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INTRODUCTION AND SUMIMARY

Currcent intereet in the descriptive theory of sets stems
largely from the many applicationg that the classical theoxy
has found in probability theory, functional analysis, dynamic
programming etc. As examples, we cite the fundamental paper of
Blackwell [5] wherein he hag ghown that many of the pathologies
of probability ftheory can be avoided if one takes the basic
probability space to he an analytic set. 4s another example,
we mention that geveral writers [7LL25] have ghown that in
Blackwell’ s model of dynamic programming [3] the existence of
optimal strategies is related to the existence of measurable

gelectors.

The present thesis is partly motivated by problems
relating to the theory of Rorxel and aralytic gets that have their
5rigin in the papers referred to above. However we wish to point
out that the proeblems cons;dered in the thegis are of independent
interest in the descriptive theory of sets without reference to

their applicationz in the ficlds mentioned above.

Chapters 1 -3 deal with the cxistence of measurable
selectors in a wide variety of situations. Chapter 6 deals
with A-functions. Such functions arise naturally in problems

of dynamic programming, see, for example, [7]- Chaptver 4
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STT=
deals with the ciaés';'of;ac;asufable spaces that have come to
be called Blackwell spaces. Such spaces are-an abstraction
of a property of é.nalytic spacee noted by Blaclkwell in [5].
‘Chapter 5 deals with the compiementation problem in the
latt-ice of sub o~ fields of the Borel 6-field, a study which
was initiated by D. Basu [2] in connection with problems of

gtatistics and subfields.
Below we gummarize the main results of the thesis.

The first chapter deals with selection theorems for

miltifunctions. The main result is the following:

Let X be any set and H a family of gubsets.of X
containing X and ¢ which is A -additive, A-multiplicative
anl satisfies the \"-WRP for some 'infinite cardinal A. Le_té
Y be a regular Hausdorff space of topological weight < A. ;
Suppose F: X —> C (Y) is such that {x. Flx)ne # @'}E H
for a.ny closed subset C of Y. Then F adnmits a (:}E_HIE ) e
neasurable selector. The methods used can be imi.tate'd to?\ %
- prove a genefalization of result due to Sion [42]. They i‘

can also be used to give alternative proof of the main

result in [24]

~ The main regult :ul the . second chapter is a category

analogue of a I'esult of Blackwell and Ryll-Nardzewsla in [c.
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It is proved that a Borel gubset of a product of FPolish
spaces with nonmeaser gections admits a Borel uniformiza-

tion.

The main result in CGhapter 3 is the following; An
o=partition of a complete metric space aduits a selector of
miltiplicative 3orel class « .« This theorem generalizes the

mein result in 257 for Folish gpaces.

In Chapter 4, it is shown that there exists s pProjec-
tive, non-analytic subget of the unit interval which is a
strong 3lackwell gpace. Some other properties of gtrong

Blackwell spaces are also discussed.

In Chapter 5, it ig shown that a countably generated
sub o =algebra of the 3orel o ~algebra of an absolute Borel
set has a relative minimal complement in the lattice of sub
o -Tields of the RBorel field.

In Chapter 6, we show that if £ is an A-function
which dominatves a Borel function, then f{x) = sup g(x,¥)
for some Dorel measurable function g A similaz resilt is

proved about « =functiong.

L e "L U S
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CHAPTER 1

SELECTION THEOREMS FOR MULPTTFUNCTIONS
1 Introduction

In recent years the problem of- the existénoe of nice
selectors for multifunctions has received a great deal of
attention. We single out the two following results which in
some senge complement each‘other_- The first result is due to Sion

[42] the second to Kuratowski and Ryll-Nardzewski [20J.

'
Theorem 1. Let X be an abgtract set, I__@ a family of

subgsets of X. Suppose Y is a regular T‘i space of tbpolo—_

gical weight < SQ\ guch that each family of open subsets of I

T admits a countable subfamily with the same union. Tet ¥

P+ X =0 (Y), the family of non-empty oomjpact subsets of

¥, such that 'E-X : PxYn ¢ # ,Qf} € I for every closed set C

[

in ¥+ Then there ies a function f ; X =-> ¥ such that
CE{x)e P(x) for all x€ X and f_1('v')€ the o ~field generated

by H for every open gset V in Y.

The regult of Kuratowski and Ryll-Nardzewski is a sort

of metrizable versgion of the above result.

Theorem 2. Tet X be w1 abgiract set, L a field of
subgets of . Suppose Y is a Poiish gpace and let

i 2Y, the family of non-empty closed subsets of Wy
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such that {x:g F(x) v # Q;} Eg(y for each open subget ¥

of Y. Then there is a function £ : X —> Y such that
f(x)€ F(x} for all x€ X and f—1(V)€ Q(; for each open set

Vi In s

These results gubgumed a large‘humber of results on
the existence of selectorg which were scattered in the
literature. While Theorems 1 and 2 could be applied to‘many;
interesting families of gets there were still certain familie
of sets, arising not infreguently in problems of Descriptive
Set Theory, to which the theorems did not apply. To give |
Just one such example in the context of Theorem 2, take X 4o
be a Polish space and H to be‘thé femily of coanalytic sub-
sets of Z. It is easiiy'seen that the family H cannot be

expregsed in the form };& » where I, is a field of subgets o

Z. Furthermore in both results there are restrictions on the

topological weight of the space Y.

In the context of Theorem 2 Maitra and Rao {24) nave: d

recently that the family I s c&n be replaced by families

satisfying what they call the weak reduction principle for a
certain cardinal which depends on the topological weight of i

space Y. The main purpose of this chapter is to show that

an analogue of the result of Maitra and Rao can also be
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established in the non-—metrlzable framework in which Sion’s
regult is set. Qur methods are related to those used by Sion.
And'we show iﬁeidéntally Tthat these methods also apply to the
metrizable situation é.nd yield an alternative proof of the
result of Maitra and Rao. Purthermore Sion’s result falls

out as a special case of ours,

2. Definitions and notation

Let X be any set, H a family of subsets of X and
Tjany ‘cardinal. We saj that H is ’lf-a.dditive
(T-multiplicative) if whenever ‘{/Aa 5 1@ % B} (C H where

PCT, U A, (0 A )eH. H® is the family of subgets
cc< B a< B - - ‘

0f X whose complements béldng to H' and I—{’t‘ ig the
smallest 77 —additive family containing He H is said tb
satisfy the T -weak reduction principle { (- WRP) if given

zAa ¢ o< ﬁ} ( H, such:that U Ay =X, vwhere B <7,

a< B _ _
there existsapairwise disjoint family of sets By ¢+ @< B%CE
satigfying B, C IA for all o and U oc = X 5\39 and 5\{‘

a< B
are used to denote the first infinite ordinal and the first
wicountable ordinal respectively. (Note that cardingls are

considered as initial ordinals).
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If ¥ is any set, 'g' a family of subsets of ¥ and
Y a topological space,ﬁthen~a function f on X into Y
is called E —measuréble Gl f_1(U)E H for every open subse%
U of Y. f is called a selector for & multifunction ¥
on X 1into the family of nonempty subsets of ¥ if
f{x)€ P(x) for all x¢ X.

If 4 C X x Y for any gets X, Y, then 4% denotes
the subset of Y given by .{y s (%, y) € A},. m, denotes
the projection to the first co~ordinate on’ Xx Y.

For any gubget A of a metric spacey 8(A) stands

for the diameter of A.
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3. Ilain Results

3efore proving the mai_ri-theorem; we prove two propositions
_ which will be used in the sequel- |
Proposition 1- If Y 1is a complete metric space,
Fn’ 0= 1920, a d'e'c':reasing sequeﬁcé of cldsed gets whose

digmeters tend to 0O as n = o and %.Fn ;U where U_

is open, then there is an m such that ¥ U.

Froof. Tet Fn (g U for any n. Then Fnﬂ UC »%Qf for
n=12,ess « Thus FnﬂUc, n =19,2,..., is a decreasing
seguence of nonempty closed sets with diameters. tending to O

as n => . By completenessof Y, % (Fnﬂ %) # ¢. Hence

Proposition 2. Let Y be any topological spaee and

K*n’ n=17,2,..., a decreasing seguence of compact gets such

| tha'b % K, (T U, U Dbeing an open set. Then KIIl C U for

S0

[y

Ma
Proof ig similar to that of proposition 1.
e now give an alterna'bivé proof of the following theorem

of I'zitra and Ra0. .

Il

eorem 1. Tet X be any.set and E a family of subsets
of X such that @, X€L, I is A'-additive, $\Jqmultiplicative
and satisfies the A -WRP where A is an infinite cardinal and

A ig 1its succegsor cardinal. If Y 1ig a complete metric
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space of topological weight <A and T X - of is a multifunc~
tion such that ix~ F(x) ﬂU 7-‘ @(} €H for any open U C Y, then
T adnits a (H n H ) ;~measurable gelector.

Lemma. Let X, Y, H and F be as in the theorem. Then
therell exists a sequence A‘n’ n = 13240+, of gsubgets of X x Y
satisfying the following for al-I‘ n:

| i) Aﬁ is an open subset of Y for all x.

ii) Por any U C ¥ the sets §x: U C An} and

3\}: A C }belong to (I-I n TI ) and hence to H.

1ii) A C A;_ . for all x and all n> 1.

S x 1
1v) For all x, a(An) $s=-.

i

v) For all x, Ailc Or(x) #¢ .

Proof. We construct the A’s by induction as follows:

be an open base for ¥ such

that ¢ # U and  a(u%) <& forlail a.

For each n, let &’Ug: a < A

Then \ C;

€H ana U cl=1

Put 01 —%X, Flx) 0 U:C 7 o a
a< A

By ?\+-WRP of H, ise dlSJOllt iamily of sets
%.B;: A § CE such that B CC for all « ana

v B)'=x. g H is A -aadltlve,' B} ¢ HNE® for all o put
a-< ?\' 44 ‘ OC e = .

A.I = U (B‘gc X U;)- Gléarly '(.i')l— (v) are satisfied for n=1.
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Suppose 4 , 1 {n<{m have been defined so that (i}-(v)

n e ———_—
ave satisfied for 1<n<m. Put Of @ = {x v (4% ana
Px) 0 URT # Qf} .+ Now { x: U"er C af } € H by induction

hypothesis and iX F‘(X) a Um+1 # Q!S€ H by assumption, so since

4 is ?;r;-—nmltlpllcat;va, it follows that Cj '€H for all a.

For any" x,lAE ig a nonempty open set by 1nauct10n hypothe;;is.

’ x 2 w1, x +1 m+1 X
Eemce AmugiU .U C A} U(tU"m Cﬁﬁk As

o
T(x)0 AI}; # ¢ by induction hypothesis, there is some a gucgh
that U](fﬂ = Aﬁ and F(x) L U“;lﬂ #Z¢. Hence X = U Cm+1 L

e <A
- By ,-\+-WRP of I, there exists a pairwise disgjoint family of
sets §Bg s @<} CH such that U B! =X ang

— o< A :

m-1 m+1 T oIt m-+1
B, C_ Cy for all a. Define Amﬂ = a?h(Ba X..Uﬁl ).
Clecarly (i)-(v) are satigfied when n = m+i.

Proof of the theorem: ILet 4, n = 1,2,... be as in the
1emma . |

Pui - e frl1 An.

ptep 1- G 1is the graph of a function £ and £ 1is a selector
for F.

proof. ILet x€X. Then GF =8 &% =0 #% by (iii). 4s ¥
- X s WX 1 !

ig complete, ¢ # A C__': 4y and 3(A%) < = for all m,

e -

]

%Ai is'a singleton. Define f: X => Y by f(x) =y if

{Y}’ = ¢*. (Clearly, f is well defined.
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45 GT O RP(x) = (4 47) OF(x) A¢ by (1i1), (4v),(v), .
and the completeness of Y, f{x)¢F(x).
Step 2. f 1is (HD 1;I:C) ~hmeasurable.

\ L

Tet U (_ Y be open. Then T (o = J;X: %A}é (o U.}

={x»:A§_C_-U- for same n .« Thus f-1QU):%-x; A:’QC U}

¢ ((EnE%) ) = (@m0 | as J\>N
= = 2\.+ o ?\+ - o

Corollary If X, ¥, 4 are as in theorem 1 and I X = 2'Y is

& multifunction such that ~ x: F(x) 0 C # ¢ Eﬁ H  for all closed

¢ (C Y, then F adnits a (H D H®) -measurdbie selector.
=3 = &

Proof. Tet U C_Y be open. There exists a sequence Chr
nm=1,2,0+,0f clogsed subsects of Y such that U = ;I C,- Mow

Tx: P(x)QU#F@Y=U{x: Fx)DC FI e B, =8 as I is
ﬁ%—adaitiVe and “hence’ &y,—additive as A is infinite.
Theorem 2. ILet X be any set and H a family of subsets of

X, containing X and ¢, which is ?\+—additive, A=miltiplicative
and satisfies the A -WRP for some infinite cardinal A. ILet

Y be a resular, Hausdorff gpace of topological weight < A.
Suppose F:X = C (Y) is a multifunction such that

S\‘x; F(x)C # ¢ } € H for any closed subsel C of Y. Then

F admits 4 (3 a H) , —measurable selector.
=y ;

Wote: Without loss of generality, we can take A >5'\23, as
otherwigse, Y is metrizable and can be replaced by its completion

g0 that the thenrem cen be dedvuced from the nreviong one.

T —


http://www.cvisiontech.com

iemma. Let X, ¥, E and F be as above. TILet {Ua: a is a
guccesgor ordinal and of 7\} be an open-base for Y such that
U, # ¢ for any «a. Then there exists a family {A s a < 7\1 of
subgets of Xx Y a*lsfy:a.ng the following:

i) For each o« and x, @ # Aé C F(x) and A}é is compact.
ii) TFor each ua, ix: Anc # qge B if ¢ (Y is cloged.
iii') If ay <o, 4 C Aoc for all a and % .

Aiv) If o is a su.ccessor ordlnal, then there exists
By€H O E such: that (X x U U 04, = (Ba X Ua)flA-a =
(By x ¥)0 Ay -

Proof. We define the Ay’ by induction as follows. o
A, = U ix’; x ¥(x)). Suppose Ay is defined for all B< o
x -~ :
such that (i)~ (iv) are satisfied if « is replaced by B.

Case 1. o = B+1 for soue _B
For any successor ordinal Y, 1=t D)/ S\.xo A}Bc ﬂﬁy# 9’73
By inductlon hypothesis, - D)/€ H .

D = WX . 8
- Bf XE’DBH v AB 0 Ugq = #. As AB # ¢, by induction
hypothesis, there is some basic open set AU')/ such that

Ag ﬂﬁy £¢ and ﬁyﬂ‘ﬁﬁﬂ ég . Hence X "'DEH U

)L/I%Dg,. Uyﬂ U ;ZZ Using A —WRiP -of H, find a pairwise

disjoint famlly of sets Bgﬂ iBg/ [-])/fl ﬁﬁﬂ = ¢ % in H
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[10]

b . - g B .o § 7 -
such that BEM ED?BH’ By Cofy i Oy00q,, =9 and

} wpptef .7 T o s N w8 e
BEH 3 Li/,iByz Gy 0 G, = d} = %. Clearly Bj,,» Bl € E 01°.
Define |

A =((BB x U )UUSL(BBxff)': t'i av =Qr})-nA

B+1 B+1 BRIET T A PR P R B

B

and BB+1 = BB+1- (i), (iii) and (iv) arc clearly satisfied

by the induction hypothesis. To check (ii), let ¢ (C Y Ve

p+1

closed. Then {x: \A}éﬂﬂ ¢ # Qf}=i}c; XE BB and AB ﬂﬁBMﬁ C# o
S e o Xnfi g il = .
U 1)1/ ﬁxa x€ By and 4 luync# Qf\fb Uy Ug.q ng}

As H is A-multiplicative (and hence 9Qb—multiplicative) and

h+~additive, uging the induction hypothesis we gee that

i
§ x: A}gHﬂC%Qf‘SE g
\

Cage 2. @ is a limit ordinal.
Tet A, = 0 Ap. As ¢ #AX T P(x) for B <o each Ax is
K B B . B — B

compact and ;fﬂg', B < ! has the finite intersection property
L '

o

By~ (5. 5" 5 foll_ows that & # &Y (C F(x) and A:é ig compact.

Clearly (iii) ie satisfied and (iv) does not necd any verifica-
tion as o 1is not a succesgor ordinal. To check (ii), let
¢ (Y be closed. fx; Agﬂ'c # czf}- ={x:( 0 ;ﬁé)ﬂc # Qf}z

= L - J . B a

T i g D ‘o S s % &
Lx 5<a(3 )7452{3» ﬁi{lalxu Ai.j,ﬂc;«!gz/:g The last

eduality ig obtained b¥ using the compactrness of Ag.ﬂc, B < «.
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[111] -

Asg o < A and o A% 0¢#£yg | E for B<a by induction
hypothesis,.{~xz A il G Q‘} € H by A-multiplicativity of H.

