

with initial ordinals. N iwill denote the successor cardinal

to A . A family "} of subsets of T i said to beA - additivg

if whenever. A €%y «< By B< M U 3, will
3 «<g e ) - A

denote the smallest A - additive- family of subsets of T

m

containing ':} 'j is called a Arfleld if b & ., o
closed under complementation and 1s A-additive. B(A) will
denote the Baire space of welight XM ,Athat is, B(}Q = ¥

enddﬁed wiﬁh the product of discrete topologies on X

The next result is similar to Lemma leZele It is proved
by Maitra and Rao [18] u51ng the 1deas contalned in the proof

of Lemma YeZ2e1.

Lemma le2ed Let T be a non-empty set and‘*t) a A - field on
T Let F i T - X be a closed valued, “3 ; - measurable
- . - e - . 3 A ; ,;

multifunctiony where X 1s a qomplete metric space of topologis

cal weight < X . Then there exist P3_+ ~ measurable functions
b

fer ' T > Xy &« < X such that for every t e Ty F(t):{f«(t)td-d
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Using Lemma 1le2,5 and the ideas contained in the proof ¥

Theorem le2:3; we now have’

Theorem l1.2.6 - TLet -Tyra ’. X and F Dbe as in Lemmd 1.2.5.
Then -there is a function f o T >:B(A)‘-é X such that for every
t & Ty f{tyo) .is a continuous function from B(2A) onto F(t)

and for each ¢ & B(A)» f(.,d} ié' ‘?)_h - measurable.
1 : N RN

3. Representation theorems for compact-valﬁed.multifunctioﬁs. Tt
following is the main theorem of this section.

Theorem.l.3.1 Let X be a second countables metrizable space

and let (T)4) be a measurable space. If F o T > X is a
compact valueds, A - measurable miltifiinetion then there is a
Carathéodory map f ¢ T x ¢ = X which induces Fs; where C

denotes the Cantor set.

The above has been announced without proof by Ieffe [9].

We first prove an auxiliary lemma.

Lemma_l.3.2 ILet X Dbe a compact, metric space and (TH4) 2

measurable space. Then, for every g > Dy there is a positive

integer n such that for every qompact valued, A - measurable

nmultifunction F § T - X there exist 4 - measurable selectors
.o { 5 ‘

fl""’fn for ¥ such that {fl(t),...,fn(t)} is an ¢ - net

in F(t) for each t & T.
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L

proof . We take n to be a positive integer such that there

exist n open sete; say Wyr sees wﬁ, of diameters < & which

'jlyeover Ko

Now 1et F T, — X be s compact valueds A}- measurable

1(wf), iSu Then T, €A and

multifunctlon. Let Ti

U‘ Tf‘z Te We define a multlfunctlon F from Ti inte the
i<n

Polish space Wy as follows : ¥, (t) F(£) D.Wys t € Tye Tho
F. 1is closed‘va%uee and ATy - measurable. We get a AJT.

measurable selecfor: g :tTi‘r> Wi{(_ x. for Fi‘ Next fix s
A - measurable selector g T -~ X for F. The existence of

Aeda

these belectors follow from- Theorem 0.1.

For any positive ‘integer i < n, e define a map

£, + T = X by

i

£,(8) = g (t) if te Ty

1

g(t) if teT- Ti';‘

It

i
R

Plainly the functions f,;» 1 < ms.are A - measurable selectors
ol ) _ |
for ¥ such that H{fi(t) . 1 £ n} . is an e - net in F(t) fo

ER .

each t & T : ' i

proof of Theorem 1.3.1 - Let 2 be a metric compactification |

|
of X and d a metric on Z such that the diameter 6(2) < X

———
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We consider F as a multifunction into Ze Then T 1is compact

velued and A - measurable.
We now show that there existmpositive integers njsnhys SerT

and for each s ¢ S with s; < ny 1< {s» an & - measuravle

selector g, 8 T - Y for F such-that for each t e Th

" . (1) | it
{gsi(t) D1} 1sa? - net in F(t)(\ 82_‘S!(gs(ﬁ))o_

We define g, to be an afbitrary A measurable selector

-1

for F. We apply Lemma 1le3+2 to Zy (TrA) and e = 2 to get

a positive integer =n, and A - measurable selectors gl,..;,gn
ay
for F such that for each t ¢ T {gl(t),aa.,g _(t)},\is a
: ny

2“1 - net in F(t)s Suppose for some k & Ny positive integers

ngo i £ k4and functions g for s e U 8. with s, < n. feor

' i<k 1 J ‘ J
avery j < |s| have been defined satisfying the above conditions.
‘We apply Lemma 1.3.2 to Zs (T»4) and ¢ = 2"(k+l) and get a

positive integer nk+i . We choose an arbitrary s & S Ssuch

-

that s; < ny for every 1 k. Let the multifunction F_ 1t T-> Z

be defined by F (t) = F(¥) 0 S Lk(g (t))y t € T« ~Then ‘F_ 1is
s gk "s N s

compact valued and, by Lemma 1,2.2, it is A - measurable. By

Lenma le3.2y let gsi"i 5 Oy be A - measurable selectors

2—(k+1)_

euch that for each t & T {gsi(t) N nk+l} is a net

f:] F'{"'.\..
g
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- | :
We take Y = X ({1,25---ani}). Endowed with the preduct
i=1

~0f discrete topolcgies on {1,2,...,ni} Y is a homeomorph of %he

Cantor set C. For any 6 ¢ Y and t & Ty {g6]n(t) cn2 1} s

» Cauchy sequence in Z. We define f(ty8) = lim ga[n(t), t ¢ 4§
| a :

§-e Yo As in the.proof of Theorem l.2.3 we check that f has

. the desired propertiés.

Remark We do nnt know whether Theorem 1.3.1 is true when A is

replaced by a ng’ where ;E is 'a field on T. (P 1).

4. A representation theoremfor o-coimpact valued multifunctions.

The first result of this section,which plays a very importent
role in this thesis, seems to be of independent interest. It 1s
closely related to and will be deduced Yrom the following result

of Saint-Raymond

Lomma 1.4.1 TLet X , and Y- be compact metric spaces. Suppose
A and B are disjoint analytic subsets of X X Y such that
ax is ¢-compact for each‘ x € Xe Then there exist Borel sets
an o2 1l in X >ii. égch that Bﬁ:iix?ompaqt‘go? each x ¢ X
snd n>1, A(C U B, and" B 0 (U B)=0.

n=1 n=1 g

A proof of this can be found in [24].

Temma 1.4.2 Let T and X be Polish spaces and A 2 countably

generated sub o-field of ET' Suppose G € é)(@xand Gtis a 65 in
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X for each t ¢ T. Then there exist sets G ‘é'é > B sunh

) n ;. =X
that GZ is open in X for each t e T and n > 1 and
p:)o ) L
G = H G .
n=1 °

Proof © Let Y be a metric compactification of X. By a well

known result [11, pp. 430]y X is a Gy in Y. Let f be

the characteristic function of a countable generator of A
Let g+ T XX - [051] X Y be defined as follows .

g(tsx) = (£{t)s x)o Let Z = f(T), so that Z is analytic.
Further, g”l (gz < Qx) = A X gx. Eet‘ H = g(G)s Since

G e A X Bys it follows that H ¢ B, X B

£ :X, =Z :X o AS X iS a G5
in Y, we have B, > By - B, X By - Hence H e B, > By
Set M'= (2 XY) - Hy so- Me B, X By . Since H and M are

relatively Borel subsets of the anaiytic set 2 X Yy it folinws
that H and M are disjoint analytic subsets of [0y1] X Y

kgain, since X is a G6 in Y, by Lemma 0.4, it follows tuat
g% is a ug i L Tor each z ¢ [0y,1]. So M is g-compact

in Y for each 2z ¢ [0s1]. By Lemma T.4.1y we get Borel sets

Bn? n> 1y of [051] X Y such that Bi is compact for each

__00 (5 a]
7€ (0;1] and n>1y, M (_ U Bn and H 4( U Bn) = ¢ .
n=1 n=1

To complete the proof, let H = (2 XX} -Byp n2 1.

FYn . Z 5 .
hen each Hn £ QZ > EX and Hn is open in X for each

7 8 7
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O
Furthermore, since H (_ ([0s;1] X ¥) - U B and
n=1
e d 0 0o
H(C2X X wehwve HC (ZXX)~- U B =0 H - Tog

n=1 H n=1

the other way, we observe that H = (Z XY) - M _) (Z X 1)
- U B-_J)(Z X X)- U B, = 0 H, . Thus, we have prove
n=d B n=1 n=1 |
o o} ) =] e 1
that H= {1 H . Finally, we put - G_ = g (H.)s n> 1. Thel
' N nzl n‘ o - n . in'

sets Gy have the desired properties.

Lemma 1.4.3 Let Ty X be Polish spacés and}lé a countably

generated sub ¢ - field of Bp - Suppose G e A X By and
. t\u [ d ' V

a* is o - compact for each t € T Then there exist sets

Gh e’A X gﬁ such that G; 1is compaCt'fqr-eaCh t e T and
N .- . o0 . \ " -
n>1 and G = U G_ .
! 'l . n=1 T

Proof Let Y be a metric comﬁactificatiod of X . Since

X isa Gy in Y, Ged X By. Iet H= (T XY) -G.

6
Then A e A X B, and H' isa Gy in Y for each t e I.
S0 by Lemma. 1.4.2, there exist sets H_ e 4 X By such that :
£ f - oo
Hn ‘isopen in Y foresch te¢eT and n>1 and H= 0 Hﬂ
n=1

Let G, = (T XY) ~H;» n>l The sets Gy n> 1 have the

- desired nraperties. -
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Theorem 1.4.4 Tet Ty X be Polish spaces and A a countably

generated sub ¢ - field of Bp - Let F : T > X be a o-compact
valued multifunction such that its graph Gr(F) e 4 X EX » Then
there is a locally compact, second countable, metrizable space

Y and a Caratheodory map f s T X Y = X which induces F .

Proof ¢ It is sufficieunt to prove the result when X 1is a
compacf metric space. So;we~assume that X 1s compact. We put

='Gr(F); By Lemma 1+4.3y we get.sets G' e A X EX’ 1> 1,

with compact sections such that G = U G‘ « For any n> 1;
n=1
let 39 d2, ses be an enumeration of positive integers such

that 0y = 0 e et

n o _ ' =
B 25 (g (G Gl PR
=TT (G' - U Tls (Y)Y 4f 41 >1.
T < gl n;
| n . n o, o0
By Lemma 0.6, Ti e 4y i>1. Further T, 10 Tj = ¢ for
\ N i
143 and T = U T We put G, = U ((Ti > X) n G' Yo
u i =15 i=1 fy
Then Gn’ n>1 belong to A X BX with all sections non-empty
o
and compact and G = U G_. We define F_ ¢ T -> X by
=1 B n |
ﬂn’t) = Gt, teT n>1ls Then F, 1s compact valued and, by

Lemma 0«6y é ~ measurable.
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: Note By Lemma 0.6y 1t is easily seen that a multifunction ¥

We-use'TheOrem'1.3.1 to get a Carathéodory mapﬂ,fn g il

= X which'indubes Fh, where € denotes the Cantor set.

fet Y =N xC and let £ T X (N XC) = X be defined
as follows ¢ f(ty (ny8)) = f£,(t;6). The function f and the |

space Y have the desired properties.

eaulsfylng the hypotheses of the above theorem is strongly

*

- measurable°

ey P mv""m -

__np

5. Representation theorems for closed valued multifunctions-I1 |
3 iy - ' i - | Y L B i o E
We first prove the following well known resulte The :

particular proof given below will be of "some importance tn us.E

Lemma 1.5.1 Let E be a non~empty closed eubset of Z . ng

there is a closed retraction f of % onto Ee

proof ¢ For s & 8 such that I 0 B+ ¢ we choose a point!

X, € Zs N Ey for instance, x, could be the lexicographic

g
" minimum of £, 0 E. If o Z.we put f(o) =o . If el
since E 1is closed,there is a positive integer k such that

Eglk [14E = ‘¢ o _Let n be the first suchhinteger. We defing

s PLa), = It 1s clear that (%) C: E and f(o) =¢0 |

c|n -1

for every 0 & Ee
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\
\

We now check that £ is continuous at each ¢ & Z. Fir.i
let 0 e T -F and let k € N be such that Ec]k 0 E-=¢
Then f 1is constant on Eclk « It follows that £ 1is contiuucus

at o . Nextsy assume ¢ ¢ E . Then for any positive intsger k;
kﬂ E $ ¢ and f(za]k) _ ZG(kII E» This implies that f 1is

=
2,0,-

continuous at ¢ 1n this case also.
To check that f 1s closedy let W (_ £ be closed and

X, > X where X, € f(W)s n2>1. We get % ¢ W ‘such that

Xy = f(cn),_n > 1l. 1If ol

xeW and f(x) = X, so that x e f(W). It now suffices to

e E for infinitely many n then

prove that x e £(W) in case ¢" ¢ E for every n . Wey then,
get k_ > 0 such that x_= x » If infinitely many k
i = I n n
: o [k
n _ ‘
are equal thens as X, converges, infinitely many Un[kn are
the same. It follows that infinitely many X are equal. From
this we deduce that x e f(W). Now we consider the case wher.
k, o, Let x = (ml, Moy wos Y+ For any positive integer A,

we get a large enough n such that X, € 2§1'°'mx and
n
k >A+ Then o | ¢ « Thus W 0l +4d .
n | Zml-aom/( i szla‘.em/(
Since { e W was arbitrary and W 1is closed it follows that

x € We Since E 1is closedyxeF. Therefore f(X) =X e (W)

The proof is completes

feaSioR TRl wéblaptinzala iEind & wiBenalied Bwtubids oy e
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proposition 1.5.2 _Let T be & nop-empty set and X, a f‘ie&f! nn.‘f
Te ILet ¥ 2T % S* be a closed walued mult.:[ﬁmction such t?h:ﬁti
F"l(zs) e £ for each s ¢ S. Then there is 4 map g TP X E |
~> £ such that fowr each ¢ ¢ T, g_(_t,.') is a closed retraztion |
of & onto F(t)3; and for each a ¢ & g(. y6) 1s ﬁ.s-a - ,

measurable. : .

S

Broof ¢ let s € & and let TS = .{t E TS F(L) -H’Z’.s % qx} .
Then T, € io We define a closed valued multifunction

Bg? Ty 3, by F () =F(t) 0 2, t e T + Then F, 1s

i‘c [T, - measurable, where ﬁal‘ms =J& 0T, L egso} ~ By y
Theorem 0.1y lot f_ : T = Z be a ;ﬁa'['.‘es - measturable
selector for FS . ‘ [
"We now define g ¢ T X £ —>Z by
: }

-

g(ts0) = o 1f o e F(Y)

il

i‘a;ln_l(t) if ¢ { F(t) and n 1is the first positive
© % -such that F(t) 0 '2;01[;1{ =& o

As B 18 closed waluedy g 1s defimed on the whole of T b A 37
Let. t & ®. Arguments if the proof of Lemma 1.5.1 show that
g(t;») 1s a closed retraction of £ onto T(t).

To check the final corm:‘ms_ion, we fixa o0& and

define
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T = ( 0T,
" m<n

) - T

olm gln

Then the sets T 32, and
(t) B KRG S

g(tso) = fc[n-l

= a 1f - L P ¢ ﬂ T ).
n=1

It follows that g(es0) 7is 7;160 -~ measurable.

The next result also improves the result .of Ioffe (Theorem

1.1.1)

Theorem 1.5.3 Let T be a non-empty set and ;E,a field on T.

Let X be a Polish space and ¥ o T -» X a cloééd valued,
strongly ;ﬂ - measurable multifunction. Then there is a map
£27x § ->X such that for each t & Ty f(tss) 1s a continu-
ous closel map from £ onto F(t) and for each o0 € Zy f(-y9)

is ;?50 ~ measurable.

Proof . A result of Engelking [5] states that every Polish space
is the image of £ under a continuous and closed map. So let
h+ %« X be a continuousy closed and onto map. We define

He T = £ by H(t) = h—l(F(t)), t ¢ T« Then for any s € S
{teTZH(t)ﬂEs#¢}={teT:F(t)ﬂh(}:s){: %

Since h is closed it follows that H—l(ZS) s{iz.
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By Proposition 1.5.2y et g+ T X2 - % be such that
for each t ¢ Ty g(tye) is continuousy closed =nd onto H(t)
and for each o €& 3y g(ey0) is .;260 - measurable. put

f=ho ge Plainly f has the desired properties.

Corollary le5.4 Let T and X be Polish spaces and let

Fo.T->X be a closed valued, &+ -~ multifunctione Then
there is a map £ ¢ T XE —> X such that for ecach t ¢ Ty
f(tye) is continuouss closed and onto F(t) snd for each

g ey fl(ey0) 1s of class («+ 2).

Proof . The result follows from Theerem l.5.3 by taking

to be the family of Borel sets of ambiguous class (e + 1)
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CEAPTER 2

SELECTION THEOREMS FOR Grcs VALUED

MULTIFUNCTIONS

1. _Introduction In recent years a large number of selection

and representation theorems for multifunctions taking clesed
values in 2 Polish space have been proved. We shall now considsr
multifUnctions taking values in a fixed Borel class of a Polisn
space. The following example, due to Kallman and Mauldin [ 10},
shows that multifunctions with vaiues in additive class 1; a

fortiori in any higher class; need not admit even a measurable

selector -«

Example 2.1.1 Let M be a closed set‘in X X Z such that

for each o0 & 2 M is non-emptys and M 1is net Borel uniformi-
zable. The existence of such a set has‘beeﬁ shown by several
‘authorss most recently by Blackwell [3]s For s e Sy let hs
be a homecmorphism of X onte X, and let T c IX 33—

Z ZS be defined as follows = TS(ng“) = (0y hs(c')). We now

put H = U TS(M). Then H 1is an F_ subset of 2 X X such
8€S

that the projection map from H ontco the horizontal axis is
opens If H admits a Borel uniformizationy say Ey then

U T;l(E'ﬂ TS(M)) is a Borel subset of M with all sections
seS ‘

ner-empty and countables It is well known that such sets are

Surel uniformizable [ 16, ppe 244]. It follows that M is Borel
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uniformizable. But by assumption this is impossible. 5o H |

droes not admit 2 Berel uniformization.

We now take T = X == %, g =B and F(t) = Ht, t e T,

T
Then the multifunction T 1is lower semi-continucous, in parti

4 - measurable and GR(¥) ¢ A XB,«In fact, its graph is an

X

E in T XX and iv takes values in additive class 1. But

¥ does not admit a measurable selector.
Subsequent results proved in this thesis show that under
fairly mild restrictions G6 valued multifunctions behave well

aud this chapter is devoted towards proviﬁg the existence of

measurable selectors for such multifunctions.

In section 2 we prove some auxiliary results. An inUﬂJ
ing result proved is an invariant version of Novikov's firstj
multiple ssparation principle for analytic sets. In sectionﬁ
we proeve the main result of this chapter. A uniformization -
result is esivaviasucu in section 4.

;

I

2. Auxiliary Results In this section we set down some resul

which will be found useful in the sequels,

Temma_ 2. 2. 1 Let A be a countably generated sub o - field g

WAl s T i

the Borel ¢ - field of a Polish space FE. Let Q be the part

tion of E 1induced by A . Then the equivalence relation

R(Q) & A X4 and consequently, R(Q) is a Borel subset of &

|
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Proaf . Let An’ n > 1; generate the o - field A& and let f

e

_beythé characteristic function of the sequence {An}  Then

R(Q = {(uy) ¢ ExE I f00 = £}
" sn that- ‘R(Q) £ é > A

We'shall now prove an luvariant version of NOvikov‘s first
ﬁmuifipie separation principle [11; pp. 510] for énalytic sets.
This is proved rather easily using Novikov's first multiple separa
tion principle and an invariant version of first‘sepération prin-
ciple for a pair of disjoint analytic sets. A simple proof of
Novikov'!s separation ﬁrinciple mentioned above has been given
recently by Mokobodzkl [22]. We give below a proof of an invari-
ant version of first separation principle for twe disjoint

analytic sets. The proof is due to C. Ryll-Nardzewski.

lLemma 2.2.2 Let Q be a partition of a Pdlféh space E . suc.
that R(Q) 1s an analytic subset of E X E. Suppose A and
B are two disjoint analytic subsets of E such that A is

§ - invarisnt. Then there is a § - invariant Borel set W such
that B (_ W and WOA = ¢

proof ¢ ' We first note that if V 1is an analytic subset of

B so is its Q - seturation V* Since R(Q) 1is analytic

this follows immedistely from the following equivalence -
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X e V¥ <= (Eﬁy e B) (y e V and (xyy) ¢ R(ED)

Now we define Borel sets OC,» n-g 1y and § - invariant
analytic sets Dy 12 1, such that B (C dn’ C, - Dy, (_ o
‘and D 0 A=4¢. We define these by induction on n. Ue tam
C1 to be a Borel set such that B C: cq eand G0 A= d¢. Let
D1 = C; 5 By the observation made above Dy is anaiytic in B
Since A is Q ~ invariant, Dlﬂ A = ¢. Suppose for some 1y

C 3D1, i<ns have been defined satisfylng above condltlons. Wes

i

take cn+l to be a Borel set such that Dy ( Cn+1 and

= ok —
Cn+l.ﬂ A=¢ . We thenput D, = Cpopq *

oD [s.a]
Now let W= U C_= U D, o« It is easily seen that ¥
n n
n=1 n=1

has the desired properties.

_Lemma 2.2.3 Let Q be a partition of a Polish space E such

that R(Q) 1is an analytic subset of E X Eo. If A n D>l

are Q - invariant analytic subsets of E such that

2 _
0 A = ¢, then there exist Q - invariant Borel sets B,»

n=1 n =

| that A ( B T ‘ a 0 A S
such that A (0 SuEs_gon each n 2 1 anc ! B d

Proof . By Novikov's first multiple separation principle for

analytic sets, there exist Borel sets C_ in E such that
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o0
and ngl C,=¢ . Since 4, and (E - C,) are

disjoint saalycic seivs in E  such that An is g - invariant,

n

by the last Lemmas we get a Q - invariant Borel set B in E

guch that A L B, and By f (Ew— C,) = ¢ « But then
s : oo \ _ 0o .
B L.C + Since 0 C, =$.3 it follows that E B, = ¢ -
n=1 _ . : -l
lamne 2.2-4 Let Q@ be a partition of a Polish space E such
that R(Q) is analytic in EXE. If uZﬁ, n> 1ly, are Q - invari-
™ IR ) oo =

ant coanalytic subsets of E such that - U zn is Borel in E,
: B =1 . :

then there exist - invariant Borel subsets Dy n2>1sof E

such that D, (_ 2, for each un 2 1y D, 0D, =¢ for n + m

o0 00
and U D = U Z_ .
=1 ° n=1 B
m -
Proof . Set thglzn and An=B "ZH n > l« Then the
. [ne]
sets A, are Q - invariant and analytic such that [l An =¢ .