This completes the proof of the lemma.

N\

Proof of the theorem. ILet Uy, By, ¢ is a successor ordinal

o?

<A amd Ay, ® <\ be as in the lemma. Put G = 0 A -
. a<r @

Step 1. G 1is the graph of a function f and f is a selechor
for I |

; (1) and (ii1) ¢ £ ¢ (C F(x) for all x. We show
that for all -x, & is a sing1;£on. If not, iet there exist
poirts (x,y), (x,2z) in G where quéz. Find basic open sgets
Ua C: Y, where ¢y, § are éuccéssor ordinals, such thét
Y€ U, z€ UB and U, 0l UB = ¢f. Then y¢ U, C;‘ ﬁa and zQ’ﬁﬁ.
As (x,7)€ ¢ C 4, it follows that (x,y)€ (Xx0, )04, =
= (B, X Ua)flga- Thus x € B, and therefore (X,Z)€(Ba X Y)H.Aa

= (B, X ﬁa)ﬂ.Aa . Hence z¢€ ﬁa ‘which ig a contradiction.
Define f(x) =y if {y}= .

Step 2. We now have %o show that the function £:X = Y i
.(Eflﬁc)k+-measurable. | |

" Let Vv (_ Y be open. Express V as V = E‘iﬁ : U
so*thatf(V)—U(f (T,): T, Cv1 U n

L 'L

Tt is enough to ghow that n, (X x U ) 0G) € HNEC

/@"‘5 =
é . Feedansumrent e one —aser W\\

(5. ke £-EE6-18845)

for any succegsor ordinal «.
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4o

Fix a . suc'}cessor ordinal «. Then ™, ((X x ffd) i g) =
1 A6 (e U Yy n )/11 Ay) We first note that 7:1((1}{ X Ua)ﬂ yﬂ Ay)
= n Cleariy. 7 ((X « 000 I 3
)/1(_1?\ n, (X x T o) 08y). Clearly, (X x 8,)0 )fjél}\ Ay ) C
Q- n (Zx T o )o Let x€ 8 n,((XxT ) BAy ). Then
Yen o] TS y<x 1 B
for a1l Y <k, 40T, #¢. As A% 0T, is compact, using (iii),
we see that )/1<17\_ (A){ a U.q_.) £ ¢ g0 that =x¢€ 3 ((x=T,) n )/ﬂ; Ay).
Again - uging (1ii), we obtain n ((X x T )flA:y) =
<A

Eo ﬂy{}\ n,[('(X'x it Ly ). Hemce ((X = 0, )HG)

=

2 om(@x )0y

ag W< ?\
We next prove that ™ 0 #((Xx T )N 4,3 =
: @< Y< A ™ g Y E
oy ﬂ : J L] ] ] .[1 ‘ 4 i V
n1((X % an)- Aa )e Clearly, £ Z\Indl((X x Ua) n A)/ ) C_

j‘u{((X 4 ﬁa) n Aoc Yo +Tiet x€ n,.!((X X ﬁa)ﬂ-'Aé) = n,l((.deY)fl Aoc)
(by (1v))s Then x€ B, and hence &Y (CT,- If & V<A,
| A)/ C AX C U so that A})’c/ﬂﬁa. 2 a Hence 'X‘;E‘.'E;’((X X ﬁa)ﬂ
for o < Y < A- '
- Thus ((XxU )ﬂG)—gtT((XxU)ﬂA )~ T ((B, x 1) 4y)
= B € HO H. '

//
. =
Remark. We do not m/dw if thebrem 2 holds if in the 'condi“tion
{{x . W) n.g# o le 3 ft:g any closed subset € of ¥’ ‘c‘.Eosed’

is replaced by ‘Qge& ﬁowever, we have the following:
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Theorem 3. If X, ¥, H are as in theorem 2 and moreover i is
ZT-miltiplicative aml if F:X => ¢ (Y) is such that
{x: F(x)d U# (Zf} € for any open U (C Y, then F admits a

{0 I_{G) +-—mea—surable selector.
i =0
3

Proof. TLet % Uy @ < \}be a base for Y consisting of nonempty
open sets and let C (_ Y be closed. Then Y~ C'= U CY-—C}
=U_£Ua:‘ﬁd & Y-oi. 4s P(x) ie compact, F(x) (_ Y c if,
o —
and only if, for some. n and some & ,e-+s @y < A, F(x) (i U U,
= i=t %4
(o UUCY . Thuaix F(X)CY O?

— l 1 :-‘.. 10’ /
' ¢
=7 U x; Flx) (C UU C Y- c} U i'&x:F(X)ﬂ
& (aa‘""'an)t ) . =1 It (U g ey n) x
n e @
0 T =¢ and U Ua C Y~ C ‘gE (H ) + =
i=g ¥4 : i= <
(I:I_C) a= :C by agsumption. -Thus x F(*{)ﬂ # ¢ 1 € H and we
S = A ,

can irwoke theorem 2.

By a suitable modifica_.tion of the proof of theorem 2 we can
prove the following generalisation of Sion’s theorem:
Theorem 4. Let X be any set, H a family of subsets of X which
is A-additive, A-multiplicative and satisfies the A-WRP for some
cardinal A> ﬁwj‘ - Suppose Y 1is a regular Hausgdorff space of
topological weight <A such that given any family of open sets in
Y, there is =z subfamily of cardinality <A with the same union.
Tet ™X = C (Y) be a multifunction such that fx: P(x)0C # sz
€ }_I".for any cloged subgset C of Y. Then @ admﬁtts a (gﬂ }zic) &

Ll A
measurehls egolactor.
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By putfcing A= §\‘-!, we can deduce Sion’s theorem from the
above.

Remark. Theorem 4 holds if in the condition |
'f‘ x: F(x) 0 ¢C 7‘ QZREI:I for any closed subset C of Y’ ‘clpsed’

i .
is replaced by “open’. Thus we have the following:

Theorem 5. If X, Y, H are as in theorem{ and if F: X = c(T)

is sﬁch“that %X: Plx) DU #£¢ 7;6 H for aﬁy open ‘U C Y, then
. b o = . . —

F admits a (H o Hc) -meésurable selector.

2roof. Tet 5 U :

a < ?xE be a base for Y consisting of non-~
empty open sets and let C ('Y be closed. Then Y-C =

oy &F

there 1s a subfamily ‘g Vy:Y< B Eo % ‘-x: U, C Y~ CZsuch that

B, 0, CY-cl=vgvu,: T, C Y—O}- By our assumption,
— T & A =

£
B<A and U v —U(fU i} Y-Ch Clearly, U \i Y ~ Q.
Y o, Y~

y< g MARLY = J Y< B
As before, Sx: F(x) (CY¥-Cc4 =1 U x; F(x) 0
n L =y %S n ()/1!" )K

q \‘?‘)3/ =Q’-g 6((30)?\)_, = (g° )+ As E is A-multiplicative
i=1 i | T o N

(Ec)?\ I;I » Hence iLx; F(x)Ql C # Q}E H. DNow we can invoke

theorem 4.
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CHAPTER 2

UNIFORMIZATION OF BOREL SETS

1+ Introduction

If B is a subset of the.plane’ Rx IR, a set
é C; B such that (i) the projections of G and B to the
first coordinate are equal and (ii) each vertical line meets G
in at most one peoint; is called a uniformization of the get
B. Around the turn of the century, J. Hadamard (to whom is
also due thyterm ‘tuniformizationt) poged the question
whether a Borel get in the plane could be uniformized by a
Borel sets It was not until around 1930 that this_question
received a satisfactory angwer. HNovikov E’ZBJ ghowed that there
ig a Borel set in the plane, indeed a planar Ga subset,
_ whose projection to the first coorxdinate is Borel but which
does not admit a Borel uniformization. Somewhat earlier
Luzin and Silerpinski had independently proved that a planar
Borel get can always be uniformized by a coanaljtic set.
Furthermore it was shown by Siexpinski that if a Borel get
in the plane has a Borel projection Lo the first coordinate
then any analytic unifdrmization of the set is necessarily Borel
[40] « And with this Hadamard’s quegtion could be said to

have received a satigfactory answer.

Further efforts in the 1930’s were concentrated on

~t s
NG
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finding sufficient conditions on a Borel set in the plane in
order that it admit a Borel uniformization. ‘iusin £21] proved in
1930 that a Borel subset of the plane, all of wanose vertical
gsections are countable, can be uniformized by a Borel set.

The independent efforts of Kunugui [16] in Japan endé Nevikov

I
i
4

Arsenin and Shchegolkov in the Soviet Union led % the end of bhe
thirties to the result that a planar Borel set, all of whose
vertical sections are o —compact, is uniformizasble by.a Borel
sete

In 1963 Blackwell and Ryll-Nardzewski L6J) proved a result
which implies that a planar Borel set, all of whose (non-empty)
vertical sections have positive Iebesgue measure, is unifor—l
mizable by a Borel set. The main result of the present
chapfer ig a category analogue of this result. We prove that
a plznar Borel sed, all of whose (non—empty) vertical gec-—
tiong are nan-neagre, can'be uniformized by a Borel sete
Furthermore we give two more sufficient conditione which
ensure that a planar Borel get is uniformizable by a Borel

'

Seto
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2. Definitions and notation

In this chapter, X and Y always stand for uncountable
Polish gpaces and 8 stands foi the diameter of a get.

Let B (: Xxz¥Y- For any =x¢€ X, B* is the subset of Y
given by }y‘. (x, 7)€ B % 4 set ¢ - igs said to uniformize B
Ba E C: and for all x in X, BX # ¢ implies ¥ igs g
nlngleton.

4 gubget of a Polish spacc is called meager if it is a
countable union of nowhere denge sets. It is callcd comeager
if its complemcnt is meager. TFor: 4 C: Xx Y and U C: Y,
let AU \ denote the subset of X given by
ix: A" 0 U is comeager in Uik

Let f be a function definéd on an absolute Borel get
into a Polish gpace. Plt 2p = 3y‘: f—1(y) is a singleton% 5

I, = fiy, f“1(y) convains an isolated point} 5

Dy = Sy: f_T(y) ig countable and‘ﬁonemptya 5
= 1 : §

oREd 1ky) contains a -point which is not its condensation

*

Ce §
L point E .
J

3. Main regults
Lemma 1. If £ 1is a Borel measurable function on an absolute
Borel zet into a Polish space, then Z s If, Ce and Df are

coanalytic [9], [471, [21].
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Lemmz, 2. (Countable reduction principle for coanalytic gets).
If 01: égs--- is a sequence of coanalytic subsets of a Tolish
space, then there exists a sequence By» Byy+-. of pairwise

disjoint coanalytic sets such that U B, = Uc, [17].
n n :

Theorem 1. 4 Borel set B (_ X x Y has a Borel uniformigation

if

(a) x¢€ 7y B implies B* contains an igolated poirt or

(b) =xe¢ ny B implies B* contains a point which is not its
poirnt of condensation, v,

Thare Ty denoteg the projection to the first co-~ordinal

Proof. (a) ILet® V0= 1,2,;-. be a countable open base for
Y such that for all n V, # ¢. For any n, define £, on
B O(Xx Vn) by fn(x,y) =x. Iet 2, 2Efx:}BXﬂ-Vn is a

singleton.%

Then 72 _ =2, . Thus 3% is coanalytic by lemma 1. Algo
n fn n

U0Z = mn,B. Hence U Z is analytic and hence Borel. et

n B g n n

By» m=1,2,... be disjoint coanalytic sets such that B, €

for all n and n,B=UTU2Z_ =TU3XR_. Clearly B, n = 1,2,e..
M n n -L'l Il :

1 n
are Borel sets. Tet C = g((BH X Vn)IlB)- Then C is a Bore

uniformization of R.

(b) Let Vo fp0n=12,... be as in case (a) and for an
n, let %, =fig: B OV, is countable and‘nonempty% .

Then Zn =D

ot

+ Hence Zﬂ is coanalytic. Also H Zn =7n, B

X 1
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anl hence H 4, 1is Borel. Ag before, choose disjoint Borel

sets B, n-=1,2,... such that Bn_i; Zy and UB, = m B. Put

T = U ((B, x V,)LB). Then D (C B is a Borel set such that
o — |

n1D = ﬂ1B and for all x, D* is countable. Hence D can be

uriformized by a Borel get © (cf-[?i])Clearly, this € unifor~

mizes B. )

Gorollary: Iet X be absolute Borel and 2 a geparable metric

space. Let I; X - Z be Borel measurable and £(X) = 7.
It

iy ]

= If or Cf, then £ admits a Bofel selector i.e.
therc is a Borel subset B of X such that £ restricted to B
is one-to-one and f£(B) = £(X) = Z.

Before proving the next theorem, we prove some lemmas.
Lomma 1. ([435]). Tet W be a subset of an uncountable Polish
space X guch that W hag the Baire property and let U_ be
a nonempty open subset of X. Iet Vﬁ, Vyse+ be an open base
of ¥ such that v, #Q¢ for n=1,2,e.. » Then WU is
meager if, and only if, for Vn'C:-U, n = 1,260, WAV, ig
not comeager in V N

The proof is simple.

Lomma 2. ([43]). Let B (_ X x Y and let Vi» V5se-- be an

open base for Y guch that for all n, V\ % @+ Then for any
nonempty open subsct U of ¥, x¢ ((X xY) - B

. if, for all vV, Cu, x¢ B%

U i, and only
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Proof. Tet x € ((X x Y)-—B); « Then ((Xx Y) - B)*aU is
comeager in U. Hence B AU is meager in U. Hence for all

Vn C: U, BXIIVH ig nol comeager in Vn iees x ¢ Bi .
= n

Trhe converse ¥ollows by reversing the argument.

Lemmg 3. Let B (_ X x Y be Borel and let U (C ¥ be a non-
erpty open get. Then BE. is Borel.

*¥

Proof. Let g =&B: B igs Borel and BU ig Borel for all

nonempty open U (C Y/.
«

—

Y
We show that ( contains all Borel sets.

Step 1. If B,, B, are Borel sets in X and ¥ regpectiveif
then 3, x B, € C gince, for any U, either BE = ¢, or

B, = B

BT =)

Step 2. ¢ is closed under countable intersections.
Let B1, 32,;-- € ¢ and U (: Y be open and nonempty. Now
(ﬂ.Bn)Xil U is comeager in U if and only if BiilU is

n

i ‘ #* *
e i ¥ o hugo = ] [
comeager in U for all n Tt 5 % Bn)U I BnU

Thug ( S.Bn); ig Borel and hence S’Bn €C .

Step 3. C 1is closed under complementation.

Tet V1, Vogeo- be a countable base for Y counsisling
of nonempty open sets. For any B, ((X x ¥) ~ B)% =

.g__ﬁ.‘-x - B%}n; v, C__ {
3 Y

T e

o=

i
ot
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Theorem 2. If B (U X x Y 1isg such that for all x¢ n B, BX ig

1
& nonmeager gubget of Y, then B has a Borel uniformization.

. This result Ffollows from:

fheorem 3. Let B (C X x Y be a Borel set such that for all

¥(d nqﬂ, =22 is a comeager gsubget of Y. Then B has a Borel

wiiformization.

[ES T e

Proof of: vheorem 2. Assume theorem 3. Let V1,Vé,--- be a

countable base for Y congisting of nonempty open gets. Put

n = JT 1) ﬁf Dn is Borel by lemma 3. WNow, by theorem 3,
n m< n m

the Borel gubget BII(D xV,) of XTx V, hes a Borel uniformi-

zation On for all n.

deain, by lemma 1, m,B = U B$ = UD_, since B is not
' n Yy n N
meager for x€ n1Bq Hence U On is a Borel uniformization of
. n .

B,

To prove theorem 3, we need the folloﬁing;
Lerma:  Given any nonempty open subget U of i and any Borel
subget B of Z x Y, there exist a sequence 21,22,... of Borel
subgets of T x Y such that
() 2, CZxU forall k.
{(b) o Zk\__B ) )
(c) Given any open W such that ¢ ] (_ U, any k and any
¢ > 0, we can flna a Borel set F C: 1 (X xW) such that for
all x, F 5 conSIdered as a gubset o10 Y, is closed, has diameter

< € and 14 X Pﬁ " wX I sirnaawilemaned
L - .
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ot

Proc

i

i= B XxY: B is Borel and satisfies the abové

We ghow thet ¥ containg 211 Borel gets.

Step.1, ;I counvains clesed sebs.