So by Lemma 2¢2.3, there exist Q - invariant Borel sets Bn in

L E
4 such that A (B and 01 B_ = ¢ . We define
b = n=1 © |

D = B~-B it fe=d

=(B—Bn) n o By if n>1


http://www.cvisiontech.com

33

The sets Dn have the desired propertiese

Be Selegion Tha=ramay Our main selection theorem for G

&
valued multifunctions reads as follows .

Theorem 2.3.1  Let T, X be Polish spaces and let A be 2
countably generated sub ¢ - field of Bq o Suppose F o T - X
ig a multifunction such that F 1is é - measurables Gr{(F) ¢ A X3
and F(t) dis a G in X for each %t € T« Then there is a

4]
é ~ measurable zzlector f for F.

Pinof ¢ The idea of the proof is as follows = Given » non-empty

G5 in a Polish Space,'there is an effective procedure for select
ing a peint from it {ll,ﬁpp, 418]. We apply this procedure to

each F(t) uniformly.

We fix a systenm {VS < S E S} of non-empty open subsets

of X stuzh that

{a) = % 3 . 1

(b) G(VS) <I2E o 1me 8 k20 b
) {Ven > m 2 1] is an open base for V. ., s € S and |

(@ V C vys se8 m2l

Put GO = T XXy and let Gk’ k > 1y be a sequence of

sets in A X gx such that G; is open for each t ¢ T

[&e]

and k > 1 and G= I G,y where G denotes the graph of
k=1
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" lemma le4.2. We denote by
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F. The existence of such a sequence of sets 1is ensured by
the partition of T induced

by é o By Lemrﬁa 0:059 - _é. =

(). We shall now prove that

there is a system {BS e Is a'S} of subsets of T satisfying

the following‘ cenditieons .
(i) Be = Ty
o0
(ii) B_.= U B_»s S & S
<] m=1 sm

(1i1) VS! st ¢ Sk, SFF‘S' =..’> Bsﬂ BS; = ¢ gy

, . \ - o~ .t
(iv) s e Sy and. t e B, = G’ Q v + ¢ and Vg g Gy

and  (v) lee é(g), .s,é.S .

 To see that such a system can be defineds we proceed
inductively. First define By = T .~ Next suppose that Bsa

s €85 ilg k, have been defiuned in such a way that the above

i?
conditions are satisfied. We shall now define Bs" s? E'Sk+1 .

Fixa s & S and set

k
gz =gfteB s G'av_. 44 ema V C o my 1
m { s sm sm - k+1} 2 =+
Then .
B -1 ; v i
2y T ?s S (Vsm) AT ~ TTT (T x Vsm) 5 k+1)) i

It follows that the sets 4, are coanalytic in Te. Moreover,
. -1 B
since B_ ¢ é(g), Fo(v,,) e A= é(gp and  Gp,q € & X By v
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1'

(o)

that U Zm =B _ .+ To see thisy let ‘t ¢ Bs’ so that
m=1 ~

ol t = 5% -

GT 0V, + . Choose x e G~ [V C G Vg oo since G,

by Lemma O.4, the sets Z = are Q - inveariant. Uow we chack |
) o i

|

I

7 oF

1'

s open in X, we can find m such thet X e Vg . I

T : .
Gk+1 A VS . It now follows that t ¢ Zm, which proves the
(6]
inclusion By C U Z_. The reverse inclusion is obvious.
m=1

By Lemma 2.2¢1s R(g) is a Borels and therefore analyticy subs!

of T XT . ©So Lemma 2.2.4 can be applied to the sets 4 - E

will then get sets D_ ¢ A (Q» m2 1y such that D C 2
oo ’ :
DO D =¢ for n$Fgm and U D =B~ pefine B__ = D
n m m=] M s sm m’ |

m> 1. Since s € Sk was fixed but arbitrary., this compleis

the definition of sets BS,, se Sk+1 . It 1is now aun easy

matter to verify that these sets satisfy the required conditia
For the final step In the proof, we define

EK:U(B X V)s k20
S S ha
seSk

and E = [ ) .
k>0 %

Using conditions (a) - (@) and (1) - (v), we check that each |
B e A(Q) X By and so F & A(Q) X Bys that EY contains |
exactly one poiunt for each t e T and that E (C G+ The

set E defines uniquely z function f on T te X


http://www.cvisiontech.com

36

whose graph is E. Since E 1s 2 Borel subset of T X Xy [
is Borél measurable [1lls DD 489]. It follows. from this. the
fact that Ee A(Q X By A= A(@ and Lemmas 0.4 and 0.5 that
£ 1s an A - measurable §elector-for F. This completes the
prK)ro

Yext we relax somewhat the requirement in Theorem 231

that T be a Polish space.

Theorem 2.3.2 Let T Dbe an analytic set and let A be 23

countably generated sub ¢ ~ fileld of By - Let X be a Polish
space. Suppose F ¢ T > X 1is a multifunction such that F
ds, A @ measurabley Gr(F) e A X gX and F(t) is a GG in X
for each t & Te Then there is a'g -~ measurable selector f

for F.

raof « TLet h be a continuous function on ¥ onte T. BSet

e —

g

Al = h"l(é), so A' is a countabiy generated sub o - fleld of
-the Borel ¢ - field of £ . Define a multifunction

Fi 2§ > X by Fi{o) = F(h(e)). It is easy to check that F
1s A'- measurable, -Gr(F') e A' X By ~and Ft(o) 1is a Gy in

%  for each U‘e Z . .So, by Theorem 2.3.1, there exists a
B measurable selector g for Ff. TFinallys define a functien
f on T to X by the formula = f(h(o)) = g{c)y 0 e £+ As

g 1is A' - measurables g 1is constant on atoms of é'. Further,

for each t ¢ Ts h—l(t) is a subset of an atom of é'. For if
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A 1is the atom of A containing t, then h"l(A} must be an
atom of A!'e It follows that if h(o) = h(g')s then g{o) =g(of
Hence f 1is well defined. Plainly f 1s a selector for T .
That f 1is A - measurable fcllows now from the fact that g 1
=

Af- measurable and é‘ = h" é)o

Remark In Theorem 2.3.2 the condition that A be countably

generated can be dropped. Indeed, let A be any sub o - field

of ET and F be as in Theorem 2.3.2. Since Gr(F) ¢ 4 X B

there exist rectangles Ai X B, e A X QX’ i > 1y such that

X

GriF) 1is already in the o - field generated by A; X By 12
Nexty set Cn = F_l(Vn)s n > 1y where Vny n > 1ly is an open haj
for X . Now let go be the ¢ - field on T generated by

“ne sets Ayy Cys 1 > 1. Then,y as is easy to verify, Al is a
countably generated sub ¢ - field of Ay I is éo - measurable
an? Gr(F) ¢ A, X QX » By Theorem 2.3.2, there is a A -

measurable selector f for F. Clearly f 1s 4 - measurable,

If we repeat the arguments made in the proof of Lemma 1.2
and usa Theorem 2.3,1 instead of the selection theorem of

Kuratowski and Ryll-Nardzewski we get the following result .

Cornollary 2.3-3 Let Ty 4> X and F be as in Theorem 2.3.1

Then there is a sequence £ 1 >1, of A - measurable selecto
for F cuch that for each t ¢ T {fi(t) i 13 is dense in
F (&l
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We conclude this section by showing that the conaition in
Theorem 2-2-1 that G & A X §X cannut be dropped. Led

Y= X =[051] and A = Let ® be the set of 21l Borel

ET | .
neastrable functions of T to X and let Y map T onte .
efine a multifunction F o T -» X by ¥(¥) = [0y1] - S (D)% -
Then F(t) is open in X for each t e T . As F(t) is dense
in X for each t e Ty F is A - measurable. Now suppose f
Lr a 4 - measurable selector for F . Then f ¢ Gy so T =W(t)

for some t & To It now follows that  (t,)(t,) %ir(to)(to)a

Ia.
which 1z a contradiction. So F dees net admit a A - measuracle

4. A upifompization Tesalt An important cousequence of Theoren

3.2 1z the fellowing result on the uuniformization cof Barel sets-

Theorem 2¢%-1 Let L =and M be Polish spaces. Suppese D -is
a Dorel subset of L X M such that Y s a Gy in M for
each t ¢ & auw 'fTL(D 1 (& XV)) is relatively Borel in TTL(B)
for every cpen set V in M. Then B can e uniformized by 2

Corecl subset of I X M.

Progf -« An applicstion of Theorem 2.3.2 yields a Borel measurable
function £ on TTL(B) to M such that I 15 s uniformizatien
¢’ By whare I 1is the graph of f. By a2 result of Kuratowskl

{11, pp» 434], there is a Borel measurable function g on T
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+o M which extends . Let J Dbe the graph of g. Then I8
1: a Borel subset of L XM =2nd I = J 0 By which proves ihas

T s g Beorel subset of L XM . This cempletes the pireel-

Cerollary 2-4.2 Let L and M Doe Poligh spasese Suppose B

2

is a Borel set in I > M satisfying the hypotheses of Thecreld

2-4.1. Then [[;(B) is Borel In L -

Sorollary 2403 et L and M be Polish spaces. Suppose [

- g ft

‘s & Borel set in L XM such tha% Tor gack T € T[T(B), H
i

ig a aense G . in M. Then B 1cg Borel uniformizablea

In particular, TTL(B) iz Borel in Ie.

The lact corollary is a particular case of a uriform?zatd

|

rasult of H- Sarpadhikari [£5]. It should be noted that in
proof of the last uniformization result we 2~ ot use vhe farct

that ! TTL(B) is Borel in L ' .

We note that the above Theorem on the uniformization of
Berel sels caunot be Improved upon. Indeed, if B ds a G0
the plane whose projectlon tn the firs™ crordirate Is not Borsl
“hen 2 cannot be unifermized by a Borel subset of the plane.
This shows that the conditicn requiring TTL(B 0 (L XV)) To b
rolatively Borel in WTL(B) cannot be Aropped from Theorom Z.4%
on the other hand, Example 2.1.1 shows that the condition requl

el Bt to be a G, for t & L cannot be dropped.


http://www.cvisiontech.com

CHAPTER 3

PARTITIONS OF PQLISH SPACED

i, Introduction In this chapter we investigate the problemn o

‘he evisrence of a Barel cross section for » measurable partition

G o o Pulish space into Borel sets of 2 fixed ¢lass. A large

syrar of results are already known in case members of g are
closcds. An extensive bibliography of such resulis is to be Tfound
*n Wagner [31]. The well known partition, given by ¥itali, of
the real line TP induced by the equivalence relation

f{x;y) c R>x R % x - y 1is a rational} is lower semi-contin-
qouss that iss saturation of every open set is open’in TR, and
yet does not admit a Lebesgue measurable and, a fortiori, a Bomrel
crass section. Thus it remains to investigate measu;able parti-
tions of  Pollsh spaces into Gg sets, In section 2 we establich
the existence of a Borel cross section for such partitions. A
cross section theorem for partitions inte o - compact sets is

proved in section 3.

2, (Cross section thecorems for partitions into 65 sets wWe first

orove a result on 0 - fields induced by partitions. We shall use

L2 following lemma of Kallman and Mauldin [ 10].

iemm@_§&2n1 Let X be a Polish space and let Vn,‘n.g 1; be

an ¢pen base for X. If E is nen-empty and simultaneously

a ¥ enda G in X then E OV =ENV #¢ for some

1> e
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o0
Preaf v+ Let E= U F sy where F oy m > 1y are closed in X
e m=] B m
Since E is 3 dense G in E , the Baire Category theorem

5
impiies that E 1s non-meager relative to E . It follows that
there is a Fm with non-empty interior relative to E . Conse-

quently, there is a V= such that ¢ + EL v, (_ B (_ B

from which the desired conclusion follows.

Proposition 3.2.2 Suppose that @ 1s a measurable partition ¢

‘of a Polish space X such that each element of* @ 1is a G6

in X» Then the o - field A(Q) induced by Q 1is countsbly

generated.

Proof « Let V,» n 2 1, be an open base for X « We shall nov|

show thst if El’ E2 are distinct elements of g s then there‘

3 — ux = = ogx -
is a V, such that K, C vy C (X E2) or E, _ vy _ @ %
Two cases arise. First suppose that Eg - El ¥+ ¢ . So if

X € E, - El, we can find V., such that x e vV, and V 0 E, =

¢

1t <Y

It follows that E2 (. V¥ C x - E1)° Next assume that F
= = ‘ ' f

Ez (i El « By the first principle of separation for G5 sets%-

11, vp. 350]y there is a set B, which is simultaneously s P
and a G, in X, such that E; (_B and E, 01 B =¢ . W}
can assume B (_ El by replacing B by B ﬂ.El if necessary.

3y Lemma 3+2.1y we can find V; such that 5 4 VvV, = B o vy td
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Since B = E,» it follows taat E, 0V, #¢ andso E OV %4,

=By so E,aV; C B -B) nv,

&=

as V., Is omen.  Aleo By (_ 7

- = g%
=¢ . It now follows that Eq 9“ vy (X - Ez)n

Te complete the preofs let 4 -be the o-field on X generat-

ed by the sets Vz y 1> 1le Since .Q 1is a measurable partition;

1t follows that A is a countably generated sub ¢ ~field of EK »
Moreover, the assertion made at the beginning of the previous
paragraph implies that § 1is just the partition of X induced

(X,

by A . So by Lemma 0.5y "4 = A(Q) 4nd hence, A(Q) 1is countenl:
zenerated.

Miller [ 20} has given an alternative proof of this prepcsi-
tione | -

It is well known thiat the o - field on ] induced by the
Vitali‘s }artition is net COuntabiy generated; Therefore the
apcve proposition neéd not be true for measurable (even lower

ceni-continuous) partivions into Fo setse.

We now prove the following interesting result.

-

Theeorem 3.2:3 Let Q _be a measurable partition of a Polish

= e o]

space X such that each element of @ 1is a. G in X . Then

there is a Borel cross section for Q.

Progf s Define a multifuncticn F ¢ ¥ — X as follows -
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%(x) = the element of 0§ containing X . Then F{(x) is a G,

in X for esch x & X . Since Q 1is @ measurable partiticn,

it follows that F 1is é(g) - measurable.

By Proposition 322 é(g) is countably geunerated. Also

the partition of X induced by A(Q) is just Q- 30 by
Lemma 2-2.1y R(Q) & A(Q) X A(Q). But R(Q) = Gr(F), so

Gr(F) ¢ A(Q X B We apply Theorem 2.3.1 to the multifuncti

X.
¥ ., This will yield a A(Q) - measurable selector f for ¥
Now let B = {x e X o f(x) = x} « Then B 1is a Borel cross

section for 9 .

It is pointed out by Kallman and Mauldin [10] (alseo by
Miller [20]) that the above cross section theorem has an inters

ting applicatinn in C* - algebras.

Miller [21] has also studied partitiens of Polish spaces
inte G6 sets of determined complexity and has established the

following *

Theorem 3.2.4 Let @ be a partition of a Pelish space such'

each element of § 1s a G5 in X. If the saturation of esach

basic open set is of ambiguous class « > O then there is a

Borel cross section of class Y for Qs where VY = Sup{d + B

;s<o<'}.
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Miller estaplished the spove result seme months after the
suthor had proved Theorem 3.2.3. It should also be mentirned

that Miller's metheods are gquite different from that of ours.

Corellary 3.2.5 Let T be a Borel subset nf a Polish space X .

-2

Suppose @ is a measurable partition of T such that each

element of Q 1is a G5 in X . Then there is a Borel cross

section for Q .

proof ¢ Define a partition Q' of X as follows .

Q=QU {{x} ¢ x & X - T} . Then, as is easy to check Q' is

s measurable partition of X . Alse each member of Q' 1s a G

in X . So-by Theorem 3.2.3, there is a Borel cross section B

for Q' . Plainly B0 T 1s a Borel cross section for @ .

We mention here that the condition ' each element of @

isa Gy in X" cannot be replaced by the condition " each

element of § isa Gy in T ™ from the last corollary. In

facts if we take X to be the space X X Z s T to be the
Sorel set H ;defined in Example 2.1.1 of Kallman and Mauldin

and Q to be the partition {To v 0 E 2} then § 1is lower

»

semi-continuouss each element of "Q is closed in T and Q@

does not admit a Borel cross section.

Crrnllary 3+.2.6 Let T be a Borel subset of a Polish épace

X . Suppose R is s measurable partition of T such that

o
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sach element of 9 1s a G5 in X . Then (T, A(Q)) 1is a

standard Borel space.

Procf - If Q' 1s as in the proof of Cercllary 3.2.5: then

é(g) = é(g')]T + So, by Proposition 3.2.2, A(Q') 1is countably
generated and hence so is A(Q. Wow let f ¢ T - [0,1] bDe
che characteristic function bf a sequence of subsets of T

which generates A(Q). By Corollary 3.2.5 there is a Borel crog
section B for Q.+ ©So f restricted to B is one~one and
f(B) = f(T). A well known result of Lusin states that the im%a
of a Borel set under a one-coney Borel measurable function on s
Polish space into another Polish space is Borel [1ly, pp. 4897, }
Hence f(B) is a Borel subset of [0y1]. So f(T) is Borel hg

[0+1]y which completes the proof.

We close this sectinon by proving the following conseagusts
;
0f Theorenm 3+2¢3. {

Corollaery 3.2.7 Let Xy Y be Polish spaces and f ¢« X = Y|

be 2 function of e¢lass 1 . If (V) is relstively Borel in
f(¥X) for every open set V In X then {(X) is a Borel supsl
of Y . Moreovery, there 1s a Borel measurable function g oy

£{X) into X such that f(g(y))=y for every y in f(X).

roof ¢ Let Q = {f-l(y) . v & f(X)} « Then g 1is a measu

a1

[ige!

able partition of X and each element of 8 is a G6 in

X « BSo by Theorem 3.2.3; there is a Borel cross section B
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Q. wa. f restricted to B 1is pne-one and f(B) = f(X). 3By
the result of Lusin mentioned earlier, f(X) 1s a Borel subset
of ¥. UNow define g on f(X) into X by g(y) = the unique
print of B O f_l(y). To see that g 1is Borel measurable, we
obgserve that for a Borel set E in X g”l(E) = f(E {t B)y which
by Lusin's theorem 1s a Borel set in Y . This completes the

proof.

3. A cross section theorem for partitions into ¢ - compact ssts

Vitali's example discussed in the introduction of this
chapter shows that a measurable partition of a Polish space X
into 0 - compact (in fact, into countable) sets need not admit

g Borel cross section. Howevers we can show the following -

Theorem 3.3.1 Let Q be a partition of a Pnlish space X
such that each member of B is o - compact. If é(g) is count-

ably generated then Q admits a Borel cross section.

proof ¢ By Lemma 2.2.1y R(Q) ¢ A(Q) X By . Since elements of
Q are ¢ - compact and é(g) is countably generatedg by Lemma

1.4.3, there exist sets G in A(Q X By such that G is

o0
compact for each x ¢ X and n>1 and R(Q = U G .
. )
We define
T, = TTx(6) if n v 1

= Jl(G) - U (G if n>1e
‘ X m<nTTX IJ . 8
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By Lemma 0.6y the sets Tn’ n > 1y belong to A . Also Tnflin
©0 00 ‘
M, e Let G = T ((Tn xXX) it GQ

=¢ for nFm snd X= r
n=1 n=1

The set G 1s the graph of a compact valued multifunction
F:X->X defined by F(x) =G x ¢ X+ Slace G e A(Q) XB
and G* is compact for each x ¢ X, by Lemma 0.6y the multifuny
tion F is A(Q) - measurable. By the selectinon theorem of
Kuratowski and Ryll-Nardzewski, let f ¢ X — X be a° A(Q) -

measurable selector for ¥ « Then the set B = {x e X - f(x) =4

is a Borel cross section for Q .

Remark 3.3.2 It may be noted that we can prove Theorem 3.3.1

]

by applying our selection theorem for ¢ - compact valued multi-
functions (Theorem 1.4.4) to the multifunction H 3 X = X

Adefined as follows « H(x)

il

R(g)x, x e'x S !

Remark 3.3.3 If X and @ satisfy the hypotheseé of Theorem

3,3.1 then (X, A(Q) is a standard Borel space.

Remark 3.8.4 If Q is a partition of a Ponlish space satisfyin

the hypotheses of Theorem 3.3.1 then § 1is measurable.

Remark 3.3.5 Theorem 2.3.1 remains true alse when X 1is

Aan absolute Borel set o that isy when X 1s a Borel set

in its (metric) completion.
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CHAPTER 4

REPRESENTATIONS OF G5 VALUED

MULTIFUNCTIONS

1, _IﬁtroduCtion In this chapter we study various aspects of

the "structure of G6 valued multifunctions satisfying the

nypotheses of Theorem 2.3.1.

. The chapter is organised as follows * In section 2 we fix

some notation which will be followed in the reét of the thesis.
In section 3 we prove a representation theorem for such multi-
functions; Thiss in particulary shéws that the graph of such
mulyifuncpions can be expressed as the uniﬁﬁ of graphs of measur-
able¥selectorso In seétion 4 we .agsume that values of the multi-
functions are of the same cardinality and exémine the problem of
decomposing its graph as the disjoint union of graphs of measursol
selectors. In section 5 we relate Gy valued multifunctions to
closed valued multifunctions. This enables us to conclude most
of the results proved so far in this thesis on Gg valued multi-
functions from the corresponding results on clesed valued multi-
functions.

2. Notation Now on throughout this thesis our object of study
would be a spééific class of Gg valued multifunctionss In this
section we specify our set up and fix some notation. This will
be followed throughout the rest of the thesis without any speci-

fic mention. We use T and X to denote two arbitrary but
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fixed Polish spaces. We shall only state extra hyprthesas on
T or X as and when necessary i By 4 we shall meamn »

ccuntably generatéd sub .0 — field of the Berel o - field By

We fix a countable base (V. e n> 1}y ¢losed under finite ind

sectious and finite unions for X such that V, = ¢ and V2:

Wwe give X a complete metric d such that the diameter 6(X)

By Fe« T —> X we shall mean a multifunction satisfying the
following conditions ¢ F 1is A - measurable, Gr(F) ¢ A& X §
and F(t) is a G, 1in ‘X for each t & To We put G = Gr(F)

and fix a non-increasing sequence of sets G, n 2 1s 1in

A X @X such that Gz‘ is open in X for t e T and n > 1

and G = 0 Gn . The existence of such a sequedce is ensured
nx1 _
by Lemma lo4eZe ‘ .

3. A representation theorem We first state and prnvé'a stamw

result [11s pp. 440]. The proof is sketched for the sake of

cnmpletenesss

Lemma 4e3.1 Every non-empty Ga._subset'of X 1is the image g

the space of irrationals nnder a continucus, open map.