Tet Wy ™= 1,2,4.. and Vo B = 152 «+. be countable ‘open hases
for X and Y tespectively such that for éll m, n, Wﬁ #4d,

v, # . Let B (C X x Y be closed. There are open sets

k
open- Put Z, = U A(x x U)y K =1,2,-+. « Clearly, (a) and

U, CXx Y such that B=0TU.. Tet U C ¥ De nonempty and

(b)) are gatigfied.

i

[ W - e A ew e tm

To see that (c) l§1§@$&sﬁ&$d{LWéxflﬁigk§ € - and W ;apd
congtruct F. Now Z, 0 (X x W) = U (X x W) is open. Hence

Zkll(X z W) = g n)in x Vs Wy x V C; Zkfl(x X‘W)} . Let
’

L = {?2 Wm X Vn (: Zk11(x x W) for gome ,n%-- Corresponding

to each m in I, choose ny such that W, x Vn C: %y 0 (XxW)

and let ?Y(d) satisfy o % v(m) C v (m) C: L gnd

(v )< €. Put F=U ((% U 7 . Fote that
(Vo)) U, = T W) X (m)) Kote tha
' | nélL
W Ox€By UL AW #Y so that x¢ m, (U, (X x W) = U _Wo

me L
It is now easy to check {c).

Ster 2. ¥ is closed under coun%éﬁiéﬂzggersections-
Tet 3,€M, n=1,2,... and let U (Y be nonempty and
open. I'or each n, let the gequence an,_k = 142,00« satisfy

&), (b) 8ad(¢) when B is replaced by B, and Z; by 2 .-

Fi3 b 3 i LE J
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Rearrange the double sequence an, n=1,2,ee., kK =1,2,00.
in the form of a simple sequence, say Zy» k=1,2,.. . This

new sequence satisfies (a), (b), (¢) if B =4 B
n

Step 3. M is closed under countable unions.
Let Bp€l, n=1,2,... and let U (C Y be nonempty opem. We
congtruct Zyr kK =1,2,... guch that (a), (b), (e) are gatis-—
fied if B =U B .
n n
Let Vm’ m=1,2,s.. be a countable open base congis-

ting of nonempty sets for U. For each fixed pair (n,m), let

Zymk? K = 1,2,++. gatisfy (a), (b), (¢) if B 1is replaced by

3,» U by v, and 2, by by For all n,m,k, put
. =vBA By i - 1T . _ *

D Ban jEIIijm, En E Dnm = E anm ?

Zope = T pme 1 Opy x 1))y 2y = U2y, - L. (B; x V3))-

Clearly, 4y 1s a Borel subgset of X x U for each k.

o= A U2y - 0, (By x V3)) = v f{l(zmk" ;9 (ByxVy))

since Z_, (; B X'Vm for all %k and m.

For any m I]lt(zmk_'ri (E; xV;)) ;Iﬁ E(ank_ 8 (D, x ¥)
1 m
- U (E;xV.))
i<m * %
=7 n (2 b, x Y) = U (E. xV,)) since D_, n = 1,2,...
n i nimk nm sem 1 k3 nm
is a disgjoint family of -getg.

Thuse £.2y. © UT. @ D& C. UB,.
kk.__mn‘knmkg_nn
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Fix a pogitive integer k, an € > 0 and an open W,

g #W% (C U. For all m, n, put H, =B = UéEl wav, # (Z“g»
== | i< )

and G =H 0D« Forall m guch that W nv, # ¢ and

all n, choose Borel gets TF._  such that Fom (':‘_ Zpmie B 2

nm
and for all x, Fr_  is closed, 8(FX ) < € and if x¢ B*
- ? Tnm b nm; an’ I
tihien X is not . = Ui i
S ot meager Pgt F g L]g ((E‘rnm x Y)I Fome

Y - |
N 1

Wav, #¢ + Then F is clearly a Borel subset of X x Wil To

see that F (C %, take (x,y)€ Fj we show that (x,y)€ 7 T.ong

k.
exists a unique ordered pair (u,m) such that WOV # ¢ and
(v 1‘:\ hta n =

(0, ¥) € 2 0D, x ¥) C; Zpet Let i< m. If WAV, #4,

x¢B; and if WOV, =¢, y ¢ Vy since F __ C; X x W and hew

y€W. Thus (x,y)¢ U (E, x V.). Hence {(x,y)€ Z, .
iy 2

Clearly, F~ is closed and a(F*) < ¢ for all x-

k

Let x¢€ (H Bn)U ieee (IrJ; B, )" LU 1is comeager in U. We shoy

that there is some n,m such that WAV, # ¢ and x€ G -

; "
then v = F:rfm and xF€ an
m

. Hence 7% is not meagers
It is enougn to show that there is an m gatisfying
Vav, #¢ end x€E . Clearly (Y B )* 0 U is comeager in U

implies H(B}é nw) = (g Bn)xﬂ W is comeager in W go that i

is some n satisfying BﬂﬂW is not meager in W. Hence ths

iz a Vo (_ W such that x¢ EFQV X = E,
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Proof of theorem 3. Tet Vyp 0= 1,2,--; be a countable bage
of nonempty open sgets for Y. Iet 'Zk,-k = 1,2,+.. satisfy

(a)}, {b), (c) of the lemma when U is taken to be VY.

We define, by inductioﬁ, a sequence C k= 1,2,... 0f

k!
3orel subsets of T x Y such that for all &«
1) €y - Cpeq 1f k> 1
1i) Cy C; 2y

iii) For all x, Gi is closed in Y and 8 (Ci) ¢ 1

k
iv) If =x¢ Ty B Ci is not meager in Y.

Then .%:Ck ig the reguired Borel uniformization of B,

By the lemmag, taking W =Y, k=1 and € =1, find a Borel
set C, C Z, satisfying (ii) - (iv).
Suppose 01,...,Om have heen defined. Tut
*
) *jgncmvj. Chooge a Borel get L SR C_ 2 pe a(X= Vn)

g X i X
such that for all x, Fm+1,n _is closed, a(Fmﬂ,n)'(

n mV

1
| and
3

if =g n1IL Fm+1,n

is not meager. Put Gm+1::g((Hn X DN )

Cleatly, C_ , is a Borel subget of 2 .,- To show C_ ., C; Che

e ] h >:d X x
it is enough to show that if Cm+1 #£ o, Cm+1 C; Cm . Tet
C§+195 @. There is a unigue n such that x< H,+ Therefore

+*
x££ C
mVn

e - b:d
Om+1 B F§+1,n C; Vn C; Cm )

I x . - - —— X
and as C  is closed this implies V (; Cp- Thus
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< ) - N X 1
Clearly, for all =x, Cpyq Is closed and a(cm+1)< T
Let x¢ ﬂ1B- By iﬂﬂuctioﬁ-hypothesis, Gg is not meager
* - ,
. T . fore X = §X
and hence x¢€ g CmVn g Hn Therefore Om+1 Fm+1,n for

gome n go that C§+1, is not meager.

4. A related result.

In this section we prove the following main theorem.

Theorem 4. TLet B (_ X x Y be such that for 211 x€ m B, BY

.T
ig a comeager subset of Y. Then there exist Borel sets

Z2,, (C%x Y, k=1,2,+.. such that 4 7y {_ B and for all k

and x, Zi is open and if x¢€ n1B, Zi is dense (and hence

comeager) in Y.

Using this theorem we give an alternative proof of theor
3 which uses the countable reduction principle for coanalytic
getgs

S
w

Theorem 4 followg from the next theorem by taking U=Y.

Theorem 5. TLet B (U X x Y be Borel. Given any nonempty ope
subset U of Y, there is a sequence Zk’ k=1,2,... of Bore

gsets in X x Y guch that
a) ZkCXXU
b) %.ZkgB

¢) For all k aml x, %] is an open subset of Y and if

x€ B¥, then ZE is comeager in U,
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Froof: Let M = %’B (; X x Ys B 1is Borel and satisfies the a.bﬁvé}-
Ve show that I contains all Borel subsets of X x Y. .
Step 1. Clearly, M contains all cda sets and hence all closed
sets. | ) |

Step 2. It is easy to gee that M is closed under countable

intergections.

Step 3. M 1s closed under countable uniong.

-

Let By, n=1,2,+..- be in M and let U (C Y be non-
empty and open. TLet Ve = 1,2,44. be a countable hase of
nonempty open gets for U. For any fixed m, n, let Zﬁmk’-
k= 1,2,e.. satisfy (a), (b), (c) where B is replaced by By
by Z

U by V, and Z For all = and k, define E

k nmk
and ka as in The lemma used in the proof of theorem 3 and

m

let‘ Zy = g (ka-léfm‘E x V. )) It is easy to see that the

sequence Zy, k = 1,2,... satisfies (a) and (b) if B = HBn

*
and that for all %k and x, 7% g open. Let x€ (g Bn)U' To

k

show that 3> ig comeager in U, it ig enough to show that it

k
ig dense in U. We prove this in two steps.

Step 1. V_ = H{Vm . xX€ Em} igs dense in U

% D Vx

Proof of step 1. 4As x¢€ (U B )U’ x€ (U B )V for all m.

W?d =

Step 2

Thus given m, there is gsome n such that Bn ﬂ_Vm is not
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deager in V. and hence there is some V_ C V., such that

el . \§ % r +¥ 7o v .
%€ B (;ES Now 7 (;_VX m’a so that V. mm;«éq

nV.S
=
rroof of step 2. X =1vU(zX - U v.: € B
k m(mk i<m- i on 11%)
- 1 X =
"‘]%{(ka V.XEE}) X‘:E}

Pix me If =x¢ Em’ there is some n for which x¢ Dnm go the

5 S ; =1 X - ;
ka—zm- By hypothegis ank _:_)Vm ag x¢€ E*Vm‘ Hence

n e

p4 1 ~r X e
ka_? V. - and therefore ka;vm. Hencg

(ZX - gm Vl x€ By )V <Um%.vi s %€ E% Thus
if S i

X = b
2% D U{vm. x¢€ Emj 2 V.-

&1 alternative proof of theorem 3. Tet 3 k=1,2,e+. be

k‘?
defined as in theorem 4. We next define, by induction, a

gejduence OI,,, k =1,25«-. of Borel gubgets of X x Y guch tha

for all k.

a) O O 2y

b) for all x, Cf is an open subset of ¥, 5(0¥) < £ and
- iod = .
O & Cp—q if KD 1

c) x€ 1y B implies Ci # .

Tet Vep' ® = 1,2,.. be a countable base for Y consisting

of nonempty open gets such that G(V1n) < 1 for all n.
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s
\\

Let D, =y i, g Z¥: }= gxz Vi (X x T~2,)% = ng}=

X - n1((X X\ﬁnjfl((X x¥)~2,))- Dy, is coanalytic for all n

and E D1n = n1Z1 is analytic and hence Borel. Find digjoint

B ,1 = [ B ] ¥ E D =
orel sets B, ., n = 1,2, such that B (; D,, and gBm

T2y Pub O = U(B, x V, ).

Suppose 01,---,0In have been defined. Iet Vm+1 n?
) L)
n = 1,2,+«+ be a countable base for Y cohgigting of nonempty

open gsets such that 8 (Vm+1 n) < ﬁF%fr
1

i = \ x X
Let %th"{x°ﬂmhn<:0mﬂzmd}

Tor all n.

::%Xﬁ €ﬁ+1,n L= - (cp 0 Zm+1))x ) ¢}

=K = 751((3 bid {fm+1,n)ﬂ((x BYhE (CmﬂZm+1)))- D111+‘l,1’1 is

coanalytic for all n and U Dm+1,n = n1(Cm 0 Zm+1) since

n
(Cmﬁ,ZmH)X is open by induction hypothesis. Hence g'Dm+1, .
ig Borel., TFind disjoint Borel setbs Bm+1 sy LS 1425+« such
X ] b4
+ 1 T = "
that Bm+1,n (; Dm+1,n and 3 Bm+1,n ﬂ1(Cmﬂ'zm+1) Put

C = E(B % ¥ Only (c¢) needs checking, (a) and

m+1 m+i, n m+1,n)'

(b) being evident. Tet x¢€ W1IL Now, Z* ig dense in Y and

T+

X s . . 4 . 1y y X
C,, 1s open by induction hypothesis. Hence ém+111 Ch

(Zppq 0 €)™ # ¢ Therefore x€ m, (Z,,.0C.) = U B Hence

1% ¥/ m+1,n’
».4
CI[H"I # Q{'
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Put C = %-Ck' ¢ uniformizes 2
. 1 X

X€’J‘t1;) CX

I
]

and if Gi

-
¥

f

and (e)-

(b)

Eors (G C: % Zk C:iB

is a gingleton by
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CHAPTER 3

SELECTION THEOREM® FOR PARTITIONS OF
COMPIETE METRIC SPACES

1. Introduction

B A e e e WL

If Q is a partition of a set X, a set S (_ X which

meels each element of Q in exactly one point is called a
selector for Q (also gometimeg referred to ag a cross-section

of g). If X 1is a complete metric space, elements of @ are

cloged subsetg of X 2and moreover there are definability con-

ditions on Q, the question arises if a seleclor for § can

be found guch that it too gatisfies certain definahility con-

ditions.

This problem has been considered in recent articles by
Kurétowski and Maitra a2nd Maitra and Rao when X is a Poligh
space (191,[25]. Much earlier Bourbsilki (8] had proved that if

Q 1s a lower semi-continuous partition of X into closed sets

then there ig a GB gselector for Q. EKurzatowski and Maitra

extended these results to the cage of partitions Q vwhich are

- a**‘(these are defined in analogzy with l.sec.

of class « or
and u.ge.cs partitions) for countable ordinals «. Using

different methods,; Maitra and Rao obtained goimewhat more precise

regiltse.

‘The aim of thig chapter is to show that t"c results of

Maitra and Rao carry over to the non~separaile cage. In this

.-...31...
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situation the methods of Maitra ané Bao, which are essentially
of a countable nature, do net guite work and we have to use
results. from the theory.of Borel sets in non-separable metric

spaces due to D. Montgomery [271.

2.  Definitions and notation

In this chapter, we take X %o be a complete metric
srace: and 9__ to be a partitj,gfr%ﬂof X into closed subgets~ For
Xy, ¥ in X, we write x~ y  to denote that x and .y belong
to the same element of Q. If 4 C; X, put

A% = (ix : there is some Q¢ Q such x¢€Q and QA4 # Qﬂ}

A% i called the saturation of 4 with regpect to Q.

Q is called an o -partition of ' ¥ if the saturation

£

of every open subset of X with regpect to Q is a Boi’el

. .
set of additive class o. It is called an o -partition if
the saturaticn of every closed subget of X with respect to

9 is of multiplicative Borel class d.

Let "{ be any infinite cardinal. Tet By =igia < ’L’} ‘
where ors e < "r 7[ ig given the discrete topology. For any
x in Brg let X3 denote the 1i'" co-ordinate of x. TFor

any ordinals o,y=evso. <Ts u(o,=»-0 ) standa for SX:xE B._ and
1 n ol n ) i

X, = G,y 1 = 1,s..n

l_l
-
el
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3+ The Hain result

Theorem. If o > 0 an Q is an a~partltlcn of X, then Q

admits a selector of multiplicative Borel clags «.

We first prove some 1emmas.
Qggg@nii_ If X has topological weight < { where U ig any
nfinite cardinal, then thére exists an open continuous map f

from a cleosed gubset E of BLr onto X guch that

I3 ) .
a) if(z(crj YO E): S, <‘c%‘ - 1s a locally finite family of* getss

b) for any k> 1 and any Tireess O 4 L
4
} N - -
= 1f(¢(c P ,gk)flE) Gk < L'% is a locally finite family of

sets relatlve to f(i(o ""’Gk-1) neE.

froof. Ve firgt define, by induction, a system of

N3 1 LY il 1 = e . :
open gets 0&1’...le Gyrircao <, k=1,2, such that
i) o(u ) <& terall k> 1 and all

61.’00-’0'1{ k
Gisrnts Q. 46 where 8 denotes the diameter.

ii) For all k > 1 and all oqret s O
) S A

o <L

A2 T Ty T O e Oy
iii)iUG f oy < ’T’ils a locally finite cover of X. For ko> 1
Loy

atl ANy Oysees oy <T EUO'V"" b ﬁ{'c}é T §is a
locally finite family of sets relative to Uc -
170" %%

i } a ‘ ' -
which covers Uo;,..., 5 .
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Let EVVi; iGII} be any open cover for X guch that for a]
L } _ . '
i, G(Vi) < 1« Take a locally finite open refinement of this
cover, say‘_§Wj o) A J}"; ‘Ag topological weight of X i'ﬁ ’
we can find & gubcover of gwg; e J] which hag cardinality g'ﬁ
L v < 0
Let Tthis new cover be i[%H: 4 <rL%- Clearly, {I&Ht oF <ﬂ[}

iz locally finite and 8(U_.) < 1 for all ¢
1

Let k> 1. Suppose for any o ;--S,O'k_1‘< fat

1

G‘ 1 , . e » ’ G]{Ig
has been defined. Tet ﬂVi : i1 € I1E be an open cover of
I

U - such that for all i, V. L . S '
G427 Oy 1 el PR L 4

(V. ) < 1. Since U ' 1 ig a metric space of topolo~-
i k Caame=y @
1 1 K~1 L ek
gical weight ¢ U we can find an open refinement of §V, : i€
v 1
which ig locally finite relative to U, - and then take
17°° 77 Pk
& subcover of this of cardinality 7 . We thus arrive at an
open cover { U d% <({§ @i WU which |
1 0'1!""0'1{_10'1{ 0-1’..',01{'-1

is locally finite relative to U anéd gatisfies (i)
q1,o--,0'1{-1 |

.and (ii).