Proof ¢ Let A be a non-empty Gy set in X and let

Uqs U2, ees Dbe a noun-increasing sequeunce of open sets in X

1

t ,- = D- . k , : | G
such that A e Un Let {ns s £ S}.V?e alsystem.of
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positive integers such that for s ¢ Sk’ k > 0, the following

hold < . ,
' -k
(1) s(vn) < 27
s
(11} &GV 2
2l
(i11) ¢+ 2a0v. C UV :
g m>1 Bem )

(iv) ¥ C o, o Yy w2 e
Tam k+1 ns

That such a system exists is easily seens Let o0 e £ . As d

; oo
1s completey : il Vn is a singleton. We
d k=1 “olk
define f(o) to be the unigue point of [ ‘vn « By conditions
: . =1 “olk

(i1)s (1i1) and (iv), 1t follows that f(Z) = A « Further,
f(ZS) = A0V 4+ seS5. This implies that f 1is open. Uow
s S
we check the continuity of f . We take an arbitrary o ¢ £

and a positive integer k . By (1), f(Zle) = A 0 v, ‘ (
L : glk

S _k(f(c)). From this we conclude that £ - is continucus.
2 i :

We shall now prove the following theorem for F &

Theorem 4.3.2- There is amap f « T X & -—» X such that for

each t ¢ Ty f(tyes) 1s a continuous open mzp from 2 onto

F(t) and f(sy0) 1s A ~ measurable for each 0o ¢ Z .

This interesting result is established by applying the

procedure of Lemma 4.3+1 to each F(t) uniformly. We first
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prove an auxiliary Lemmas

Lemma 4e3e3 Let X be compacte Then for each t ¢ T, there

is a system {nz « s E S} of positive integers such that for

3 € Sy k >0y and t e T

t
(i) the map t' - ng y defined on T, is A - measurabl

(11) 6(V ) < o K,

(i11) aob il o

e
t —
(iv) ¢+G60 Vv C U Vo
m>l n
S e sm
n of .
(v)vt.(__vt G om21
n n
s 5

proof : We define maps t —» n: s s € 8y by inductien on |sh
We put n; - 9 for esch t ¢ Te The above cenditions are
clearly: satisfied for s = e . GSuppose for some k > 0, maps

t = ng have been defined datisfying the above conditious for

t

all s e 549 1 <k. Fixa s ¢ Sk + We define t — n_.»

m > 1, by inducticn on M.

we first make a simple observation. Let W C X be

closed and t £ T Then

- t : 55l =) ] )U
W (L Gy,q 8 Vnt <= (342D (ns = A and W ( Gy 4 V/(
s
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Jence

gperiuC Gy D v i}
s
; s B _
= U ) [{t € T% ng= Ay n(T —TT_T((: X W) O (T XXy ~ Gy q)

A2
U (T X (X —~ Vo M.

3y inductien hypotheses and by Lemma 0.6y it follows that the

. . = t
set {t e T W (L Gq D_Vnt} e A
N ] M =]

For m 271, we define

0 =¢ if §(V,) _>;“2'(k+1).

O%herwise, let
Oorrer: ctav 4 ¢ 0 ¥ C G RV
m { v : m 2 m ‘= k+1l nt
. "y

- and

(¢ L <m) (8(V )< o~ (1) @t n v/(:cb

— 1 .
or V¢ § 00V Y.
s

s F 1is A - measurable, by the above observation,-T; e A

for each m > l. Also, the sets T; , m > 1, are pairwise

Aisjoint and T = U Tg . We define nZI =m if t e T; .

m>1
¢learly the map t — nzl ds. A <« measurable.
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t

Now suppose for some p > 1, maps t —= LI i< ps hae

peen defined to be A - measurable. For m > 1, let

P = L ~(ket- 1)
=4 Ans(v) > 275 :
Otherwises let ‘
D 5 1 t = t
o=t e & ng <m GOV § ¢ v, C Gq ﬁvnt
s
and

~(k+1) t

(VA < m) (8(Vy) < 2 = (g > A or &RV

= Lt
or T Qof, 0 v g D}
s

It is easily checked that Tg e A for emh m2>1 and 1

Tg n Tg =¢ for m*n. We'define

t

a1 D
ns,p+l = m if t e Tm

The definition of .ng y 8 € 5y 1s now complete. Conditions

(1) - (v) are easily verified.

proof of Theorem 4.3.2 et Y be 2 metric compactification

of X . By a well known result X 1is a Gﬁ in Y . Hence;
Lemma 4.3.2 1is applicable to Ty Y &and F (considered as a
multifunction inte Y). So, for each t e T we get a system._

{n: ! s ¢ 5} of positive Integers satisfying conditions (1) -

(v) of Lemma 4e3.2. Iet t e T and o e ¥ . Then
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o0 __
a0 v
s t

is a singleton. We define f(t,ag) to be the unique

pnint belonging to this intersection. By the arguments made in
the proof of Lemma 4431y we check that f(ts.) is a continuous;
npen map from I onto F(t) for each t & T. In particular,
* ig a map from T ¥ into X . Finally; 1ef v (C Y be

openy t € T and 0O € Z + Then

f(tyo) e U <= 0O V C B
k nt
olk

> (k3D (M2 (F, Cu and ngp =4
Therefore
-1 -
fles0) (U)y = U U {t e T = nc[k = A } ’
where the inner union is takéh over all A & N such that 51((: <]
and the outér union 1is ober alir k ¢ N. By condition (i) of

Temma 4.3-1. it follows that fleyo) is g - measurable for each

0820

An open problem Let Y be a Polish space and let £ ¢ T X Y =

¥ be » Carasthdodory map such that for.each t e T» f(tye) is

continuoﬁs, open and for each. y & Y» flesy) is 4 - measurable.
Let “H 3 Tv—> X be the multifunction induced by f . 5o that;
H(t) = f(t,¥)s t € T+ By a well known result of Hausdorff [7],

51(t) 1is completely metrizable and hence a - Gy 1in X for each

¢
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v e T« Let {yh}n>l be a dense sequence in Y « Then for e-=cn
o i {f(ts yn}} is dense in H{(t). Thus, if U 1is an
izl

open set in X then

Jte T HE)LU$ ¢ = ngl ft e T35 £(tyy,) e U}

It follows that H is A - measurable. Question arises + Does
Gr(H) e 4 X QXI? (P 2). We Ao not know the answer. An affirm-
ative answer te this question will show that the-class of G6
valued multifunctions under considerstion coincides with the
class of multifunctions induced by the special Carathéodory

maps of the above kind.

4. Decomposition of Gr(F) into graphs of measurzble selectors

In this section we assume that X is uncountable and

F(t)s t € Ty are all of the same cardinality . We ask ourselves:

Can we expfess Gr(F) as the disjoint union of the graphs of
measurable selectors for F 7> Luzin [16] has proved that an
analytic set in the product df two Polish spaces having countable
sections can be covered by countably many Beorel graphs. A new
proof of this result is recently given by Maitra [17]. A simple
application of this result shows that the answer to the above
question 1s in the affirmative if we moreover assume that

F(t), t e Ty are all countable (finite or infinite). The detailg

aressian, IDER] )
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We dn not know the answer to this gquestion when F(t),
t & T, are 2ll uncountable. (P 3). We also Ao not know whether
3r(F) contains uncountably many pairwise disjoint graphs of 4 -
measurable selectors for ¥. (p 4). However; we cau prove the
following -
Tneorem 4.4.1 If F(t) is dense-in-itself for each t & T
then there is a A X By - measurable map f « T X X = X
such that for each t ¢ Ty f(tys) 1is a Borel isomorphism nf

X onto FT(t).

This result is analogous te a result of Mauldin [1¢] and

we follow some of his ideas.

Lemna 4.4.2 Let X be compact and F(t)s t ¢ T, be dense-in

-itself. Then for each t € T and d ¢ Dy the set of all finite
sequences cf O0's and 1's, there 1s a positive integer ng such

that for t ¢ T and d e Dy k 2 0y the following hold
1
(i) the map &' -> n’ , defined on T, is A - measurable:

k

(11) o(v ) < 277,
A4
(1i1) 4' e D dFd' = V0V = b
N4 g
(iv) F() oV ¢ $9 >
n
a
@ ¥, Cofjav, » 1=0 or 1=1.


http://www.cvisiontech.com

57

Proof : We define maps t —é,ng sy 4 e Dy by induction on (4]

e put n: = 2 for all t & T« Suppose for some X > O, mans
T ng have been defined for all 4 ¢ DK’ A £ ky satisfying
tne above conditions. Fix a d e D, and let T' = f % e T!

ng = m} y m > 1. By induction hypotheses ™ ¢ Ay mFn=

LA = omdr ol S T .
m>1

Now; for any pair (u,v) of positilve integers we define

—(k+1) ~(k+1%

™ ., m > 1, as follows « If S(Vu) < 2

T ) §(VV) < 2

Ve I T2, V& _ Vm and Vu nv, = ¢ then we put
™ = ftetr 0V, C 640 V. O G
VAR £ and vV, OF(E) § ¢ } o

: B
otherwise, we put T _ = ¢.

By Lemma 0.6 and A - measursbility of Fy Tj ¢ A . Al

as 1s easy to check, T = 7 i I

(uyv) W

Ilet . N > N X N be a one-ones onto function. Put

s; = Ti(i) ir i=1
_ mh .
= Toegy = U 'If((j) 18 o |

i<i
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e get S? e Ay 13§ = S? fi S? = ¢ and ™= U S? .
. izl
We define
t A
ng = («(I))y
. if teg; forany j and m.
N4 (‘:((J))g g

This completes the deflnition of ng, d €D teTse It is

k+1’
easily checked that (i) - (v) are satisfied.

Iemma 4.4.3 If F(t) 1is dense-in-itself for each t & Ty then
there is amap g+ T X C - X such that for each t & T, g(ty.)
is a homeomorphism of C dinto F(t) and for each & ¢ Cy 2(.,8)

is é - measurablesy where C denotes the Cantor set.

Proof ¢« Let Y be a metric compactification of X. Lemma 4-4.2
s applicazble to Ty Y and F (considered as a multifunctinn into
Y). We get positive integers ng, d € Dy £t € Ty satisfying

conditions (i) - (v) of lLemma 4.4.2. Tet t € T and 5 e C -

Then n v 2 is a singleton. We deflne g(ty6) to be the

anique point in 0 V. .

It is clear that for each t ¢ Ty g(ty.) is a one—one
continuous map and hence a homeomorphism from C into Y .
By (v)s g(t,.) is into F(t)., In particular, g is a map

into X . Tet & ¢ C.+ To check that g(.s6) is A - measurable,
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we first notice that if t e T and U 1is an open s2t in X

Then

g(tyy e U <> - 0. Wy LT
k>1 nﬁ]k

= (kD (BL2 DT COagpy = L)
Therefore
g(g,é)ﬁl(U) =T U ({t d4C E nglk = [ }), where

fhe Iuner union is taken over all L ¢ N such that VX (: U
and the outer union is over all k. It follows that g(«986) is

A — measurable.

proaf of Theorem 4e4.1 By Lemma 4.4.3, we get a map g T B
¥ such that for each t & Ts g(ty o) is 2 homeomorphism of C

into F(t, and for all & ¢ Gy g(-96) is 4 - measurable. Hene

g 1s 4 X B, - measurable [11, pp.378]. Now we use the fact

“het there is a Borel isomorphism from X ounte C [11: pp-450]
to get a A X By - measurable map h o TX X - X such thail

cach % & Ty h(t,.) 1s a Borel isomorphism from X 1into F(ﬂ

et ko T XX = T X X be defined by

k(tsx) = (ty h(t,x))y t e Ty X ¢ X 4

and let
B = Tr(t,x) e TXX 3 X ¢ h(t,x)}.
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Then B is a subset of G (the graph of F) and,
as k is one-one and Borel measurabley B is Bonel

in T XX [11y pp.489]. Furthers B 1is a union of 4 X By -

atoms. S0, by Lemms 0.5, BeAXB Alsoy ke T XX —

:X.
T XX 1is measurable when both its range and domain spaces are

equipped with the o - field A < By .