P - - |
Thug for any 51,..., i <Ly UG1""’Glc ig defined l

satisfying (i), (ii) and (iii). {
Tet E (_ B~ be defined as follows. ( oys opsec-) €E |

if and only if o if # @+ It is easy to verify that ®
k Oqrtrccroy

iz cloged.
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Define £ on E by f£(( '0'1,}: 52',---‘)} = the unique element

R @ = 0§ , ey
0 T Voimrerion ( - UG‘]""_’Gk) Clearly, f(E) = X. Tet
wiud (¢ Ty Oppee- }J) =x and let ¥ be a neighbourhood of =x. As
ix% e fﬁ: [_}o_-],...’o_kgli"and a(ﬁg.‘]...o.']{}(%, there is a
k such that x€ U ¥ (see Chapter 1).- Now

0‘1oonﬁ'k-: =
2(3(o, +-v0y) OF) (; U“r"“k and U"q""k (;1\;*. Thug

f(Z(c:!o--o*],) 1 E) (C ¥. Hence f is continuous.

-

z (0-1....0-11)}0-1,...,0-1{(7:, k=1,2,... form an open base
for the topology on B”t - Hence,to show that f is open, it is
enough to show that (2(0‘1... Gk )n E) is open for any

0'1‘, ooy G k2 1. As a matter of fact, we show that

f(io «ev0, )AE) =10

4 » Clearly, f(é}(o‘1...ck) 0 E)

°1° %k
— V5 ..o Let XgUGﬂ""o‘k. Then there is a polint ('t‘1,”:2,...)

£ 3 (o-,i;'..crk) such that 35%51 Thus (Tys Tpsees)E

: B
}:(0;1---0'1{) 1 E  and f((f;,{,—’g,.,-- J)=2 .

~ Since f(}:(o&_...c'k)ﬂE) ':."Uo:]-.o'k ; it is clear from (iii)

that- £ satisfieg (a) and (b).

for

Lemma 2. On X, there is a relation < and relationg <1<:_,,

X
each pogitive integer Xk such that:

1 (a) x =,y if, and only if, neither x (¥ mor y <, x.

(B T y if, and only if, -x <1'{ vy for some k.
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(c)‘ < is a linear order on X such that each nonempty
closeu subset has a flrst element ‘ _

(d) For any a in X, ix: X <k.azg is open.

(e) =, 1is an equivalence- pelation with equi#alence~
clasues which are both F and VGB ﬁ- o B

(f) =x =y ¥ and 'y <1£ Fmplies x <1{2

x =,Y and z‘gliy implies é‘<k %-

(g) ix:: X ;1 é}, a E)X, fs a'lecaliﬁ Finite co%er Of:X;
for each %k and eachl b in k; {:{: x =i; - } L k b is
a relatively locally finite cover of: i:c; X = k ‘%
Proof: Tet X have topological weight &' L where T is an in-
finite cardinals Let B (_ Be be as in lemma 1 and let f
be the map on E defined sl Tomrcach T H in ~X,_f-1(x)
ig closed in E and hence in B~ » Therefore ”faj(x) eOntains

a lexicographic minimum which we denote by min fhj{x)-

Define the relation <, on X by x <,y if there exists
some r 'k guch that (min f“1(xj)i = (min f“1(y))i for i<«
and (min f“1(x))r < (min f”1(y))r;r_Define =, and < as in (a)
and (b). It is clear that x < y if, and only if, min f”1(x)

precedes min f_1(y) in the iexicographio oxd so that < 1ig

a linear order on X« Tet C be a nonempty closed subget of X.
Then f_1((9 is closed in E and‘hence‘in B + TLet o be
the first element of f"1(C) according to the lexicographic

order and let f(o°) = X, Then ¥_ i the first element of C.

C
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To see-this let x€C and x # X,+ Then f 1(:{) C B (C) and
g, 4 £ 1(};:) Hence o° precedes min f (x) e Bl S As

o, € g (xo), min £~ (XO) precedes min f 1‘(x)- Hence x, < X-

Let 3:6 X and suppose min f (a) = (T Lysmee)e
Then iz x<yal = {m (min £7x)) <, or ((min £ 1(x))1=’1'
and (min f 1(3{))2 < 11‘) or ---\((mll’l ‘f (X))

= Tesy k-1 and (min £~ (X))k <’Ca«)73

= U, fEE)AB) U ( U £(8(%ho, )0'E) - U f5(e QBT ..
o A, oy ) E) o Ly oy ) o (2(oy) )
U{ U fla( e Tose)le) - (v {3(oy ) n B)U...

<ft:,_ o 1<'T: o

U (z(’*‘

’

fir.
" 7 k‘l'!{
Gk—'} < ‘k -1
= 7 f(2(oq)2 B)U U f(z.('C,fF;’) 1 Bu.:.
v ¥ I ] -
0-_1 S ht’i 62< & 2
. s
ot E"T fz( tt’ ’“{_’k_.)o‘k) 2
E R

This is an open set ag f is an open mapping,

)0 E)))

5

= 1g clearly an equivalence relation. Tet a € ¥ ang suppose

min fn-j(‘a) = ('“{,;, ’t:_, ) mheni G AP - =k-a48 =S\x:(min B (x))l

i=1,00., k Y

Gy

/

RS (o (B A6 B) 2 FTz(r)n ) U L ¢ ’ZA,(T:;)HE)
k o </“f t o < \
1 1 2 ~ b,
Uso o U £(&{T,... T, o, )0 E))
' 0 <fv { {ﬁ_‘_ k
Gk {

- A _
Thug }x e ag is both an P ‘and 3§ G, set.

(f) 1is clearly true .
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s i

1*{. x o= 1 EeV:Ldenth covers X as a‘ “ung over pe It

‘min (f 1(w).j = “'1 glx. X =, as = 1“(2‘.(”‘3 )f'F) - g”q o{e(ey )
R o

A f(z:(’é’,l JRE) = Ug- and henge forms a-locally finite.famil:
‘4 varies,: so dbes {Xi x =y aﬁ ag a vhries. Now fix be X»

Y implies x =. a and hence x =

’“+1 Tk

)
e Have P x o= ?— ClwaTxv= L Y &,
wWe iave 2 }.K TBE ﬂﬁ C %.&2 35 b% Aﬁaln% $Tx k41! &

covers . X 'as a runs through X. CTet. y{ }X f.%x.‘z-—k» '_\ffdf.iﬂ'f.‘:ll‘d‘r vgome
5 R ) ! & )

Lot 64 By B. s w

Y Fyyq then Yy = a for this =X Agaln, y _}c b- | Hénoe |

( - .
Thus g:,:g_ X gy ag s & = b "‘OVGI"S%’X,' =l =1 b} uot (Yﬂl?fl i
= ~’M}iy i = 19_':' ek and (mil’] £ 1(3))1'_ :i“:i i = 1"2’;}--,1{*1 .

& & =i 18 then”ﬁl: ’L‘i for 1 = 1,se.5 ke T\&\.\w\ ixz L Ty ¢

= i"(E(q:,}g---,ACk_l__l)ﬂ Egr = ( UN f(2(0‘1)ﬂ E)U Uz"’/ f(Z(f{:‘g

Ty T9 T
o E’- ’ f(z(q:1:.,"'ser ’ Uk+1)ﬂE))
Tk o1
=1, = ={ W T B VU ver U U U oo
* ) /L/
R A AL RE AL Srert < Crq ]
$: w= DY =T, o= U U U U  Ugp  Tso
i3 3 [ I ) 4 . ~ e : :
1 k oy < G 1 c2< Us 12
g U U - ).
SRS AT k-1 Tk
s U, .~ ig a locally ;1n1te family relative to Up
% k1 1

as ’T,':LH“,1 varies,'?_ XX a}, a = b, is & locally finit

horession, ©@CR-vweb ontirhiz / 2:0 W i i e
TR eaSion, Seiva eyl g a‘,_o Z K - };

o
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Lemna 3. Tet g = be defined of X as in lemma 2. For

any af€X and k 2 1, let [a]k denote the set %;x: X = aa%-

, ; : d
Suppose for each 2z and k, g subset éL ] of [aJ is defi~

&,x—(‘w‘

ned. Then for any b€ X and I > 1, the Lamllyui?[ ] ac€ [bjk 9

ig a family of subsets of [b] 1 which ig locally flnlte rela-

tive to [b]k—‘i

Proof.. If ac¢ Lb]k ~1» then a = _ b, hence ir x =g s then

x = 4 b ThuS‘[aJk C; [ka_1 50 that z[a]k C; (bl __,. =By

the previcus lemma, S[a]k : at [b]k JL.is locally finite rela~

tive ‘to [b] - Hence 5 Z ] ¢ ac [b is also locally finite
k-1 i_ [al k~1

relative o [ka_1 L

Proof of the theorem. Define <pr = x and < on X as in

lemma 2. Tet B consist of the first element of each Q in
9. Then B is clearly a selector for &« It remains to show

that B ig of multiplioative class «a.

| A
3%€p 1. B = ﬂ in X x = a and x¢ 5 Z. 2z <y a. ?*{ .

L

froof. mix k. Let -w< Be Now, w = wand - if z <. w, then z <
TS ok k

and hence Zorw. Thus w 7 ‘z z < w& « Hence we have

{—m

w€ U 2 X2 x = a and x¢ 2“ k a‘7% for all k. So

o~

w belongs to the right hand side.

Let w¢ B+ Then there exists some wy<w such that Wy we
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Suppose wy <y w. If, for some a; @& =1 8 Wy -<1 a o thit, a3 )

wmw.,,wﬁ{z,z(la} « Thug -wﬁ’%x: x——'la and :xﬂ'

fiz t 2 <y af { Tor any a. Hence w Hoes not helongs to
. J

the right hand side. .

Step. 2. B is of multiplicative Borel tlass « »

g}
0
ot

Propf. Let [a], be as in lemma 3 and let X[, ] be the

H
Hy

?x.x = a and x ¢

2: % <y & 73 } Observe that i
b € [a..]k dleee if [b]k

Sz
RS
= [a]1 » then

‘ * 2
(ix:x’:ka and x ¢ %z 3, <k a% % is the same as
- , % -
uUrambiguously defined. Clearly X[,] 1is of multiplicative
k
3orel class .
New 3= 0 U Xr ] . Toshow B 48 of multiplicative
K a o
sorel cless o, it is enough td show U X[aj ig of maitiplicative |
a K

3orel clagz &

Fix k> 1« Now, U{X[a] ;i at x%

gSLU %X[ajk. a€ [bJ,n___! ﬁ)

Pix b amd suppose ‘a€ [bl_,. Tote that *a ] C La]

Ug_ixfa]k aelsl pexy |

Heuce by lemmg 3, {X[a] i a€ [b] }19 a 1Qca1Ly finite Ja2mily

of sets in the relative topology of [b] kA~ As X[a] is of
k
multiplicative Dorel class a« in X and hence in [bJ .“by ‘"

result in ([27])) U {X[ R € [b]k 1219 of multipliocztive
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class o in [b]k-—‘l and hence j.n X- is UiX[a]k 1 .at€ [bjk-—‘l}

b and U X = UqU%X . ac€ [pl _} we Trepeat
C k~1 a “lal, T " [ad, k=1{]*
this process. After k-1 steps, we obtain an union of the form

U Zra] where Z[all C___ gxu x =, a§ and is of multiplicatj.ve

class &. Thus U X[a_] is a union of a locally finite family
a ik :

0f sets of multiplicative class o and hence is 1tself of multi-
rlicative class « \srﬁe [27]) The case when %k = 1 can clearly

be dealt with s:Lm:lerlyo

Hence B = }({1 gX[aJk ig of multiplicative class «.

L}

An alterna‘give proof., For any % and any Tyyeeey0y < [ define

U as in lemma 1. Define H by induction as follows:
61...‘0.1{ : - 010000'1{ ) )
=U_ = {U Uy)*.
°q = o <ol
=U n H (U U )* ir k>
i = - . s,
0.1‘0-,., 0'1{ .0‘1...-. G‘k 0'10300‘1{_1 o< o‘kO'_}loA‘O'k__ai o}

Using induction, we can prove that H
610. .Gk

class & for all k and all °'1"'°'k“’t {H : o-.j <'C} is a

is of multiplicative

locally finite famlly of sets as M i Uo_ . For any k> 1 and
. = 1

BUY  Oyyese Oy -1 4% iHo‘r“ O O * o < L§ is a locally

finite family of sets relative to U since H
0.-1 *» .Olk-1 0“1 L Y G‘k—-1 O‘k
Cvu » Let B=0UH . We show that B ig the
== 0‘1...0‘}{-"}'0-1{ k 0-1_...‘0.1{
(0&, * e 90‘1{)

required selector.
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§tép 1. 3 4is a selector tf‘ﬂi: Q-
Let Q € Q and Iet T, = the smallest o guch that QAU # ¢.

Then G O(U - T.) =¢g so that Qa(U U) = ¢f. Hence
o’{’r_t o < L1

QA ”*& Qﬂd,, £ ¢ Alsa if A <’E’ oak (Coawy =¢ end if
: Q g (%< }r;)* 50 that Q0 H = @ Supposze for a given

¥, we have otrtaineé'l’,,l,m,,"!jk((j such that Q 3%1;..'.;,’,

= Qnmq__.,ﬁk;é g and $or (oqrses0y) # (oo Ty

QR U, b joe iy, ¢+ TetY, be the smallest o for which
r+1

QLU %Of» Tfhen Qf X - QO U o+ S iieg
-1‘1..,"( en T"““fk"k-m ...'L’k+1 1’1”

= Q4 aqn =QA8
Q U’ﬁ"'aﬁ‘c o0 Q UT U Q Uf.__fqmyf@’ and for .

|..u'

(5 g rn @ypq) # (TaerTgqd RO i gpen ™ ¢~ Thus we obtain a
; 1 e T

<sequence7f1 »Upav=+ sguch that for all k, QO He 4=
g :
Q DUIE; ia r%# 0 and for any oyes-poy < T such thatb. ‘(9'1'!' »Gk) ¢

By e
(0-1 LI ‘IO'k)

= Q fl N . =Bl DU = an U which is
,q .."g k T ‘H{ z_;-o--(,k

(Tyaem e T s Q 0 ..o e g« Hence QOB =QOAUH_
e

clearly a singleson.

3} is o Borel set of mulbdiglicative elags o«

e

STep_ 2.

It is enough to prove that for any kR, Ui, . is
1 el ¢

CINLS

RSO el betelafn udhy o aEsBH GveRaisR-doplit ([T?"!J}, $Edo
F T
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is of multiplicative class «a,

et k>1. U H_ = 7 U

i 0‘1 ...Gk-j Gk | . o’k O-'-l.na‘o.kutl o.k

(04eeioy o) (04 00opey) |

il  t o, <U} is a locally finite family of sets of
g\ 0'10000'1{_1 O'kk (’j .

multiplicative class @ in the relative topology of U

| SE LRl A
Hence as before U H is of multiplicative class «
- Uk 0'1 ...O‘k_.] Gk . ‘ Y
in U and hence in X, As U H U
0‘100'(7]{_1 s o-k 0-100-0-1{_,1 Gk = 0.1.."0-‘1{'

we can repeat this argument. After finitely many steps we arrive

at U Ha which is thus shown to be of multiplicative
(0‘~1.o:0’k) "1..“0.1{ o )

class & Hence B is of miltiplicative class «,
Corollary, If Q is an at- partition of X where 0-2 0, then

=

¢ admits a selector of multiplicative Borel class L I

. & E
Proof. This follows from the fact that an « rartition is an
(x+ 1)" partition.