Nows we sketch a Cantor-Bernstein tyﬁe argument to define
afmap «T PTX X = T X X such that « is measurable when
both its range and domain spsces are equipped with 4 X EX and
such that for each t ¢ Ty «(t, «.) is a Borel isomorphism from

X onto {t} X F(t). Firsty for A C T X X let
B(A) = T X X -~ (G - k(D),

Note that if A e A X gX then so dees B(A)s Nows, we choose

a set AO e A X EX’ such that 5(Ao) = AQ, for instance, AO

could be the set U p7(P). We define
n>o

«(tyx)

i

k(t,}{) if (t;X) £ AO

i

(tyx) ‘ if (tyx) F AO -

We put f = TTX 0 «, It is easy to verify that £ has

the desired properties.

Whea A = Bny the function f whose existence is asserted

prawd -

in the above theorem is called a Borel Parametrization of the
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1

auitifunction F . The notion of Borel parametrization was intx

duced by Mauldin f197,who found necessary and sufficient conditis

for a multifunction to admit Borel parametrizations.

The following example shows that the condition ' F(t) is
“ensa-in-itself ' cannot be replaced by the condition ' F(t) is

unccuntable ' in Theorem 4.4.1.

Bxample 4.4.4 Let X be an uncountable Polish space containing
: e B e

+ countables denses open sét W . (The union of the Cantor set
znd the mid-points of the ternary intervals is such a Poiish Spacy
Let T=12 A=Bp and let ¥ = X ~-W. ILet B Dbea Gﬁr
set in ¥ X Y such that every section of 'B;'is.uncountable 210
B does not admit a Borel uniformization. Let F » T -> X oe
» multifunction defined by F(t) = Bt UW, t ¢ i;‘ Tt is clear
that F(t) 1s a GG in X frr each t e T and Gr(F) e A X3y
ds W 1ig demse in X ‘aﬁd as W (: F(t) for all ts F 1s

A - measurao.e. If i satisfies fhé conclusious of Theorem 4.4
then by the Borel Parsmetrization Theorem [19y Theorem A] of
Mapldin, there exists élBorel set M Gr(F)' such that u i
wn-ampty, compé;t"éﬁ&'dedge-in-itself for each t ¢ T. It
follows that M (C B and hence B admits a Borel uniformizatio

Tnis is impossible.

We point out here that there is a closed set M in Z X i

such that for each o0 & 2 , M° is uncountable and M is not
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Borel uniformizable. ILet F be the multifunction defined as 1a
Example 2.1.1 with M having the above properties. It has been
already cnncluded that F does not admit a measurable selector,
In particular, we conclude that the uondltlon rF(t) is 8 Gy in

X ' cannot be replaced by ! F &) 1is uncountable and an o Mia

X ' in the last theorem.

It is also worth noting that Mauldin has an example of a
A - meésurable, compact vélued multifunction F such that
F(t) is uncountable for each t £ Ty but F does not admit a

Borel parametrizatioﬁQ

We close this section by generalizing a result of Larman

[14].

Corollary 4.4.5 ILet M (_ T X X be a Borel set such that

Mt is denséiiﬁ-itself and both a K and a G set in X
o] & ' 5
for each t & [[p(M). Then M 1is a union of =~ 2 ° disjorints

Borel uniformlzaticoris.e

ggggj ¢ Without loss of generality we assume that X 1is-dense-

in-1tself. We take A = B

A =Bp, and define F c T > X by

F(t) = M? Aif te T[p00

= 4 if t e T ~11%(M) .
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In Giew of Lemma 0«63 T é, X and F /satisfy the hypotheses
of Theorem 4.4.1. Hencey Gr(® is 2 union of

{
hr i & - - -
e $Q mahy disjoint Borel uniformizationse ;From this the result

fﬁ 1101’”5 &

Under the hypotheses of the above corollary, Larman had

b
9 many disjoint Borel uniformiza-

proved that M contains 2
tions. We do not know whether the above corollary remains true
if the condition ! Mt is dense-in-itself ' is replaced by ths

condition ! Mt is uncaﬁntable e (Pe5)

5. Relationship to closed valued multifunctions Now we glve

a simple relationship between Gg' valued multifunctions and
.cloéed>valued multifunctions. We shall follow some of the ide=as

of Leese [15].

_Definition 4.5.1 Let (L L) be a2 measurable space and Z =

metric space. A& multifunction H « L — Z 1s said to be of

Souslin Type 1if there is a 'Polish space P, & continuous map

-

g . P > 7 and =a g - measurables closed valued multifunctinn

WoL <P such that H(t) = p(W(t)) for each t ¢ L .

The following facts regarding s multifunction H « L — 7
<1 Souslin Type defined above are easy to deduce from the
corresponding properties of the closed valued multifunction

W:L->P.
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Ract 1 H is ; ~ measurable.

Fact 2 H admits a g -~ measurable selector.

g2

e i =

act There exist L - measurable selectors hn’ n> 1

for H such that {hn(t) = iy is dense in H(t) for each
t el «

Fact 4 There is a Carathéodory map h + L X 3 - Z which

induces Hs
We omit the detsils. The following result is proved

jointly with H. Sarbadhiksri .

Theorem 4+.5.2 The multifunction F ¢ T = X 1is of Souslin

type.

Proof - We first assume that X 1s also compact and zero - dime

sional and that the basic open sets Vl’ st see are clopen.
Let
fa . ""t -
Tan{tSTan(_Gn}'} mzl) nzlo

By Lemma 0.6, Tnm ¢ A for each m and nu . Further, as

sections of Gn are open

(Tnm,>? Vm)s n>1l.

o
tl
g a

We put P =X X £ and B =[[ys Let

B = rx:.g(trnmxvmng),
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" where

We define W2 T =5 P by

W(t)

§]
vy]
t
™

-+

Therns for t & T

Wit) = 00U (v, X B

il

where the inner union l1s.taken over all m ¢ N such that

t € Tnm and the outer intersection is over all n .

For each n » 1, the family JV X 2; P om>1} isa
discrete family of closed rfets in P " Therefores W(t) is

closed in P » Also; for any t ¢ T,

g(W(t)) = 0 U'Vm ’ where the inner union is taken over all
m such that t e Trlm and the outer
intersection is over all un ,
=  P(t) .

It remains to check that W 1s A - measurable . Let 1 e U

and s e 5 k20, It is enough to show that

b
P

T (T X ¥V, x ) AB) e 3.
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Motice that

il

i

X ¥£)AaB

(T > Vi s
S i (T X (v, 0 vy >x (3 0 5))
. u
DT, > (Vg D.V)xz)ﬂ( n U(TnmX(VHV)
j=1 9% o - wk om
= (25{1:)))
i ya(n U ( i ) (52 0E)))
n (T, > P U (T X<V, 0 v, Vo) X | )
=1~ 254 ok myl M = il ,zm )
Hence;
T (CT x vy X Z) 0B).
o 7, 0T, ( 0 U(T_ XAV, o0 v, ) x(E o))
5=1 gsu iT ok myl i m- i j=1 Sj . B! s
k Kk
0 T.. o0 lla( 0 -W(T. > (V. oV, o 0 VO
Jj=1 JSj IIT n>k m>1 nm o 2 j=1 Sj
0 TTo (€T ¢ 8 )) 4 (0 ( 13}
o T, 077 T <(V, 00 v ))ya U (T XV
j=1 Jsj i) 1 J:l sj H?I{ rn_>_1 i g
R Tl ((T < (¥ A }) )
0= %, o T ><(V, 0 ﬁ % na .
j=1 98y IT 1 -1 Sy
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To justify the last equality we use the fact that the
seguence {Gw} is non-inecreasing. Since Tnm e & for each

-~ snd m and F is A - measurable, it follows that

Ty T x v; x £) 0B) e A.

Nows let X be a zero-dimensional Polish space. Let Y
we g zero-dimensiounal; compact metric space contalning (a homeo-

rorph of) X . Then X 1s a G in Y « We consider F as

B
s multifunction inte Y. By the previnus case, we get a Polish
space Ry a continuous map g . Q=Y and a A - measurable,
closed valued multifunction 5 ¢ T — Q such that F(t) = g(H(t).
“or each t € T+ We take P = g"l(X) and P the restrictinr
of g to P. As X 1is a G6 in Y, by a well known resul?® of
Liexsndrov [1l, pp. 408] 4 P 1s a Polish space. Note that

#t) C P, t e T .We put W= H.

Finallyy let X be an arbitrary Polish space. Let

o
2 3
s

¥ .> X be a continuousy open and onto map. We define a

miitifunction H# ¢ T — ¥ by H(t)

il

g HF(t))s t e T .

C.a

.% U be an open set in Z . Then

Jbe ™ © OH(®E) DU$p=fte T FE) D@ F Y.

L ¥ is A - measursble and g openy H 1s A - measurable.
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We now show that Gr(H) ¢ A X By * let he T X X —>
T > X be defined as follows « h{tsg) = (t;g(v))e Then h 1is
measurable when its domain and range spaces T X 2 and T X X
sre equipped with the ¢ -~ fields A X gz and A X EX respect-
ively. Thereforey since Gr(H) = h-l(G) and G e 4 X EX ;
it follows that Gr(H) e A X By « By the previous casey we get
# Polish space Py a closed valueds A - measurzble multifunction
WaoT~>P and a continuous map f : P —> £ such that H(t)
= f(W(t))s t ¢ T+ We take B =g o f . The desired properties

are easy to verify.

A close examination of the various cases in the proof
given above reveals that the map B « P — X is abtained te
be continuouss open and onto . Since every Polish space is
the image of ¥ under a continucus open maps; we now get the

following -

Theorsem 4.5.3 There 1is a é - measurables closed valued multi-

-

funetion W ¢ T ->» ¥ and a continuouss open and onte map

g8 5 I - X such that F(t) = p(W(t)) for each t & T .

It should be noted here that the selection theorems, the
existence of a dense sequence of measurable selectors {(Carollary
2.3.4) etc. that were proved in Chapter 2 follow from Theorem
4.5,3., We are thus able to use Theorem 4.5.3 to reduce these
problems for G6 vaelued multifunctions to corresponding problems

for clogsed valued multifunctions.
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CHAPTER S

4 CHARACTERIZATION OF G, VALUED
, G TR

MULT IFUNCTIONS

1 JIntroduction In this chapter we give a complete characteri-
zation of multifunctions of the type considered in the previous
chapter. Recall in the previeus chapter we considered multifunc-
tione F o T > X where T and X are Polish spaces; F(t) 1s
2 G, 1in X for each t e Ty F 1s A - measurable and

8

Gr(F) ¢ A X QX’

of the Borel o - field B, » Such multifunctions will now be

where 4 -1s a countably generated sub o-field

characterized.

Let us now recall the following characterization of Polish
spaces * A metrizable space is Polish 1if and only if it is the
image of the space of {rrationals under a closed continucus map.
The 'if' part of this result was proved by VaInstein [30] 5
Engelking [5] established the ‘only if! parte The above character-
ization of Polish spaces ylelds a clue to a way that G6 valued
multifunctions of the type under consideration can be character-

ized. In other words; we prove the following

Theorenm Sele] Let Ts X be Polish spacess A a countably

generated sub o - field of the Borel o - field QT and

F! T > X a miltifunctions Then the following are equivalent &
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(a) T ois 4 - measurable; Gr(F) ¢ 4 X QX and F(i)
is a G6 in ¥ foreach t e T.