4, Concluding remsrks.

l. Tae result of the main theorem cannot be improved upon as
far as the class of the selector is concerned. To see ‘this con-
slder the following example given in ( [251).

Let X =10,1], @ > 0. choose E ( X such that’

E 1is symmetric about % and E is of miltiplicative class «

it not of additive class @,

€ E,

Loj~+
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Let @ =1l{x}: x€El U [{x, 1~ x}: x€X - E]. Then

g 1is an a” partition of X and Q does not admit a selector

of additive Borel class . :
2. If in this example, E is taken to be of additive class «
but not of multiplicative class & then @ becomes an- at
partition wﬁiéh does not admit a selector of multiplicative
class «, Thus an at partition nedd not admit a selector of

miltiplicative class «,

+

3¢ We do not know if an &  partition always admits a selec-

tor of additive Borel class @ where & > 0., TFor & =0, this
is not true. To show this we give an example from (l2s 1y,

"Take X +to be the unit ¢ircle with the usual topology.
Let Q = [ iﬁx’y)’(-xé-'yj% : (x,y) €X ]. Then Q@ is a

+ r
O ~partition of X which does not admit an open selector.

el

4, The Q given above is also a O ~'partition of X which
does not admit a closed selector., Thus the theorem in this

chapter does not hold for & = Q.

5 If X 1is O-dimensional, i.e. if it has a clopen base,

then the theorem is true even for « = Q,

Proof. A O-dimensional space of topological weight is homeo-|
morphic to a closed subspace of B;E(See[25]). Thus we can takel

X to be a closed subspace of B for same [ >Q,. Let B m

[A
obtained by taking the first element of each § in Q accordiy

to the -lexjicogravhis order, Then X
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B= 7 U %LX€X g TIE vk (0‘1,-_--,0‘1{) and x¢
cael
k

- : : e *
(. S - (Z,l)U s U’[' -;,UG‘ 3_(0'1”3--:@1.{_1:- "-k)) &

1 1 k k

= 0 U (2 (Fhp0e090. ) = (. U RBR(T)Usw..
] 1 k (A 1
k (r_l...crk) 1( O“I

. e 5
U .U E (613"'90.1{_1’ Lk)) ) >

T ¢o

{'k< k ,
“Z'LX k' ml’lel’l U E ( LA I ¥y T ( U 3 ( ’C U L
Ny N g .(0'1!. -G'k) ( 61 5. k) ?’_:1 ¢ 0_1 1)

iy *
st go.‘ & (O‘,;:;,"O'k_‘l?l.k)) )
k k

is the union of a digcrete family of closed gets and is

therefore closed. Hence B i1z cloged. .
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CHAPTER 4
BLACEWELL, SPACES

1s Introduction

Suppose that X is an analytic set ang B the Gorel
o—field of X.Blackwell [5] observed that the camonical Borel
structure (X, E)of the analytic set X has the following
property: if - 21,‘g2 aTe countably generated sub ¢~ficlds of

E which have identical atoms, then ¢, = C Blackwell

=il ="
deduced the property from the First Prinéiple of geparation

for analytic setg.

The above property can be formulated for any countably
generated Borel structﬂré and Borel gtructures with this
p§0perty are called strong Blackwell spaceses Interestrin such
structures was méinly generated by the queétion, posed by
Blackwell, whether g strdng Blackwell space is Borel isomor-
phic to the canonical Borel structure of an analytic set. An
affirmgtive answer to the question would have yielded an
intrinsic characterization of analyvic gets. Howeverys as has
been shown recently by Orkﬁ11[29] and Ryll:ﬁnggguﬂﬂéif'thére are
non-analytic subgets of the real line, which when eguipped with

the relativized Borel o-field, become strong Blackwell spacess

i

46~
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The mgin result of this chapter is that if there is a
nrojective well ordering of the real line of typei\ﬁ‘ (which
is true under the axiom of cantruotibility) then there are
projective non“anaiytic subgets of the line which with the
relativized Borel o=-field are strong Blackwell spaces.

of gubsets of the line,

IH®!

Ffurthermore, we show that the class
- which when endowed with‘tﬁe relativized Borel o~ field are
strong Blackwell spaces, does not have pleagant closure pro-
perties. On the other hand the clags C is large. Indeed,
we sbow that any subset of the line can be expressed as an

intersection of two elements from C-

2 . Definitions and notation

Tet X be any sete A o-algebra of gubsets of X ig
called sepa%able if it is qountably generated and contains
singietong. Iet B be a separable o-algebra on X. Say

that (X, @) is a Blackwell space if whenever a sub o=-algebra

C of B 1is separable, C = Bj (X, B) is called a strong

Blackwell space if whenever g1, gg are countably generated

sub o~algebrag of B with identical atoms, ¢ 4 = G+ Clearly,

every strong Blackwell gpace is Blackwell.
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If X is a metric space, EX‘ denotes the Borel |
G~algebra on X. X* ig called a (strong) Blackwell space if

(5 EX) is a (gstrong) Blackwell space.

In a Polish space X, define the clags of projective
gsects to be the smallest family containing Borel sets and |

closed under differences and continuous mappings. Continuous

i
images of Borel sets are called analytic sets, complements ‘

of analytic sets are called coanaglytic sets-

Tf X 1is any set and B (_ X, we use I to denote
1 if =x€ B.
0 if x£ B.

Y

the indicator function of B ile.e« IB(X)

fl

The characteristic function of a sequence Bn’

n =42, 0f gubsets of T 1is defined to be the function

o0 2
£ where f(x) mzrmﬁ Ig (x)-
'h.-.\ n ]

We use I to denmote L0, 1] with the usual topology. |

We treat cardinalg as initial ordinals.
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3 Characterization of Blackwell and gtrong Blackwell
spaceh '

In (l221]), we find the following characterization c%
Blackwell gpaceg:

Theorem 1. TLet B be a separable o-algebra on a set X. -

Then the following are equivalent:

(a) (%, B) is a Blackwell space.

(Y "EE @ 38 aAseparable oc~algebra on a get Y and
f a one-one mapping from X onto Y such that

£~ (© C B, then 2 (8) = C.

(c) If f 4is a one-one mapping from X into a Polish

spacé Y ouch that £ 1 (By) € B, then £ (B) = Be(xy
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{d) Every countable collection Ay n=1,2,... of gets in

B which separatces points of X generates B .

We give a similar result about strong Blackwell spaceg in

theorem 2. Before proceeding to this, we prove some lemmas.

Lemmg 1. Let X be any set and B a ‘o-algebra on X gene-

rated by BP, n=1,2,e«s. If f ig the characteristic function

of B, n=1,2,.u., then (Bf(X))

proof; Clearly, Iz  is measurable with respect to B and theret!
n

so:gza- I Hence £, being the limit of a geries of B-meagurable

n B
3 =
functlons ig itsel? B~ measurable. Thus 1(}—Bf(X)) C: B .

=~

: -1, s
To gee that B C: f (Bf(X))’ note that £ UBX) is a

o~glgebra containing Bn for n=1,2,+.. Thus B C: f-1(§y

Temma 2. Let B be a separable o-algebra on a set X. Then

the following are equivalent.
{a) (X, B) is a strong Blackwell space.

(b) For every pair Cys G of countably generated sub <-glge-
brag of B such that ¢, (U g, amd (,, U, have identical
atoms, 21 = 22.
Proof. Clearly (a) implies (D).

Suppose (b) holds. To prove (a), let » A5 e countably

I
|
1
generated sub o-algebras of B With.identical atomg. Then {
1

Ei v b g B and A4, and A,V A, are countably generated
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and have identical atomg. Hence A4 = 4,

Similarly, 4 (T A, Hence Ay = Byo o

LY
<
=
N,
=
o
473
=
™
1R
13=3
-

, 5 7
Theorem 2. Tet B De a separable o~zl gebra on a get X. Then

the following conditions aﬁe equivalent.
(a) (X, B) 1ie a strong Blackwell space-

(b) If Y is any set, 4 a separable o-algebra on Y and f
a function from X onto Y ‘such that ¥ 1(A) (: E then
(¥ A) is a strong Blackwell gpace.-

(c) If Y, 4, £ are as in (b}, (Y, 4) 1is a Blackwell gpace.
(d) If £ 1is a function on X +o the real line such that
) ¢ B for any Borel set B, then (£(x3, Br(x)) is a

Blackwell space .

Proof.

To show (a) implies (b), suppose (a) holds. Iet ¥, A, £ be ag
in (b). Tet é1, A, be countably generated sub g-algebras of
A with identical atoms. Then f"1(£ﬂ), f“1(A2) are countably

generated sub o-algebras of B with identical atoms. Hence

£ (44) = £77(4,). Since £ is onto, this implies 47 et

(b) implies (c) is évident

{c) implies (d) is clear.

To show (&) implies (a), let B,. 3, be countably

]
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B, have identical atoms- Tet £ be the characteristic functio

47 02,1-- where @0 is generated by Chpp B = 1925 wus

If (d) holds, then (£(X), is 2 Blackwell space. Now

Br(x))

23505
generated sub c-algebras of B such that B, (_ B, end B, an
|
£ (Ef(X))’ g0 in order to prove B, =5, it 1

by lemma 1, B, =

is enougn to show

- % |

B, = (Bf(X))' Let By be generated by
N 4

Byrn =1,2,.0. + &8 1 { i (Bf(X)) there exist 4,

n = 1,2,-7-- in gf(X) guch ‘tha't Bl'll 1(A ) Tet 1, 2,---

\ ", , s - W . = 1
generate the sub o-algebra é of gf(X) We now show é gf(X

Since (£(X), Ef(X)) is Blackwell, by theorem 1 it is enough to

show that A, »n = 1,2,... separate points of £{%). TLet
¥y, € f£(X) and Y4 = Yy« Then f"1(y1) and f—q(yé) are

distinect atong of @2 and hence of Congequently, there

By-

is some B, such that £ (y,) C B, and £y, 0B, =0

ks B, = f"1(An), it follows that y, €A, ¥, & A,

so 17 C By T @pry) CByr s 3= £ By

Quegtion, Is there a Blackwell space which is not strong

Blackwell <

4. Ryll-Nardzewski’s consiruction

..... A b L s bt

Wotation: If f, & are functions from I into I, put

By g =l§Eu, v): f(u) = £(v) and g(u) # g(v)'%

hp o = %yg for some u, v in I, f(u) = f(v) =y and g(u)#glv
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= Droaectlon to the thlrd co~ord1nate of
L, vy t) = 2(v) =y and glw) A a(v) |-

Note that if ,f’ g are Bo?gl meagurable, Bf e is a Borel get
and &g ., 1s an analytic set. We say that a subset X of I
has property (P) if for every pair (f,g) of Borel measurable
funct;ons from I into I such that Ap g is mncountable, there

exist (u, v) in B g such that ue€x, ve¢Xx.

Theorem (Ryll-Nardgzewski). vaa subset X of I has property (P),

then: X 1is a strong Blackwell space.

Proofs -Let By » Bo ~be countably generated sub o-algebras of

By with identical atoms such that B C: B,» Suppose

C C: C (: B be countably generatedcr-algebras guch that

B

B = 40X B, = £,0X. Let £, g be the characteristic func-

tions of countable families of sets generating g, and G

respectively.

Step 1. We show that A is countable.

fg

If A is uncountable, there exist u, v in X guch that

feg
f(u) = £(v) and glu) # g(v), Thus wu, v are in different
g, atomg but in the same Q1 atom. Hence they are in different
§2 atomns but the same §1 atonm. Oontradiction.

Step 2. Put 'Y = £ (I - 4, W e
As o = B e is Borel, Y€ C,- Plainlj, if yE I-fsﬂ ¢ then £ (y)is
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an atom of both g, and Cpe ‘8ince Y is a Borel subset of

Ty iy QY) is a gtrong Blackwell space and hence O1IIY = 0, 0

Step 3. Since Y€ (Q,, XA Y and X-Y are in dg I-Y

By-
is a countable union of g1 atoms, ¥~Y must be a countable
wnion of B, atoms. Consequently, if E C X-Y and E is

a union of §1 atoms, then EC §1 .
Step 4. Now let A€ B, Find C€ g, such that A = COX.
Write A = ((CQY)AX) U (CO(X - ¥Y)). Now by step 2,

cayeg,Ny=0n07Y (g, s0o (CQY)AX € By+ Moreover, f
CO(X - Y) is a union of B, atoms, hence of 3

by step 3, CO(X -~ Y)€ By~ This proves A€ B, so that B,=3,.

Congiruction of a non-analytic subsebt of I wilh property

(P) (Ryll-Wardzewskdi)-.

Let % Pyt @ < c.% and %.(f“’ ga): a < ch enumerate all
[ a7 .
nonempty perfect subsets of I and all ordered pairs of Borel

meagurable functions from [ into I respectively. For each a<c¢

define by transfinite induction, finite sets Ea’ Fo» G, as

a |

follows:
L%, Bl o G be defined for T< o» Tét ay, b bei
digtinct clements of P, —Lg &(E U EKCU G”E) Such elements =
exist as P, has cardinality ¢ and U (E U F, U G )-has

5 T o
cardinality < (maximum of ?égand caxd (a}) < c.. Put EOC = %aﬁ

F, :%bas . If Afa ga is countable put G, = @. Otherwise,
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A and hence B has cardinality ¢ 0 that we can find
To 8y To 8y
Uh\%)ef%aga &mhtmm Uys Yy QE U B U'(gaLTUFTU(%D.

In this case, put Gl {ua, Va& .

Let X = ¥ (E{x U G, ). Simce U G, (_ X, it follows that
o
a< ¢ a< ¢
X has property (P). Again, neither X nor I- X containg a non-

empty perfect gset so that X isg not analytic.

We now modify the above to construct 2 non-analytic subset

X of I such that both X and I~X have property (P). TFor this

purpose, 1et§Pa B lom g c} and )i(fa, ga)g a < c} be ag in Ryll-
Nerdzewski’s consgtructione. Define, by transfinite irduction,

finite sgetso Ey» Fys G,» H, for all o < ¢ as follows:

a? o

Suppose Et, Ft’ Gt’ H7:have been defined for all T« a.

Let G bcc be distinet elements of E g4 (E,, U I‘,..U G U Hg,)-
T<<i
As 2 ‘ - ‘ ] 1 o -
Let B, = gaag s Fy = %_b(x% o 1 As g, is’ countable, put
Ga = Ha = ofs Otherwise, chooge distinet elementg w s V! sa,ta

from I - ({Ea (E_,IU_F,}:_ UGaU H’C’)UEa U F,) such that

T(uy) = T (¥y)s g (uy) # g, (v,)s £,(s,) = Ty(ty) and
8alsg) 7# 8ot ) Put g, = {F“’ vak ; Ha;= {sa, ta§. Tet

X=1 (E UG,), then I~X ) U (¥, UH ). Hence both X and I~X
a<c ~a< ¢

have property (P). Again, since neither X nor I~X containg

a nonempty perfect get, X is not analytic.
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5 Fallure of closure propertles for Blackwell and strong

A el e A o A A e i ey —

Blackwell spaces-.

For the sake of definifeness, we work with subsets of the

real line unless otherwise stated in this section.

Propogition i- The unlon of two gtrong Blackwell spaces need

not even be Rlackwell.

Proof. Zet A (_ I be a non-analytic set such that both A
and. I~ A have tié property (P) and hence are gtrong Blackwell
spacess
ieﬁ B be the subset of the real line given by
B = ix+2 S SR A} As B 1is homeomorphic to I-~A, B is
a strong Blackwell space.

‘Tet C =A U B- Then C is not a Blackwell space. To
see this,let ] z‘?n : D= (EIiA)II((E-%2)£1B), E is a Borel

gubzet of Ij where E+2 =ix+2 : X€E§

Define £ on £ into I by f(x) =x if =x€ 4
= x—-2 1if x€ B

Ls A, B are Borel subsets of ¢, £ 1is Borel measgurable. Agami
£ is one-one and £ | (B;) = D- Hermce D. is a separable sub
o-algebra of E,- Bwagg'Wm;e AEEC.‘ﬁmme ¢ is not a
Blackwell space.

Proposition 2. If X 1is a Blackwell space and B an absolute |
Borel set such that XOB =¢, then X U B 1is a Blackwell space
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Proof.  Tet A ZU3B and let ¢ C: By be a separable

¢ —algebra. Let 01, 02 .. generate ¢ and suppose £  is
the characteristic function of 01,62,..._. T regtricted to

B is a one~qne quel measurable function and hence- f£(B) is

an ab golute Borel set contained in f(A}.. Since f"1 (Ef(A))::gi
B=f! (£(B)) € g- Thus Cq B and gnx C g i.e. B

and By C; G. - Honber B, C g - - |

Propogition 3. Any subset of I can be written as the inter-

section of two strong Blackwell spacess

Proof. DLet B C: I. Let A be chosen so that A4 and I=-A
Both have the, properLJ (P). Let C=AUE and D = (I-~4)U E.
Note that € and D also have the property (P) and heunce they

are strong Blackwell spaces. C(learly, E = CID.

Egg&rk-_ Ags any uncountable Poligh gpace 1g Borel igomdérphic to
I, the proposition is true if we take any Polish space instead
of Te '

Prbposition 4. There exist two gtrong Blackwell spaces coh-—

tained in I whose Cartesian prdduct (C: Ix I) is not even
Blackwell.
Lemma. Suppose (X, B) is a (strong) Blackwell space. Suppose

E€ B- Then (E, BAE) is (strong) Blackwell.

Proof, We prove it for Blackwell spaces, the proof for strong

-

Rlackwell gpaces ig similar.

et ¢ ( BN E Dbe a geparable oc-algebra

ma®
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on G. Let A e the o-algebra generated by ¢ oen T and
B4 (X-E) on X~Es« Then A ds separable and as E€ B, 4 (C B
Thus 4 =B. But C = ANE. Tence g = BRE.

Proof of the proposition. We know there exist strong Blackwell
spaces whoge intersection is not even Blackwell. Hence it it
enough to prove that if the product of two subsets of I is

Blackwell, then so is thedi® intersection.

et 3, € (C I ®Be such that Bx ¢ is Blackwell. TLet
D = i(x, )z sk I}.—- (Bx €C)nD is homeomorphic to B aC .
Hence; it is enough to show that (B x €)1 D is Tlackwell. Mhis
follows £rom the lerma as (B x C)fiB is a Borel subset of B x C«

__:_ﬁ’p,p._s}:t_'-op 5+ The field generated by #he strosg Blackwell

R

ppaces in a Polish space X is the power sei.
Proof. ITgllows fron groposition 3.

Propogitien 6. Zflierc are 2° strong Blackwell spaces contained

in any Polish spaces

PI‘OP_f TFollows {from proposition 5.

P e e e ——

This coastruction can be done under the following assumption: T
ean be well, ordered in a transfipite gsequence of Bype §\)_‘ {the
firgt mpepundable ordinal) by a relation 4 such that
wroisptive exbast af T v T, linke that

4
X g Sedad-ith: i
b)) & Wyl 34 a

s -

s



http://www.cvisiontech.com

_5 9._

as I 1ip Borel isomorphic to any uncountable Polish space X, this
assumption is equivalent to the one that any uncountable Polish
space can be well ordered in this way., Such a result follows from

N

Godel’s axiom of constructibility (V = L) which is consigtent

with the axioms 0of ZF get theory.

Let X be any get and I a family of subsets of X.
By an universal set for the family £, we mean a gubset F of

Ix X% such that F' = ix: (t, x) ¢ F| give the family E as

A

t rung through I.

Lemma 1. There exist projective gsubsets R amd P of T x I
which are universal for the families of countable subgets and

uncountable Borel subsets of I regpectively.

Let U be a Borel subset of T x il univéfsal fof fhe
Tamily of F& sets of I. The existence of gsuch & U is proved
in (LT?])v Let §= ‘t : gt is countable§ C is a coanalytic
set (see ([171) ana q”so chapter 3). Let R =00 (¢ x I)-R is

universal for the family of countable gsubgets of I.

Let A De an analytic subget of I x I uniVOrsal for the

family of Borel sets in T {see {({39])). Tet D {t : is

uncountableﬁ «- Then t¢D 1if, and only if, A (}_ R 1 for any

-

b

ti i.e. 1%, and only if, for any t1, there is an x such that

(4, x) € & and (%,, x) ¢ R. Tn symbols, t€ D <==
T t1E x ({t, x) € A and (t1, x) € R) where ¥ ghands for
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4
for all, O stands for there exists and <=> gtands for if and o'nlgkrl
By a theorem in ([17J) D is projective. Iet P =(A (D x1))u(0®x 1|
Then ® is universal for the family of uncountable Borel subsets
of T«

We now proceed to construet a set E which we then prove
is non-analytic, projective and streng Slackwell.
Construction

Let I be an analytic set universal for the family of
Dorel sets in IT°s TLek T (C I be defined by t€T if ang >
only if Ft =§l(x,y): -(t,x,y_)'e I'{ ic a graph. @In syrqholg

t€ M <==> ¥xy ((x,y)EF)and ¥x v-y'v“-y](((x,y)@t and (x,y,,ﬁFf)

= ¥y =)

ives Vxﬁ:.ﬁt-’((_‘i;_,x,y)@ ) and w¥x ‘a’-‘y%yq ({((t,x,y)¢ F and (t,x,y,l‘)EF)‘
= Y=Y

Then T is a projective set (see [17]): }

Let % (T be defined by z€Z if and only if fMere exist

Borel measurable functiongs £, &£ from I into I such that J&r

s uncoun'taole and B, o F2. Replad ng £, g Uy their graphg
%

say T 1 and F 0, we get the following,

2€2 <==> It, Tt, (t,€T and t, €7 and Vu¥v(((z,u,v)€F)

== (Fy (80 y) €F) = (5, vy)E D)) and ¥y (((tyu1,5)€ ¥)

= ((8,,0,¥)€F)))) and ¥tTy Zu v (((t,,4,y)¢ F) and

(Bgpvey)e F) and ¥y (Ut ,wy, )€ T) =>((%,,v,5,) ¢ F}) and

(ﬁ;_Y}Q’R‘)'}'
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Plainlx, Z 1is projective.
Let Y=1x I}U{ (2,3-)} + _For countable X C'Y and
t€ I, define G(X,t) as Follows: |

&z, t) = (B x $2Y)

-@UE)ir 0 ¢t ¢}

=¥ L g gx A< <1 and 26-1¢7

= i(?,?)% otherwige
where D = 3(:{,}:): x€7T Eand X#* = '(Tr,.] (x) x 1)U (Tﬁé(X) x I)
U(I'x 4 X))y v(rx nZ(X)) where Tt:1 and m, denote projec-
tion to the first and second co-ordinate respectively.
| For 0 < t < 2~ s card (P?t) - 4s card (X) _QNO
G(X,t) # ;a'. For 4< t<1 and 2t=~1 € 3, there are Borel
meagurable :E‘uncfions f, g such_thg—:.t Ae 5 is macountable and
i dat Bfg - Hence G(X,t) #¢ as card (X) S_S\So
Clearly, if £ < t< 1 and 2t-1 ¢ 7, G(X, t) £ ¢

Let < and ~<.{ well order I and Y respectively in a projec-
tive manner.. Define a function g on I into Y by trans -
finite induction as follows; . '

g(t) =p G(g[A(t)], t) where p W is the first element
of a subset W of Y according %o -{I and
At) = fu: us £} C T (seeltaly.

Let 4 ix ’?y It ((x, y) = g(t)) ‘and X 7-‘22, and let
B—iy gx &t (((x, y) = g(t)) ana g<t< 1 and 21:-1€z)73
Put AUB=C. If 0¢Z, let B=¢C. If O€ Z, .chooge

(Xgr ¥,)€ F° and put E = CUixo, yO} ]
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The proof of the fact that B is the required set is
given by the ‘-'following proposgitions, |

Propogition 1. There is a projective set R' universal for

the family of countable subgets of Y such that
i(x, ¥s.8, t): (x,¥)€ G(R'S, t)% is a projective set.
Proof. Tet R' be a projective set universal for the family

- 0of countable subsets of Y.

Let H = <‘{x,._:)r,s,t):, (x,7)€ G(R'S, %) and.-O <t 5_5—}
J = %(x,_y,s,t){: (x,5)€ GR'S,t) and %g t <1 and
2t~1€ 7 }
E = g(x,y,s,t): (x,¥)€ G(R'S,t) and %(ti'l and

2t-1¢ z} .
It ig enough to ghow that II, J and X are projective se-ts-'

Now (ic,y,s,t)G',II if, and only if,

0<t <4 and (ga(qg =2t am (q,x)€ P .and (a,y)€ P)) and
x#y and (¥u¥v (((s,u,v)€Rt) => (x #u and x# v and
y#Au and y # v))).

Thus H 1is & projective set.

(x,¥,8,t)€J if, and only if,

(g- < t<1 and (Tq(g =2%-1 and q¢ Z,- and (q,%,y)€ F)) and
(Fu¥x (((s,u,v) € R') = (x #u .a,;:ld x#v | and y#u and y#£v)
Thus J is a projective set ©

(X,7,8,t)€ K if, and only if,

%( t <1 and (Fa(q =‘2tlf-1 and q¢Z)) and x=2 and y = 3.

Thnus K ig a projective get.
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Proposition 2. E is a projective subset of T.

Proof. It is enough to show that C is a projective subset

of T. This followsg from the following thebrem of Kuratowski:
Let Y be an uncountable Polish space and for every countable
X C: Y and t€¢I, let G(X,t) be a nonempty subset of Y.

Leth %}, < be projective well orderings on Y and T respec-
tively and define T on I idnto Y by £(t) =p 6(fla(t)], )
where A(t) = iu; u<t} CI and for W C Y, pW is the
first element of W accordZQg to if . If t;ére exists a uni-
versal set R' {_ I x Y for the family of countable subsets of
¥ such that % (;, 8, ¥): v€ G(R'S, t)k lg projective, then

(i(t,x): X = i(t)g is also a projective set.

Uging this and proposition 1, we see that
¢ . j L . .
i(ﬁ,x,y): ey ) E g(t)} is projective. Hence 4,B are projec-

Tive and therefore go is C.Clearly ¢ & T

Fropogition 3. E is not analytic.
Eroof. = 4s before, it ig enough to ghow that C is not analytic.

For any t, put g{t) = (a{t), b(t)). ZExcept in the case

%—< t <1 and 2t-1 ¢ 2, when a(t) =2 and B{t)=3, all
the a(t)’s and Db(t)}’s are distinet and lie in T. Any uncoun-~
table Borel set is P°' for some t such that 0 < t < 5 -

For such a t, a(t) € P2JC ¢, b(t)c 2% q (I-C). Hemce
neither ¢ nor I-C containg an uncounvable Borel get. Thus

C 1s not ILebesgue measurable and hence not analytic.
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Proposition 4. B is strong 3lackwell.

This follows fi-oﬁ Ryll-Nardzewski’s theorem as E has property
(P) since for any z in 2, there is some (x,y)€ P° such that
x€E and y€ B '

Pr0pbsitions 1 to 4 show that E is the required set.

Proposition. There is a non-analytic, projective,; strong Blackwell

space which ig Lebesgue measurable and even one with positive
Lebesgue measure.

Proof. et C (C I be the Gantor set and let E be the projec
tive, non-—analy:c-ic, gtrong Blackwell space cohstmc’ced above.
Let nf be a Borel isomorphism from I onto C. Then “W(E) is e
projective, non-analytic, strong Blackwell space. As ’\{/(E) C o
"\‘,L/(E) has Lebesgue mcasure zero. Let G = (I-C) U ’\}/(E) .--
clearly G is non—analytic, projective and hasg Lebesgue measurs
To show that G is strong Blackwell, it is enough to show that
G has property (P). Let f,g be Borel measurable functions
from I into I such that Afg 1s uncountable.

Case 1. %y:' Fugv(ue ¢,ve ¢, f{n) = flv) =y, glu) # g(v))% is
uncountable. 1In this case, there exist u, v in '\//(E) such
that (u,v)¢€ ng Thig follows from the fact that f}l/is a Borel

isomorphism from I onto C and E has property «P).

Case 2« &u v (u€ I-C, v€ I-C, (u, v)e€ Bfg)- In thig case,

clearly there exist u, v in E such that (u,v)¢ Bfg .
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Case 3. }ty: Tu v (ue ¢, v€ I - ¢, f(u) = I£(v) =y,

g(u) # g(v))} is uncountable. Thus "'ﬂ‘l'w(.Bfg a{c x (I-¢))) is

an uncountable analytic set (_ C where m, denotes projec-

tion to the first co—ordinate,m As neither ’\rU(E) nor C-—’\F (E)
contains an uncountable analytic Aset, # «}'(E)I} (_11;1(Bfg 0(C x(I-0))))
is not empty. Tet u € —y/(_E) 0 (n1(Bfg N0(cx (I-C))))- Then
there exis% v  such that (u, v) € Bfg a(C x (I-¢C)). Thus

u € Y¥(E) C_ G, Ve I-¢ C ¢ and (u,v),e-Bfg. |
Thus G has property (?).
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CHAPTER 5

COMPLEMENTATION IN THE LATTICE OF
B ‘BOKEL STRUCTURES

1. Introduction

In connection with his study of maximel and minimal
elements of families of gtatistics, D. Basu [2] posed the follo
problem. Tet (X,é) be a Borel structure and let 3 be a
sub ¢-field of A. Does there exist a complement of E :§1a-
tive to é; i.e. {s there a o= Zield C on X such that
B 7V C=4 and B AC = %X, ‘,‘J} ? In other words, if L is
the lattice of sub o ~fields of 4, then is 1 a complemented

lattice ?

B3+« V. Rao showed in his doct\oral dissertation that if
X is an gbstract get, IE the lattice of all o~ fieldé on X,
then D is complemented if and only if X ig countable.
3. V. Rao moreover gave a partial solution to the problem of
characterizing those countably generated sub o~ fieclds of a

standaxd Borel space which admit complements relative to the

varent Borel o~field.
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In this chapter, we present a complete solution. Indeed,
we prove that all such sub G—fiélds-admit complementss
K« P. 8« Bhaskara Rao 331 had already shown thig for countably
generated sub o-fields with countable atoms. We %hen comple-
ted the §olution by proving that a countably generated sub
oc-field with at least one uncountable atom admits g comple=
ment. And finally & Grzegorek proved that minimal comple-
_ments exist for any countably generated sub o=-field of a‘

standard Borel gpace [37J.

These results are pregented in this chapter, some in
the more general context of X an analytic set and A the
Borel o=field on ¥X. However we are unable to golve the prob-
lem completely in this situation. In particular we do not
know 1f a countably generated gub o -field of -4 with counta-

ble atoms admits a complement relative to A-
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2.  Definitions and notatbion

Tet X Dbe any set 'and B a o -algebra on X. Tet 4
and § be substructures (i.e. sub e¢-algebras) of B. AV C
denotes the oc-algebra generated by AU C, 4 AC denotes

A 1 C. We say that ¢ 1is weak a complement of 4 relative

E_.

to B if AV ¢ =B ( is called a complémenf of 4 wrelative

to if it is a relative weak complement and AAC =‘(¢, X-%

5

b relative (weak) complement ¢ of 4 1Is saild to be minimal
if no proper substructure of ¢ isca relative (weak) comple-
ment of A.

A set B is called a2 gpelector for an atomic c-algebra

A if A 1 B ig a eingleton for every atom A of A. B is

called a partial selector for A if A 1 B igc elther empty or

a singleton for every atom 4 of 4. For any set 4, A% denotes
the complement of A.

For a metric space X, we use QX to denote the Borel
5 ~clgebra on X. In thig chapter, we take X to be an analy-
tic subset of some Polish space Y. I denotes the closed

interval [0, 11 with the usual topologys.

3. ¥Main results

We first prove sone lemmase

Qgggg=i_([31]). If A, C are sub:y—élgebras of B, on X

X
such that ¢ 1is a minimal weak complement of A relative to
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By, Then ¢ is o complement of A relative to B . Hence c

is a relative mlnzmal complement of  Av

Proof. Tt is enough to.show that A A Q= W, :\f§ . If possible’

let A be a noneripty get such thét A#X and 4 ¢ A AC o
et =x€ 4, y€ AS. Let M= {C:@E g,‘%x, yi C ¢ or

%X, yfﬂ C = Qi%- D 1is a proper substructure of g since -

1l

A ¢ D We show "4V D

QX so that € . is not a relative

pinimal weak complement of A

It is enough to show that c CavD met zeg.
If Z:)ix, y% or Z 11 (—X, yé @, then Z2€ D.. Suppose Zéﬁg-‘
Then ether. x€3%, y¢2 or x¢z°, y¢zC. Withoﬁt 1ossrof
generality, suppose x€ 3%, y¢Z. How 2 0 aCc¢ ¢ ang
(z04%) ﬂ"zx,y?{ = d. Hence Z 0 A%ep. Aiso‘(Z 0A)U Aceg
and \x,y C (z0A) A% Hence (2 0 A)U 2C ¢ Dl
b 4 ¢4 204 = ((z0 a)0 4%) 0 4c¢ A7V D.

Thus "2 = (20 4)0(z 04°)€ 4 ¥ D. Hence ¢ (T 47 D.