(B) There is a function f: T X % — X such that for
t eTy f{t;.) 1s a closed countinuous map from 2 onto ¥F{(t)

-~ measurable.

It
.

and for o & I, ft.gd) isr

This result can also be viewed as a sectionwise version of
the above characterization of Polish spaces. The proof of the
proposed result is dividedrinto three parts. In sectinn 2 we
prove (A) = (B) when X is arzero—dimensiqnal-Polish space
It is well known that every zero-dimensional Polish space is
homeomorphic to a closed subset of irrationals. A proof of toie
iy given in [11, pp; 441].. wé cérry ovér this proof sectionwise
and reiate ¥ suitably to é méasurable’multifunction whose
ralues are closed subsats of irrationals. We then invoke
Prepogcition 1.5.2. We provet(A) = (ﬁj for an arbitrary Polist
apace ¥ by refucire *ho problem to the zero-dimeﬁsipnal_case

‘using an idea of Ponomarev [23]. This is done in section 3 .

Tr. section 4 we prove (B) = (&) .

2. [Ths_Zero-dimensional cagse In addition to assumptions and

rotation fixed in section 2 of the last chapter,in this section
we assume that X 1is also zero-dimensional and that basic open

sats Vyy V,r oes arve clopen as well. (Recall V, = ¢ and

Vo = K)o
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Lemma 5.2.1 Let X be compacte Then there is a system of & -

measurable functions t - nz, g £ 8 from T into the set of

all positive integers such that if for s € S k > 6, and

k’
t € T we define a clopen set Fét) in X as follows &

() Fét) =V, if k=0 or k>1 and
nS
| Sk = 1
=¥ 4 ﬁig Vo if k>1 and. Sy 1,
I,IS Sk ns[k-—l,i
then the following hold
(1)o@ < 2,
£ = o(t) £ () ~ P (6
(1) ¢* Cr® ana o*arl® C U F
f=1 A

" (t) — ,t (t)
(1i1) FSm &P Gk+1£1 Fo7%y m2 1.

In particula;,_ st ¢ Sk’ s  s' = Fét) l Fgf) = ¢ .

proof « We define this system of functions by inductien on'[s[ .

Let nt = 2 and Fét) =V ; for each t e T. Suppose n:

e o
e

and th) are defined for all t ¢ T and s € S of length < k

satisfying the above conditions. Fix a s ¢ Sk .

We first observe that if U 1s an open set in X then

jteT:m C G;+1 n th)} e A« To see this note that for
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each t € T we have the following §

If k=0 or k>1 and = 1 then

Sk

- Lt (t)
v C Gl 2 Fs

> (Ahem mb=h ama U C Gy 0 Ve

whereas if k > 1 and > 1 then

Sy

= i ()
U Ca it Fs

. s
= (FCApaeeesfy) € MO 1L s (ngy g, = A)

and

— t -
U ‘(_ Gk+1,“ (v/(Sk—igSkv/(i)).

By induction hypotheses and Lemma 0.6y the assertion now

follows.

we shall now define the functiouns t — nt

sp’ p ¢ My

induction on p . We define

o _ : = -{k+1)
.= ¢ if m=1 or &(V) 22 .
Otherwise, let
,C*_ L d t (t)
=%l - Vi L Ggyq 0 Fg

and

(¥A) (L < A<m and 6(V)) < o~ (k1) vy (1 A

0y

()
8
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g

By the above observation, the sets: Tg, m > 1y belong to

and_are pairwise disjoint. We define .

nt i
sl

H

o
@ if t € Tm
o
=1 if teT-~ U Tﬁ s b
m=1
Clearlyy the map t -> ngl,;thus défined, is 4 - meésurable.
Suppose for some p € N;'ihé‘méps t = ngi are defined to be

4 - measurable for all 1 <p. For me Ny we now define

=

(VA < m) (8(V )< 2

nP . : l "‘(k+1)
T, = ¢ if B(Vm)_gz :
Otherwises we put
p _ ‘» t g ’ : - t E (t)
.Tmm_{tle T‘. nsp<m, v, C Gpep 0 Fy
and .
~(k+1). t t (£)
=>(n  >A or \{/( G Fg "D} -

It is easlily checked that the sets Tg, m. 2 1, belong to A

and are palrwise disjoint. We define

t _ D
ns,p+1 = m if + e Tm
o0
X BE gt e T W Tg
‘ ' m=1

Il

The definition of the maps t — nz, s & 8y, 1 1s complete. We

. t
define Fé ), t € Ty g ¢ Sk%lgby'the formala (*)« It is routine
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to check that conditinns (i) - (iii) are satisfied.

Proof of (A) = (B) when X is a zero-dimensional Polish

space « Without loss of generality we assume that X 1is also

compacts Soy now X 1s a compacty zZero-dimensional metric

space. < We get a system of A - measurable functious t - nt

S
s € 8 and a .system of clopen sets Fét), s £ 8 in X satisfy-
ing the conclusions-qf Lemma Se2. 1. Define a multifunction

He: T > 2 by

H(t) = {& E S . Eé?i £ ¢ for all k e N} 1 A e

Let t e T and s e S, k>0. We note that o ¢ H(t) if

and only if Z NH(t) = ¢ for some AL & N. It follows

a[ A

thet H(t) 1is closed in X . We now observe the following

squivalences | | )
t (t)

(2) H®) 0 Z_ % 4 <= G 0 F;7 ¢,

\\ -

(b) If k=¢ or k>1 and s, =1 then
t 4 wt)
T

<« FCE) 0V, # 6

Mg

i

<> (3AeM (° =4 ond HORRIE XD
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(e) If k2> 1 and > 1 then

Sk
at arl® 3

<=> F(t) o (v, - U V4 ) ¥ ¢

ng 1<y U5 ik-1y1

s
<« (3¢ Al,...,xsk) e N k) ((¥ i % Sk)(nzlkulyi £ A )

i
and
F(t)n (v/(sk s, v/( ) £ @)

?By A= measurability of F 'and of functions t = n;, s £ S
and by the above equivalences it follows that J{t & T T H(E) D E,
+ ¢} e Ao Singe s €8 1is arbitrary, this proves that F is
A

- measurable.

By Propositinn 1.5.2y we get a function h: T X Z -5 Y
such that for each t € Py h{ts.) 1is a closed retraction of

s onto H(t) and for each o ¢ Iy h(ey0) 1is A - measurable.

oo

Let (t,0) ¢ Gr(H). Then o (ti is a singleton. We
w1 Ol :

put g(tyo) to be the unique point belonglng to this inter-
section. We now show that the map g ¢ Gr(H) = X ‘thus defined
is A X QZTGT(H) - measurables If U 1is an open set in X

and 7(t,g) e Gr(d) then
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g(tso) e U
<= ﬁ éfi C u

= Q@ @ Co
<= (3s e 8) (o e £, and Fét) . U)

Thus,
= . () -
(U) =GrH) U (Jt £ T F AL
: MW AT (fte TR ¥ x

We consider various cases in the definition of F( ) as befors
and show that for every s & S, {t e T (t) (_ U} e 4. It
follows that g is A X By | Gr(H) - measurable.

"Let £ 1 T X Z - X be defined by
f(tae) = g(t, h(tsya))s t e Ty oce 3.

Tt is easy to see that f has the desired properties.

3. The General Case = In this section we prove the implicatimg

(4) = (B) of Theorem 5.1.1. Notation and assumptions are as
fixed in section 2 of the last chapter.

Lemma S5.3.1 Let X be compact. Then for each t & T and

iy 1 & N there exist positive integers ngj and ng such

nBres
Pas A
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(1) the maps t — ngj and t — ng are A - messureble,

(11)  6(v ) < 277,
o= = iy
- oo
(111) ' FE) C 0 v
m=1 nim

(iv) m > ng =2 ngm =3 e

Proof T et Nieh = = {(t,x) e T XX . x e F(t) } « First note
that if U 1s an open set in X then

t

feeT 2 TPau ¢+ ¢y

i

fte?T ¢ F(t)ﬂuﬂ,} e A

Fix 1 e N. We shall define maps t —> ngj, j ey by

inductionon j . For m > 1, we put

To=¢  if s(v) x> 27t |

otherwise, let

Imos{ter ¢ T oav $4
| and

= t

(¥ /(<III) (G(V/() < 2wi = G, n V/(:¢)} ,‘

By the above observation, T; e Ay m>1. Further’

—
=
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(a0

| 0 o __ - o . 5
m$n=> T QT =¢ and Tumngm. We define mn;, =7
if t e T; » The map t - ngl thus defined is clearly A -
measursble. Nows Suppose for some p € N maps t — ntjij’

j < ps have been defined to be A - measurable. Let us observe

that for t e T and x e X
(£,%) £ T <=2 x ¢ F(T)

<=> (3ne N (xeV, and VnﬂF(t)=¢),

so that
P 4 oo 1
(T XX) -G =T (F (V) X V).
al 14} n

As F 1is A - measurable, 1t follows that (5"8 A > _B__ o Nowr

for an open set U 1in X

(G'-v vy)a U4

o g,
= (B3 Apeend) & W) ((F 3 <) (agg = 4
and
(o U Ve)aU§4)
- ikp

By the above observations Lemma 0.6 and the induction hypothesis

we get the following
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{téT:(Et-.U Ve) D Usgy ed.
Jj<p nij

For m > 1y, we now define
P . -1
Th = ¢ if S(Vm) 2 ? .

In case G(Vm) < 2'i, we define

| t -t |
™ =yteT W@l LGP T s Pl W
and
(¥ A<m) (V) <2t (a 24 or
(TP v vodYav,=aé))
LR R L

ij

By the observation made last and the induction hypothesiss

,Tg €4 m>1., Alsoy m % n => Tg 0 Tg = ¢ . We define

t » P
ni,p+l = m if t e Tm

- 4
= if t e Twe U .
' m=1
As p e N was arbitrarys this completes the definition of

t

t - nij’ j e Ne To define ni, t € Ty notice that E’t

is compact and so (3 m e N) (¥ L > m) (HEK = 1)e We define
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ni to be the first such positive integers It is clear that

conditions (i) - {(iv) are satisfiled.

Lemma 5.3.2 Let X be compact. Then there is a set B (C T XZ

and a map g + B - X such that for t e T
(1) B e A X By

(ii) B is non-empty and compact,

(ii1) g(tys) 1s a continuous map from BY on F(t)

(iv) D 1is » dense subset of F(t) = {o £ Bt - gltyoy - DY

is dense 1n Bts

(v) g is 4 X By | B - measurable .

Proof For t e T and 1,j ¢ N we get positive integers

nt and ngj catisfying conclusions (i) - (iv) of Lemma 5.3. L.

1
et G = {(t,x) e T X X? xc¢ Fft)} « In the proof of

Lemma 5.3.1 we showed that el o5 A X EX e For t e T we

Adefine

T(t) &4 ot i i ==
Jij e Y & G if 3 il

(v, 0G% - U (v, 0T if § > 1.
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We heave

(1) 6(U§5)) < g7t |

t

) Uég) is relatlvely open in T y

3 nfa = v aul® -y,

I

t (t)
4y m > ny = U ¢
P o0
(5« &=L g Ulgl?

k=1

~-

(8) for every open set U in X
o -t - (t)
{t E LY & My K Uij } e 4
{7) if P 1is a finite subset of N XN and if U is
open In X then

: (t)
ft el (m,frll)ePUmn 0 U$¢}eh.