Lepms 2 . ([31]) If A is a substructure of EX and (C 1is
a (Weuk, complement of- 4 relative to B then there is a

countably generated substructure D of ¢ which is also a

relative {weak) complement of A

Proof. Tet

62

» H be generators for A and C regpec-

tively. Then G U

[[fas

generates B,. Tet Zygr M= 1,2,... be
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a countable subfamily of G U H which generates By- Such a

family exists since §X is countably generated. ILet 1 De the

o ~-2lgebra generated by those Zn’s which are not in G. As
these 2,.°s are in H, D (_ g- Again A contains § and
hencs contains the remaining Zn’s-_ Thus A V D contains all
Z,’s and bence AV D = By
Lemma 5. (see [5]).

Two countably generated subcrhalgébras of the Borcl o-algebra on
an annlytic set are equal if and oniy if they have the same
atomse.

Thoorem 1-(E-.Grzegofek)- Let 4, € be countably generated

sub g—algebras of QX' Then AV C =3 if, and only if, every

=X
atom of ¢ 1is a partial selector for 4.
Proof. AV C igs countably generated. Hence AV § = EX if,
and oaly if, they have the same atomg i.e. if, and only if,

AV € separates points 1i.e. if and only if every atom of {

is a partial selector for A-

Theorem 2. {(E.Grzegorek). Let A, & De countably generated

,

substructures ol gy-{ Then (¢ 1s & minimal complement of 4

relative to QX if and only if

(a) every atom of ¢ is a partial selector for 4
45 Gy axe distinct atoms of g, then C, UG, is not |

(b) if @, C
partial selector for Ae-

a
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Proof. TLet (a) and (b) hold. By theorem 1, AV G :'QX-

70 prove that Vg is a minimal complement, it is anough to show
that if D 1is a countably generated subgtructure of ¢ such
that A4 VD =By, then D = . By lemma 3, it is enough to
show that given such a D, it hags the same atoms as C. Suppose
not. Then there exists a countably generated 1 (C C such that
AV D= By and there is an atom D of ] contai;ing.two dig~

tinct atoms of ¢. But in that cagse D ig not a partial gelec-

tor for A and hence AV D # By +

Conversely, let ¢ be a minimal complement of A relative

to éXf By theorem 1, (a) holds. Suppose (b) doeg not hold.

Then let 01, 02 be distinect atoms of ¢ such that 01 U‘Cb is
a partial selector for A. Tet D De generazted by 01 {0) 02 and

g n(x - (Cﬁ U 02)); Then D is countably generated and every
atom of D 1is a partial selector for 4. Thus A VD= QX'
D 1ig a proper substructure of Cs this contradicts the fact

As

that ¢ is a minimel complement of 4 relative to By -

Theorem 3 If 4 (C By hes an uncountable atom, then 4 has

g minimnl complement relative to By

rroof. Iet 4 be an uncountable atom of A-As 4 is analytic,
we can find an absolute Borel set B (_ A such that B and
Y-B are uncountable. TLet g be a Borel isomorphism from B

onto ¥Y~B (for proof of the existence of such a g see [17)).
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Define £ on Xinto Y by

ix 5 U el
T(x) = ¢
Lg(x) T S =

Then £ 1is z Borel measurable function X.

Let ¢ be the wo-algebra on X generated by f_'l(gY)U

{A—B%-Clearly C is a countably generated sub ¢ ~algebra of
QX' )
Let be the s~algebra on X generated by ¢ U A} .
28
Clearly 1 Avg C By- Toshow AV L = By, it iz enough to

=Y = = =X

1l
b‘i"?j AREE,

]
shiow I

énough to ghow that D contains singletons.

ow the atomg of € ars of the form

(a) x,g(x)l Q(A~B), x€ B, g(x)€ X~B if ')\x,g<x)l A(A-3)4

| S
(o) gx,b(xﬂ a(X-A)T B)x¢B, glx)€X - B

-

(c) f7 , XE€B, g(x) € T-X.
J

iy . iy
Note thot the ztomg of the form (a) are just \g(x)% where

%€ B, g(x)€ A+ Those of the form (b) are <{X\- ki b€ 42

. < ‘ " .
g(x)€e A and 1 X,g(x)} if x€B, g(x)eX ~ A.

The atomg of D are of the form CQ & oand @ 9 (%=-

where C is an atom of ¢. Thus they are of the form;

(2) %g(x)g, x€ B, g{x)€ A

Az D is countably generated, by lemma 3, it is

4)
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(b) ixg , XE€B, glx)eca

{c) %x %{ X€3B, g{x)€X~A

(a) §g(x)§ , XEB, glx) € X - 4

{e) %x},x€3,§dx)€ Y-X .

Thus D=4V Q=38 -

We now show that ¢ is a minimal complement of 4 relative

to EX' Let E be a substructure of C such that AVE = QX .
We can assume that E is countably generated. Ag ¢ is coun-

tably generated,to show C = E, 1t ig enough to show that they

have the same atoms. If not, let 01 and

of ¢ contained in the

intersects 4, E containsg two distinct pointg

Hencc AV B does not

the fact that AVE

Theorem 4. Tet A (-

some B € EX which iwm

to B_.

ment relative

[

Yo
game atom E of E. As cach atom of C

be distinet atoms

a1 and o of A.

separate é1 and 2, which contradicts

Bt

By Dbe countably gencrated, If there is

&

selector for é, then A has a comple-

Proof. Let C be gencrated by B U EBy-g* It is easy to see
that AV Q¢ ie 2 separable substructure of '§ - Henge AVC=3

X X

Let ¢ # D¢ AA Q. As D€ 4, DDan atom of 4 and therefore

DAOB % ¢ . 4g B is an atom of C and

D¢ G, DB« Hemce

Dna #¢ for every atom A of A. As D€ A, this implies
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J

Remark. There are analytic sets X and countably generated

s C EX which do not have either an uncountable atom or a

gelector in but have complements (in fact minimal comple-

B
=X
ments) relative to 3, (cee example 1). We do not know if

there exist eny analytic get I on which a countably generated
subgtructure of \EX without relative complement can be construes
ted. If, however, ‘analytic’ is replaced by ‘absolute Borel’
the answer to this question iz in the negative ag our next

theorem ghovia.

Theorem 5« If X  is absolute Borel, every countably generated

subgtructure 4 of By hag & minimal complement relative to
B -

=X

Proof. There are two cases to be congidered.

Cage 1+ A hag an uncountable atom. The proof for this case
ig given in theorem 3.

Case 2. A1l atoms of are countabie. In this case, there

i

exists a countable family &

o’ 1,25+++ of digjoint Borel

gets gueh that T Gn = ¥ and each Gn is 2 partcial selector
n

for 4. (see [21} ). It is easy to chooge the Gh’s in

such a way that, for distinct Gn and G _, G, U Gm is not a

n
particl selector for A- Denote by ¢ the o-algebra geqerateé

by Gn’ n = 1,2,ee. The atoms of { are Gn’ n="12,«..

whence, by theorems 1 and 2, (¢ 1s a minimal complement ol 4
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relative to

X

Huel

Remark. We do not know the conditions under which 4 (T By has

P

a relative complement (relative minimal complement) if A is not
countably generated even if ¥ 1s taken to be an abgolute Borel

set. (see cxamples).

4. _Examplee

1. Let ¥ =Ix I and le%t A1, A, be analytic subsets of I
such that A1 U A2 = I and there does not exist any absolute
Borel set B such that B C &, I-3 C A, et

_ “ 11 35’_1
X=(a x {73 )V Uy 2377 ) Ciyr ana 4 = {T* = (Bx I)aX
where B 1ig a Borel subget of P

¥
rnhen 4 1s countgbly generated and has atoms of the form

e(y, xj% y %€ Ay =B %(x, )% x € AQ-A and %(x, I)’

(x, I}f x€ A 1 4,- Thus A does no¥ have any uncountalle atom.
b 1

If pogsible, let A admit a selector 3¢ By. Then B 1is

analytic and T B3 = 1 where g is the projection to the first
co-ordinate. As m, is one-to-one on B, B 1ig sbgolute :Borel.
Let C = Ty (B8n(I x S ) )e Thén ¢ ig abgolute DBorel and

= %x;(x, 5)6 B\ . Thus ¢ (C 4, and I1-¢ Ay which is a

contradiction. Thus A does not admit a selector in QXE'

Now, let £ = §E§ E=(Ix 3B)O1X where B 1s a Borel
= 3 _

subset of Il.' By theorems 1 and 2, ¢ is a minimal complement
4
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of A zrelative to QX'

2+ This exarple shows that ever 1f X is absolute Borel and

A C: QX is countably generated and has a minimal complement
relative to EX

it is enough to exhibit an absolute Borel get X and a countaﬁ

, A may not admit a2 Borel selector. By theord

generated substructure of QX which does not admit a Borel

selector.
Let X =1 and A C:AI be analytic non Borel. TLet Q;

be a Borel measurable fuanction on I with (1) = A« (Tor exis

£
‘tence of such an T, see 471 )+ TLet A= f—1(§I)' Then

A is a countably generatéd eubstrﬂcture of QX' Suppose A

admits o Porel selector B. Then f is one-to~one on B and
f(B) = A g0 that 4 1is absolute Borel. Hence 4 caonnot adm

a Borel sclector.

3. This exainple gives a o—algebra on I which is not countal

generated and yet has a minimal complement relative to QI'

Let 4 be the o-algebra on I generated by (o, %} and

ié:xk o Cx < 1% . By theorem 3, A has & minimal complm?

2
relative 1o EI' Clearly, A dis not countably generaled sin%%

otherwise, A [ [l, 11 is separable and hence must be 5[1 ]
. ) __,1‘
2!

which is not the casges

By a slight modification of thig construction A: can &V
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be chosen gso that it is not atomice.

4. This is again an example of a substructure A of

[Hus]

I
which is not countably generated and yet has a minimal complement

relative to 8+ Ghowever, in this case, 4 has no uncountable

atom s0 that theorem 3 does not apply.
Let X be the real line. Fix a non Borel set § symme-
tric about O such that 0€ S. Let 4 = 513 B is Borel in X
. .
and if x€B and -x¢ B, then x¢€ 57 -
We first note that A is a o ~algebra. TFor let

Aqshosees € 4, x € g A, and - xe’g A - Then for some m, X€4_

and =~ x Q’Am-“ Hence x€ §. Thus g An € A

Tet A4 € 4 amd x€ A%, -x ¢ 4% Then -x€ A and x¢A-
Hence =~x€ 8 2nd therefore x€¢ 3. Thus A%¢ A
Clearly ¢, X€ A .

Note that the atoms of 4 are ixg , x€5 and {x -x},

x § S A is not countably generated. To see this, let

Ays Ay generate 4 if possible. Let f be the characte-~
Vristic function of A1, ﬁg’?z" Clearly f is Borel measurable
and hence ?x: f(x) = f(-x)i is a Borel set. But

ig:: f(x) = f(fx)}==sc which is not Borel. This is a contra-—

diC'tiOl’l-_ . i _
Tet g = ﬁlaf X, (==, 0], (0, oo)} . We claim that ¢ is
a minimal complement of A relative to QX' Since D (: C )

%
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and D # ¢ implies D = ‘ig X%’ , it is enough to show AV

2

It
o

Let B € By: How le®t

¢
{x: %< B,
LN

xt €8, ~xz ¢ B .and x> 0% » B, =
~-x ¢ B and X <(3%.

F,] — ?X é—X € E1§ > F2 = ?X: -xE E223 . Glearly, E1’E ’

F1, ¥, are Borel gets and E,I U F,], o 5 4 U E2)€ﬁ'

)

Also By = (B, UF )N (0, =) and E, = (B, UE,) (-, 0]

—_ { i R T i,
50 that E,, E, € AV C. Thus B =E, UK, UB~E, UE)) AVQ

The next w0 examples are those of substructures of EI
without relative complements. The first one is not atomic. The

gsecond one hag singleton atoms-

5 Tet 4 {_ I be any non Borel get and

4 .
= e B € D n = £ h - g ; 2t
{B: 3¢ B, BAA=¢ or 4 (;_ B t. Then 4 does not have
a complement relative to EI‘ Otherwise, let C  be a relative
complement of A. Ye can suppose C to be countably generated.

Let D C: A e COUQtiDly generated .. o that DV = By

Ag (: 4, there is an atom D of D such that (: D.

As

D€By DFAA Iet x€D - A As %x} ig an atom of
DV g, there is an atom Cof ¢ such that <§ % D 1¢c. But

this implies C N A =g sgo that C € A. Thus C¢ Al and

[#;
hence C = ¥ which is clearly impossible as C 14 = (.
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6q([31])é is the countable cocountable ¢ ~glgebrza on I. If possible,
let (¢ be a complement of A relative to EI' We can suppose
¢ to be countably generated. i7et C be an stom of C. As

C ¢ 4 C is uncountable. A4lgso AQNC = B, so that B, is the
countable cocountable o-algebra on C. Thig is clearly

imrogsible.

5. Open Problemgs

1. We do not know if there is any analytic set X such that

there exists 4 (C By which hasa relative complement but mno

relative minimal complerent.

2+ The problem of characterising the atomic gubstructures of
tiie Borel o-algebra on an analytic (or even Borel) set X which

have complements relative to QX remains ungolved.

2+ If X isandyticand A (C By is countably generated
and has countable atoms, does 4 have a (minimal) complement

relative to B_ o

- aanc -

flote; 4fter this thegis was written, problem 3 was solved
' by Dr. K.P-S.Bhagkara Rao. The angwer to this
guestion ig in the affirmative.
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CHAPTER 6
 SOME PROPERTIES OF A-FUNCTIONS
AND a™— FUNCTIONS

1e Tntroduction

Following Kuratowski [17], we say that a function f on the
line into the line ig an A~ functign if {k s T(x) > c% is
analytic for every real c. Plainly if g is a real-valued
Borel meagurable fﬁnction defined on the plane such that

sup 2(x,y) is finite for every real x, then f(x) = sup g(x,y)
is an 4 = function. The motivation for this chapter coges

from our investigation of whether the converse of the last

statement holds.

Characterization of (E, %) functiong, in the sense of
Hausdorfi {13], are also given when N is the family of Borel g

of additive clagss o 1in a Polish gpaces

2. Definitions and notagtion

If X 1g any get and M a class of subsets of X, then

following Haugdorff, we call a real valued function f on Xg

(M, #) function 4if ‘gx : £(x) > 03 is in U .

-80~
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If T 1is a metric gpace and M the family of sets of
additive Borel class o, then (M, %) functions are called
a -functionse If X is a Poligh space and Y the family of

analytic sets, (g;*ﬁ functions are called A - functions.

Let X bhe a metric space. Let S be the family of open

sUbsets of X B, = o(8,) and, for O('a<J\&) By =

A(e( U 8,)), By = o(5,) where, for any family G of subsets
i<o ~ = = =

of X, © (g) and.4 (G) denote the o -algebra generated by G and

the smallest family containing G and closed under operation

A y Trespectivelye We call functions of the class (ga,* )

Sm—functionsg Note that if X is Polish, §1 is the family

of analytic sets so that 31-functions are just A-functions.

4 function h on a metric space X 1is said to be of
clasg o if h_1(U) ig of additive Borel clags o for every

open set U in the range spaces

4 complete ordinary function gystem on a get X is a

class F of real valued functions on X satisfying:

(a) Every constant function is in F.
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(b)

(c¢)

If £, g€, then max. (f, g), min (f, &) T £ &
f.gé€ T

If g does not vanish aﬁywhere,

1] 1)
m
Il'?

T fn,'n': 1,24+« 15 a sequence of functiong in

converging uniformly to a function £, then f¢F

5

We use R +to denote the real line with the usual

topology.,

)
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5. o= Tunctiong

Theorem 1. TILet E be a complete ordinary function system on
a set X. Let P be the family of sets of the form
{:x ; h(x) > ctwhere h€F and c¢ is real. Then e (2,*)
if, and only if, there is a real valued function g on X xR
such that

(a) e(x,y) 4is continuous in y for fixed x ,

(b) glx,y) is in F for fixed vy,

(c) sup g(x,y) = f(x) for each xe.
¥

Lemma 1. ZLet PER . ‘Thefe is an f€ g-'sﬁch that for all x

0% £f(x) <1 and P =§x s f{x) > o% .
Proof. Let P =%x: g(x)> C'} where g€ F and c¢ is real.
Put g, =g = ¢ Then g€ L and B = ixx g1(x) > 0 }.
Let g, = max (g1, 0). Then g,€E, for all x gg(x) > 0 and
g(x) > 0 if, and only if, g, (x) > 0. Put £ = - I

: 1+8
Then 0 ¢ £(x) {1 for all x, €¢I and P ={x f£(x) > 0f .