The facts (1) -~ (5) are clearly seen from (i) - (iv) orf

Lemma 5.3+1s To see (6)y we note that if j = 1 then p

=t — (t)
ey C U35

= (A AeN (ni.l’j:,( and T tnu V)
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and if J > 1 then

e - (%)
G LU Uij

<= Ttau C vt-U(VtQ?t)
nij k<j Ny
. ~ 1 -— ‘ , ~ T
o= G 'ouC vy and (¥k<J)D (G pnunv, =9
nij ni._’
ik
Lo (3( /( 9009 ) £ NJ)((TIC]:{ < j)(rlt = /( )’ ,a)tﬂ U C ¥
and

(vk < ) (Tt av av, = $)) .
k

Yowy (6) follows from (i) of Lemma 5.3.1, the fact that
T e A X B and Lemma OsB8. The fact (7) follows from (&)
and the following equivalence .

(t)
A U nu
(msn)ep 0 te

t - __(t)

nv, Cug ).

<= (31{ e N} (V (:U and (¥(msn) € PY( § o

For t e T and iyj > 1 we define the following by

induction on 1 ¢

® n t P 4 =
mi = ni i 2l = §
t t . .
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and

(a)

(b)

(e)

(d)

(e)

(£)

(g)

(h)

()

(v)

(w)

w® = o® 4r 1=

iJ = 13 -
. (t) () g .t
= QugZy, Af 1>1 1<k gmy,

We have

the map t - mg is A - measugable,

(t)
Wy

. , i
is relatively open in G ’

s(wgg)) < gt

mFn = w(t) n w(t) == 5
K > mp = wgi) = $ s
Tre § WD,
/(_
(vuu)svxm(gkem(ww C Wy,

i+1yj ik

( } - 1B (t) - (%)
Wi, & Wﬂt = Wi,y © Wy o

{ter: w(g) F ¢} e e

U dis open in X = ft e T wgg) C vy

) (t) |
ft T 3 %ﬁld9 WKH Ye Ao
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Using (1) of Lemma 5.3.1, (a) follows by induction oan 1.
(b) - (f) follow from facts (1) - (5) stated before. (g) is

(1) [
clear. We now check (h). It is clear when Wy /'y 4 ¢ « S0

let w(t% 3 + ¢ and k' be a positive integer such that

£ - (% t
W:(H_%,J E wlf) . Therefore ¢ + wg‘% e w§t) a wi¥ .

t t =
This forces Wg ) n wgkz f ¢ as W§k2is open in G . Hence

by (d)y k = k', In other words wgfi 3 - W(t) The fact
(u) 1is a particular case of (7). To check (v) we first note
that as the base {Vn‘: n> 1}y for X 1s assumed to be closed

under finite unions and as X - U 1s compact, we have

LB - ¥
W C v

<= (A0 & -U Cy ond v AW =)

'3
<=> (Jx) X -0 C Vg and v, D wg’) = ¢)
Thus, Jt e T i I UY

= U {t & e (t) v, =d

= - Wiy k ¥

where the union 1s taken over all k > 1 such that X -1 C Voo
Nows (v) follows from fact (7). To verify (w), we first notice
that
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fteT (t) - (t)}

Vel g, = "y
: « (8 N | . (t) - )
= fte T Wk+l,j2 = 9% U Jre T4 wk"l’jz _ 3 |

5 . (1) N ' & | -t € ...
=qdte T Wgd,s, =4} U U feeT: ) <m and n,, =pp>

&

where the last union is taken over all (psg) € ¥ XN such that
agp and j, = (Jp - 1) p+ q . Now (w) 1is easily seen from

facts (a) and (u) stated above snd from (i) of Lemma 5.3.1.

We now take

= (t)
_ . ¢ (t) (t) (- )
B h{(t,c} e TX I (fk).(wkﬁk F ¢ ?nd wk+lack+1 s
By the fact (h) stated above,‘we have
(t) (t) = u®
B w{(b,O’) g T XZ . (uk) (W :#: ¢ and . wk+1-,o,k+1 (____ )ja

K

{(ts0) e T XE I (¥K) (w(t)1 _)“ ces ) }g}){ 9y

o0 ~

= I ot ers Wy LDl X Z)
k=1  ses, i Lsy k 1 ‘H’

By facts (u) and (w) it follows that B e é > EE .

We now check the assertion (ii). Let t ¢ T . Then

o0

Bt &= X ({13-..,m§}). To show that B + ¢ we shall get
1=

positive integers p > n > 1y inductively such that for every
(t) (£) =y () -

k: wkpk + ¢ and wkpk 2 Wk+1,pk+1 . Let p; be a positive

integer such that witg ¥ ¢ . That such a positive integer
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exists follows from (f). Suppose for some k & N we have

obtained positive integers DyseeesDy such that

:E_;i _) PR, co e :) ng){ :f: 4) . BY facts (4),(5) and (b),

there exists a positive integer A such that Wé;) hy
k

Ppy3 2 1 such that

k+1,/( d‘)‘

"t follows that there exists

"s2 = (t) .
W « IFinally, ¥
Yoy =) Merlopy g Fo

ot BY <= (tyo0) £ B

= (9K (W(t) il W}iﬂ,cqu Wg:{

<= (gs e 8) (o ¢ £, and X0 Bt = é) .

It follows that B' 1s closed. The assertion (1i) is estabiished.

Now notice that if (tsyo) e B then 0O wit)
k Ko k

to be the unlque point belongling to this intar-

is a singlston.
We define g(t,0)

section.

We shall check sesertions (ii1i) and (iv). We fix a t & T
and o € Bt. Let U be an open set in X » Then
g(tya) e U

o0
<=> wktg) Er
=1 X
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<= (Jk) ( w(t) C U)y as X is complete and © &( (t))

—> 0 as Kk ~=> o0

= (31 (et E 089 C O .

This observation shows that g(ts.) 1s continuous on Bt. To

show that the range of g(t{)) is precigsely F(t) we fix

x ¢ F(t). Using facts (e)s (f) and (g) we see that Konig's

infinity Lemma [12, pp«.326] 1s applicable to the collectinn.

T > T
kgl 3 & Sk « X E ksk ,- ‘.Oo (_ wlsl} .

Now it 1s easily seen that g(tsy Bt)‘: F(t). To prove
(iv)y suppose for some s € S k20, £ 0 a* + ¢ + Then

k
o wit

=l 359
Since g(tse) 1s onto F(t) and D 1s dense in F(t) we get a

t kKo g) ’
@ & B such that g(t.so) ¢ 0 W NDa If for some 1 < ky

1=1  *53 :
(t) € W't
sq F o, we get that g(t,o) e Wy sy n wioi . As isi is

is a non—empty, rélatively open set in ’E‘t = F(t) «

relatively open in F(t) this implies that W§g) n wgg) + ¢ .
il
But this contradicts (d). Thus o s Bt Il ZS and g(tso) ¢ D .

To verify (v), let (ts0) ¢ B and U be open in X . Then
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g(tya) e U

e (2 (W C oy

kak

k

<= (3 k) (3m) (W_kmtt ) G U‘-and 9 = 1) w

Therefore,

"1 . Etf — o ®
(U) =BAaU U (fteT:iI W (U, XJoe il o
£ . Kk m & ] = Ui s of k

By (v)y we conclude that g is A X Bg[B - measurable. This

km

&

completes the proof of Lemma 5.3.2.

Proof of (A} => (B) .

that X 1is a compact metric space. We get a set B -

gnd amap g « B = X satisfying conclusions (i) - (v) of

m})'

- Without loss of generallty we assume

X

Lemma 5.3.2. We define a multifunction H $ T — ¥ as follows !

Then H(t) 1s a non-empty Gg

5¢3e2

follows

il

it

H(t)~zr{& ; Bt v g(tyo) ¢ F(t)} .

15

H(t) is 2 dense subset of B for each t e T .

that for every open set - U in ‘X

'{teT DH() DT # ¢)

{t e T
T ®L(Tx D).

BY 0 U # ¢3

~1n Z . By (iv) of Lemma

It
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iy
g ~

By assertions (1) and (ii) of.Lemma 5.3.2 and Lemma 0.5, it
follows that H is é-:_measurable. Alsoy it is easily seen
that the restrictién of g(f,.) to H(t) is closed, F E T e

Let ¢ B -> T X X be defined as follows @ (W (t;0) =

(ty g(tya)),(tyo) ¢ B, Then \p 1s measdfable'wﬁen B is
equipped with the o - field A < EZJB and T X X is equipped

. ‘ - Gl e _ -1 -
with A . EX.' _Slnce Be A X 22’ GT(H)_T P gGr(F)) U‘é >

&

52 « By the breviou; case pfoved in the last sections we get
a map hs Tx £ = F such that for eech t e Ty h(ts.) is o
continuous closed map ffom 2 onto H(t)t and for each ¢ ¢ Z,
heso) 1s 4 - mea#urable: 'we define £ e T X Z =X by
f(tsa) = gty htt,c)i;_ﬁ e Ty 0 Z -It is routine te check

that f satisfies (B).

4. proof of (B) => (A) We first check thet F 1is A - measur-
able + Let {Un : n‘g 1}‘ be 8 densg sgquence'in X and t e T,
Since f(ts.) is continuous, {f(t,cn)’: n > 1} is a dense
subset of F(t). Therefore, for any opeun set U in X

o0

: iy = u

(£Cra™™ @) ¢ A -
n=1 ‘ , =

Thus F 1s A - measurable.

Define a set B (L T X ¥ as follows
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(tyo) € B <= (Ax e X)(f(t,.)’l({x}) is not open.and ¢ ig a
point in the (topological) haundary or
£(t50) H(4x})  or £ty ) 7 {xy) s
open and g = gh where n is the

;
first positlve 1nteger .m  such that

£(ty o) =

o
Tet t e T Tt is clesr that £(t, Bt) = £(35) = F(t)e Also
it is easy to check that Bt is closed in X . Thus the
reétriction of f(t,;) to B is closed. Let us now recall
the following result of VsInitetln [30] 5 Let 1 and M be
metrizable spaces. If f 1is a closéd‘cdntihuousiﬁ;p of L onte
My then the t0p010gical boundary of 7 ({z}) is compact for
every 2z & Me - From thls itiis easily deduced tbpt the restrictier
of . f(ts.) to BY 13 perfect.' In the paper referred above
VaInsteTn has also shown that the image of a Polish space under

a perfect map, 1f metrizable, i1s Polish. We conclude from this

that F(t) is a G, in X for each t e T,

Now let T{an: n > 1} be a countable base for X « Then,
using the given properties of f we check that

(tyo) e B <=>"((¥s ¢ 8) (o ¢ z, = (;3k)(ckszs)(f(tack)#f(tac)))

or
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o (I (0 = %y (VA < 0)(£(t,0)  £(ty0™)) and
(3p) (£(5;0™ &V and (£ (60" & v
= £(ty0%) = £(tsa™)))).

By the given properties of f, it follows that B e A X By -

Now we notice that

(tyx) & Gr(F) <= (J 0 ¢ D((tya) e B and f(tyo) = x).

Therefore,

Gr(Fy = || poy (f(£9x00) & T XX XZT e (tyo) € B and

f(tgd) = X}) s

Now note that if t ¢ T and x ¢ X are fixed then the (tyx) -
section of the set within braces is compact. This follows from.
the fact that the restriction of f£(ts«) to Bt 1s perfect.
Hence,it tollows from the fact that the set within braces 1s in

A X EX > QE and Lemma 0.6 that Gr(F) = AX B This

X -
completes the proof.

¢ e o e ke
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