LTemma 2. P 1is closed under countable unions.

Proof. Tet Py, Ppye--, € B+ By lemma 1, let f € E be
such that O < f(x) {1 for all x and P, =3x: £,(x) > o},

‘n>1. Tet £f=3 - f . Then f€F and £(x)> 0 if, and
| —— n2n n =

only if, fn(x) > 0 for some n. Thus U Pn'=}_X:_f(X) > O% .
n
Hence U P_€ P & '
n 1 =


http://www.cvisiontech.com

-84~

Lemmna 5. If PCE, there is a sequence f1, fse¢ - in

=

such that the function g given by g(x) sup fn(x) is 1 on
= .

P and O outside P.

=2

Proof. Let P = %X: (=) > 01- where f¢ and f > 0. Put

£(x)

Il

min (n f{(x), 1), n > 1. This sequence auSWersour purpose

Lemma 4. Let fe{g, *), Then there is an increasing gequence
£on=12,... in E such that fn(x) converges to f(x)
for all  x.

Proof. It is enough to find f1, fg,--~ in E such that

f(x) = sup fn(}:)-
- n

Case 1. f(x) > -1 for all x. Clearly, if g = f + 1, then
g€ (B, *). Hence, without loss of generality, we can take

f(x) > 0 for all x.

— ] _ e -

Fix m2 1. Put Py =$x: £(x) > 5¢ » Then P _€R.
‘FPor each n 2> 1, there is an increasing sequence fn1’ fn2""
in P such that if .gn(x) = 1lim fnk(x) = sip lnk(x) then

kK=> o
gn(x) =1 on P  and gn(x) = 0 outside 7 . Put

2ol i
h, = % (g14fg2+~...)- Then hm(x) =n%$ﬁm = (g1(x) +"'+'gn(X))
= gup % (g1(x)+ ;..+-gn(X)) = gup % 1lim (f1k(X) +:--*'fnk(X))
n T n k>
N i - :
= = ;ui (f1k(x)+"'+ fnk(x)) since f£,,..-- fnk increase with
i |
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Now, if Eél < f(x) g_%, then g1(X)-='f' = gn-1(x) =1 and
gn(x) = gn+1(xl = vvs = 0, s0 that hm(x) = Eﬁl- Thus, for all

% By(x) < £(x) & my(x) + o Bence, #£(x) = Tin hy(x) -

sup h (x) for all x. Thus £f(x) = sup %(f1k(x)+----+-fnk(X))

whera f1k’”"’ fnk € g .
Cage 2» f 1is not bounded below by =1. Define g by

& = 1+f]f'f_' » Then g€ (B, *) and fg{x)]| <1 for all x.

Let €47 &>+ De an increasing sequence in £ such that

g(x) = gsup gn{x)e  Clearly £,(x) <1 for all n ana X
n

9y replacing g by max. (g, = 1) Aif necessary, we can suppose

- > ‘ = -1. : 1. 1 !
g,{x) 2 =1 for all n amd x. Put h 58, + 52 gn+1-%£3-gn+2+...

=1

hen h €Z and,for all n and %, gn(x) < h (x) < by (x) < elx).
Hence gup hn(x) = é(x); We now show Tnat }hn(x)] <1 for all
hot

n and x. We know that hn(X) < &{x) < 1. FEnough to show
hn(x) > =1+ If, for some n and x, hn(x) > gn(x), then
clearly hn(x) > -1. Suppose bh (x) = g,(x)- fThen

(%) = gppq(x) = vvv =g(x) > =1« Hence h _{x)> -1. Thus we
&n -+ = B ) “n
can define f ., by £, = BacEN nz 1. Then £ € T =axnd

BB e = ().
1 = jelx)|

“iﬁ&-j;\, iTneresses WO
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- Broof of the theorem. Suppose g(x,y) satisfics (a), (b), (c).
et ¢ Dbe aﬁy real number. Then by (¢) and (a)
f(x) > c<==>gy (g(x,y) > ¢) <==> & r(r is rational and
g(x, ) > c) where i stands for there exists and <=> gtands
Tor if and only if.

Now by (b} im ﬂmr)>c£€g for any fixed r< Thus
%:x: flx) > c% = 33\X: g(x,r) > c'% the union bLeing taken over

all rationals r. As P 1s closed under countable unions,

%X: f(x) > o.% ¢ g or fz (B,*)

Oanersely, let f£€ (2, *) Let f» n=1,2,... bean
increasing sequence of functiong in F which converges to f.
Define g on X xR by glx,y)= (fn+1 (x) - fn(X))(IYI = [ )b
fn(X) for n i, yl { n+1. ‘It ig easy to see that g 1is well

defined and satisfies :(a) and (b). 4s f (x) < glx,y) < £, (x)

n< n-+1

for n { |y| < nt1 and sup £ (x) = £{x), it follows that
n

sup g{x,y) = £{x) for each x.
¥y

Propositicn;

‘Let .} be the family of all real valued functions of class
@ on a metric space X. Then [F 1is a complete ordinary functio
gysten z2nd the gets of the form‘ix: fx) > c% » T¢€ X, ¢ real,

are just the sets of addibive Borel class .

Lemma. Tet X, Y be metric spaces and f£: X = ¥ a function

of class «. If g is & real valued conbinuous function on 7,
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then the function h on X defined by h(x) = g(f(x)) is of
class . |

Proof. TLet U  be an open subset of the real line. Then

n ey = f_1(g_1(U)). is g 1is continuous, g“1(U) is open

and hence h_1(U) is of additive Borel class «.

ProoxX of the prop051tlon.

Clearly constants are functions of clasg «a. Let f, g
be real valued functions of class « on X. Tet h : X -> B
be defired by h(x) = (f(x), g{x))- Then h ig of class 0.
Tc show thig, it is enough to show that h"1(U1 X Ué) is of addi-
U1, Ué
This is clearly true as b (U x U,) = £ 1(u,) 0 &”M(v,).

tive Borel class o where are open subsets of R.

Fow (x,¥) = x+¥, (x,7) = %y, (x,7) - max (X,¥7),

(x,y) => min (x,y) are all continuous functions on R? and

(X,7) = % is continuous on R x (R —.§O} ). Hence f+g, f-g,

max. {(f,g),min (f,g) and é sy Provided g doeg not vanish any-
where, are all functions of clagsgs a.

Let f1, fé?"'
of clags o« on X converging uniformly to a function f. We

be a sequence of real valued functlons

show that £ 1is of clags «. Nole that ther=: isc a subsequence

fm1, fﬁg,,.. such that for all n, £(x)| < % for

all x and k. Let F be a closed subset of R. We show that

I m +k

-1 it = s '( l W i [
£ (®r) = % % ixo Q(fmn+k(x), i) & n}’ where € 1s the usual

dAistance ir R,
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Let x€ £ 1(F). Then £(x)€F and 9(f(x), £ . (x))=
L i n

| £(x) -~ £, +k(x) fi B % for all n and k.
n

Conversely, let ¢ (fmn+k(x), F) £ % for all n and k.

kil
mn+2

As P is closed, this implies f£(x)€ F.

For each n, f ? s»e. converges to f(x) and hence
n
¢(£(x), F) < gl" s

—

row §x: 00, (a1 < A= 5l (o smm £
and hence is of ﬁultiplicative Borel class «. Thus f-T(F) is
of multiplicative Borel class « and hence f is a function of
class a. Clearly, any set of the form gxx £{x) > 03 s £€ F, e
real is of additive Borel class & |

Let A Dbe any set of gadditive Borel clags «. If a = O,
A 18 a cogero set and hence. A ==izn f(x) > qj for some continuoug
function f. ITet o > C. Inlthis casé, A=1U A, where each 4,

1=1
is ambiguous of class ao. Define f on X into R by

£{x) = £ — T, (x) where I, is the indicator function of
it Ay T8y
A; as ugual. As IA ig of clagg o and T is closed under
. : <

uniform convergence, f is of class a. Algso A = ?x: f(x) > O?

As a consequenéeuxfthgorém 1 and the above proposition we
haves;
Theoren 2. Let f be a real valued function on a metric space
X« Then £ is an d--function if, and only if, there is a real

valued function g defined on X x R such that glx,y) is a
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continuous function of y for fixed x, of class « in x

for fixed y and f(x) = sup elx, y)+
y o

4. _A-functions. ,

In this section we take X to be an uncountable Polish gpace.
Eﬁggggngi_ Let f be a real valued function on X which is
bounded below. Then £ 1s an A=-function if, and only if,
there ig a real valued Borel meacurable function g on X?

such that f£(x) = sup @;(x,y)-
¥

Proof. Without loss of generality, we take X = R. For

suppose the result is true for R. Let ¢ be a Borel igomorphism
from R onto X. If f is an A-function on X which is..bounded
'beiow, then fo’ﬂy is aﬁ.A~functiqn on R and fc:ﬂpis bounded
below. Hence £ o dy (g) = s%p h(s,t) where 1 1is a Borel
measurable . function on . Tet g(xy)="nh (WVA(X);AY'XY))

for x, vy €5. GClearly g is Borel measurable and f(j’(s))

il

'siépig(f“-;/ (g), W (%)) or f(x) = sup g(x,y)-
o 1 y

1 0
Let g be a Borel measurable function on R° and

f(x) = gup g(x,y)- Then‘given a real number c, f(x) > ¢ Iif
v : :
and only if gy (g(x,y) > ¢)» Thus §X: fx) > 01 =

7 4 %(X,y)° g(x,y) > 04} Whére n1 d2notes projectipn to the
firgt co-ordinate- Hence %:x. fx) > c'g is analytic or f is

s A=fumatisi,  Nots thot in thie mars of the ﬂ“ﬂop sthe
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condition ‘f is bounded below’ is not used.
Conversely, lét f be an A-function on E and a a
Tived real number such that f(x) > a for all x. ZLet
A = é(x,y): £{x) > y%} « Then A4 = ?(X,yﬁz Ir (r is rational

hY

and %(X} > o> y‘)}=ﬂg %(xgy): f(x) > r> Y} wherce the union
is taken over all rational r. Clearly, 4 ig analytice. TLet

B R° beo a Borel set such that A = projection of B (seel17])
i-et (x,y)€ A <==>"z ((x,y,2)€B). Let k Dec a function |
defined on R by k(x,y,z) =y if (x,y,z)€ B

= g otherwise-

Clearliy, k is Dorel measurable and sup  k(x,y,z) =
(Y:z
_suD Sy ¥« f(x)% 1] % az = f(x)s Iet ¢ be a Borel isomor-
{y:2) Lk L oy
2 22 3

phicm on R onto R and define h on R onto R’ by

n(x,y) = (x,%(y))s TLet glxy) =%k (bl{x,v)). Then g 1is Borel

measurable and f{x) = sup k(x, ¢ (y)) = sup &{x,¥)-
of y .
Remark 1. It is easy to see that theoren 3 holds ewn if the :

condition ‘f is bounded below’ is Teplaced by ‘f dominates |

a Bozel function’. As & matter of fact, an A=-function is of |

the form suﬁ g(x,y) wherc g 1s Borel measurabie if, and only |
,

if, it dominabtes a Borel function. Equivalently, évery A-func- |

tion on X 1is of the form gup g(x,y) where g 1is Borel measu-

rable if, and only if, giveg an ascending gequence of analytic

qets A, n=14,2,s.. sguch that U 4 _ = X, there is an
N _'1 oL
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ascending sequence Bn, n = 1,2,«.. of Borel sets such that

B, (: A, and g B, = X. To see this, suppose every A-function
is OE the form sup g(x,y}‘for'some Borel measurable ge Then
every Awfunctionyﬁominates a BOrel function. Igt An, n=1"1,2,++e
be an,increasinghsequence of analytic sets such that g An = X-
Define f on X by f(x)=-1 if x € A

-1
- n if x¢€ Anfﬂ

n—1 for n2_2.

Then f 4is an A-function. Suppose h is a Borel measurable
function on X such that f(x) > h(x) for all x. ILet

” Ex, :%Xi h(z) % =n 7}, n=1,2,...
Then B, C; A, and B, n=1,2,... ig a sequence of Borel

sets increasing to X.

donversely, guppose for éach sequence of analytic sets
A4s Apye.. iIncreasing to X, there is a sequence Bis Bosee
of Borel sets increasing to X such that B, 9] hos n = 1,2,0.-,
Let f be an A-function on X. ILet A= %f; ;(X) > = nhg.

Let By, C: Aps 1= 1,2,... be Borel sets increasing to X.

Let h(x) =-1 if x € B1

=~ 4 € B =B n ) 2

ne~1?
Then h(x) is Borel measurable and f(x) > hix) for all' x.

Hence f(x) = sup g(x,y) for some Borel meagurable function g.
v 7 , : _
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AnOther‘equivalent condition is the following.
Given a seguence of analytic sets An C: I, n = 1,2,ee.,
wnich increase %o X,'théreexistsan increaging segquence Dﬂ,
n = 4,24e.., 0of Borel subgets of X? such that g Dn = X2

and Ty D = Ay where T denotes the projection to the

n
first co~ordinate.

To see this, first suppose that given a gequence
Aq, Ag,{-- of analytic sets increasing to X, there exists a
éequence of Borel gets B1, BE"" increasing to X such that
B C; A - Further let C,, 02;--- be a sequence of Borel
subgets of X? such that #, Gy = 4, n = 1,2,;--, (see [171).
Note that we can suppoge the Gn’s to ke increasing. ZLet
D, = Cp U(B,xX)-

Conversely suppose glven analytic sets A1,A2,.-. increa-
ging to X, we can find Borel gets D1,D2,{.. increasing to

¥° such that mD, = A, n) 1. Fix x €X and let

Bn=2‘X: (x,xo)e Dng, n>» 4. Then Bn.C;An for all n and

B1, Bp,;-- are Borel sets increasing to X.

The guestion of whether any of these conditions always

hold remaing unsolved.

Remark 2: An arbitrary real valued function on X need not
dominate a Borel function. To see thig, take X = R and let

%"X&S a < c'%, %?a: a < CTS enumerate the real numbers and the
Bbrel functiong on R into R,'fespectiVely{ Define g on R

Yy AKX, ) = L NAL ) he  doaell g Goes wobU acwinate any Soicd !
J L=AN aj o N/ h o " v :
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. Our next théorém answers in the negative the following
guestion raised’by' D. Blackwell: If A . is the o ~algebra
generated by analytié sets on an uncountgble Polish gpace X
and f is an A~function on ¥, is f_T(A)E A for every
_analjtié subsat 4 of R where 4 1s the o -algebrs on X

generated by the aualytic getg?

ghggggydi;l Let X be an uncountable Polish space andr A the

o-algebra on X generated by the analytic sets. There is an

h-function f on X and an analytic subset C of R s1ch

that £77(C) ¢ 4-

This theorem is 6btained from the next one by putting a = 1
Theorem 5. If X is an uncountablc Polish space, there is an

¢4

g, = function f on X' and an analybic subset € of R such
that £77(C) ¢ B, - | | ‘

_Zroof. It is a deep result of Fonugui that ’gcx is not closed

A

under operationt;u‘(sedj4] ). zet Zn

| e Nyyeperny

are natural“numberé.aqd: k=-1,2,+.., be elements of ch such

that Zn.ve.n ¥ Bg» where N denotes the family of
- k -

;o
neg){% By

all sequences of positive intepirs and n = (n1, qz,---)- We

can find countably many sects Ai’ i=1,2,s.. in écx such that

for all n and Kk, zn1_‘_.nkeg( Ay18yse-+ ). Define a real
oo

valued function -f on X by flx) = 2 %f IA (x), I, Ddeing the
i=t 3t B4 A4
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indicztor function of Ai. Ag the sum of two Sanfunctions,a |

positive constant multiple of an Sa*function and the limit
!

of an increasing sequence of Sa~functions are all Sa~function&;
it follows that £ is ap Sa“fuﬁction. Since f?T(gR) =
o ( A1,Ag,-w- ), where I, 1is the Borel s -algebra on R,

[ ==k

(see chapter 4) we can find; for 211 n and k,

. - :
B. £ B, such that £ '(B ) =12 - Let
n10--nk R n1'..nk n‘io--nk
@ ingdff; Bn1---hk + Then ¢ 1is analytic and f_1(G) =
U L 7 ¢ B, -
2B T 7R

Remark. TLet X be any set and [ a ¢ -additive lattice on X,
containing X and the null set, such that o-(;) is not closed
undex operation aA » For any function f of class (;,*),

ff1(§R) C o (L) However, we can find an analytic set ¢

and a function f of clags (L, *) such that f—1(0) ¢ o (L)

The proof is similar to that of theorem 5.
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